

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TRIGGER SYSTEM FOR MULTIPLE MIRROR EXPERIMENT

by

B. T. Archer, R. T. Hamilton, and H. Meuth

Memorandum No. UCB/ERL M85/80

4 October 1985

TRIGGER SYSTEM FOR MULTIPLE MIRROR EXPERIMENT

by

B. T. Archer, R. T. Hamilton, and H. Meuth

Memorandum No. UCB/ERL M85/80

4 October 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TRIGGER SYSTEM FOR MULTIPLE MIRROR

EXPERIMENT
B. T. Archer, R. T. Hamilton, and H. Meuth

Contents

I. Overview 1

II. Trigger Generator 2

EQ.Time delay interface board 3

IV.Time Delays 3
IV.l Board construction 4

IV.2 Circuit operation 5
IV.3 Time delay reliability 8
IV.4 Time delay programming 9

V. Optical Couplers 10

A Schematics for trigger circuitry. 14

B Listing of TD.C, the time delay controller code. 1&

C Listing of TDCHECK.C, the time delay checking code. ££

I. Overview

The trigger system for the Berkeley Ten Meter Multiple Mirror Experiment
(MMX) is illustrated in Fig. 1. The Main Timing Unit is located in the MMX
screen room. This unit contains a trigger generator circuit, 32 computer-
programmable time delay circuits, and 32 optical couplers which link to the
MMX control panel. On the MMX control panel reside 32 receivers for the
optical coupler circuits which convert light pulses into 120V pulses to trigger
the ignitron firing trigger generators.

1

bmic uciajr uuc^xuug^ cuuc.—

II. Trigger Generator

The trigger generator (Fig. 4) provides trigger inputs to the time delays.
When the trigger source is set to automatic, the rate switch permits selection
either 1 or 10 triggers per second. When the trigger source is set to manual,
a trigger is produced either by the pushbutton switch mounted on the panel,
a pushbutton switch connected to the UHF jack on the time delay panel, or
by the charging timer for the MMX capacitor banks. The charging timer
is the trigger source used during normal operation of the machine; other
sources are for equipment testing and debugging purposes. A 10 /xsec TTL
pulse is produced by the one-shot trigger circuit, and is buffered through a
u~„ u..*r~_ ±~ ,»._:—~ ii oo 4.: ~ j~i : i*~ ...„i.. a t x?\jfr\ ~..+~..* :„

Jl

^C^Utf RO0*\

TTL LEVEL

CONVENES*
I .

TfcTGCER

GbWERAtOR.

• • • '»

TXIWE

delAVs

t*ATN Tif\xNC uwrr

OfTXC

TftA^rtmEKs

i' «•• \r

FrBER.
ofxrc

RECEIVER

Figure 1: Trigger system block diagram

Appendix A contains circuit diagrams for these components. Appendix
B gives the source code listing for TD.C, the time delay programming code.
Appendix C gives the source code listing for TDCHECK.C, the automated
time delay checking code.

II. Trigger Generator

The trigger generator (Fig. 4) provides trigger inputs to the time delays.
When the trigger source is set to automatic, the rate switch permits selection
either 1 or 10 triggers per second. When the trigger source is set to manual,
a trigger is produced either by the pushbutton switch mounted on the panel,
a pushbutton switch connected to the UHF jack on the time delay panel, or
by the charging timer for the MMX capacitor banks. The charging timer
is the trigger source used during normal operation of the machine; other
sources are for equipment testing and debugging purposes. A 10 /zsec TTL
pulse is produced by the one-shot trigger circuit, and is buffered through a
hex buffer to trigger all 32 time delays simultaneously. A LEMO output is

1

provided to monitor the trigger pulse, if need be.

III. Time delay interface board

The time delay interface board (Fig. 5) inserts into the motherboard of the S-
100computer. A 7805 voltage regulator converts the computer's unregulated
+8V supply into a regulated +5V supply. A 10MHz clock oscillator provides
counting pulses to the time delays through the 34-line ribbon cable. Data
for the time delays (DO0-DO7) is buffered through a 74LS245 octal bus
tranceiver. The remainder of the board is devoted to selecting which time
delay is to be programmed. The 74HCT688 is an 8-bit comparator which
provides an low active signal when the lowest 8-bits of the address bus (A0-
A7) are equal to the 8-bits of the addressing switch (SW1). The switch is
presently set to hex address DO. This means that subswitches A4, A6, and
A7 are set to the OPEN position (logical '1'), and subswitches A0, Al, A2,
A3, and A5 are set to the CLOSED position (logical '0'). The condition
for accessing the time delays is produced when the '688 produces a P = Q
pulse, the bus signal pWR* goes low, sOUT goes high, and A14 and A15 go
low. At this point, the 74LS30 8-input NAND gate produces the low-active
VC* signal. When VC* is active the bus address pins A11-A13 select a
time delay board. These three lines form a 3-bit value, and can hence select
one of 23 = 8 time delay boards. These three lines are buffered through a
74LS245 8-bit octal bus tranceiver to become board select signals BS0-BS2.
Bus address lines A8-A10 are also buffered through the '245 bus tranceiver,
and these three lines become chip select signals CS0-CS2. This 3-bit value
selects one of the eight 8-bit latches on board the time delay board selected
by BS0-BS2.

IV. Time Delays

The time delays each have four outputs, each of which is capable of driving
an optical coupler, or providing a trigger to a digitizer. Each time delay
may be programmed for a delay of 0.1-6553.5 /isec. A time delay may be
disabled by setting its delay value to 0. The output of each delay consists

of a 40 msec TTL high pulse. The delays are numbered on the front panel
from 1 to 32 for convenient reference. Electrically, however, there are 8 time
delay boards numbered 0 through 7, and each board contains 4 time delays
numbered 0 through 3.

IV. 1 Board construction

There are at present 8 completed time delay boards, plus 1 fully tested spare
and 2 pre-drilled circuit boards. Construction and testing of a pre-drilled
circuit board can be completed in about 2 hours. The circuit boards were
fabricated and drilled by Teltek Corp., 1509 Berger Dr., San Jose. The
following components are required to assemble each board:

QTY. Item Description
Integrated Circuits

8 74HCT40103 8-bit down counter

8 74HCT373 8-bit latch

2

2

74LS74

74LS123

Dual D-type flip-flop
Dual monostable multivibrator

2

1

1

74LS32

74LS14

74LS245

Quad OR gate
Hex Schmitt-trigger inverter
Octal bus tranceiver

1

1

1

74LS175

74HCT138

74HCT238

Quad D-type flip-flop
Inverting 3-to-8 line decoder
Non-inverting 3-to-8 line decoder

Miscellaneous items

9

1

4

16-pin IC decoupling capacitor
14-pin IC decoupling capacitor
330ft 1/4 watt resistors

4 100K 1/4 watt resistors
4

1

1/xF tantalum capacitors
34-pin right-angle soldertail header

The decoupling capacitors are used on the 74HCT40103's, the 74LS175,
and the 74LS14. The boards are hard-wired as Board 0 through Board 7.
Board 0 contains time delays 1-4, Board 1 contains time delays 5-8, etc.

J
TIlAE t>£\>V &O*fc.0

coMpoAiEMr srOE.

Figure 2: Wiring the board select.

The boards are hard-wired as indicated in Fig. 2. A wire jumper is used to
connect one of the outputs of the '138 3-to-8 decoder to pin 2 of a '32 quad
OR gate.

Table 1 gives the pin connections for the 44-pin connectors mounted
on the time delay panel. The bottom pin on the component side is pin 1. If
the panel requires modification, it is import to to minimize the excess wiring
on the panel, since the panel is already crowded.

IV.2 Circuit operation

The heart of each time delay circuit (see Fig. 6) is formed by two '40103 8-bit
down counters. These two counters are cascaded to form a 16-bit counter.

Each pair of counters is wired to two '373 8-bit octal latches which hold
the time delay value. The 16-bit down counter is triggered by the input
trigger, and counting pulses are provided by the 10MHz signal on board the
time delay interface board. When the down counter reaches zero, a 40 msec
output pulse is generated which appears on the 4 LEMO outputs on the
front of the time delay panel and also resets the counters to the preloaded

Pin Connection

1 LED 3

2 OUTPUT 3

3 LED 2

4 OUTPUT 2

5 INPUT 3

6 INPUT 2

10 +5V

14 GND

17 LEDO

18 OUTPUT 0

19 LED1

20 OUTPUT 1

21 INPUT 0

22 INPUT 1

Table 1: Pin connections for time delay modules

count. This output pulse is accompanied by illumination of a red LED which
indicates that the delay fired. Since a 16-bit counter can count to a maximum
value of 216 —1 = 65535, and one count is made each 0.1 /xsec, the maximum
time delay value is 6.5535 msec.

The time delay latches are programmed by loading data into the '373 octal
latches via the 34-line ribbon cable from the computer. The two latches for
each time delay are programmed one at a time via the 8-bit data bus. When
the board select signals activate the '138 output which is wired into the '32
OR gate input (see Fig. 2), and the VC* signal is active, then the board is
selected. The chip select signal (CS0-CS2) selects one of the 8-bit latches to
be programmed. For example, to access the low 8-bits of Counter 1 on Board
3, the board select signal is {BS2, BS1, BSO} = {0, 1, 1} and the counter
select signal is {CS2, CS1, CSO} = {0, 0, 1}. This combination activates pin
12 (F3) of the '138, and pin 14 (Yl) of the '238. The output of the '238
drives down the LE pin of the lowermost latch of Fig. 6, causing that latch
to accept data from the data bus, which is buffered through a '245 octal bus
tranceiver.

The time delay operation is initiated by a high pulse into the '175 quad
latch. This signal is synchronized with the 10MHz clock signal to prevent
timing problems within the '40103 down counters. The output of the '175
is used to clock high data to the output of a '74 D-type flip-flop. This high
output is fed into the PL inputs of the '40103 down counters and enables
counting. The 'LOW' counter counts at 10MHz, and each time it reaches
zero, it sends a clock pulse to the 'HIGH' counter. When both counters
reach zero simulteously, the output of a '32 OR gate goes low and initiates
an output pulse by the '123 monostable multivibrator. The '32 OR gate
output also provides a clear data (CD) signal to the '74 D-type flip flop.
This action brings the output of the flip-flop low, which proceeds to reset
the '40103 counters to their preset value, and inhibit counting until the next
trigger input.

Note that programming a zero into both latches of a given time delay
forces the output of the '32 OR gate to remain low at all times. Normally
a down transition on this signal causes the '123 monostable multivibrators
to generate an output pulse. When the input is always held low, however,
no down transition can be produced, and hence no output pulse can be

generated. Therefore the time delays have the useful feature that they can
be disabled by setting the delay value to zero.

IV.3 Time delay reliability

The reliability of a given time delay can be checked automatically using the
transient digitizers in the MMX screen room. The time delay and digitizer
are connected as indicated in Fig. 3. The digitizer offset is adjusted to digitize
a positive unipolar signal (e. g. the offset of a Transiac 2008 digitizer is set to
-256 mV. The test is automated by running the TDCHECK code, a listing
of which is provided in Appendix C. This code is invoked using the following
command line:

tdcheck <haltflag> <file name>

TDCHECK prompts for a digitizer to be checked (1-32), and a digitizer
slot to be used. Any type of digitizer can be used (Transiac 2008, Transiac
2001,or LeCroy 8837F). Then TDCHECK prompts for a starting value and a
skip value for the time delays. These values are entered as a number of counts
(1-65535). The code begins with the given starting value and programs the
indicated time delay with that value. The digitizer is then automatically
set to an appropriate sampling rate and triggered. After a stop trigger is
produced by the trigger generator, TDCHECK examines the digitizer data to
compute a measured delay value. If the delay value is within the error limits
imposed by the resolution of the digitizer, then the programmed setting and
the measured setting are displayed on the S-100 computer console. If there
is an error, an error message is written to the output file <file name> which
was named on the invocation line. If the file name is omitted, the console
is used. Normally errors are directed to the printer by using PRN: as the
file name. After an error, the program can be directed to halt immediately
by typing HALT for <haltflag>. The digitizer data can then be inspected
on the MicroAngelo monitor to help diagnose the problem. Any value for
<haltflag> other than HALT will cause the code to proceed until 100 errors
are found.

The code cycles through the delay values, each cycle adding the skip value
to the delay value, until the maximum value of 65535 is reached. To check

8

MiN TXMXWG U/jr-r

itfs

4 AOTD

TXiAE OEUW
OUTPUT

oxgitxzeR

SXGMAL T1V)P0T

STfcf T*X6GE&

Figure 3: Reliability test for time delays.

every possible time delay value, for example, the starting value is set to 1,
and the skip value is set to 1. This complete check requires about 20 hours
of running time, and normally zero errors will occur.

A skip value of zero can be used to continually programthe same time de
lay value. This option is useful for debugging purposes. Since the maximum
value will never be reached by adding the skip value of zero, the program
must by halted by typing Control-C.

IV.4 Time delay programming

Time delay programming is accomplished by the code TD, a listing of which
is provided in Appendix B. This code can be reached directly from the main
data-taking program DIGIT, or can be invoked by simply typing TD in re
sponse to the operating system prompt. TD keeps a file on the local user
space called TIMING.DOC. This file keeps a record of the most recently
programmed value for each of the 32 time delays, a eight character name for
each delay, and a logical trigger (see below) for each delay. This information
is also stored at the end of each standard digitizer data file. By typing

td <filename>

where <filename> is a digitizer data file, the time delay settings used in
that file are read into memory. Whether the parameters are read from a
data file, or from TIMING.DOC, the data is then displayed on the console.
To alter the values for a given delay, simply enter the number of the time
delay to be changed. For each delay there are three parameters, and each
can be retained by simply hitting return when the cursor is located at the
appropriate field. Alternatively, the current parameter can be changed by
entering the new value, then hitting return.

The logical trigger parameter is a software device for retaining a constant
time interval between two time delays. For example, say we wish to trigger
the mirror field from time delay 1, and its corresponding crowbar from time
delay 2. The logical trigger of delay 1 would be set to 0, so that its value
is referenced to the main trigger. But the logical trigger of time delay 2 is
set to a value of 1. This means that whenever the value of time delay 1
is changed, the value of time delay 2 will be changed by a similar amount,
in order to keep the separation between them constant. It is important to
remember that the hardware is actually wired so that all time delays are
triggered simultaneously, and the time delay value displayed on the console
is always referenced to this trigger.

When modifications are complete to the time delay settings are complete,
enter 0 (or simply a carriage return) for the time delay to be modified. This
will write the updated file onto TIMING.DOC, and chain back to DIGIT.

V. Optical Couplers

The optical coupler circuit (Fig. 7) provides the connection between the time
delays and the Ignitron Firing Chassis. TTL pulses from the time delays are
converted to light pulses by fiber optic transmitters in the screen room. A
green LED provides a visual indication that the transmitter was triggered.
The output of the transmitter is coupled into a fiber optic cable which is
connected to a receiver circuit. The receiver circuit consits of a fiber optic
receiver which converts the light pulse into a TTL low pube. A red LED
provides visual confirmation that the pube was received. The TTL low pube

10

b inverted and triggers a 2N1597 thyrbtor. The ON current for the thyristor
is provided by a .02 //F capacitor which has been charged to +120V between
shots through the 47K resbtor. When the thyrbtor b triggered, the capacitor
keeps the thyrbtor on for about 5 //sec. At thb point the current through
the thyrbtor drops below the holding current and the device turns off. The
current pulse is coupled to the ignitrons through a 1:1 pube transformer.
The risetime of the pube b ~ .5/xsec.

The total delay between the input trigger to the fiber optic transmitter
circuit and the output pube reaching the ignitron firing threshold of 75 V b
about 1.5 /isec.

The fiber optic transmitters and receivers are manufactured by Hewlett-
Packard, and are mounted with HFBR4202 mounting hardware. The trans
mitter part number b HFBR1202, and the receiver part number b HFBR
2202. The fiber optic cable has 200 /xm diameter, and b LBL stock cata
log number 6145-65673 (Pirelli LED 22214). The fiber optic terminations
are manufactured by OFTI (Optical Fiber Technology Inc.), and the part
number b 4024 RB-2.7.

The pin numbers used on the fiber optic transmitter circuit are given in
Table 2. The first column b the pin number on the 44 pin connector. The
next column gives the number of the driver which b connected to that pin,
as indicated on the front panel. The first number b for the first transmit
ter board (drivers 1-15), and the number in parentheses b for the second
tranmitter board (drivers 16-32). The third column of the table gives the
driver number as labelled on the circuit board, and the fourth column gives
the wire color connecting the edge connector pin to either the LED or the
LEMO input connector.

The fiber optic cables are terminated according to the techniques outlined
in the OFTI guide "Optical Cable Terminating Procedures and Techniques"
with the following change: Devcon Five Minute epoxy b used for speed and
ease of termination, rather than the slower epoxy which b recommended.
The short curing time, however, makes it difficult to get the fiber properly
centered in the connector. For thb reason the cladding b left on all of the
exposed fiber throughout the terminating process. After polishing, thb leaves
a well centered termination with a finish acceptable for our application.

11

Pin Driver # Board label wire color

1 15 (31) INPUT 1 Brown

2 15 (31) LED1 Red

3 16 (32) INPUT 2 Orange
4 16 (32) LED 2 Yellow

5 13 (28) INPUT 3 Green

6 13 (28) LED 3 Blue

7 14 (29) INPUT 4 Purple
8

10

14 (29) LED 4 Gray
+5V

14

15

GND

4(19) INPUT 9 Blue

16 4(19) LED 9 Green

17 3(18) INPUT 10 Yellow

18 3(18) LED 10 Orange
19 1 (16) INPUT 11 Red

20 1 (16) LED 11 Brown

21 2(17) INPUT 12 Black

22 2(17) LED 12 White

Table 2: Pin connections for time delay modules

12

Pin Driver # Board label wire color

23 12 (27) INPUT 5 Blue

24 12 (27) LED 5 Green

25 11 (26) INPUT 6 Yellow

26 11 (26) LED 6 Orange

27 9(24) INPUT 7 Red

28 9(24) LED 7 Brown

29 10 (25) INPUT 8 Black

30 10 (25) LED 8 White

37 8(23) INPUT 13 Gray
38 8(23) LED 13 Purple
39 7(22) INPUT 14 Blue

40 7(22) LED 14 Green

41 5(20) INPUT 15 Yellow

42 5(20) LED 15 Orange
43 6(21) INPUT 16 Red

44 6(21) LED 16 Brown

Table 2 cont'd: Pin connections for time delay modules

13

A Schematics for trigger circuitry.

0^.800 wet^

I <-—^ ~ui— '—* I
) >—a *.'0#**—

1 *J
1

B cm

a
11

17
OA)£-SHvr

<T I 1
1 1

1

!

Figure 4: Trigger generator circuit.

14

OUT"

-0 piw av

P6.U.AYS

i_7IL*€ J
OOT?UT B\J^£&

MMKRMBHIMVUO

-Hi-B•AMOlAOIUJV

WQL-™«

-a^Vd\l3-LNXXV~l3a3l*4X-L

£pjt>w«>j£rnji**^"!)~t>»j<J*+'/»/»f»Jy,«*Ci-y'?f*p*/*;*/S(^\

*W»<>Ity

Osa.si

t:SO^'

PA«<•

MMMirarommm•«•noeauaw*»»••

F
ig

u
re

6:
T

im
e

delay
circu

it.

1
6

o?~rc

+?v

l/x 7T9S1 + HF6R-/ao^

FXBER ofTxe t*aKjsrvAxTTt9,

+sv + SV +I30V

I
L^nA/V

IT1KSI

{>
IMS??

TTL (HI)

HFGfl-WOX
rii

FIBER omc R£C£XVER

Figure 7: Optical coupler circuit.

17

INVVVi

1 /* TD.C — TIME DELAY CONTROLLER

2 Branch T. Archer III

3 Written: 1/31/85 Revised: 10/2/85

4 Compilation:
5 c88 td

6 bind td mmxlib.s */ Q9
7

8 /* INCLUDES */

9 #include "stdio.h" rt fcH
10 O Hi*
11 #define MAXTD 32 /* MAXIMUM NUMBER OF TIME DELAYS */ £L J+
12 #define TDNL 8 /* LENGTH OF TIME DELAY NAMES */ ft £•
13 #define FIRSTROU 4 /* FIRST ROU OF DISPLAY */ * P
14 #define LCOL 1 /* LEFT COLUMN OF DISPLAY */ W
15 #define RCOL 41 /* RIGHT COLUMN OF DISPLAY */ q
16 #define TDPORT 0xd0 /* BASE PORT FOR TIME DELAYS */ t+}
17 #define CLKFRQ 10. /* CLOCK FREQUENCY */
18 #define FILE«LEN MAXTD*(TDNL+6+2) /* FILE LENGTH */

19

20 char f ile«nameHMAXFNM3,stringL"80 3,dat imL"63,rangerrC 3="\7range error",
21 data«formatC3="22d 2-10.10s 28.If %2d\r\n",tdnameCMAXTD3CTDNL+13, Q
22 f ile«bufL"FILE*LEN+13,chain«bufC303; **
23 int fd,pfd,i,rou,col,tdind,idtC63,tdtrigCMAXTD3,buf«ptr; et-
24 unsigned clcndptsO; h»
25 long filptr=512; ft
26 float tdsetCMAXTD3,oldset,del tat; e+.
27 /* DIGITIZER DATA FILE HEADER STRUCTURE */ £•
28 struct HDR {char datimC63,filnamC113,nam9C32 3L"73,slotC323,smpcodC323, g
29 • reclenC32 3,pretrgi:32:,devtypC323,crate[32:,tdC32:,reservC473; } hdr; Q
30

31 mainCargcargv)
32 int argc;
33 char *arg<v>L" 3; 03
34 {clsO; strcpy(chain«buf,"DIGIT"); strcpy(file«name,"TIMING.DOC"); *<
35 /* GET PARAMETERS FROM COMMAND LINE */

36 switch (argc)
37 { case 2: strcpy(f ile<-name,argvL" 13); breaK; g
38 case 3: sprintf(chain«buf,"DIGIT ?.s CED",argvL"23+5); S-
39 }/* END SUITCH */ Jj
40 if (fd=fopen(f ile<-name, ur")) O^
41 {if (argc=-2) p«datfil(); /* Get data from digitizer data file */
42 if (freadCfile«buf,FILE«LEN, l,fd) != 1)

43 {printf("Read error l\n"); exit(0);> /* END IF */
44 /* Load tdname array */
45 for (tdind=buf«ptr=0; tdind<MAXTD; tdind++,buf«ptr+=TDNL)
46 strncpy(tdnameCtdind3,&f ile«buf[buf<-ptr 3,TDNL);
47 /* Load tdset array, and set up time delays */
48 for (tdind=0; tdind<MAXTD; tdind++,buf*ptr+=6)
49 {sscanf (&file<-bufL"buf«ptr3, "Ji6d",8«i);
50 tdsetCtdind3=((float)i)/CLKFRQ;

51 settd(tdind,tdsetCtdind3); } /* END IF */
52 /* Load tdtrig array */
53 for (tdind=0; tdind<MAXTD; tdind++,buf«ptr+=2)
54 sscanf(&file^bufCbuf^ptr3, "22d",8«tdtr igC tdind3);

d

Gi
ft

O

ft

55 /* sscanf(&file«bufl!buf«ptr 3, "%2d?i2dX2d%2d22d?i2d",
56 &idtC0 3,&idti: 13,8,idtlI2 3,8«idtC3 3,8<idtC43,8,idtC53);
57 for (i=0; i<6; i++) datimCi3=idtCi3; */

58 fclos3(fd);

59 } /* END IF */

60

61 for (;;) {
62 scrmove(l,20); printf("*** TIME DELAY CONTROLLER ***");
63 scrmove(2,10); printfC'FILE NAME: */.s\ file«name);
64 scrmove(3,LC0L); printfC'TD NAME SETTING (usee) TRIG");
65 scrmove(3,RC0L); printfC'TD NAME SETTING (usee) TRIG");
66 rou=FIRSTROU; col=LCOL;

67 for (i=0; i<MAXTD; i++)

68 {scrmove(rou++,col);
69 printf ("K2d %-Q.8s 28.If *2d", i+1, tdnameL" i3, tdsetC i3, tdtr igC i3);
70 if (i==15) {rou=FIRSTROU; col=RC0L;> /* END IF */
71 3 /* END FOR */

72 uhile (getindO) modtdO;
73 scrmove(23, 10);
74 printf("File name to write (<CR> returns to DIGIT, * to print): ");
75 stringC03=0;
76 scanf ("Jis",8<str ing);
77 if (!stringC03)
78 {uritetdO; printf (" CHAINING TO DIGIT . . ."); prgchn(chain«buf);>
79 if (!strcmp(string,"*")) prnttdO;
80 else {if (strlen(string)) strcpy(f ile<-name,string); uritetdO;}
81 } /* END FOR */

82 return;

83) /* END MAIN */

84

85 /* POSITION FILE POINTER OF DIGITIZER DATA FILE TO TIME DELAY SETTINGS */
86 p«datfil()
87 {if (!fread(hdr,512,1,fd)) {printf("Read error 2\n"); exit(0);>
88 for (i=0; i<=32; i++)
89 filptr+=clcndpts(hdr.slotC i3,hdr.devtyp[i3,hdr.reclenC i3);
90 fseek(fd,filptr,0);
91 } /* END P«DATFIL */

92

93 /* URITE TIME DELAY SETTINGS TO DISK */
94 uritetdO

95 {if (strlen(file^name))
96 {scrmove(23,10); printf ("\33TUr it ing file: *s", f ile<-name);
97 «setmem(f ile*buf,MAXTD*TDNL,' ');
98 /* Copy time delay names into file buffer */
99 for (i=buf«ptr=0; KMAXTD; i++,buf<-ptr+=TDNL)
100 strcpy(8cf ile*bufL*buf*ptr 3, tdnameC i3);
101 /* Replace nulls in the buffer uith spaces */
102 for (buf*ptr=0; buf«ptr< (MAXTD*TDNL); buf«ptr++)
103 if (f ile«bufL"buf<-ptr3=='\0') file«bufCbuf«ptr3=' ';
104 /* Put the time delay settings into the buffer */
105 for (i=0; i<MAXTD; i++,buf«ptr+=6)
106 sprintf(&file«bufCbuf«ptr3,"Ji06d",(int)(CLKFRQ*tdsetC i3));
107 /* Put the triggers into the buffer «/
108 for (i=0; KMAXTD; i++,buf«ptr+=2)

109 sprintf (&f ile«bufL"buf«ptr3, "J^d", tdtrigC i3);
110 /* Put the date into the buffer */

111 /*datime(datim);
112 sprintf (&file«bufCbuf«ptr 3, "Jf2d*2da2da2d;*2d*2d",
113 datimC03,datimC 1 3,dat imL"23,dat im[33,dat imL"43,dat imL"53);
114 buf«ptr+=12;*/
115 /* Open the file, urite the data, and close */
116 fd=fopen(f ile«name,"u"); fur ite(f ile«buf ,buf<-ptr, 1, fd); fclose(fd);
117) /* END IF */

118 > /* END URITETD */

119

120 /* GET INDEX FOR TIME DELAY TO BE MODIFIED */

121 getindO
122 {

123 scrmove(21,15); printf("\33TTime delay to modify: ");
124 tdind=0; getsrc(string,21,37,2);
125 if (strlen(string)) sscanf(string,"2d",fctdind);
126 printf("*2d",tdind);
127 if (tdind<0 II tdind>MAXTD)
128 {scrmove (22,20); printf(" Invalid value,");
129 tdind=-l; return(-l);} /* END IF */
130 scrmove (22,20); printf("\33TU); return(tdind);
131 } /* END GETIND */

132

133 /* MODIFY TIME DELAY */

134 modtdO

135 {if (tdind<=0) return;

136 rou=tdind+FIRSTROU-l;

137 if (tdind>16) {rou-=16; col=RCOL;> else -:ol=LCOL;

138 oldset=tdsetC—tdind3;

139 /* Get time delay name. */
140 getsrc(string,rou,col+3,TDNL);
141 if (strlen(string)) strcpy(tdnameCtdind3,string);
142 print f("*-8.8s",tdnameC tdind3);
143 /* Get time delay value. #/
144 do {

145 getsrc(string,rou,col+14,8);
146 if (strlen(string)) sscanf (string, "8f ",&tdsetC tdind3);
147 printf("H8.If",tdsotttdind3);
148 } /* END DO */

149 uhile (tdsetCtdind3<0. i! tdsetCtdind3>65535./CLKFRQ);

150 /* Get logical trigger for time delay. #/
151 do {

152 getsrc(string,rou,col+29,2);
153 if (strlen(string)) sscanf (string, "Sid",&tdtrigC tdind3);
154 printf("*2d",tdtrigCtdind3);
155) /* END DO */

156 uhile (tdtrigCtdind3<0 !! tdtrigCtdind3>MAXTD II tdtrigCtdind3==tdind+l);
157 settd(tdind,tdsetCtdind3);
158 /* Modify time delays uhich are logically triggered by delay 'tdind'. */
159 /*scrmove(22, 1); printf("\7Modifying time delays: ");#/
160 del tat=tdsetCtdind3-oldset; modlc(tdind);

161 > /* END MODTD */

162

163 /* MODIFY LOGICAL CHAIN OF TIME DELAYS CONNECTED TO tdind */
164 /* This is a recursive routine uhich adds del tat to all time delays
165 connected to time delay 'tdind'. */
166 modlc(tdind)

167 int tdind;

168 {int i;

169 for (i=0; KMAXTD; i++)
170 {if (tdtrigCi3==tdind+l)
171 {/*printf ("Kd",i+1);*/ tdsetCi3+=deltat;
172 /* Check for range error. */
173 if (tdsetCi3<0.) {tdsetCi3=0.; printf (rangerr);}
174 if (tdsetCi3>65535./CLKFRQ) {tdsetCi3=65535./CLKFRQ; printf(rangerr);>
175 rou=FIRSTROU+i; if (i<16) col=LC0L; else {rou-=16; col=RCOL;>
176 scrmove(rou,col+14); printf("%8.If*",tdsetCi3);
177 settd(i,tdsetCi3); modlc(i);

178) /* END IF */

179 } /* END FOR */

180 } /* END MODLC */

181

182 /* SET TIME DELAY */

183 /* 0 <= tdnum <= 31 */

184 settd(tdnum,tdval)

185 int tdnum;

186 float tdval;

187 {unsigned tdint;
188 tdint=CLKFRQ*tdval;/* printf("\n%x",tdint);*/
189 tdnum*=2;

190 /* SEND THE HI BYTE */

191 «outb(tdint>>8,TDP0RT+(tdnum<<8));

192 /* SEND THE LO BYTE */

193 «outb(tdint,TDP0RT+((tdnum+l)<<8));

194) /* END SETTD */

195

196 /* PRINT TIME DELAY SETTINGS */

197 prnttdO
198 {pfd=fopen("PRN:",uu");
199 sprintf (string, "MMX TIME DELAY SETTINGS *4di/*4di/*4di *4d:*4d:*d\n",
200 datimC03,datimC13,datimC23,datimC33,datimC43,datimC53);
201 prntlineO;
202 strcpy(string," TD NAME SETTING TD NAME SETTINGNnn);
203 prntl ineO;
204 for (tdind=0; tdind<16; tdind++)
205 {sprintf(string," *42d *4-8.Qs *4QAf *42d *4-8.8s 88.If",
206 tdind-H, tdnameCidind3,tdsetCtdind3,
207 tdind+16,tdnameC tdind+163,tdsetC tdind+163);

208 prntlineO;
209 } /* END FOR */

210 fclose(pfd);
211 } /* END PRNTTD */

212

213 /* PRINT A LINE, ALONG UITH <CRXLF> */

214 prntlineO
215 {strcat(string,"\n"); fputs(string,pfd);
216) /* END PRNTLINE */

1 /* TDCHECK.C BTA III

2 WRITTEN: 2/16/85 REVISED: 2/19/85

3 Compilation:
4 c88 tdcheck

5 bind tdcheck camac mmxlib

6

7 Command 1ine:

8 tdcheck <haltflag> <file name>
9 If <haltflag> « HALT, the program aborts after an error.
10 <file name) is the name of the error file (e.g. PRN: or CON:).
11

12 This code checks a given time delay channel for the proper
13 delay. The number of codes to skip betueen checks is adjustable.
14 The time delay is checked by using a signal generator to trigger
15 a time delay and a digitizer. The output of the time delay is fed
16 into the digitizer as the signal. This code then measures the delay
17 by scanning for the first point in the digitizer data array uhich
18 is saturated.

19 */

20

21 ^include "stdio.h"

22 #define TDPORT 0xd0 /* BASE PORT FOR TIME DELAYS */

23 #define CLKFRQ 10.

24 #define MAXERRS 100

25

26 char dataC81923,stringC80 3,datimC63,file«nameCMAXFNM3="C0N:";
27 int pfd,tdnum,slot,crat©=0,smpint,reclen,pretrg,devtyp,skip,satpos,
28 rec8192C33={0,2,7>,abortflag;
29 unsigned hexdelay,firstdelay,checknum,numchecks,numerrs=0;
30 float fldelay,msdelay,maxst,maxerr;
31 float smptimC3 3C83«=
32 {.05,.10,.20,.50,1.0,2.0,5.0,0.0, /* TRANSIAC 2008 */
33 .01,.02,.05,.10,.20,.50,1.0,0.0, /* TRANSIAC 2001 */
34 .03125,.0625,.125,.25,.5,1.,2.,0.>;/* LeCroy 8837F */
35 float smplenC3 3C7 3= rt-
36 {350.,700.,1400.,4000.,8000.,16000.,40000., g*
37 70., 140.,350.,700.,1400.,4000.,8000., P
38 200.,400.,1000.,2000.,4000.,8000.,16000.>; (D

39

40 main(argc,argv) Q*
41 int argc; ft,
42 char *argvC 3; 0)
43 {if (argc>l) abortflag=Istrcmp("HALT",argvC13); «<
44 if (argc>2) strcpy(file<-name,argvC2 3);
45 clsO; scrmove(1,20); printfC'*** TIME DELAY CHECK ***");
46 /* GET TIME DELAY TO BE CHECKED */

47 scrmove(5,10); printf("Time delay to check:");
48 for (;;)

49 {scrmove(5,3D; screteolO; scanf ("%d",8etdnum);

50 if (tdnum<l i! tdnum>32)

51 {scrmove(7,10); printf("Invalid delay number.\7°);>
52 else break;} /* END FOR */

53

54 /* GET DIGITIZER TO BE USED */

o

J! t-*
tr m»

ft QD
a-
**•

*r ?
**•

3 era

arc 0
o *>

0
H

ft
• 0

O
ffi
&
o
w

\0

ei-

sr
ft

55 scrmove(7, 10); screteolO; printf ("Digitizer slot to be used:");
56 for (;;)
57 {scrmove(7,37); scanf("*d *4d",&slot,derate);
58 digrd(crate,slot,8.smpint,8.reclen,&pretrg,&devtyp);
59 if (Idevtyp)
60 {scrmove(9,10); printf("Digitizer unavailable.\7");}
61 else break;} /* END FOR */
62 /* SET RECLEN TO THE VALUE UHICH GIVES 8192 POINTS */
63 reclen=rec8192L"devtyp-l 3;
64 /* SELECT 0 PRE-TRIGGER SAMPLES */

65 pretrg=0;
66 /* GET FIRST DELAY VALUE, AND NUMBER TO BE SKIPPED */
67 scrmove(9, 10); screteolO;
68 printf("First setting (1-65535), and skip value:");
69 for (;;)
70 {scrmove (9,51); scanf("J*d *d",8<f irstdelay,&skip);
71 if (skip<0)
72 {scrmovedl, 10); printf ("Bad skip value. \7n); >
73 else break;} /* END FOR */

74 scrmove(11,10);

75 numchecks = skip ?
76 (float)((unsigned)Oxffff-firstdelay)/(floot)(skip) : Oxffff;
77 printf("Number of checks to be performed: J2u\n",numchecks);
78 /* INITIALIZE DELAY VALUE, AND MAXIMUM SAMPLING TIME */
79 hexdelay=firstdelay;
80 maxst=0.;

81 pfd=fopen(file«name,"u");
82 sprintf(string," Error log for time delay «2d\n",tdnum);
83 prntl ineO;
84 sprintf (string, " Slot *4d Devtyp = 2d\n",slot,devtyp);
85 prntl ineO;
86 datime(datim);
87 sprintf (string," Date: *4d/*4d/*4d Time: *4d: *4d: *4d\n",
88 datin£0 3,datimr. 1 3,dat imC2 3,dat imC33,dat in£43,dat imC53) ;
89 prntlineO;
98 sprintf (string," First value = *4u Skip count = 8u", firstdelay,skip) ;
91 prntlineO;
92 for (checknum=l; checknum<=numchecks; checknum++)
93 {checktdO; hexdelay+=skip; } /* END FOR */
94 datime(datim);
95 sprintf (string, "All done at *d:Xd:?id",dat im!I33,dat imC43,dat imC53) ;
96 prntl ineO;
97 sprintf (string, " *iu errors ",numerrs); prntlineO;
98 fclose(pfd);
99 } /* END MAIN */

100

101 /* CHECK A TIME DELAY */

102 checktdO
103 {if ((fldelay=(float)hexdelay/CLKFRQ)>maxst) setsmpO;
104 settd(tdnum-l,fldelay);
105 digint(crate,slot);
106 digdat(crate,slot,&data,0);
107 satpos=scasb(data,0xff,8192);
108 if (satpos==8192)

109 /* PRINT ERROR MESSAGE */

110 {sprintf(string," No saturation for setting *i8.If",fldelay);
111 prntlineO; numerrs++; if (numerrs==MAXERRS) abortprgO;
112 if (abortflag) abortprgO; return;}
113 msdelay=smptimCdevtyp-13Csmpint 3*(float)satpos;
114 printf ("Delay setting = *48.lf Measured setting = K8.1f\nn,
115 fldelay,msdelay);
116 if (ABS(fldelay-msdelay)>maxerr)
117 /* PRINT ERROR MESSAGE */

118 {sprintf(string,
119 " Error for setting ?i3.1f(uS) *4x. Measured value = *48. If (uS) .B,
120 fldelay,hexdelay, msdelay); prntlineO; ++numerrs;
121 if (numsrrs==MAXERRS) abortprgO;
122 if (abortflag) abortprgO;}
123 } /* END CHECKTD */

124

125 /* SET SAMPLING RATE FOR DIGITIZER */

126 setsmpO
127 {if (fldelay>smplenCdevtyp-13C63)
128 {printf ("Delay value of 28. If too large.Nn"); exitO;}
129 /* SELECT FASTEST POSSIBLE SAMPLING RATE */

130 for (smpint=0; smpint<=7; smpint++)
131 {if (smplenCdevtyp~13C snip int 3>f ldelay) break;}
132 maxs t =smp1enC devt yp-13C smp i n t 3;
133 maxerr=MAX(3.*smpt imCdevtyp-13Csmpint3,.25);
134 sprintf(string,
135 "Setting sampling rate. Smpint = 2d Maxerr=2f",smpint,maxerr);
136 prntlineO; printf ("2s",string);
137 digset(crate,slot,smpint,reclen,pretrg,devtyp);
138 } /* END SETSMP */

139

140 /* SET TIME DELAY */

141 /* 0 <= tdnum <= 31 */

142 settd(tdnum,tdval)

143 int tdnum;

144 float tdval;

145 {unsigned tdint;
146 tdint=CLKFRQ>Ktdval;

147 tdnum*=2;
148 /* SEND THE HI BYTE */

149 «outb(tdint>>3,TDP0RT+(tdnum<<8));

150 /* SEND THE LO BYTE */

151 «outb(tdint,TDP0RT+((tdnum+l)<<8));

152 } /* END SETTD */

153

154 /* ABORT PROGRAM */

155 abortprgO
156 {sprintf(string, "Abort ing uith *4d errors.",numerrs);
157 prntlineO; exitO;
158 } /* END ABORTPRG */

159

160 /* MOVE CURSOR */

161 scrmove(rou,col)

162 int rou,col;

163 {printfC'\33=2c2c",rou+' '-l,col+' '-1);
164 } /* END SCRMOVE */

165

166 /* ERASE TO END OF CURRENT LINE */

167 screteolO
168 {printf("\33T");
169 > /* END SCRETEOL */

170

171 /* CLEAR SCREEN */

172 clsO

173 {printf("\33*");
174 } /* END SCRCLEAR */

175

176 /* PRINT A LINE, ALONG WITH <CRXLF> */

177 prntlineO
178 {strcat(string,"\n");
179 fputs(string,pfd);
180 } /* END PRNTLINE */

181

	Copyright noticE 1985
	ERL-85-80

