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ABSTRACT

This paper presents several new algorithms which are used to
implement two recently published uniqueness theorems applicable
to nonlinear resistive circuits containing independent sources,
two-terminal resistors and linear controlled sources. The algo
rithms and the two programs which use them are described and
results are presented for some examples from the original papers.

1. Introduction

Recently, several topological tests have been developed to determine
whether a nonlinear resistive circuit (of a specific type) possesses a unique solu
tion [1,2,3,4]. These tests are unusual from a circuit-analysis point of view
because the uniqueness criteria are couched in purely topological terms render
ing standard circuit-analysis algorithms ineffective.

For example, the main theorem of [l] requires the generation of a large
number of subcircuits, each of which is obtained from the circuit under analysis
by open- or short-circuiting each resistor and by zeroing or leaving intact each
controlled source. If n,. and n^ are the number of resistors and controlled
sources in the original circuit, then there are 2n,r ncs different subcircuits.
Except in the case of a very small circuit, the generation of these subcircuits is
tedious and virtually impossible to perform reliably by hand.

This paper presents several new algorithms which can be used to write
efficient programs which implement the topological uniqueness tests. To
demonstate the algorithms, we also report on two computer programs—UNIQ
which implements Theorem 8 of [1] and UNIQF which implements Theorem 2 of
[2].

Theorem B (see Appendix 1 for a precise statement of the theorem) is a
general method for determining uniqueness and existence of solution for cir
cuits containing any number of independent voltage and current sources, any
number of linear controlled sources (of all four types) and any number of
strictly increasing, two-terminal resistors. The method yields a yes/no answer
indicating whether, for each set of allowed circuit parameters, the circuit
possesses a unique solution. The method is purely topological in nature and
requires no floating-point calculations.
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Theorem 2 (see Appendix 2) pertains to circuits with any number of
independent sources, any number of linear CCCSs or linear VCVSs (but not both)
with finite controlling coefficients and any number of strictly increasing, two-
terminal resistors. Like Theorem 8, Theorem 2 results in a yes/no answer indi
cating whether, for each set of allowed circuit parameters, the circuit possesses
a unique solution. However, unlike Theorem 8, Theorem 2 does require some
floating-point calculation since it deals with the bounds of the controlling
coefficients.

It is important to realize exactly what information these two theorems pro
vide. A positive result means that, for each set of allowed circuit parameters,
there is one and only one solution of the circuit; the theorems yield no informa
tion as to what that unique solution is, just that it exists. Different circuit
parameters may (and usually do) result in different solutions. A negative result
means that, for some set of allowed circuit parameters, there is either no solu
tion or more than one solution to the circuit; however, there may exist different
sets of allowed circuit parameters (perhaps all other sets) for which the circuit
does possess a unique solution.

Section 2 describes UNIQ using examples drawn from the original paper and
Section 3 similarly describes UNIQF. Section 4 delves into the details of the
algorithms used by UNIQ. Instead of describing UNIQF in complete detail, in
Section 5 we examine only the differences between the two programs. Section 6
supplies supplemental details about the programming language used, on which
machines the programs run and how to obtain copies of the programs.

2. Overview and Examples of UNIQ

UNIQ reads its input from a user-specified SPICE-like data file. The first line
of the input file is taken as the title of the circuit. Each subsequent line
describes a circuit element by using three fields:

name topology value.

The name field consists of a string of alphanumeric characters, the first of
which identifies the element type. Theorem 8 deals with just seven different
types of circuit elements, identified by names beginning with R (resistor), I
(independent current source), V (independent voltage source), E (VCVS), F
(CCCS). G (VCCS) and H (CCVS).

The topology field consists of either one (for resistors and independent
sources) or two (for controlled sources) pairs of integers, denoting the terminal
node numbers of the corresponding one- or two-port. For a controlled source,
the first pair of integers denotes the output port and the second denotes the
input (controlling) port.

The value field characterizes the constitutive relation of the circuit ele
ment. Element values are not used by UNIQ (since Theorem 8 is topological in
nature), so the value field need not be entered.

For example,

R 2 3

represents a resistor connected between nodes 2 and 3 of the circuit, while

F 1 3 4 2

is a current-controlled current source with output port connected between
nodes 1 and 3 and controlling port connected between nodes 4 and 2.
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The output of UNIQ comes in two forms, normal and verbose, either of which
may be selected by the user. In both modes, UNIQ prints the title of the circuit
and a copy of the names and terminal connections of each element in the circuit
together with a list of the loops and cutsets, if any, which violate the Intercon
nection Assumption. UNIQ then generates controlled-source graphs and tests
for complementary tree structure. In verbose mode, for every controlled-
source graph with complementary tree structure, UNIQ prints the state of each
resistor (open or short) and controlled source (intact or zeroed), and indicates
which type of complementary tree structure (positive or negative) the graph
possesses. For each intact controlled source, the terminal connections and
directions (as specified by Theorem 8) of the input and output branches are also
given. In normal mode (the default), this information is given only for each new
complementary tree structure encountered, that is, for the first controlled-
source graph found with positive complementary tree structure, if any, and the
first found with negative complementary tree structure, if any. In normal mode,
testing continues until UNIQ has enough information to conclude whether or not
the circuit has a unique solution, at which time UNIQ prints its verdict. In ver
bose mode, UNIQ continues processing until is has found all controlled-source
graphs with complementary tree structure.

All examples in [l] were tested on UNIQ and our results agree with [l]
(except as noted below). We now present a few of the examples in [1].

Example 1 (Fig. 6(c) of [1]): Consider the circuit of Fig. 1, which does not
satisfy the Interconnection Assumption. Fig. 2 shows the output of UNIQ when
run in normal mode. First, UNIQ finds the illegal loop composed of the input and
output branches of HI, the input branch of H2, and the independent voltage
source VI. In this example^ there is no positive complementary tree structure
so the first negative complementary tree structure which UNIQ finds is listed
and UNIQ concludes that this circuit has a unique solution.

Example 2 (Pig. 6(d) of [l]): Consider the circuit of Fig. 3(a), which again
does not satisfy the Interconnection Assumption. UNIQ finds the illegal cutset
composed of the input and output branches of Gl, the input branch of G2, and
the independent current sources II and 12. Running UNIQ in verbose mode, we
find that the only valid complementary tree structure graphs are those shown in
Figs. 3(b) and 3(c) (reconstructed from data in the output file (Fig. 4(a))), both
of which possess negative complementary tree structure. Hence, UNIQ con
cludes that this circuit has a unique solution1.

Example 3: However, if the polarity of the input port of G2 is reversed then
both positive and negative complementary tree structures can be found (from
output file (Fig. 4(b))), and UNIQ concludes that the solution is NOT unique.

3. Overview and Examples of UNIQF
The input format of UNIQF is identical to that of UNIQ with two exceptions.

CCVSs and VCCSs are not allowed and the value field for CCCSs and VCVSs must
contain a positive real number indicating the maximum allowed controlling
coefficient.

The output format is also very similar to that of UNIQ. The main difference
is that when UNIQF prints out the state of the circuit elements for a controlled-
source graph, it also prints out the value returned by the determinant test. This
feature is useful for finding bounds on the controlling coefficients.

1 This result differs from that given in [1] where one of the complementary tree struc
tures was accidentally thought to be positive.
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All examples in [2] were tested using UNIQF and the results from UNIQF
agree with those of [2]. Here we list just a few examples from [2] to give the
reader an impression of how UNIQF works.

Example 4 (Example 5 of [2]): This is a flip-flop circuit (Fig. 5) where the
four CCCSs and the nonlinear resistors represent the Ebers-Moll model of two
transistors. Nishi and Chua show in [2] that if the sum of the controlling
coefficients of Fl and F2, o^ + a2 > 1.0, the circuit will not have a unique solu
tion. Thus it can perform as a flip-flop. Figs. 6(a) and 6(b) present the output of
UNIQF for the cases ai + az= 1.001 and a2 + a2 = 0.999, respectively. The
results agree with those of Nishi and Chua.

Example 5 (Example 7 of [2]): This is a VCVS circuit containing two VCVS's
(Fig. 7). Nishi & Chua stated in [2] that when the controlling coefficient a2 of El
satisfies a2 < 1.0, then the circuit will have a unique solution. The output of
UNIQF for the cases ax = 1.001 and at = 0.999 is presented in Figs. 8(a) and 8(b),
respectively. The output agrees with the result of [2].

4. Discussion of the Algorithms Used by UNIQ

Here we present the algorithm for the outer level of UNIQ.

0) Initialize. Reset pos_cts and neg_cts flags.
1) Read/check input.
2) Check Interconnection Assumption. If independent sources violate

it, exit with a negative result.

3) Zero independent sources.
4) For each combination of opened/shorted resistors:

5) Perform controlled-source test.
6) If either pos_cts or neg_cts flag set, exit with positive result; else

exit with negative result.

The controlled-source test, step 5), is as follows:
5.1) For each combination of intact/zeroed controlled sources:

5.2) Determine if complementary tree structure exists; if so,
determine its sign (positive or negative).

5.3) If no complementary tree structure exists or if one with
this sign has been seen before, go to 5.1).

5.4) If Interconnection Assumption restriction violated, go to
5.1).

5.5) If positive complementary tree structure, set pos_cts
flag; else set neg_cts flag.

5.6) If both pos_cts and neg_cts flags are set, exit with nega
tive result.

We now discuss the details of each step.

Step 0) Initialization. Internal buffers and lists are initialized. The two
result flags, pos_cts (positive complementary tree structure) and neg_cts (nega
tive complementary tree structure) are both reset to FALSE.

Step 1) Input. As mentioned earlier, the input uses a SPICE-like format. As
the input file is being read, the input lines are checked for validity. Illegal ele
ments (capacitors, inductors, etc.) cause the program to print an "illegal ele
ment" message. If element values are supplied, they are checked for validity;
any errors (negative resistances, negative controlling coefficients or nonlinear
controlled sources) cause UNIQ to print an error message. This feature is



included to prevent the user from accidentally applying UNIQ to circuits which
Theorem 8 is not designed to analyze. If an input error occurs, UNIQ exits only
after reading the entire input file. This feature allows UNIQ to report all the
input errors to the user at the same time.

Step 2) Interconnection Assumption. The Interconnection Assumption is a
vital part of Theorem 8. The program must find and store all violating loops and
cutsets. For details see Appendix 3.

If independent sources comprise any violating loop or cutset, the program
immediately exits with a NO UNIQUE SOLUTION message.

Step 3) Zero Independent Sources. All independent sources are zeroed
(operation (a) of Theorem 8).

Step 4) Open/Short Resistors. The program must open/short all possible
combinations of resistors (operation (b) of Theorem 8). A recursive function is
ideal for this task.

The following recursive function, open_short(A) performs a controlled-
source test for every combination of opened and shorted resistors. A is the
reduced node-incidence matrix.

begin open_short(A)
if some resistors left in A

store a copy of A in old_JL
open a resistor in A
call openshort(A)
restore A using ola\_A
destroy the copy old_£
short the same resistor in A
call open_short(A)

else

perform controlled-source test on A
end open_short()

Note that every call to open_short() eliminates (opens or shorts) one resis
tor from the circuit. Only when there are no resistors left does open_short()
perform a controlled-source test.

To see how apenjshortQ works, call open_short() with a circuit containing
two resistors, Rl and R2 (point A of Fig. 9). The circuit contains resistors so the
if block is executed. A copy of the circuit is stored in memory and then Rl is
opened leaving a subcircuit with just one resistor (R2) in it.

Next, open_short() calls itself with this subcircuit and we descend to level II
of the recursion (point B). The subcircuit contains a resistor so again the if
block is executed. After storing a copy of the circuit, R2 is opened resulting in a
controlled-source graph with no resistors.

Again, open_short() calls itself with this controlled-source graph and we des
cend to level III of the recursion (point C). The controlled-source graph contains
no resistors so the else statement is executed and a controlled-source test is
performed.

Once the controlled-source test is completed, openjshortQ returns to level
II. The original subcircuit is restored (point B) from the copy and the copy is
then destroyed freeing memory for later use2. Next, R2 is shorted creating the

2 This may seem a minor point, but in cases where the recursion goes down several levels,
freeing memory is a necessity.
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second controlled-source graph. open_short() descends to level III of the recur
sion by calling itself. A controlled-source test is performed and open_short()
returns to level II. At this level the if block is finished and open_short() returns
to level I. Here the original circuit is restored (point A), Rl is shorted and the
whole process repeats going from A to E to F to E to G to E and then back to A.

Examination of level III of Fig. 9 shows that open_short() has generated all
possible combinations of opened/shorted resistors for this two resistor circuit.
It is clear that open_short() works just as well for circuits with an arbitrary
number of resistors. Recursion may seem confusing at first, but the concept is
fairly intuitive and the resulting code is quite compact.

Step 5) Controlled Source Test. At this point in the program, the only ele
ments left in the circuit are controlled sources. Each controlled source must

either be left intact or zeroed (operation (c') of Theorem 8).
Step 5.1) Zero/Intact Controlled Sources. UNIQ must generate all possible

combinations of zeroed and non-zeroed controlled sources. A recursive function

similar to open_short() is used. Instead of opening on the left branch and short
ing on the right, this function leaves the controlled source untouched on the left
branch and zeros it on the right, thereby generating all possible controlled-
source graphs.

Step 5.2) Test for Complementary Tree Structure. The controlled-source
graph, G0, must be checked for complementary tree structure (see Appendix 1
for a definition).

For programming ease, we use the reduced node-incidence matrix,
A := [i4r|i4/,] instead of the fundamental loop matrix. The following fact
describes the conditions on A for G to have complementary tree structure.

Fact 1: Let G0 have reduced node-incidence matrix A = [At\Al] where At and Al
are nxn matrices. G0 has positive (resp. negative) complementary tree struc
ture if and only if

D:=(-l)ndetAL detAT

is positive (resp. negative).
Proof: If either Ai or At are singular, A does not possess complementary tree
structure and D = 0. Suppose both Al and At are nonsinguiar. KCL for the
reduced node-incidence matrix, Ai = 0, implies Afir + 4t*t = 0 where [ir|it] is
the partition of the branch current vector corresponding to the partition of A.
Hence, if = —AflAj,ify KCL for the fundamental loop matrix, i =BTii, implies
iT = Bfi-L' Hence, Bf = —AflAi and

detBT = (-l)ndet{AflAL) = (-l)n det Al/detAT.
The sign is not changed if the division is replaced by multiplication and we have
the sign of det Bf is the same as the sign of D. EOP.

Thus testing for a complementary tree structure is equivalent to finding the
determinant of two square node-incidence matrices. The proof of the following
well-known fact outlines an efficient algorithm for calculating the determinant of
a reduced node-incidence matrix.

Fact 2: The determinant of an nxn reduced node-incidence matrix, A, is
1, 0,-or-l.

Proof: By induction. If n = 1, the result is trivial. Suppose n = k + 1 and the
determinant of any kxk reduced node-incidence matrix is 1, 0 or —1. Choose a
column with a single non-zero entry. (If no such column exists, det A = 0 since
either there exists an all zero column or all columns have two entries in which
case the rows sum to zero.) Using this column, expand det ,4 by minors to get
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det A = ±det M where M is the minor associated with the non-zero entry. M is a
kxk matrix so det M is 1, 0 or -1. Therefore, det A is 1, 0, or -1. EOP.

This leads to a very simple and efficient algorithm for finding det Al and
det At'.

begin det (A)
if only one column in A

return an
else if there is a column in A with only one non-zero entry

call the entry cty
create M by deleting rowi, column j
return (-l)i+i det(M)

else

return 0

end det()

Once again the algorithm is recursive and the code is very compact.

Step 5.3) Nevj Complementary Tree Structured If no complementary tree
structure exists or if a complementary tree structure does exist but possesses a
sign that UNIQ has already encountered, then UNIQ need not perform any more
tests on this controlled-source graph.

Step 5.4) Interconnection Assumption Restriction. The controlled-source
graph is checked to see whether every loop or cutset violating the Interconnec
tion Assumption has at least one branch still in the graph (restriction on opera
tion (c*)). If this restriction is violated, the controlled-source graph is of no
interest and the next controlled-source graph should be generated.

Step 5.5) Set /Check Flags. Set either pos_cts or neg_cts to TRUE depend
ing on the sign of the complementary tree structure. If both flags are now
TRUE, exit with a NO UNIQUE SOLUTION message.

Shortcuts. A few shortcuts may be applied to eliminate unnecessary calcu
lations.

If the circuit is not connected, no subgraph of the circuit can ever possess
complementary tree structure. Hence circuits with more than one piece do not
possess a unique solution. In particular, the internode voltages between nodes
on different pieces are arbitrary. Similarly, if, at any level in the recursion,
opening a resistor or zeroing a controlled source results in a graph with more
than one component, no further recursion need be done on this particular
graph.

Suppose the circuit is connected, contains no controlled sources and has no
loops (resp. cutsets) of independent voltage (resp. current) sources. Since
there are no controlled sources, all of the controlled-source graphs must consist
solely of nodes. The only all-node graph with complementary tree structure is
the graph consisting of a single node. We can obtain this single node controlled-
source graph by shorting all the resistors. Hence all such circuits possess a
unique solution.

If, after zeroing a controlled source, there are fewer branches than nodes,
further zeroing of sources can yield at best positive complementary tree struc
ture. If pos_cts is already TRUE (indicating that positive complementary tree
structure has already been found), then further zeroing will provide no new
information and recursion along this path can be terminated.
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5. Discussion of Additional Algorithms used by UNIQF

Here is the algorithm for the outer level of UNIQF. For simplicity, we dis
cuss only the CCCS case.

0') Initialize.
1') Read/check input.
2') Check Interconnection Assumption conditions 1) and 2) of

Theorem 2. If the Interconnection Assumption is violated, exit
with a negative result.

3') Zero independent sources.
4') For each combination of opened/shorted resistors:

5') Perform controlled-source test.
6') Exit with a positive result.

The algorithm for the controlled-source test is as follows.

5.1') For each combination of intact/zeroed CCCSs:
5.2') Determine if the branches associated with the input

ports form a tree; if not, go to 5.1')-
5.3*) Calculate A:= det (/ + CQL). If A < 0, exit with a negative

result.

All steps except step 5') are similar to UNIQ so we will only discuss step 5').
Step 5.1') Zero/Intact CCCSs. The program must generate all possible

combinations of zeroed and intact CCCSs. UNIQF performs this feat the same
way UNIQ does.

Step 5.2') Input Branches Form Tree? Check to see if the input branches
form a tree. Let A := [4y|4£] be the reduced node-incidence matrix of the
controlled-source graph where At contains the columns describing the input
port branches and Al contains the columns describing the output port
branches. The input port branches form a tree if and only if det At t* 0. The
determinant is calculated using the algorithm described in the previous section.

Step 5.3') Calculate A. A is defined in terms of the fundamental cutset
matrix Q :=[1\Ql]- Internally, UNIQF uses the reduced node-incidence matrix
so we need to calculate A in terms of At and Al-

Fact 3: Let [-Ajl^z,] De the reduced node-incidence matrix of a controlled-source
graph, G0 where At and^z, Qre nxn matrices and At is nonsingular. Then

A = det AT det (AT + AL C)

Proof: Using KCL it is easy to show that Ql = At1Al. Hence

A = det(7 + CAflAL)

=det'(C4f l(ATC~l +Al))
= det C det Afl det^yC-1 + AL)

= det Af1 det (i4rC_1 + AL) det C

= det AT det (AT + AL C)

*where we have used the fact that det At is ±1. EOP.

We already have det^r from step 5.2') so all that remains is to find
^det (At + AlC). The determinant is calculated recursively using minor expan
sion. The algorithm is similar to, but slightly more complicated than, the algo-
-rithm for calculating the determinant of a reduced node-incidence matrix. The



complication arises since a column with more than one non-zero entry does not
imply a zero determinant, but results in an expansion with more than one minor
for the column. For speed and memory considerations, the matrix At + AlC is
never explicitly stored in memory, its entries are calculated from At, Al and C
whenever needed.

Shortcuts: To eliminate unnecessary calculations, a few shortcuts are
implemented in UNIQF.

By Corollary 2.1 of [2], if 2a/«nax ^ 1-0. and the Interconnection Assumption

holds, the circuit has a unique solution for all valid circuit parameters. UNIQF
checks this inequality after the Interconnection Assumption is checked and
whenever a controlled-source graph is generated. If the inequality holds, UNIQF
does not go deeper in the recursion. If the o^max's are small, as in the case of
transistor reverse current gains, this shortcut is very effective.

Like UNIQ, UNIQF checks the connectedness of the circuit at the beginning
of analysis and after each resistor is opened and each controlled source zeroed.
If, at any stage in the recursion, the circuit becomes unconnected, UNIQF stops
further analysis on this branch of the recursion tree.

By Remark 2 of Theorem 2 in [2], UNIQF need only perform the determinant
test on those graphs which have neither a self-loop nor a bridge. Since checking
these conditions is usually much faster than a determinant test, UNIQF checks
these conditions before every determinant test.

6. Additional Details

UNIQ and UNIQF were developed on a CompuPro 8086-based microcomputer
running the PC-PRO implementation of the PC-DOS operating system from Com
puter House using the Computer Innovations C86 C compiler. Source code for
the input parsing routines was generated on UNIX using the yacc and lex utili
ties. Both programs run on UNIX and on any PC-DOS or MS-DOS based machine
(including the IBM PC, XT and AT).

The C programming language was chosen for three main reasons: C is port
able, C allows recursion and C has flexible dynamic memory allocation facilities.

User's guides for UNIQ and UNIQF are in Appendices 4 and 5, respectively.
For information on how to obtain copies of the two programs (both executable
files and C source files) please contact the authors.

Appendix 1: Statement of Theorem B

Let B be the fundamental loop matrix of a graph G. G exhibits complemen
tary tree structure iff B has the form [Bt\ l] where Bt is square and nonsingu-
lar. If det Bt > 0 (resp. det Bt < 0), then the graph is said to have positive
(resp. negative) complementary tree structure. A graph consisting of a single
node is defined to have positive complementary tree structure.

Let Af be a circuit containing any combination of independent voltage and
current sources, strictly increasing (and onto) two-terminal resistors and linear
controlled sources (of all four types). Let G be the digraph associated with N.
(Note that the direction of the branch associated with the output port of a CCCS
or VCCS is defined opposite to the direction in the controlled-source symbol.)

A controlled-source graph GQ is obtained from G by the following three
operations:

(a) zero each independent source
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(b) either open- or short-circuit each resistor

(c*) zero some (possibly none) of the controlled sources.

Furthermore, a controlled-source graph must satisfy the following constraint
(Interconnection Assumption). If there are any loops (resp. cutsets) in N com
posed exclusively of independent voltage (resp. current) sources, output ports
of CCVSs and VCVSs (resp. CCCSs and VCCSs) and input ports of CCVSs and
CCCSs (resp. VCVSs and VCCSs), then G0 must contain at least one branch from
each of these loops (resp. cutsets).

Theorem 8 states that, for all independent source values, for all strictly
increasing (and onto) two-terminal resistor characteristics and for all positive
controlled-source coefficients, N possesses a unique solution if and only if there
exists at least one controlled-source graph with positive complementary tree
structure or at least one controlled-source graph with negative complementary
tree structure, but not both.

When calculating complementary tree structure of a controlled-source
graph G0, we require the branches corresponding to the input ports to form one
tree and the branches corresponding to the output ports the other. Hence, the
following branch numbering scheme must be used. If G0 contains k controlled
sources, then number the input branch of the ith source as branch i, the output
branch of the ith source as branch k + i.

Appendix 2: Statement of Theorem 2

We state Theorem 2 for the case of CCCSs. The dual statement holds for

VCVSs. Theorem 2 does not apply to VCCSs or CCVSs.

Let N be a circuit containing any combination of independent voltage and
current sources, strictly increasing (and onto) two-terminal resistors and k
linear CCCSs whose controlling coefficients aM satisfy 0 < a^ < ct^ax for
fj. = 1, .... A:. Let G be the graph associated with N. (Note that the direction of
the branch associated with the output port of a CCCS is defined opposite to the
direction in the controlled-source symbol.)

Define a controlled-source graph Gq as in Appendix 1, but without the con
straint imposed by the Interconnection Assumption.

Theorem 2 states that, for all independent source values, for all strictly
increasing (and onto) two-terminal resistor characteristics and for all control
ling coefficients ol^ satisfying 0 < a^ < o^max f°r M= 1 k« N possesses a
unique solution if and only if

1) N contains no loop consisting of independent voltage sources and input
ports of CCCSs.

2) N contains no cutset consisting of independent current sources and out
put ports of CCCSs.

3') We cannot obtain a connected controlled-source graph G0 such that
A< 0 where A:= det (/ + CQl) where C := diag(aMimax, ... aMjfcmax) and Ql is the
main part of the fundamental cutset matrix Q := [l| Ql].
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Appendix 3: Algorithms for Verifying the Interconnection Assumption

The Loop Restriction

The loop restriction imposed by the Interconnection Assumption may be
reduced to the following problem. Given a graph G with node-incidence matrix
A and a subset of branches B := [blt ..., bk\ of G, find all of the loops of G com
posed solely of branches from B. Here is pseudo-code for a routine
find_loops(At B) which does just this.

begin find_loops(A, B)
tag all branches not in B
initialize loop list L to NULL
for each branch 6* in B

tag branch 6*
untag all the nodes
let 7ii be one of the nodes adjacent to 6*
let nz be the other
tag nodes rij and n2
find all allowed paths from rc^ to ng
append branch fy to every such path
add this list of loops to the loop list L

return the loop list L
end find_loops ()

This routine is fairly simple. To keep track of which branches are under
consideration, findJLoops() uses tags. If a branch is tagged, it cannot be used to
construct a loop. After tagging the branches not in B, ftnd_loops() processes
the branches in B one at a time. For each branch bit all paths are found which
connect the two nodes adjacent to bt and which contain only untagged branches
and pass through untagged nodes.

There are two important points here. First, a loop cannot pass through the
same node twice so nodes are tagged as well as branches. Second, once branch
6< is tagged, it is never untagged. In the ith iteration, find_loops() finds all loops
containing branch 6$ with remaining branches in $6i+1 bk]. Hence, the same
loop is never found twice.

A recursive function node_path(nlt n2, A) is used to find the allowed paths
between two nodes. Here n2 and rig are the two nodes and A is the node-
incidence matrix.
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begin node_path(nlt n2, A)
if nx equals n2

return empty list
initialize path list P to NULL
for each untagged branch b*

if bi is incident to n2 and other node of bit 71.3, is untagged
tag branch 6*
tag node n3
path = node_path(nlt n3, A)
if path not NULL

append b$ to each entry in path
add entries in path to the path list P

untag branch 64
untag node n3

return the path list P
end node_j>a£/i()

node_path() first checks that Tij and n2 are different. If not, an empty path
list is returned. For each untagged branch incident to n2 and some untagged
node n3, nodejpathQ tags that branch, tags node n3 and calls itself to find all
paths between nodes nx and n3. If paths are found, the path list P is updated.

Note that P is initially set to NULL. NULL is different from an empty list in
that NULL indicates no paths were found while an empty list implies a path was
found but it contains no branches (that is nY equals nz).

The Cutset Restriction

The cutset restriction imposed by the Interconnection Assumption may be
reduced to the following problem. Given a graph G with node-incidence matrix
A and a subset of branches B := j&i, .... bkJ of G, find all of the cutsets of G
composed solely of branches from B. Here is pseudo-code for a routine
find_cutsets(A, B) which does just this.

begin find_cutsets(A, B)
initialize cutset list C to NULL

short all branches in A which are not in B
let no_comp be the number of components in A
for each combination of branches C' in A

copy A to A
open branches in A which are in C
if the number of components in A equals no_comp + 1 and

no subset of C is in the cutset list C
add C' to the cutset list C

return the cutset list C
end fina\_cutsets ()

To eliminate unwanted branches, all branches not in the target set B are
shorted. Remember that a cutset is a set of branches C such that l) removal of
the branches in C increases the number of components of the graph by one and
2) no subset of C possesses property 1). For each combination C of branches of
B, the branches specified by cutset candidate C are opened and the number of
components of the resulting graph is checked. If there is one more component
than in the original graph and C" is not a superset of any cutset already in the
list, C is a cutset and is added to the list.
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The cutset candidates C are generated recursively with a function similar
to openjshort(). Instead of the two operations open and short applied to each
resistor in the circuit, the operations leave out of C and include in C are
applied to each branch in B. The order in which these operations are applied is
very important. Let Cj' be the jth cutset candidate generated by the recursion.
Then Cj' must not be a subset of Q' for all i <j. This ordering can be achieved
in the recursion by first leaving out a branch and then including the branch. If
a different ordering is used, then find_cutsets() would not only need to check
that no subset of C is in the cutset list C, but also delete from C any supersets
of C.
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Appendix 4: User's Guide for UNIQ



INSITE, NONLINEAR SYSTEMS GROUP, U.C. BERKELEY

<< UNIQ » (t.l > - USER GUIDE

Michael Peter Kennedy

September, 1985

COMPUTER IMPLEMENTATION OF "THEOREM 8" ( T. Nishi & L.O.Chua "Topological

Criteria for Nonlinear Resistive Circuits Containing Controlled Sources to

have a Unique Solution" IEEE Trans. Ccts. & Syst. CAS-31 , No.8, Aug.1984).

STATEMENT OF THE THEOREM, WITH ASSUMPTIONS AND RESTRICTION

Let N be a general circuit, containing resistors ( positive linear two-
terminal resistors and/or two-terminal nonlinear resistors with monotone-

increasing onto v-i characteristics >, independent dc voltage and current
sources, and linear controlled sources ( with real positive controlling
coefficients ).

INTERCONNECTION ASSUMPTIONS

1. There is no LOOP in N composed exclusively of the following:
a. DC voltage source(s).

b. Output (controlled) edge(s) of CCUS or VCVS.
c. Input (controlling) edge(s) of CCUS or CCCS.

2. There is no CUTSET in N composed exclusively of the following:

a. DC current source(s).

b. Output (controlled) edge(s) of CCCS or UCCS.
c. Input (controlling) edge(s) of VCVS or UCCS.

For such a circuit N, there exists a unique solution for all circuit
parameters if and only if by applying operations (a) (short-circuiting
each independent voltage source and open-circuiting each independent
current source), (b> (open- or short-circuiting each resistor (all
permutations must be tried)), and (c'> (zero some (possibly none)
controlled sources) to the associated graph G, it is possible to obtain
at least one graph with positive- or one with negative-complementary
tree structure, but not both. ( A one-node no-branch graph is deemed to
have positive complementary tree structure >.

In applying operation (c'), the following restriction must hold :

RESTRICTION

Suppose that in G there exist some loops and/or cutsets which violate
the Interconnection Assumptions, then in applying operation <c'), we
must ensure that the resulting controlled source graph contains at
least one branch per violating loop or cutset.
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INPUT

SPICE-like input format - no special file terminator is required.

Each circuit element is completely described by a single-line entry,

consisting of three fields, as follow:

<NAME> •CT0P0L06Y) <vALUE/RELATI0N>

1. NAME

A name field consists of a string of alphanumeric characters.

The first character of the name, which identifies the element type, must

be a capital letter. This theorem deals with just seven different types

of circuit elements, indicated thus :

voltage-controlled voltage source ( UCVS )

current-controlled current source ( CCCS )

voltage-controlled current source < UCCS )

current-controlled voltage source < CCUS )

independent current source

resistor < linear or nonlinear )

independent voltage source

If, while reading the input file, the program encounters an illegal
element name ( one not beginning with one of the seven valid characters
listed above ), then an error condition arises. The program indicates
that an illegal element has been encountered, and will not proceed to
analyse the circuit until the error in the input file has been corrected
by the user.

2. TOPOLOGY

The topological field consists of either one ( resistor or independent
source ) or two ( controlled source ) pairs of integers, denoting the
terminal node numbers of the corresponding one- or two-port. Each port
node pair is chosen such that the reference current flows IN to the port
through the FIRST node and OUT by the SECOND node, with the FIRST node at
a HIGHER reference potential than the second. In the case of a controlled
source, the FIRST node pair describes the CONTROLLED PORT, while the SECOND
refers to the CONTROLLING PORT. Thus, the topological fields for a resistor,
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independent source and a controlled source are as follow:

RESISTOR :

< ( in-current node ) ( out-current node ) >
( high-potential node ) ( low-potential node )

INDEPENDENT SOURCE :

< ( in-current node ) < out-current node ) >
( high-potential node ) ( low-potential node )

CONTROLLED SOURCE :

( controlled port ) ( controlling port >
<( in-curr. node ) < out-curr. node > ( in-curr. node ) < out-curr. node )>
( high-pot. node ) ( low-pot. node ) ( high-pot. node ) ( low-pot. node )

The reference direction for the controlled source graph edge associated with
a port is from in- to out-current (high- to low-potential) nodes.

3. VALUE/RELATION

A value/relation field is used to characterise the terminal voltage-current
relationship for a circuit element.

It is assumed that ALL RESISTORS (linear and nonlinear) are two-terminal
elements characterized by STRICTLY MONOTONE INCREASING v-i curves. Both the
value and relation are optional. If a relation ( element charactistic ,
surrounded by brackets <> - we allow this to provide compatibility with
other software in the INSITE suite )is found in this field, it is assumed to
describe a nonlinear resistor of the assumed type; if a negative resistance
value is found, a warning is printed, and the program stops once the entire
input file has been scanned.

In the process of implementing the theorem, all independent sources are first
zeroed; hence their value fields are of no significance, and so are ignored.
In the case of a controlled source, it is assumed, without loss of generality,
that EACH CONTROLLED SOURCE IS LINEAR WITH A POSITIVE REAL CONTROLLING
COEFFICIENT (alpha). Therefore, the program looks in this field for a positive
floating point number. If a non-positive number is found, a warning is printed,
and program execution ceases once the entire input file has been scanned.
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This is the title « FIRST LINE OF INPUT IS THE TITLE >>

« BLANK LINE - IGNORED >>

* resis tors << COMMENT - IGNORED >>

Rl 1 2 1.G OK

R2 2 4 Ik OK

R3 3 1 2500 OK

R4 5 2 -659.BE ***** ERROR *****

RNL 1 4 { ... > << ASSUMED OK >>

Rig 7 2

« BLANK

OK

LINE -- IGNORED >>

V4 2 5 -4.7B OK

V56 2 7 OK

VS 1 4 5k87 OK

U8 3 5 < . . . } OK

vg 3 G 23

<< BLANK

OK

LINE -- IGNORED >>

18 1 2 2 OK

lop 3 G -8.97G OK

Ipr 5 7 < ... > OK

Ifh 6 4 OK

I 2 5 5u3 OK

* another comment << COMMENT - IGNORED >>

F1 4 1 3 4 1 .,5 OK

FR 4 2 4 1 3 OK

HE 3 5 2 1 -5.,671 ***** ERROR *****

Egh 4 3 1 5 < ... } ***** ERROR *****

G 4 5 5 2 Bk2 OK

Fz 3 5 3 2 ***** ERROR *****
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GETTING STARTED WITH << UNIQ >>

1. Create a SPICE-compatible input file, called "in.dat" for example,

describing the circuit to be analysed.

Remember :

(a) only MONOTONE-INCREASING RESISTORS are allowed. A negative
linear resistor should be replaced by a controlled source.
(b) controlled sources must be governed by a LINEAR relation with

real positive controlling coefficient alpha. If alpha is negative,
a warning to this effect will be printed and the circuit will not be
analysed until the error has been corrected.
(c) the topological field for controlled sources should be given in

STANDARD SPICE-compatible form.

2. Run "UNIQ" - usage : UNIQ E-vl Cfilename.extension 3
Input can be from a file selected by the user by including the filename

( with extension ) in the command line argument list.

If a filename is not specified, input is read from stdin.
If keyboard entry is desired, no filename should be given, and when the
program title appears on the screen, enter the circuit data exactly as one
would if writing to a data file, one element per line, each line terminated
by a "carriage return". Type "<control> Z" ( AZ ) to denote "end of file".

Type : UNIQ in.dat « COMMAND LINE FORM »
or : UNIQ « KEYBOARD INPUT »

The results will be directed to "standard output", typically the monitor

screen. Alternatively, to generate a "hard-copy" of the analysis, the
output can be redirected to the printer as follows.

Type : UNIQ in.dat > prn « COMMAND LINE IN, HARD-COPY OUT >>
or : UNIQ > prn << KEYBOARD IN, HARD-COPY OUT >>

The output may also be directed to an output file, say "out.dat".

Type : UNIQ in.dat > out.dat << COMMAND LINE IN, REDIRECT OUT >>
or : UNIQ > out.dat << KEYBOARD IN, REDIRECT OUT >>

3. VERBOSE MODE

UNIQ provides two output modes, normal < default ) and verbose ( selected by
including the optional -v mode selector on the command line argument list ).
In verbose mode, for EVERY reduced controlled source graph tested, the program
gives information about the state of each resistor ( open- or short-
circuited ) and controlled source ( intact or zeroed ), as well as the edge
directions and terminal connections for each INTACT controlled source, and

indicates which type of complementary tree structure ( positive or negative ),
if any, the graph possesses. ( In normal (default) mode, this information is
given only for each "new" complementary tree structure encountered. > Each
time the interconnection restrictions are tested, lists of the potential loop-
and cutset- restriction-violating controlled source edges are printed

( verbose mode only ).
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OUTPUT

The output has been chosen to maximise the quantity of useful information
provided to the user, while minimising the total output.

First, a title is printed, introducing the program :

UNIQ 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

If verbose mode has been selected, a message to this effect is printed

to standard output (typically the terminal screen).

UNIQ then reads the specified input file, echoing first the title

and then a copy of the names and terminal connections of each of the

elements in the circuit under analysis, as they appear in the input file.

Next, the program checks for loops of just voltage sources and cutsets of

just current sources. If one of either is found, a warning is printed,
along with a list of the names of the elements in the violating set(s),
before the program terminates, outputting its conclusion that the circuit

does NOT have a unique solution for all parameters.

If such a pathological case does not exist, UNIQ checks for loops and
cutsets which violate the Interconnection Assumptions. If any are found,

a list of the named branches in each of the illegal sets is printed.

Next, independent sources are zeroed, (a message to this effect is printed
to standard output if verbose mode has been selected) and operations (b)
(open- or short-circuit each resistor) and (c#) (leave intact or zero each
controlled source) are carried out.

When complementary tree structure ( positive or negative ) is found, of a
sign which has not already been encountered during program execution, the
interconnection assumption restriction is checked, and if verbose mode
has been selected, a copy of the names of the potential loop- or cutset-
violating elements is printed.

If the restriction holds, information is given about the state of
each resistor ( whether OPEN- or SHORT-circuited ) and controlled source

( whether INTACT or ZEROED >, and UNIQ indicates the type of
complementary tree structure found. For each INTACT controlled source,
the terminal connections and directions (as specified by Theorem 8) of

the input and output edges are also given. With this information, one can
reconstruct the reduced controlled source graphs and in doing so, see

how one might, by reversing an edge, say, force a "non-unique" circuit
to have a unique solution ( see EXAMPLE below ).
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Testing continues until both negative and positive complementary tree
structure are found, or all reduced controlled source graphs which have
complementary tree structure have been found and checked.

Finally, the conclusion is reached as to whether or not the circuit has
a unique solution for all parameters, and the result printed to stdout.

EXAMPLE ( fig6(d>, Nishi & Chua )

The SPICE-like description of the circuit of figure 1 is shown below
< << EXAMPLE - INPUT FILE >> >. With this input, UNIQ finds the illegal
cutset composed of the input and output branches of G1, the input edge of
G2, and the independent current sources II and 12. Running the program in
verbose mode, we find that we can obtain only the complementary tree
structure graphs of figs. 2(a) and (b) ( reconstructed from data in the
output file ( << EXAMPLE - OUTPUT FILE >> ), both of which have negative
complementary structure. Hence, UNIQ concludes that this circuit has a
unique solution.
However, if the direction of v2 is reversed, then both positive ( fig.3a
and negative ( fig.3b ) complementary tree structure graphs can be found
( reconstructed from output file ( << EXAMPLE ( v2 REVERSED ) - OUTPUT
FILE ), and UNIQ concludes that the solution is NOT unique.

Figure 1

Rl

•AAA-

II ( " ) v2

0 *

G1

< -> >--

a1v1

* ?

(ft ) -13 -12 <A> vl

\

/ R2

\

/ \

" -a<i'vz

\ / (a2>0)



<< EXAMPLE - INPUT FILE »

fig 6(d)

Rl 0 1

R2 1 4

R3 3 1

11 2 1

12 2 3

13 0 3

G1 0 2 2 3 1

G2 4 3 1 2 1

Figure 2

2 0

> *
A

1 /

1 2

1 * \

( a )

- 8 -

2 \ 1 \

1

— *

/ 1

0

( b )
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<< EXAMPLE - OUTPUT FILE >>

UNIQ 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

Input: fig 6< d )

R1 0 1

R2 1 4'

R3 3 1

11 2 1

12 3

13 0 3

G1 0
n

2 3

G2 4 3 1 2

Cutsets which violate the interconnection assumption

1 ) G1 in G1 out G2 in II 12

STATES OF CIRCUIT ELEMENTS:

Resistors State

Rl short

R2 short

R3 open

Controlled

Sources State

G1 intact

G2 intact

Input Branch Output Branch

2 — >— 1 2 — >-- 0

0 -->-- 2 1 —>— 0

Graph has NEGATIVE complementary tree structure

*******#********#****************************

only negative complementary
tree structure exists

UNIQUE SOLUTION EXISTS

*********************************************
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<< EXAMPLE ( v2 REVERSED ) - INPUT FILE »

fig 6(d)

Rl

R2

R3

0

1

3

1

4

1

11

12

13

2

2

0

1

3

3

61

G2

0

4 3 2

3

1

1

1

Figure 3

2 0

—> *

1 / 2 /

( a )

<< EXAMPLE ( v2 REVERSED ) - OUTPUT FILE >>

I \ / 1

0

< b )

UNIQ 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

Input: fig 6(d)

Rl 0 1

R2 1 4

R3 3 1

11 2 1

12 2 3

13 0 3

G1 0 2 2 3

62 4 3 2 1
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Cutsets which violate the interconnection assumption:

1 ) G1 in G1 out G2 in II 12

STATES OF CIRCUIT ELEMENTS:

Resistors State

Rl short

R2 short

R3 open

Control led

Sources State

G1 intact

G2 intact

Input Branch Output Branch

2 —>— 1 2 —>— 0

2 — >— 0 1 -->-- 0

Graph has POSITIVE complementary tree structure

STATES OF CIRCUIT ELEMENTS:

Resistors State

Rl short

R2 short

R3 short

Control led

Sources State

61 intact

G2 zeroed

Input Branch Output Branch

Graph has NEGATIVE complementary tree structure

*********************************************

both positive and negative

complementary tree structures exist

SOLUTION IS NOT UNIQUE

*********************************************
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ERROR CONDITIONS - WHEN THEY OCCUR AND HOW TO CURE THEM

1. Cannot open input file

This error occurs if the input file specified on the command line

argument list cannot be opened ( because the name has been incorrectly
spelled, or the file does not exist ). Check that the file exists in the
current directory < or that the pathname has been correctly specified if

the selected input file resides in another directory ), and that the file
name and extension have been correctly specified.

2a. negative resistance not allowed
b. negative coefficient not allowed
c. nonlinear controlled source not allowed

These occur when a negative resistor, linear controlled source with negative

controlling coefficient , or nonlinear controlled source ( respectively ) is

encountered in the input file. Being an error condition, this will cause the

program to abort, but only after the entire input file has been read ( to
allow for the detection of multiple errors ).

3. Too many nodes ( N maximum )

If the input circuit contains more than N nodes, it cannot be analysed.
In this case, the program aborts.

4. Too many branches ( M maximum )

If the input circuit contains more than M branches, it cannot be analysed.

In this case, the program aborts.

5. Error in input data

This occurs when a SPICE element record is incomplete or contains wrong

variable types < i.e. those whose names begin with other than E,F,6,H,
I,R, or V ). Once again, this is an error condition, causing the program

to abort after the entire input file has been read.

6. No elements in input file

If, after reading the specified input data file, no valid circuit
elements have been found, the program aborts, since it has no data

to process. Check that the correct input file has been specified.

7. Program fault

If the computer hardware and << UNIQ >> program are functioning

correctly, this message can never be generated. It is included as
the default case on all internal "switchO" statements.
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8. Duplicate element name

This occurs when two or more SPICE-compatible element records have the
same name(s). This is an error condition, causing the program to abort

only after the entire input file has been read, once again allowing for
correction of multiple errors after just one pass of the input file.

9. Out of memory

This error indicates that an attempt to allocate some storage space has
been unsuccessful. This is an ABORT condition.

10. Usage: uniq E-v3 [file]

This message is printed when too many arguments are given on the command
line.
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FOR THE SERIOUS USER, A LITTLE MORE DETAIL

THE ALGORITHM ...

Create structures p (of type RNI ), c (of type CUT_LIST), and 1 (of

type L00P_LIST) which will contain the node incidence matrix of graph

G (and associated book-keeping overhead), linked list of cutsets

violating the interconnection assumptions (if any), and linked list

of illegal loops (if any), respectively.

Print title.

Reset flags - all flags are initially reset to FALSE. These are used

to indicate the types of tree structure found to date, whether

or not there exist any loops or cutsets in the original graph 6 which

violate the interconnection assumptions, whether or not "verbose" mode

has been selected by the user, and whether or not there exist in G

loops of independent voltage sources only and/or cutsets of independent

current sources only. Flag[03 ( PCTS ) is set TRUE if and when "valid"
( i.e. Interconnection restriction satisfied ) positive complementary

tree structure is found; flagtll ( NCTS ) is similarly set TRUE for

negative complementary tree structure. Flag[2] < BAD_CUTS ) is TRUE if
interconnection-assumption-violating cutsets exist; flag[33 ( BAD_L00PS )

similarly indicates illegal loops. Flag[43 ( VERBOSE ) is set TRUE if
the user selects "verbose" mode by typing -v on the command line.

Flag[53 ( IVS_L00PS ) is set TRUE if G contains one or more loops of

just independent voltage sources; flagC63 ( ICS_CUTS ) is set TRUE if

G contains one or more cutsets of just independent current sources.

Select mode - by scanning the command line argument list, the program

determines whence comes its input ( setting file pointer fp

appropriately < default : stdin ) ), and whether or not "verbose" mode

is desired. If verbose mode is selected, flag[43 ( VERBOSE ) is set,

and a message to this effect printed to stdout.

Read SPICE-compatible input file indicated by fp ( a data file ( with

extension ) specified in the command line argument list, or redirected to

standard input using the "<" input specifier, or data read directly from

the keyboard ), renumbering the nodes from zero ( the first node

encountered at the input becomes "node zero"; the next one is "node one",

and so on ), and reordering branches in the RNI_MATRIX , using the template

( VCVS,CCCS,VCCS,CCVS ! VCVS,CCCS,VCCS,CCVS !! R !i IVS i ICS ),

controlled source controlling edges, controlled edges, resistors,

independent voltage sources, and independent current sources. If a

disallowed element ( including negative linear resistors ) is found, or

the controlling coefficient ( alpha ) of a controlled source is negative,
a warning is printed to stdout, and the routine aborts after reading
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through to the end of the input file ; this allows for correction of
multiple errors following just one pass of the input data file.

t Note that Theorem 8 requires that the output edge associated with a
CONTROLLED CURRENT SOURCE be directed OPPOSITE to the arrowhead inside

the diamond-shaped symbol. Therefore, when UNIQ forms the RNI_MATRIX,
it takes standard SPICE-like input and converts it to the non-standard
form required here. Thus, the first node of the SPICE input for a
controlled current source is used by the program as the "negative"
terminal and the second as the "positive" terminal of the output edge.3

At this point, three string arrays, r_name, cs_name and is_name,
are created. These contain the element names of each resistor,

controlled source, and independent source, and are used in referring
to the elements, e.g. when the program finds a complementary tree

structure, to indicate BY NAME which resistors have been open-
circuited, and which have been short-circuited, as well as which
controlled sources are still present in the corresponding reduced

controlled source graph.

Next , two structures R_STATE ( resistor state ) and CS_STATE
( controlled source stste ) are generated, and tagged on to RNI
structure p. R_STATE contains a character array "state" of dimension
equal to the number of resistors in the master copy of the circuit
under analysis. Each element in the array contains either an OPEN
( 'o' ) or a SHORT ( 's' ) character, to denote an open- or short-
circuit condition respectively. Similarly, CS_STATE contains a
character array "state" of dimension equal to the number of
controlled sources in the master copy of the circuit under analysis.

Each element in this array contains either an INTACT ( 'i' ) or
ZEROED ( 'z' > character, to indicate whether or not the associated
source is still present in the reduced controlled source graph. This
information is used when checking, at the core of the program,
whether or not sufficient loop and cutset edges have been retained

to satisfy the interconnection assumption restrictions.

Check interconnection Assumptions, i.e. that there exist no loops
made exclusively of dc voltage sources, CCVS or VCVS output edges,
and CCVS or CCCS input edges, and no cutsets made exclusively of
dc current sources, CCVS or VCCS output edges, and VCVS or VCCS
input edges.

First, the program checks for "voltage source only loops" and
"current source only cutsets". If one of either can be found, the
circuit does not have a unique solution, so the appropriate flags
( IVS_L00PS and/or ICS_CUTS ) are set, the result printed, and
execution ceases.

Next , the program finds all loops and/or cutsets which violate the
interconnection assumptions, storing them in two linked lists 1 and
c. The illegal sets ( if any ) are printed to stdout. This is the
"user's" list of illegal sets. The program itself acts upon a subset
from which the independent sources have been removed.
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Perform operation (a) - Zero all independent sources, i.e. open-

circuit all independent current sources and short-circuit all

independent voltage sources. This function is performed by

subroutine zero_is().

Finally, the program generates two lists of illegal loops and cutsets
respectively containing only controlled source edges. If at least one
illegal cutset is found, flag[23 ( BAD_CUTS ) is set TRUE and the
cutsets stored in linked list c. If at least one illegal loop is

found, flag[33 ( BAD_L00PS ) is set TRUE and the violating loops
stored in linked list 1.

If there were independent sources in the circuit under analysis,
memory would have been allocated for the array is_name; this memory

is now freed.

Check whether or not the circuit contains controlled sources. If it

does not, then the network is purely resistive and may be reduced to
a one-node positive complementary tree structure graph by shorting

all resistors, if and only if the graph is made of just one piece;

if the graph is unconnected, a one-node graph cannot be found, so
the solution is not unique. If the network is found to be purely

resistive at this stage, the conclusion on uniqueness of solution

is printed and program execution ceases.

Perform operation (b) - Recursively open and short each resistor in
turn to generate all possible permutations of "controlled source only"
graphs. This operation is carried out by open_short(). If, by opening
any resistor, the graph becomes disconnected, then a controlled source

graph with complementary tree structure will not be found, so the
program discontinues its search along the current path, and returns

up the recursive tree.

For each "controlled source only" graph thus generated, perform

operation (c'), i.e. recursively zero or not each controlled source
in turn, producing all possible permutations of reduced controlled

source graphs. This is performed by zero_s( >. If, at any stage, there
are fewer branches than nodes, further zeroing of sources can yield

at best positive complementary tree structure. If PCTS is TRUE,

indicating that positive structure has already been found, then further
zeroing will provide no more information. Also, if the graph becomes

unconnected, then a complementary tree structure will not be found by
further zeroing, so recursion along the present path ceases (these are
just computation reduction tricks ). If operation (c') has been
performed in its entirety ( each controlled source in turn has been

zeroed or not), or if a one-node graph now exists, then test for

complementary tree structure.

For each resulting reduced controlled source graph, test for
complementary tree structure, positive or negative. If either type
is found, which has not already been encountered, check that the
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UNIQF

USER GUIDE

INSITE - NONLINEAR SYSTEMS GROUP, U.C. BERKELEY

COMPUTER IMPLEMENTATION OF "THEOREM 2" (T. Nishi & L. 0. Chua

"Uniqueness of Solution for Nonlinear Resistive Circuit Containing
CCCS's or VCv'S's whose Controlling Coefficients are Finite", ERL
Memorandum No. UCB/ERL M84/88, 23 October, 1984).

STATEMENT OF THE THEOREM

Let N be a circuit containing any combination of independent voltage and
current sources, strictly increasing (and onto) two-terminal resistors
and k linear CCCSs or VCl'Ss (but NOT both) with finite positive
controlling coefficients.

INTERCONNECTION ASSUMPTIONS

1. There is no LOOP in N composed exclusively of the following:

a. independent voltage source(s).

b. Output (controlled) branch(es) of UCUS or input (controlling)
branch(es) of CCCS.

2. There is no CUTSET in N composed exclusively of the following:

a. independent current source(s).

b. Output (controlled) branch(es) of CCCS or input (controlling)
branch(es ) o.f UCUS.

Define the following operations on the circuit:

a. short-circuit all independent voltage sources and open-circuit all
independent current sources.



b. open- or

tried.

short-circuit all resistors, all permutations must be

c. zero some (possibly none) controlled sources.

Then, define for the controlled source graphs, the determinant D

D = det ( I + C Q0 ),

where I is identity matrix, C is a diagonal matrix containing the

controlling coefficients of the controlled sources associated with the

controlled source graph which are resulted from performing operations

a., b. and c. on the circuit N, and Q0 is the main part of the
fundamental cutset matrix (resp. fundamental loop matrix) Q = ( I ! 00

) of the reduced controlled source graph for CCCS (resp. UCUS)

circuit.

The circuit has a unique solution for all valid circuit parameters if

and only if by applying operations (a), (b) and (c) defined above, we

can not obtain a connected controlled source graph such that

D = det ( I + C 00 ) < 0.

INPUT

SPICE-like input format - the first line of the input file is the title
and the last line is ".END" to indicate at the end of the file. Each

circuit element is completely described by a single-line entry,
consisting of three fields, as follows:

NAME TOPOLOGY VALUE/RELATION

1. NAME

A name field consists of a string of alphanumeric characters. The first
character of the name, which identifies the element type, must be a

capital letter. This theorem deals with just five different types of

circuit elements, indicated thus :

independent current source

independent voltage source

resistor (linear or nonlinear)

voltage-controlled voltage source (UCUS )

current-controlled current source (CCCS)



If, while reading the input file, the program encounters an illegal
element name (one not beginning with one of the five valid characters
listed above or more than one type of controlled source is encountered),
the program indicates that an illegal element has been encountered, and
proceeds to check the rest of the input file for other errors (if any)
and will not proceed to analyse the circuit until the errors in the
input file have been corrected by the user.

2. TOPOLOGY

The topological field consists of either one (resistor or independent
source) or two (controlled source) pairs of integers, denoting the
terminal node numbers of the corresponding one- or two-port. Each port
node pair is chosen such that the reference current flows into the port
through the first node and out by the second node, with the first node
at a higher potential than the second. In the case of a controlled
source, the first node pair describes the controlled port, while the
second refers to the controlling port. For each port, same rule applies
as for two-terminal elements. Thus, the topological fields for a
resistor, independent source and a controlled source are as follow:

RESISTOR :

( in-current node ) ( out-current node )

INDEPENDENT SOURCE :

( in-current node ) ( out-current node )

( high-potential node ) ( low-potential node )

CONTROLLED SOURCE :

( controlled port ) ( controlling port )

3. VALUE/RELATION

A value/relation field is used to characterize the constitutive

relationship for a circuit element.

RESISTORS : It is assumed that all resistors are two-terminal elements

characterized by passive strictly increasing v-i curves. Both the value
and relation are optional. If a relation (element charactistic,
surrounded by brackets <>) is found in this field, it is assumed to
describe a nonlinear resistor of the assumed type; if a negative

resistance value is found, a warning is printed, and the program stops
once the entire input file has been scanned.

INDEPENDENT SOURCES : In the process of implementing the theorem, all
independent sources are first zeroed; hence their value fields are of no
significance and are ignored.



CONTROLLED SOURCES : it is assumed, without loss of generality, that
each controlled source is linear and has been specified by a positive

real controlling coefficient. Therefore, the program looks in this

field for a positive floating-point number. If a non-positive number is
found, a warning is printed, and program execution ceases once the
entire input file has been scanned.

EXAMPLE :

R1 0 3 1.000000

Rl 7 3 100.0

element Rl : duplicate element name

F9 3 2 I 5 {}

element F9 : nonlinear controlled source not allowed

2 3 1 6 -0.990000

: negative coefficient not allowed

3 12 7 0.400000

: illegal element

2 13 8 0.400000

: only one type of controlled source is allowed

1 4 1.000000

F10

element F10

H11

element HI 1

E12

element E12

VI

10 1 5 {>

HOW TO RUN THE PROGRAM

1. Create a SPICE-compatible input file, called "in.dat" for example,

describing the circuit to be analysed.

2. Run "UNIQF" - usage : UNIQF f-v] C-sl [filename]

a. Input

Input can be from a file selected by the user by including the

filename. If a filename is not specified, input is read from stdin. If

keyboard entry is desired, no filename should be given, and when the
program title appears on the screen, enter the circuit data exactly as
one would if writing to a data file, one element per line, each line

terminated by a "carriage return". Type AZ to denote "end of file".

b. Verbose Mode

In verbose mode, (selected by the user by a -v option in the command

line) for every reduced controlled source graph tested, the program

gives information about the state of each resistor (open- or

short-circuited) and controlled source (intact or zeroed), as well as
the terminal connections for each intact controlled source, and prints

out the determinant value the graph possesses. In normal (default)

mode, this information is given only when a negative determinant value,



which indicates the solution may not be unique, is found. The program
exits with a negative message (indicating the solution is not unique)
whenever it founds a case which gives a negative determinant or the
program exits with a positive message (there exists a unique solution)
after all the controlled source graphs have been checked and no negative
determinant is found. In verbose mode, the program will go on and check
all the determinants even when a negative determinant is found.

c. Save Mode

In save mode (selected by the user by -s option in the command line),
when a negative determinant is found, the program asks for a file name
to save the histroy of the operation, which specifies whether a resistor
is opened or shorted and which controlled sources are zeroed (if any).
The saved histroy information is useful to draw a controlled source
graph on the color monitor. For more information, see documentation for
program "csgraph" csgraph.doc.

d. Output

The results will be directed to "standard output", typically the monitor
screen. Alternatively, to generate a "hard-copy" of the output, the
output can be redirected to the printer by the following command line :

UNIQF in.dat > prn

or UNIQF > prn

The output may also be directed to an output file, say "out.dat".

UNIQF in.dat > out.dat

or UNIQF > out.dat

The output has been chosen to maximize the quantity of useful
information provided to the user, while minimizing the total output.

UNIQF first reads the specified input file, echoing first the title and
then a copy of element names and their terminal connections and the
controlling coefficients of controlled sources as they appear in the
input file.

Next, the program checks for loops and cutsets which violate the
interconnection assumptions. If any are found, a list of the illegal
sets is printed out by element names, and program exits after giving a
negative answer.

Next, independent sources are zeroed, a message to this effect is
printed out if verbose mode has been selected. and operations b.
(open- or short-circuit each resistor) and c. (leave intact or zero



each controlled source) are carried out.

When a determinant (with negative value only for non-verbose mode) is

calculated, information is given about the state of each resistor
(whether opened or shorted) and controlled source (whether intact or
zeroed, if intacted, the controlling coefficient is also given), and the
determinant value is printed.

Testing continues until a conclusion is reached when a negative
determinant is found or all combination of reduced controlled source has

been checked, the program prints out the answer to stdout.

ERROR MESSAGES

We provide a list of error messages and interpret their meaning in
this section. Hopefully, this will give the users a clue on how the
errors happened and how to cure them.

1. Usage: uniqf C-svl [file]

This message is printed when the command line entered does not match

"uniqf [-5v] [file]" or "uniqf [file] [-sv]" where -sv could be replaced
by either -vs, -v or -s.

2. Error opening file

This error occurs if the input file specified on command line cannot be
opened. Check that if the file specified exists in current directory
(or that the pathname has been correctly specified if the selected input
file resides in another directory), and that the file name and extension

have been correctly specified.

3. Error in input data

Error(s) found in input data meanning that either some syntax errors are
found in input data or the circuit element does not satisfy the
specification required by the Theorem.

4. Error closing file

This error occurs when finishing reading the input file or having saved
the history file, the file is not successfully closed. Check if the
disk is full when the latter happens.

5. VCCS is disallowed

Since UNIQF only deal with circuits contain CCCS or VCVS (not both),
when an H element (VCCS) is encountered in the input file, this error



occurs.

G. CCVS is disallowed

Since UNIQF only deal with circuits contain CCCS or VCVS (not both),
when a G element (CCVS) is encountered in the input file, this error

occurs.

7. only one type of controlled source is allowed

This error occurs when more one type of controlled source is encountered

in the input file.

8. nonlinear controlled source not allowed

This error occurs when controlled source is not specified by

coefficient.

9. negative coefficient not allowed

This error occurs when controlled source is specified by a negative

coefficient. Check if this is in error, if not, reverse either input or
output port of the controlled source in question and change the sign of
the coefficient.

10. duplicate element name

This occurs when two or more elements have the same names.

11. Out of memory

This error indicates that an attempt to allocate some storage space has
been unsuccessful. Check if the size of circuit under test is too big.

12. No element in input file

If, after reading the specified input data file, no allowed circuit
elements have been found, the program exits. Check if correct file name
has been specified.

13. Too many nodes (64 maximum)

If the input circuit contains more than 64 nodes, it cannot be analysed
due to the stack size of the computer. In this case, the program

exits.

14. Too many branches (128 maximum)

If the input circuit contains more than 128 branches, it cannot be
analysed due to the stack size of the computer. In this case, the
program exits.



15. Wrong branch number

This will never happen under normal circumanstance We used this
error code to debug UNIQF. Howerver, if it does happen, most likely it
means the computer has run out of stack.

16. negative resistance not allowed

A resistor with negative resistance has been found in input file. Check
if this is in error, if not, replace the resistor by a controlled source

of approparite type.

17. Unknown error

Again, this should never happen under normal circumanstance We used
this error code to debug UNIQF. Howerver, if it does happen, most
likely it may suggest some thing wrong in the error-checking routines of
UNIQF.



16

References

1. T. Nishi and L. 0. Chua, "Topological Criteria for Nonlinear Resistive Circuits
Containing Controlled Sources to have a Unique Solution," IEEE Trans. Cir
cuit Syst., vol. CAS-31, no. 8, pp. 722-741, August 1984.

2. T. Nishi and L. 0. Chua, "Uniqueness of Solution for Nonlinear Resistive Cir
cuits Containing CCCSs or VCVSs whose Controlling Coefficients are Finite,"
IEEE Trans. Circuit Syst., to appear.

3. T. Nishi and L. 0. Chua, "Non-Linear Op-Amp Circuits: Existence and
Uniqueness of Solution by Inspection," Int. J. dr. Theor. /ppl., vol. 12, pp.
145-173, 1984.

4. R. 0. Nielsen and A. N. Willson, Jr., "A Fundamental Result Concerning the
Topology of Transistor Circuits with Multiple Equilibria," Proc. IEEE, vol. 68,
pp. 196-208, February 1980.



-17-

Rgure Captions

Fig. 1. Circuit for Example 1.

Fig. 2. Listing of UNIQ output for Example 1.

Fig. 3. (a) is the circuit for Example 2; (b) and (c) are the two negative comple
mentary tree structures which exist for this circuit.

Fig. 4. Listing of UNIQ output for (a) Example 2 (verbose mode) and (b) Example
3.

Fig. 5. Circuit for Example 4.

Fig. 6. Listing of UNIQF output for Example 4 with (a) ax + cx2 = 1.001 and (b)
<*i + ol2 = 0.999.

Fig. 7. Circuit for Example 5.

Fig. 8. Listing of UNIQF output for Example 5 with (a) ax = 1.001 and (b)
a2 = 0.999.

Fig. 9. Recursion tree showing the effect of open_short{) on two resistors.
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UNIQ 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

Input• Example 1

Rl 1 2

R2 3 5

R3 1 5

VI 3 4

HI 2 1 4 1

H2 3 5 L. 3

Loops which violate the interconnection assumption
1 ) HI in HI out H2 in VI

STATES OF CIRCUIT ELEMENTS

Resistors State

Rl open

R2 open

R3 open

Controlled

Sources State

HI intact

H2 zeroed

Input Branch Output Branch

1 — >— 0 1 — >— 0

Graph has NEGATIVE complementary tree structure

*********************************************

only negative complementary

tree structure exists

UNIQUE SOLUTION EXISTS

Fig 2



UNIQ 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

Input; Example 2

Rl 0 1

R2 1 4

R3 3 1

11 1

12 2 3

13 0 3

Gl 0 2

G2

Loops of independent voltage sources:

none

Cutsets of independent current sources:

none

Loops which violate the interconnection assumption:

none

Cutsets which violate the interconnection assumption

1 ) Gl in Gl out G2 in II 12

Zeroing Independent Sources

STATES OF CIRCUIT ELEMENTS:

Resi stors State

Rl short

R2 short

R3 open

Controlled

Sources State

Gl intact

G2 intact

Input Branch Output Branch
2 — >— 1 2 —>— 0

0 — >— 2 1 -->-- 0

Graph has NEGATIVE complementary tree structure

potential illegal cutset branches still present:
Gl in . 61 out 62 in G2 out

Cutset restriction satisfied

Interconnection assumption satisfied

(output continued on next page)

Fig. 4(a)



* (Example 2 continued)

STATES OF CIRCUIT ELEMENTS

Resistors State

Rl short

R2 short

R3 short

Controlled

Sources State

61 intact

62 zeroed

Input Branch Output Branch

1 —>— 0 1 —>— 0

6raph has NEGATIVE complementary tree structure

potential illegal cutset branches still present
Gl in 61 out

Cutset restriction satisfied

Interconnection assumption satisfied

*###«###♦*****######*##*#♦**#*#♦#»#********#*

only negative complementary

tree structure exists

UNIQUE SOLUTION EXISTS

##**♦*******♦*#***#****#*♦#****♦*#****#****♦*

Fig. 4(a) cont.



UNIQ 1.1

INSITE, Nonlinear Systems 6roup, U. C. Berkeley

Input: Example 3

Rl 0 1

R2 1 4

R3 3 1

11 2 1

12 3

13 0 3

61 0 2 2 3

G2 4 3 2 1

Cutsets which violate the interconnection assumption

1) Gl in Gl out G2 in II 12

STATES OF CIRCUIT ELEMENTS:

Resistors State

Rl short

R2 short

R3 open

Control led

Sources State

61 intact

62 intact

Resistors State

Rl short

R2 short

R3 short

Control led

Sources State

61 intact

62 zeroed

Input Branch Output Branch

2 —>— 1 2 —>— 0

2 — >— 0 1 —>— 0

6raph has POSITIVE complementary tree structure

STATES OF CIRCUIT ELEMENTS:

Input Branch Output Branch
1 —>-- 0 1 -->-- 0

6raph has NE6ATIVE complementary tree structure

*######*«****#**#«*#«##***#****#«*********♦**

both positive and negative

complementary tree structures exist
Fig. 4(b)

UNIQUE SOLUTION DOES NOT EXIST.

*********************************************



a2'2<t> R R^ <t>a4'4

4 <*>a3'3

Fig. 5

Fig. 7



UNIQF 1.1

INSITE, Nonlinear Systems 6roup, U. C. Berkeley

Input: Example 4(a)

Rl 0 2

R2 0 3

R3 7 3

R4 B 3

R5 8 2

R6 6 2

R7 3 4

R8 2 4

VI 1 4

V2 0 1

Fl 3 2 1 5 0.B005

F2 2 3 1 6 0.5005

F3 3 1 2 7 0.4

F4 2 1 3 8 0.4

STATES OF CIRCUIT ELEMENTS

Resistors State

Rl open

R2 open

R3 open

R4 short

R5 open

R6 short

R7 open

R8 open

CCCS's State

Fl intact

F2 intact

F3 zeroed

F4 zeroed

Max. Coeff. Input Branch Output Branch

0.5005 0 —>— 2 2 —>-- 1

0.5005 0 — >-- 1 1 — >-- 2

determinant test: det(I+AS0) = -0.001

#«*###♦♦*#♦*###*###**#♦**#*#*#*♦********

negative determinant found

SOLUTION IS NOT UNIQUE

#♦♦#*##♦####+#♦*##*#*♦*#*********•******

Fig. 6(a)



UNIQF 1.1

INSITE, Nonlinear Systems 6roup, U. C. Berkeley

Input: Example 4(b)

Rl 0 2

R2 0 3

R3 7 3

R4 5 3

R5 B 2

R6 6 2

R7 3 4

R8 L. 4

VI 1 4

V2 0 1

Fl 3 2 1 5 0.4995

F2 2 3 1 6 0.4995

F3 3 1 2 7 0.4

F4 2 1 3 8 0.4

negative determinant not found

UNIQUE SOLUTION EXISTS

#*##*♦#*#♦##*******«+***♦***************

Fig. 6(b)
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INSITE, Nonlinear Systems 6roup, U. C. Berkeley

Input: Example 5(a)

Rl 2 0

R2 3 0

R3 0 4

R4 5 4

11 1 4

VI 1 2

El 5 3 0 9 1.001

E2 3 1 0 4 100

STATES OF CIRCUIT ELEMENTS

Resistors State

Rl open

R2 open

R3 short

R4 short

CVS's State

El intact

E2 zeroed

Max. Coeff. Input Branch Output Branch

1.001 1 — >— 0 1 — >-- 0

determinant test: det(I+A60) = -0.001

#♦#*•##»*#•*########*###**#*♦*♦»*«*•*#«#**

negative determinant found

SOLUTION IS NOT UNIQUE

#««##*#**#####*♦##*###♦##*#*##**********

Fig. 8(a)
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UNIQF 1.1

INSITE, Nonlinear Systems Group, U. C. Berkeley

Input: Example 5(b)

Rl 2 0

R2 3 0

R3 0 4

R4 5 4

11 1 4

VI 1 2

El 5 3 0 2 0.999

E2 3 1 0 4 100

negative determinant not found

UNIQUE SOLUTION EXISTS

ft***************************************

Fig. 8(b)
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