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In this paper we study a two-time-scale stochastic discrete time linear time
varying system. We heuristically find a reduced order approximation to its
asymptotic behavior as the time scale separation tends to infinity. This approxi
mation results in a white noise representation of the fast state vector, and a
corresponding approximation error in the slow state vector. After introducing the
approximate system we define concepts of continuity and rate of variation, which
are needed in the discrete time analysis. We then prove, that as the time scale
separation increases, the state of the reduced order system asymptotically coin
cides with the slow state of the original system in the mean square sense on com
pact time intervals. We also find the order of, the slow state approximation error
covariance.

1. Introduction

Singularly perturbed systems have been studied extensively in the engineering litterature
during the last fifteen years. Much or all of the motivation for this recent activity seems to have
come from the need to deal with systems evolving at two or more time scales. Such systems are
e.g. of interest in estimation and control problems.

(1) Dynamics of observers used in estimation are typically designed to be much faster than the
process dynamics. In practice one hopes that the time scale separation between the dynam
ics of the observer and those of the rest of the system is so good, that the situation is almost
the same as in the ideal case, where the observer dynamics is neglected.

(2) In control systems the actuators providing the control inputs are usually designed to give
quick or instant response, resulting in a similar multiple time scale system with a
corresponding order reducing approximation.

This approximation is exactly one which can be made in the analysis of a singularly peturbed sys
tem, suggesting that this class of systems has to be analysed and understood, in order to
mathematically justify the heuristic approximations, which are desirable in the estimation- and
control- problems such as those mentioned above.

The deterministic continuous time varying control problem has been studied e.g. by Kokoto-
vic and Yackel (1972) [l|, who show, that the Riccati equations corresponding to the full and
reduced systems asymptotically agree on compact time intervals, as the singular perturbation
parameter \i tends to zero. A similar result concerning the state and costate trajectories has been
obtained by Kokotovic and Wilde (1973) [2j.
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Haddad (1976) [3] has studied the stochastic continuous time varying estimation problem,
and shown that the Kalman filter can be decomposed into slow and fast filters, still giving esti
mates, which are asymptotically correct on compact time intervals. This problem is essentially
the dual of the deterministic control problem, but differs in a significiant way due to the presence
of a white noise input.

For discrete time systems, on the other hand, work to describe multiple time scale behavior
and the corresponding order reducing approximations, has been very limited until the last five
years. Given recent advances in micro processor technology, most sophisticated filters and con
trollers are

implemented with digital computers. Hence the analysis of singularly perturbed discrete time sys
tems is of just as much importance as its continuous time counterpart. This is the major motiva
tion for the work presented in this paper. Phillips (1980) [4] has introduced a notion of two-time-
scale discrete time invariant systems, and exhibited a class of systems having this property. Since
then Naidu and Rao (1982) [5] have shown, that the approximations resulting from decomposition
of some of these systems are asymptotically correct. This approach however does not represent
proper time scaling in the sense, that the parameter ft can be eliminated from the system equa
tions by a change of time scale. Instead it focuses on the eigen values of the discrete system.
Fernando and Nicholson (1983) [6] have proposed a model for properly time scaled discrete time
invariant systems with fixed time step, and Kimura (1983) [7] has studied the control problem for
a similar time varying system. These papers consider however only the comparison between the
degenerate full system (m=0) and the reduced system, without giving any conditions under which
their approximations are asymptotically accurate. Although Kokotovic and others have proven,
that these heuristic approaches yield asymptotically correct approximations in continuous time,
this does not seem to be the case in discrete time due to the catastrophic instability, that occurs
when the parameter fi tends to zero faster, than the time step does. These instability problems
have clearly been observed by Blankenship (1981) [8], who let the fast dynamics determine the
stepsize of the discrete system, and show that the optimal control of such systems asymptotically
decomposes into fast and slow components.

In this paper we develop appropriate concepts and techniques, which extend the domain of
singular perturbation analysis to properly time scaled two-time-scale discrete time varying sys
tems. Furthermore our systems are stochastic in contrast to those in the foregoing papers. As in
[8], we consider a stepsize proportional (for simplicity equal) to the parameter fi. This brings up
the fact, that as the fast dynamics ofour sampled data system becomes faster, a shorter sampling
time is needed, to capture the stability of the fast subsystem. We furthermore propose a heuristi-
cally obvious feduced order approximation, give conditions under which this approximation is
valid, and carry out a careful error analysis, showing that our approximation is asymptotically
correct.

The paper is organized as follws. In section 2 we present the system to be studied along
with a heuristically derived reduced order approximation to the slow part of its dynamics. In sec
tion 3 we define concepts of continuity, rate of variation and boundedness, and present a few
related propositions. Section 4 and section 5 are devoted to results about the fast and the slow
state tranxition matrix respectively. In section 6 we show that the heuristic approximation intro
duced in section 2 is asymptotically correct for block triangular systems.

Finally in section 7 we indicate how this result can be extended to the general case by means of a
nonsingular block triangularizing transformation.

Throughout the entire paper we will use the following notation:
D° = {ze <D : | ^r | <1} = open unit disk in <D
|pj = integer part of the number a
AH =s Hermitian transpose of the matrix A



o\A) = spectrum of the matrix A
8 is the forward difference operator

2. System Description

The system we consider is given by:
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fn(0,
Mi,m(0 Muy.'
AaJi) A^i0 Jw* «*(*) (2.1)

where 5 is the difference operator, i 6 1N0 := {0} (J N is the time index, n € (0,oo) is a small
parameter, x^ € C' is the slow state, z^ £ <DB/ is the fast state, uM € C"' is a driving white
noise and Altlt 6 <D"'X\ A12.u € C"'X\ 421.u € C"'x\ A2.tf € C"/XB/, £^6 CB'xn' and

x'W L2,^

#2,0 € <E ' 'are given system parameters. The vectors z^, z^ and aM are assumed to have the
following statistical properties:

E{

and

E{ *,(0)

V i, re No V /*>0

»n(0)
*,(0)

uM(»)
} = o v * e IN0 v /*>o

n,,, -^-n„,„ o

«?(*)]} = —n" —n o

•

.«. Xn. .». Xn, ,n»x«iwhere the matrices n,,, € C \ nz/i„ € C* ', Utt(i € <D ' ' and Q„(x) 6 € '
known V »\ J 6 IN0 and \/ /i>0.

(2.2a)

(2.2b)

are

The interpretation of (2.1) is simple. If we identify t with \p, it is just a discrete time ver
sion of the two-time-scale continuous time system.

f*(«)l _[•*»' 7(1)
Z(t)

'Bt(t)
B2(() m (2.3)

In fact in our proofs concerning properties of the model (2.1), we will assume the existence of at
least parts of a continuous time approximation of the form (2.3). The continuous time system
parameters will be distiguished from those of the discrete time system by a tilde on top of the
letter as in (2.3) above. The way the descrete time system (2.1) is parameterized by its associated
sample period is just fi. We therefore define the time index k^t) £ N0 for each time <>0 by

MO -lil (2.4)

In order to simplify notation we also define the matrices:
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^(»):=/+Mm(0 6 <DBjXBi (2.5a)
FM(»):=/+A2,,(i) 6 <CB/XB/ (2.5b)

The aim of this paper is to approximate the system (2.1) by a lower order system and show
that when these two systems are subject to the same initial slow state, their slow states are
asymptotically equal on compact time intervals as fi[0. Hence we shall be content with results
valid for fi small enough, i.e. whenever there exists /T>0 such that the result under consideration
holds V ft 6 (0,/T).

If we formally set /i=0 in the continuous time equation (2.3), and solve for z in terms of u,
we obtain the white noise approximation

KO = -^(Ol^ifOKO + ^(OSWI (2.6)
and the approximate reduced order system

1(0 = l^i(0 - *iAt)X?(t)X*(t)\l{t) + [#i(0 - ^O^tO^O!«(0 (2.7)
The approximations, that will be considered in this paper, are given by the discrete time versions
of these equations, namely

*U0 - M[AUi] - Al2t(l(i)Ai\(i)A2lJi)\ *,(») (2.8a)

+ M1*1,(0 - A12t;t(0A2i(i)52,,(0I «,(*)

^(t) = -A&(i)lA2jL*)U*) + *2.^K(01 (2.8b)

3. Basic Definitions

In order to be able to describe the behavior of a singularly perturbed discrete time linear
system, as the small parameter fi tends to zero, we need concepts similar to continuity, bounded-
ness and Lipschitz continuity. In this section we introduce a few such concepts, and state a few
intuitively rather obvious related facts.

Definition 3.1: We say that the map

A : (0,oo)xIN0 - <D*X» : (/*,i) f- A,(i) (3.1)
is discrete continuous (d.c) on the time set T, if there exists a continuous map

X : T— <DmXB : t t- A{t) (3.2)
called the limit of A such that

>UM0) ->X(t) (3.3)

uniformly on every compact subset of T. We say that the map is discrete continuous if it is d.c.
on [0,oo).

Definition 3.2: For p>0 we say that the matrix valued map A^i) has 0(fip) -rate of variation
(r.v.) on the time set T if there exists a constant LA <oo such that

s«pJUmM0 + 1) - A„(A„(0)ll < LAfip (3.4)

for fi small enough. We say that it has 0{fi") -rate of variation if it has 0(fi")-T.v. on [0,oo).
0(/*)-r.v. is called bounded rate ofvariation (b.r.v.).
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Deflnition 3.3: We say that the matrix valued map A^i) is bounded on T, if there exists a con
stant MA <oo such that

supjA,(M0)[| < ACi (3.5)
for fi small enpugh.

In general, the properties defined above are closed under finite products and inversion. Two
such results are stated in the following propositions, whose simple proofs are omitted.

Proposition 3.4: Let {AJtfi(i): /=1, ...,/} be a finite set of matrix valued maps, which are
bounded with 0(/i')-r.v. on T,

j

then J\AjJ}) has 0(/i')-r.v.
;s=3l

Proposition 3.5: Assume that:

(1) The map A: (0,oo)xINo -• CBXn: (fi,i) h» A^i) is d.c. with limit £{t) on T.
(2) A{t)is nonsingular \/ t € T.
Then

(i) A^{i) and ^_1(0 are bounded on every compact subset of T.
(ii) AjTl(t) isd.c with limit A'^t) on every compact subset of T.
(Hi) If in addition to (1) and (2), A„(i) has 0(fip)-v.v. on T, then so does A^(i) on every com

pact subset of T.

4. Properties of the Fast State Transition Matrix

One of the crucial reasons, for which the white noise approximation to the fast state, that
was suggested in the introduction, is valid, is that the fast part of the system is stable at each
time, and as fi tends to zero, it becomes "infinitely stable". This stiff behavior kills off the depen
dence of the fast state on the past. Hence the fast state dynamics becomes almost memoryless,
and since it is driven by a white input, the fast state becomes almost white. In order to find out
how good this heuristic approximation is, we clearly need to characterize the stability of the fast
dynamics in terms of the parameter ft. This leads us to the analysis of the state transition matrix
$/< (j,i) associated with the difference equation

*,(*'+1) = J%(0*,(0 (4.1)
when F^(i) isd.c. with given r.v. and a stable limit Fit). The state transition matrix $F (i»0 is
defined in the usual way i.e.

*#-„(j\0 = F,(y-l)F„(y-2)-^(i) j>i (4.2)

Roughly speeking, the results of this sectfon assert that in the limit as ft |, the matrices
^i(MO). **„(;'+ «'»/). *r„(y+ U) ~KU) and **•„(*'+ *'»/) - **!(/+ 0 can all be bounded on
any compact time interval by exponentially decaying expressions proportional to X', where X is
arbitrarily close to, but strictly greater than the largest eigenvalue of ^(t). The precise results
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are stated in the following lemmas. For most of the proofs we refer to [9].

Lemma 4.1: Consider the matrices F6 <CBXn and F{i) € <DBXB, j=0, . . . ,/. Assume
a(F) C D° and \\F(i) - F\\ < a i=0, ...,/.
Then there exist constants M 6 [l.oo) and X6 [0,1) such that
(i) IM*.OJO < W *=0, ...,/+1
(ii) l*F(it0)^Ffl<Mff »=0, . ..,7+1
where £ := X + A/ot

(iii) Moreover if 0<1, then

IIMM>)-^1I<^<A/ (4.3)

Lemma 4.2: Let T be compact, and let the map F : (0,oo)XlNo -+ CBXn : (/*,») h+ F„(i) be
d.c. with limit F[t) on 7\ Assume that <r{F(t)) C D° V I 6 T.
Then there exist constants M =» M(F,2T) 6 [l,oo) and X= X(F,T) £ [0,1) such that

sup||Fi(M0)ll<MX« V*'€lNo (4.4)

for // small enough.

Lemma 4.3: Let the map F : (0,oo)xJN0 — <DBXB-: (/*,») h- F^i) be d.c. with b.r.v. and limit
F{t) on T=\TlfT2\. Assume that <r(F(t)) C D° \/ t e T

Then there exist constants M = M(FtT)£ (l,oo) and %=:K(F,T)e [0,1) such that

!**„('.*)I - lln('-0-^(*)I <Mt '"* (4.5)
whenever Mri) < * < / < *^(T2), and /i is small enough.

Proofs Since the hypotheses of lemma 4.2 are satisfied, there exist constants
M = M{F,T) 6 [l,oo) and X= \(F,T) € [0,1) such that

yrgj-i

J^'^*)' ^ MV V»€Wo (4.6)
for /* small enough. Since F^i) has b.r.v. on T, given e>0 there exists At—Ate>0 such that

IS? .2yo "^" F*w'»• <€ (4J)
for /* small enough. Indeed F^i) having b.r.v. on T means that there exists a constant LF<oo
such that

kJ{t+At)A T£-l

«!? .2§o l|F^0-^(M0)ll <MM<+A0-i-M0V (4.8)
< L!.(i±^i - 1- - + l)fi = LFAt

V fi
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for fi small enough, and hence any At < -£- will do the trick. Pick At accordingly.

It now follows from lemma 4.1 that for ft small enough

su? maxo ll^»,M0)-^y°(M0)ll<M^° (4.9)
where

0 = X+ Me (4.10)
By choosing eand At smaller if necessary, we can w.o.l.g. assume that 0<1.
Now given At € (0,oo), fi € (0,A*) and k,l 6 {M2U . . . ,h(T2)} such that *</, let

(l-k)ft
At

tj := kfi + j A/ y=0, . . ., J (4.12)

Hj :=s ♦^(M'i+d.M'j))» J=0* •• wM (4.13)

Hj :=* *rflMh)) (4.14)

If,- :- F>(''+l>"W(*), ,=0, ...,7-1 (4.15)
*/ := <W(A) (4.16)
Gr.= H,-Kjt ;=0, ...,/ (4.17)

Then from equations (4.6), (4.0) and (4.10) we see that for ft small enough

1M < MX^'+^W < Mtf*l>+W>\ j=0 /-I (4.18)
IIAT/II < A/X'"*^ < Mtkfkh) ' (4.19)
IIG,|| < M(F#>+W>\ j=0, ...,7-1 (4.20)
l|(?/ll<M/?,-W) (4.21)

Thus for /i small enough

>/•„(',*)ll - lltf/-tfoll (4.22)
=\\(K,+ G,y~(K0+ G0)\\ <(\\KA\+ 0<7/I);"(iifol+ !<?/!) <M*'~*

where

M:= (2A/)/a,+ 16 [l,oo) (4.23)

S := 0 € [0,1) (4.24)

-c (4.11)

rA< + K oo I (4.25)

Lemma 4.4: Let the map F : (0,oo)xINo — CBXB : (ft,i) h-* FM(i) be d.c. with b.r.v. and limit
F{t) on T=\TltT2\, and assume that oiF{t)) C D° V I 6 T.
Then for every fixed m 6 IN0, 3 constants X € [0,1) and 6<oo such that for fi small enough:



(i) !♦,,(/,*) - Fl-k(k-m)\\ < ftbV-kW-k-lfr1-*-1
T\ T2

whenever < k-m < k < / < .
fi - - - - fi

(ii) 11*^/,*) - F'-*(/+ m)|| < fib(l-k)(l-k-l)\l-k->
Ti T2

whenever <*</</+m< .
ft - - - - M

5. Properties of the Slow State Transition Matrix

For the analysis of the slow dynamics of the system (2.1) we need a fact about the state
transition matrix $D (j,i) associated with the difference equation

*„(»+ 1) = D,(i) xtf) = (/+ M,(«')W0 (5.1)
As usual the state transition matrix $d (;,0 is defined by:

*0„(;.O := ^.(y-lP^(j-2)-/>,(0 />* (5.2a)

*DjJ.i)*~D?(j)D?{]+iy-D?{i-l) /<» (5.2b)

Lemma 5.1: Let the map A : (0,oo)xlNo -+ <CBXB : [ft,i) h> A^i) be bounded on T.
Let D^(i) and #d (j,0 be defined as in (5.2).

Then for every closed interval [TltT2\ C T, the map $D : {0,oo)xlNg -* <DnXB : {ft,i,j)
^* *Dpfi) is bounded and has b.r.v. (in both i and j) on [r^rj2.

For the proof of this lemma and a few related facts We refer to [9|.

6c Approximation of a Block Triangular Two-Time-Scale System

6.1. Full Order System

For the rest of this paper we study the two-time-scale stochastic discrete linear time varying
system introduced in section 2 above under the following additional assumptions:

(Al) Alt(l, Bhlt, B2i)l and Q^ are bounded on T.
(A2) Ax2tll and A21flt are bounded and have 0(fip)-r.v. on T for some p>0.
(A3) A2tlt is d.c. with limit K2 and has b.r.v. on T.
(A4) <r(F(t)lC D° V <€ 7\

where F(t) = / + A^t) is the limit ofF^i) = / + A^(i).
(A5) UXtlit U„ilt and Ut>fl are 0{ft°).
where T denotes acompact interval of the form [0,r2j.

In this section we furthermore restrict attention to the case, when A2lli(i)==0. This
assumption considerably simplifies the analysis. In the next two sections we will indicate how the
general case can be treated by introducing a nonsingular block triangularizing transformation. In



-9-

general all of the discrete time quantities depend on the parameter ft, so for brevity we drop the
//-subscripts, where no ambiguities are to be expected.

6.2. Fast State Autocorrelation

Before we introduce the reduced order approximation, we derive the autocorrelation of the
fast state, and prove two of its properties. Using the state transition matrix $F [j,i) defined as
in (4.2) above, from the system equation (2.1) we have, that for l>k

z(l) - ♦,('.*)*(*) + EMM+ l)BAi)u(i) (6.1)

We now introduce the scaled fast state autocorrelation

A„(i) := ftEiz^z^i)} (6.2)
Since z(k) is uncorrelated with u(i) \/ *>*, we have

.__ A(/) - ♦,(ltk]A(k)^^(l,k) + £*,(/,»+ l)G(i)*Ff{l,i'+ 1) V<>* (6.3)

where

GM^B^MQ^B&ii) (6.4)
As an immediate consequence of (6.3), it follows that

AM(») is bounded on T. Indeed by lemma 4.3 3 constants M#€ [l,oo) and X* 6 [0,1) such that

II<MMll < W4"' (6.5)
whenever 0 < ; < * < *„(T2).
Since moreover <7M(») is bounded on T, say by MG<oo

k-l

\\A{k)\\ < M^i\\M0)\\M^+ YtM^i-,'1MGM^t,~1 (6.6)

Mr< M&||nJ| + —^) = 0(ft°) A=0, . . ., k,(T2) I
1—A<j»

6.3. Reduced Order Approximation

When A2i,n{i) = 0 the white noise representation (2.6) of z^i) reduces to:

&(»):=-^i(0^(0M0 (6.7)
Note that

<r{F(t)) CD° V t € [0,oo) => <r(A2{t)) C D°-l V t 6 [0,oo) (6.8)

So Ae(0 is nonsingular V t 6 [0,oo).
Since moreover A2tll(i) is d.c, from proposition 3.5 we see that for ft small enough, A^k^t)) is
nonsingular V * € T. So f„(») is we" defined by (6.7). Substituting (6.7) in (2.1a) we obtain the
resulting approximate slow state vector ^(t) as:

8S,{i) = MM(0U0 + V>\BiJi) - Al2Ji)A&(i)Bjii)\ «„(i) (6.9a)
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U0) - *„(0) (6.9*>)
The initial condition (6.9b) just reflects the fact, that initially no injection of the fast state into
the slower part of the system has occured, and hence no approximation error has been made. To
evaluate the quality of this approximation we introduce the slow and the fast state errors:

^(0-MO-UO (6-10)

«»(0:=*n(0-fr(0 (6-11)
and derive their covariances

Riit(k) := E{iJLk)4*[k)} (6.12)
R.(l,k) := B[e,(l)e*{k)} (6.13)

6.4. Slow State Error Covariance

Using the statistical properties (2.2) and the equations (6.1) and (6.2) in a straight forward
manner we can express the fast state error covariance as:

R,{l,k) - - *,(/,*+ l)[F(k)A{k) + G{k)A2H(k)] Vl>k ' (6.14)

and

Ra{k,k) = 1 [A(*) + Ail(k)G(k)Af(k)\ (6.15)

Next we define the fast to slow state impulse response:

#,(/.») := *DJI(y,»+ l)AlZli{i) (6.16)
This is the impulse response from *M to z^ from ^ to £M or from e^ to d^

Since Altlt(i) is bounded on T, it follows by lemma (5.1), that $D (j,i) is bounded and has b.r.v.
on T2. By hypothesis Al2tfl(i) is bounded and has 0(/i')-r.v. on T. Hence #„(;,») is bounded on
T2, and by proposition 3.4 it follows that #A(;»0 has 0(fipA x)-r.v. on T2 as well.

Subtracting (6.9a) from (2.1a) we obtain the slow state error dynamics, and from (6.9b) we
get the initial value of the slow state error.

6d(i) = Mi(0<*(0 + Muj(0e(0 (6.17a)

d(0) = 0 (6.17b)
It follows that the slow state error covariance is given by

Rd(k) = E{d(t)d"(k)} = ft2 £ EHil,i)Rt(ij)H«(k,j) (6.18)
i=0 ;=0

For the rest of this section we write k for klfi(t) and let

/„(if/) := H^tMR^iJ^ik^J) (6.19)
Then defining the slow state error covariance at time t in the obvious way, using (6.18) and (6.19)
we get

*V<) := ^(WO) = m2 £ E WJ) (6-20)
1=0 ;=0
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Changing the summation indices from (i,j) to (i,m) := (»,»-;) (6.20) now yields

#<(t) - f E *EW[^(»+ «,0 +/(*+ «,0I +/*2 E'(»'.*) (6.21)
For m>0 as in the sum above from (6.14) we see that

/(i+ m,i) = H(k,i+ m) i- *F(»+ m,i+ 1)L (*)#"(*,*) (6.22)
where

Z,(i) = L,(i):« ^(*)A,(i) + GJii)A$[i) (6.23)

Since FM(») is d.c. it is bounded on T. >From before we also know that AA(i) and G^i) are
bounded on T. Finally since A2ilt(i) is d.c. with nonsingular limit ;T2(0 on T, it follows by pro
position 3.5, that A^(i) is d.c. and hence bounded on T. Thus F^i), AM(i) and A£j(*) are all
bounded on T. Therefore L^i) given by (6.23) is bounded o T as well.

We have now accumulated facts enough, to be able to prove that the reduced order approxi
mation (6.9) is asymptotically correct. The precise result is stated in the following lemma.

Lemma 6.1: Consider the two-time-scale stochastic discrete linear time-varying system governed
by (2.1) and (2.2).

Assume the conditions (Al) - (A5) are satisfied for some compact interval T = [O.TJ, and that
v4 2i,^(») = 0. Then the reduced order approximation (

8^(i) = MiJOUO + /*Blf/t(»K(0 (6.24a)

•*,(0)=x„(0) (6.24b)

where

Bi,M(0 := Bjji) - AjdLi)A&(0^(0 (6.25)
is asymptotically correct in the mean square sense. More precisely

su?||̂ (0ll = O(^Ai) (6.26)

Proof: Since H^JA) is bounded and has 0(/ipAl)-r.v. on T2, 3 finite constants MH and LH
such that

sud, max ||#(*„(0>0ll < MH (6.27)

and

sup max ||//(M0.*+ 1) - tf(M0,0H < LhV?k 1 (6.28)
t 6 T i=0

for fi small enough.

Similarly since L^i) is bounded on T,3 a constant ML <oo such that

su?IU(M0)ll< Ml (6.29)
Moreover as we have seen before, by lemma 4.3 3 constants M<p 6 [l>oo) and X<t> 6 [0,1) such
that

||<M*+ m,»+ 1)|| < M*X<?_1 (6.30)
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whenever 0 < t < i+ m < fc„(T2).
Using the bounds (6.27), (6.28), (6.29), (6.30) and the expression (6.22) we obtain

ll/i2 E *|f/(»'+ m,i) - ft %H{k,i) EM*+ »M+ l)Mp#"(*,0ll (6-31)
miail issO 1=0 m=l

Jt—X k-l-m

= 1m E E #(*.»+ *0<M*'+ ».»'+i)M0#"(*.0
m=l i=0

-m E Etf(M)M'>m>*>0M0#"(*,0[l
m=l i&sO

mssl i=0

+ M E E IMMJll !*,(*+«.*+ 1)11 ||L (Oil lltf"(MH
muni »=Jt-m

<HE ( 'ErnLHfi^lM^'lMLMH + £ MHM^~lMLMH)
m=»l i=0 icafc-m

=/* E [(MO-w)»nLif^AiA/<I)x«-iMii^+ mMlA/^^A^I
m=l

< fiM^MLMH g [(~-m)^/iM1+ A/^mX^-1
m=Bl /*

< M*MLMH(T2LHft^1 + Afo/i) E w»^*"1 = 0(mm1)
m=l

since the series converges.

>From lemma 4.4 we know that 3 constants b<oo and \A 6 [0,1) such that

||<M*+ m,i+ 1) - Fm-\i)\\ < ftb{m-l)(m-2)\2-2 (6.32)
whenever 0 < i < i+m < kJ^T^.

Moreover since o\F{t)) CD0 \/ t 6T, for /i small enough A^i) is nonsingular,
x=0, . . . ,kn(T2). Hence

*-i

£
m=l

£F»-(») = [/•*-'(,)-/)A2-'(t) (6.33)

whenever »=(), . . . ,kn(T2).
Using these two facts we find that

h EU(k,i) 2 *,(.'+ m,i+ l)L{i)HH(k,i) (6.34)
i=0 w=l '

- ft *&H{kti)[Fk*(i) - I\A?(i)L(i)HH(k,i)\\
i=0

= /* IIE*(*.«) E !**(*+ ».«'+1) - /*—l(0|i(f)tf*(*,t)i
»=0 m&ai

<hHmh E M*(m-lKro-2)X£-XAfo < T2M$bML £ m^"1/* \/ *6 T
i=0 m=4 m=1

Together with (6.31) this implies that

M2 E E /(*+m,i) = ME^(A.0[^_1(0-/M2l(0^(0^(*,0+ 0(m'a1) (6.35)
m=l i=0 i=o
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on T.

Using (6.19), (6.21) and (6.35), the slow state error covariance can now be written as

#<<(0 = /• Y>H(k,i\R(i)HB(kti) + O(^Ai) (636)
1=0

where according to (6.15)

RJLi) := LtmtSWlFpli) ~t\* + [^_1(0 - /Mg(»)L,(i) (6.37)
+ A,(»)+ AiJfJCrjiMtfW

Thus

*„(») = tfu(i) + Lf(O^i)^*)]" + /^(O^ifO^tO (6.38)
where

Riji):- -If(ijAiJjt) - Ailji) + A„(») + Ai(i)GJ»)AaJ(0 (6.39)
Using (6.23), this can be written as

*i(0 » Af-l(i)(A(») - W)f(i) " G(i))AiH(i) (6.40)
so by (6.3) (with k replaced by i and /=1)

Rx(i) = -A^fO&VfOA^fi) (6.41)
By proposition 3.5, A^(i) is bounded, say by MA<oo, and has b.r.v. on T. We also know that
A^(t) is bounded on T, say by A/A<co. Moreover from lemma 4.2 we know that 3 constants
MF 6 (l,co) and \F 6 [0,1) such that

II^J_1(0ll < MpX*-1 {=0, . . . ,*,(7\>), V t € T (6.42)

Finally since H(j,i) is bounded and has 0{fipA1)-T.v. on T2, it follows by proposition 3.4, that 3
a finite constant LHA such that

U5T(i,i+lM2l(»>l)-^OVMal(Ol < I«aM'ai V*,y 6 {0, . . .,A„(rj} (6.43)
Using these bounds together with (6.36), (6.38) and (6.41), we estimate the slow error covariance
as follows.

1^(01 - y E"(*4 -A2l(i)S\(i\A^(i) (6.44)

+ L//(t)A2-/f(0[^*~1(0|/f + Fk'l[i]Ail(i)Lii))HH{kti)t + O(ji'Ai)

<ft\\^H{k,i)A2l(i)\A(i) - A(i+ l)|A2-*(i)/f*(*,0l
i=0

+ /i|IS^,0(ii/(0^2-/'(0[^-1(0l//+ /^0^M0M0)tf"(*,0ll + 0(m'a1)
1=0

< m||£#(*,i+ 1M21(»+ 0A(t+ lM2/f(»+ 1)#"(M+ 1)
1=0

- kf,H(k,i)A2'l(i)A(i+ l)A2H(i)HH(k,i)\\
t=0

+ Mll^(*.0)i4a1(O)A(0Mfif(0)/risr(*f0) - ^(A^-ljA^tA-lWiM^t*-!)^^.*-!)!

+ ^ SA^(A/t^^xF'I+ MF\kF-lMAML)MH + 0(/x"Ai)
imO



on

-14-

< ft J]( \\B(k,i+ l)A2l(i) - H(k,i)A2l(i)\\ ||A(i+ l)A2H(i+ l)HH(k,i+ 1)||
1=0

+ \\H(k,i)Ail(i)A(»+ 1)|| IU2"(i+ l)HH(k,i+ 1) - A2H(i)HH(kti)l\)
+ 2fiMHMAMKMAMH+ 2fikM§MLMAMF\£'1 + 0(ftpA1)

Jfc-2

< ME(^fti/*M1^AA/A^+ MffAfAAfALai^Ai)+ o(/z)'
i=nO

+ 2ftMSMLMAMF8UDJ\j + 0(/x'Ai)= 0(/t"A1)

r. I

7. Approximation of the General Two-Time-Scale System

The results of the previous section for block triangular systems can be extended to the gen
eral case by means of the nonsingular transformation:

w„(0"
u>M(i)

=

/ o'

A«0 /

^(0

5,(0.
where Nn(i) is defined by the difference equation

SN,(i) = A^WN^i) - A21Ji) - ^(»+ l)[Xlt,(0 - >W0^(0l

NM^^(0)A2lJO)

(7.1)

(7.2a)

(7.2b)

It can be shown that this transformation is well defined for ft small enough, and that the
transformed system is block triangular. It can furthermore be shown, that the approximation of
the original system (2.1) induced by the straight forward reduced order approximation of the
transformed block triangular system is asymptotically equivalent to the reduced order approxima
tion (2.8) of the original system itself. I.e. the covariance of the difference between the slow state
trajectories of these two systems tends to zero uniformly on compact time intervals as ft [ 0. By
lemma 6.1 of the previous section the same is true for the difference between the slow state trajec
tories of the transformed block triangular system and its reduced order approximation. Hence
lemma 6.1 extends to the following theorem:

Theorem 7,1: Consider the two-time-scale stochastic discrete linear time-varying system
governed by (2.1) and (2.2).

Assume that the conditions (Al) - (A5) are satisfied for some compact time interval T —\Q,T2\.
Then the reduced order approximation

where

S^(i) =» /iAliM(*)U0 + fiBiJifaii)

Uo) = *„(o)

Ai,„(0 :=* Alt)l{i) -Al2tfl(i)Ai(0^ai,/»(0

is asymptotically correct in the mean square sense.

(7.3a)

(7.3b)

(7.4a)

(7.4b)
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For the details of the block triangularizing transformation and the proof of this theorem we refer
to [9].
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