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ON THE EFFICIENT FORMULATION OF WORST CASE

CONTROL SYSTEM DESIGN

by

E. Polak* and D. M. Stimler**

Abstract

A methodology is presented for transcribing worst case control system design

specifications into tractable semi-infinite inequalities. These inequalities can either be

solved directly or they can be incorporated into an optimal design semi-infinite optimiza

tion problem.

1. . INTRODUCTION

There is a growing realization that many control system design problems can be

expressed as optimization problems of some kind, see e.g. [Bed, Dav.l. Des.l. Kar.l.

Kar.2, Pol.l. Pol.3, Tai.l. Zak.l. Zak.2], Most often the resulting optimization problems are

semi-infinite and therefore require special algorithms for their solution, such as those in

[Gon.l. Pol.4].

The most general semi-infinite optimization problems that are solvable by existing

algorithms are of the form

minf/COlg-'Cc) <0. j €/; max <f>k(x,vk) <0. k € K] (l.l)
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where / : R" -»R and the gJ : R" HR are locally Lipschitz continuous [Cla.l], the

<f>k : R" XR9* -*R are upper semi-continuous in (x ,vk ) and locally Lipschitz continuous in

x, while the sets NA. CR?* are compact. Furthermore, the use of semi-infinite optimization

algorithms is predicated upon the possibility of computing elements in the generalized gra

dients of / (•). gJ(•) and <f>k {.vk ).

The amount of computation involved in solving a problem of the form (1.1) depends

considerably on the form of the functions ^*(v) and on the dimensionality of the sets

NA.. since global optimization, in the evaluation of the max <f>n {x, vk ). becomes progres-

sively more expensive as the dimension of Nk increases. Because of this, worst case con

trol system design problems with unstructured plant uncertainty are more difficult to

solve than nominal design problems, while worst case design problems with both struc

tured and unstructured plant uncertainty are still more difficult. We shall demonstrate

this fact by means of a simple example.

Consider the design of a proportional plus integral compensator

Cix.s) & x1 +x2/ s for the feedback system in Fig. 1, with x =(x1. x2) to be deter

mined by optimization. For the sake of simplicity we assume that Fsl. Suppose that one

of the design goals is output disturbance suppression over the frequency range [g>\ w"].

First consider the problem of nominal design and suppose that the nominal plant transfer

is P0(jo>). defined by

P (,-)-. 20(5 + 3)
*** }" (s+8)(s+l-j2)(s+l + j2) • (1'2)

Then the disturbance suppresion requirement can bestated asan inequality of the form

max {USr^Cx.ytt) I2-*(«)} <0. (1.3)

where Hyd(x. jta) = [l + P0(j<a)C(x. ja>)]~1 and bM is an upper semi-continuous

function. Clearly. (1.2) is of the form
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max^Gc, */) <0. (1.4)

withi/ 6 w.N 4 [a>\ 0)"] and 0(x. y) 4 Kff^Ge. yx/)l2 - b(v). In this case. 0(x. v) is

inexpensive to evaluate for each v 6 N, and the evaluation of max 4>{x. v) can be carried

out easily by scanning over a grid of points in the interval N = [o>\ g>"].

Next, suppose that one must take unstructured plant uncertainty into account, and

that the plant transfer function is given by P(s) = P0(s )l(s ). with P0(s ) as in (1.2) and

I(s ) assumed to be known only to the extent that it is a stable, proper rational function

(c.f. [Che.l. Des.l, Doy.l]) satisfying the bounds

U(;aOl €Im(a>) 4 [ . 2° , , * l;a) +20l], V <o^O. (l.5a)
I J <*) + 20I 20

argUyw) € Ie(o>) £ -arg(yo> + 20). arg(;(u + 20)]. Vw)0. (1.5b)

Shifting to polar coordinates. we let Poijat) = m0(a>)/; c ,

C(x , ycu) =mc(x , a>)/y c'^ Hence, Kya>) =m(MlJ ' **, and introducing the depen

dence of the disturbance-to-output transfer function on plant uncertainty, we obtain

\Hyd(x. jo*, Kyw))l2= {[1 + mo(a>)m/(a>)mc(x.a))cos(0o(w) + 0/(a>) + 0C(*.<«>))]2

+ [mo(6>)m/(6j)mc(x , w) sin(0o(w) + 0/(a>) + 0cCc. a>))]2}-1 (1.6)

If disturbance rejection is to be ensured for all possible plants within the given uncertainty

set. we must satisfy (1.4) with v 4 o>. N & [a>\«"]. as before, but now

<f>(x, v) 4 max {{[1 + mQWm m^ix.nu) cos(0oC") + 0 + 0c(* . v)]2
m € Im 00

+ m0(i/)m mc(x.j/)sin(0o(j') + 0 + 0cCc. v)]2}"1 - 6(i/)} . , N
(1.7)

The evaluation of <f>(x. v) is fairly easy if one makes full use of the fact that it is defined

as a max over a rectangle in R2 (see [Pol.2. Sti.l]).

Finally, suppose that there is not only unstructured, but also structured uncertainty
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in the plant model. In this case. (1.2) has to be replaced by an expression of the form

p _ a°(j +a1) , Rv
0 is + a2Xs +a3 - ja4)U +a3 +;a4) V J

with, say a0 € [12.5. 25], a1 € [2. 4], a2 € [5. 10], a3 .6 [-1. 0], a4 € [l. 2]. Fig.2

shows the uncertainty rectangles in the complex plane. The vector

oi 4 (a0, a1, a2, a3. a4). In this case, the magnitude m0 and the phase 0o of the struc

tured part of the plant become functions not only of o>. but also of a and hence, for worst

case design purposes (1.7) must be replaced by

0Cx.p) A max {{[1 +m0(p,a)m mc(x ,v)cos(B0(v. a) + 0 + 0c(x.i/)]2
m€ I

eci

or€ A

+ m0(v.a)m mc(x . i/)sin(0o(v. a) + 0 + 0c(x . v)]2}~1 - b(v)}
(1.9)

where A & [12.5. 25] X [2. 4] X[5. 10] X[-1. 0] x [l. 2] XIm X1^. We see that even for

our low order plant. <£(x . y) is defined asa max over a seven dimensional rectangle and its

evaluation is extremely difficult indeed.

The remainder of this paper is devoted to the development of techniques for the

reformulation of worst case SISO feedback system design specifications in a computation

ally efficient form. In particular, it will be shown that, proceeding from a literal perfor

mance specification function 0(x, v), such as the one in (1.9), it is possible to construct a

majorizing performance specification function <f\x. v) with the following properties: (i)

<f>Xx. y) can be evaluated through a fairly small number of simple function evaluations:

(ii) <flx. v) ^<f>(x. v) for all (x, v). ensuring that the satisfaction of the more easily

verified inequality max <j>\x ,v) <0. implies that max 6(x. v) <0 is satisfied: and (iii)
v€ N. * j/€ N

<f>X\ 0 satisfies the hypotheses imposed by semi-infinite optimization algorithms. Thus we

shall see that computational costs of optimal worst case, linear feedback system design.

We refer the reader to [Doy.l. Hor.l. Hor.2, Hor.3, Orl.l] for a discussion of the manner in which the two types
of uncertaintv arise in models.
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can be drastically reduced at the expense of a small amount of conservatism in system

performance specification.

Finally, we must point out that we are not the first to propose techniques for the

reduction of the computational complexity of semi-infinite inequalites in engineering

design, see, e.g., [Hal.l, Heu.l, Sch.l]. Unfortunately, these earlier techniques appear to be

unsuitable for optimal worst case control system design. For example, since control system

performance specifying functions, such as in (1.7). are not convex in the uncertainty

parameters, we are unable to use the results in [Hal.l]. Similarly, we are unable to use the

statistical methods proposed in [Heu.l], because they produce a "simple-to-evaluate"

approximation <f>'(x,v) to 0(x. v). which fails to satisfy the crucial property

0'(x. v) Z<f>(x . i0 for all (x . v).

2. A FIRST APPROACH TO DESIGN SPECIFICATION VIA SEMI-INFINITE INE

QUALITIES

The transcription of worst case control system design into a semi-infinite optimiza

tion problem was discussed at some length in [Pol.2]. where we find that many design

specifications, such as output disturbance suppression, plant saturation avoidance, input

following, etc. result in very similar looking semi-infinite inequalities. Consequently, it is

possible to demonstrate fully our computational complexity reduction technique, by

applying it to the simple worst case design of the SISO. two degrees of freedom feedback

system, shown in Fig. 1, for which the compensators must ensure exponential stability and

plant saturation avoidance, in the presence of both parametric and unstructured plant

model uncertainty.

We begin with a description of a convenient compensator and plant transfer function

parametrization and the "standard" method of transcribing performance specifications into

semi-infinite inequalities.
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We parametrize the compensators in factored form:

*c'

~, x a nc\x.s) i=1
C(X,S) Q —, r- = j,

dr\X ,S) NC
(s +d<?) n U2-riots +b£)

i=Nc'+l

(2.1a)

. KF(s + dp I[ ^2 + 2ajr s +6»

*Kx's) ' dF(x,s) *? (2'lb)
(5 + dp2) II (s2 + 2a> j + b'F)

i=A>'+l

where Nc ^ 2iVc'. A/jr ^ 2iVjr' to ensure the properness of the compensators. The vector

x is made up of all the compensation coefficients, viz..

x = (Kc. KF, ac. bc, dc. aF, bF. dF). where ac = (a,.1 ac c). etc.

Next we we assume that plant transfer function is of the form

P(s.a.l) = P0(s.a)l(s) (2.2a)

where a € R * is the (structured) parametric uncertainty vector and I : C -♦ C is an

unstructured uncertainty rational function. The structured part. P0, has the form

kp txu+zi) n t* +*''x* +*'*)
^oU' a; TTT-^T * 3T (2.2b)

n0(s.a) A i=i j=m+i
ovj . «y = ^ 5Z

Ilk + /»') II C* +/>''X.r + />'*)
rfoU.a)

i=l i=AT+l

with 1Mp —Af ^2^ —N. to ensure that -P0 is proper. The uncertainty vector a € Rn"

consists of the gain and all the poles and zeros in (2.26) which are known only to the

extent that they are contained in intervals in R or C. Hence, if all the parameters in P0

are uncertain, a =(Kp ,zl.z2 zNp, p1. p2.. . . ,pNp) and

As stated, the compensator numerators and denominators are of odd degree. When this is not desired, the ap
propriate terms in (2.1a, b) may be deleted, provided properness is not violated.
Although unstructured multiplicative uncertainty is commonly expressed as P0(s )[l + / (j )], see e.g.

[Doy.l], for our purposes the equivalent form in (2.2a) is more convenient.
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KPe\£p.K,]. (2.2c)

z'1 €[zj. F], i = 1. 2 JV, . (2.2d)

/>' € [a'.i']. i =1.2 M, . (2.2e)

where a complex "interval" [zj. zl \ in C is defined by

[z_l. t ] A \z € C IRe(z') <Re(z') <Re(?). Im(z') <Im(r') <Im(F)} . (2.3)

A typical pole zero uncertainty diagram for the transfer function for the example

considered in (1.8). which corresponds to z1 € [2.4], pl 6 [5.10] and

p2 € [-1 + j 1. 0 + j 2], was shown inFig. 2.

The uncertainty intervals (2.2c)-(2.2d) define a parametric uncertainty set which we

shall denote by A. Clearly. A is given by

A^.^lxlif.j^xnb,;"] (2.4)
z=l z=l

The unstructured part of the plant model. /(•). will be assumed to be known only to

the extent that it is a member of the family of functions L, defined as follows.

Definition 2.1. We shall denote by L the family of unstructured uncertainty rational

functions I : C — G which have equal numerator and denominator degrees and satisfy

the two inequalities (see Fig. 3)

.^(aOOKya))! <Z~(to). Vo^O, (2.5a)

Ia(o>) <argZ(yto) ^TAM. Vto ^0. (2.5b)

where the bound functions 1&. TM ,JU,TA : R+ -»R are continuously differentiable and

satisfy

0 <luM <1 <Z^(to). Vto >0. (2.6a)

IaM^O ^Ta (cd). V to X). (2.6b)

•

We now introduce an assumption which is designed to eliminated the ill-posed prob

lem of stabilizing a plant with uncertainty about the number of unstable poles (see

[Zam.l, Zam.2]) and to ensure that there are no /to-axis pole-zero cancellations.
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Assumption 2.1. The plant transfer function Pi.at.l) has the same number of C+

poles for all a € A and Z € L.

•

Note: Since Z(s) = 1 is a function in L, it follows that the structured part of

P.P0(\ a), has the samenumber of C+ poles for all a € A.

Next we turn to the transcription of our plant saturation avoidance and bibo stability

requirements into semi-infinite inequality form. We begin with saturation avoidance,
+

which is the simpler of the two. The most direct formulation of this requirement is

max {\Hvrix.ju. a. l(j<i>))\2 - b^M) <0.
or 6 A ^',J
t € L

where [to', to"] is the expected bandwidth of the system. bvr :R+ ->R is a continuously

differentiable bound function, and the reference input to plant input transfer function.

Hvr . is given by

#vr(x . y'to. a, Z(ya>)) = Fix . yto) C(x . ;to)[l + P(ja>. a.lXix. yto)]"1. (2.8)

We find it convenient to rewrite (2.7) with all transfer functions in polar co

ordinates: F(x.jo>) = mF(x.to)e^(*'w). C(x.yto)= /^(x. to)e^c(xw). P0(ja>.oc) =

m0(to.a)cy 0<wa)andZ(;to) =m/(a>)Zje,(w). For to € R+. let S(to) CR2 be defined by

S(to) £ {(m.e) € R2lm =m0(to. a)m,(to).

9 = e0(o), a) + 0,(to). a € A. Z EL). (2.9)

Then (2.7) becomes

I1}2?-!, mH, x{mir(x.to)2/nc(x.to)2X

[m2 mc (x . to)2 + 2m mc (x . to) cos(0 + 9C (x . to)) + l]"1 - £„. (to)} <0. (2.10)

We see that (2.10) is of the form

We use \Hyr \ rather than l-ffyr ' "* (2.7) so as toremove the "corner" or the magnitude function at the ori
gin.
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max 0vr(x.to)<O, (2.11a)
«i>€ [bi',tit"]

where $„ is of the form

0vr(x. to) = max £vr (x, to. 77) (2.11b)

with T) £ (m, 9 ) and

fv,. (x .to.7)) £ mjr (x ,o>)2 ntc (x ,to)2[m2 77^ (x .to)2

+ 2m mc(x,to)cos(0 +0c(x,w))+ l]"1 - b^ (to) . (2.11c)

The computational difficulty of checking inequality (2.7) is the same as that of (2.10). The

form (2.10) gives an illusion of computational complexity simplification because S(to) is

only a subset of R2. The problem is that the difficulty has been merely shifted to the very

complex description of S(to). Nevertheless, as we shall see in the next section, (2.10) even

tually leads to a computationally more tractable form of saturation avoidance

specification.

Next we turn to the stability requirement. For the two degrees of freedom system in

Fig. 1 to be exponentially stable, both the precompensator F and the unity feedback closed

loop system around PC. must be table. Because of the parametrization in (2.1b). the

precompensator F will be exponentially stable if for a chosen € >0. the following ine

qualities are satisfied:

6-rf/^O (2.12a)

€ - aF <0. i = NF,JVF'+1....MF. (2.12b)

€ - bjr <0. i = NF',NF'+1....JJF (2.12c)

To ensure worst case stability for the closed loop system, we propose to further

extend the extended Nyquist criterion described in [Pol.2]. This criterion requires a nor

malizing polynomial d(s ), of degree 2 Np + 2 Nc - 2 A^1 - N + 1. such that all of its
o

zero are in C. The degree of d (s ) is be equal to the degree of the characteristic polyno

mial of the closed loop subsystem in Fig. 1. for Z(x) = 1. It can be deduced from [Pol.2]
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that worst case exponential stability of the closed loop subsystem in Fig. 1 is ensured if

and only if the locus of

vt • ^A *e(*./tt)*o(M<*)ZO'G») + dc(x,j<o)d0(jto.a)
T(x ,j<o.od) £ -,_—< , (2.13)

d(jo))

traced out for -co ^ to ^ <xx does not encircle the origin for all a € A and for all Z € L.

A sufficient condition for this to hold is that the locus of T(x ,y to.a.Z) stays out of a para

bolic region enclosing the origin, as shown in Fig. 4. i.e. that

max {lm[r(x.yto.ai)]-^1{Re[r(x.;to.a.Z)]}2 + A:2} <0.
•€lo*J (2.14)

ore A
/€L

where k\. k2 >0 determine the parabola v = &. v2 —k2. in Fig. 4, and to, is sufficiently

large to cover the frequency range where encroachment into the parabolic region might

take place.

Next. let /ic(x.yto)/rf(ya>) = rKx ,to)e^1(xtt) and dc(x .y'to)/ </(yto) =

r2(x.to)e^2(x'w). We define the set S, (to) C R4 by

S,(to) A \{mljn2.9l'92) € R4lml= U(/to.«)Z(to)l. m2 = \d(ja>.a)\ .

01 = arg nQ(j(a.a) + argZ(yto). 92 = org d0(j<o.a), a 6 A, Z € L} . (2.15)

Then (2.14) can be rewritten in the equivalent form

max 6s(x.a>) <0 (2.16a)

with

0,(x.to) & max £,(x.to.T)), (2.16b)
i)€Ss(u)

where T) & (m1^2.©1.©2) and

&(* ,to.T)) £ £ m'V sin (0* + j3') - k1
2

Ern'r1 sin(0' +0')
i=l f=l

We are now ready to proceed with the development of computationally more tract

able design specification inequalities.
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3. COMPLEXITY REDUCTION VIA MAJORIZATION

Our technique for the development of computationally efficient replacements for per

formance specification inequalities, such as (2.11a) and (2.16a) is based on two simple

observations. The first one is obvious:

Proposition 3.1. Let CI be a compact subset of R and let <j>. <f: Rn* x R -»R be piece-

wise continuous functions such that for everyx € Rn*

<f>(x, to) ^<fi~(x .to). V to € a. (3.1)

If

F £ {x €RnMsup0(x.to) <0}. /" £ {x€Rn* I sup <f(x . to) <0} . (3.2)
<i>« a w€ ft

then F~~ C F.

U

Definiton 3.1. Whenever (3.1) holds, we shall say that the (function <£~) inequality

sup <f>Xx .to) <0. majorizes the (function <f>) inequality sup 0(x .to) <0.

•

Now suppose that we wish to solve a problem P. of the form mini/ (x )lx 6 F],

with F as in (3.2), and that <f>(x. to) is very difficult to evaluate. Then we may elect to

solve the more conservative problem P*~t min{/ (x)lx € F~~}. with .F^as in (3.2). pro

vided <f, <f> satisfy (3.1a) and <f>Tx, to) in much easier to evaluate then <f>(x. to). Clearly,

any solution x~* of P is feasible for P and. if F~~ is not much smaller than F. then

/ (*""* ) may beclose to the optimal value of P.

We shall now show in two steps that we can construct simple majorizing functions

0""vr and <fs. to be used as replacements for <f>vr and <f>s. defined in (2.11b). (2.16b) respec

tively. We begin with $„. Referring to (2.9). for any to ^0. let

m(to) &minjm Km, 0) € S(to)} . m(to) &sup|m Km. 0) € S(o»)} . (3.3a)

0_(to) A min|0 Km. 0) € S(o>)} .0(to) £ max|0 Km. 0) € S(to)} . (3.3b)
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Next, for any to ^ 0. let

Ro(to) 4 |(m.0) 6 R2lm(0) <m <mM.9_M <0 <0(to)} . (3.4)

Then 5(to) C R0(o>) for all to ^0. see Fig. 5. and hence, with 7) = (m,0). the function

$ : R"* X R+ -• R. denned by

^ (x. to) 4 max £vr (x . to. 7)) . (3.5)

satisfies $vr (x, to) >#„. (x . to) for all x 6 R** and to ^0. Next we note that the max in

(3.5) is easy to evaluate because Ro(to) is a rectangle. As a result, the evaluation of

^vr(x.to) involves only the evaluation of ^(x.w, 7)) at the four vertices 7),- of Ro(a>)

and of the finitely many zeros of its reduced gradient in Ro(to). Closed form expressions

for the zeros of the reduced gradient can be found in [Pol.2. Sti.l]; hence their evaluation is

simple. Furthermore, it seems that the difference between ^vr(x.w) and ^(x.to) need

not be very large (see Fig. 5). Hence <£vr is a very attractive candidate majorizing function

for 0^.. provided the construction of the sect Ro(to) is not expensive. Fortunately, the pro

duct form (2.2b) makes the computation of the bounds m(a>). m(to). 0_(to) and 0(to) quite

easy because mathematical programming decomposition theory (see e.g. [Las.l]) can be

used to obtain the following nice result.

Theorem 3.1. For all to ^0 such that lP(y'to. a. l)\ is finite for all a € A. Z € L.

m(to) £ min \P(jto, a.Z)l
or € A
/ € L

M Mp
ImMKpTL min lyw + z'l U min lyto + sM

" ' S ~2IJ max lyto + ^'l JJ max ly*to + />'l

m(to) A max lP(y*to, a. Z)l
or € A
/ € L

-12-
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_ M A/.

lM((t>)Kp n max ly'to +z'l ff max lyto +z'1 \
N

0_(to) £ min argi>(yto. a, Z)
a € A
/ 6 L

~7T

H min \ja) + p'\ II min lyto + />'T
i=i pi Cleft1) i=N+iPie[£jpi]

M M„

=IaM + £ min arg(y*to + 2i)+ £ min larg(yto+z')

(3.6b)

JV iV„

+ arg(y'to +z'*)} - £ max arg(y*to+ />')- £ max |arg(yto +^f)

+ arg(yto + />'*)}

0(to) 4 max argi>(yto, a. Z)
or € A
/ € L

(3.6c)

M

=Z4(to) + £ max arg(yto + z'1) + £ max |arg(y*to + r')

+ arg(y to+ *'*)}- £ min arg(yto+ />'") - £ min |arg(yto +/?')

+ arg(yto + />'*)} (3.6d)

The one term extremizers in (3.6a - 3.6d) can be easily computed using closed form

expressions given in [Pol.2]. For example, for the structured part P0 in (1.8). with the

bounds given for it. we get

m(to) =

m(to) =

25Z^ (to)(to2 + 16)1' 2(Z - to2)-Ka>2 +25)-" 2. V to € [O.l]
ooL Vto 6(1.2],
25Z^(to)(to2 + 16)" 2(to2 - 4)-x(to2 + 25)~"2. V to € (2.oo)

(3.7a)

12.5Z^(to)(to2 + 4)" 2[(5 - to2)2 + 4to2]"" 2(to2 + 100)-" 2. V to € [0 VJ.5]
12.5hfM(oi2 + 4)" 2[(2 - to2)2 + 4to2]~" 2(a»2 + 100)-" 2. V to 6 (VJ.5. oo)

(3.7b)
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TA (to) + tan-1 to/ 2 + tan-V(l+to)/ (1-to) -
0(o>) = j tan-V(l-to)/ (1+to) - tan"1 to/ 10. to € [0. l], (3.7c)

lA (to) + tan"1 to/ 2 + 7T — tan"1 to/ 10. to € (1. oo)

Ja (*>) + tan"1 to/ 4 - tan"1 to/ 5. V to € [0. 2]
_(to) =|j^ +tan_1 w/ 4+tan_1 (a> _ 2) _ lan-1 to/ 5j y ^ 6(2 ^ .

We see from this example that the functions m (•). m(-). 0(0. 0.(0 need not turn out to be

continuous. In fact, referring to (3.7a - d) we see that for the plant discussed in Example

2.1, m(0 has discontinuities at to = 1,2 and it is infinite for to € [1.2]. while 0(to) has a

jump increase of 7r/2 at to = 1. It is therefore far from obvious whether, for the general

case, the function q&(\ 0. defined by (3.5), is upper semi-continuous in (x. to), locally

Lipschitz continuous in x, nor what is the formula for its partial generalized gradient.

w.r.t.x. if it exists, all of which are required by semi-infinite optimization algorithms. In

the remainder of this section we shall show that simple transformations lead from the

functions <pvr and <f>s to functions <f> vr and <f> vs which have all of the required properties.

First we introduce a change of variable. Thus, for all m ^ 0 let

fi & m . (3 8)

Next, with v A (M, 0), let f^ : Rn* XR+ X[0.1]-»R be defined by

f vr (x . to. v) £ &. (x. to. (/*/ (1-/0. 0). (3.9)

and let

Theorem 3.2. (a) Let (x, to. v) be such that x € Rn*. to ^0, v € [0, l] X R and

£ ^(x. to, v) <oa Then £ vr(\ \ 0 is continuous at (x,o>, v) (with respect to

Rn* X R+X [0. l] X R). (b) The bound functions £.. p. : R+-*[0. l] are continuous,

(c) The bound functions 0_, 0 : R+-* R (defined in (3.3b)) are piecewise continuous, with

bounded discontinuities occuring in the set Q$ defined by
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Qa & |to 6 R+lto = zj and RezJ = 0. or to = F

and Re J' =0. i = 1 Mp . or to = £' and Re^.' = 0, or to = J'

and Re^f = 0. i = 1 TV,}. (3.11)

Proof: a) From (2.1 lc).

£ vr (x . to. v) = mjr(x . to)2mc(x . to)2 Km/ (l-/*))2 mc (x . to)2

+ ((2^/ (1-M))mc(x. w) cos (0 + 0C(x. to)) + 1

= mjr(x . <o)2mc (x ,'to)2(l —p)2[p2 mc (x , to)2

+ 2p{\ - p)mc(x . to) cos(0 + 0C(*. to)) + (1 - aO2]"1 - *vr («) (3.12)

Hence the continuity of g vr(\ \ 0 follows by inspection.

b) Referring to (2.2b). for to ^0. let

n(to) £ max ln0(y'to. a)IZ^(to) . n(o>) & minln0(yto. a)l_Z*/(to) . (3 13a")
or€ A a€A w..i..*«y

J(to) £ max U0(yto. <*)\ . d_(<a) & min Id0(./<*>. a) I . (3 13b")
afcA a€ A w '

Then n(0.5.(0. </ (0. «L(0 are continuous by the maximum theorem in [Ber.l] and

m = n/ d_,m = n_/ d. Hence

u(to) = g(o>? %= &M_ 2Z(to) = ™(ct>) = *(a>) (3 13c)
l+m{u>) n(a>) + dM' ^ ' l+m(o) n(to) + rf(to)' U J

and the continuity of /z. /I follows from the continuity of n_, n, d_, d and the fact that

rc (to) + rf.(to) >0 and n(o>) + J (to) >0 for all to >0 because of Assumption 2.1.

c) It follows directly from the Maximum Theorem [Ber.l] and (3.6c). (3.6d) that 0.0_

must be piecewise continuous, with bounded discontinuities which can occur only in the

set Q*.

•

Example 3.1. We now illustrate what can happen as a result of discontinuities, such as

those in the phase bounds 0.(0. 0( )• Let |(x. to. 7)) £ e"7**2. withx , 7) 6 R. and let

—bvr (to)
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Q(to)
[1-to, 1], for to € [0. 1) ,**A\
r« . ^ i o >> .. l3.14aJ[l.to+1], for to >1

Clearly £(•. \ 0 is continuous. Q(o>) is compact for each to and it is piecewise continuous,

with a single discontinuity at to = 1. However, it is not upper semi-continuous. Let

0(x. to) 4 max £(x. o>. 7)). Then it is easy to see that
tj€ Q(<d)

4>{x. to) =
e-(i-o,)** forC()€[o. i)

2 t !>i (3.14b)
0-x2 for to ^1

and hence that <f>( •, ) is lower semi-continuous. Hence there is no o> € [0, 2] such that for

x 5*0.

1=*(x ) ^ ^ sug £(x .to. 7)) =0(x. to) =juy 0(x .to). (3<14c)

However, if we redefine Q(to) at to= 1 to be the union of its limits as to -»1. i.e.. if

we set Q(l) = [0,2], then Q() becomes upper semi-continuous. Consequently 0(v)

becomes upper semi-continuous, and the sup in (3.14b) is attained at to = 1. while the

value of xff(x ) remains the same for all x.

•

Since in the general case the set value map

Q(to) & {(m.0) € R2\uH<o) ^p </Z(to),0.(to) <0 <0(to)} . (3.15)

is piecewise continuous. but not upper semi-continuous. the function

£(x . o>) = max £„. (x, to, 7)) is not upper semi-continuous. Hence, as was done in Exam-
i}€Q(to)

pie 3.1, we will redefine Q(o>) at its discontinuity points so as to generate a new upper

semi-continuous set valued map, to be used in place of Q(to). We therefore define the func

tions 0~~. 0 :R+ -»R by

0~~(to) 4 lim"0(to). 0 £ Hm0_(to). (3.16)

and the setvalued map R :R+ -» 2r2 by
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R(to) £ KM.0) € R2lit(to) ^p ^pM.BM ^9 <0~~(to)} . (3.17a)

Finally, with t) &(p. 9), we define <£~: Rn* XR -♦ R by

<*f(x.to) 4 max i~vr(x.O). 7)). (3.17b)
T)€ R(w)

The following result follows directly from the continuity of the bounds /*( 0. m(0

and the piecewise continuity of the bounds 0.(0. 0(0.

Proposition 3.2. (a) The set valued map R( ) is upper semi-continuous in the sense of

Berge [Ber.l]; (b) R(to) D Q(o>) for all to ^0 and R(o>) = Q(to) for all to ^0. to £ Oj .

•

Hence we are lead to the following result.

Corollary 3.1. Let X C Rn* be defined by

X A |x €Rn*ir*vr(x.to.7)) <oo. V to€R+. V 7)€R(to)}. (3.18)

Then (a) <f> (•. 0 is upper semi-continuous and <f> (-.to) is locally Lipschitz continuous on

X X R+. and (b) for x 6 X

<Jrvr(x)£ sup £„.(x. to. 7j) = max ^(x. to). ( .
7) € R„(w)

Proof: 0 (a) Since R(0 is upper semi-continuous, it follows from the maximum theorem

[Ber.l] that <f> „.(-. 0 is upper semi-continuous. Since £ is differentiable in x and since the

max in (3.17b) does not involve x. it follows that <f> w-O.to) is locally Lipschitz continu

ous, (b) Since <f> vr ('• 0 is upper semi-continuous, the maximum in the right hand side of

(3.19) is achieved. Finally, it follows directly from the definition of the set valued map

R(to) that, with Q() as in (3.15).

/¥B «, £vr (* . <«>. 7)) = SUn fnU .<». 7))
7) € R^w) T) € Q(w)

= max I ^(x. to. 7))= max 0vr(x.to). f3 20>v
t, € R(W)
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Thus we have finally succeeded in constructing a majorizing function for #vr(\ 0.

which meets both the requirement of easy evaluation and the requirements imposed by

semi-infinite optimization algorithms. We shall derive the required formula for the gen

eralized gradient of ^ vr(0 in the next section.

Next we turn to the stability constraint (2.l6a)-(2.l6c). Let

m1(to) £ max l/i0(yto. a)\TM(oi) , mKto) 4 min \n0(j(i), a)l_Za/(to) . (3.21a)
or€ A or€ A

m2(to) £ max \d0(jo>, a)l , m2(to) & min \d0(jw, a)l . (3.21b)
«€ A — a€ A

0J(to) £ max argn0(y*to, a) + Z^(to). ©/(to) ^ min argn0(ya>. a) +!a(to) . (3.21c)
a€ A or€ A

02(to) £ max arg<f0(yto. a) . 0.2(o>) 4 min arg<f0(7°*' °0 • (3.21d)
or€A a€ A

Clearly, making use of a result analogous to Theorem 3.1. one can compute the above

quantities quite easily. Next, let

Rl0(w) ^ {m1.m2.01.02)€R4lmi(to)<mi <m'(to).

£'(«) <0* ^^(toXi = 1.2)} (3.22)

Then R,(to) D S5(to). where S,(to) was defined in (2.15), and hence (see (2.16c)) the

function

&(x.to) £ max &(x.to,7)) (3.23)
T)€Rs0(u)

majorizes the function <j>s{x. to) defined by (2.16b).

The following result from [Pol.2. Sti.l] shows that the evaluation of $, (x. to)

reduces to the solution of four simple maximization problems in R2.

Theorem 3.3. Let $s (x, to) be defined as in (3.23). Then

q5, (x , to) = max max!

62 € ^(w),^)]

-18-



is (x . to. m2(to). m2(to), 0 *. 02). (, (x . to. m J(to). m2(to). 0*. 02).

&(x . to. mKto). m2(to). 01. 02). &(x . w. mlM. m2(to). 01.02)}
(3.24)

We note again that because [9}M. 0x(to)] X[0_2(to). 02(to)] is a rectangle in R2. each

maximation in (3.24) is easy to perform. In particular, it was shown in [Pol.2. Sti.l] that

one only need to consider the vertices of the rectangles [<tW. 0'(to)], i = 1. 2, and the

feasible zeros of VQ\ $2 is (* . o>. m1. m2, •, 0.

Referring to (3.21a-d). we see that the magnitude bounds m}.mx,m},m2 are con

tinuous by the Maximum Theorem in [Ber.l]. However, the phase bounds may be discon

tinuous in the set f^ and hence £(•. 0 need not be upper semi-continuous, as required by

semi-infinite optimization theory.

We rectify this situation just as we did for the saturation constraint, by augmenting

the set R,o(&>) at the discontinuity points, as follows. For any to >0. let

i

0 (to) & lim0.'(toO. i =1.2. 0^(to) £ limT^to'Xi =1.2. (3.25)

and let

R,(w) 4 {(mV.e^^g^lra'UXm'' <m(to). }'(«) <0' <0^(to). i =l.%.2.6)

The the following result is easily established.

Proposition 33. (a) For all to >0, R,(a>) D R,0(o»); (b) R,(to) = R,0(to) for all

to ^ 0. to £ C^ ;(c) R, () is upper semi-continuous in the sense of Berge [Ber.l].

Corollary 3.2. 0 Let $~s :R** XR+ -»R be defined by

<f> ,(x .to) A^max^ &(x. to. tj) (3.27)

with 7j A (ml.m2.9l,92). Then, (a) ^(-.0 is upper semi-continuous, ^(-.to) is
locally Lipschitz continuous, and (b)
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$ s(x) & sup £,(x.to.T))= max ^(x.to). (% 0R,
tj € Rl0(u)

•

Thus <f> s (•, 0 is a satisfactory majorizing function for the function <j>s (•, 0 defined in

(2.16b). We shall derive a formula for the generalized gradient of \jf ,(0 in the next sec

tion.

4. LIPSCHITZ CONTINUITY AND GENERALIZED GRADIENTS

To complete our demonstration that the inequalities \fi vr 0c) ^ 0 and ^ , (x ) ^ 0 are

efficient, majorizing substitutes for the inequalities (2.7) and (2.14). respectively, we must

show that the functions iff vr(0 and $ ,(0 are locally Lipschitz continuous and we must

obtain simple formulas for their generalized gradients. Both of these required results fol

low from the general theorem below, which extends a theorem by F. Clarke [Cla.2].

Theorem 4.1. Let ftCRm be compact and suppose that i : R" X R"1 xR' -»R and

R : Rm -»2RP have the following properties:

(a) £(•. •, 0 is upper semi-continuous;

(b) £(\ to. 7)) is locally Lipschitz continuous, uniformly for (to. 7)) in compact sets;

(c) the directional derivative of £(\ to. 7)). at x. in the direction h . dxi(x . to, tj; h),

satisfies dxi(x. to. tj: h) = max[(y, 7)) \y € Qxi(x . to. 7))}. where Qx £(x. to. 7)) is

the generalized gradient of £(•. to, 7)) at x.

(d) The partial generalized gradient 6Sc£('» »0 is upper semi-continuous;

(e) The set valued map R(0 is upper semi-continuous.

If we define

<r»(x ) £ max £(x. *>. 7)). (a i )
7) € R(<o)

then.

(i) #(0 is locally Lipschitz continuous;

(ii) The generalized gradient of \ft( ). is given by
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a^(x) = col3x|(x.to. 7j) I(to. 7)) 6 M(x)}. (4.2)

where co denotes the convex well of the set in braces and

M(x) £ {(to. 7)) € ftxR(to) Ii(x. w. 7)) =0(x)}. (4.3)

Proof: First we must show that \ff(x ) is well defined. Let x € Rn* ber arbitrary. Since

R(0 is upper semi-continuous and ft is compact and £(•. '. 0 is upper semi-continuous.

<K*0 - su^ i(x. to. tj) is well defined and hence there exist sequences {to,} C CI. {t},}.
T)€ R(o>)

with 7); 6 R(a>4). such that £(x. to,. tj, ) ^ </r(x) - 1/ i. i = 1. 2 Since CI is compact

and R() is upper semi-continuous, there exist subsequences {to,}i€#. {?),},-€*. -^ CN+

such that to; -♦to € fland 7)f -»7) € R(a>). Therefore, since £(x.v) is continuous.

£(x. to. 7)) £ lhn i(x, to, .7),) £»/r(x ). (4.4)

which shows that the maximum in (4.1) is achieved, i.e. that tff(x) is well defined for all

x €R".

Next, we show that there exists a compact set BCR' such that R(a>) C B for all

to € U i.e. R(flD C B. For suppose that R(fl) is unbounded. Then there exist sequences

{to,-} COandlT),}, with 7),- € R(toj) such that IhfoII 2i. i = 1. 2 However, since Q

is compact, there exists a subsequence {to/}i€jr. A" C N+. such that to, -»to € CI and

since R( ) is upper semi-continuous. R(to~) is compact and. given any bounded open set

O D R(af). there exists an i0 such that R(to,0 CO for all i Zi0. i € A\ But this con

tradicts the assumption that Ihfoll Zi for all i € N+. We conclude that R(fl) is bounded

and hence that there exists a compact set B containing R(fl).

Since QxR(0) CflxB and since local Lipschitz continuity of £(•. *>. 7)) is uniform

for (to. 77) € iixB. given any bounded set S C Rn there exists aLipschitz constant K for

i(: to. 7)). for x €Sand(to.7j) € flxB. LetXj.x2 € S and (to1# Tjj) € M(xj).Then

<K*l) = i(xlt to2. Tfc) <i(x2. to!. 7)j) +ifllX! - X2\\
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<K*i) = i(x i. o)!. t)i) <|(x2. wi.7)i) + jnix1-x2ii

<^(x2) + iTllA:i-x2ll (4.5)

Since the relation (4.5) is symmetric in x\, x2, (i) is established.

Next, by (c), for any (to. 7)) € M(x ) and any h 6 R" .

max|(y./i)ly € &Sc£(x. to. 7))} =

dx i(x. to, 7j; h ) = lim — [£(* + r/i, to, tj) —£(x. to. 7)]
t io t

<lim i ty(x +th)- <K*)]
t io (

<max|(y./i) \h € 6^(x)}. (4.6)

by the definition of the generalized directional derivative [Cla.l]. Making use of a well

known property of support functions [Rod], we conclude that

co{dx£(x.to. 7))}(w>7))€MU) C6»tfr(x). (4.7)

Next we show that M(0 is upper semi-continuous. Since M(x ) C Ox B for all x € Rn .

it is unformly bounded. Now if Xi~*x and (to,. 7),-) € M(x,). with (to,-. 7),)-<to. 7)). we

have, because $() is continuous and £(\ "• 0 is upper semi-continuous that

iKx ) = lim ^(x,) = lim £(x,- .<«>,•. 7)j) < |(x. to, 7)) . (4.8)

Since CI is compact and R(0 is upper semi-continuous, to € Hand 7) € R(to). which leads

to the conclusion that </r(x ) = £(*. to. 7)). i.e.. that (to. 7)) € M(x ). and hence that M() is

upper semi-continuous. Now. by [Cla.l],

d^r(x ) = co{ lim \#(x;)} . (4.9)
nt—x

with |xj} C Rn arbitrary, but such that x,- —x. and ^(xf) and lim ^Kx,-) exist. By

(4.7) for any xt such that ^(xf) exists dxK*i •<*>!» "Hi) —IW(*i)). for any

(to,-,7),) € M(x,-). Hence, since M(0 is upper semi-continuous, from above, and

dxK*« *. 0 is upper semi-continuous by (d), it follows that (4.2) holds.
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Referring to (2.16c) is obvious that £,(-. \ 0 is continuous and its gradient ^& (•.-.)

exists and is continuous, on Rn* X R+ X R4. while from (3.12) it follows that |~vr(\ •. 0

is continuous and its gradient ^ i „ ( ,, ) exists and is continuous on X XR+XR2,

where X was defined in (3.28). Hence we get the following obvious

Corollary 4.1. Let \fvr ' *?* "*R and \Ts :RR* -R be defined as in (3.19). (3.28)

respectively. Then \jr „.( ) and i/r ,( ) are both locally Lipschitz continuous and their gen

eralized gradients are given by

B*fr vrGt) =co{^£ vr(w.to.7))}(w>T))6MvrU). (4.10a)

where

Mvr(o>) £ {(to. 7)) € R+xR2lto € [to*.to],7) € R(to). fvr(x.to.7)) =^(x)} .(4.10b)

and

6* *(*) = G>{T&isU. to. 7))}(w>T,)€Mj0c) (4.11a)

where

M,(x) £ {(to.7)) € R+XR4lto € [O.toJ.7) € Rs(to). &(x. to. 7)) = f*(x)) • (4.11b)
•

To conclude this section, we shall obtain explicit formula for R(to) and R, (to). It was

shown in [Pol.2, Sti.l] that at the points of discontinuity, to.4 € fl4 . the phase functions.

0.. <T defined by (3.3c-d) satisfy

QS<»>a ) = lim 0_(to) and 0(to^ ) = lim (F(to) (4.12)

i.e. the functions are given by their left hand limits at the points of discontinuity. It now

follows from Theorem 3.1. (c) that 0.0*~ defined by (3.16a-b) are given by

0(to) = mini lim 0.(to). lim 0.(o>)}, 0 (to) = max{ lim 0(to), lim 0(o>)} and hence that
<*)' lo} <•>' Tb> 0)' 1<i> A)' T<i)
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0(to) =

0 (to) =

£(to) if to € {R+- ft4

min{0.(to). lim 6L(a>')} if to € fl4
C>>' i<d

9M if to 6 {R+- ClA)

max{0(to). lim 0(to)} if to € Q4
(I)' fa

(4.13a)

(4.13b)

Similar results to the above hold for 0 .0 '.i = 1. 2 defined by (3.25a-b). From the

above, it is easy to establish the following formula for determining the sets R(to) and

R,(oi):

Proposition 4.2. (a) The point to set map R : R+ -»2[(U]xR defined by (3.17a) is given

by

R(to) =

{(/*.0)€R2lix(to) <At <£(<«>). 0_(to) ^0 <0(o>)}. ifto€{R+-fl4}.

{O*.0)€R2l^(to) ^p <pM.

min{0.(to). lim 0_(a/)} <0 < max{0(o>). lim 0(toO}}. if to € ^
O)' i(i> fa)' id)

(b) The point to set map, Rs : R+ -* 2*4 defined by (3.26) isgiven by

R,(to) =

Km1.m2.01.02)€R4lmi(to) <m'* ^m'(to).

i'W^e'' <?'(«). <»1.2}. ifto€ {R+-04}.
|(m1.m2.01.02)6R4lmi(to)^m«' <m'*(to).

min^Kto). lim0/(toO} <9l ^max{PM, Iim0r(to')l
uf 4<t> <i>* iu

i=l,2}. if to € Oj .

5. CONCLUSION

(4.14a)

(4.14b)

Plant models containing a description of plant uncertainty have been used for some

time in the design of linear, time invariant feedback systems, see. e.g. [Des.l. Doy.l, Hal.l.

Hor.l. Hor.2. Hor.3]. More recently, such models have started to appear in the adaptive

control literature, see. e.g.. [Orl.l]. In this paper, we have examined the problem of com

putationally efficient formulation of a class of optimal worst case control system design

problems in which the plant model contains a description of the modeling uncertainty. In
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particular, we have shown that a literal translation of common frequency domain design

requirements into inequalities results in inequalities involving max functions that are com

putationally prohibitively costly because they involve global maximization over

polyhedral multidimensional sets, or alternatively, over two dimensional sets of highly

complex description. As a way out of this predicament, we have presented a methodology

for translating design requirements into majorizing inequalities which are somewhat more

stringent than the original design requirements, but which involve max functions that are

very easy to evaluate because they involve maximization over 2-D rectangles only. These

rectangles contain the above mentioned. 2-D sets of complex description. Should the

designer feel that the use of rectangles leads to excessive conservatism in design, he/she

has the option of replacing the rectangles with convex 2-D polyhedra which contain the

complex sets more"tightly" than the rectangles do. Though the evaluation of the resulting

max functions will be only slightly more costly than when rectangles are used, the com

putation of such polyhedra is a subject for future research.

An important aspect of our work was to demonstrate that the majorizing design ine

qualities which we propose satisfy a number of hypotheses which ensure that the inequali

ties can be solved by nondifferentiable optimization algorithms. Since transfer functions

can have poles on the y'to axis, it turns out that the required properties are not satisfied

everywhere in the design parameter space, by the inequalities obtained either by literal

translation of design requirements or by majorization techniques. Hence it is necessary to

modify standard, two phase algorithms, such as those in [Gon.l. Pol.4], to obtain a special,

three phase algorithm capable of solving problems involving inequalities on the majorizing

functions we have constucted. We shall present such an algorithm in a paper to follow.

Finally, it should be apparent, that the complexity reduction techniques proposed in

this paper have some applications to multivariable design as well, though not with as

dramatic simplification as in the SISO case.

6. REFERENCES

-25-



[Bec.l] Becker, R. G.. Heunis. A. J., and Mayne, D. Q.. "Computer-aided design of control

systems via optimization". Proc. IEE, vol. 126. no. 6, 1979.

[Ber.l] Berge. C. Topological Spaces, Macmillan, New York. N.Y.. 1963. Wiley-

Interscience. New York, N.Y., 1983.

[Che.l] Chen. M. J. and Desoer, C. A.. "Necessary and sufficient conditions for robust sta

bility of linear distributed feedback Systems". Int. Journal on Control, Vol. 35, No.

2. pp 255-267. 1982.

[Cla.l] Clarke. F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience. New

York. N.Y.. 1983.

[Cla.2] Clarke. F. H.. "Generalized Gradients and Applications," Trans. Am. Math. Soc.,

vol.205. 1975.

[Dav.l] Davison. E. J. and Ferguson. I. J.. "The design of controllers for the multivariable

robust servomechanism problem using parameter optimization methods". Systems

Control Report No. 8002, University of Toronto, February 1980.

[Des.l] Desoer, C. A. and Gustafson, C. L.. "Controller design for linear multivariable

feedback systems with stable plants using optimization with inequality con

straints." Int. J. Control, vol. 37, no. 5, 1983.

[Doy.l] Doyle. J. C, and Stein, G. "Multivariable feedback design: concepts for a

classical/modern synthesis", IEEE Trans, on Automatic Control, Vol. AC-26, No. 1,

pp. 4-16. 1981.

[Gon.l] Gonzaga. C, Polak. E.. and Trahan, R.. "An improved algorithm for optimization

problems with functional inequality constraints", IEEE Trans, on Automatic Con

trol, Vol. AC-25. No. 1. 1980.

[Hal.l] Halemane. K. P., and GrossmanJ. E., "Optimal Process Design Under Uncer

tainty", Proc. AIChE National Conference, New Orleans, 1981.

-26-



[Heu.l] Heunis. A. J. , "Use of a Monte-Carlo Method in an Algorithm which solves a set

of Functional Inequalities". JOTA

[Hor.l] Horowitz. I. M..Synthesis of Feedback Systems, Academic Press. NY. 1963.

[Hor.2] Horowitz. I. M.. and Sidi, M., "Synthesis of feedback systems with large plant

ignorance for prescribed time domain tolerances," Int. J. Control, vol. 16. 1972.

[Hor.3] Horowitz. I. M.. "Quantitative feedback theory," Proc. IEE, vol. 129. Part D. No.

6. 1982.

[Kar.l]

Karmarkar J. S.. and Siljak. D. D.. "Maximization of absolute stability regions by

mathematical programming methods". Regelungtechnik No. 2, 1975.

[Kar.2] Karmarkar. J. S.. and Siljak, D. D.. "A Computer-Aided Regulator Design." Proc.

Allerton Conf. on Circuits and Systems, Monticello. IL. 1971.

[Las.l] Lasdon. L.S..Optimization Theory of Large Systems McMillan. New York, 1970.

[Orl.l] Orlicki. D., Valavani. L., Athans, M. and Stein. G.,tt Adaptive Control with Vari

able Dead-Zone Nonlinearities ". Proc. American Automatic Control Conference,

1984.

[Pol.l] Polak, E. "On the use of optimization in the design of linear systems ". University

of California.Berkeley. Electronics Research Laboratory Memo No. UCB/ERL M377

1973.

[Pol.2] Polak, E., and Stimler, D. M.."Optimization-based design of control systems with

uncertain plant:problem formulation", Memo No UCB/ERL 83/16,University of

CaliforniaJBerkeley, 1983.

[Pol.3] Polak. E., D. Q. Mayne and D. M. Stimler. "Control System Design via Semi-

Infinite Optimization". Proceedings of the IEEE, pp 1777-1795. December 1984.

[Pol.4] Polak. E.. and Wardi. Y. Y.. "A nondifferentiable optimization algorithm for the

design of control systems subject to singular value inequalities over a frequency

-27-



range". Automatica, Vol. 18, NO. 3. pp. 267-283. 1982.

[Pol.5] Polak. E.. "A modified Nyquist stability criterion for use in computer-aided

design". IEEE Trans, on Automatic Control, Vol. AC-29, No. 1. pp 91-93. 1984.

[Roc.l] Rockafellar. R. T., Convex Analysis, Princeton Mathematics. Serv., vol. 28, Prince

ton Univ. Press. Princeton. New Jersey. 1970.

[Sch.l] Schjaer-Jacobsen. H. and Madsen. K. "Algorithms for Worst-Case Tolerance

Optimization " IEEE Vol CAS-26 .No. 9. Sept 1979.

[Sti.l] Stimler. D.M.." Optimization-Based Design of Control Systems with Uncertain

Plant". Ph.D. Thesis. University of California. Berkeley 1984.

[Tai.l] Taiwo. 0., "Design of a multivariable controller for a high order turbofan engine

model by Zakian's method of inequalities", IEEE Trans, on Automatic Control Vol.

AC-23. No. 5.1978.

[Zak.l] Zakian. V. and Al-Naib, L.. "Design of dynamical and control systems by the

method of inequalities". Proc. IEE, 120 (11). 1973.

[Zak.2] Zakian. V.. "New formulation for the method of inequalities". Proc. IEE, 126(6).

1979.

[Zam.l]

Zames. G.. "Feedback and optimal sensitivity: model reference transformations,

multiplicative seminorms and approximate inverses." IEEE Trans, on Automatic

Control, vol. AC-26. no. 2. 1981.

[Zam.2]

Zames. G., and El-Sakkary. A. K.. "Unstable systems and feedback the gap

metric." Proc. 18th Allerton Conf.. October 1980.

-28-



r(s) _. . u(sLe(s)
F(x,s) -</v-*rVv e^

ur ^ ^id(s}y(s)
-L. >» i \±M,£) ^vy—

Fig. 1. Two degrees of freedom control structure.
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Fig. 4. Parabolic inclusion region for pole placement,
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