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ABSTRACT

Experimental confirmation has been made on a negative-

resistance oscillator circuit which exhibits the new period-

adding route to chaos recently reported by Kaneko on a discrete

map. The nonlinear element in the circuit is a negative-resistance

device synthesized by using two bipolar transistors and four

positive linear resistors. This circuit exhibits a new route to

chaos; namely, through period-adding where the periods of two

successive periodic waveforms belonging to each period-adding

sequence differ by one; i.e., from period n to n-I or n+1. The

transition to chaos (after one or more periodic states) resulted

directly from a loss of stability of a periodic state at a bifur

cation point. Several general features of the periodic-chaotic

transition sequence have been observed and presented.

1. INTRODUCTION

In recent years more and more studies on the chaotic pheno

mena in nonlinear dynamical systems have appeared. Chaotic behavior

arises primarily from the nonlinear nature of the system rather

than from external stochastic fluctuations and can be described

exactly by deterministic equations. Several transition sequences

leading to chaos have been observed (ij in which the period-

doubling, U-sequence, intermittency and frequency-locking, etc.,

are well known and have been observed in several physical systems.
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In our previous studies on an RL-varactor oscillator all of the

above sequences were obtained [2-5). However, the period-adding

phenomena and the alternating periodic-chaotic transition sequence

are relatively new discoveries and have so far been observed only

from few physical systems. The period-adding phenomena were first

reported by Xaneko (6) on a 1-dimensional iterated map. This new

route to chaos has also been observed in 2-dimensional iterated

maps and in experiments on the Belousov-Zhabotinskii reaction ("7-8],

which, in its original form, is a nonlinear "distributed" system

(i.e., an accurate model involves nonlinear partial differential

equations). To the best of our knowledge, no "lumped" physical

systems (i.e., actual systems which are realistically modelled by

ordinary differential equations) exhibiting this phenomenon have

so far been reported.

In this paper we will present a simple experimental circuit

with a negative-resistance device that displays the period-adding

phenomena through an alternating periodic-chaotic transition se

quence. This circuit was investigated by applying a sinusoidal
input signal to an autonomous circuit operating in dc equilibrium,
i.e., the circuit does not oscillate when the input signal is set

to zero.

By selecting an appropriate dc operating point on the negative-
resistance v-i characteristic, we observed numerous complicated

dynamical behaviors. The highest distinguishable period in the
period-adding sequence reaches as high as period 21. Eased on our
experiments we identify several features of this bifurcation

seauence.



2. EXPERIMENTAL CIRCUIT

The circuit we consider is an RLC oscillator with a negative-

resistance device, as shown in Fig.1(a). Here, Vi=Ycos27Tft is the

driving voltage source, V and f are the driving amplitude and

frequency, respectively, and L=10mH, C=6800pF, R=51A. Here N denotes

an H-type negative-resistance device f9-10j made of two bipolar

transistors and four positive linear resistors, the realization of

which is given in Fig.1(b). The elements L* and E in Fig.1(a) form

the dc bias circuit for Itf, where L'=20 raH in our experiment. The

natural (unforced) frequency was measured as f0=lSXHs. Figure 2

shows the measured v-i characteristic of the negative-resistance

device, rlote that the dynamic range of the negative slope is rather

wide — in this case it is about 3.5 volts. This is one reason why

we choose a synthesized C9-10) rather than intrinsic negative-

resistance device. Furthermore, by selecting different parameter

values for the linear resistors we can obtain different characteri

stic curves. Kence, the synthesized negative-resistance device

can be easily "tuned" to obtain a wide range of negative resistance

characteristics [11] .

3. EXPERIMENTAL RESULTS

We fixed the driving frequency at f=24.19KHz, which is close

to the natural frequency of the unforced circuit (when v=0) . */.re

adjusted the bias voltage and choose the value E=6.134 volts such

that the unforced circuit did not oscillate. By increasing V from

zero to 2.50 volts, we observed a sequence of distinct states of

the system as shown in table 1. Some bifurcation values of the

neighboring states are also specified in this table.
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As the parameters were carefully tuned, the system displayed

a sequence of rich dynamical behaviors. For small amplitude V we

fifst observed a small-amplitude period-1 oscillation (denoted by

1P° in table 1) which bifurcates directly (with no detectable in

termediate states) into chaos.1 Then there is a reverse period-

adding sequence of periodic states (denoted by nP^- for n=12, 11,

*••, 7 in table 1) separated by one or more chaotic state G and/or

other periodic states (e.g., periodic windows). In particular, at

least one chaotic state is observed between successive periods.

Moreover, periodic windows (such as period 12P^3 ana ^P^ ) are

imbedded within some chaotic regimes.

After the reverse period-adding sequence we observed another

period-adding squence of periodic states (denoted by nPn~ for

n=2>3,*'',21). This period-adding sequence begins with the period-2

waveform 2?^^ which resulted from a reverse period-doubling route to

chaos in table 1, i.e., from 2P. to 4P« and then to C in the reverse

direction. Immediately following 2P-, a similar reverse period-

2 4
doubling process (from 3P. to 6P, to C in table 1) leads to a period-3

2
waveform; namely 3P,. A typical hysteresis phenomenon is observed

2 3 3 4
during the transitions from 3P- to 4 P. and from 4P. to 5P. : We

2 3
observed from table 1 that the state changes from 3P. to 4P. at 1.23

volts, but if we reverse the voltage V, the change does not occur at

the same point. The same phenomenon was seen in the transition from

3 4
4P. to 5P,. The period-adding process continues up to some relatively

large number N (in our case N=21) before it bifurcates into a chaotic

regime and then reverts back to a periodic waveform lPn of period 1

but with a large-amplitude oscillation.

It appears that even higher periods are present in the above



experiment but we were unable to observe it so far. The higher the

period, the narrower the window, so the behavior becomes more unstable

and more difficult to observe. Between all the successive periodic

states there are chaotic transitions except in the transitions from

3P^ to 4P^ and from 4P. to 5P^ where we conjecture that there exist

additional chaotic transitions but we were not able to observe them

because of their increasingly narrower voltage ranges. Hence, we call

the sequence of bifurcation phenomena in table 1 an alternating

periodic-chaotic transition sequence. There may also exist additional

periodic windows in all of the chaotic regions in table 1, but since

we are limited by their increasingly narrower voltage ranges and by

the precision of our measuring instruments, we have only observed

two such periodic windows so far.

For convenience, we have introduced a symbol to denote the dif

ferent periodic states. For example, although we have observed three

period-12 states, their waveforms clearly suggest that they belong to

different bifurcation sequences. From table 1, we can see that the

first period-12 waveform 12P_ has 4 large-amplitude oscillations and 7

small-amplitude oscillations in each period. Hence, it belongs to the

4
reverse period-adding sequence nP _, where n=12 in this case. The

n—d

3 4 1
second period-12 waveform 12P'- has two groups of relative oscilla-

•1»J

tion amplitudes per period: the first group has 4 large-amplitude

oscillations and 3 small-amplitude oscillations; the second has 1

large-amplitude oscillation and 3 small-amplitude oscillations. Hence,

it is a periodic window. Similarly, the third period-12 waveform 12P ..

belongs to yet another period-adding sequence; namely, nP 1 , where n

is the period number.

In comparison we show the time waveforms for several periodic



states in Fig.3(a)-(f). In Fig.3(a) and (b) are the two rev^r^o

period-adding states HP5 and 9P^ . In Fig.3(c) and (d) are the

two period-adding states 15Pj and 17P1/ . Figure 3(e) and (f)
A. 1 f

shows two periodic windows 12PJ t and 3PJ whose waveforms and

Lissajous figures are clearly distinct from the other periodic

states and hence they belong neither to the reverse period-adding

family, nor the period-adding family.

The analysis of the Lissajous figure in the V -I plane is a

useful method especially in identifying its corresponding bifur

cation sequence. In Fig.4(a)-(f) we give several Lissajous figures

associated with the two periodic waveforms V (t) and I(t) taken

from an oscilloscope. Spectral analysis is another useful method

for distinguishing periodic or chaotic dynamical behaviors. In

Fig. 5(a) and (b) we give the comparison between a periodic spec

trum and a chaotic spectrum. A periodic waveform has a discrete

spectrum whereas a chaotic waveform displays a continuous broad

band spectrum.

We also show the time waveforms and the V -I relationships for

several chaotic states in Fig.6. From this figure we can see that

some chaotic states contain component waveforms belonging to nearby

periodic states, but of course they appear stochastically and un-

repeatedly. For example, between 6Pf and 7Pj[ we obtain the chaotic

transition in Fig.6(c) using a single-sweep time base. -Tote that

this chaotic waveform begins with an oscillation contained in the

periodic waveform 6Pj and then changes to an oscillation contained

in the periodic waveform 7pf . The succeeding waveform is again

different SO that the complete waveform containing Fig. 6(c) is

chaotic. The V -I Lissajous figures in Fig.6 show that the corres-



ponding waveforms represent a deterministic chaos rather than a

stochastic noise as a cursory glance of the spectrum might at first
suggest.

ffote that the above experiment was carried out under the con

dition that no oscillation exists when the input amplitude V=0. Much

more complicated dynamical behaviors are observed when the input is

applied with the circuit exhibiting a self oscillation.

By applying other values of f and 'E, we observe many additional

but distinct alternating periodic-chaotic sequences but we will not

describe them here due to the lack of space.

4. DI5CUo3I02T

The alternating periodic-chaotic bifurcation sequence and the

forward period-adding phenomenon observed in our circuit also ap

peared in several other systems. They all share the following common

features: the successive period-adding states are related by a de

finite law; namely, each period-n waveform contains one small-ampli

tude oscillation and n-1 large-amplitude oscillations during each

period and that their sum is equal to n. For chaotic states, some

portion of the waveform contains periodic oscillations from nearby

periodic states. Moreover, our circuit was found to exhibit the

following additional dynamical behaviors which have not been re

ported before. (1) As we increase the parameter V just beyond a

small-amplitude period-1 oscillation, we observed a direct transition

into chaos with no discernible intermediate states, and then followed

by an onset of a reverse period-adding sequence. Further increase in

V eventually leads into a distinct period-adding sequence before

it bifurcates into chaos again. Immediately after chaos, we observed

a large-amplitude period-1 oscillation. (2) For each periodic state



in the reverse period-adding sequence there are four large-ampli

tude oscillations in each period. The sum of the large- and small-

amplitude oscillations is found to be equal to n-1.where n is the

period number.

Note that the preceding phenomena are all observed when the

unforced circuit does not oscillate. However, if we change the

circuit parameters such that the unforced circuit operates as' an

oscillator, then even more complicated phenomena have been observed

when the input signal is applied.

Since the phenomena described in this paper have been observed

in similar circuits but using different transistors,' it follows

that the circuit in Fig.l is quite robust in displaying the peri

odic-chaotic sequence and the period-adding phenomena. In fact,

similar phenomena using a unijunction transistor as the negative-

resistance device has also been observed recently. T.v*e conjecture

therefore that similar as well as new phenomena could also be ob

served using the numerous negative-resistance devices recently,

reported in (9-12) •

Finally, we remark that computer simulation of the circuit

in Fig.l is presently being carried out in order to make a more

detailed analysis of this circuit. Our ultimate goal is of course

to develop a theory which explains the observed, phenomena.
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FOOTNOTES

1. Each chaotic state is denoted by the symbol C in table 1.

2. The reverse period-adding periodic states and the period-adding

periodic states represent two unrelated families of periodic

waveforms. We can easily identify members from each family

because they have similar waveforms and their Lissajous figures

share similar characteristic features. In particular, the sum of

the subscript and superscript in the reverse period-adding states

n^fi-s is equal to (n-5)+4=n-l, whereas the sum of the subscript

and superscript in the period-adding states n^ *~ is equal to

(n-l)+l=n.

3. This periodic waveform is denoted by 2 subscripts and 2 superscripts

in order to emphasize two distinct features in the waveform.

4. Private communication with Xu Yun from Gui Zhou Institute of

Technology, Gui Zhou, China.
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FIGURE AND TABLE CAPTIONS

Fig.l, (a) Negative-resistance oscillator circuit.

(b) Two transistor negative-resistance device. The transistors

used in this circuit are type 3DG6 (China).

Fig.2, The measured v-i characteristic of the negative-resistance

device. Scale for the vertical axis I< is ImA/div; scale for

the horizontal axis V is 1 volt/div .

Fig.3, Time waveforms associated with the periodic states. The

upper waveform corresponds to Vi. The bottom corresponds to

Vc. (a) 11P£, (b) 9P^, (c) 15P'?, (d) 17P^ ,(e) 12P£J3,
(f) 3^.

Fig.4, V -I relationships (Lissajous figures) associated with the

periodic states of the period-adding sequence, (a) 2PX,

(b) 3P|, (c) 4Pf, (d) 5??, (e) Grf, (f) 7Pf.
Fig.5, Spectra of waveforms corresponding to (a) 15Pj and (b) cnaos.
Fig.6, Time waveforms and the Vc-I relationships associated with the

chaotic states. Left: time waveform obtained by a single

sweep. Right: V-I relationships, (a) The last chaotic state

in table 1; (b) Chaos between 10P| and 9P*5 (<0 Ghaos between
opf and 7Pt.

Table 1, The alternating periodic-chaotic sequence obtained from

experiments, where P denotes periodic, C denotes chaotic.

The superscript (subscript) denotes the number of large

(small)-amplitude oscillations per period. The values above
the neighboring states indicate the bifurcation thresholds

in the forward direction, the values below indicate the

bifurcation thresholds in the reverse direction.
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