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Abstract

A useful indicator of the dynamic performance of an analog-to-digital con

verter (ADC) is the degree to which it distorts a sinusoid. This paper describes a

computer program which accurately computes the minimum mean square error

between the converter's response to a sinusoid and the sinusoid that best fits

this response. Such a performance test is easy to conduct in that the only data

the program requires are the ADC output samples. Moreover, because a large

number of samples is used (several hundred thousand), the program's results

are very accurate. Accuracy is verified by comparing the program's results for

a simulated ideal ADC to the theoretical mean square error and by testing an

actual converter.

This work was supported by the Semiconductor Research Corporation
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1. Introduction

This paper describes a computer program for accurately measuring the

total harmonic distortion of an analog-to-digital converter (ADC). A spectrally

pure sine wave is input to the ADC under test. The sample rate of the ADC is set

greater than the Nyquist rate but is not synchronized to the input signal. Using

least-squares minimization, the computer program fits a discrete-time sinusoid

N-l

denote the ADC output sequence
n=0

to the ADC output sequence. Letting

t

and

/(n)

\N-1
C + GcosCun + $)} denote the fitted sinusoid, the parameters G, o, $,

J71=0

and C are selected by the program to minimize

jfEy (n) -[C+Gcos(om +*)]J . (1.1)
The program is designed to accommodate large values of N, typically in the

range of 500.000.

The minimum mean square error (MMSE) that results when (1.1) is minim

ized indicates the degree to which the ADC distorts the sine wave input. Ideally,

the MMSE should be a function of only the number of bits of the converter's

resolution. Practically, an ADC introduces errors which contribute to an

increase in the MMSE: nonlinearity in the overall transfer characteristic

(integral nonlinearity); uneven spacing of the quantization thresholds

(differential nonlinearity); output values which never occur (missing codes); and

inconsistency in the instant at which the input is quantized (aperture jitter)

[2],[3],[8]. These various dynamic errors all contribute to a degradation in an

ADC's performance, and their cumulative effects are reflected in an increase of

the MMSE above its ideal value. The relative importance of each of these types

of errors depends on the application (see, e.g., [8]). Recent advances in moni

toring the errors individually can be found in [1].
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2. Testing Procedure

The testing procedure consists of driving the ADC with a sinusoid meeting

the requirements described below and capturing the converter's . output

sequence in a file. The data analysis program reads this file and then applies the

iterative sinusoidal-fitting algorithm also described below. Each iteration

decreases the value of the mean square error (MSE) until convergence to the

MMSE occurs. Convergence is judged to have occurred when numerical noise

causes an apparent increase in the MSE-a criterion easily changed depending

on the application. The only parameters which the program needs as input are

the file name of the samples and the number of bits of the ADC. If necessary,

the input file must be converted to two's complement format prior to being pro

cessed by the program.

As previously mentioned, the input sine wave should be spectrally pure. In

particular, the ratio of the energy in the fundamental frequency to the energy in

the largest amplitude harmonic must exceed 6.025 dB ( =20log 2*), where B is

the number of bits in the ADC. This restriction insures that impurity of the sine

wave is negligible within the ADC's resolution [2]. Ultra-low distortion oscillators

meeting this requirement for values of B up to 16 are available commercially

The sine-wave amplitude should be as large as the converter can accept

without overloading so as to encompass the complete decision range of the dev

ice under test. Full-scale testing also produces the maximum slew rate for a

given input frequency and sample rate. It is not necessary that the input have

no dc offset since the fitted sinusoid includes a dc component. However, the

presence of an offset requires a reduction in the ac amplitude and thus does not

test the full range of the ADC. When using ADCs with offset binary or two's com

plement coding, in which the output range is asymmetrical about the mid-scale
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value, the input analog sine wave must be adjusted to eliminate ADC outputs of

negative full scale (e.g., binary 1000 for four-bit two's complement). The histo

gram test [1], which compiles a cumulative tally of occurrences of each output

code, would be convenient in adjusting the amplitude.

Under various sample rates and analog frequencies, the converter sees

different digital frequencies, expressed in cycles/sample. For a given ampli

tude, a greater digital frequency will result in a faster slewrate to which the ADC

must respond. A converter's errors will differ at various slew rates. The digital

frequency should thus be set near the value of interest, and the resulting MMSE

should be interpreted for that digital frequency. Of course, for an ideal ADC, the

MMSE would not depend on frequency.

It is important that the sample rate, /,, and the analog sine wave fre

quency, /, be nonharmonically related. For the gathering of N samples, this

requires

•£—n * an integer, 0<ntSJV-l. (2.1)

Such a requirement will minimize the repetition of ADC output codes. It is

important to avoid a repetition of specific codes because the converter's errors

associated with these codes would have too great an influence on the MMSE.

Also, care must be taken to insure that the phase jitter in the analog input is

negligible.

It is tempting to use a statistical approach to determine the number of

samples needed to accurately characterize an ADC's MMSE. Unfortunately, such

an approach seems unrealistically optimistic. To see this, assume that the

squared-error sequence in (1.1) is a sequence of random variables \Yn\ which

are independent and identically distributed (i.i.d.). We want to pick N large

enough so that the variance of S/f 4 N~l 2l Yn is small; this will ensure that the
n=0
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average energy in the observed error is typical of what is produced by the ADC.

The variance of Sjj is N~lazt where a2 is the variance of Yn [6]. The TV"1 factor

implies that this variance is negligible when using only several tens of samples-a

number much smaller than the number of ADC output codes. For a practical

ADC, the Li.d. assumption seems invalid, since the nature of each error will

depend on the output code. Thus, it seems more appropriate to require that the

total number of samples be several times the number of possible output codes.

This will ensure that the error associated with each output code contributes to

the estimated MMSE.

3. The Algorithm

The problem is to find G, C, .a, and $ to minimize (1.1). The approach is

simplified by expressing the sinusoid in terms of its quadrature components;

that is, find A, B, C, and u to minimize

2

where

E(o,A,B,C)&^^\f(n)-\c +Acos(cjn) +Bs\n(om) >, (3.1)

$ = —tan 1

t \

B

A
and G=V^z + B*.

The strategy of the algorithm is to iteratively search for the value of u that

minimizes the function £ denned by

f(o) = miiiiE(o,At B, C). (3.2)

Once the value w* that minimizes £ is found, then the accompanying values A*,

B*% and C* that achieve the minimum in (3.2) can be used to construct the

fitted sinusoid; £(w*) is the MMSE. Fig. 1 provides a flowchart of the algorithm.

We now present a detailed description of each block in the flowchart.
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Block 1: By converting the ADC output sequence to a square wave and measuring

its frequency, the program determines an initial frequency guess which is

extremely close to the true frequency. For the conversion, the software emu

lates a Schmitt trigger in that an upper threshold must be exceeded to enter

the high state of the square wave and a lower threshold must be negatively

exceeded to enter the low state. This approach is superior to using zero cross

ings because the hysteresis of the Schmitt trigger provides immunity to noise

and ADC errors. The software tallies the number of complete square-wave cycles

and then divides by the M samples within that integral number of cycles. This

initial frequency guess is multiplied by 2tt to yield a>lt in radians per sample.

Block 2: The procedure used to search for w* requires three guesses which are

very close. To this end, the program selects a>0 =wi(l—Tf) ana &>2 =wi(l+7r);

Do, &>i, and uz will be the initial guesses. The choice of Wo and oz is motivated by

the observation that the measurement of ox is accurate to a resolution of -rp

Block 3: For each t>i candidate, i=0,1,2, £(&>i) is found. See Section 3.1 below.

Block 4: Using the quadratic-fit method, the program computes o3, the next

guess of w* based on Oq, U\t and o>2. See Section 3.2 below.

Block 5: For the new Wg, £(t>a) is found.

Block 6: The program now has four pairs of (o, £(t>)). The pair with the largest

£(u) is discarded.

Block 7: In order to perform the quadratic fit on the remaining three pairs of

(«, £(«) ). the program re-indexes them according to increasing o.

3.1. Computation of £(&>)

For o fixed, the problem is to find values for A, B, and C which achieve the

minimum in (3.2). Minimizing (3.1) term by term allows the problem to be
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formulated as: find A, B, and C such that

cosOo sinOcj 1

coslw sinlw 1

A
• B
,c\

ra

f(N-D

or in matrix symbols,

Hz»b.

(3.3)

(3.4)

Because of the inherent quantization in the /(n)'s, equality in (3.3) is impossi

ble. Equation (3.3) implies that minimizing (3.1) at a fixed t> is a projection

problem, with solution x* given by [9]

MTMx* = MTb. (3.5)

Reintroducing the factor — on both sides of (3.5) and carrying out the

required matrix multiplications, (3.5) becomes

where:

7oo 7oi 702 u
7io 7n 712 B

720 721 722

•"n=0

1<f(n)cos(no)>
<f{n)sinCna>)>

</(n)>

7oo =<cos*(ni>)> =ft 1sin(0JV)cos(a,(AT-l))
' v ' 2 2 Nsm(o)

7u =<sin*{no)> =i~ \ *n{oN)coS{0(N-1))
' v 2 2 7Vsm(u)

722= 1.

„ __ _ , / v . /_w - 1 sin(o>./V)sin(ct>(./V-l))7io =7oi =<cos(nw)sm(nw)> =- Nsinio) '

720 - 702 - <cos(nu)> - Nsin^/2)

(3.6)
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y* =y*. =<sinfn^> = sin(^/2)sin(a>(^-l)/2)72i - 7i2 - <nnlno)> - ^sin(0/ 2)

The program explicitly computes the averages appearing on the right-hand sids

of (3.6) and uses the closed-form expressions listed above for computing the

entries in the square matrix. (The closed-form expressions are from [7].) Then,

the program uses Cramer's rule to solve for At B, and C.

A benefit to treating the above problem as a projection is the resulting ease

in computing £(o) once A, B, and C are found. The squared error between the

best-fit sine wave and the ADC sequence is just, from the Pythagorean theorem,

||Mx--b||2=||b||2-||Mx-||2. (3.7)

t(o) is

jj\ |Mx# -b| |2 =<b2> - <(Mx*)T(Mx*)> (3.8)

= <b2> - <xVhx*>

= <b2>-<x#TMTb>.

The matrix multiplications in (3.8) lead to

f(a) = </2(n)> - A<f (n)cos(nw)> - B<f (n)sin(nw)> - C<f (n)>. (3.9)

Note that the terms </2(n)> and </(n)> need only be computed once, since

they do not change with v. Also, the terms </(n)cos(nw)> and

</(n)sin(nw)> were already computed for the calculations of-A, B, and C, as

can be seen in (3.6). Therefore, once A, B, and C are computed, (3.9) provides a

much quicker and more convenient approach to determining |(q) than does

(3.1).
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3.2. Quadratic Pit

Fig. 2 shows typical behavior of £(u) in the vicinity of w*. The parabolic

shape motivates the use of the quadratic-fit method [4] to zero in on u*. This

method applies to the problem at hand as follows. Given three coordinate pairs

of («, £(&>)), a parabola of the form £(u) = aw2 + bo> + c can be uniquely deter

mined to fit these points. The parameters a, b, and c are determined by solving

the following system of equations:

W62 wo 1
L>f CJi 1

&>f U>2 1

a

• b =

e(«o)
(3.10)

The minimum of the parabola occurs at w3 = -—i Solving (3.10) for a and b and

substituting into the expression for 03 yields

lf*f2/i-*22/2
a>3 = &>i +

2 |*22/i-*i2/2]'
(3.11)

where:

X\ = t>o—a>i,

*2 = ^2-Wi,

l/i = (("i)-^(wo).

V2 = £(wi)-£(a>2).

The program implements the quadratic fit by using (3.11). Prior to a repetition

of the quadratic fit in the course of the algorithm, the pair (o,$(u)) with the

largest £(w) is discarded (Block 6 in Fig. 1). The three remaining sets are then

used for the next fit.

3.3. Numerical Considerations

Accuracy in the calculations is the paramount goal in the programming

effort. One obvious approach to maximizing accuracy is to perform all
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calculations with the greatest precision possible. The sine-fitting program, writ

ten in C, uses double precision for ail computations. On the VAX 11/750, this

resulted in 64 bits of precision. With 64 bits of precision, the best-fit digital sine

wave is indeed accurate and, for all practical purposes, unquantized.

The calculations of the average terms </(n)cos(nw)> and <f(n)s\n(ncS)>

in (3.6) illustrate the need for special precautions. Each of these averages

requires the summation of tens or hundreds of thousands of terms. Without

some care, roundoff error will be troublesome. The approach used here is to

break the summation into many summations, one summation for each of the

different values of /(n). That is, denoting the smallest /(n) value as /min and

the largest / (n) value as /m^ , </ (n)cos(nw)> is calculated as

£T*[ 2 cos(un)]. (3.12)
*=/„!» I*:/(*)=* J

The program maintains an array, each element of the array corresponding to a

kt so that the bracketed terms may be computed first. The same technique is

used to compute </ (n)sin(nw)> .

Furthermore, because the calculations of </(n)cos(no)> and

</(n)sin(nw)> account for most of the CPU time, programming effort concen

trated on accelerating these computations. Experimental observation led to the

conclusion that a cosine or sine call to the computer system's math library

requires about fifteen times longer to complete (in CPU time) than does a dou

ble precision multiply. Fortunately, the fact that a remains constant and that n

increases at a constant rate in the above averages allows for a recursive calcula

tion of the cosine and sine using multiplies. The desired relation uses a complex

sinusoid:

e^ = Ke^n~l\ (3.13)

where K is the complex exponential e*M. Not only does (3.13) eliminate the need
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for system sine and cosine calls, but it also provides both the cosine and sine

after just one complex multiply, which amounts to four real multiplications and

two real additions. However, accumulated errors in the recursion cause the

computed value of e*"71 to wander from its correct value. It is therefore neces

sary to occasionally adjust the value of eiun by explicitly computing it via the

system library.

A short test program was used to find an appropriate value for the max

imum number of repeated recursions of (3.13) which should be allowed. With

Q = 0.3 (a typical value), the value of |eJwn| was compared to 1 for increasing

values of n. It was found that for n<80, \eiun\ differed from 1 by less than

10"14. This accuracy is comparable to that of the double-precision representa

tion, and so it was decided that eighty repeated recursions of (3.13) should be

allowed.

When using the above approach to computing sines and cosines quickly, the

sine-fitting program required approximately eight seconds of real time for each

iteration of the algorithm with N= 100,000. The time requirement is roughly pro

portional to the number of samples. Without using (3.13), the program requires

about six times longer to complete.

As a final note, the quadratic fit formulas for (3.11) depend on £(i>) only

through the difference terms £(«i) - £(o>o) and £(o>i) - £(^2). Equation (3.9)

shows that the quantity </2(n)> cancels when these difference terms are com

puted. This is exploited by storing the value

V(") = i4</(n)cos(nt>)> + £</(n)sin(na>)> + C<f(n)>, (3.14)

which is computed during the process of calculating £(0). Then, £(&>») —t(uj) ls

computed as V(o>j) —̂ (wi), a numerically superior expression.
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3.4. Relation to DFT

The discrete Fourier transform (DFT) of J/fa) into1 is obtained by solving

(3.6) for Aand B at values of uequal to —^-p-, where m is an integer.'To see

this, observe that for these values of t>, the off-diagonal terms in the square

matrix are zero. This yields

A=2</(n)cos(^p*i)>. (3.15)

f?=2</(n)sm(^i)>.

which are recognized as the quadrature amplitudes of the mth DFT component

(except for a constant factor). Practically, it is no easier to solve (3.6) for this

special choice of u because, regardless of the value of u, virtually all of the com

putational effort is in computing the right-hand side of (3.6); computing the off-

diagonal terms and applying Cramer's rule is negligible in comparison. The con

clusion is that the effort in computing £(&>) for any choice of o is the same as

that in computing a single DFT point.

Although the DFT can be computed by using the fast Fourier transform

(FFT), the FFT is efficient only when computing many DFT points. The sine-fit

algorithm typically requires determining only five values of £(o), which is com

putationally as difficult as determining five DFT points. Performing a large FFT

is much more computationally intensive than computing a few DPT points.

Hence, an FFT-based scheme would require much more computation than the

sine-fit program.

In an actual testing situation, the sine-wave-generator frequency and the

sampling frequency are not synchronized, and the digital frequency of the

sinusoid will not be a DFT frequency (i.e., will not be ———for any integer m).

This creates a problem if a DFT is used to estimate the amplitude of the funda-
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mental. To illustrate. Fig. 3 shows the magnitude spectrum resulting from 32K

samples from an ideal 8-bit converter. The magnitudes were calculated by using

(3.15). The input to the ideal ADC was 127cos(0.0501n). However, Fig:. 3 indi

cates that the peak magnitude is only 100.5. In contrast, when the sine-fitting

program used the same ADC data, the result was a peak amplitude of 127.0.

Thus, the peak amplitude of the DFT is not a good estimate of the amplitude of

the fundamental, whereas the amplitude of the fitted sinusoid is a good esti

mate.

4. Simulation Results

Simulating an ideal 5-bit ADC allows for comparing the program's report of

the MMSE to the theoretical value.

4.1. The SknulatedADC

In a I?-bit ADC, there are 2^—1 thresholds, or transition points, for the ana

log input value. To allow for a zero-valued analog input to correspond to a digital

output of zero (in two's complement), the simulation package sets the quantizer

characteristics to the "mid-tread" class. Unfortunately, one more negative level

than positive level thus appears, as Fig. 4 indicates for an ideal 3-bit ADC. The

simulation program just ignores the possibility of this extra negative level in

order to maintain symmetry for sinusoidal inputs. Therefore, the program sets

the number of thresholds to 2^—2; the most negative level is at —(2^-1^—2+0.5)

and the most positive level is at +(2^-1^—2+0.5). One least significant bit (l

LSB), which represents the quantization step size, is one unit in the simulation.

Finally, there are 2^—1 possible output codes because of the discarded quantiza

tion level.

Although the gain and offset of the simulated perfect analog sine wave may

be manually set, the program's default values result in no offset and a gain equal



Handler & Sabin -13-

to full scale. Here, full scale corresponds to the analog input equal in value to

the maximum output, which is 2^_1^-1 units. Fig. 5 shows the sine-fitting

program's output for an ideal 12-bit converter with- input

2047cos(0.24B21044420n). Note that the MMSE practically converges after just

the first repetition of the algorithm.

4.2. The Theoretical MSE

The theoretical value for the MSE of the above ideal ADC with full-scale input

is derived as follows, where it is clear that the MSE here corresponds to the

program's MMSE. The sampled, unquantized input to the ADC is considered a

random variable X which is defined by

X=Gcos0. (4.1)

where G is the full-scale amplitude and 0 is a random variable uniformly distri

buted between 0 and 27T. This model is a good approximation to the analog input

only if the frequency is asynchronous to the sample rate and if the total number

of samples span a large number of cycles. The more samples, the better the

approximation.

The transformation from 0 to X leads to the probability density function of

X[5]:

/*(*) =
ttVg5^' |x|<G (4.2)
0. |x|>G

The mean square error for the full-scale, zero-average signal in (4.1) can be now

be expressed as

MSE= J r , (x-kff^x)^ (4.3)
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V0?=?(^+2k) +(^f^sin-Hfr)-irfink=^G{ 2 2 G'

Table 1 lists the theoretical MSE's calculated from (4.4) for various values.of B.

As B increases, the quantization becomes finer, allowing the quantization

error to be modeled as having a uniform probability density function within each

band. "With such an approximation, the energy in the quantization error for a

uniform quantizer having threshold step size A is the familiar expression •—;

For the simulation, A is one unit, resulting in a quantization error energy of -r-.

This is exactly the value the MSE is approaching in Table 1 for large B.

Also listed in Table 1 are the actual results of the sine-fitting program for an

ideal ADC under an ideal input. The results indicate that the algorithm strongly

agrees with the theoretical expectations. The slight differences between the

theoretical and simulated MSE's arise because of the finite number of samples.

5. Example On Practical ADC

For the purpose of verifying the sine-fitting program's performance using

actual ADC data, we used an acquisition system consisting of an LSI-11 recording

the output of a 12-bit, bipolar, laser-trimmed, R-2R converter. This system lim

its the sample rate to less than 40 KHz and limits the number of samples to 64K.

(In the future, a system allowing sample rates approaching 1 MHz and allowing

nearly 1000K samples will be used.)

Table 2 lists the MMSE for two test runs at various digital frequencies. The

data shows that this converter's performance is better at smaller digital fre

quencies than at larger ones. The MMSE can also be used to indicate the ADC's

effective number of bits, which is approximately given by

(4.4)
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effective bits « B- ^iog2(l2MMSE), (5.1)

where B is the actual number of bits. This equation is based on the approxima

tion of a uniform probability density function of the quantization error within

each band, as discussed above. At the higher frequencies, the above ADC's

effective number of bits is below 11 bits while at the lower frequencies, its

effective number of bits exceeds 11.

Errors in the digital sampling hardware in the test circuitry could have

catastrophic effects on the MMSE. For example, when the LSI-controlled test

system was used at a low sampling rate of 4.883 KHz, the data consistently

resulted in an MMSE on the order of 10,000 to 100,000. It turned out that the

sampling hardware erred at these low sampling rates by causing samples to be

occasionally recorded twice. In fact, for one file of 10,000 samples at a digital

period of 49.20 samples/cycle, the MMSE was 39,080.12. However, after ten sam

ples which were clearly duplicates were removed, the MMSE was then 0.2890,

which is consistent with the entries in Table 2. It is worth noting that the histo

gram test never detected this hardware error, since it is insensitive to such an

anomaly. Aperture jitter is a similar error to which the sine-fitting program is

sensitive and the histogram test is not.

6. Summary

This paper presented an algorithm to compute the minimum mean square

error of an ADC's response to a sinusoid. An efficient and accurate sine-fitting

computer program employing this algorithm was also presented. In addition to

accuracy in the computations, the large number of samples used contributes to

greater accuracy in the description of the converter's performance. The accu

racy of the program and algorithm was verified by using both simulated and

experimental data.
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The minimum mean square error is a useful indicator of the harmonic dis

tortion caused by an ADC. An effective number of bits can be calculated using

this value. Errors caused by the ADC manifest themselves as an increase in the

MMSE from its theoretical value.

The sine-fitting program provides a more accurate description of an ADC's

total harmonic distortion than does a DFT test. Furthermore, the sine-fitting

program is computationally more efficient for determining the fundamental

amplitude than a DFT implemented using the FFT. Errors in the digital sampling

hardware and aperture errors have a significant impact on the MMSE; the histo

gram test is insensitive to these errors.
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Fig. 2. A plot of i(o) versus o for 20 frequency values uniformly

spaced within the interval

samples from an ideal 8-bit ADC driven
frequency of 0.24821044 radians/sample.

The input data were 64 K

oy a sinusoid at a digital

CO
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spectrum for ideal 8-bit R/D, fundamental«8.8501 radftamplt, N-32768

I

m

Fig. 3. Magnitude spectrum as calcualted from (3.15) for 32K sam
ples from an ideal 8-bit ADC.
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Fig. 4. Transfer characteristics for an ideal 3-bit ADC.



12-b!t A/D. 56666? somptes

de component of input: -6.66468466666
totol overage power of input: 2695165.86914466666

Coiculotiono of Inltlol 3 points for quodrotic fit: ~22~

m • 6.24826986368
A - 2612.19669951686
B - -324.99686866246

mog - 2677259.11566677856
6.66495113 4 2838.26748412675cos(8.24821n 4 6.166131)

moon squoro error: 17646.69353722146596

« • 6.24821636616
A • 2645.23225325981
B - -73.71286974158
mog - 2694199.49889816266
0.68111575 + 2646.56617672686cos(6.24B21n 4 6.6366257)

moon squoro •rrer: 986.31824583798886

w - 6.24821679652
A - 2936.43646464955
B - 179.63339662628
mog - 2889693.38676676676
-6.66283771 4 2644.35541994962cos(6.248211n 4 -6.6886797)

moon tquore irror: 5412.42838323325858

Repot it ion 1:
• - 6.24821644461 rodions/somp Io (25.3139 samples/cycle)
A - 2647.66243226946
B - -6.69986769636
mog - 2695165.72457488999
-2.356620-65 4 2647.66243464259co«(6.24821n 4 4.87577e-65)

neon oquore error: 6.88456911666942

Reoet it ion 2:

• » 6.24821644425 rodions/tompIe (25.3139 samples/cycle)
A - 2647.66243444626
B - 662298511198
mog - 2695165.72616676198
-2 54664e-85 4 2647.66243456924co9(6.24821n + -1.12287e-65)

meon square error: 6.68298329811978

Reoet >t ion 3:

» • 6.24821644428 roaions/sompie (25.3139 sompIes/cycIe)
A - 2647.66243476746
S - 6.6663394eS55
mog • 2C95165.7262462267C
-2 5e546e-65 * 2647 66243476742co9(6.24821n 4 -1.65866e-67)

meon touore error: 6.66289777327445

Reoet it•on 4;

• • 6.24821644426 roo•ono/sompIe (25.3139 eompIes/cyc»e)
A - 2647 66243476745
6-6 66633242967
ma; » 2895165.72624623C2C
-25e547e-65 - 2647 6e243476747co9(6 .24821 r. «• -1 .6239Be-67)

meon squore error: 6.68269776978199

Reoet it ion 5:
» - 6.24621644426 rodions/sampIe (25.3139 samples/cycle)
A • 2647.68243477668
B - -6.66139398645
mog - 2695165.72624572916
-2.56279e-65 4 2847.66243477915eos(6.24821n 4 6.69986e-97)

meon squoro error: 6.68289827692685

Minimum meon touore error: 6.68289776978199
ot repeti t ion 4

Fig. 5. Sample program output for an ideal 12-bit convener driven by
input 2047cos(0.2482l0444202n ).



Bits Theoretical Value Program'6 Results

4 0.07588 0.07504

8 O.0S158 0.08153

10 0.08246 0.08245

12 O.O&290 0.08294

14 0.08311 0.08306
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Table 1. MMSE values as reported by the sine-fitting program using
100,000 samples from an ideal ADC at the digital frequency 0.24821
radians/sample and theoretical MSE values as calculated from (4.4).

somple rote: 16.532 KHz

enolog input •omplos/cyeIo

1.649 KHz 16.62

1.283 KHz

696 Hz

651 Hz

446 Hz

251 Hz

61 Hz

15.11

19.57

36.61

43.52

77.82

166.76

MMSE Effective Bits

6.5641
6.4555

16.76
16.77

6.4344

6.4438
18.61
16.79

8.5723
6.5637

16.61
16.66

6.3181
6.3426

11 .63
16.98

6.2461
6.2356

11.22
11.25

6.2925
6.3124

11 .69
11.65

6.1968
6.1683

11 .46

11 .41

Table 2. MMSE values from 64K samples of an actual 12-bit bipolar
laser-trimmed R-2R ADC.
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