
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



MARKOV PROCESSES ON THE PLANE

by

Eugene Wong and Moshe Zakai

Memorandum No. UCB/ERL M85/64

19 July 1985



MARKOV PROCESSES ON THE PLANE

by

Eugene Wong and Moshe Zakai

Memorandum No. UCB/ERL M85/64

19 July 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



MARKOV PROCESSES ON THE PLANE

Eugene Wong1and Moshe Zakai2

Summary

In this paper we introduce a Markov property for processes parameterized by

paths in the plane, and illustrate the property by examples related to the Brownian

sheet and the free Euclidean field. Transformation of processes and transformation

of probability measures that preserve the Markov property are studied.

Key Words: Markov fields. Random fields, Two parameter processes.

1. Introduction

A natural definition of the Markov property for multiparameter random

processes is the following. Let {Xz .z £Rn} be a multiparameter random process tak

ing values in some nice space. For any set D in Rn let Ed denote the sigma-field

generated by {Xz,z£D). i.e. £D =<r{Xz,z$.D\. The process Xz is said to be Markov

(or Markov of degree 1. cf. [13].[15]) if for any bounded set U in Rn with smooth

boundary and containing the origin z=0, Fy and Fyc are conditionally independent

given Equ where Uc and §U denote the complement and boundary of U respec

tively. The Brownian sheet on JR+ , {Wz, z GH+}. is a zero mean Gaussian process

with EWZ W2«=min(j .*')*min(* £') where z =C? ,£ ), z '=(s 'jt') and possessing continu

ous sample functions. Is the Brownian sheet Markov? At first sight it seems that the

answer should be positive since the Brownian sheet is "the integral of white Gaus

sian noise". More specifically, consider a connected bounded set whose boundary is a

finite number of vertical and horizontal line segments, and containing the origin;

then obviously Wz has the Markov property with respect to this boundary. To quote

1Dept. EECS,University of California, Berkeley, CA 94720.
2Dept. Electrical Engineering,Technion, Haifa 32000, Israel.



J.B. Walsh [20] "... intuitively, this should be a Markov process if any process is".

However, as shown in [20] (cf. also p.161 of [19]). the Brownian sheet is not Markov

in the sense of the above definition. A proof of this fact is as follows. Let U be the

triangle with corners (O.O).(O.D.(l.O). then £at/=cr{We,i_e; 0^9 ^l}. Note that

E(W11\FU) = W(U)= f dW*.

and assuming, temporarily, that W is Markov with respect to the set U then it fol

lows that

£(WMI|>) = WO/)
Since, in any case,

E(Wlfl\Edu) = E(W(U)\ZdU).
the assumption that W is Markov with respect to U implies that

£(WO/)-£(WO/)l£ai/))2=0 (1)
Now. since {Wqx-q, 0^9 ^L, W(U)} are zero mean and jointly Gaussian.

E(W(U)\Equ) is linear in [We,i-e> 0^9 <1} and is characterized by the orthogonal

ity condition

E{(W(U)-E(W(U)\E 8£/))We.i-e}=0 (2)
for all 0 in (0.1). A direct calculation shows that setting

l

E(W(U)\EBu) =2fw6tl.dd 9
o

satisfies (2) but not (1) therefore the Brownian sheet is not Markov in the sense of

the above definition.

In order that the class of multiparameter Markov processes not be too small it

is customary to modify the definition of the Markov property and instead of condi

tioning on the sigma fields generated by the values of the process on to the boun

dary, to condition on richer sigma fields (cf. [14], appendix A of [1]. [19]). A (very)

rich sigma field is obtained as follows, define the germ field Jd2> associated with the

boundary QD of a set D by



£9d = ncr{x,. teodD]
where the intersection is over all the open subsets Oqd that contain QD. Now replace

£qd by J 3D as the splitting field in the definition of the Markov property, namely:

the random process [Xt. t €2?n} has the germ field Markov property if for every

bounded set with smooth boundary and containing the origin, Ed and EDc are con

ditionally independent given £QD (cf. [14] for equivalent definitions). Obviously,

the Brownian sheet has the germ field Markov property. Note that the germ-field

Markov concept is easily extended to generalized processes [10].

In order to point out the difference between the Markov and germ-field Markov

properties, consider a continuous one parameter Markov process Xt, t ^0. Let

t

Yt=J Xs ds then Yt is not Markov but it is germ-field Markov and the germ-field is
0

£t =<r[Yt. dYtl dt}. Another example is the following, let E denote the class of func

tions \Xt. —oo<? <po} that are the restriction to the real line of functions that are

entire functions on the complex plane; then, for any probability law on E. the pro

cess {Xt. —oo<t <do} is germ-field Markov.

The theory of one parameter Markov processes deals almost exclusively with

processes that are Markov in the ordinary sense and has very little to say on

processes that are Markov in a generalized sense (such as germ-field Markov or

processes that are the projection of a Markov process). On the other hand, the theory

of multiparameter processes is based mainly on the Markov property in a generalized

sense and deals mainly with Gaussian processes ([l], [19]). For other definitions of

the Markov property in the plane cf. [2], [8], [12], [16].

The purpose of this paper is to consider another definition of the Markov pro

perty for multiparameter processes. The idea is as follows, instead of considering

processes that are a collection of random variables parameterized by points in JR2 or

R + we consider processes parameterized by smooth curves in R2. The splitting

sigma-field for the Markov property is now the sigma-field generated by curves lying



in the boundary. Similarly a Markov process on .R3 CRn) can be defined by consid

ering a collection of random variables parametrized by smooth curves and surfaces

(or r -cells where 0^- ^n—1) and the splitting sigma-field for the Markov property

is that generated by points, curves, surfaces lying in the boundary. Stochastic

processes parametrized by paths (or cells) that have a certain additivity property can

be considered as stochastic differential 1-forms (r-forms) and are discussed in [27].

It is believed that the Markov property introduced here is a natural extension of the

one parameter Markov property and is of particular interest in the analysis of non-

Gaussian multiparameter processes.

Only the case of R2 will be considered in this paper.

In the next section we introduce definitions of the Markov property in the plane

and show that the Brownian sheet is Markov under these definitions. We also note

(as was first noted in [22]) that the free Euclidean field, which is a generalized pro

cess, can be considered a regular process parametrized by paths, and as such enjoys

the Markov property under our definition. In Section 3 we consider transformations

of measures via multiplicative functionals under which the Markov property is

preserved. As an application to the results of this section it is shown that the solu

tion to the stochastic differential equation X{dz )=g (Xz )dz +W (dz ) is Markov in the

sense defined in the paper. Section 4 deals with transformations of the state space

and the parameter z preserving the Markov property. As an application it is shown

that the solution to 9sXs#r=— aXStt ds+QsWSit (the "infinite dimensional

Ornstein-Uhlenbeck process", cf. [18]) is Markov. Let zi=Gi^i). z2=(.S2^2^ *>e

points in the plane, introduce the partial order z1<z2tfJis^y2 and *i^2- Let D be a

connected set in R2 containing the origin, assume that D has the property if z2€D

and zx^z2 then also zx^D. the boundary of Dc is called a separating line. Section 5

deals with the Markov property with respect to separating lines, and it is shown

that the solution to & Xs^ =g (X, ^ )ds+Qs WSJl is Markov with respect to separating

lines. The Markov property with respect to separating lines can be considered as the



stochastic version of Huygen's principle. This section is concluded with a remark on

the extension of the notion of the Markov property with respect to separating lines

to the notion of the Markov property with respect to random separating lines, i.e.

the strong Markov property.

Remark: In addition to the partial ordering zx^z2 defined earlier, and zx<z2 if sx<s2

and *i<f2» we will use zx/\ z2 to denote sx^s2 and t{&t2.

2. Path Parameterized Markov Processes

Let y denote a continuous finite nondecreasing path in R2 .i.e.. y is defined by

the function y(0) from [0.1] to R%,y(0) is assumed to be bounded continuous and

y={z:z=y(0).O^9<l:y(01)<y(02) whenever 0i<02}- Set

y(Q)=:(s(Q).t(&)y.yo=y(0),y1=y(l) are the endpoints of y and let A(y) denote the

vertical shadow of y, i.e.

A(y) = {(cr,T):a=5(0).T^(e). 0*59^1}.

Similarly, B (y) is defined to be the horizontal shadow of y:

B{y) = {(cr.r):o<r(0).T=r(e). 0^9 <l}.

Let

WU(y)) = J W(di): WtB(y))= f WUO (3)
A(y) B{y)

Also, let y denote a finite continuous nonincreasing path defined by

y={z:z=y(0). 0^9 ^1. y (G^A y(02) whenever Qx<92). The endpoints are again

yo=y(0) and yi=y(l). the shadows A(y).B{.y) are defined as before and so are

W(A (y)).W {B (y)): in this case W(A (y)) and WCB(y)) are not independent but this

will not be important to us. Let Yy=(W(A (y)).u/(5(y)). we want to consider the

Markov properties of such path parameterized processes, for this purpose we first

generalize as follows, let (0>F ^P) be a probability space and let Yy be a collection of

random variables parametrized by paths in 2?+ that are continuous and either

increasing or decreasing. Also, let Xz,z€R+ be a collection of random variables



parametrized by ponts z in R%. Let U denote a set in R2 and let 1*07) denote the

collection of all continuous paths y that are either increasing or decreasing and y€i/,

U will denote the closure of U. Let Q u denote the c-field generated by Y y where y

runs over T(JJ ):

gu =o-{yy. yeroT)} (4)
and

Ku =Qu V o{Xz.z€U } (5)

=a{Yy.Xyo,Xyi. y€r({7)}.
A boundary of QD of a set D will be said to be piecewise monotone if ftD is the

union of a finite number of paths y,-, i =1. • • • .to <pq and y, €rQR 2 ).

Definitions:

(a) A path parameterized process {Yy, y$T(Rl)} will be said to be y Markov if

for every connected open set D with piecewise monotone boundaries Q dD splits G D

and g DC, i.e. g ^ and QDC are conditionally independent given G d2> -

(b) The process {Yy.XyQ.Xyi y€r(JR^)} will be said to be y+ Markov if for

every connected set with piecewise monotone boundaries. ^ qD splits J^D and ILDc-

Obviously, a y Markov process is also y+ Markov with Xz sO. We prefer however, to

define both concepts since the Brownian sheet induces both a y Markov process and a

y+ Markov process and moreover certain generalized processes can be reparametrized

to become y Markov processes.

Setting yy=(W(A(y)).u/CB(y))) we will show now that {ry.y€rGR|)} is y

Markov (proposition 1) and {Yy.WyQ.Wyi. y€r(JR.J)} is y+ Markov (proposition 2).

Proposition 2 is actually a rewording of theorems 3.11 and 3.12 of Walsh [20] in the

context of path parametrized processes, and proposition 1 is a modification of it.

Remarks: (a) It will be clear from the proof of proposition 1 that

{W(A(y)). y 6 r(JR|)} alone, or |WCB(y)) y €r(i?|)} alone, is also Markov, (b) If



y is increasing then Wy=WyQ+W(A (y))+W(5(y)) and if y is decreasing then

Wyi+W(B(y))=Wyo+W(A (y)). Consequently the phrase "Yy.Wyo.Wy" is equivalent

to "Yy.Wy<t" etc.

Proposition 1: Let D CR2 be a bounded connected set with piecewise monotone boun

daries and Yy=(W(A (y)).W(5(y))) then QdD is the minimal splitting field for QD

andQDC.

Proof: We will be considering subsigma fields generated by zero mean Gaussian ran

dom variables and therefore orthogonality and independence are equivalent. Let O

denote the collection of all bounded open subsets of R 2. Set

Q d =cr{W0/nD). i/60}

note that Q £> and Q Dc are independent and

Q.D = Q D V Q.QD (6~)

£ Dc = fi Dc V Q. dD •
Let

Q?d =cr{\y(£>nA(y)).W(Z>n5(y)). yeitQD)}

fi a°D = oiw (z>c nA(y)).w 0>c ne (y)). y er(az>)}
Then g $> and g £# are independent and

In the converse direction note that for y € T (QD). the set 04 (y)09Z>) can be decom

posed into a finite union of paths yii=\t..Jc such that yj€T(QZ)) and

(A (y)OQZ)) = 14 y,« and W(Z) HA (y)) can be represented as a linear combination of

W (A (yf)) with non-random coefficients. Therefore,

similarly Q jj% QQ QD hence,

G_ /-• ire w /-• oaz
j- e^> "~ k e^ v k qd

Note that g $> Q2 # and g $£Qg ai). therefore (6) can be rewritten as



Qd = £d V g$ *- (7)

and g gb is independent of g DC and g a°# is independent of g D. Consider a path

y€r(Z>c). then WU (y)) = W(A (y)OD) + W(A (y)HDc) . Now. W(A (y)OD) can

be represented by a finite sum Ef o^ V/(A (y,)) with a, non random and

y,cr(a£> ) therefore W(A(y)n£>) is g QD adapted. Turning to W(A (y)f¥>c) . it

is g ^c adapted, independent of g D and can be decomposed into the sum of two

Gaussian random variables one being g $ adapted and the other orthoginal to g ^

and to g D hence by (7) orthogonal to g D. Therefore E(W (A (y)) Ig D) is g QD

adapted and equal to E(W(A (y))lgai>). this proves that QdD splits QD and QDC.

In order to show that ga£> is the minimal splitting field note that by (6).

g qd GQ. d f~g Dc and g qD Qg D. Since every splitting field for g D and g DC includes

Qd^Q.dc (cor. 2.2 of [15]) it follows that g QD is minimal.

Proposition 2: ([20] theorems 3.11, 3.12) Let D CR| be a bounded connected set with

piecewise monotone boundaries, Yy=(W(A (y)).JVC8(y))) and Xz=Wz then JgQD is

the minimal splitting field for H D and H_ DC.

Proof: Note first that

5d =2 d V 4£qd (8)

4£ dc = 2 i>c V 4£ ez>
Let i?z denote the rectangle {£:0^;<z} and let

fift =^W(Z)nA(y)).W(Dni5(y)).w/(Z)niRj; y€r(e/>). z€e£}

^8^ = ^w(Z)CnAW)»w(£)CnBW).w^c^): ?er(az>). z€qz>}
then £ $> and Jg jffi are independent and J£ BD =jg $> V IL $$. Furthermore.

£z> =g d V £6°g (9)

^^c=gZ)cV Jg&

and the rest of the proof follows along the same lines as the proof of proposition 1.



We now turn to another Gaussian example. Let Xz ,z €R2 a 2-parameter free

Euclidean field defined as a generalized Gaussian process with zero mean and a

covariance function given by: K0(r) where K is the modified Bessel function.

Equivalently, its spectral density function is given by:

where a is a positive constant [22], [17]. For a path y in R2 .

X(y) = fxzdlz
y

is a Gaussian random variable with variance

For a y of finite non zero length, the variance is finite. Thus, as a path-parametrized

process. X is an ordinary process, not a generalized process. As was shown in [22],

suitably interpreted, the free Euclidean field has a Markov property in the sense of

Levy [13]. In terms of the definition introduced in this paper, the path parametrized

process Xy is y Markov.

3. Transformations of Path Parametrized Markov Processes I

The transformation of Markov processes via an absolutely continuous transfor

mation that leaves the Markov property invariant ([6] chapter 10 section 4, [7]) will

be considered in this section. The transformation of measures is induced by the

exponential of additive functionals and known results on stochastic integration in

the plane yield a large class of such functionals. This will be applied to show that

the solution to the stochastic differential equation X{dz )=g(Xz)dz+W(dz) is y+

Markov.

Let (Yy.Xyo.Xyi. y€T(R2)) be a y+ Markov process and let Q denote the col

lection of all connected open subsets D of R2 with piecewise monotone boundaries

and their complements. Let {a(D), D €Q] be a set parametrized collection of random



variables defined for every D €Q and such that for every DX.D2X>£Q with

DinD2=0:

(1) af(Z)1UD2) = aU>i)+a(Z>2)

(2) £{expa(Z) )}<oo. E{exna(R} )}<oo

(3) at(£>) is-g^ adapted.

Let

expaOR.?)

" £{expo<0R|)}

Proposition 3: If [Yy.XyQ.Xyi, y€r(jR|)} is y+ Markov under the original measure P

then it is also y+ Markov under P -LP.

Proof: The Proof follows along the same lines as in the one parameter case or the

germ field Markov property in the multiparameter case ([6], [7]) and is as follows.

Let EorE\ denote expectations with respect to the measures P and P respectively.

Let D be a bounded open set in R2 with piecewise monotone boundaries and let Z

be a bounded random variable adapted to M.D- Then a(R2 )=a(Z))+a(Z)c) where

a(Z) ) is jg D adapted and a{Dc ) is g DC adapted. Therefore

E0UZ\JgDC)
EiiZlJg^)^

E0{L\JgDC)

EQ (Z exp(a(Z> )+a(Z)c )) l£ DJ

£o(exp(a(£)+a0Dc))l£j,c)

E0iZexpa{D)\JgDC)
E0Uxpa{D)\I£DC)

J5,(Zexpa(Z>)l£ai>)
£0(expa(Z>)lgai>)

^(expad?!)!^^)
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= £1(zi4ei>)

and therefore {Yy.XyQ.Xyi, y€T(R} )} is y+ Markov under P .

Similarly, consider the y Markov process [Yy, y€T(R} )}. Let ce(Z)) and L be as

defined above but with 3) replaced by: 3)' a(D ) is g D adapted. Then it follows by

the same arguments (or by specializing proposition 3) that

Proposition 4: If \Yy, y€r(J?|)} is y Markov under the original measure P then it is

also y Markov under P —LP.

As an example to the application of proposition 3. let Ez denote the cr-field

generated by (W^. g^z ). Let (0z.z€JR+)bea measurable random process adapted to

F „ and•i- Z

eJ e2dz <oo

Let

*+2

fe£WQdO. ffOinrW(d£>W(d£') = fO&WfaWg
Rz R2XRZ J?z

fB&Wtds. fe^tQ1Wi (£=(s,t))

denote the stochastic integrals of the first, second and mixed types (cf. [23]. [24];

[3]). Let <//,(*/) i =0.1 4 denote measurable functions on R+XR such that

J?/(*i(£.Wf))2«f£<cei
*+2

Set

ot(D ) = ftftoit.W^d t+f+ite.WdW id {) + (10)
D D

+ f^i-W^w&Wz+f+M.w^Wgds
D D

+ ffod.W^dtdiWt
D

Assuming now that ^,(v). i=0,...,4 were chosen so as to satisfy

£expa(Z))<oo, a(D) as defined by (10) yields a large class transforming the

11



Brownian sheet into a (generally non-Gaussian) y+ Markov process. If the ^,- (£.Wg)

in (10) are replaced by non-random 0,(|) then (10) yields transformations of the

Brownian sheet into y Markov processes.

Returning to the case of y+ Markov processes, consider the stochastic

differential equation on R2:

X(dz) = g(z.Xz)dz + W(dz), X(o.o) = 0 (11)
This is a special case of the equation dXz =g (z ,XZ }dz +o(z ,XZ )dWz which has been

considered by several authors (e.g. [2]. [9]).

Corollary 1: Let g(z,a). z € J?2, a 6 R1 be a bounded Borel function on R2 XR1

andg(z.O as 0 for z outside a finite rectangle RZq where z0 € R+. Further assume

that g (• . •) satisfies a uniform Lipshitz condition in z i.e.

l

lg(z. ,a)-g(z2,<z) I ^K ((jx - s2)2 + (fj - *2)2)y zx = (sir *,) then

the process {X(A (y)). X(J9(y)). Xy0- Xyl, y € T (R$)} is y + Markov.

Proof: The existence of a solution to (11) follows by standard arguments (e.g. [9]).

Let W be the Brownian sheet under P . set

Lx = exp (-/ gt(. X£) dW£-±- f g2 tf. X£) d£) (12)

then jB £j = 1 and {X^. £€ JR2} is Wiener under the measure P - LXP (cf [25],

note that g (•, •) was assumed to be bounded). Consider now

aiD) =fg(£.X£dX£- ±fg2teXi)d£ (13)

then under P we have 2? expaCR2) = 1. setting £ = expaOR2) and Px — L P

then L —L11J>1 = P and Xz —JR g(£.Xp<f£ is Wiener under P . Therefore.

for L defined via (13) the assumptions of proposition 3 are satisfied which completes

the proof.

12



4. Transformation of Path Parametrized Markov Processes II

Two types of transformations are considered in this section. In the first we

consider a mapping z-f (£) of JR + onto Ml ; this mapping induces a reparametriza-

tion of points and paths and the transformation of the Markov property under this

reparametrization is considered. The second transformation deals with the case in

which the Markov property of the process { f dF(W£). f dF(W£). F(Wy } is con-
A(y) B(y) °

sidered. The results will be applied to show that the Ornstein-Uhlenbeck process

QsXSit = —aXSJds +QS WSi/ is y+ Markov.

A mapping z=f(g) of a subset of Ml onto Ml will be said to be order

preserving if £i^£2 implies zx^z2, £±/\ £2 implies that zx/\z2 and £\^£,2 implies that

z1r^z2. Let y be the path y={y(0). 0^9 ^1} then /_1(y) will denote the path

{/-1(y(0). 0^9 ^1}. Note that any order preserving map is of the form

z = (/ i (£j) / 2 (£2)) and therefore it transforms horizontal (vertical) paths into

horizontal (vertical) paths. Let {YymXy ,Xy) be a y+ Markov process and z—f (|)

order preserving. Let

. „ ~X z ~ Xf-1lz)' Y y=Yf~Hy)
then, obviously. {Y y.X >o,X y . y€T(iR 2)} is also y+ Markov.

Let {Xz. z €jR+ } be a real valued random process, assume that F z is a. collec

tion of subsigma fields satisfying the assumptions of [3] and Xz is Ez adapted.

Further assume that the stochastic integral in quadratic mean J 4>gX (d £) with

respect to the deterministic integrand 4> is well defined, therefore the integral of

X(dg) over the horizontal and vertical shadows of y is well defined. Set

Xy=( J X(rf|). J X{d |)). Xy will be said to be the path parametrized process
Ay) B\y)

induced by Xz. Since Xy is defined on paths, it may be considered an analogous to

the integral of a differential one-form along paths: furthermore, as Xy is induced by

Xz which may be considered as a zero form, Xy may be considered as the integral

13



along paths of the exterior derivative of Xz cf [27]. We will use X to denote the

path parametrized process induced by the point parametrized process {Xz , z €Ml}.

Lemma 1: If X induces X . z -f (£) is order preserving, and X induces X then

X = X (and. as pointed out earlier if X is y+ Markov, so is X ).

The proof is straightforward since / (£) transforms rectangles with sides parallel to

the axes into rectangles with sides parallel to the axes.

Turning now to the second transformation, let

F(s jt jc). 04s <x>. O^t <do.—co<c <oo be a real valued function of its three variables,

we want to show that if -F(w) is sufiiciently smooth and under some additional

conditions, the process Xz=F(s ,t ,WZ). z=(s,r). F non-random, induces a y+ Mar

kov process. For this purpose we prepare the following lemmas. Note, however, the

remark after the proof of proposition 5.

Lemma 2a: Let F(v.O be defined on M+XM+XM and assume that F and its partial

derivatives up to the fourth order are continuous and polynomially bounded. Let

QF/ Qo". QF/ Qt denote the partials with respect to the first and second variable and

i7'.ir"J7",^F',v' denote the first four derivatives with respect to the third variable.

Let Xz-F(s ,t ,WZ ). z =0 X ) then, for every finite increasing path y, (£=(077")):

X04 (y))=/|^(o<0 ).r(0 \Wiiey)d o<0 )+/>(a(0 ).t(0 \Wim)deW(A (y)fW ft0)+
y <*°~ "y

+ *.fF"(o{0 ).t(0 XWim>d aie ) (14)

and

2y

XCB(y)) =/|^rfT(0)+/F'-eeW(JB(y)nZ?f(e)) +i/>"vf t(0) (15)
y dT y Z y

Remark: the stochastic line integrals can also be interpreted as stochastic surface

integrals with respect to "weakly adapted" integrands (theorem 2.3 and section 4 of

[3]).

14



Proof: The Ito formula for two parameter processes ([25]) yields in this case:

F(^,u/2)-F(0,0.0)=f dF^Wi)di+fF'i(rrT,Wz)W(d£)+fF"J{dt) + (16)

where Jz denotes

Jz=f fwid&Wid£0

and the arguments of F'JF" etc. are (ovr.Wp. and |=(ct.t). Therefore

X(A(y))= f dF = (17)
>i(y)

*2;

A{y)0^ Ay)VT z/(>)0£r zA(y)0T

+1 f F'-dr^Wt +1 / ^"VrW^cr +I / F(fr)«*£
Z A(>) ^ >i (y) 4 Ay)

Turning now to (14) and applying the one parameter Ito formula to $F/ Qcr

yields for the first term in the right hand side of (14)

/ |£(o<0 ).r(0 XWm)d o<0 )= (18)

A(y)0°0T Ay) Oa zAy) 0a

For the second term in the right hand side of (14) we apply Green's formula of [4]:

fF'iaiO ).t(0 \Wi(e))QeWU (y)nz?^(e)) = (19)
y

= f F'0r.r.Wi)W(4i) + / F'V/^+1 f F'"dr^W+ f A-F'- dr^W*
A(y) A\y) * Ay) Ay)QT

and for the last term in (14) we have

ij>'(o(0 ).r(0 ).Wf(e)V aid )= (20)
y
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2a%) 2^(y) Qt 2A\y) 4/(y)
Substituting (18). (19), (20) into the right hand side of (14) and comparing with

(17) proves (14) and (15) follows by a similar argument.

Lemma 2b: Under the assumptions of Lemma 2a, for every finite decreasing path

y. X(A (y)) and XiBiyf) are given by:

X(A (y))=/|^(o(0).t(0 \Wm)dai$ )+/F'iai0).t(0 ).W^e))deW(A iy^HR^)^

+*/>"(o(0 ).t(0 ).Wim)d aiO ) (21)
y

and, with X=l—0

X(5(y))=/ |£(<K0 ).r(0 \Wiiey)d TiO )+/F'(o<X).T(X).W^X))axW(5(y)r«00.r(x))

+i-/FM(oa).T(X).Wftx))rf t(X) (22)
z y

The proof is the same as that of Lemma 2a and therefore omitted.

Proposition 5: Let F (•/.•) satisfy the assumptions of Lemma 2a. further assume that

F'(•/,•) does not vanish on M+xM+xM and for every s ,t)€M2 . F(j .£ .•) is inverti-

ble in the third variable. Then

Xz =Fis,t.Wz\ zHs.t)

induces a y+ Markov process.

Proof: Let X(A (y)).XCB (y)) be as defined by equations (14). (15). (21). (22) then it

suffices to prove that for any DOR}, the sigma field generated by

{X04(y)),XC5(y)).Xyo,Xyi. y€r(Z))} is the same as the sigma field generated by

{W(A(y)).V/(5(y)).Wyo.Wyi. y€rO>)}. From the definition of

XZ,X(A (y)),X(2?(y)). the first sigma field is a subsigma field of the second. In the

reverse direction note first that by the invertibility of F (w) in the third variable

Xz and z determine Wz. For an increasing path y, given X(A iy^ClRzW))' 0^9 ^1 and

WZ(B) then WiA iy)0Rz($)) can be recovered from equation (14) since it was assumed
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that F' does not vanish. Similarly WiB (y)ORz(e)) can be recovered from

X0B(y)n£z(e)). 0^9 <1 and Wz{6) and by the same arguments WiA (y)).W CB Gy))

can be recovered for decreasing paths which proves the lemma.

Remark: Note that the result of proposition 5 holds if X(A (y)),X(£(y)) is defined

by equations (14). (15). (21). (22) without requiring that

X(A(y))= J Xidz).XiBiy))= f Xidz) and Lemma 2 is needed only to assure
A(y) B(y)

that X(A (y)).X(5(y)) as defined by equations (14). (15). (21). (22) are induced by

Xz.

Consider the process Xsj on Ml satisfying the stochastic equation

&XSJ = -aXSJt ds +dsWSJ

then

s

o

We will consider the case a>0,X0^=0 and will show that the process XSJt induces a

y+ Markov process. This cannot be done by the method of proposition 3 since the

measure induced by XSJt on the space of continuous functions on [0,T]x[0,T] is not

absolutely continuous with that induced by the Brownian sheet. Setting

s =min(51^y2). t —TaAnitx£2}. *l follows by a direct calculation that

o

t r ~~al*i—Sn\ —ct{si+s9)\
- -=—(c * —e * )

2a

Consider now the process [20]:

Then EVS 1#r Vs f2—EXs at'Xs 2jt and since the two processes are zero mean and Gaus

sian they are identical in law. Setting (cr.O=(e2<M—1.0 we have

17



Vs< " V2F *T+o7^
Since Wa#r induces a y+ Markov process, by proposition 5. (27r)_1/ 2(l+or)"1W<r(/ is

also y+ Markov. Since (5 ,* )=((2a)-1log(l+cr).*) is order preserving it follows that

VSit and hence XSit are y+ Markov. We do not know whether the solution to

dsX = gixs)ds + QSW is y + Markov, a weaker Markov property of this pro

cess will be proved in the next section (proposition 6).

5. The Markov Property with Respect to Separating Lines

A path L-{ziQ ). 0<9 <1} in Ml will be said to be a separating line if it is (a)

non-increasing (b) as 0 -O either s (0 )-*0 or t (0 )-*» and (c) as 0 ->1 either t (t)-K) or

s (0 )-*jq. Let L -\z (0 ). 0<9 <l} be a separating line and let

z+(0) = {z:z£z(0)}, 0<9<1

z~(0) = {z:z^(0)}. = RA9\ 0<9<1

Set

L+= U z+(0) (23)
o<e<i ^**J

Z,-= U z~(0)
O<0<1

A separating line is. therefore, a non-increasing path separating M + into "past" L~,

"present" L and "future" L+.

Throughout this section, y will denote a decreasing path and TiD) will denote

the collection of decreasing paths contained in D. A path parametrized process

{Yy,XyQ.Xyi, yCTiMl)} is said to be Markov with respect to separating lines if for

every separating line L. a{iYy,XyQ.Xy%, y€TiL )} splits cr\iYy,Xy^Xy . yer(£+)} and

cr((yy,Xyo.Xyi. y€r(Z,-)}. Obviously every process that is y+ Markov is also Markov

with respect to separating lines.

Two separating lines L\ and L2 will be said to satisfy the relation L\<L2 if

Z,1fl£2=0 and L\ C L2 . Let Lv, O^n^l be a one-parameter increasing collection

of separating lines, i.e.. L^ <Lq whenever T)i<n2. Let

18



°i, =cr{(yy.Xyo.Xyi. yCLv) (24)

Then oy. O^n^l, O^n^l is Markov in the sense that oy splits V oy and V oy .

Conversely, if for every increasing one-parameter collection of separating lines

L^, 0<n^l. oy ,O^n^l is Markov then (yy.Xyo.Xyi) is Markov with respect to

separating lines.

Proposition 6: Consider the process Xz. z €2R+ defined by

dsXs; = g iXs, )ds +dsWStt (25)

where g(*) satisfies a global Lipshitz condition and X0Jt is a smooth non-random

function of t. For z =z (0 ), 0^9 ^L set:

Yy =X04 (y)) =fg iX^^dai$ ) + WiA (y)). (26)
y

Then (yy,Xyo.Xyi) is Markov with respect to separating lines.

Proof: Note first that for every separating line L. a{WiA (y)). yCL) splits

cr{WiA (y)). y€rU")} and a\WiA (y)). y€TiL+)} and

oiW(A(y)). y€ra~)}=cr{X(A (y)).Xyo.Xyi.yer(Z-)}

Therefore a{WiA (y)). yCL) splits cr{W(A (y)). y€rU+)} and

o*{yy,Xyo.Xyi,y€r(Z,-)}. A lemma of F. Knight states:

Lemma 111]: Let A '= '§: be subsigma fields of a sigma field and assume that g splits

4 and jg then (a) if g x satisfies g £g i^\/ £ then £ x splits 4 and £ . (b) if E 1

satisfies |i^\/ £ then £ splits 4. and £ 1.

Applying part (a) of Knight's lemma and (26). it follows that a{Yy.Xyfl.Xy . yCL}

splits <r{Ty(A(y)).y€ra+)} and cr{ry,Xyo.Xyi. yerOL"-)} Applying part (b) of

Knight's lemma and (26) yields that cr{yy.Xyo,Xyi, yCL) splits

o-{ry,Xyo.Xyi,y€r(Z,-)} and <r{ry.Xyo,Xyi. y€r(Z,+)}. Hence (ry.Xyo.Xyi) is Mar

kov with respect to separating lines.
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The notion of a Markov process with respect to separating lines leads directly

to the notion of a strong Markov process as follows (cf. chapter 5 of [5] for a dis

cussion of the strong Markov property for non-stationary Markov processes on M+).

Let (U£,P) be a probability space and £z. z ZMl a collection of subsigma fields of

E that satisfy the conditions: (a) EzfiEz2 whenever zx^z2, (b) CE£=EZ where the

intersection is over all £>z and (c) Eo contains all the null events of £. Let S

denote the collection of all separating lines including the separating line "oo". A stop

ping line L (o>) is a function from CI to S satisfying for every z €.R+

{(o:z €Z,-(o>)} €Ez-

For every stopping line L (a>) set

oy = a{Yy.Xyo.Xyi. yCL (a>)}.

For every y€T (2R+ ) set:

Z,"(y) = ynL-(a>). Z+(y) = y fY,+(o>)

°i- =°<1L-(^tt-W).-«tt-(y))1- >€F (2R? )}

<V =^x+Cy^U+W).-^tt+W),' v^r(iR+2)}
The process {Yy.XyQ,Xyi, y€TiMl)} will be said to be strongly Markov if for every

stopping line L, ov splits aL- and o^+.

Remark: A strong Markov property for random fields has already been introduced

by Evstingneev ([7], p. 85 of [19]) but it is different from the one introduced here.
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