
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A NOVEL APPROACH TO THE DYNAMICS

OF FLEXIBLE BEAMS UNDER OVERALL

MOTIONS - THE PLANE CASE

by

J. C. Simo and L. Vu Quoc

Memorandum No. UCB/ERL M85/63

31 August 1985



A NOVEL APPROACH TO THE DYNAMICS OF FLEXIBLE

BEAMS UNDER LARGE OVERALL MOTIONS -

THE PLANE CASE

by

J. C. Simo and L. Vu Quoc

Memorandum No. UCB/ERL M85/63

31 August 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Novel Approach to the Dynamics of Flexible Beams
under large overall motions — The plane case.

j. a smo

Applied Mechanics Division, Stanford University, Stanford, CA94305.

and

L VUQUOC

Structural Engineering and Structural Mechanics Division,
University of California, Berkeley, CA 94720.

Abstract

Traditionally, the dynamics of a flexible beam subject to large overall
motions Is formulated relative to a floating frame, often referred to as sfiadow
beam. This type of formulation leads to a set of equations of motion that are
nonlinear and highly coupled in the inertia terms, of the form g(y, y, t) = 0. By
contrast, we propose an alternative approach in which all quantities are referred
to the mertial frame. As a result, the inertia term enters linearly in the formu
lation simply as mass times acceleration. Crucial to this formulation is the use
of finite strain rod theories capable of undergoing finite rotations. Upon discre-
tizing the spatial variables, the semi-discrete equations of motion have the stan
dard explicit form: Mq+ P(q) = F. Numerical examples that involve finite vibra
tions coupled with large overall motions are presented. These simulations also
demonstrate the capability of the present formulation in handling muLtibody
dynamics.
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Dynamics of flexible beams under large overall motions 2

Introduction

The dynamics of a flexible beam undergoing large overall motions, is typi
cally formulated relative to a coordinate system that follows the rigid body
motion of the beam and is often referred to as shadow beam, (Laskin, Likins &
Longman [1983]). The introduction of this floating frame, relative to which the
strains in the beam are measured, is motivated by the assumption of
infinitesimal strains (see, e.g., Ashley [1967], Grote, McMunn & Gluck [1971], de
Veubeke [1976], Canavin & Likins [1977], Kumar & Bainum [1980], Kane & Levin-
son [1981], Kane, likins & Levinson [1983]). With the assumption of small
strains, the use of'floating frame allows a simple expression for the total poten
tial energy of the beam. By contrast, the kinetic energy of the system takes a
rather cumbersome form. The resulting equations of motion, although res
tricted to small strains, are nonlinear and highly coupled in the inertia terms
due to the presence of Coriolis and centrifugal effects as well as inertia due to
rotation of the shadow beam. Moreover, the Galerkin discretization in space
variables, leads to a system of implicit coupled nonlinear differential equations
in time of the form g(y,y, t) = 0 (e.g., Song &Haug [i960]). An essential charac
teristic of this system is that it cannot be transformed to a standard explicit
form y=g(y, t). Thus, use of the mode shapes of the structure as Galerkin
basis, a procedure often employed (see, e.g., Likins [1974a]) appears to be of lit
tle value in the general case due to the highly coupled nature of the resulting
semi-discrete equations. Moreover, the complex nature of these equations has
often led to simplifying assumptions, e.g., Winfrey [1971], Erdman & Sandor
[1972], Baghat &Willmert [1973J; we refer to Song & Haug [1980] for a review of
several approaches in the dynamic analysis of mechanisms and machines.

In this paper, we propose an approach based on a philosophy opposite to
that outlined above. The kinetic energy of the system is reduced to a quadratic
uncoupled form simply by referring the motion of the system to the vnertial
frame. This results in a drastic simplification of the inertia operator, which now
becomes linear and uncoupled* while the stiffness operator emanating from the
potential energy functional becomes nonlinear. Conceptually, the essential step
needed in developing this alternative approach is the use of rod theories capable
of accounting for large rotations in the beam. It is important to note that the
basic characteristic of the appropriate strain measures in these theories is their
mvariancB under superposed rigid body motions; see Reissner [1972], Antman
[1972.1974], Simo [1985], and Simo &Vu Quoc [1985].

From a computational standpoint, the substantial advantage of the pro
posed approach over the traditional shadow beam approach lies in a much
simpler structure of the resulting equations. By introducing a Galerkin semi-
discretization of these equations in the space variables, one obtains the stan
dard nonlinear system of ODE's that typically arises in nonlinear structural
dynamics: Hq+ P(q) = F (see, e.g., Beiytschko & Hughes [1983]). In addition,
this approach has the advantage of automatically accounting for large strains.
Within the present context, there is little to be gained by introducing at the
outset the additional small strains assumption.

As a basis of our discussion, we choose a specific problem to introduce our
formulation: the dynamics of a flexible robot arm. This model problem consists
of a flexible beam with one end at the origin of the inertial frame jei, e2, eaj (see
Fig. 2.1). The robot arm is allowed to rotate about the axis e3, but the entire
motions of the arm are restrained to the plane $elt eaj. It will become clear,
however, that our formulation can be applied to a more general setting of flexi
ble plane beams subject to large overall motions. We shall also show through
numerical examples that our formulation can be employed directly in the
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J. C. Simo and L. VU Quae 3

analysis of a system of flexible beams connected by hinges, Le., the multibody
dynamics problem.

2. Classical approach based on small strains: Floating frame.
In this section we summarize the equations of motion for a rotating flexible

beam under the assumption of small strains superposed onto large rigid body
rotations using the shadow beam approach. The introduction of this floating
frame, relative to which the strains in the beam are measured, is motivated by
the assumption of infinitesimal strains. The essential purpose of the discussion
that follows is to exhibit the main drawback of this approach. The introduction
of the floating frame, -although allowing a simple expression for the potential
energy due to the assumption of infinitesimal strains, leads to a cumbersome
expression for the kinetic energy of the system. This results in equations of
motion with highly coupled nonlinear terms involving the time derivatives of the
state variables. Prom a computational standpoint, the numerical integration of
these equations is a nontrivial task.

2.1. Basic kinematic assumption

Consider the rotating bean shown in Fig. 2.1. Let $ be the position vector of
a material particle initially located at X = Xi ei + Xzeg in the undeformed (refer
ence) configuration. Here (ei, egj is the inertial frame attached to the fixed
undeformed configuration. In addition, we introduce a floating frame
jai(£), ag(f)i that follows the rigid body motion of the beam; i.e., the shadow
beam. The basic kinematic assumption is expressed as

«XXi.X»t) := $o(Xltt) + Xzk(Xltt) (2.1a)
where

9dXut) := [*l + ffl(Jri.*)]ai(0 + ff«(*i.*)*(*)
tiCX"i.O := cosa(*i.*)ai(0 + sina^,t)^(t) (2.1b)

tz(Xltt) := -sinat^.Oaift) + cosoi(Xltt) ^(t)

For notational simplicity, explicit indication of the arguments Xlt Xz and t will
often be omitted. Since the motion is planar, one has eg s tg = ag. Note that
(ti, tej defines a moving frame that follows the deformation of the beam with tfe
always contained in the deformed cross section and tx perpendicular to the
cross section. Using matrix notation, relations (2.1b)2,3 may be expressed as

a -»& where A :=
cos a -sina

sin a cos a
(2.2)

Although it is possible to develop the formulation without introducing any res
triction on the size of the strain field, the assumption of small strains is typically
introduced ab-initio, as discussed below.

2.2. Motivation: Total potential energy.

The introduction of the floating frame {at, agj allows the enforcement at the
outset of the following infinitesimal strains assumption.

fV

a small (^ 10') » A

ult and u2 small (2.3)
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Dynamics of flexible beams under large overall motions 4

With this assumption in force, the strains 7 and curvature « relative to the float
ing frame jat, a%] are defined as

7 = #'o - tj, * = a'tg, (2.4a)

where (•)-:=<*(•)/ dX\. In component form, y is expressed as

' 7 = 7iai + %ae (2.4b)

where

7i - **i» 7fe = tt'a-a (2.4c)

One refers to yx and % as the axial strain and the shearing strain, respectively.
Denoting by EA, GA, and EI the axial, shear and flexural stiffnesses of the beam
(relative to the floating frame {alt agj), the potential energy of the beam may be
expressed as

n := }i f \EAyf+ GS^tI +EIal2\dS +IW " T(t)f(t) (2.5)
tin

where Hext is the potential energy of the external loading acting on the beam
and T(t)es is the applied torque at the axis of rotation eg of the robot arm.
Next, we proceed to compute the kinetic energy of the system.

2.3. Kinetic energy

By contrast with the simplicity of (2.5), the kinetic energy of the system
takes a rather cumbersome form. To obtain the appropriate expression, we
introduce the time derivative relative to an observer attached to the floating
frame, defined as

dt ajafisad

We then have the following standard expression from rigid body mechanics (e.g.
Goldstein [1980])

" = «£ + wx 0 (2.7)

where, a superposed "dot" denotes material time derivative, and w is the angular
velocity of the floating frame. For the plane under consideration, the angular
velocity wis given simply as

w=^-ag a #ag (2.8)
where ag := ai x a% Is fixed. Upon noting that the the time derivative of the float
ing basis is given by

It follows from at once from expressions (2.1b) that the time derivative of the
vectors \tt, tgj is given by

li = (a +# tj,, la = -{S +*)!* (2.10)

Thus, the time derivative of the position vector 0 is given by the following
expression

0 = 5o +^[-^2ai +(^i+'2i)ate]-^2(a +^)ti (2.11a)

0o = Ux&i + u2a2 (2.11b)
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The kinetic energy of the system is given by the expression

K := / p(XltXz)\\ifdXidXz (2-12)
[aiM-A,^

where p(XltX2) is the density and |0p := p? +£f. By substituting (2.11) into
(2.12) we arrive at the following expression for the kinetic energy

[in

[Ml

(2.13)

Here, the inertia constants A, and I0 are denned as

4,:-:= f p(XuXz)dX2l Ifi := f p(Xlt Xz) X% dXz (2.14)
c4* 4»$

2.4. Equations of motion: Coupled inertia terms

The equations of motion governing the dynamical system under considera
tion may be systematically derived from the expressions for the kinetic and
potential energies by means of Hamilton's principle. Accordingly, we require
that the action

f (K-II) dt be stationary (2.15)
fct.'al

for arbitrary paths connecting two points at time t1 and tz in the configuration
space. By substituting expressions (2.5) and (2.13) into (2.14) and making use of
standard arguments involving integration by parts, we arrive at the following
equations governing the extensional and flexural motion of the beam

i4p[ai-^2-2^fl2-^2(Jf1+ul)] - EAu'\ = 0
^P[S2 +^i+^i) +2*fi1-^2u8)] - GA,(£'2-a) = 0 (2.16)

/,(§+$ " ElW-GAtiu'z-*) = 0
Appropriate boundary conditions automatically follow from the argument (see,
e.g., Fung [1965]). In addition to the basic balance equations (2.16), one obtains
the following equation that expresses the overall balance of angular momentum
of the system

««!+»+«,« +2^(^+7x0 +«•«•]
-uz^ +(X^u^uz +/,$+ a)* = T(t) <2'17>

The highly nonlinear nature of the coupled system (2.16)-(2.17) involving the
variables (£i, uz. a, ^j should be noted.

Remark 2.1. The variable a can be eliminated from the equations of motion
(2.16) by raising the order of the spatial derivatives appearing in the resulting
equations. The procedure is analogous to that discussed in Remark 2.2. •

Remark 2.2. The Euler-Bernoulli (constrained) formulation is obtained
from the above equations by assuming that shear deformation is negligible.
Accordingly, one lets

(£'2-a)->0, and G4.-*oo. so that G4, (u'z - *) -» V (2.18)
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Dynamics of flexible beams under large overall motions 6

where V is the shear force acting on the cross section of the beam. Equations
(2.16)2,3 governing the transversal and flexural vibrations of the beam may be
combined, and lead to the following equation

Azuz + EIu""z -Ipu"z +AP\${XX +ut) +2^ut -$zu2)] = 0 (2.19)

We note that the first two terms in (2.19) correspond to the standard linear
Euler-Bernoulli beam theory. The third one gives the contribution of the rota
tory inertia and is often neglected in most structural applications. The last
three terms within, brackets arise as a result of coupling between deformation
and rigid body motion. These terms represent the inertia due to rotation of the
shadow beam, the Cbriolis and the centrifugal effects, respectively. •

3. Proposed approach based on finite strains: Inertial frame.
The introduction of the floating frame, although simplying the expression of

the stiffness part of the equations of motion, results in a complex nonlinear cou
pled structure of the inertia terms. In some sense, the approch proposed in this
section is based on the opposite philosophy. Here, the structure of the inertia
operator is simplified to the standard linear uncoupled case simply by referring
the basic equations of motion to the inertial frame. This results in a drastic
simplification of the inertia (temporal) part, the nonlinearity now being shifted
to the stiffness (spatial) part of the equations of motion. Conceptually, the
essential step needed in developing this alternative approach is the use of rod
theories capable of accounting for large rotations. In section 3.3, we summarize
from a physical standpoint the appropriate strain measures of a model of this
kind, essentially due to Reissner [1972]. For the three dimensional version, we
refer to Antman [1974], Simo [1985], and Simo & Vu Quoc [1985]. An essential
characteristic of these strain measures is their invariance under superposed
rigid body motions.

From a computational standpoint, the substantial advantage of the pro
posed approach over the shadow beam approach discussed in Section 2 lies in a
much simpler structure of the resulting equations. This structure corresponds
to the standard nonlinear system of ODE's that typically arises in nonlinear
structural dynamics. In addition, we automatically account for large strains.

3.1. Basic kinematic assumption.
As in Section 2, the basic kinematic assumption is the condition that plane

sections normal to axis of the beam in the undeformed configuration remain
plane; Le.,

*(XuXz,t) := 00(^,0 + Xztz{Xltt) (3.1a)

The difference between assumptions (2.1a) and (3.1a) is that the position vector
0o and the moving vectors \t\, l&\ following the deformation of the beam are now
expressed relative to the inertial frame {ei, e2j. Accordingly, we set

0o(*1.r) := [Xi + Ux^Ole! + u2(Xltt)ez
ti(Xut) := Qos^X^t)^ + siniK^i.Oea (3.1b)
tz(Xl9t) := -sini>C*i.*)ei + cos^(Xltt)ez

As in (2.2) we shall use matrix notation and express relations (3.1b)2,3 as

M
ts

= A*
ei

where A :=

August 1, 1985
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Remark 3.1. It should be noted that the floating basis ialt ateJ is entirely
by-passed and plays no role in the present formulation. •

3.2. Motivation: Kinetic energy

The direct use of the inertial frame fa, e2J in the formulation of the dynam
ics of the system is motivated by the form taken by the kinetic energy. As
shown below, relative to the inertial basis, the kinetic energy of the system
reduces to the standard quadratic uncoupled form. To see this, note that from
(3.2) the rate of change of the moving vectors (tj, tg} is given by

ti = £ta, tg = ^ti (3.4)

Hence, the time derivative 0 of the position vector 0 is given simply as
• • •.

0 = 00 ~ ^f2Vti
• • •

0O = u^! + uzez

It follows from (3.5) that ||0||2 := p? + pf has the expression

II0II2 = &f+u§] + Xl¥ - 2*X2(costfii1 + sintf'i22)

(3.5)

(3.6)

Upon integrating p(XltXz) ||012 over [0,1]x[-§-, §•], we arrive at the following
2' 2

expression for the kinetic energy of the system

K s fcf [Ap(uf +uf) +I^dX, (3.7a)

Here, as in (2.13), the inertia coefficients Ap and Ip are givenby (2.14).
Remark 3.2. The case of a flexible beam attached to a rigid body, e.g., see

Levinson & Kane [1981], can be readily accounted for within the present formu
lation by modifying expression (3.7a) for the kinetic energy as follows. Let m#
be_the mass of the rigid body, and Ir its inertia relative to an axis parallel to
e& s tg and passing through the connecting point with the beam. The kinetic
energy of the composite system, then, is given by -

IQotai = K + %mR ||0o(O, *)||2 + J4/a*"(0. 0 (3.7b)

where K is given by (3.7a). •
Remark 3.3. It is noted that expression (2.13) for the kinetic energy in the

shadow beam approach may be exactly recovered from (3.7) simple by employ
ing the coordinate transformation

Xx+Ui

u2
i _

cos^ —sin^
sin^ cos^r (3.8)

That is, the expression for the kinetic energy of the system is independent of
any particular assumption on the magnitude of the strain field. •

Next, we discuss the appropriate expression for the potential energy of the
system.

3.3. Potential energy: Invariant strain measures.

Within the context of large strains, a physically reasonable definition of the
strain field in the beam is also provided in vectorial form by expression (2.4);
Le.,

y := 0'o - 1*. * := tf'tg (3.9a)
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Dynamics of flexible beams under large overall motions 8

The physical interpretation of 7 is clear as shown in Figure 3.1. 7 measures the
difference between the slope of the deformed axis of the beam and the normal
to the cross section defined by tt, and jc is the rate of rotation of the cross sec
tion along the undeformed length of the beam. In component form, relative to
the inertial frame we have from (3.1b) the following expression for 7

y = 7i«i + 7a92 3 [(1+ii'i)-cosUjei + [u*2-sin^]e2 (3.9b)

Alternatively, relative to the moving vectors [ti, tfe}, from relation (3.2) we have
the following expression

where

r2

7 = nti + r2te

= A'
1 + u\ -costf

u'2 - sin'*

(3.10a)

(3.10b)

The parallelism between expressions (2.4a,b,c) and (3.9a)-(3.9b) should be
noted. "We now assume that relative to the moving frame jtx, tej we have the
same expression for the potential energy as the one considered in the small
strain shadow beam approach discussed in Section 2. Accordingly, we set

II := }£ f \EATf + GA,Tf +EIWZ\dS +IW - T(t)H(Q, t) (3.11)
(Ml

Remark 3.4. It is essential to note that the components of the strain 7 in
the basis \tlt tg} denoted by [1*1 T2]' are invariant under superposed rigid body
motions on the beam. One can see this by considering the rigid body motion
composed of a superposed translation c(f), and a superposed rotation 0(0
represented by the orthogonal transformation matrix

0(0 :=
cos/3 -sin/3
sin/? cos/3

The transformed quantities in the expression of I\ in (3.10) above are as follows

tt&ut) = 0(0 + 0(000(^.0; 0o+' := 0oYe1 + 0cVe2 = Q0O\ (3.12b)

Le.,

' 1

0oV = Q
'l + U'i

Wo

K J

A+ = QA.

tf = cos(0+tf) ei + sin(£+tf) e2 .

As a result, one can immediately see that

7* - rrtf + r2+t2+ = 0o+l-tf

where

= A+*
0oY

002

cos(0+tf)
sin(/?+tf)(

(3.12a)

(3.12c)

(3.12d)

(3.12e)

(3.13a)

(3.13b)

The invariance under superposed rigid body motions of the curvature k follows
at once in the plane case from expression (3.9a). This invariance property of the
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strain measures is essential for the success of the proposed approach. •

Remark 3.5. It can be shown that definition (3.9a) and expressions (3.9b),
(3.10) indeed follow from a rigorous argument based on the equivalence of the
stress power for the general three dimensional theory with the reduced stress
power of the (finite strain) beam theory. We refer to Simo [1985] and, in a
different context, to Antman [1972,1974]. •

Remark 3.6. In this paper, we shall be concerned only with spatially fixed
load, which does not depend on the deformed configuration, as opposed to fol
lower load. The latter is configuration dependent. For a treatment of follower
loads in the general context of the three-dimensional finite strain beam we refer
to Simo & Vu Quoc [1985]. Accordingly, the potential of the distributed loading
in (0, L) is given by

IW= f [m.tfe3 + n.0o]flUfi (3.13c)

Here, fipfi, 0 •= ^it^i. 0 ©i + ^aG^i. *)*z and rfi(JTi, t) := m~(XXt t) eg are the
external force and torque per unit of reference length acting on the beam. •

3.4. Equations of motion: Uncoupled inertia terms.

As in Section 2, one may obtain systematically the equations of motion
governing the evolution of the system by employing Hamilton's principle. Stan
dard manipulation yields the following result

1 + u'x —cosw

u'.-alntf }]'-« =0 (3.W0
1 + U\ —COST*

A,& - [ACA*

iptf - EM" I^'2 r ACA' u'z —sini> -m = 0

We recall that A and C are given by

\ea 0|
A :=

costf —sintf

sintf cos'*

(3.14b)

(3.14c)

Equations (3.14a,b) comprise the system of nonlinear partial differential equa
tions governing the evolution of the system. Note that although (3.14) are non
linear, these equations are linear in the time derivative terms. To define the
natural boundary conditions, and for subsequent developments, we introduce
the notation

W:= ACA*
!1 + u\ - costf

u'z - sintf
m := EI& (3.15)

Here, u(Xx,0 *•= ^i(Xx,t)ex + nz(Xi, t) eg and m(XXt t) := m(Xx, t)e$ represent
the internal force and internal moment acting on a deformed cross section of
the beam. According to our model problem, we assume the following natural
boundary conditions

m(0.0 = T(t)ea, m(L,t) a n(0,0 a n(Z,0 =0 (3-16)

These boundary conditions follow automatically from Hamilton's principle and
the appropriate expression of Tlsxr- •
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Dynamics of flexible beams under large overall motions 10

3.5. Conservation of global momenta.
It is noted that within the proposed approach global linear and angular

momenta are automatically satisfied, and do not provide any additional condi
tion. This is in contrast with the shadow beam approach in which the basic equa
tions of motion (2.16) must be supplemented by the global angular momentum
condition (2.17) for the evolution of the system to be completely determined.

To see that satisfaction of global linear and angular momenta is ensured in
the present approach, we start by rewritting equations (3.14a,b) with the aid of
(3.16) simply as

L-n'-nf = 0, H - m'-0,oxn-m = O (3.17a)

Here HXx,t) denotes the linear momentum per unit of deformed length, given
by

L:= f p0aUf2 =A,0o. (3.17b)
mm

where use has been made of (3.1a). In addition \%Xltt) is the angular momen
tum per unit length, relative to the centroid of the deformed cross section, thus
given by

H:= f p[0-0o]x0<Ur2 =Jp£ (3.17c)

The global linear and angular momentum of the system denoted by 3L(0 and
H(0, respectively, are defined as

B#):= f p$dXxdX2, B(0:- f p$x$dXxdXz (3.18)

By making use of the identity 0x0 = (0-0o)*0 + 0ox0. it follows that the
global angular momentum may be expressed simply as

H(0= f [H+0oxL]d*1 (3.19)
[Wl

where HXx,t) and B(XXt t) are defined by (3.17b,c). By time differentiating
(3.19) and by making use of (3.17a), we arrive at the following condition involving
the applied load and boundary conditions

H = [m +0oxn] ^-o + / [™ +0oxn]dX"i (3.20)
1 [<U1

Condition (3.20) simply states that the resultant torque of the applied loading
equals the rate of change of the total angular momentum, in agreement with
Euler's second law of motion. Similarly, for the global linear momentum we
obtain

&=o+ f ndXx (3.21)IL= n

which states that the resultant force of the applied load equals the rate of
change of the global linear momentum.

Remark 3.7. Equations of motion (3.17a) along with definitions (3.17b) and
(3.17c) are general, and remain valid in the three dimensional theory. Thus, the
foregoing discussion leading to expressions (3.20) and (3.21) is general and not
restricted to the plane case. •
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4. Numerical approximation: Galerkin method.

In this section we discuss the numerical treatment of the nonlinear partial
differential equations developed in Section 3. The basic strategy is to perform a
Galerkin discretization in the spatial variable leading to the standard system of
ODE's in the time variable characteristic of nonlinear structural dynamics. This
system may then be treated by standard time stepping algorithms such as the
Newmark family. The finite element method provides an established and well
understood technique for constructing the (spatial) basis functions necessary to
performed the Galerkin discretization. Expressions of the matrices resulting
from the application of this procedure are given in the appendix.

4.1. Weak form of equations of motion —Spatial discretization.

The equations of motion (3.14) may be put in the following form

la(XXtt) + P[d(^0] = f(*i.O. (4-la)
where

d(Xx,t) :=

I := Diag[Apt Ap, Ip],

Xx+ux(Xx,t)y
u2(Xx,t) \, t(Xx,t) :

nx(Xx,t)

n2(Xx,t)
[m(Xx,t)}

(4.1b)

Equation (4.1a) is a nonlinear partial differential equation in the generalized
vector d(3Ti. t) € Vx, where Vx is the space of admissible (generalized) displace
ments, f This equation is linear in the term involving time derivative, i.e. the
acceleration 3. in the first term. The second term P[d], on the other hand, is a
non-linear differential operator in the space variable Xxe(Ot L). The nonlinear
nature of this term is the result of the coupling between large overall motions
and (finite) strain deformations in the beam. Concerning the applied load n and
fri, see remark 3.5. The weak form G(d, 17) of equation (4. la) is obtained by
integrating over the spatial domain (0, £)cIR thedot product of this equation
with an arbitrary weighting function ij€ 72. %That is

[bt&l
(4.2)

The final expression is obtained from (4.2) by integration by parts on the spatial
derivatives entering F[d], so that only first order spatial derivatives are involved
in G(d, 77). we refer to the appendix for the details. The displacements d(Xx$ t)
and the weighting function rj(Xx) are then interpolated in the spatial variable Xx
according to

d(xx,t) s £;*j<*i)*r(0. V(xx) a £*7(*i)itf
/=1 1=1

(4.3)

Upon introducing the spatial discretization (4.3) of aXXXtt) and of rj(Xx) into the
weak form (4.2), we obtain the semi-discrete equation of motion in matrix form

t A possible choice for Vx could
t Vz could be chosen'to be Vz

dbe Vx := (de(#l[0.ii]xC-[0,co))3}

:=to€(ff*[0,Z.])3| i?-[ni.n8,m]<|*11!
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•i(*>+ «*(*)) = m (4.4)

where H represents the mass matrix, q(0 := [qi(0 9Jv(0]* the general
ized displacements, F(q(0) the internal forces, which is non-linear in q(£), and
¥(t) the applied load. Details of the expressions of H, P(q(0), and F(t) can be
found in the appendix.

Remark 4.1. For the case at hand where the system has a well defined
energy function H = K + II, the Galerkin procedure outlined above is
equivalent to a standard Raleigh-Ritz approximation based on (4.3)i. See, e.g..
Meirovitch [1967]. •

Remark 4.2. In the shadow beam approach restricted to small-strains , one
may also use the modal superposition method to discretize spatially the dis
placements [ux,uz] as m (4.3). As noted in Remark 2.1, this can be done by first
eliminating a from (2.16) using (2.16)2. The semi-discrete equation of motion of
the system is then obtained by projecting the resulting equations (2.16) onto the
orthogonal basis of mode-shapes of the Euler-Bernoulli cantilever beam. How
ever, no matter what the discretization procedure may be, the resulting semi-
discrete equation of motion is a system of highly coupled non-linear differential
algebraic equations (DAE). The solution of this complete system of DAE's is not
a trivial task, and requires a specially designed computer code (see, e.g., Benson
& Hallquist [1985]). On the numerical methods to solve a system of DAE's, we
refer to Gear [I971a,b], Petzold [1982], Gear ft Petzold [1984]. The solution of
the standard non-linear structural dynamics equation (4.4) is, by contrast, much
simpler, and may be carried out on any non-linear structural finite element
code. The time stepping algorithm for this solution procedure will be outlined in
the next section. •

Remark 4.3. Multibody dynamics. In section 5, we will show through
numerical examples that the proposed approach can be immediately applied to
study the dynamics of a system of flexible bodies connected through hinges
without alteration in the formulation. It is indeed a simple matter to model
such a system in a finite element code. The shadow beam approach, on the
other hand, leads to a much more involved formulation (see, e.g., Likins [1974b],
Hughes [1979], Song &Haug [1980], Sunada &Dubowsky [1980]) •

4.2. Time stepping scheme —Temporal discretization.
The semi-discrete equations of motion (4.4) can be trivially rephrased into

the standard form, of a system of non-linear ODE's, j = g(y,f ), simply by setting
y*= fq* &• This standard ODE system can be integrated by a variety of time
stepping algorithms; see e.g. Gear [1971a], which must be consistent with (4.4)
and stable for some range of the time step. We refer to standard textbooks, e.g.,
Richtmyer & Morton [1967] or Gear [1971a] for precise definitions of these con
cepts. Two basic strategies in devising algorithms for (4.4) may be adopted
(a) Explicit schemes: Typically high accuracy may be achieved by employing

high order methods. A classical example is furnished by the family of
Runge-Kutta methods. The main drawback of explicit schemes is their res
trictive stability characteristics that impose severe limitations on the time
step.

(b) Implicit schemes typically possess very robust stability characteristics.
Classical examples are the trapezoidal rule, which is the highest order pos
sible A-stable method (Dahlquist [1963]), the Gear's stiffly stable methods
(Gear [1971a]). and the Newmark family of algorithms (Newmark [1959])
widely used in nonlinear structural dynamics, (see e.g., Belytschko &
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Hughes [1983]).
Here, motivated for stability considerations, attention is focussed on the

Newmark family of algorithms for solving (4.4), which includes the trapezoidal
rule as a special case. The theoretical analysis of the behavior of Newmark1 s
algorithm in the linear case is well established; see e.g. Hilber [1978]. In the
remaining of this section, for completeness, we outline the basic steps involved
in the numerical solution of (4.4) by the Newmark algorithm.

Let qn denote the approximated solution to q(*n) at time tn. Similarly,
•n - 4(*n) and rn = q(*n) represent the approximated velocity and accelera
tion at time tn~, respectively. Assume that the solution {qn, vn, rnJ at time tn
has already been obtained, i.e., the momentum equation (4.4) is satisfied at time

Hrn +P(qn) = Fn (4.5)

where F„ s Y{tn). We now aim at satisfying the momentum equation (4.4) at
time tn+i, Le.,

Mrn+1 + P(qn+i) = Fn+1 (4.6)

The Newmark time stepping algorithm defines the relationship between
fq»+it •»+!, rn+ij according to the following formulae

rn+l " ^*p hp {**" K }
v»+i = Vn +^[(l-r)rn + rrn+1], (4.7b)

where hi=tn+x—tn denotes the time step size, and (0, t) are the parameters of
the Newmark algorithm. Recall that 0 =0.25 and r = 0.5 correspond to the tra
pezoidal rule; this choice of the parameters § and r renders the algorithm
vncortditioTially stable, ff and second order accurate. Substitution of (4.7a) into
(4.6) yields a system of non-linear algebraic equations in terms of qn+i-

The resulting non-linear algebraic system may then be solved employing
the classical iterative Newton-Raphson method. Let q$i denote the value of
Ojh-i at iteration (i) of the Newton-Raphson algorithm, and Aqjf+i1' the incremen
tal displacements. As an initial guess of the value of Sqn+i. ?n+i. rn+i}, one may
choose the starting value q$.x to be the same as the converged one in the previ
ous time increment, Le. qn; the initial values v£}x and rn°ii follow from the New-
mark scheme (4.7):

q$i = qn (4.8a)

r«i = - (4.8b)

iWi = ^ + *> [(1-r) rn + tt$x ] (4.8c)

At iteration (i) of the Newton-Raphson scheme, the linearization about qnlii of
the above system of non-linear algebraic equations yields

hz&
-H + KKq^) Aq»VY> = Fn+i " Hrfii ~ P(qi»i) (^)

tt Roughly, the notion of stability corresponds to well-posedness of the semi-discrete prob
lem. In the nonlinear case, several notions of stability have been propossed (A-stability,
spectral stability, stinly-stable methods,... etc.). See, e.g., Gear [1971a} or Belytschko &
Hughes [1983].
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It should be noted here that while the mass matrix H is positive definite, the
tangent stiffness matrix Ke(qj^i) may bejjositive semi-definite. The system of
equations (4.9) is of the form KAqf+i1* = F where the matrix K is banded, sym
metric, and positive definite. Solving for Aq^+i1*. and updating (qnlii. vi+it rn+i).
we obtain the value of tqn+i. •i*+i. *h+il at iteration (i+1) as follows

v&il) =v$. +jjjnAq&P (4.10b)
'tStfi =*k% +J^lft?' (4-lOc)

The iterations are continued until convergence is attained within certain toler
ance. A basic characteristic of Newton's iterative method is that the asymptotic
rate of convergence is quadratic.

5. Numerical simulations.

In this section we present a series of numerical simulations that illustrate
the formulation and numerical procedure discussed in Sections 3 and 4. Our
purpose is to exhibit
(a) The simplicity of the numerical procedure. Essentially any existing non

linear structural finite element dynamics code could be used. Here the
computer program FEAP developed by R.L. Taylor and documented in
Zienkiewicz [1977, Chap 24] is employed.

(b) The capability of the proposed formulation of automatically handling finite
strains superposed onto large overall rigid body motions. This includes
flexible bodies in free flight.

(c) The immediate applicability of the proposed approach to the dynamics of a
system of interconnected flexible bodies without alteration of the formula
tion.

It is emphasized that no simplification is made in the simulations that follow
in the sense that Coriolis and centrifugal effects as well as the inertia effect due
to rotation are automatically accounted for. The deformed shapes in all figures
reported in this paper are given in the same scale as that of the geometry of the
beam, Le., there is no magnification of the structural deformations.

In all simulations reported herein, the trapezoidal rule (Newmark with
t=0.5 and 0 = 0.25) was employed. Numerical operations were performed in
double precision in a VAX 11/780 under the Berkeley UNIX version 4.3 operating
system.

Example 5.1. flexible robot arm. This simulation is concerned with the
re-positioning of a flexible, beam rotating horizontally about a vertical axis pass
ing through one end. The finite element mesh consists of 10 isoparametric ele
ments with linear interpolation functions for both displacement and rotation. To
avoid the well known "shear locking" phenomenon, (see, e.g. Zienkiewicz [1977]),
a uniformly reduced one point Gauss quadrature is employed to integrate the
tangent stiffness and residual The mass matrix, however, is integrated exactly
with two-point Gauss quadrature. Twocases are considered.

5.1.1. Displacement driven flexible robot arm. The geometry, material pro
perties, finite element mesh, as well as the time step size used in the integration
are given in Figure 5.1.1.a. Here the robot arm is first repositioned to an angle
of 1.5 radians from its initial position. This is achieved by prescribing the rota
tion angle it(t) s tf(0, t) as a linear function of time, as shown in Figure 5.1.1.a;
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the sequence of motion during this repositioning stage is depicted in Figure
5.1.1.6. Once the rotation angle it(t) is fixed at 1.5 rod for all time t > 2.5, the
robot arm then undergoes finite vibrations as shown in Figure 5.1. I.e.

5.1.2. Force driven flexible robot arm. Here the robot arm is now driven by
a prescribed torque T(t) applied at the axis of rotation eg, as shown in Figure
5.1.2.a. The applied torque is removed at time t = 2.5; the robot arm then
undergoes a torque-free motion. The simulation is terminated after completion
of one revolution, as shown in Figures 5.1.2.6 and 5.1.2.C.

Example 5.2. flying flexible rod. A flexible rod with free ends, initially
placed in an inclined position, is subject to a force and a torque applied simul
taneously at one end, see Figure 5.2.1.a. The applied force and torque are
removed at the same time t = 2.5, so that the subsequent free flight of the rod
exhibit periodic tumbling pattern. Two cases are considered.

5.2.1. Flexible beam in free flight. The motion of the rod during application
of loading is shown in Figure 5.2.1.6. The stiffness of the rod is low enough as to
exhibit finite deformations. A close-up of the first two revolutions is shown in
figure 5.1.3.C, while the entire sequence of motion is depicted in Figure 5.2. l.d.

5.2.2. The "flying spaghetti." The bending stiffness, EI of the rod is
lowered by a factor of 5 relative to the simulation in 5.2.1. This dramatic reduc
tion in stiffness results in the in the sequence of motions depicted in Figure
5.2.2.

Example 5.3. Multi-body dynamics. Two examples will be considered to
illustrate the applicability of the present formulation to the dynamics of multi-
body systems.

5.3.1. Muiti-component robot arm. The robot arm considered in example
5.1.1 is in this example stiffer by a factor of 100, and consists now of two flexible
components connected together by a hinge. The two-component robot arm is
subjected to the same prescribe rotation 1?(t) = tf(0, r) as in Example 5.1.1. The
problem data are summarized in Figure 5.3.1.a. The sequence of motions is
shown in Figures 5.3.1.6 and 5.3.I.e. Note that while the first component
vibrates about the stop angle i/(t) = 1.5 rod for t ^ 2.5, the second one under
goes a complete revolution about the connecting hinge.

5.3.2. Multibody system in free flight. A two-body system consisting of two
flexible links connected by a hinge, is initially at an inclined position. The sys
tem is set into motion by applying a force and a torque at one end of the lower
link, as shown in figure 5.3.2. The applied loads are subsquently removed at
time t =0.5, so that from there on the articulated beam undergoes free flight.
The lower link, indicated by the letter A in the Figure, then moves in the same
clockwise direction as the applied torque, whereas the upper link, indicated by
the letter B, moves in the opposite counter-clockwise direction.

6. Concluding Remarks.

We have presented a new approach to the dynamics of a plane beam under
large overall motions. The essence of this approach is the fully nonlinear plane
beam theory that can account for finite rotations as well as finite strains. The
appropriate strain measures in this beam theory is invariant under superposed
rigid body motion; such invariance is the necessary ingredient to the success of
the present approach. The motion of the beam is completely referred to the
inertial frame. We thus obtain the expression of the inertia term in the equa
tions of motion simply as mass times acceleration. By contrast, in the shadow
beam approach, one obtain a nonlinear and highly coupled inertia operator, and
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hence a special computer code need be devised to solve the resulting system. In
our approach, the inherent nonlinear character of the problem is transferred to
the stiffness part of the equations of motion; this results in a form of equations
of motion that arises typically in nonlinear structural dynamics. Consequently,
the dynamics of flexible beams under large overall motions can be analyzed in
any existing nonlinear finite element code. Without alteration in the formula
tion, one can apply this approach to the dynamics of a system of flexible beams
connected by hinges, as shown in two numerical examples. Further, we will
address the following points in forthcoming publications:

(i) The methodology presented in this paper can be employed for the dynamic
analysis of an earth-orbiting satellite composed of beam elements. How
ever, one must carefully treat separately the far field and the near field to
avoid ill-conditioning. The gravitational force field as well as satellite con
trol actuator forces are configuration dependent and require special treat
ment.

(ii) Conceptually, the proposed approach readily carries over to the fully three
dimensional case. This extension depends crucially on a proper treatment
of three dimensional finite rotations in both the structural deformations of
the beam and in the overall motions. For the static case, such a treatment
is available, Simo &Vu Quoc [1985]. The dynamic case, however, warrants a
separate treatment.

Acknowledgements

We thank Prof. R.L. Taylor, the developer of FEAP, for his helpful discus
sions. This work was performed under the auspices of the Air Force Office of
Scientific Research, grant No. AFOSR-83-0361. This support as well as the
encouragement provided by Profs. K.S. Pister and E. Polak are gratefully ack
nowledged.

References

Antman, S.S. [1972], "The theory of rod," Handbuch der Fhysics, Vol. VIa/2,
Springer, Berlin.

Antman, S.S. [1974], "Kirchhoffs problem for nonlinearly elastic rods," Quart.
J. ofAppl. Math., Vol. 32, pp. 221-240.

Ashley, H. [1967], "Observation on the dynamic behavior of flexible bodies in
orbit," AIAA J., Vol. 5, No. 3, pp. 460-469.

Baghat, B.M., and K.D. Willmert [1973], "Finite element vibrational analysis of
planar mechanism," Mechanisms and Machine Theory, Vol. 8, pp. 497-516.

Belytschko T., and T.J.R. Hughes [1983], Computational Methodsfor Transient
Analysis, Elsevier Science Publishers.

Benson, D.J., and J.O. Hallquist [1985], "A simple rigid body algorithm for struc
tural dynamics program. Part I," Proc. of the Int. Conf. on Numerical
Methods in Engineering Theory and Applications, Swansea, Ed. by J. Middle-
ton 8c G.N. Pande, A.A. Balkema Publishers, Netherlands.

Canavin, J.R. and P.W. Likins [1977], "Floating reference frames for flexible
spacecrafts," /. of Spacecraft, Vol. 14. No. 12, pp. 724-732.

Dahlquist, G. [1963], "Aspecial stability problem for linear multistep methods,"
BIT, Vol. 3, pp. 27-43.

August 1, 1985



J. C. Simo and L. Vu, Quae 17

de Veubeke, B.J. [1976], "The dynamics of flexible bodies," Int. J. of Engineer
ing Sciences, VoL 14, pp. 895-913.

Erdman, A.G., and G.N. Sandor [1972], "Kineto-elastodynamics —A review of
the state of the art and trends," Mechanisms and Machine Theory, Vol. 7,
pp. 19-33.

Fung, Y.C. [1965], Foundations of Solid Mechanics, Prentice-Hall, Englewood
Cliffs, New Jersey.

Gear, C.W. [1971a], "Simultaneous numerical solution of differential-algebraic
equations," IEEE Transaction on Circuit Theory, VoL CT-18, No. 1, pp. 89-95.

Gear. C.W. [1971b], Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gear. C.W. and L.R. Petzold [1984], "ODE methods for the solution of
differential/algebraic systems," SIAM J. Numerical Analysis, Vol. 21, No. 4,
pp. 716-728.

Goldstein, H. [1980], Classical Mechanics, Second edition, Addison Wesley,
Reading, Massachusetts.

Grotte, P.B., J.C. McMunn, and R. Gluck [1971], "Equations of motion of flexible
spacecraft," J. of Spacecraft and Rockets, Vol. 8, No. 6, pp. 561-567.

Hilber, H.M. [1976], "Analysis and design of numerical integration methods in
structural dynamics," Earthquake Engineering Research Center, EERC
Report No. 76-29, University of California, Berkeley.

Hughes, P.C. [1979], "Dynamics of a chain of flexible bodies," The J. of the
Astronautical Sciences, VoL 27, pp. 359-380.

Kane, T.R., and D.A. Levinson [1981], "Simulation of large motions of nonuni
form beams in orbit: Part II — The unrestrained beam," The J. of the
Astronautical Sciences, Vol. 29, No. 3, pp. 213-244.

Kane, T.R., P.W. likins, and D.A. Levinson [1983], Spacecraft Dynamics, Mc
Graw-Hill Book Co., New York.

Kumar, V.K, and P.M. Bainum [i960], "Dynamics of a flexible body in orbit," /.
of Ouidance and Control, Vol. 3, No. 1, pp. 90-91.

Levinson, D.A., and T.R. Kane [1981], "Simulation of large motions of nonuni
form beams in orbit: Part I —The cantilever beam," The J. of the Astronaut
ical Sciences, VoL 29, No.3, pp. 245-276.

Likins, P.W. [1974a], "Analytical dynamics and nonrigid spacecraft simulation,"
Jet Propulsion Laboratory, Technical Report 32-1593, California Institute of
Technology.

Itikins, P.W. [1974b], "Dynamic analysis of a system of hinge connected rigid
bodies with nonrigid appendages," NASA Technical Report 32-1576.

Laskin, R.A., P.W. likins, and R.W. Longman [1981], "Dynamical equations of a
free-free beam subject to large overall motions," The J. of the Astronautical
Sciences, VoL 31, No. 4, pp. 507-528.

Meirovitch, L. [1970], Analytical Methods in Vibrations, MacMillan, Toronto,
Canada.

Newmark, N.M. [1959], "A method of computation for structural dynamics," /.
of the Engineering Mechanics Division, ASCE, pp. 67-94.

Petzold, LR. [1982], "Differential/algebraic equations are not ODE's," SIAM J.
Sci. Stat. Comput., Vol. 3, No. 3, pp. 387-384.

Reissner, E. [1972], "On a one dimensional finite strain beam: The plane prob
lem," /. Appl. Math. Phys., VoL 23, pp. 795-804.

August 1, 1985



Dynamics of flexible beams under large overall motions 18

Richtmyer, D., and K.W. Morton [1967], Difference Methods for Initial Value
Problems, Second edition, Interscience, New York.

Simo, J.C. [1985], "A finite strain beam formulation. The three dimensional
dynamic problem. Part I," Comp. Meth. Appl. Mech. Engrg., Vol. 49, pp. 55-
70.

Simo, J.C, and L Vu Quoc [1985], "Three dimensional finite strain rod model.
Part II: Computational aspects," Electronics Research Laboratory Memoran
dum No. UCB/ERL M85/31, University of California, Berkeley (submmitted
for publication in Comp. Meth Appl. Mech Engrg. ).

Song, J.O., and E.J. Haug [1980], "Dynamic analysis of planar flexible mechan
ism," Comp. Meth. Appl. Mech. Engrg., Vol. 24, pp. 359-381.

Sunada W., and S. Dubowsky [1980], "The application of finite element method
to the dynamic analysis of flexible spatial and co-planar linkage systems,"
/. of Mechanical Design, Vol. 103, pp. 643-651.

Winfrey, R.C. [1971], "Elastic link mechanism dynamics," Trans. ASME, J. of
Engineering for Industry, Vol. 93, No. 1, pp. 268-272.

Zienkiewicz, O.C. [1977], The Finite Element Method, third edition, Mc Graw-
Hill. New York.

Appendix: finite element matrices.

In this appendix, we shall give the expressions of the relevant matrices dis
cussed in section 4; namely, the mass matrix H, the internal forces vector P(d),
the tangent stiffness matrix K^d), and the applied forces vector F(t).

Using the spatial discretization (4.3) in the first term of the weak form of
the equations of motion (4.2), Le., the inertia term, the mass matrix is obtained
at once as

with

H = f*(Xx)l*(Xi)dXx
[o.J]

*GW := [*i(*i) **<*i)]

(A.la)

(A.lb)

Next, by making use of (3.14) and (3.15), we may rephrase the second term
in the weak form (4.2) as follows

(A.2)

f tf •P[d] dXx = - f [nxnx' + rj^nz' + Va™' +^7al(l +tti')wa - ^2'^ii ] <*Xi
[0.L] [0.Z]

Integrate by parts (A.2)2, and recall that 17 •[nlt n2, m]* ^=0 a 0; there results

k(d)~
fri-¥[a]dXx = /D^djij. n2(d)

^ . «« [m(d)
with Dt(d) denoting the following differential operator

d/ dXx 0 u2'

D^d) := 0 d/dXx -(l + u^)
0 0 d/dXx
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Introducing the discretization (4.3)2 into (A.3a), we obtain the expression for the
discrete internal forces

(A.4)

In (A.4), the superscript /i in d* is used to designate the spatial approximation
to d(Xx,t) according to (4.3) 1. The same notation will be used throughout in this
appendix.

We now undertake the linearization of J fi*W{ja]dXx about a fixed

configuration d s a. This linearization procedure and the spatial^ discretization
(4.3), leads to the expression for the tangent stiffness matrix K^d) appearing in
(4.9). For the developments that follow, it proves convenient to rewrite (3.15) as

NM l+u{
' 1

1 nx{d)

JVaOD := C A'(d) ui > — 1 0 1 n2(d)

l«wj 0 m(q)

where

costf -sintf 0

sintf costf 0 (A.5b)
,0 0 1

The linearization about d is based on the notion of directional derivative at d in
the direction Ad:= [Atflt Au2, Atf]'. The following linearized quantities are
needed:

r 0 -Atf 0

= A(d)

C := Diag[EA, GAs, EI], A(d) :=

d

de
A(£ +eAd) = Atf

0

A (3).
*=o

ds
«=0

Nx

M

(3 +eAd) = CA(a)Di(S)M,

0 0 Ait2'

0 0 -Aux'
0 0 0

Nx(d)

M(d)

(A.5a)

(A.6a)

(A.6b)

(A.6c)

The linearization of the second term in the weak form (4.2) then follows at once
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d

ds
£r I yVP[3+eAd] dXx\ =

*t,*./ 1^(3)1? •A(3) C A (2)Dx(i) Ad dXx
mi

+ f D^-G^DgAd dXx
[o.il

20

(A.7)

in which the differential operator Dg and the matrix G(cl) are defined below
Dfe := Diag[d/dXXt d/dXx, 1] ,

(A.8)

Gtf) :=
0 0 ~nz(3)
0 0 nx(S)

-»2(5) nx(3.) -[(i +i21')nl(a) +u2'nz($)]
Let us now introduce the spatial discretization of Ad(jfi) in the same manner as
in (4.3)x

Ad(Xx) S £ *(Xx)bqj (A.9)
/=i

Using (4.3) together withj(A.9), we finally arrive at the expression for the tangent
stiffness matrix at d* = d

KT(ih) = Ht^+Kcifr)

where K(o!,l) represents the material part of the tangent stiffness,

HC4*) := /[D1^)*(Z1)]*A(^)CAC(^)D1(aA)*(X1) aX
[G.L]

and Kb(o!,t) the geometric part,

It is clear that the applied load vector F(0 is given by

«i(^i.O'
«*)•=• (/**(*l) oXi

(A.10)

(A.11)

(A.12)

(A.13)

The integration in all of the above matrices may be performed numerically using
Gauss quadrature. For the tangent stiffness matrix Ky, we use uniform reduced
integration to avoid shear locking. •
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figure Captions.

figure 2.1. Basic hinematics. Floating and inertial frames.

figure 3.1. Physical interpretation of the strain components of a beam in
the finite strain case.

Figure 5.1.1.a. Displacement drivenflexible robot arm. Problem data.
figure 5.1. l.b. Displacement driuen flexible robot arm. Repositioning

sequence to stop angle V = 1*5 rod. Time step size h = 0.5.
Figure 5.1.I.e. Displacement driven flexible robot arm. Free vibration

about if - 1.5 rod. Time step size h = 0.5.

figure 5.1.2.a. Force driuenflexible robot arm. Problem data.

figure 5.1.2-b. Force driuen flexible robot arm. Sequence of motion during
application of torque. Time step size h = 0.5.

figure 5.1.2.C Force driuen flexible robot arm. Sequence of motion after
removal of applied torque — completion of one revolution. Time step size
h = 0.5.

figure 5.2.1.a. Flexible beam in free flight. Problem data.
figure 5.2. l.b. Flexible beam in free flight. Sequence of motions during

application of loading. Time step size h = 0.1, plot after each 5 time incre
ments.

figure 5.2.I.e. Flexible beam in free flight. Free flight of the beam after
removal of the loading — close-up on the first 2 revolutions. Time step size
h =0.1, plot after each 5 time increments.

Figure 5.2.1.d. Flexible beamin free flight. Free flight —entire sequence.

figure 5.2.2. The "flying spaghetti." Time step size h = 0.1, plot after each
5 time increments.

figure 5.3.La. Multibody dynamics: Displacement driven of multi-
component robot arm. Problem data.

figure 5.3. l.b. Multibody dynamics: Displacement driven of multi-
component robot arm. Repositioning sequence to stop angle it = l.Srad. Time
step size h = 0.1.

figure 5.3.I.e. Multibody dynamics: Displacement driven of multi-
component robot arm. VibratiorTof robot arm about stop angle, and revolution
of flexible appendage about connecting hinge. Time step size h = 0.01, plot after
each 10 time increments.

figure 5.3.2. Multibody dynamics: Articulated beam in free flight. Time
step size h = 0.05, plot after each 5 time increments.
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Figure 2.1. Basic kinematics. Floating and inertial
frames.



Iz

T(t)
&-J

*

Shadow

Beam

Reference(lnitial)

Configuration

Figure 3.1. Physical interpretation of the strain
components of a beam in the finite strain case.



Material Properties-

EA=GAS= 10,000.
EI =1,000.

Ao=l.
\p-\0.

Fe.Mesh: 10 linear elements

Time history of <//(t):

1.5

0 2.5

t
123456789 10 1

e30
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Figure 5.1.1.a. Displacement driven flexible robot
arm. Problem data.
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Figure S.l.l.b. Displacement driven flexible robot
arm. Repositioning sequence to stop angle ^ = 1.5 rad.
Time step size h = 0.5.
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Figure S.l.Lc. Displacement driven flexible robot
arm. Free vibration about ^ = 1.5 rad. Time step size
h = 0.5.



Moterial Properties-

EA =GAS= 10,000.
EI =1,000.
Ap=1.
I/>-10.

Fe.Mesh: 10 linear elements.

Time history of T(t)

T(t)
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123456789 10 II

hinge 10

Figure 5.1.2.a. Force driven flexible robot arm. Prob
lem data.
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Figure 5.1.2.b. Force driven flexible robot arm.
Sequence of motion during application of torque.
Time step size h =0.5.
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Figure 5.1.2.C Force driven flexible robot arm.
Sequence of motion after removal of applied torque —
completion of one revolution. Time step size h = 0.5.



Moteriol Properties

EA =6AS= 10,000.
EI = 500.

A** I.

lJo =10.

Fe. Mesh: 10 linear elements

Time history of F( t) and T(t):

T(t)

80.0

0 2.5

F(t) =T(t)/10.

T(t)

Figure 5.2.1.a. Flexible beam in free flight. Problem
data.



t=0.5i .1=1.0 ,1 =1.5 ,t=2.0 t = 2.5

Figure 5.2.1.b. Flexible beam in free flight.
Sequence of motions during application of loading.
Time step size h =0.1, plot after each 5 time incre
ments.



4 = 3.0 t = 8.0 4 =13.0

Figure 5.2.I.e. Flexible beam in free flight. Free
flight of the beam after removal of the loading —
close-up on the first 2 revolutions. Time step size
h =0.1, plot after each 5 time increments.



Figure 5.2.l.d. Flexible beam in free flight. Free
flight — entire sequence.



Moteriol Properties

EA=6AS= 10,000.
EI = 100.

Ap=1.
1^=10.

Figure 5.2.2. The "flying spaghetti." Time step size
h =0.1, plot after each 5 time increments.



Material Properties--

EA =GAS= 1,000,000.
EI =100,000.

Ap=1.
1^=1.

Fe.Mesh: 4quadratic elements.

Time history of i//(t):

i//(t)(rad)
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Figure 5.3.1.a. Multibody dynamics: Displacement
driven of multi-component robot arm. Problem data.
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t =0.5—;

Figure 5.3.1.b. Multibody dynamics: Displacement
driven of multi-component robot arm. Repositioning
sequence to stop angle ^ = \.5rad. Time step size
h = 0.1.
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Figure 5.3.1-c. Multibody dynamics: Displacement
driven of multi-component robot arm. Vibration ot
robot arm about stop angle, and revolution of flexible
appendage about connecting hinge. Time step size
h = 0 01, plot after each 10 time increments.
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Moteriol Properties-

EA =6AS= 1,000,000.
EI =10,000.

\p*l for link A
\p -10. for link B
Fe.Mesh-. 4quadratic elements.

160.0

Time history of F(t) and T(t)
T(t)

0.5

F(t) =T(t)/4.

Figure 5.3.2. Multibody dynamics: Articulated
beam in free flight. Time step size h = 0.05, plot after
each 5 time increments.
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