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1. Introduction

The Linear Programming Algorithm created by Karmarkar [l] is based on
the use of typical non-linear programming techniques, evolving by a sequence of
line searches along internal feasible descent directions for his logarithmic
potential function. It has been noticed [2,3] that the method resembles barrier
function methods and methods of centers, but the precise role of non-linear pro
gramming procedures in his approach has not yet been clearly stated. The
tiature of the projective transformation used in Karmarkar's algorithm is
vaguely understood," as well as the role played by the unit simplex on which the
action takes place.

In this paper we intend to provide answers to these questions, and showthat
the unit simplex is not needed at all. By isolating the utilization of non-linear
programming procedures the path to improve the algorithm performance is
opened, resulting in greater reductions of the objective function between com
putations of the projection matrix.

We shali present an algorithm with two levels of hierarchy, composed of a
"master" algorithm that manipulates the Linear Programming Problem and calls
ah "internal" non-linear programming algorithm that provides a strategy for
improving the current solution. The master algorithm re-scales the Linear Pro
gramming Problem by means of a linear transformation that places the current
solution at the point e = [1,1, . . . , 1]'. An "internal problem" is then defined,
consisting of a non-linear potential function to be minimized in a linear space
with positivity constraints, and any non-linear programming algorithm can be
used to reduce the value of its objective function.

We state the complete "master" algorithm in section 2, and prove its linear
convergence. In sections 3 and 4 we present the internal algorithm and details
oh the determination of lower bounds for the value of an optimal solution.

The linear Prograniming Problem

Consider the Linear Programming Problem
Tninirriize c'x

subject to Ax=Q (P)
a'x = 1

SSsQ

where n > m > 0 . c,x s K" , a s Rm tA is an mtn matrix.
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The following hypotheses must be satisfied: a>0 , a^O, the feasible sat is
compact, an initial feasible solution x° is known as well as a lower bound v° for
the value of an optimal solution.

The formulation is quite general, since given a problem in R71'1:
minimize c 'x

subject to Ax - b

it is enough to set A := \A —b], and to introduce the variable x^ constrained
by Xn= 1. It is also clear that the simplex constraint e'x=l is also accepted by
the formulation and guarantees the compactness assumption.

We shall denote the feasible set of (P) by C, the value of an optimal solu
tion by v , and we shall make use of Karmarkar's Potential Function /(.)
defined for all x>0 by

f (x) =niog(c'x-v) - Slogan (1)

The function cannot be evaluated, since v is unknown. The algorithm uses
instead lower bounds for v , calculated at each iteration. Given the lower bound
it , the problem can be restated with the objective function c'x —u , and with a
potential function defined for all x ^ 0 ;

fu(x) =n log(c 'x -u) - £ I°g*; (2)

The objective function c'x —u can be put in the standard format by using the
following lemma:

1.1 Lemma; For all x e C , c'a:—u = (c —ua)'x .
Proof: immediate, by noticing that for all x sC , ua'x = u .since a'x = 1.

2. The master algorithm
In this section we present the complete master algorithm and prove its

linear convergence as a consequence of the assumed behavior of the internal
non-linear prograniming search. The algorithm will generate a sequence of
points (xk) and an increasing sequence of lower bounds {vk) for v , in such a
way as to guarantee a substantial decrease in / (.) in each iteration.

We now present the master algorithm, to be commented immediately after
wards.

Each iteration of the master algorithm will perform the following opera
tions: .

Scaling: a linear transformation brings the current solution xh to the point
e=(l,l,..l).

Projection: calculate the projection matrix onto the new linear space. This
time-consuming operation is done only once for each iteration of the master
aigdrithni. ,..-.• v
Calculation of a new lower bound: see section 4.
Definition of the internal problem, computation of a solution with a low value and
then back to the original problem.

The internal algorithm makes use of the number a, to be defined in (12),
and in this section we shall assume that the potential function defined in the
internal problem can be reduced by a in each iteration. The proof of this fact
will be the object of sections 3 and 4.
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2.1 Algorithm: Given a precision s > 0 , a lower bound v°^v and xQ s C , 3° > 0 .
Set fc:=0.

While c'x*—i/k>£ do

Define D\-dajag{x\%x\ x%) .
(scaling) Define 4fc :=A0 , ak := Az .
(projection) Calculate the projection matrix P onto Nv&(Ah) .
Set cp :=PZte , Op :=Pak .
(internal algorithm)

Calculate a lower bound u such that vk£u^v ..
Set c":=Cp-ixap .
Define the Internal Problem

mxnxmize g(y):=n logc'y - 2logi/^ (Pi)

subject to Aky = 0

V>0

]Jse a non-linear prograniming algorithm to find a feasible point y*
for (Pi) such that g(y?) <g (e) - a .
(conical projection) calculate

?:=^* <3>
(back to the original space) Set

xk+1:=Dy*
vk^\^u

ib:=A: + l

Conical Projections

The internal problem (Pi) is not well defined, since for y hear 0 , g(y)
can assume any value. We shall nevertheless keep this formulation with the
understanding that the desired result is a truncated sequence of points with
decreasing values of the objective function. (Pi) makes no use of the constraint
a'x = 1: its feasible set C* is simply the intersection of Null(Ak) and the inte

rior of the first orthant. C* is interesting for two reasons: first, because it is
easy to use search methods on it, since the projection matrix is known;
secondly, because it is a cone with the property that the potential function is
constant on each of its rays, as we formalize in the following lemma:

2.2 Lemma: For all ysCk = \y>0\ Aky =0j , for any \>0 ,

gfry) = g(y) •

Proof: by direct substitution in the definition of g (.) .

Consequently, to each feasible point x for (P), a ray \\D~lx \ \>Q] of
constant potential in (Pi) is associated. Conversely, given a point y*sCk result
ing from the internal algorithm, the point i/sC* given by the expression (3)
satisfies g(y)=g(y*) and afc'1/ = l, as can be trivially verified, y is the
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conical projection of y* onto e +NuU(ak') , i.e. the intersection of the ray
through y* and e +Null(ak') . The existence of the conical projection is
guaranteed by the hypotheses a^O , a ?*u and y* >0 . The subject of conical
projections wUl be further studied in section 5.

If vk -\j , then the internal problem is equivalent to problem (P), and the
problem can in principle be solved by a single application of a good non-linear
programming algorithm. This is unfortunately not likely to happen in practice,
due to the bizarre behavior of the potential function near the boundaries of the
orthant: it tends to +« near any non-optimal boundary point x &0 , to -«» for
a sequence convergent to an optimal solution, and to any number for sequences
convergent to 0 . Besides this, the rate of convergence ,of non-linear program
ming methods depends on well-conditioned Hessian matrices, which is definitely
not guaranteed near optimal solutions. On the other hand, non-linear program
ming methods can be very effective in reducing the value of the potential func
tion while far from the boundary of C* , and this can be done at a low cost since
ho projection matrices must be calculated while iterating on the internal prob-
lem.

The internal algorithm (to be studied in the next section) iterates while a
substantial decrease in the potential function is obtained. It will be shown that
if its first iteration is a steepest descent search, then in this iteration the poten
tial function g{.) drops by at least a fixed constant a>0.25 . The first iteration
is actually equivalent to the line search done in Karmarkar's method, and a is
the constant found in his work [l]. Assuming this behavior for the internal algo-
rithni, we shall now prove the linear convergence of the. master algorithm.

frqof of linear Convergence
Our aim is to prove that the sequence of values c'xk generated by the

algorithm is dominated by a sequence that decreases by a constant ratio at
each iteration. The sequence (c'x11) is not necessarily monotonically decreas
ing, and its values can increase in the beginning or when the lower bound vk
changes.

2.3 Lemma: Let y and x be related by Dy = x in an iteration A: of the algo
rithm. If Aky =0 then cp'y =c'x , Op'y =ak'y = a'x . Furthermore, if
ak,y = 1 then c'y —c'x —u .

Proof: Immediate consequences of the definitions of Op and cP , since for any
vector zsRn , for ysNull(Ak) , z'y = (Pz)'y . the last equality is a conse
quence of lemma 1.1 .

2.4 Lemma: For any xsC , for r^s^v , fa(x) £ fr(z) •
Proof: It is sufficient to notice that for s ^r , log(c 'x -s) *£ log(c 'x -r) .

2.5 Lemma: At any iteration k , if g(y*) ^ g(e) -a then

/v*+i(^+i)^/v*(a:fc)-a . (4)

Proof: Using the notation in the Algorithm 2.1, we first prove that for any vector
xsC , for y -D~lx ,

0 (1/)=/«(*)+log det(£>) (5)

In fact, using lemma 2.3,

g(y) =nlog(c'v) - 2logtPjJ1*/)
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=rilog(c'x-it)-2loga:j +Elog%

= /tt(*) +iogdet(i7)

Consequently, if g(y) decreases by a , so does /u0O .
The internal algorithm starts with e =D~lxk and finishes with y = D~xx* .
Using the assumption that p(y) ^ g(e)—a,

fu(xk")*fu(xk)-a .

Using Jthe fact that vk+1 =u ss v* ,
/vJb+1(x*+i)=/u(x*+D

*/„(**)-a

^ fvt(xk) -a , by lemma 2.4 ,

and the proof is complete.

This shows that the algorithm generates a sequence (fvk(xk)) t"nat
decreases at each iteration by at least a . The sequence (/(x*)) is dominated
by it, as a direct consequence of lemma 2.4. It is generally not true that the
objective function of (P) decreases at each iteration, but the following results
guarantee the overall convergence.

Let y := max [ 2j i°gxi IxtC . x>0 5. y is well defined, since C is com
pact, the argument is continuous in its interior and decreases indefinitely near
its frontier. If x* is a maximizer of this expression, then it can be thought of as
a "point of minimum potential in C ".

,fJxQ)+7,
Define K = exp I ) .

n

2.6 Theorem: At any iteration k of the algorithm 2.1,

c'xk-v <• JTexp ( -. ).
x n

Proof: Using lemma 2.5, at an iteration k , f(xk) £ f-yk(xk) ^ fvo(x°) -* a .
Using the definition of / (.),

nlog(c'xfc -i/) <> fvo(x°) +£ log*/ -* a

*fvo(x°)+y-ka •

by definition of y . Now, removing the logarithm,

, k • ( fAx*)+? k* \
c'x* —v ^ exp I ;

r v n n '

and the final result is obtained by using the definition of K.
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3. The Internal Algorithm

The Internal Algorithm performs three operations: calculation of a new
lower bound, calculation of a sub-optimal solution for the Internal Problem
defined in the master algorithm 2.1, and conical projection. The calculation of a
new lower bound is done by a simple algorithm to be presented nor; the proofs
and motivation will be the subject of section 4. In all the development to follow
we use the notation introduced in the master algorithm.

3.1 Algorithm: Calculation of a new lower bound.

If cp —vkOp has a non-positive component, then u :=ir5

Else u := min [ -^-| ol^O ]

As we shall prove iii the next section, this algorithm finds a lower bound for
y , ajid guarantees that the cost vector c used by the internal algorithm has
at least one non-positive component. In the present section we shall prove that
this guarantees a decrease of at least a >0.25 for the potential function g(.)
from e to y . We now state the Internal Algorithm.

3.2 Algorithm: (model) given a precision <5>0
i:=6; yd:=e
Repeat

Calculate PVg(y*) := -J—c -P[ y\~l yf1 •••y£l ]'
c y

Choose a descent direction hsNull(Ak) such that hPVg(yi) < 0 .
' (in the first iteration, set h := -PVg (yl) )

Find \>0 such that g(yi+^h) = minf gtf+Xh) | \>Q ,yi+Xh>0]

- i := if i

Until flrCv*"1)—flr(i/*) <6
y* :=yi

The algorithm above is no more than the general model for a non-linear pro-
grainming feasible directions search, for a special case in which the result of the
line searches is guaranteed to lie in the interior of the feasible set. The choice
of the descent directions was not specified unless for the first iteration, and can
be the result of any strategy like conjugate gradients or variable metric
methods [4]. The line.search is well defined, since the potential function grows
indefinitely near the frontier of the feasible set (unless for the lucky case of hit
ting an optimal solution for u =v ). It has been proved in [2] that the potential
function restricted to the line i^+Wi is unimodal, and reference [4] gives a
method for the search.

We shall then assume hereafter that the line search in 3.2 always has a
unique solution X.

The £rst iteration of the algorithm follows a steepest descent direction
starting at yQ = e . The following results explore the properties of this first
iteration, and snow that it is actually the search performed by Karmarkar's
algorithm.
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Properties of the potential function at y = e

Consider the potential function defined by the internal problem:

g(y) =n log c'y - 2 log ty , (6)

where c s Null(Ak) , c'e > 0 .
The gradient of the potential function calculated at y=e is given by

Vj(e) = rr-c-8 =PVflr(e) , (7)
C 8

since P e = e .

The search direction used by the first iteration of the internal algorithm is
h = —7g (e) . The next lemma establishes the connection between our approach
and Karmarkar's method:

3.3 Lemma: The line \^0-»s+X/i lies on the unit simplex, defined by the
equation e'x =n .
Proof: By direct verification,

e'(e+X7i) =n+\(e'e-n 3^-) =n .
c'e

It is now easy to find conditions under which a fixed minimum decrease is
guaranteed in this direction, by repeating Karmarkar's argument, or by follow
ing [2]. We shall write a new proof, with the intention of presenting a unified
treatment. The results to follow are essentially reformulations of properties of
the potential function shown in [l] and [2].

3.4 Lemma: The logarithm function xsR+ -»logx is strictly concave and
differentiable, and for any x >0 , for X such that |X| <x ,

log(x+X) =logx +*-+o(x,X) , (8)
x

where |o(x,X)|*s^
1-

x

Proof:
d2 1

Since for x >0 , -=-s-iogx = —=s-< 0 , the function is strictly concave.
dx* xd

Now, expanding in series about x ,

log(*+X) =logx +*-- ^j-+ £g-
Comparing with (8), we recognize

o(^.A)=S(-l)i-1^-.
Taking the absolute value,

k*^i*£flrf*£r«*

X *
i=22

Since |X| <x , this iast series can be added: the result of the summation coin
cides with the expression in (8), and completes the proof.



-8-

In particular, for x = 1, we have

•fc^S-rfcr (9)
The next lemma resumes Karmarkar's most important result, showing that

the in the first line search the potential function has a guaranteed decay that
does not depend on the original problem.
3.5 Lemma: If ||/i||2sl then for any Xe(O.l) ,

ff(8+xpnr)~ff(8)sS~x+2(i=AT
Proof: Let g(y) = gx(y) -gz(y) , where g^'.^nlogc'y , go(y): = l.lcgy,- .

We have: 7g2(e) - e , Vg±{e) = Vg(e) +e = -h +e .

(a) We start by examining the decrease in g i(.).
0i is concave, since log(.) is concave and y-*c'y is linear. Consequently,

gx{e tX-jrjjj-) *9i(e)fM9i(e) j|^jp
Now, notice that V$r ^(e) h = (-h +e )7t = -|| 7i ||2 , since by lemma 3.3 e'h =0 .
tTsing this result in the inequality, and assuming that \\h || > 1,

g1(etX|j^|p)-ffl(S)^-X|^||^-X (10)

(b) We now examine the variation of g\ . Using lemma 3.4, for O^X < 1

=Ilogl+x|liiMr|1o(l-Pir)
= 2° (i» nv^i ) .since Y.hi=e'h=-Q , by lemma 3.3 .

/=i 11^11 /=i

X/i

Now, using (8),

XV( . > fr > I ^ 1 ft A«ftf 1
lMe+xprr^! *r&iiikii' t ,i*,r

1 Vii

=Y"IZjT • since fltfa 11*11" (ID

Finally, combining (10) and (11), and noting that gz(e) =0 ,

*-x+2(T=xr •
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completing the proof.

The lemma above leads us to the conclusion that if in the first iteration of
algorithm 3.2 \\h || ^ 1 , then the line search results in a reduction of the poten
tial function g with a lower bound a that does not depend on the original
problem, given by

a=- min (-X+ ,X* ) >0.25 (12)
0<A<1V 2(1-X) '

The minimum is reached for X near 0.423, and the value is approximately
-0.268 .

To obtain the desired reduction in the potential function, the condition.
|| h ||^1 must be guaranteed. The next lemma reduces this condition to an

easier one, dependent on the value of c , and consequently on the lower bound
u calculated by algorithm 3.1.

3.8 Lemma: If c has a non-positive component, then \\h || > 1 in the first itera
tion of the internal algorithm 3.2.

Proof: From (7), h = ——c +e .
c'e

Suppose that for some k = i,..,n ,ck^Q . then, hk = i ck > 1, since
F\.- c'e

5*'e >0 . The fact that \\h || ^ hk completes the proof.

To establish definitely the efficiency of the internal algorithm, we must still
prove that the vector c -cp —u Op with u resulting from Algorithm 3.1 has a
non-positive component. This will be the object of section 4.

4. Petermination. of lower founds for the value of an optimal solution
|n the beginning of iteration A: of the master algorithm, a feasible solution

xk is known. A linear transformation on the original problem (P) brings this
point to the vector e in the new coordinates. Using the notation introduced in
Algorithm 2.1, a linear Programming Problem can be written in the new coordi
nates:

minimize cp'y (Pk)
subject to Aky = 0

V? = 1
i/StO

This problem is equivalent to (P), in the sense that each feasible point x
for (P) is univocally associated to a point y -D"xx feasible for (Pu), and their
costs are related by cp'y = c'x , as was shown in lemma 2.3. The value of an
optimal solution for (Pk) is then equal to, the value v of an optimal solution for
(p)..

In the beginning of iteration k a value vk^v is known. If c -cp —vkOp
has a non-positive component, then lemmas 3.6 and 3.5 guarantee a decrease of
at least a for the potential function, and the condition for linear convergence
(theorem 2.6) is fulfilled at this iteration. If this is not the case, a new lower
bound for v must be found, so that the hew c has a non-positive component:
in this section we show that this is always possible, and it is accomplished by
algorithm 3.1, repeated below:
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Algorithrn: Calculation of a new lower bound.
-„,fcIf Cp —vkOp has anon-positive component, then u :=v

Else u := min £—|Op,*oj (13)

4.3 77ieorem: Algorithm 3.1 generates a lower bound u for v , and cp —uop
has a non-positive component.

Proof: If cp -v*Op has a non-positive component, then the result is trivial. Sup
pose then that Cp -vkOp > 0 .
Consider the following relaxed version of (Pk):

mxnxmize cp'y .(14)
subject to Op'y = 1

t/^0

The dual of this Linear Programming problem is given by:

maximize z , zsR (15)

subject to zap-&Cp

By hypothesis, vkOp < cp , and consequently (15) is feasible. It follows that (14)
has an optimal solution y* , (15) has an optimal solution u > v!i , and
u = cp'y* .
Since (14) was obtained by relaxing (Pk), it is a lower bound for v .
(15) can be rewritten as

maximize z

cPisubject to z ^ -r^- j = l,..,7i such that Op 5*0
°PJ

cPb
The solution for this problem is given by (13), and for some index k , u = .

°Pk
It follows that Cpb —u Opb = 0 , completing the proof.

5. Conical Projections : working in the original space

Each iteration of the internal algorithm starts with a point yl an_d per
forms a line search along a direction h , resulting in a point_ y* = yx f\h . In
particular, the first iteration works on the line f e + \h \ X^ 0 J , where
K = —^—c +e . This line lies on the unit simplex, and the line search results in

c'e
a guaranteed decrease greater than 0.25 : this seems to attach a great impor
tance to the unit simplex.

We wiil show that the property above is by no means connected to the unit
simplex. Due to the 0-degree homogeneity of g(.) , there exists a cone of direc
tions leading to the same decrease as h , and the niinimizers for all these direc
tions lie on the same ray.

Consider a set S in the first orthant of R™ . The cone generated by S is
defined as K(S) = \ay s i?n | a> 0 , y s S ].
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Since the potential function g(.) is 0-degree homogeneous, Le,
g(Xy) = g(y) for any X>0 , it follows that

fo£9(y)= ™f~,9(y) (i6)ycS ycK{S)

If two sets S , Si in the first orthant generate the same cone, then
frv£s(y)= ™£ g(y) •ycS yeSj

This shows that the minimization of g(.) along two different lines lead to
the same optimal value whenever both lines generate the same cone.

We shall say that two directions hi, h2 are equivalent from y >0 , when
ever miriimizers yi,y2 of g(.) respectively Along hiandh2 in the first
orthant exist and lie on the same ray (and consequently g(yi) = g&'z) )• Some
facts are straightforward:

5.1 Lemma: Let h be such that yl+h > 0 in some iteration of the internal
algorithm, arid that the line search from Vi results in X<i . Then for any
a>0 , the direction h = a(y* +/i) -y* is equivalent to h from y* .
Proof: It is sufficient to see that the line segments jy* +X/T | Xe[0,l]j and
[yi+\h | Xs[0,l]J generate the same cone, defined by the extreme rays
f6y*|6>0} and |tf(y*+A) | d > Oj .

5.2 Lemma: If two directions are equivalent from y > 0 , then positive multiples
of these directions are also equivalent from y .
Proof: Straightforward, since scaling the directions does not change the result
Of the line, search-

5.3 Lemma: Let h be as in lemma 5.1. Then for any a e (-«, 1) , the direction
h ^h+uy* is equivalent to h from y* .
Proof: Byiemma 5.i, for any a >0 the direction a/T +(a-l)y* is equivalent
to h from y* . By lemma 5.2, we can multiply this direction by a"1, obtaining
h = h + a - —y* , a > 0 . Setting a = 1 , the directions are defined by

h = h +uyi , u e (—«, 1) , completing the proof.

In particular, in the first iteration, any direction of the form
—21—c+e —ue = -^—c +i/e , v s (—°°,2) , is equivalent to A

c'e c 'e

This set of directions includes for instance h = -c , which consequently is
as good as the gradient direction as a search direction. The only advantage that
seems to arise from the fact that h lies on the unit simplex is in the ease with
which the guaranteed decay of g(.) is proved: direct proofs for other equivalent
directions may not be so elegant.

The discussion above is useful for two reasons: first because it indicates
that no improvement in the convergence rates can be obtained_by trying other
directions generated by linear combinations of c and e (or h and [(yj)~ ]
in the general case); the second reason will be explored below, and is more
appealing: the line searches can be executed in the original space, by projecting
the search direction conically on yi +Null {akl).
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Working on y* +NuU (ak') .
Consider a vector y s Rn ,y*0 , and a point y * 0 .

5.4 Definition: Given a point z > 0 , the co7iicoi projection K-u7(z) of z onto
y+JVuZZ(a*') is defined as the intersection of y JrNuU{aJ6') and the ray
j clz | a > 0 \ , if the intersection exists.

If 7^0 , y^O and y >0, then the conical projection of any vector
z > 0 exists, and is given by

In fact, we obtain

7,^.7(«) =̂ -y«=7,y ,
and hence KVt7(z) s y +MzZi (y)

In particular,
zif 7'y =1 , then /q,i7(a) =^- (18)

5.5 Definition: Given a direction h s Rn , the conical projection Hyr/(h) of the
direction /i onto y + Null (7') is the direction Ky,7(y +A) -y , if it exists.

Consider the potential function £ (.) at some iteration of the internal algorithm.
5.6 Lemma: Let h be such that y +h > 0 and
min [g(y f\h) | X ^ 0 , y + XA > 0 j exists. Then for any 7 > 0 , y * 0 , the
directions h and HVw7(h) are equivalent from y .
Proof: Let X be a solution for the line search-along h . If X < 1, then the result
is an immediate consequence of lemma 5.1, since the projected direction is
given by

' ^»*y^Jiy-(v+*)-V •and ?ffW>0 .
If Xa: 1, then the result follows from an application of lemma 5.2, since it is
possible to scale h so that the hypotheses of lemma 5.1 are satisfied, and the
tesuiting conical projection will obviously be a multiple of HVt7(h) . This com
pletes the proof.

We now see that it is possible to work always on \y \ ak'y = 1J , by intro
ducing the following modification in the internal algorithm (3.2):

5.7 Line search along conically projected directions:

Choose a descent direction hzNull{Ak) such that h'PVg{yi) < 0 .
Scale h so that y* +/T > 0
Set h equal to the conical projection of h onto y% +Null (ak>)

\\yi\\ _
The scaling of h can be done either by setting h := ' ?- ' h , or by a com-

II'Mi
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mandlike

while not (y* +h > 0) do h = 0.5/T .

The remaining steps of the algorithm are not changed. The conical projection at
the end of the internal algorithm is no more needed.

Nothing seems to be gained by working on y + Null ( a*-) . On the other
hand, much can be lost, since the conical projections.prevent us from using
non-linear progranuniiig methods like conjugate gradients. The only possible
advantage of this approach lies on the possibility of working in the original
space, by mapping the search directions back to original coordinates and carry
ing the line search in that space.

Working in the original space

The internal algorithm can now be rewritten so that line searches are per
formed, in the original space, simply by setting at each iteration K. := Dhj ,
where hy is the direction found in 5.7'. The line search to be done in this direc
tion must minimize /tt(.) • We shall not rewrite the algorithm, since it is
straightforward: notice that the projection matrix must only be recalculated
whenever the decrease in a line search is small.

Again, there is no advantage in applying this procedure to regular LP prob
lems, for two reasons: first, powerful non-iihear programming algorithms cannot
be directiy applied; second, the repeated conical projections and changes of
coordinates require extra computations and spread errors.

On the other hand, this can be interesting if the LP problem has been
obtained.by transforming or approximating some parent problem (e.g. in inter
nal or external linearizations, or in dealing with inequality constraints): in these
cases it may be possible to further transform the search directions so as to per
form the line searches in the feasible set of the parent problem.

6. Conclusion

In his original work [l], Karmarkar needed the unit simplex as the set on
which the action takes place. This can be easily understood, since the orthogo
nal projection of the inverted cost vector —c on the simplex coincides with
-vj(e) , and also with the conical projection of —Vg(e) . The same behavior is

not observed at any other point y , and no substantial decrease of g(.) should
be expected by projecting —Vg(y) orthogonally on the simplex. The study of
conical projections clears the subject and sets us free from the unit simplex.

the computational aspects must now he studied in two lines: efficient calcu
lation of the projection matrices, and efficient algorithms for the solution of the
internal problem-

Much work has already been done in the first direction, based on the calcu
lation of an LR representation for the projection matrix [6],[2],[3],[5]. These
results are directly applicable to the present method.

The second direction consists in studying an unconstrained non-linear pro
gramming problem with the specific objective function g(.) . The best tech
niques are still to be detected, since g(.) is not convex, but it is pseudo-convex,
in the sense that its level sets are convex.
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