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ABSTRACT

The Linear Programming Problem is manipulated to be stated

as a Non-Linear Programming Problem having as objective function

- Karmarkar's logarithmic potential function. The resulting problem

is then solved by a master algorithm that iteratively rescales the

problem and calls an internal unconstrained non-linear program-

tning dlgorithm that reduces the poteritial function. We show that

Karmarkar's algorithm is equivalent to this method in the special

case in which the internal algonthm is reduced to a single line

gedrch. The new aigoritim has the same comple:nty of

arkar's method, but the amount of computation is reduced

. by the fact that only one projection matrix must be calculated for
each call of the internal algorithm.
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1. Intreduction

. The Linear Programming Algorithm created by Karmarkar [1] is basad on
the use of typical non-linear programming techniques, evolving by a sequence of
line searches along internal feasible descent directions for his logarithmic
potential function. It has been noticed [2,3] that the method resembles berrier
function methods and methods of centers, but the precise role of non-linear pro-
gramming procedures in his approach has not yet been clearly stated. The
nature of the projective transformation used in Karmarkar's algorithm is
vaguely understood, as well as the role played by the unit simplex on which the
action takes place. ) . :

In this paper we intend to provide answers to these questions, and show that
the unit simplex is not needed at all. By isolating the utilization of ron-linear
programming procedures the path to improve the algorithm perfermance is
opened, resulting in greater reductions of the objective function between com-
putations of the projection matrix.

We shall present an algorithm with two levels of hierarchy, composed of a
"master” algorithm that manipulates the Linear Programming Problem and calls
an "internal” non-linear programming algorithm that provides a strategy for
improving the current solition. The master algorithm re-scales the Linear Pro-
gramming Problem by means of a linear transformation that places the current
solution at the point e =[1,1,...,1]. An "internal problem" is then defined,
consisting of a non-linear potential function to be minimized in a linear space
with positivity constraints, and any non-linear programming algorithm can be
used to reduce the value of its objective function.

We state the complete "master” algorithm in section 2, and prove its linear
convergence. In sections 3 and 4 we present the internal algorithm and details
on the determination of lower bounds for the value of an optimal solution.

The Linear Programming Problem
Consider the Linear Programming Problem
minimize c'z

subject to Az =0 P
az=1
z=0

where n >m >0,c,z ¢ R®, a ¢ R™, A isan mXn matrix.
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The following hypotheses must be satisfied: a=0, a0, the feasibiz set is
compact, an initial feasible solution z°® is known as well as a lower bound v° for
the value of an optimal solution.

The formulation is quite general, since given a problem in R®1
minimize ¢'ZT
subject to Az =b
' z=0 N )
it is enough to set A:=[4 -b], and to introduce the varieble z, constrained

by zp=1. It is also clear that the simplex constraint e'z=1 is also accepted by
the formulation and guarantees the compactness assumption.

‘We shall denote the feasible set of (P) by C, the value of an optimal solu-
tion by v, and we shall make use of Karmarkar's Potential Function f ()
defined for all z>0 by

£ (=) =nlog(e'z —v) - jf_ll.log Zj (1)

The function cannot be evaluated, since v is unknown. The algorithm uses
instead lower bounds for v , calculated at each iteration. Given the lower bound
u , the problem can be restated mth the objective function ¢'z —u , and with a

potential function defined for all z=0:;
' Tu(z) =nlog(c'z —u) - f: log z; (2)
=1

The objective function ¢'z -« can be put in the standard format by using the |
following lemma:

1.1 Lemma: Forall z£C, c'z—u=(c-ua)z.
Proof: immediaté by noticing that forall zsC, ua'z =u ,since a'z = 1.

2 The master algonthm

In this section we present the complete master alaonthm and prove its
linear convergence as a consequence of the assumed behavmr of the internal
non-linear programrmng 'search. The algorithm will generate a sequence of
points (z*) and an increasing sequence of lower bounds (v¥) for v ,insucha
way as to guarantee a substantial decrease in f(.) in each iteration.

We now present the master algorithm, to be commented immediately after-
wards.

Each iteration of the master algorithm will perform the following opera-
tions: . :
Sca].i(ng: a ;inear transformation brings the current solution z* to the point
e =(1.1..1).

Projection: calculate the projection matrix onto the new linear space. This
time-consuming operation is done only once for each iteration of the master
algoril

Calculation of a new Iower bou.nd see sectl.on 4,

Definition of the internal problem, computation of a solution with a low value and
then back to the original problem.

The internal algorithm makes use of the number «, to be defined in (12),
and in this section we shall assume that the potential function defined in the
internal problem can be reduced by a in each iteration. The proof of this fact
wﬂl be the ob]ect of sections 3and 4.
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2.1 Algorithm.: Given a precision £>0, a lower bound v%<v and z%:C, =%>0.
Set k£:=0.
While c'z®—v*>¢ do
Define D:=diag(z%,z5,...,z5).
(scaling) Define A*:=AD,a*:=Da .
(projection) Calculate the projection matrix P onto Null{4%).
* Set ¢p:=PDc , ay:=Pak . :
(internal algorithm)
Calculate a lower bound % suchthat v¥sus<v .
Set ¢:=cp—ua, .
Deflne the /nternal Problem

minimize g(y):=nlogf'y - 2 logy; (Pi)
) . I bt
subject to  AFy =0
y>0

Use a non-iir.geai‘ programrning aigorithm to find a feasible point y*
for (Pi) such that g(y*)<g(e)-a. ‘
(conical projection) calculate

I | '
7= ;,;,y—,‘y‘ (3)
(back to the original space) Set
zk+l .= .Dy"
wEtlz=qy
Eisk 1
Conical Projections

The internal problem (Pi) is not well defined, since for y near 0, g(y)
can assume any value. We shall nevertheless keep this formulation with the
understanding that the desired result is a truncated sequence of points with
decreasing values of the objective function. (Pi) makes no use of the constraint
@'z =1: its feasible set C* is simply the intersection of Null(4*) and the inte-
rior of the first orthant. C* is interesting for two reasons: first, because it is
easy to use search methods on it, since the projection matrix is known;
secondly, because it is a cone with the property that the potential function is
constant on each of its rays, as we formalize in the following lemma:

2.2 Lemma: Forall yeC*={y >0 | Aby =0}, for any A>0,
g(Ay) =g(y) .
Proof: by direct substitution in the definition of g{(.) .
Con_sequeni:ly, to eaci:a feasible ppmt z for (P), a ray {AD™1z I A> 0§ of
constant potential in (Pi) is associated. Conversely, given a point y*sC* result-

ing from the internal algorithm, the point F&C* given by the expression (3)
satisfies g(f)=g{y*) and a*'F =1, as can be trivially verified. ¥ is the
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conical projection of y* onto e +Null(a®') , ie. the intersection of the ray
through ¥* and e+Null(a 'y. The existence of the conical prOJec’cion is
guaranteed by the hypotheses a=0,a #0 and y*>0. The subject of conical
projections will be further studied in section 5.

If v*=v, then the internal problem is equivalent to problem (P), and the
problem can in prmc1p1e be solved by a single application of a good non-linear
programming algorithm. This is unfortunately not likely to happen in practice,
due to the bizarre behavior of the potential function near the boundaries of the
orthant: it tends to +e near any non-optimal boundary pcint =z #0, to —e= for
a sequence convergent to an optimal solution, and to any number for seguences
convergent to 0. Besides this, the rate of convergence .of non-linear program-
ming methods depends on well-conditioned Hess1an matrices, which is definitely
not guaranteed near optimal solutions. On the other hand, non-linear program-
ming methods can be very effective in reducing the value of the potential func-
tlon while far from the boundary of C* , and thlS can be done at a low cost sincs

10 prolectlon matnces must be calculated thle Lteratm,:, on the muer'xal Drob-
em.

The Lnternal algonthm (to be studled in the next section) iterates while a
substantlal decrease in the potential function is obtained. It will be shown that
glts first iteraticn is a steepest descent search, then in this iteration the poten-

al funchon g(.) drops by at least a fixed constant a>0.25. The first iteration
is actually equwalent to the line search done in Karmarkar's methed, and & is
the constant found in his work [1]. Assuming this behavior for the interral algo-
nthm. we shall now prove the hnear convergence of the. master algorithm.

l’roof of Linear Convergence

Our aim is to prove that the sequence of values c'z® generated b j the
algorithm is dormnated by a sequence that decreases by a constant ratio at
each 1terat10n The sequence (c'z®) is not necessarily monotonically decreas-
ing, and its values can increase in the beginning or when the lower bound vk

chang es’

2.3 [emmma: Let y and. z berelatedby Dy =z m an iteration k& of the algo-
rithm. If A*y =0 then Cp'y =c'z, @'Yy = a*'y = a'z . Furthermore, if
ak'y =1 then ¢y =c'z—-u .

Proof; Immediate consequences of the definitions of a, and c; , since for any
vector z&R™, for ysNull(A") z'y = (Pz)y . The last equality is a conse-
quence of lemma 1.1.

24 Lemma. For any z&C, for r=s v . f,('z) s fr(z) .
Proof: 1t is sufficient to notice that for s =7, log(c'z —s) <log(c'z —7).
2.5 Letnma: At any iteration & , if g(y*)sg(e)—a then
I es(@Et) < f p(zF) —a . : (4)

Proof: Using the notatmn in the Algorithm 2.1, we first prove that for any vector
zeC, for y=DTlz,

9(¥) = fu(z) +logdet (D) ()
In fact, using lemma 2.3, '

g(y) =nlog(c'y) —jglog(ﬂ:?‘z:)
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n n
=nlog{c'z —u)— ) logz; + ¥, log Dj;
=1 . =1
= fu(z) +1logdet (D)

Consequently, if g{y) decreases by a,sodoes fyu(z).
The internal algorithm starts with e = D™'z* and finishes with § = D™'z**!.
Using the assumption that g(7) <g(e)-«a.,
fu(zkﬂ) = fu(xk) -x .
Using the fact that »**! =u =%,
Fper(z**Y) = fu(zF*)
< fu(z®) -
< fe(z) , by lemma 2.4,

and the proof is complete.

This shows that the algorithm generates a sequence (fug(x")) that
decreases at each iteration by at least a . The sequence ( F{z* )) is dominated
by it, as a direct consequence of lemma 2.4. It is generally not true that the
objective function of (P) decreases at each iteration, but the following results
guarantee the overall convergence.

Let ¥:= max § 2log:cj | xeC,z>0; . 7 is well defined, since C is com-
j=1 '

pact, the argument is continuous in its interior and decreases indefinitely near
its frontier. If z* is a maximizer of this expression, then it can be thought of as
a "point of minimum potentialin C".

o
Define K = exp (f_,,o_i%t"_‘)’_) .

ke _ka

¢'z® ~v < Kexp ( S

Proof: Using lemma 2.5, at an iteration k, f(z*)= f«(z*)= [0z —ka.
Using the definition of f(.).

2.6 Theorem: At any iteration k& of the algorithm 2.1,

nlog(c'z® —v) < f o(z% + ilogz,' -k a
- . j:l

< f oz +y-ka,
by definition of 7y . Now, removing the logarithm,

(%) +
'z —u < exp f"o(n) L k: )

and the final result is obtained by using the definition of X .



3. The Internal Algorithm

The Internal Algorithm performs three operations: calculation of 2 new
lower bound, calculation of a sub-optimal solution for the Internzl Problem
defined in the master algorithm 2.1, and conical projection. Tkz calculation of a2
new lower bound is done by a simple algorithm to be presentsd now; the proofs
and motivation will be the subject of section 4. In all the devzlopment to follow
we use the notation introduced in the master algorithm.

3.1 Algorithm: Calculation of a new lower bound.
If cp -'u"’a.P has a non-positive component, then u:=v*

g = 1o °P1
Else u .-Prﬁ:in{ ——| &, #0 ;

As we shall prove in the next section, this algoritbm finds a lower bound for
v , aid guarantees that the cost vector & used by the internal algorithm has
at Ieast one non-posmve componenl: In the present section e sha 1 prove that
tl:ns guarantees a decrease of at least «>0.25 for the potential function g()
from e to ¥ . We now state the Internal Algorithm.

3.2 Algonth.m (model) given a precision §>0

i:=0; y%:=e
Repeat
Calculate PVg(y'):= — g —P[y Tyt y,ﬁ-ll

Choose a descent chrectlon h & Null (A") such that A'PVg(y*) <0.
(in the first iteration, set h:=-PVg(y?))

Find X>0 such that g(y*+Ar) = min{g(y*+Ah) | A>0,y*+AR >0}

.y“"l = yi +Xh
ii=it+i
Until g(y* ) -g¥')<é
y* :=yi

. The algorithm above is no more than the general model for a non-linear pro-
gramming feasible directions search, for a special case in which the result of the
line searches is guaranteed to lie in the interior of the feasible set. The choice
of the descent directions was not specified unless for the first iteration, and can
be the result of any strategy like con]ugate gradients or veriable metric
methods [4-] The line search is well defined, since the potential function grows
mdeﬁmtely near the frontier of the feasible set (unless for the lucky case of hit-
ting an optimal solution for u =v ) It has been proved in [2] that the potential
function restricted to the line y'+M is unimodal, and reference [4] gives a
method for the search.

We shall then assume hereafter that the line search in 3.2 always has a
unique solution A

The ﬂrst 1terat10n of the algonthm follows a steepest descent direction
starhng at y°=e . The follomng results explore the properties of this first
jteration, and show that it is actually the search performed by Xarmarkar's
algorithm.
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Properties of the potentiai functionat y=e
Consider the potential function defined by the internal problem:

g(y) =nlogcy -;Illogw ; . (8)

where € & Null(4*) ,E'2 >0.
The gradient of the potential function calculated at ¥y =e is given by

V(o) = -t —e = PUg(e) . - @

since Pe=e.

The search direction used by the first iteration of the internal algerithm is
h = —Vg(e) . The next lemma establishes the connection between our acproach
and Karmarkar's method:

3.3 Lemma: The line A=0-e +Ak lies on the unit simplex, defined by the
equation e’z =n .

Proof: By direct verification,
e'(e -I-Nz) —n+7\(ee -n —) =n .

It is now easy to find condmons under which a fixed minimurn decrease is
guaran{:eed in this direction, by repeating Karmarkar's argument, or by follow-
. Eg [2). We shall write a new proof, with the intention of presenting a unified

eatment. The results to follow are essentially reformulations of propertiss of
the potential function shown in [1] and [2].

3.4 Lemma: 'I'he loga.nthm functlon zeR* 2 logz is strictly concave and
dJﬂerentxable. and for any z>0, for A such that |[A| <z,

log (x+>\) = log:z: + >‘—+¢.1(::: A, (8)

A2 1
where |o(zA)| = o2 - I

z
Proof:

. 2
Smce for z >0,

—logz = —;1—< 0, the function is strictly concave.

dz?
Now, expanding in series about z ,
lOg(Z‘l‘A) = ]_ogz-[- .A...... .Az—.l. _)\_a_._ e
z ox2 a3

Comparing with (8), we recognize
. - X‘
3 - i-1 —
Taking the absolute value,

RIS

Ii
Since |A| <z, this last series can be added: the result of the summation coin-
cides with the expression in (8), and completes the proof. )

H|>‘



In particular, for z =1, we have

o(1\) =2 L

2
EEEI S

The next lemma resumes Karmarkar's most important rssult, showing that
the in the first line search the potential function has a guarantzad decay that
does not depend on the original problem.

8.5 Lemma: If ||k|| = 1 thenfor any A£(0,1),

g(e +?\-I-|—I’:T) -g(e) = -}\+-2-(—§—_}\-5—

gt

Proof: Let g(y) = g1(y) —g2(y) . where g,(y):=nlogfy . galy):=
We have: Vgz(e) =e, Vgi(e) =Vg(e)+e = —h +e.

legy; .

i=1

(2) We start by examining the decrease in g;(.) .
g1 is concave, since log() is concave and y-=C'y is h.near ponaaq‘_ed tly,

91(3 +Xw) <g,(e) +\7g,'(e) W

Now, notice that Vg)(e)h =(-h+e)h = —Hh.]l2 , since by lemma 3.3 22 =0.
Using this result in the inequality, and assuming that ||2|| =1,
gi(etAgim) ~g1(e) = Alall < A (10)

(b) We now examine the variation of gé Usih;r lemma 3.4, for 0=A<1

gz(e-!-h Al ) ilog( 1HA 2 lh“ )
- f:“gl”i AT ‘“i (s uhu)

= 20(1——-1—) ,since 3'h; =eh =0 , bylemma3.3 .
P px

Now, using (8), .
h 1 A2h12 1
e +A
[ :( uhn)l 2nhu2 N
II I
e R4 :
< = ——  since <|h) L I=1 ...,
2;:1“,1“2 Tox |hil < lR]] . ]
AZ i . 2 12
= —— , since = ||h 11
TR Bf = ln (11)

Finally, combmmg (10) and (11), and notlng that ga(e)=0,

g(e +)\||h|| ) g(e)5g1(2+)\ TR ) g,(e)-}-lgg(e +)\“]}:” ) |

3\2

skm.



completing the proof.

The lemma above leads us to the conclusion that if in the first iteration of
algorithm 3.2 ||h|| =1, then the line search results in a reduction of the poten-
tial function g with a lower bound « that does not depend on the original
problem. given by

a=-min( A+ )>025 (12)

0<A<1 2(1 A)
The minimum is reached for A near 0.423, and the value is approximately
-0.268 .

To obtain the desired reduction in the potential function, the condition,
lh||=1 must be guaranteed. The next lemma reduces this condition to an
easier one, dependent on the value of &, and consequently on the lower bound
u calculated by algorithm 3.1. '

3.8 Lernma: If € has a non-positive component, then ||k |[=1 in the first itera-
tion of the internal algorithm 3.2.

Proof: From (7), h = -cﬂé—é‘-l-e .

Suppose !:hat for some k =1, LT , Ck sO Then, he = l—g_ﬂ—ck =1, since
&'e >0. The fact that IRl = Ry completes the proof.

To establish definitely the efficiency of the internal algorithm, we must still
prove that the vector &=c, —ua, with u resulting from Algorithm 3.1 has a
non-posxtlve component This will be the object of sectxon 4.

4 Determmatlon of lower bou.nds for the value of an optxmal soiuﬁon

{;1 the beginning of iteration k& of the master algonthm a feasible solution
known. A linear transformation or the original problem (P) brings this
pomt to the vector e in the new coordinates. Usmg the notation mtroduced in
Algorithm 2.1, a Linear Progra.rm‘mng Problem can be written m the new coordi-
nates:

minimize cp'y . A (Pk)
subject ta A¥y =0
Gy =1
y=0

This problem is equivalent to (P), in the sense that each feasible point =z
for (P) is univocally associated to a point y =D7'z feasible for (Pu), and their
costs are related by c, Y = ¢'z , as was shown in lemma 2.3. The value of an
t(:p)hmal solution for (Pk) is then equal to the value v of an optimal solution for
P

In the begmm.ng of 1terat1on k a value v s'u is known. If ¢ =c:p —-vta,
has a non-p051t1ve component, then lemmas 3. 6 and 3.5 guarantee a decrease of
at least a for the potential function, and the condition for linear convergence
(theorem 2. 6) is fulfilled at this iteration. If this is not the case, a new lower
bound for v must be found, so that the new ¢ hasa non—posmve component:
in this section we show that this is always possible, and it is accomplished by
algorithm 3.1, repeated below:

k
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Algorithm.: Calculation of a new lower bound.

If ¢ —'u"a,, has a non-positive component, then u 1=k

= s p
Else « .—jg%.r':“ni %, | ap, #0 g (13)

4-3 Thearem: Alcronthm 3 1 generates a lower bound u for v, and ¢ —ug,
has a non-posmve component. '

Proof: 1If ¢, -*u“a,, has a non-positive component, then the result is trivial. Sup-
pose then that cp —v¥a, >0.

Consider the followmg relaxed version of (Pk):
minimize cp'y (14)
subjectto ap'y =1
' y=0
The dual of this Linear Programming problem is given by:
mdzimize z , 2&R (15)

subject to zap < cp

By hypothesis, v*¥a, < ¢, , and consequently (15) is feasible. It follows that (14)
has an optimal solution %*, (15) has an optimal solution = >v*, and
u© =cy'y*.

Since (14) was obtained by relaxing (Pk), u is a lower bound for v .

(15) can be rewritten as

mazimize 2z
‘ c ‘
subject to z < r.T:L j=l..n  such that ap #0
1

. c
The solution for this problem is given by (13), and for some index k , © = 2

. - &
It follows that ¢, —u @, = 0, completing the proof.

5. Conical Projections : working in the original space

Fach iteration of the internai alc,onthm starts with a point %! and per-
forms a line search along a direction k , resulting in a point ¥* =y*+Xkh.In
particular, the first iteration works on the line {e +Ah | A=0}, where
h=- ELC +e . This line lies on the unit simplex, and the line search results in

'?
a guaranteed decrease greater than 0.25 : this seems to attach a great impor-
tance to the unit su'nplex.

We will show that the property above is by no means connected to the unit
simplex. Due to the O-degree homogeneity of g(.) . there exists a cone of direc-
tions leading to the same decrease as & , and the minimizers for all these direc-
tions lie on the same ray.

Consider a set S in the first orthant of K™ . The cone generaied by S is
definedas X(S)={ay e R®* |a>0,y & S].
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Since the potential function g(.) is 0O-degree homeogznsous, i.e,
- g(\y) =g(y) for any A >0, it follows that

infgw) = inf 90y) (16)

If two sets S ,S; in the first orthant generate the sam= cone, then
infg(y) = inf g(y).
yes yeS,

. This shows that the minimization of g(.) along two different linas lead to
the same optimal value whenever both lines generate the same cone.

We shall say that two directions h,, hp are equivalent from y >0, when-
ever minimizers ¥,;,yz of g() respectively .along h;and 2z in the first
orthant exist and lie on the same ray (and consequently g(y;) =g (y2) ). Some
facts are straightforward:

6.1 Lemma: Let A be such that y*+h >0 in some iteration of tke internal
algorithm, and that the line search from y; results in A<1. Then for any
a>0, the direction h = a{y'+~ ) —-y' is equivalent to kA from y*.

Proof: Lt is sufficient to see that the line segments {y'+AA | Ae[0,1]} and
fy*+Ah | A£[0,1]} generate the same cone, definied by the extreme rays
féy* | 6>0} and {6(y*+h)|6>0}.

5.2 Lemma: If two directions are equivalent from y > 0, then positive multiples
of tpese Qirections are also eqqivalent from ¥y . '
Proof: Straightforward, since scaling the directions does not change the result

of the line search.

5.3 Lemma: Let ki be as in lemma 5.1. Then for any p & (-=,1), the direction
h =R +py is equivalent to A from y*. .

Proof: By iemma 5.1, for any a >0 the direction ah+(a—1)y' is equivalent
to h from y'. By lemma 5.2, we can multiply this direction by a~!, obtaining
h=h+a- %—‘y‘ , a>0. Setting u=1- ;—. the directions are defined by
h =R+upyt ., pe(-=,1), completing the proof. '

In particular, in the first iteration, any direction of the form

-E%E +e —ue = E_Z"'—g—-&'-!-ve , ve(—=,2) , isequivalentto A
This set of directions includes for instance 2 = —Z , which consequently is
as good as the gradient direction as a search direction. The only advantage that
seems to arise from the fact that A lies on the unit simplex is in the ease with
which the guaranteed decay of g(.) is proved: direct proofs for other equivalent
directions may not be so elegant.

- The discussion above is useful for two reasons: first because it indicates
that no improvement in the convergence rates can be obtained by trying other
directions generated by linear combinations of € and ¢ {(or & and [(¥})™']
in the general case); the second reason will be explored below, and is more
appealing: the line searches can be executed in the original space, by projecting
the search direction conically on y'+ Null (a*').
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Working on y* + Null (a®') .
Consider a vector ¥y ¢ R* ,7#0, and a point y #0.
5.4 Definition: Given a point z > 0, the conical projection K, .(z) of z onto
)

y + Null (a*') is defined as the intersection of ¥y +Null (¢®') and the ray
faz | @ >0}, if the intersection exists.

If, y=0, y#0 and ¥y >0, then the conical projection of any vector
z > 0 exists, and is given by '

=2y
- KyA2) Yz -1 . (17)
In fact, we obtain

7EAe) = Thyz =y
and hence K, .,(z) £y + Null (¥)

In particular,

lf 7Y =1. ., then Ky.(z) = ‘-7—2- (18)

5.5 Definition: Given a direction k £ R™, the conical projection H, (h) of the
direction h onto y + Null (7') is the direction K, (y +h)-vy , ifit exisis.

Consider the potential furiction g{.) at some ii;eré.i:ioh of the internal algorithm.
5.8 Lemma: Let A be suchthat y+hA >0 and

minf{g(y +A\h) | A=0 , y+Ah >0} exists. Then for any y>0 , 7 # 0, the
directions A and Hy,(h) are equivalent from ¥ .

Proaf: Let X be a solution for the line search-along k. If A <1, then the result
is an immediate consequence of lemma 5.1, since the projected direction is
given by ~ '
Hyh)= —24— (y+h)-y ., and —2<L >0
vokh) = Sryery WPV TR

I A=1, then the result follows from an application of lemma 5.2, since it is
possible to scale A so that the hypotheses of lemma 5.1 are satisfled, and the
resulting conical projection will obviously be a multiple of H,,(h). This com-
pletes the proof. '

We now see that it is possible to work always on v | a."'y = 1}, by intro-
ducing the following modification in the internal algorithm (3.2): .

5.7 Line search along conically projected directions:

Choose a descent direction & & Null (4*) such that A'PVg(y) <0 .
Scale 2 sothat y*+h2 >0 '
Se@: h equal to the conical projection of h onto y“‘ + Null (a*')

The scaling of A can be done either by setting A := -U-E_—“—E , Or by a com-
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mand like
while not (y*+A >0) do A =0.5A.

The rernaining steps of the algorithm a.f‘e not changed. The conical projzsction at
the end of the internal algorithm is no more needed.

Nothing seems to be gained by working on ¥ + Null (c¥!). On the other
hand, much can be lost, since the conical projections. prevent us from using
non-linear programming methods like conjugate gradients. The only possible
advantage of this approach lies on the possibility of working in the original
space, by mapping the search directions back to original ccordinates and carry-
ing the line search in that space.

Working in the original space

) The internal algorithm can now be rewritten so that line searches are per-
forg;ed. in the original space, simply by setting at each iteration A, := Dhy ,
where 'k, is the direction found in 5.7 . The line search to be dene in this direc-
tion must minimize f,(.). We shall not rewrite the algorithm, since it is
straightforward: notice that the projection matrix must only be recalculated
whenever the decrease in a line search is small.

... Again, there is no advantage in applying this procedure to regular LP prob-
lems, for two reasons: first, powerful non-linear programming algorithms cannot
be directly applied; second, the repeated conical projections and changes of
coordinates require extra computations and spread errors.

On the other hand, this can be interesting if the LP problem has been
obtained by transforming or approximating some parent problem (e.g. in inter-
nal or external linearizations, or in dealing with inequality constraints): in these
cases it may be possible to further transform the search directions so as to per-
form the line searches in the feasible set of the parent problem.

8. Conclusion Lo L .

In his original work [1], Karmarkar needed the unit simplex as the set on
which the action takes place. This can be easily understood, since the orthogo-
nal projection of the inverted cost vector —Z on the simplex coincides with
-~Vg(e), and also with the conical projection of —Vg(e). The same behavior is
not observed at any other point ¥ , and no substantial decrease of g(.} should
be expected by projecting —Vg(y) orthogonally on the simplex. The study of
conical projections clears the subject and sets us free from the unit simplex.

The computational aspects must now be studied in two lines: efficient calcu-
lation of the projection matrices, and efficient algorithms for the soluticn of the
internal problem. '

Much work has already been done in the first direction, based on the calcu-
lation of an LR representation for the projection matrix [6],[2],[3].[5]. These
results are directly applicable to the present method.

The second direction consists in studying an unconstrained non-linear pro-
gramming problem with the specific objective function g{(.). Thé best tech-
niques are still to be detected, since g(.) is not convex, but it is pseudo-convez,
in the sense that its level sets are convex. '
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