

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BOUNDED RECURSION II

DEDUCTIVE DATABASES

by

Y. E, Ioannidis

Memorandum No. UCB/ERL M85/6

2 February 1985

BOUNDED RECURSION IN

DEDUCTIVE DATABASES

by

Y. E. Ioannidis

Memorandum No. UCB/ERL M85/6

2 February 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

-1-

BOUNDED RECURSION IN DEDUCTIVE DATABASES

Yannls E. Ioannldis

Department of Electrical Engineering and Computer Science
Computer Science Division

University of California
Berkeley, CA 94720

Abstract

A virtual relation (or view) can be defined with a recursive statement that is a function of one or
more base relations. In general, the number of times such a statement must be applied in order to
retrieve all the tuples in the virtual relation depends on the contents of the base relations involved
in the definition. However, there exist statements for which there is an upper bound on the
number of applications necessary to form the virtual relation, independent of the contents of the
base relations. Considering a restricted class of recursive statements, we give necessary and
sufficient conditions for statements in the class to have this bound.

1. INTRODUCTION

In the past few years major attempts have been made to improve the power of database

systems, in particular those based on the relational model ([Codd70|). A significant part of this

effort has been in the direction of the formalization, design and development of deductive

databases. As defined in [Gall84] , "a deductive database is a database in which new facts may

be derived from facts that were explicitly introduced". A very important difference between a

deductive and a conventional relational database is that in the former new facts may be derived

recursively. This very characteristic of deductive databases is what makes query processing a

difficult task in such an environment. The main problem that arises is how to detect the point at

which further processing will give no more answers to a given query. Many researchers have

studied and proposed solutions to this termination problem for various cases (see, for example,

[Naqv84] , [Reit78] and |Chan81]). However no single solution is known for the general problem.

This research was supported by the National Science Foundation under Grant ECS-8300483

-2-

A common characteristic among all the proposed solutions that we are aware of is that the

termination condition relies on the data explicitly stored in the database. In general this is

necessary. However, there are some cases where a termination condition exists, which is

independent of the particular instance of the database. The purpose of this paper is to identify

and characterize these cases. Restricting ourselves to a particular class of recursive statements,

we give necessary and sufficient conditions for the existence of a data-independent termination

condition.

We assume that the reader has some familiarity with mathematical logic and graph theory,

although nothing extremely involved from.these fields will be needed. Nevertheless, we are going

to use some of their notions without definition. The first few chapters of any standard text in

mathematical logic (e.g. [Ende72|) and graph theory (e.g. [Bond76]) provide the necessary

background. Furthermore we assume that the reader is familiar with relational databases at the

level of [Date82] . Finally, we would refer the reader to [Gall78| and [Gall8l] as extremely

valuable sources of information on the relationship between mathematical logic and deductive

databases.

The paper is organized as follows. In Section 2 we give the formal framework of a deductive

database that we will be considering. Our investigation is restricted to a subset of all possible

deductive databases. We outline all the restrictions we are imposing on the database and explain

the reasons for doing so. In Section 3 we introduce some examples of cases where even though

data is derived recursively, the termination point is known a—priori (i.e. it does not depend on

the explicitly stored data). Section 4 contains the description of the graph model we used as a

tool to derive our results. In Section 5, we state and prove the main result of this paper: the

necessary and sufficient conditions for a termination condition to exist that is independent of the

data explicitly stored in the database. Furthermore we illustrate our result with a number of

characteristic examples. In Section 6 we present algorithms to check the conditions of the

theorem on the graph model we have introduced. Section 7 discusses the importance of our

-3-

results and investigate ways in which they can be used to speed up query processing in deductive

databases. Finally, in Section 8 we summarize our results and discuss more problems for future

work in the area.

2. ASSUMPTIONS

The following definitions about first-order formulas ([Ende72]) will be useful in our

analysis.

Definition 2.1: A first-order formula is equivalent to a Horn clause if and only if it is of

the form

with all the variables appearing in the formula being (implicitly) universally quantified.

The formula to the left of -* will be called the antecedent and that to the right of -• the

consequent. Each one of C, AXl A2,..., An is an atomic formula (see [Ende72]), i.e. it is of the

form

P(ti,t2,-,tn)

where P is a predicate symbol and tit 1 <» <n, is a term (a variable symbol or a constant

symbol or a function symbol "applied" on one or more terms). Finally, a Horn clause is recursive

when the predicate that appears in the consequent appears at least once in the antecedent as well.

Throughout the paper we will be using the terms "formula" and "statement" indistinguishably.

We will also alternate between the terms "predicate" and "relation", in light of the discussions in

(Gall78| .

Definition 2.2: Two variables x, y appear under the same predicate in a statement if and

only if there is an atomic formula P{...,z,...,y,...) appearing in the statement, where P is a

predicate symbol.

Definition 2.3: Consider a recursive statement which is equivalent to a Horn clause. The

sole predicate appearing in the consequent of the statement will be called the recursive predicate

-4-

of the statement. Any other predicate in the statement will be called non—recursive.

Definition 2.4: A variable will be called consequent if and only if it appears under the

recursive predicate in the consequent of the statement. Otherwise it will be called antecedent.

We consider a deductive database to be a relational database (in the sense of [Codd70])

enhanced with a set of Horn clauses. If there is some recursive statement or a set of mutually

recursive statements appearing in the database, then the termination problem mentioned in

Section 1 arises. We will examine this problem with respect to the processing of a single recursive

statement only.

We restrict our attention to recursive statements that satisfy the following conditions:

1) The recursive predicateof the statement appears only once in the antecedent.

2) There are no function symbols in the statement.

3) There are no constant symbols in the statement.

4) No variable appears more than once under the recursive predicate in the consequent.

Furthermore, no subsequence of the variables appearing under the recursive predicate in the

consequent is a permutation of the corresponding subsequence of the variables in the

recursive predicate in the antecedent.

Our motivation behind restriction (1) is simplicity. Having more than one appearance of the

recursive predicate in the antecedent severely complicates our analysis. Since many of the

recursive statements expected in a real world system have the recursive predicate appearing only

once in the antecedent, we believe that assumption (1) is reasonable. Function symbols appearing

in a recursive statement may lead to infinite relations. For example, consider the following

recursive statement containing the '+' function:

P(x)-P(x+1)

Suppose that initially P contained the single tuple <1>. It is clear that the above statement

makes P an infinite relation containing all the positive integers. Situations like that are not easily

-5-

handled in a database environment, if at all; to avoid them we have imposed restriction (2). The

last two restrictions were imposed for the sole purpose of getting a uniform result. We speculate

that it will not be very difficult to remove them, thereby generalizing our results. In fact,

considering a recursive statement that does contain constant symbols, we may remove them by

performing selections and projections on the relations involved ([Codd70]). The new

statement is free of constant symbols and if applied to the new set of relations produced by the

operations mentioned above, will give the same result as if the original statement was applied on

the original relations. Regarding restriction (4), it may appear somewhat artificial, but its

meaning will become clear shortly, when we will describe the way we model a recursive statement.

A final point worth mentioning here is that without loss of generality we may assume that

there are no equalities in the statement. If there is any equality between two variables, we may

easily remove it by replacing one of these variables with the other wherever it appears in the

statement. It is clear that the new statement is equivalent to the initial one.

Definition 2.4: A recursive statement will be called simple if and only if it satisfies

conditions (1) through (4) above and does not contain any equality symbol.

3. SOME EXAMPLES

Consider the following simple recursive statement a:

a: P(x) a Q(*.v)-Piv)

Relation Q is a base relation in the system (that is, it is stored explicitly), whereas P is a derived

relation. It is clear that in addition to a above, there has to be some non-recursive way to get

some initial tuples into P. As an example assume that this is done with /?:

fi: R{z)->P(x)

Assume that R is a base relation as well. A natural way of thinking about the processing of a is

iteration. In particular, the statement is applied once on the initial contents of the relations

involved and produces some new tuples for P. This process is repeated for these new tuples and

then again, until no new tuples are produced. It is obvious that in general there is no upper

-6-

bound on the number of times this process has to be repeated in order to get all the derivable

tuples for P. If we consider Q to represent the edge set of a directed graph and R to contain

some nodes of the graph, then P comes to contain all nodes reachable from those in R. At step t

of the iterative process described above, we insert into P all those nodes of the graph that are

reachable from some node in R through a path of length i. Since the graph may contain

arbitrarily long paths, it is not possible to know in advance how many iterations will be needed.

As another example of a simple recursive statement, consider 7:

7: P(z)AQ(*)AR(y)->P(y)

where Q and R are base relations. Clearly, one application of the statement is enough, regardless

of the initial contents of the relations P, Q and R. Statement 7 derives for P all the tuples in R,

as long as there is initially one tuple in P that joins with (that is, is equal to) some tuple in Q.

Any further step in the iteration will fail to produce any new tuples for P. So, for 7, unlike a,

there exists an upper bound on the number of times the statement has to be applied to derive all

the tuples possible in the recursive relation, that number being equal to 1.

As a third example consider 6:

5: P{z,z)AQ(y)->P(x,y)

with Q being a base relation. In this case we are taking the cartesian product of the projection

on the second attribute of the initial copy of P with Q. However one step is not enough for 8.

One more step will be needed, where actually the cartesian product of Q with itself will be

derived for P. Nevertheless, there will be no need for a third step. Further processing will only

continue producing the cartesian product of Q with itself. Therefore, 5, like 7, has an upper

bound on the number of times it needs to be applied, only that now the tight upper bound is equal

to two. This is not to say that the second step of the iteration will always produce new tuples for

P. In fact, if Q is initially empty, not even the first step will be needed. However the point is

that there exists an instance of Q and P that will need two steps, whereas there exists no instance

of these relations that will need three.

-7-

The examples given above indicate that the way in which the variables appearing in the

statement are connected with each other through the predicates, plays an important role on

whether an upper bound on the number of iterative steps needed to produce all derivable tuples

exists or not. In order to study the properties of these statements we have developed a graph

model for them, which reflects this connection among the variables. The description of this model

is the subject of the next section.

4. THE MODEL

Suppose that we are given a simple recursive statement. We will model this statement by a

labeled, weighted, directed graph constructed as follows:

(i) To every variable appearing in the statement we associate a node in the graph.

(ii) For every pair of variables z,y that appear under the same non-recursive predicate Q in the

statement there is a labeled undirected edge {x—y) in the graph between the corresponding

two nodes x,y, for each such predicate Q. The label of the edge is Q and its weight is 0.

(iii) For every pair of variables z,y such that z appears under the recursive predicate P in the

antecedent and y appears in the corresponding position of the recursive predicate in the

consequent, there is a directed edge (x-*y) in the graph from node z to node y with weight

1 and its inverse edge {y—x) with weight -1. Each directed edge has label P.

The graph constructed this way from a simple recursive statement a will be called the

a—graph. The subgraph induced on the a-graph by the undirected edges defined in (ii) will be

called the static a-graph. The spanning subgraph of the a-graph with edge set its directed edges

defined in (iii) will be called the dynamic a-graph. Finally, the weight of a path (cycle) in the

graph is defined to be the sum of the weights of the edges along the path (cycle). Regarding

undirected edges, they can be traversed in both directions, as if there were two opposite directed

edges.

-8-

As an example consider the following simple recursive statement:

a : P(z,w) A Q(z,z) A R[*>,u) A S(u,x,y) — P(x,y)

The a-graph is shown in figure 4.1.

Fig. 4.1 : The a-graph

We can now see the meaning of restriction (4) in Section 2. AH it says is that the dynamic

subgraph of a simple recursive statement (restricted on the positive edges) is a forest. This has

the implication that there is at most one path from any node to any other node in the subgraph,

which proved to be crucial for the accuracy of our results.

Regarding the unification algorithm ([Robi65]), we would like to indicate an important

relationship between that and the graph model analyzed above. Unification is a first-order

theorem proving algorithm. The iterative process used for recursive statements in Section 2, is

equivalent, with respect to the final outcome, to a unification process. In particular, consider two

copies of the statement, with distinct variable symbols for all the antecedent variables. That is,

consider a as given above and a' as given below:

a': P(*V) A Q(z',z) A PKu') A S{u'fz,y) - P[z,y)

Clearly a is equivalent to a', since all we did was to change some variable names. We can now

unify the recursive predicate in the antecedent of the first copy with that in the consequent of the

second copy (the unification algorithm would work with the statements put in clause form, but its

actions are equivalent to the ones we describe here). The resolvent is a new simple recursive

statement, which if applied on the initial instance of the recursive predicate, will give exactly the

-9-

same result with the application of the original statement on the outcome of the first step of the

iterative process. For our example the resolvent comes out to be:

P{z',w') A Q(z',z) A R^u*) AS(u',z,w) A Q(z,z) A R(w,u) A S(u,z,y) - P{z,y)

Regarding unification, the dynamic subgraph of a simple recursive statement captures some

important information. Namely, it shows the substitution of the variables that one has to make

to unify the two literals in the two copies of the statement. For every positive directed edge of

the graph, the tail should be substituted in the second copy for the head, to obtain the resolvent.

In the example above, z was substituted for z and w was substituted for y, which is exactly what

the directed edges {z-+z) and [w-+y) in figure 4.1 indicate. We will not be directly referring to

the unification algorithm, but the ideas behind it have a significant impact on our analysis.

Finally, there is a notational comment we would like to make about the graph model

described above. According to the definition, there is a one-to-one correspondence between the

positive and the negative directed edges. The positive ones alone are enough to carry all the

information captured by the directed edges in the graph. Hereafter, we will be referring to the

dynamic subgraph as containing the positive edges of the graph only, the negative ones implicitly

assumed only whenever the weight of a path is discussed. Likewise, in all the figures we will draw

the positive edges only. Finally, since the weight of some edge is easily determined from whether

it is undirected (weight zero) or directed (weight one), we will put no weights on the edges.

5. THE PROBLEM

Let the following be a simple recursive statement.

P{xl,z2t...,zm) a 0 - P(yi,y2,-,ym) U)

The subformula 0 is a conjunction of atomic formulas, none of which involves the predicate P,

and ail variables are assumed to be universally quantified. There are two equivalent ways of

expressing (1) in a nonrecursive way.

• The above statement may be viewed as equivalent to the following infinite sequence of

statements:

P(i{Zl,X2,...,Xm)M3-+ Pl(|fi,Jf2,...»»m)
Pi{x1,x2,...,xm)h0 -> P2{yi,y2,...,ym)
P2(zl1x2,...,xm)h0-> Pa[yl,y2,...,ym)

-10-

In the above statements, P0 denotes the initial contents of P, Px denotes the tuples "inserted"

into P after applying the recursive statement once, P2 denotes the tuples "inserted" in P after

applying the recursive statement on the new tuples produced by the previous application, and so

oo

on. The final result for relation P is U P.-. The t-th statement above will be called the i-th

application of statement (1). Note that this infinite non-recursive expression of (1) actually

reflects the iterative process to materialize P, along the lines of our discussions in the previous

sections.

• Statement (1) may be also viewed as equivalent to the statements

Po(Xi,*2,...,*m) A 00 ~> Pl(yi,V2,-,ym)
p0(x[l),z2l\...,zff) a 0i A 0o-+P2(yi,y2,-»,ym)
Pd*r*P:-*&) A 02 A 0i A 0o -* PAvij*-,ym)

where, for all :> 0, there exists.some substitution 0t of the variables in 0 (the details of which

will not concern us for the moment), such that 0(= 0[$i\ and P0(x[,""1),:4,"-1)>...,zi(~l)) =

P0(z1,x2,...,zm)[9i], Note that 9Q maps each variable to itself. In a similar but somewhat different

way than for the applications of (1), the t-th statement above will be called the (i-l)-th ezpansion

of statement (1), so that the first of these statements, which is actually the statement itself, is the

0-th expansion. Each one of these expansions is applied on the initial contents of P. Clearly, the

P,'s above are the same as the ones in the "application" view of the recursive statement, i.e. the

tuples produced by the t-th application of (1) for P,-, are the same as those produced by the

oo

(i—l)-th expansion of (1) for P,-. In the end P is again equal to U Pt-. Note that the antecedent

of each expansion is equal to that of the previous expansion with the recursive predicate being

replaced by yet another instance of the antecedent of the original statement with different

variables. In terms of the unification algorithm mentioned in Section 4, the k-th expansion of a

-11-

simple recursive statement a is the resolvent of its (&—l)-th expansion and a itself. We will be

referring to the k—th expansion of a recursive statement a as a*. Since the statement itself is its

own 0-th expansion, we have that a = a0.

In both cases above, the initial statement becomes equivalent to an infinite number of

nonrecursive statements. However, since in a database environment all the relations are finite,

and because of the fact that we are considering simple recursive statements only, which contain

no functions, after some point the nonrecursive statements will stop producing any new tuples for

P, and therefore the whole process eventually terminates. Moreover, the process terminates

exactly when some t-th application (or the corresponding (t*-l)-th expansion of (1)) fails to

produce any new tuples for the first time.

This is an appropriate place for the following definitions.

Definition 5.1: Let a be a simple recursive statement. The rank of a is defined to be the

smallest i such that a,- does not produce any tuple not already contained in some Py for 0<j< i.

Note that, in general, the rank of a depends on the contents of the relations involved in a.

Definition 5.2: A simple recursive statement will be called bounded if and only if there

exists a finite upper bound on its rank independent of the contents of the relations involved in the

statement.

In view of the definitions above we can pose our problem as the following question:

When is a simple recursive statement bounded?

We are also interested in finding this upper bound in the cases it exists. The answer to this

question is given by the following theorem.

Theorem: Let a be a simple recursive statement. Statement a is bounded if and only if the

a-graph contains no cycle of non-zero weight. In that case a tight upper bound on the rank of a

is equal to the maximum weight of any path in the a-graph.

-12-

Before proceeding in proving the above theorem we need to establish a regular naming

scheme for the variables of simple recursive statements. Restriction (4) denotes that the dynamic

a-graph is a forest; therefore, every connected component in the graph is a tree. For every leaf in

such a tree there is unique path from the root of that tree to that leaf. We number each one of

these paths with a unique positive integer. Having this in mind we will use the following naming

convention for the variables. Every consequent variable will be called yitJ-. The index j is the

distance of the variable from the root of the component of the dynamic a-graph where this

variable belongs. The index i is the number assigned to the root-to-leaf path on which the

variable lies. Of course, some variables belong to more than one root-to-leaf paths (e.g. all the

variables with out-degree greater than 1). Fortunately, the fact that some variables can be given

more than one name will not affect our results; on the contrary it will make our notation much

simpler. As it concerns the antecedent variables, there is exactly one of theni in each component

of the dynamic a-graph, namely its root. If this was not the case some component of the graph

would not be a tree, so we would violate restriction (4). This unique antecedent variable will be

called xi°\ where t is again any of the numbers assigned to the paths from this variable to the

leaves of the component of the dynamic a-graph where the variable appears. Notice that any

antecedent variable that does not appear under the recursive predicate is by itself a component in

the dynamic a-graph. The significance of the superscript in the notation of the antecedent

variables will be clarified shortly.

As an example of the notation, consider figure 5.1 of the a-graph of some simple recursive

statement a, showing the names of the variables involved. The statement corresponding to the

figure is

P{x10),yi,i,yi,2»yi&ym»40),y2,i»40)^i^^y*,^) A

Qi(yi*40)) AQ^i^M Q3(40),*40))A Q*(yi,iA0))A Qs(y5,i,y^) ->

P{yi,i>yi&yiA>yiA>yi&yi,i>y2£tysA>ys&y4,i>y4&y&,i)

-13-

Fig. 5.1 : Example of variable naming

In the first expansion of some statement a, each consequent variable will be replaced by the

corresponding variable appearing under the recursive predicate in the antecedent, as described in

Section 4. Furthermore some new variables will be introduced to replace the antecedent variables.

Our convention will be that each new variable will have the name of the one it replaces with the

superscript increased by 1. That is, x|°* will be replaced by z^\ Similarly in the n-th expansion

xj°* will be replaced by xjn*. The meaning of the superscript should be clear now.

In order to be able to refer to the two kinds of variables in a uniform way we introduce the

following generic variable name z$, defined as

*I3)-
(»-> 0< j< n

Under the above naming scheme we can see that every antecedent variable z^ in a can be

(2)

written as z$ and every consequent variable yitj in a can be written as z$. Hence, in this

naming scheme, every variable in a can be written with superscript (0). We should also mention

here that the mapping from z's to x's and y's is not one-to-one. Two z's with the same n—j

difference will actually represent the same variable.

Lemma 5.1: Let a be a simple recursive statement and let zty be a variable appearing in

some position under some predicate in the antecedent. Then for aR, this variable will be

-14-

substituted by z$.

Proof: We will prove it by induction on n.

Basis: Let n=0. The lemma is trivially true.

Induction hypothesis: Suppose that the lemma is true for all expansions less than n. We

are going to prove it for the n-th expansion.

a) If ;=0 then from (2) we can see that we have an antecedent variable. Since in every

expansion we have to use a new name to substitute the variable and our convention is to increase

the superscript of the corresponding variable in the previous expansion, we get from the induction

hypothesis that zjfij will be replaced by z\$.

b) If j>0 then from (2) again it is clear that z\j> is a consequent variable. Therefore, it will

be replaced by the variable in the same position under the recursive predicate in the antecedent of

a(n-i)- By the induction hypothesis this will be of the form z^J"l\ where zJP} is the variable

appearing in the same position under the recursive predicate in the antecedent ofa. However zjfy

and z$ are in the same root-to-leaf path in their component of the dynamic a-graph. So, it is

t1 = t. Furthermore from the construction ofthe graph there is a directed edge from z,C°Jr to zj$,

and therefore the former is one closer to the root. So, j' = j—l. In conclusion we see that zty

will be replaced by 4,}-i* which however is equal to z\$ because of(2). •

In view of Lemma 5.1 above we have that in the expansions of a, as given in Section 4, it is

k=«a> / 4°j (3)
meaning that z\$ will be substituted for zj$.

As an example consider the following statement

Its 1-st and 2-nd expansions are given below.

P(*P).*ix))AQ(«il).*P))A«(*l0))AQ(*l0).»M)A«fau) - PiviA***)

P(*iM2))AQMM1*)AflO^M ^

-15-

Using the naming scheme we have introduced for the variables, the above three expansion (0-th,

1-st and 2-nd) can be written as follows:

i»(«B.«8)AO(«B^3)A«(«Q) - p{4%$1)

J"(«B.*8J)A«(«B.»fi)A*(«a)A«(«B.«8)A*(«B) - p(4%$1)

^»B.«0)AO(«8.4I)A«(«Q)AO(»lJI.^)A«(«Cl)AO(«B.4})All(«Q)-i,(»Q^0)

Observe that each variable changes in the expansions according to Lemma 5.1.

Consider a typical path in the a-graph, corresponding to the part of the statement shown

below (without loss of generality we may assume that all the undirected edges in the path come

from binary predicates).

p<*a4°j «b,-,.»s.«8 «bu «a^a *sl-..-)a

«i(42,.^)A«2(^.^,)A.-A«m-i(«SS.u_l,40L)A •••• -

p(4M°2 «a..«0.*8 *a. «a^a «&*...) w

The graph corresponding to the path above can be seen in figure 5.2.

*a *a *b *a

I *sJ *ai *»J

^m-1l ,(o),

I
k% ia. *a, *a4 *(0)

Fig. 5.2 : Typical path in the graph of some simple recursive statement

-16-

Because of Lemma 5.1 we have that an will be of the form

Pi*l$,*i$,...A$r* .*#.*#.•••.*&•* ,..v4n,l4n.l 4n,L-i.».)a
tn—1 fn—1 m—1

4«i(«A.«flU«)A £,W*JMR*»>A -A 4«/*MW,)A •••• -

J"(*fl.*B «8,.«S.«8 *B <&.<& 48w-) («)
For the following lemmas it will be necessary to group the various Qt*'s in a different way. In

order to do that we will use the following family of functions /n: Z-* {0,l,...,n—1}, [TL the set of

integers) defined for all n > 0 as follows:

fn{z) =» (x mod n)

In the above (x mod n) = r if and only if (x—r) divides n and 0 < r < n.

Lemma 5.2: Function fn: S -» {0,l,...,n-l} is one-to-one and onto for any SQ2L of n

consecutive integers and for any n>0.

Proof: Obvious from the definition of fn. Q

Lemma 5.3: For all integers x, y and all positive integers n

ifn(x) + y)- fn(*+y) = kn

for some integer k.

Proof: Let x = pxn + rx and y «=» p2n + r2, where 0< rltr2< n. From this we get

that

{fn{x) + y) - fnix+y) = (* morf n) + y - ((*+y)m°d n) =

ri + ?2n + r2 "~ ((ri+r2) mo^ n) — (P2+^)n where d6 {0,1}.

Therefore, (fn(z) + y) —fn{x+y) is a multiple of n. Q

Let

k

k = 27(<-W. for 1< *< ™ (6)
1=2

where m, kit /,- are the subscripts appearing in (4) and (5). In figure 5.2, ak denotes the distance

of the variables appearing under Qk from those appearing under Qx. Clearly it is <t1=0. Using

-17-

fn and crk, (5) can be rewritten as follows:

Pi*®.*® *fcU .*&>*&.»-.'®r*.—*ft4-*ftl >....41„-i,-)A
m—1 m—1

jX^i\ziMj *zi*Uj44 ^AAjVjl^. »*/+i.ii+, JA

m—1

A'

^b,*b «B,^a^a «b, «a^a *&„,••'•) m
In light of Lemma 5.2 it is obvious that the above formula is equivalent to (5). We have only

regrouped the predicates in the antecedent of the statement. The superscripts of the variables in

each group in (7) are of the form /n+i(r+<Ty), with 0< r< n. For every such r, the group

corresponding to it will be called the r-th group of an.

The following two lemmas give some interesting properties of the a-graph of some simple

recursive formula a.

Lemma 5.4: Consider two variables z\$, z£}P, with (n—j)> {n'—j')f coming from the

same root-to-leaf path of the dynamic a-graph of some simple recursive statement a. The two

variables are connected in the dynamic a(-graph, t > 0, if and only if the following hold:

(a) (n—j)—(n'—j')=:k(t+1) for some positive integer k

which says that the distance of the two variables in the a-graph is a multiple of (£+1).

(b) (nW),(»-j)<«

which means that both variables do appear in at.

Furthermore, the weight of the path connecting them in the dynamic argraph is k, the coefficient

of (J+l)in (a).

Proof: It is easy to see that condition (b) holds. For (a) we have the following. From (7) or

(5), we see that every consequent variable zty> is the tail of a directed edge in the dynamic a-

graph whose head is 2$»_i and that z\ty is the only variable with this property. Letting

j" = (n'—j') we see that the tail of the directed edge whose head is «JjP is z\j$ = 4,//+*+1)-

••••A/YW/,*,. '.'/w^)A»..

-18-

Using an easy induction we can conclude that if there is a path from z$ to z\j> it has to be

z$ ssa arJj"**^+,W for some positive integer A;. It is clear that in that case, the weight of the path

is k. This shows that (a) is a necessary condition for such a path to exist. The inverse part has a

similar easy proof and will not be given here. Note that in the case that (n—j) = (n'—j1) the

two variables are the same and therefore they are obviously connected in the dynamic argraph

by a path of weight Ar=0. Q

5.1. SUFFICIENCY OF THE CONDITION

In order for some expansion of a to be redundant regardless of the contents of the relations

involved, the antecedent of that expansion should be more restrictive than the antecedent of some

previous expansion.

Lemma 5.5: Let a be a simple recursive statement such that the a-graph is connected and

has no non-zero weight cycles. Let n, n>l, be the maximum weight of any path in the a-graph.

Then, an is redundant for all n> n.

Proof: Consider ocK+k, where k> 0. Let <2(2$,, 4$a> ' *' »zm!km) De a literal in the

antecedent of aff+Je, with Q a non-recursive predicate, which in light of Lemma 5.1 first appeared

in the j-th expansion. In the above, without loss of generality, we have chosen the root-to-leaf

paths where the variables belong to be the ones numbered from 1 to m. Clearly it is

0^ i5: n+k. Consider a node zjfy in the a-graph whose distance from some other node in the

graph is n (i.e. there is a path in the graph starting at that node whose weight is the maximum

possible). Let r be the distance of this node from any of the z$(1s of the predicate above. The

distance from all of them is the same, because the distance between any two zj$}.'s is 0 (they are

connected by an undirected edge labeled Q) and the graph contains no con-zero weight cycles. So,

any two paths between two nodes have the same weight.

We will now attempt to make a substitution of the variables in the (n+k)-th expansion of a

that will transform its antecedent so that it contains all the conjunctive formulas of the

-19-

antecedent of the (n+k—l)-th expansion plus a few more. This will prove that aff+Jfe is not going

to produce any new tuples, since it will have a more restrictive antecedent that ct^^. Let the

substitution 6 be:

zi%) - *lX*> V n, r+l< n< n+k

z\% - «£?*>

All the other variables remain the same. Clearly, each variable maps to a different variable.

It is easy to prove that

k{< r

because otherwise we would get a path in the graph that has weight greater than n. Hence,

looking at (2) also, we can see that the above transformation is meaningful, i.e. it affects only

antecedent variables. Note that for »=p, i.e. for the variables that are created in subsequent

expansions of the dynamic root-to-leaf path where a maximum weight path starts, we have that

r=k{. Since x{ ' = zty. we can see that in this case aH the antecedent variables will change,

i.e. the transformation will go all the way up to x{°) before returning to xf***\ We will have to

distinguish three cases now.

a) j< r

In this case no variable in <2(2$,, 4J3i ' •• »*mjtm) changes, so the predicate maps to

itself.

b) j> r

Now all the variables in Q(r(J|f *jj9, ••• , 2mim) change to their predecessors, i.e. z$f to

c) J= r

In this case all the variables change as well, but the new superscript is n+k, i.e. z\$. maps

to ,flp*>.

-20-

From Lemma 5.1 we know that every non-recursive predicate appearing in the antecedent of

a, appears also in the antecedent of a^^ once for every number in {0,l,...,rT+fc—1} in the

superscript of its variables. Therefore, with the above transformation we have shown that all the

non-recursive predicates in <**+*_! are indeed "covered" by corresponding predicates in aK+k.

All we have to prove now is that the recursive predicate in the antecedent of an+k changes

to that of the Q^^ as well. But this is true because of Lemma 5.1. Consider a variable z\f^.

The distance r of *$} from z$ is definitely no greater than n, since n is the maximum weight of

any path in the graph. Furthermore r cannot be equal to n either, because in that case, since z$.

is in the antecedent of a, there has to be an edge going out of it, and therefore there should have

been a path of weight at least n~+l. Therefore, r+l< n+k. This implies that *{J**) maps to

*>.tr**~^* From Lemma 5.1 we may conclude that the substitution of the variables maps the

recursive predicate of a^ to that of ot^^x as well.

Since the antecedent of the {n+k—l)-th expansion is equal to some part of that of the

(n+k)-th expansion, the (n+k)-th expansion is redundant. •

Lemma 5.6: Let a be a simple recursive statement.. Consider a, and at, 0< s< t, such

that at is more restrictive than a,. Then the maximum weight of any path in both the dynamic

at- and argraph is 1.

Proof: Since at is more restrictive than a„ the graph of the redundant expansion at

contains a subgraph which is isomorphic to the graph of some previous expansion. The

isomorphism is label preserving (i.e. any edge of the static subgraph corresponding to a predicate

Q maps to an edge corresponding to the same predicate) and all the consequent variables map to

themselves (because the consequent is the same in all expansions). Consider a single component

G of the a,-graph. Let H be the subgraph of G, consisting of those nodes in G that the

corresponding variables do not map to themselves in the isomorphism from at to a9. It is clear

that there are only antecedent variables in H (otherwise we would not be able to change them)

-21-

and therefore we do not have any directed edges with their head in H. Hence, H is connected

with the rest of G, say H', as shown in figure 5.3.

G

Fig. 5.3 : General form of the graph of some redundant expansion

It is also true that there are no tails of directed edges in H'. We can show this as follows. From

(7) we see that no directed edge appears in the graph of more than one expansions. In the graph

of every expansion, each consequent variable is the head of some directed edge, but the tail of the

edge is always different. This is because of restrictions (3) and (4) in the definition of a simple

recursive statement, and can be seen from the form of 9n in (3) above. The isomorphism between

the as-graph and some subgraph of the argraph has to preserve the consequent variables as well

as the directed edges. Therefore, the tail of every directed edge has to change in the

isomorphism. Since Hl is the subset of nodes/variables that do not change in the isomorphism,

we may conclude that there can be no directed edge with its tail in H'. Hence, every single

component of the a,-graph (and the a^-graph) consists of two subgraphs (either one of which may

be empty) with static edges only, and we can have directed edges only from the one subgraph to

the other. Therefore, the maximum weight of any path in both of the dynamic ag- and a(-graph

is 1. D

Lemma 5.7: Let a be a simple recursive statement. If the a-graph contains a path of

TL + T
weight L, then the an-graph contains a path of weight I] t

Ln+lJ

Proof: Let the statement in (4) denote a path in the a-graph with weight L as it is shown

in figure 5.2. It is clear from the figure that the weight of the path is equal to

' By [zj we denote the smallest integergreater than or equal to x.

-22-

m-l

L = kx+ £{ki - lf) + nm - lm (8)

Consider the n-th expansion of a as given in (7). We will first show that the r-th group in (7)

forms a path in the an-graph. To accomplish this we will show that for every Qi-\, Qi the two

variables 2;,j" , *<£" are connected with a path in the dynamic an-graph; we do not

exclude the possibility that the path has zero weight, i.e. that the two variables are the same.

Because of Lemma 5.3, we know that

(/n+i(r+^) - /,) - (/n+i(r+<r(.) - ft,) - ft(n+l) (9)

for some integer ft. Furthermore from the definition of /n+1 we have that

/n+i(r+<7f-i) - h< n+l and /n+i(r+<7t-) - ft,< n+1.

Having shown the two things above, we have actually satisfied the conditions of Lemma 5.4

and therefore the given variables are connected in the dynamic an-graph by a path of weight ft

(as given in (9)). Moreover, Lemma 5.4 also implies that there is a path of directed edges of

weight [— 2±~- J leading into *$,- To see this, consider z[fj*^r)) (which is actually

z{Tj. , since 0< r<n) and zffl. There is no guarantee that there is a path from the latter to the

former; in fact, such a path will exist if and only if (n—0)—(/„+1(r)—ftx) is a multiple of n+1,

according to Lemma 5.4. However, instead of zfy we may take zffl, with 0< n'< n such that

(n'—0)—(/n+1(r)—ftx) is a multiple of n+1, in which case there will be a path from this variable to

£$ • Clearly, the weight of this path will be given by the formula mentioned above. Likewise we

.i * i. . j j * . , . nm —^m + /n+l(r"r"°m-l) ,
may show that there is a path of directed edges of weight [J going out

of z-LXn' • So»tnere is aPatn mtne a»rSraPn of weight

Ln —•^+y[/n+l(r)+ft2-Wn+l(',+<r2) +
fn+i{r+(r2)+kz-ls-fn+l(r+<?z) +

-23-

/n+l(r+<7m-2)+*m-l-fro-l-/iH-l(r+0'ro-l) I+

. *i - /n+l(r) + * , , .Km" lm+ /n+l(r+*m-l) , ^ „
I I + I J < >
1 n+1 J L n+1 J

L.~ l
n+1

m—1

fn+l(r)+ E{ki-l()-fn+l{r+<7m-l)

.ki ~ /n+i(r) +n .nm-lm+ /n+l(r+<rm-l) . , Qv
I n+1 J L n+1 J * '

ftx — /n+l(r) + n
From Lemma 5.2 we know that there is some 0< r< n such that . is integer.

"" ~* n+1 6

So, (10) can be written as

m-l

*i + U{ki-liHnm-lm+n

^1 " n,! J
which in turn, considering the formula for L, gives

Theorem 5.1: Let a be a simple recursive statement. If the a-graph contains no cycle of

non-zero weight then a is bounded. In that case a tight upper bound is equal to the maximum

weight of any path in the a-graph.

Proof: Suppose that the maximum weight of any path in the a-graph is n. It is clear that

each component in the a-graph expands independently from all the others, since there can never

be any interaction among them. From Lemma 5.5 we have that every component's n-th

expansion is redundant. Since the components do not interact, we conclude that the whole

graph's n"—th expansion is redundant. Hence, n is an upper bound on a's rank.

The upper bound that we have just given is tight. This means that an_x is not properly

more restrictive than any of the previous expansions. Lemma 5.7 shows that in the an-graph

there exists a path of weight

This guarantees that the an-graph has at least one path of weight greater than 1, for all

-24-

n< n-2. Assume that some a. of these expansions, with 0< s< rT-2 is strictly less restrictive

than at, s< t. Because of Lemma 5.6, the a.-graph will be of the form of figure 5.3. Consider

the path (z^x— z2->y) in the a.-graph. Our previous discussion guarantees that such apath, of

weight greater than 1, does exist. Since the a.-graph is isomorphic to asubgraph of the argraph,

we may conclude that such an isomorphic path, say of the form {zl'-+z-+zj-*y)t exists in the ar

graph as well. In order for this to be possible the original a-graph must be of the form shown in

figure 5.3a.

*i

Fig. 5.3a : Graph ofstatement leading into redundant expansion
with maximum path-weight greater than 1.

Since z2 and z2' are tails of directed edges leading to y (each one at a different expansion, of

course) they have to belong to the same root-to-leaf path. Therefore, since x is adjacent to these

two different variables the distances lx and l2 in figure 5.3a have to be different as well. But this

implies that there exists a cycle of non-zero weight in the a-graph which contradicts our initial

hypothesis. Having obtained a contradiction we may conclude that the first expansion that can

have agraph isomorphic to asubgraph of the graph of some subsequent expansion is the (n-1)-

th. Therefore, the first expansion that can be redundant is the n-th. •

We will now try to illustrate the proof given above with a few examples. Consider formula

7 from Section 3:

-25-

7: P(z)/\Q(z)AR(y)-+P(y)

Figure 5.4 shows that the 7-graph contains no cycles at all (excluding that formed through the

implicitly assumed negative edge, which again is of weight zero).

z y

»

Fig. 5.4 : The 7-graph

Furthermore the maximum weight of any path in the graph is 1. In our discussion in Section 3,

we have concluded that one step of the iteration process is enough to derive all possible tuples in

P, which is in perfect agreement with Theorem 5.1.

The fact that the rank of 7 is bound by 1, can be seen from the first expansion of 7, which is

7l : P{z')AQ{z')AR(z)AQ(z)/\R(y) - P(y)

If we substitute z for z' and z' for z in 7lr the antecedent of 7j becomes equal to the antecedent

of 7 with some additional literals conjuncted to it. The antecedent of 7! being strictly more

restrictive than that of 7, implies that any tuple derived from the former is also derived from the

latter. Thus 7j need never be considered.

The same conclusion could be drawn, by looking at the 7- and the 71-graphs, as they appear

in figures 5.4 and 5.5 respectively.

y

»

Fig. 5.5 : The 7rgraph

We can see that the 7-graph is isomorphic to a subgraph of the 71-graph. The isomorphism

preserves the consequent variables as well as the edges of the dynamic 7-graph. As for the

antecedent variables the isomorphism maps them according to the substitution mentioned before,

that makes the antecedent of 7 part of that of 7X.

We will now consider a much more complicated example. Consider the simple recursive

formula a:

-26-

a : P(ui,u2,uA,uA,y)hQ{ux,u2)/\R(u2,uitx)hS{w,z)hT{v) -• P{v,w,x,y,z)

The a-graph appears in figure 5.6.

v w z

Fig. 5.6 : The a-graph

All the cycles in the a-graph have zero weight, including those formed through the negative

directed edges, which according to our convention are not drawn (going along a negative edge can

be thought of as going along a positive edge in the opposite direction and negating the weight).

Hence, according to our theorem, a is bounded. The maximum weight of any path in the graph

being 2, we may conclude that a2 is redundant, i.e. two steps are enough in the iterative process

to get the final result for P.

This becomes apparent if we look at the ar and the digraphs. They are shown in figures

5.7 and 5.8 respectively.

V w z

Fig. 5.7 : The argraph

The argraph in figure 5.7 shows two (connected) components, instead of one that initially

appeared in the a-graph. Furthermore, the latter is not isomorphic to any subgraph of the

former, which implies that there are some instances of the relations involved in a that will make

ax produce some tuples that are not produced by a. Hence, ax is necessary.

-27-

Fig. 5.8 : The a-graph

On the other hand the a-graph in figure 5.8 has three components, one more than the ar

graph. Two of these components are isomorphic to those in the a-graph. Moreover, the

isomorphism has all the desired properties, i.e. it maps consequent variables to themselves and

preserves the labeling of the static edges. For ax and a2 this means that changing the antecedent

variable names in the latter appropriately, its antecedent becomes strictly more restrictive than

that of the former. The rank of a is bounded by 2, therefore a2 is not necessary.

Notice that the number of components increased in the first example with 7 as well. In fact,

this is true for all graphs free of non-zero weight cycles. If, for example, the graph of the initial

statement is connected, then each expansion comes with one more component than the previous

one. Considering (7), every group of literals, as presented there, forms a component. At some

point, we get a component that contains no directed edges, i.e. no consequent variables. This

expansion is exactly the first one that is redundant and it determines the bound on the rank of the

initial statement.

Also notice that the last expansion that is significant (regarding the production of new

tuples), is the first one with the maximum weight of any path in its graph being 1. This is proved

in Lemmas 5.6 and 5.7 and Theorem 5.1 and may be seen in both the 7- and the a^graphs above.

-28-

5.2. NECESSITY OF THE CONDITION

We will now prove the inverse of Theorem 5.1. However, before doing so, we must prove

the following very important lemma.

Lemma 5.8: Let a be a recursive statement.

a) If a is bounded then its ft-th expansion is bounded as well, for all ft > 0.

b) If for some ft > 0, the ft-th expansion of a is bounded then a is bounded as well.

Proof: We are going to prove the two problems separately. In what follows we will be

using the fact that the l-th expansion of the ft-th expansion of a is equal to the ft-th expansion of

the l-th expansion of a. Furthermore, each one of those is equal to the m-th expansion of a,

where m = (ft+l)(/+l)—1. In other words (ak)t = (aj)fc = a^^t^^.

a) Let a be a bounded recursive statement, with bound n. This means that an is more

restrictive than aj, for some 0< l< n. Consider ak for some ft> 0. We will prove that n is an

upper bound on the rank of ak also, and in particular we are going to show that {ak)n. is more

restrictive than (a*)j. Using the fact mentioned in the beginning of the proof, it suffices to prove

that {aK)k is more restrictive than (a{)fc.

Let Slk and Sk be the set of the tuples produced in the recursive predicate of a by {at)k and

(aK)k respectively. We will prove by induction that SkC Slk for all fc> 0.

Basis: For A;=0 this is obvious since it is given that aK is more restrictive than a(.

Induction Step: Assume that Sj+1CSj is true for all j-th expansions of at and aK less than

ft, i.e. 0< j< ft. We are going to show that it is also true that Sk+1CSlk. Having in mind the

equivalence between the ft-th expansion and the (ft+l)-th application of some formula, we can see

that Sf is the set of tuples produced by a(if applied to an instance of the recursive predicate

equal to Slk^x. Likewise Sk is the set of the tuples produced by aK if applied to an instance of the

recursive predicate equal to SjLi- By tne induction hypothesis we have that Sk^xQSlk^x. Hence,

since an is more restrictive than a{ and is to on a subset of the tuples to which aj is applied, we

-29-

can conclude that SkQSk.

This does not depend on the initial contents of the recursive predicate, so we may conclude

that (aa)k is more restrictive than (aj)fe, or equivalently (a*)^ is more restrictive than (afc)t.

Therefore, n is an upper bound on the rank of ak. Our initial choice of ft was arbitrary, so our

conclusion is that if a recursive statement a is bounded then ak is bounded also, for all ft> 0.

b) Let ak be the ft-th expansion of a recursive statement a and suppose that ak is bounded,

say with bound n. This means that (ak)n is more restrictive than (ak)t for some 0< l< n.

However, as we have mentioned earlier, the former is equal to oc^k+x^K+l, xand the latter is equal

t0 *(*+ix<+i)-i' Tnerefore, since l<n, we have that (ft+l)(n+l)-l is an upper bound on the

rank of a.

Note that in both parts (a) and (b) above the upper bounds we have given are not tight in

general, but this was not our concern. q

Consider a typical cycle in the a-graph. The part of the statement corresponding to the

cycle is similar to (4) with one more predicate added to form the cycle and is repeated below for

convenience:

p(4%4°) «8r4,»8.«0 *8U *M. *SL«--)a

9»(«BU&)a W«8UfiUA •••• a QJ*&mA%)/\ -.-

PU&A$ *(?J,.*M 45 *».*& *SLr~) (ii)
The graph corresponding to the cycle above can be seen in figure 5.9.

-30-

& ^B. TO. to. T.(o)

Fig. 5.9 : Typical cycle in the a-graph

Similarly to (7), a„ will be

Pi*®.*® 4rnU»^f4?i\.-v4?nU.--4n.l^nJ,-..4Um-i-0A
m m

L\^i\ziMi >zj+Uj+i)ri^3\ziJts >*j+Uj+i m

m

••••AAl^4r'^>.«.^,,)A

p(45,4oi *Mi.*a 4\ «&.«& *&.....)

where in fact it is fJ&jfiJT"* = 'ST***"*-

(12)

The following two lemmas could have been combined into one general lemma, but are

presented here separately for clarity.

Lemma 5.0: Let a be a simple recursive statement. If the a-graph contains a cycle of

weight n + 1 for some n>0 then the an-graph contains a cycle of weight 1.

-31-

Proof: Take a cycle of weight n+1 in the graph corresponding to (11). This means that

m m

2>«-I?f-n+l (13)
f=i t=i

Consider now the cycle's n-th expansion. This will be of the form given in (12). We will prove

that the r-th group in (12), together with some dynamic edges of the an-graph, forms a cycle of

weight 1, for all 0< r< n. Similarly to the proof of Lemma 5.7 we can show that for every

Qi-it Qi the two variables 4,i4 »**,*" are connected with a path in the dynamic an-

graph. All we have to show now, to prove that the r-th group forms a cycle, is that

*u" »z{$t are connected as well. However because of (13) and the definition of am in (6)

we can see that it is

zux — zUi >» zlti

For these two variables now, that is z[ff* * *' and z[$lf we can easily show that they satisfy

the conditions of Lemma 5.4 and therefore they are connected in the dynamic aR-graph.

As a last step in our proof we have to show that the weight of the cycle is 1. Similarly to

Lemma 5.7, the weight L of the cycle comes up to be

L*" 7+Tl/n+1'r)+A:2"/2"'/n+l(r+<r2) +
fn+i{r-r<r2)+ki-l3-fn+x{r+<rz) +

fn+i{r+<rm)+kx-lx-fn+x(r)

n+1
/n+i(r)+ 27(**-W-/*H(r)

L= _i_(n+1) = 1

This concludes the proof of Lemma 5.9. Q

Lemma 5.10: Let a be a simple recursive statement. If the a-graph contains a cycle of

weight 1 then the aR-graph contains a cycle of weight 1, for all n > 0.

-32-

Proof: We will proceed as in the previous lemma. Consider a cycle ofweight 1 in the graph

corresponding to (11). We now have that

m m

JJkt - JT7f = 1 (14j
f«=i f=i

Regarding the n-th expansion of the cycle we will show that the whole collection of groups in (12),

together with some directed edges from the dynamic aR-graph form a cycle.

The fact that z^^-d and zfj^°d) are connected, for all 2< »< m and for all

0< r< n is proved in exactly the same way as the corresponding result in Lemma 5.9.

Consider now the last variable in the last predicate of the r-th group zxf* aa

z.if* l (the equality coming from (6) and (14)) and the first variable in the first predicate

of the (r+l)-th group zffi^, for all 0< r< n. We will show that these are connected as well.

Lemma 5.3 is directly applicable for /n+1 with ar=r+l and y—lx—k^ Therefore, we have

((r+l)-kx+lx) - (fn+x(r+l-kx+lx)) « ft(n+l)

for some integer ft. This satisfies condition (a) of Lemma 5.4, if we take into account that

/B+i(r+l) = r+1 for the range of r's we are considering. Condition (b) is easily proved from the

definition of /n+i- Therefore, from Lemma 5.4 we can conclude that these variables are

connected also.

The final step is to show that the last variable of the last predicate of the n-th group

ziul+in*rJ) = *j'TH(n+l~*,"Hl) = z[ffi+ill~k'>) is connected with the first variable of the first

predicate of the 0-th group z(^(. We have again used (6) and (14) together with the definition* of

/n+i- to obtain the equalities of the variables. Lemma 5.3 can be applied again here for /R+1 with

x=0 and y=l\—kx, to satisfy condition (a) of Lemma 5.4. Again, condition (b) is trivially

provable and therefore, by Lemma 5.4, these two variables are connected as well.

Having proved the existence of a cycle in the aR-graph we are now going to prove that its

weight is equal to 1. The steps are similar to those of the corresponding part of Lemma 5.9.

-33-

Assuming that L is the weight of the cycle, we have

L= z^rrZH fn+i{r)+k2-l2-fn+x{r+<r2) +
n+i rsd0

fn+i{r+<72)+ks-U-fn+i{r+<rs) +

L =

L =

n+1

fn+i{r+<rm)+kx-lx-fn+x{r+l) I <=>

Trhfn+i(r)+ hkHi)-fn+i(r+l)\ <#=>
r=*> f=l

^1 (n+l)Z,(fc,-/f)+/R+1(0)-/R+1(n+l)] <==>

L - i>H,) <*=> L « 1

This concludes the proof of Lemma 5.10. Q

Lemma 5.11: Let a be a simple recursive statement. Suppose that the maximum weight of

any path in the dynamic a-graph is 1. If there is a cycle of weight 1 in the a-graph then a is not

bounded.

Proof: Suppose to the contrary that there is some bounded simple recursive statement a

such that the dynamic a-graph has a maximum path-weight equal to 1 and the a-graph contains

some cycle of weight 1. The cycle must have the form of figure 5.10.

H

H'

Fig. 5.10 : Typical weight 1 cycle with single dynamic edges

-34-

Without loss of generality we may assume that between any two directed edges there is at most

one undirected edge, as it appears in figure 5.10. The more general case can be reduced to this

special case above in a straightforward way. Because of the properties of the a-graph, its nodes

may be divided into two sets H and H1, as in figure 5.3. The subgraph H contains all the tails

and H' contains all the heads of the directed edges. Furthermore, the fact that the graph

contains a cycle of non-zero weight implies that there is at least one undirected edge between a

node in H and a node in H'. If not, then every cycle would have an equal number of positive and

negative directed edges, and would thus have weight zero. In figure 5.10 Qx is such an edge.

We will primarily use the [application" view of a as described in the beginning of Section 5.

Let n be the bound of a. We will find an instance of the relations involved in a that will need at

least ?7+l iterations to produce all the tuples in the recursive relation, thus coming to a

contradiction. Consider the following n+2 distinct constants: {a0,ax,a2,...,at[,an+l}. Suppose that

every relation Q whose corresponding undirected edge has both nodes in H, like Q2 in figure 5.10,

contains the tuples <a0,a0>, <ax,ax>, ..., <aK,att>. Likewise assume that every relation Q

whose corresponding undirected edge has both nodes in H', like Qs in figure 5.10, contains the

tuples <ax,ax>, <a2,a2>, ..., <aK+vaf[+i>- Finally suppose that every relation Q whose

corresponding undirected edge has one node in H and the other in H' contains the tuples

<a0,fli>, <ax,a2>, ..., <aft.,afr+1>. In figure 5.10, edge Qx is such an example. For the time

being we assume that the first attribute of the relation is the one corresponding to the variable in

H. Later we will remove this restriction. As it concerns the recursive predicate P, we assume

that initially it contains only one tuple with all its attributes having the same value a0. With this

instance of the relations of the formula we will show that one of the attributes of the recursive

predicate will not take the value an+l until the n+l-th iteration.

Notice that in the a-graph each directed edge shows how values are produced in one of the

attributes of P. Also notice, that there are two nodes in the a-graph for every attribute of P; one

in H and another in H'. The attribute mentioned above is identified with the help of the

-35-

following new graph.

(i) To every pair of attributes of P, that are connected with a static edge in H', we associate a

node in the graph. These nodes will be called the roots of the graph.

(ii) To each one of the remaining attributes we also associate a node.

(iii) There is an undirected edge between any two nodes such that the corresponding attributes

are likewise connected with a static edge in H. These edges will be called join edges.

(iv) Finally, there is a directed edge from a node vx to a node v2 if, in the a-graph, the node

corresponding to vx in H is connected with a static edge to the node corresponding to v2 in

H'.

As an example, consider the graph shown if figure 5.10a.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LNTH4

Fig. 5.10a : Another weight 1 cycle with single dynamic edges

The corresponding graph constructed in the way described above appears in figure 5.10b. Nodes

(1,15), (4,5), (9,10) and (11,12) are the roots.

1,15 11,12 9,10

4,5 3

A / \
2 14 13 8

/ \

Fig. 5.10b : Graph showing the interaction of attributes

The — edges are not part of the graph. They only show a particular matching between the

attributes which will be described shortly. It is not difficult to see that this new graph (or rather

-36-

its underlined undirected graph) will always be a cycle. The directed edges show how the values

in one attribute (the tail) will affect the values in another attribute (the head) in the next

iteration. Only one node is necessary for every pair of attributes that satisfy condition (i) because

the contents of the relations are such that every tuple in P will have the same value in both

attributes of the pair. Notice that the nodes of (i) (the roots) are exactly the ones with directed

in-degree equal to zero. The only case that there are no root nodes is when the a-graph has

exactly one directed (and one undirected) edge. In this trivial case the graph constructed as above

is a single node with no edges. Then, a represents the transitive closure of the non-recursive

relation in a and is clearly unbounded. From now on, we assume that the recursive predicate in a

has at least three attributes and therefore the graph does have roots.

Our focus now will be to see, as the iterations proceed, which other pairs of attributes will

be getting equal values as well. Each such pair of attributes will be called a matched pair. There

is an odd number of such nodes to match (there are (arity of P)-2(# of roots) nodes to match and

P is of odd arity). So there will be one node that will not be matched. This node will be the one

that will be used to contradict the boundedness of a.

We match the nodes inductively as follows:

Stage 1: Each root may be considered a matched pair on its own.

Stage 2: Because the graph is a cycle, each root has at most two children. Match any two nodes

as long as they are children of the same root.

Stage ft: Imagine that whenever two nodes are matched, they are connected with an undirected

match edge. Consider any maximal path of match and join edges created in the previous stage as

a new root and then proceed as in stage 2 (maximal in the sense that it cannot be extended with

more match or join edges). An equivalent way to look at it is that we match nodes that can be

reached from one of the original roots using two disjoint paths of the same weight (i.e. again

counting only the directed edges).

-37-

Applying the above procedure to the graph of figure 5.10b the nodes are matched according

to the — edges shown there. As we can see, node 6 is the one that does not get matched. We

need that, in general, when the whole process terminates all but one of the non-root nodes are

matched. Suppose that we are at stage ft and more than one node is unmatched. Take one of the

roots formed at the previous stage (that is, a cluster of nodes connected by a match-join path). It

is not difficult to see that the graph of the new roots together with the unmatched nodes is again

a cycle. So, there must be two directed edges going out of every new root and leading into two

unmatched nodes. So the process can only terminate when there is only one unmatched node in

the graph.

It is useful to point out here that after we get a maximum match as described above, the

unmatched node is connected to its father with a match-join path. Assume that the matching

process needs ft stages. We will now show what values are obtained in each attribute of the

recursive predicate as we iteratively process a. First, consider the attributes that are matched.

For each attribute matched at stage i in the above algorithm (including the roots that are viewed

as the matched nodes in the first stage) the tuples produced at step j contain the following values:

{ay} tOTJ<i

{a«v..»a,r+i} torj> i

This is proved by induction on j:

Basis: Let j=0. In step zero of the processing there is only one tuple in P and all the

attributes contain <z0.

Induction step: Assume that the above is true for all steps up to I. We will prove it for

l+l. Every attribute that is a root (or rather that is one of the two attributes that form a root)

always receives the full set of values from relations like Q3 in figure 5.10. So, from the first step

the whole set {ax,...,an+l} is produced. Since a root is matched at stage 1, this proves our

conjecture.

-38-

Every non-root attribute matched at stage i has a father matched at stage i—1. If /< i—1,

then the values of the father of the attribute are in {a(}, from the induction hypothesis. The

form of a and the contents of the non-recursive relations imply that we can only get al+x in the

attribute concerned in step ». Since l+l< t this agrees with our statement. If l> i—l, the

values in the father of the attribute are in {al-_1,...,afr+1}, from the induction hypothesis. This

implies that its child will get values in {ait...,an+1}, which is the desired result since l+l> i.

We will now show that in step j the unmatched attribute receives only the value ay. Notice

that in every step of the iterative process, all attributes that are connected with a match-join

path have the same value in all qualifying tuples. This is because a match edge between two

attributes means that all the tuples have the same value in these attributes, whereas a join edge

forces equal values to the qualifying tuples because of the particular instance of the relations that

we have chosen. Consider the father of the unmatched node. Since we are not dealing with the

trivial case mentioned above (i.e. the recursive predicate has arity greater than 1), such a node

does exist. It is either a non-root attribute or a root that is connected with a join edge to a non-

root attribute. This is implied by the fact that every node in the graph has degree 2 (it is a cycle)

and that, if the father was a root with two directed edges emanating from it, both its children

would be matched, according to the algorithm above. In either case the effect is the same.

Consider the values of the father of the unmatched attribute. In all qualifying tuples at any step

these values are restricted to the values of some non-root matched attribute. In the case that

there is only one value qualifying in the father attribute, say aj (produced at step j), we can only

get Cj+X in the unmatched attribute at step j+l. After some step, say ft, all the matched

attributes contain values from non-singleton sets. But in this case, as it has been mentioned

above, there is a match-join path from the unmatched node to its father. So, if at step j the

unmatched attribute contains the value ay in all produced tuples, its father is forced to contain

that value alone in all qualifying tuples. Therefore, at step j+l, the unmatched attribute will

only get aJ+x.

-39-

Our assumption was that a was bounded, with bound n. As we have proved above we will

not get a tuple in P with aa+l in the unmatched attribute until the n+l-th iteration. Having

obtained a contradiction we may conclude that a cannot be bounded.

We will now remove our restriction that for all static edges with one end in H and the other

in H', the first attribute of the corresponding non-recursive relation is in H and the second is in

H'. We will also remove our restriction that the three groups of relations (all in H, all in H' and

going from to H to H') are disjoint. The proof is similar to the one above and we will only give a

sketch of it. The instances of the relations are all equal. They all contain all tuples of the form

<ay,ay>, <ajtaj+x> and <ay+1,ay>, for all 0< j< ff+l, where ^will be given shortly. The

difference with the previous simpler case is that now we may have different values in a tuple for

two matched attributes. However the difference is bounded. If at one step the maximum

difference between the values of any two matched attributes is d, then it will be 2a* for their

immediate children. Also, the difference between the two ends of a match-join path is the sum of

the maximum differences for the match edges along the path. From these two observations we

may get a crude estimate for an upper bound for N. Assume that there are m matched edges in

the graph. This means that we will need at most m stages to perform the matching. At any

stage we can have at most m match edges in any match-join path. With an easy induction we

can show that when we reach the step where the unmatched attribute is connected to its father

with a match-join path, the difference between the values in these two attributes in any qualifying

tuple can be at most 2fnmm""1. So, if we pick ff = n(2mmm~1)+l we can show as before that we

cannot get a^ before the (n"+l)-th iteration. Therefore even in the general case we may conclude

that a is unbounded. Q

Theorem 5.2: Let a be a simple recursive statement. If a is bounded then the a-graph

contains no cycle of non-zero weight.

Proof: Suppose to the contrary that the a-graph contains a cycle of weight n+1, n> 0.

Because of Lemma 5.9, we know that the aR-graph contains a cycle of weight 1. Lemma 5.8

-40-

implies that aR is bounded. Hence, there must be two expansions (aR)0 and (an)t,s< t, such that

the latter is more restrictive than the former. Lemma 5.6 implies that the maximum weight of

any path in the dynamic (aR)ff-graph is 1. Furthermore, applying Lemma 5.10, we have that the

(<*n)«~Sraph contains a cycle of weight 1. These last two points satisfy the conditions of Lemma

5.11; we may therefore conclude that (aR), is not bounded. Applying Lemma 5.8 again we have

that a is unbounded, which contradicts our initial hypothesis.

Having obtained a contradiction, we conclude that our assumption was wrong and therefore

if a is bounded the a-graph cannot contain any cycle of non-zero weight. D

We will now attempt to illustrate Theorem 5.2 with an example. Consider the statement

below:

0 : PWi,vj,u2fuz)AQ{w,u2)AR{y,Ui)AS(z,z) -* P(w,z,y,z)

The jd-graph appears in figure 5.11.

Fig. 5.11 : The 0-graph

The £-graph contains a cycle of weight 1, namely (ty-*u2-*y-*u3-*^—*z-+w). Recall that the

edge (z-*w) with weight -1 does exist, even though it is not shown in the figure, and also that an

undirected edge can be traversed in both directions. Hence, according to our theorem, 0 cannot

be bounded. The expansions of 0 become quite complicated and difficult to read. Thus we will

attempt to convince ourselves of the unboundedness of 0 by looking only at the graphs of these

expansions. The 0X- and ^graphs appear in figures 5.12 and 5.13 respectively. Contrary to what

-41-

R ua

Fig. 5.12 : The ^-graph

u x

WH
Q *2R a's S ui Q "'a R «wa «'i Q u\

Fig. 5.13: The/3rgraph

happened to the graphs of bounded statements, the graphs of 0's expansions continue to have a

single component, but the number of undirected (static) edges in the original cycle increases. This

continues, no matter how many expansions we perform. Clearly, for two cycles to be isomorphic,

they have to contain the same number of edges. Since no expansion can have a graph which is

isomorphic to a subgraph of any previous expansion, there can be no upper bound on the number

of them that are significant for the result. Notice that all expansions have a cycle of weight 1 in

their graph, which should be expected because of Lemma 5.10.

The results in Sections 5.1 and 5.2 lead us into the following theorem.

-42-

Theorem 5.3: Let a be a simple recursive statement. Statement a is bounded if and only

if the a-graph contains no cycle of non-zero weight. In that case a tight upper bound on the rank

of a is equal to the maximum weight of any path in the a-graph.

Proof: The proof follows immediately from Theorems 5.1 and 5.2. •

The condition of Theorem 5.3 is sufficient for a statement to be bounded even when

restrictions (3) and (4) of Section 2 are removed. However it is not necessary. For example

consider the trivial example

P(y,z)-+P{z,y)

This statement is not simple. It violates restriction (4) by having a subsequence of the variables

under the recursive predicate in the consequent being a permutation of the corresponding

variables in the antecedent. The graph of the statement appears in figure 5.14.

Fig. 5.14 : Graph violating restriction (4)

As expected the dynamic graph (restricted to the positive edges), which in this case is equal to the

whole graph, is not a forest. Even though it is clear that the statement is bounded with bound 1,

the graph contains a cycle of weight 2, thus violating Theorem 5.3. Future work should attempt

to generalize the condition of the theorem to include statements like this as well.

6. ALGORITHMS

The condition of Theorem 5.3 can be easily checked in the a-graph of some simple recursive

statement a. We can use a depth-first search algorithm on the graph in its original form with all

positive and negative dynamic edges. Whenever we start searching a new component we assign

the number zero to the first node we visit. Every time we traverse an edge in the graph, we

-43-

increase this count by the weight of the edge and we assign the current contents of the count to

the node at the other end of the edge. If at any point we visit a node already visited and the two

numbers assigned to it are not equal, then there is a non-zero weight cycle in the graph, and

therefore a is not bounded. Otherwise a is bounded. The maximum weight of any path within a

component is the sum of the maximum positive number plus the absolute value of the minimum

negative number assigned to any of its nodes. The maximum such number over all the

components is the bound of a. The algorithm just described appears below.

Input: Some a-graph G—(V,E,W), where V is the set of nodes, E the set of edges and W
the mapping of every edge to its weight; the graph is represented by adjacency lists L[v\, for
vev.

Output: If a is bounded then give its bound, otherwise give "UNBOUNDED".

Algorithm: In the following algorithm D\v\ denotes the count assigned to v as it was
described above, and W^v,!*/] denotes the weight of the edge (v-+w).
begin

bound :=*Q;
for all v in V do mark v "new";
while there exists a vertex v in V marked "new" do

begin
mazpos :=Q; mazneg :*=0;
SEARCH (t/,0);
bound:=MAX(bound,mazpos +mazneg)

end

output(bound);

end

procedure SEARCH (v,count):
begin

mark v "old";
D[v\ := count;
mazpos := MAX(mazpos,count);
mazneg := MAX(mazneg,—count);
for every vertex u; in L\v\ do

if w is marked "new" then SEARCH (w,count+W[v,w\)
elseif D[w] ^ count +W\v,w\ then output ("UNBOUNDED"); exit;

end

Alg. 6.1

Lemma 6.1: Algorithm 6.1 returns "UNBOUNDED" if and only if its input graph has some

cycle of non-zero weight, otherwise it returns the maximum weight of any path the graph.

Furthermore it requires 0(u+e) steps, where v is the number of nodes and c is the number of

-44-

edges in the graph.

Proof: The correctness of the algorithm is obvious, from our discussion in the beginning of

this section. As it concerns its running time, the algorithm is a depth-first search of a graph, with

a constant number of operations in each step. Therefore, its running time is 0(v+i). Q

7. APPLICATIONS

Besides its theoretical interest, our result may have considerable implications on how general

recursive statements can be processed in a deductive database environment. We have no general

results in that direction but we speculate that many recursive statements can be decomposed into

"smaller" ones, some of which are bounded. Our unbounded statements will be smaller than the

initial one and this will result in faster processing. Furthermore, the parts of the result that

correspond to bounded statements will be obtained in a bounded number of steps independent of

the rest of the statement. This should result in greater efficiency, since the processing of the

original statement may involve many more steps than the bound of the bounded statements.

Processing the original statement in its initial form would recompute the same things again and

again. Of course there will be some overhead in the end to combine the results of the various

substatements in a way that produces the same result as the original statement. In many cases

though, the effort will be worth some net savings in computational cost.

As an example of such a decomposition consider the following statement

P(z,w) A Q(z,w) A R(z,y) A S(z,z) - P(z,y)

The graph of this statement is shown in figure 7.1.

Fig. 7.1 : Graph of decomposable statement

The statement can be decomposed into the two statements

-45-

P\{z,w) A Q(z,w) A R(x,y) - Px(x,y)

P2(z)A S(z,z)->P2(z)

The corresponding graphs of the two statements appear in figure 7.2.

z Q

Fig. 7.2 : Graphs of statements after decomposition

As we can see the first statement is bounded, with bound 1, while the second is unbounded.

Processing the two statements separately and then combining the two results may affect the

processing time significantly.

As for a single statement, the information that it is bounded might prove to be useful as

well. Its definition can be expressed non-recursively in a finite form. This makes applicable all

the tools used in conventional relational databases to find fast access paths to process the

statement. It also makes it much easier to compile such an access path compared to the effort

needed for a general unbounded statement (e.g. see [Naqv84)). Finally, when we know that a

statement is bounded, with say bound n, we never need to process the statement for an (n+l)-th

time, only to discover that no new tuples are produced. For statements with small bounds, say 1

or 2, this may prove to be quite significant. We should also note that, even though we have

examined the problem of bounded recursive statements in a deductive database context, our

results apply to other similar environments, like those based on the PROLOG programming

language.

All the above lead us to the conclusion that the existence of bounded recursive statements

and our ability to characterize them is an important step towards efficient processing algorithms

for recursion.

-46-

8. CONCLUSIONS

We have considered a restricted class of recursive statements in the context of a deductive

database. We have demonstrated that some such statements are amenable to an equivalent finite

nonrecursive expression, i.e. using the first n expansions of the statement, where n is its bound.

By modeling such a statement with a weighted graph, we have shown that the property that the

statement can be expressed in a finite way is equivalent to the property that the graph has no

cycles of non-zero weight. Finally, we have indicated some possible implications of our result in

the construction of efficient algorithms to process recursive statements.

Many issues are left for future work. We are currently attempting to obtain necessary and

sufficient conditions for more general classes of recursive statements, by removing some of the

restrictions (1) to (4) of Section 2. We believe that this should not be difficult for restrictions (3)

and (4) and partly for restriction (2). As an even more important task for the future we consider

the study of unbounded recursive statements. We are currently investigating the possibility of

decomposing such a statement into smaller ones some of which are bounded, in the way it was

demonstrated in Section 7. Finally, much work needs to be done for unbounded, non-

decomposable recursive statements.

Acknowledgements: I am deeply indebted to Timos Sellis for the innumerable discussions I had

with him on the subject. I would also like to give thanks to Prof. E. Wong for all his valuable

help and guidance and to Eric Hanson for his useful comments on earlier drafts of this paper.

9. REFERENCES

[Bond76]
Bondy, J. A. and U. S. R. Murty, "Graph Theory with Applications ", North Holland, 1976.

-47-

[Chan81|
Chang, C. L., "On Evaluation of Queries Containing Derived Relations in a Relational Data
Base", in "Advances in Data Base Theory", Vol. 1, edited by H. Galaire, J. Minker and J
M. Nicolas, Plenum Press, New York, N.Y., 1981, pages 235-260.

|Codd70|
Codd, E. F., "A Relational Model of Data for Large Shared Data Banks", CACM 13 6
(1970), pages 377-387.

[Date82]
Date, C. J., "An Introduction to Database Systems", 3rd edit, Addison-Wesley, Readme
MA, 1982.

[Ende72]
Enderton, H. B., "A Mathematical Introduction to Logic", Academic Press New York
N.Y., 1972.

|Gall78]
Gallaire, H. and J. Minker, "Logic and Data Bases ", Plenum Press, New York, N.Y., 1978.

(Gall81j
Gallaire, H., J. Minker, and J. M. Nicolas, "Advances in Data Base Theory". Plenum Press
New York, N.Y., 1981.

[Gall84]
Gallaire, H., J. Minker, and J. M. Nicolas, "Logic and Databases: A Deductive Approach",
ACMComputing Surveys 16, 2 (1984).

|Naqv84|
Naqvi, S. and L. Henschen, "On Compiling Queries in Recursive First-Order Databases"
JACM 31, 1(1984).

[Reit78j
Reiter, R., "Deductive Question-Answering on Relational Data Bases", in "Logic and Data
Bases", edited by H. Galaire and J. Minker, Plenum Press, New York, N.Y 1978 Danes
149-177. 6

[Robi65|
Robinson, J. A., "A Machine Oriented Logic Based on the Resolution Principle", JACM 12
1 (1965), pages 23-41.

	Copyright noticE 1985
	ERL-85-6

