

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A SYSTEM FOR TESTING CUSTOM DESIGNED VLSI

by

J. Dinur

Memorandum No. UCB/ERL M85/57

15 July 1985

.

A SYSTEM FOR TESTING CUSTOM DESIGNED VLSI

by

J. Dinur

Memorandum No. UCB/ERL M85/57

15 July 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A System For Testing Custom Designed VLSI

Julian Dinur

Department of Electrical Engineering and Computer Science
Electrical Engineering Division

University of California
Berkeley

California 94720

ABSTRACT

This manual contains a general description of a system for
testing custom designed VLSI chips. The manual also explains how
to use the system and the main steps of testing a VLSI chip.
The system was built at U. C. Berkeley, E.E. Department.

May 24. 1985

LZL

This research was funded by the Defense Advanced Research Projects
Agency, contract number: N00039-85-C-0107.

Table of Contents

1. INTRODUCTION 1

2. OPERATION MODES 2

2.1. The test mode 2

2.2. The debug mode 2

3. HARDWARE 3

3.1. General description 3

3.2. The GPP board 4

3.3. The DSP chips tester board 8

3.4. The RAM chips tester board '. 8

4. FIRMWARE 11

5. SOFTWARE 12

5.1. The most useful commands -. 12

6. THE MAIN STEPS OF TESTING A CHIP 13

7. RECOMMENDED DESIGN RULES FOR TESTABILITY 15

8. APPENDIX A - Procedures 18

9. APPENDIX B - An example of a program in assembly language 18

10. APPENDIX C - An example of a program in C 20

11. APPENDIX D- The I/O addresses for the special purpose board 21
ia APPENDDC E - I/O Drivers 22
13. APPENDIX F - The communication protocol over the serial channels

24

14. APPENDIX G - The dumpdata.c program 25
15. APPENDDC H - SCHEMATICS 26

15.1. GPP Board - I/O Part 26
15.2. DSP Chips Tester Board 32
15.3. RAM Chips Tester Board 41

898

A System For Testing Custom Designed VLSI

Julian Dinur

Department of Electrical Engineering and Computer Science
Electrical Engineering Division

University of California
Berkeley

California 94720

1. INTRODUCTION

An inexpensive and very efficient system for functionally testing custom
designed VLSI chips has been designed and built. The system, currently used at
U.C. Berkeley in the EECS Department, is very efficient for testing digital signal
processor (DSP) and RAM chips.

The tester is connected to a host computer which down-loads a testing pro
gram and an input data file. During the program execution, the system stores
the results in an output data file. After the execution of the program, the system
up-loads the output file to the host computer for examination.

The system has two operation modes : a test mode and a debug mode.

In the test mode, the stored output results are the regular data outputs
from the tested chip. In the debug mode, the stored output results are the con
tents of the output bus from the tested chip, after each input clock.

918

-2

2. OPERATION MODES

2.1. The test mode

In this operation mode, the regular output results from the tested chip are
stored in the tester memory. The results are then up-loaded to a file in the host
computer for examination. The resultant file is compared with a pre-prepared
file which contains the expected results.

In the case the two compared files are identical, the assumption is that the
chip works properly. (To verify this assumption, the process is repeated for
many different input files).

In the case the two compared files are different, further investigation is
needed to find out what is wrong in the chip. This can be done by using the
debug mode.

2.2. The debug mode

In this operation mode, the stored results in the tester memory are the
contents of the output bus from the tested chip, after each input clock cycle.
The results are up-loaded to a file in the host computer for examination. As in
the test mode, the resultant file is compared with a pre-prepared file which con
tains the expected results. In this case an incorrect result can indicate which
unit in the tested chip does not-work properly, or which command is riot exe
cuted as expected.

A farther investigation of the chip's design then needs to be performed, in
order to pinpoint flaws and allow for any necessary design corrections.

SZL

a HARDWARE

3.1. General description

The VLSI tester consists of 2 boards : a general purpose processor (GPP)
board and a special purpose board. All the boards are built on Multibus compati
ble cards. —

The GPP board is built around a 16-bit microprocessor and its main roles
are:

a. Store the test program loaded from the host computer.
b. Run the test program in conjunction with the special purpose board and

store the results.

c. Up-load the results to the host computer.
The general purpose board contains the interface between the GPP and the

device under test (DUT). Two special purpose boards have been built : a board
for the digital signal processor (DSP) type chips and a board for the RAM type
chips.

The main roles of the board for testing DSP chips are :

a. Store the input data file sent by the GPP board and enable the DUT to
read the input data at its own rate.

b. Store the output results from the DUT and enable the GPP to read this
file at its own rate.

c. Enable data write/reads directly to/from the DUT.
The main roles of the board for testing RAM chips are :
a. Store the RAM address sent from the GPP.

b. Store the input data sent from the GPP and write it into the RAM.

c. Store the output data from the RAM and to enable the GPP to read it.

In order to enable the testing of chips with different pinout, a special adap
tor has to be prepared and placed on the special purpose board.

OVL

aa The GPP board

The GPP is based on the Intel 80186 microprocessor and contains the follow
ing functional blocks (please see fig. 1 - fig.3) :

a. EPROM (2 k * 16 bits) - stores the firmware which enables the GPP to
communicate with a host computer (VAX, for example) through the serial or
parallel ports.

b. DRAM (64 k * 16 bits) - stores the test program, the input data file and
the output testing results.

c. Two serial I/O ports - enable the serial communication between the GPP
and a host computer through the RS-232 protocoL

d. Parallel interface - supports the communication with a host computer
through the Multibus based protocol.

e. A/D converter - enables the GPP to read samples from the analog input
at a rate up to 25 kwords (12 bits) per second.

f. D/A converter - enables the GPP to send data to the analog output at a
rate up to 200 kwords (12 bits) per second.

The GPP board is based on the SPUDS board (for details on the SPUDS
board, please see the report "SPUDS" by William Baringer, Memorandum No.
UCB/ERL M84/4. January, 1984).

IU

*

(VIU
o

t-v
.

ft
<

^

o*
~

4
-

•

AT0X2

eU
J

•
z

oU
J

$

ill

0
J?

•9
P

*
.

ffi?
5

**i
£o0
0

-
5

-

U
.1

<
t

uj3
s

<
t

o

0-a*
2

<
*

e
t

u>
o

a
t

/^
U

*
iu

H
1-

„
„

.
z

<*]<*n

a
t
5

toJ
!

<
*!

•i»i
2

i
U

l
«

"!a
:

0
-

<*•

o

-
6

-

_»
id

i<
3

a
t.

^T
O

<
j

-J
q

V

IS
^
V

r
\

j
.

4
.

rA
:S

2a
t
,

O
.

v0
^

H

%
I

i;
l

3
3

£
>

3

-
H

,
IU

l

i-
t
1

5
5

H-

•
U

2
2

4
a-
t

o
o

U
S

*
0

-

ft
0

\

0
4i
z

r

o
-
t.

Q
-

-
f
-

1!UID

ra
.

I
C

I

*lI

Hi

'•
<

S-

*WII

3.3. The DSP chips tester board
This board consists of the following functional blocks (please see fig. 4 -

fig.5)*.
a. FIFO input memory - stores up to 16 words of 16 bits each of input data

sent from the GPP to the DUI*.

b. FIFO output memory - stores up to 16 words of 16 bits each of output
data sent from the DUT to the GPP.

c. Clock generator - generates 2-phase non overlapping clocks (1/4 duty
cycle).

Due to the small number of words in the FIFO, the minimum time between
consecutive inputdata to the DUT is about 5 useconds. (A new faster board with
a larger memory is under development).

3.4. The RAM chips tester board
This boardcontains the following functional blocks (please see fig. 2):
a. Address register - stores up to 8 bits of address sent from the GPP.
b. Input dataregister - stores up to 16 bits of input datasent from the GPP

to the DUT.

c. Output data register - stores up to 24 bits of output data sent from the
DUT to the GPP.

d. Clock generator - generates 2-phase non overlapping clocks (3/8 duty
cycle).

Because the GPP board sees this board as a mapped I/O device, the RAM
addresses have to be sent first and then stored on the tester board. After that
(about 1usecond later), the data can be written or read from the RAM. (Anew
faster board is under development).

228

a
^

£
a)

:
?

£

V-'

?
T0

)_
»

lljO
^

(-o
.a

x
>

/ju

X
i3

-
S

£

T
5

O

,/»
^

o
a

t

<0
a

.
o

A<
*•

a
.

I*
1

(*>
I

£
*

a

-
a

-e*

a
t

a

_>

d3•2.

AO<
P

ill
Q

i

9O

<
t

0-

°
.L

<
X

<
0

a
t

2
S

-
i
o

*

<
*

<
*

u>
.
.

2
h

*

O
•?

-<

if

t

0

a
.

5
l

5
»»

i

«
o

c

<
2

"
7

-
o

a
.

?
U

i
vA

&

s9

;
&••

&
:

O

4
,!

*

<
*•

o

*
!

e^

^
1

A

M
a

*

«*l
-
j

<*-
a

-»
!

a<
*

i
A

o
i

C
-:

c
i.'

-11-

4. FIRMWARE

The firmware in the EPROM on the GPP board was written so that a terminal
may be connected to serial channel B and the host computer to serial channel A.
The GPP board then acts in a "terminal emulator" mode where characters
received from the host are passed on to the terminal's screen. However, if a cer
tain string of control characters is received from the host computer, the code is
not sent to the terminal, but stored in the DRAM on the GPP board. At the end of
the transfer of the user's program, another set of control characters is sent as
an end-of-text indicator, and program execution of the 80186 commences at the
beginning of the new program in DRAM.

A typical program loaded into DRAM could allow control of the tester via the
terminal, and send data back to the terminal for examination. Data may also be
sent to the host computer for storing and further processing.

938

-12-

5. SOFTWARE

The test programs can be written in C and/or Intel 80186 assembly
language.

The C programmer can use. a large amount of pre-defined procedures
(please, see appendix A) and an 8086 cross compiler .

5.1. The most useful commands

A program in assembly language should have the suffix .a86 . For example:

prog,a 86

The assembler a86 will produce the file prog.b :

a86 prog.a86

The C cross assembler will produce the executable file xx.com (xx is an
arbitrarily name):

cc86 -1 -o xx prog.b

To assemble a C program, p.c, and an assembly program, prog.b, the follow
ing command should be used :

cc86 -1 -o xx p.c prog.b

To load the executable file in tester's memory, one should use the com
mand:

pdploader xx.com /usr/local/861dr
If using the C program presented in appendix c, the output results will be

stored in the file "results" in the host computer, in the user's directory. To read
this file on the terminal, the following command can be used:

dumpdata < results

dumpdata.c is a C dump program (please see appendix G). The user can
modify this program in order to get a different output format.

SVL

-13-

6. THE MAIN STEPS OF TESTING A CHIP

a. Prepare the adaptor for the specific chip pinout (a special form has been
prepared for this purpose, please see figure 6).

b. Prepare the software (the assembly language program and/or the C pro
gram with the input data file).

c. Begin to test in the "test mode" : load the testing program and examine
the output result file.

d. In the case the the results are incorrect, the chip can be tested in the
"debug mode". To do that a small hardware modification is needed and the
software has to be updated.

e. The use of an oscilloscope and a logic analayzer for testing the waveforms
and the timing of the chip's signals is strongly recommended.

0$l

A
A

A
a

A
A

A
A

W
>

J
F

J
N

*
O

fi

*
X

S
T

X
X

=
X

3
5

v
*

o
5

*<
*

o
o

I

-
H

-

"
D

O

I

^
«•*«*

-rvrtvS
f*-«»

<-»,©
s

a
jj>^;^

o
fV

nj«^a

4%
®

&r
u

.-
til

\1
o-

*
£

r*
#

©-c**>*•*>
VO•%

og«n£

4?? ;
s?

c
S

5
!.?

^
'>2

;s
jp

i?1* ;*
•<

•
e H

4

I
O

A

-r
c«

e^<
^>

o
n

»
^o

«
r>

2
^,g

^
5

^
?

^
(t^

^
r
^

A
;

4
a

/*
£

A
;A

A
;a

A
A

a
A

A
A

a
A

<
J

i
to

a
-

1^.V
U

l

'U
O

fc

K
rP
i

*/)
c
£

P
-

^
f1

<
J

4
.

0
-sAAa
t

"2

-15-

7. RECOMMENDED DESIGN RULES FOR TESTABILITY

a. Use only "active low" external signals.

b. Use only uninverted input clock.

c. Use built-in firmware for testing.

d. Use a reset pin to reset the chip. All internal flip flops and latches should
be reset or set to known states :

- Counters

- Stack pointers

- Internal data busses

- Tristate output pads.

e. Being able to preset portions of a circuit can be very useful The preset
value can be hardwired into the circuit or programmed from the outside. The
intent of presettability is to allow a portion of the circuit to be easily placed into
a known state other than the reset state to activate a function to be tested.

628

16

8. APPENDIXA-Procedures

The procedures were prepared by Robert Kavaler. They are on ucboz in
~kavaler/85/cc86mit/lib186.

sys/

DmaSetup.a86 DmaSetup((long) source, (long) dest, count, control,
channel (FFCO/FFDO))

MemFiU.a86 MemFill(PhysicaLAddress, count, dataO, datal, ...)
Refresh, c Refresh()
int.a86 splow() /* enable interrupts */

sp:high() /* disable interrupts */
splx(splhigh_return) /* return the old set-up for interrupts */
Setlnt(type, raddr)

io.a86 IoIn(port) /* write data to port */
IoOut(port, data) /* read data from port */

ios.a86 loinsb(port, address, len)
IoInsw(port, address, len)
IoOutsb(port, address, len)
IoOutsw(port, address, len)

lblt.c lblt(to, from, len) /* long block transfer by DMA */
mem.a86 MemIn(PhysicaLAddress) /* read words */

MemOut(PhysicaLAddress, data) /* write words */
misc.a86 GetDS()

GetCS()
physaddr.a86 physaddr(addr)
sbrk.c sbrk(incr)
sys.c —

ttyio.c /* serial communication with the TTY */
_ren._put(c) /* data: c - character */
_rcn_pb() /* status */
_rcn_in() /* status */
_rcn_ib() /* data */

vaxio.c /* serial communication with the host computer */
jrvxjput(c)
_rvx_pb()
_rvxjn()
«rvxjb()

opsys/

dispatch.a86 Dispatch()
Promlmm - from assembly language routines only, use jmp

menu.c menu()
object.c CreatObjects(length, number)

GetObject(Objects)
IinkODject(ODjects, object)
UnlinkObject(Objects, object)

plock.c Lock(x)
Uriock(x)

pmalloc.c pmalloc(num)
pfi-ee(p)

process,c ProcStart(Processes)
ProcKill(Processes)

procinit.a86 InitDone()

C 9 Z.

17

ptime.c TimeStamp()
queue.c creatq(msize, nmessages)

resetq(q)
getq(q)
igetq(q)
getlq(q, b)
putq(q)
iputq(q)
putlq(q, b)
killq()

shell, c shell(prompt, commands)

messages/ / * for Multibus communication *'

Mesglnit.c Mesglnit()
MesgOut.c MesgOut(data, length)
MesgQIn.c Mesgln(p)

MesgFlush()
NewMgInQ(type, q)

MesgQOut.c MesgQOut(p)
SendObject(Objects, obj, len)
SendQueue(q, len)

multibus/ —low level stuff
gen/ —standard C library
stdio/ —*printf, and getline (my own creation, used by shell)

Standard I/O is difficult to explain, just follow tt ese rules. Before any input/output
use one of the following calls:

#include <stdio.h>
extern SIOSYSTEM sio_pconsole;
sio_new(&sio_pconsoie) if using RS332 ports

-or-

#include <stdio.h>
extern SIOSYSTEM siojpiultibus;
sioj^ew(&sio_piultibus) if using SUN"mbhost" program

vs

-18-

9. APPENDIX B - An example of a program in assembly language

.data |a program to test the cmos ram (cram)

.comm _a,18 |a contains 18 bytes

.comm _b,12 |b contains 12 bytes

.comm _p,18

.comm _addra,2

.comm _addrb,2

.text |

.globl _Jirst Lfirst is the name of the program

.globl _addra |address of input data

.globl _addrb |address of output data
.first:

pusha |push all registers on stack

MAXDAT=3 |the max no. of blocks (3 words each)
|in input file

i
movbx,*l |
mov _addra, #_a
mov _addrb, #_J>

initl: mov cx.#MAXDAT
mov si,#_a
mov di,#_b

mov dx,#0x028E |debug pulse
outw

11: mov ax,(si) |read data from (80186)memory
mov dx,#0x028C |write data to addr. reg.
outw |

add si,*2 |prepare for next addr.

mov ax,(si) |read data from (80186)memory
mov dx,#0x0284 |write data to data reg.
outw

mov dx,#0x0282 |write to cram
outw I

add si,*2 |

loop 11 |repeat for each cram addr.

Z£B

19

mov cx,#MAXDAT |
I
12: mov ax,(si) |read data from memory

mov dx,#0x028C |write data to addr. reg
outw j

add si,*2 |

mov dx,#0x028A |
inw |read data from cram

mov dx,#0x0286 |read M.S.Part of data from cram
inw |4m.s.b.

and ax,#0x000F |clear non-relevant bits

mov (di).ax |store data in memory

add di,*2 |

mov dx,#0x0288 |read L.S.Part of data from cram
inw |l61.s.b.

_c:

J>:

mov (di).ax

add di.*2

loop 12

|store data in memory

jrepeat for each addr. in cram

jmp initl |start
dec bx

jnz initl
popa h
ret

.even

.data

.word 7

.word 0

.word 10

.word 256

.word 63

.word 32767

.word 7

.word 10

.word 63

.word 0,0,0,0.0,0

.word 0,0,0,0,0,0

start from the beginning

restore all registers

ees

*es

-20-

10. APPENDIX C - An example of a program in C

This C program should be assembled with a program in assembly language in orde
to enable the up-loading of the output file from the tester memory.

#define SIO sio_pconsole
#include <stdio.h>
^include <sys.h>
#define LENGTH 48

extern first();
extern int *addra;
extern int *addrb;

main()
I

I

splhigh(); /* disable interrupt */
first(); /* call the assembly program */
splowQ; /* enable interrupt */
initialize(); /* init. the tty */
printf("start up-loading\n ");
r_write("results",addra,LENGTH); /* up-load the output file */
/* "results" : the file name in te host */'
/* addra : the starting address in the DRAM on GPP board */
/* LENGTH : the number of bytes in the file */
printf("end up-loading\n ");

initialize()
\

extern SIOSYSTEM SIO;

sio_new(&SI0);
vaxrawmode();

i

vaxrawmodeQ /* the following code initializes the serial */
/* controller on the tester board for writing */
/* to the host computer */

I
IoOut(VAXCSR, 0x05)
IoOut(VAXCSR, 0x68)
Io0ut(VAXCSR, 0x03)
IoOut(VAXCSR, OxCl)
Io0ut(VAXCSR, 0x04)
IoOut(VAXCSR. 0x4E)

21

11. AFPENDIXD - The I/O addresses for the special purpose board

.globl _main |adrtestl.a86
_main:
loop: mov dx,#0x0280

in

out

add dx,*2
in

out

add

in

out

add

in
out

add

in

out

add

in
out

add dx,*2
in

out

add dx,*2
in

out

nop;nop;nop

jmp loop

dx,*2

dx.*2

dx,*2

dx,*2

read status FIFO 1 (A/D)
set amp. gain

read status FIFO 2 (D/A)
write data to FIFO 3 (host to D.U.T.)

read status FIFO 3 (host to D.U.T.)
write coef. to D.U.T.

read status FIFO4 (D.U.T. to host)
clear FIFO 1 (A/D)

read coef. from D.U.T.

clear FIFO 2 (D/A)

read data from FIFO 4 (D.U.T. to host)
write data to FIFO 2 (D/A)

N.D

N.D

read data from FIFO 1 (A/D)
N.D

9£8

-22-

12. APPENDIXE- I/O Drivers

UNIX 4.2BSD I/O driver for GPP board

Hardware:

There are three distinct ports on the GPP board: CSR, DATA, and
RESET. A read from the RESET port will reset the GPP board
and jump to the on-board PROM. This is considered a hard-reset.
The CSR and DATA ports are both readable and writable, but
they have a different meaning if read or written. Thus code
like:

CSR 1= ENABLE;
will not do the obvious thing. Instead a variable is kept in
memory that contains what is in the CSR and was last written.
The data port is designed so that strings of characters will not
have their bytes reversed, while strings of shorts will end
up with reversed bytes. This is because of the byte ordering
incompatibility between the SUN and 186. In addition, the
CSR port is active low on the SUN side, so every read and
write to the SUN CSR should be complemented to get active
high signals. All of these concerns are handled correctly
by the driver.

UNIX driver:

The driver implements 4 system calls: open, read, write, and
ioctL Open just checks that its arguments are legal.
The read and write system calls receive and send "messages"
to the GPP board through the MULTIBUS. Message lengths
must be even (in bytes). A message consists of any number
of data words followed by a unique word (called a header).
The header word is distinguished from data through the
use of the CSR port. From the UNIX program point of view
a message is just a variable length data stream that is
sent to the GPP board. The driver handles all handshaking
and header generation. The CSR bits are defined as follows:

/* description of CSR bits */
#define SPJDUTEN 0x000100
#define SPJ3UTRDY 0x000100
#define SPJNEN 0x000200
#define SPJNRDY 0x000200
#define SP.PR0GMASK 0x003C00

/* message bits */
#define SPJfGMASKTYPE OxOOOCOO
#define SPJIGTYPEH 0x000400
#define SPJfGTYPEM 0x000800

TYPEM is the CSR bits for messages, TYPEH is the CSR bits for
headers. All headers also have a data word associated with
them. Thus there are 65536 distinct headers, only 2 are currently

988

23

used, 0 and 1. Most headers are 0, but the down-load PROM on the
GPP board recognizes a header of 1 to mean start the loading
the incoming message into RAM, and execute from there. To
change the header that is sent out at the end of a message
one uses the SPJ2HHEADER ioctl call:

int i;
i = (header);
ioctl(sp_fn, SP_CHHEADER, &i);

Additional ioctl calls are:

SP_RESET - read the RESET port, returning control to the
spuds PROM.

SP_JTjUSH - called to reset the driver if read or write
terminates early (i.e. from a kill signal).

SPJRD.WRjJDATA.CSRJ - read/write the DATA/CSR registers
directly. These calls should never be
used except to debug things. CSR bits
come out active high.

The read system call should be used as:
actuaLmessage_jize = read(spjh, buf, MAXJ/IESSAGE_£IZE);

only one process should execute this command since one never
knows what messages will be received.

The write system call can be used by any process. Serialization
of the calls is perform by the driver. The write system
call is:

errcode = write(sp_in, outmessage, outmessage_length);
the value returned should always be outmessagejength or an
error occured

L£S

-24-

13. APPENDIX F - The communication protocol over the serial channels

#include <stdio.h>
#include <host.h>

/* To READ or WRITE UNIX files over serial lines

The following protocol is used on the client end:

in read() or write()
- send a SYNC FIL1LRD (or FILUTR) '
- send the file name

- send a SYNC END_QFJrfESSAGE

in r.jread() or rjwrriteQ
- wait for the client to respond with SYNC FIIJOD (or FILEJVR)

(if we receive SYNC ERROR, there is a problem reading
or writing the file)

IN READ
- read in characters from the host until a SYNC ENDjPFJdESSAGE

is received

IN WRITE
- send BL0CKJ5Z characters to the host
- send a SYNC EOB
- repeat until all the desired samples have been transmitted
- send a SYNC ENDJ)FJIESSAGE

•/

/* SHELL ESCAPE

works similarly to the read/write functions.
1) client sends SYNC COMMANDJ40DE
2) client sends command
3) client sends ENDJ)FjffiSSAGE
4) client goes into "terminal mode" which it stays in until

it gets a SYNC ENDJDFJ/fESSAGE from the pdp
5) host executes the command taking stdin from the client

which it now treats as a standard terminal

(it has temporarily discontinued raw mode)
6) host transmits SYNC ENDJ)FJ/CESSAGE when the forked of

command has finished

7) client sends ENDJ3FJ4ESSAGE to acknowledge
V

192.

-25-

14. APPENDIX G-The dumpdata-c program

This program is used to dump the output data results stored in a ASCII file,
by the testing program, to a terminal.

#include <stdio.h>

main(argc, argv)
char *argv[];
int argc;

i
printblock(lO, 8); /* dump the input data file */
while(l) \

printblock(36, 8); /* dump the output results */
)

i

getshort(fp)
FILE *fp;

i
int cl, c2;

cl = getchar(fp);
c2 = getchar(fp);
if(c2 == EOF) \

printff'O);
exit(O);

1
return (int) (short) ((cl&0xFF)+((c2&0xFF)«8));

printblock(blocksize, linesize)
int blocksize, linesize;

int i, col;

col=0;
for(i=0; Kblocksize; i++) \

if(col++ >= linesize) j
col=l;
printf("0);

printf("%8d", getshort(stdin));
I
printf("0);

688

15. APPENDIXH-SCHEMATICS

15.1. GPP Board-I/O Part

-26-

0178

11r

lI*#poi4_l

(i-fiUtS >

RSjSrriF2. 3>/a CoHvleft^SoH

(ib^Si)•2»

fc'iflfc

<°71tJ<<.

<s»7^«a,—q

"*K-J*$V?"<^T^^s"1•?**&&

*fcf>t>^A5>

t^ftD^»^> ._.

'fc,fr"D4u:>

1^^9>
t»M><£^
SPOj> 0>NO>

ap>t>^>>
1!>ftJ>^G>

1*>ftI>^S>
*2>ftJ>^4->
%&t> <3S>
li>fcj> ^L2^>
ILft-fc <£ <>
1,fV& Z. o>
S*PoD CMi)
**1V<-£T •*•

t>ftiJ> GNb

Ct-ePPM*
SWD 6H£>
V/RCOF*
£?0J> 0>NJ>
ft$>C6F<
^»?0J& 6ND
^DSTF^^
SPOT) fcrt T>

"toSTF^*
SP0£ 6Mi)

\fc*?rt=3*"
STOJi 6HI)

GDTIF4*
5"?jj> 6Hb

o

o

.:... i"

o a

0 ,0

— ~?> a
o

.... .1?
15"

o

TT

TT

"IT

T.T"

TT

-*

2
-c

4-
—O

c
—o

(4
-0

—o

1?
o

20

-~0

12
-O

24

2G
— o

18
-o

_£

-O

-0

-o

*?
o

-•©

<>

0

o
41

so

.TfcSTE0.6KlC)
cimsi^B

*£ TtSieft 6n£,
4J ... ucint*'

^ Trill?* ONCi
2 RlMi

._. TESTER dtib

5^S
i

i

to

Ufa

I

m
i

i

J3
<

a

3
«

J

^7

*

t
—

i

a

o

^y
*

-
^
o

0
7

.

O
-

4
1

.
V

1
JL_

_
Z

\v

(;\

§

V
-

1
-

:>n%
-

.

<
cj

♦
0

9
r
\

<
u

»
''.•»

>

<
Z

-m

a
'J

-
$

,-j
0

,c
C

u
-
J

L
u

4
,

U
j

<=d
a

.

(0
—

O
-

3
0

-
Q

L

<
0

£

-
Z

A
-

- 32 -

15.2. DSP Chips Tester Board

9178

fr
i

Q
fc

^
-c

J
.
.
.
.
.
.

.

,*
e
>

»

-<
e<

e-

Z m r
\ 7*

i^

M
m

70
v
*

0
-
t

t
M

\\

A
i*

£
r

i
n

u

b
J
.

© c H -r
i

o -
S

I

t
f

vr
\

-
J

-
\

V ^ V

n

-
M

-

A

*
2

A
/\

A
a

A
A

A
A

»
o

J
(JJn

J
O

f
^
^
^
^

^
i)

tt.1
ii

cJ
O

oO
s3

;c
"X

—
a

x
—

~
~

=
=

O
S

-t-«•*
rrt

^
\n

\9
p

-«
•T'̂o

—
a

sO
S

i?
°

f*-2
£

\S

1
©

T
r.1

y\JA
rr>

-^
<5S

Si
iA

^l
«JS

in
oj

«
X

c4
«>lcJ

<-
C

N

i1|ii

i1itiii

;
O

^
W

r
t

^
0

*
"

<***<»
CM

"
f

O
5

l«
X

>
f

r

£
i*

3

y\o
va+

\t
-•

v
lr*

tM
r4

rv
ira

c
*

I
©

A
A

/^
^
^
6

^
0

i>
A

y
\A

:A
A

A
>

x
Q

-w
«*!

y
^

o
<"<*

r
^
v
3

^
^
^
N

r

£-
p-

v/J
yfi<J\\A

\A
J\

\A
«/»

\A
vrt

vl>/J
v,T

.A
.v/1

J\

a•z

VdV^-4*".

wcrwg' A

'CliSTFrri^ t

fcD£TF>F4* I.

J*" N/CC

•1>

•[>
t>

\Z 2G

TT

W *3>G:DsTFiF3/

!2_E>gDSTF\FA*

3". tbttRCDF*

fcl>D04>

BfVJ>*i3>
^GD<I2> _

TlA.D<3V

T^:d<2>

19
i.p.

to

hi 23
ft4 lA 1*
ns < IS
AC 3 ^
fi'4 - %T
AS IS

T
20

i&.
\?
16

iS_
i4

IS

12

._ H$< 14-V

ub <<**
.MB <"*>

V'E, <£ 4"*
HB <l>

Mb <^2>

1 8

i

i

^
-

-
-~

-%
-
A

/^
«A

.

<
y4

«•>
t»

-i/i

J[/S
s?I*?2£l£

O
l

^
O

So
-

£
!£

C

,a
c
j

<
£

(S
02

c
i

<
2

cO
S

x
x

x
=

:=
=

•
=

V
.,

(A
i

-

<ni*

!*
+

it

O
t

->
»

€
-

A
.A

A
A

A
A

A
A

s
o

n
-
0

^
^

«
r
t
^

"
T

c
£

\0
^

g>
«A

^
^

a
e£>

x
r
c
^

r
E

^
s
^

x

•\
A

A
/\/\

A
A

A

^)CO
CO

cO
cO

cC
<*\c0

A
A

A
A

5
i

x
l

tH
i*-

til*

A
A

A
A

X
JZ

X
s

<<t-P-
^
S

i
'

Z
7

T
Z

i
•»

r*
«•<>

«
t

i?>=4"
i5

?
^

T
.,h^

©ua
&

a
e>

d
<

>
3d

,
y

r*
r.'

T
-r

«sl
«^>

•»

olX
^i-i

*i
^ivSj2|£>

|

"1—
3

r
-H

-3

A
a
; a

Q

C
fl

C
?

c
£

e>

c

,(j.|^.crt|v9|OJfA|

a
C

?
£

X
X

X
;
£

5
M

«
h

a
A

A
A

C
/*

«
^

N
»v

\J
>

i

!

4
*

r>
a

»

v-
:

s
A

:

2!

<35
^

a
'

+
-i

±
5

2
V

»

^f—
|i

<
£

*
!

i
'

c
a.

<c
«

<
£<

£<
£

—
cm

*
*

^
r

«
.

«
x

r-"»
i

.
i

.
.

•

ki'=
1"

<
^|0

|Jji!
O

f

!

<
f

*"
"

/

(A
{£G

?<
A

S
X

X
=

*
a

j

tU^

W^A£ >

HC^^«4>

PbSlT'r

sH«

6»0ST7m"P4:

\U<>\

-
*

a

s
5

o
.

r

-
w

e
*

j

-
V

^
3

s
^
*

1IL

i
o

4P«^p Cno

X*-W«*> _.

T£>f» *»*.»*:» —

*£f»P£9>
t>M><«?i ._
£.Pjt> Gn3>

BPt><0>
t>fi*>^6>
•2>ftI>^S>
*2>ftJ>^4^

"kfO <12> _
*L&*C» *. «> .
t(Vt> <£ o>
S'SNiD 6KD

SVOD &HD
TMCOF*
St»Ol> GN^
RJJCDF^
«5»-%M*i 6N5

"RDSTF^V
S**U> 6*T>

SPo£ 6ni>

U-rFrt-3*" _
6*501> GHI»

<*V?|F4* _
S?OJ> 6MJ>

-♦<»

_Tfc«.Ufi.G*Jb
R,lt>4«.'fB

\fciNT *

Teste?. tw»i

8 1

•P»N "DEi»(.HMiflH T.°***\ SO* ^?N

I

O
l

S98

-41-

15.3. RAM Chips Tester Board

-
4

2
-

	Copyright noticE 1985
	ERL-85-57

