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When near-integrable Hamiltonian systems are perturbed by weak dissi

pation, all persistent chaotic motion is destroyed. However, transiently

chaotic motion appears before the trajectories enter embedded islands and

are attracted into sinks. We determine analytically such properties as the

exponential decay rate of the chaotic transient, the quasistatic distribution

for the transiently chaotic region of phase space, and the distribution of

trajectories into the various sinks. The dissipative Fermi map is used as

an illustrative example.
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I. Introduction

Near-integrable, measure-preserving maps are used to model conservative

physical phenomena in such fields as celestial mechanics, cosmic ray physics, ac

celerator theory, and plasma heating and confinement [1]. Conservative systems

of nonlinear coupled oscillators are also widely used as physical models. These

systems also generate such maps as the phase space orbit repeatedly pierces a

Poincare surface of section.

The phase plane structure in two-dimensional near-integrable measure-

preserving maps is well known [2]. There is persistent regular motion on some

perturbed KAM orbits and on KAM island orbits surrounding stable fixed

points of the map. Regions of persistent chaotic motion are densely interwoven

with these regular regions. The measures of the regular and the chaotic regions

can vary widely, both within the phase plane and as a function of the system

parameters.

New phenomena appear for dissipative systems. Since the (two-dimen

sional) area of the Poincaresurface of section contracts (by the Jacobian factor

J oi the map) after each iteration, the motion ultimately lies on a set of lower

dimensionality called an attractor. For large dissipation (•/ <tC 1), it is known

that one or more strange attractors [3-6] having fractional dimensionality can

exist. The persistent motion on a strange attractor is mixing and chaotic. An

example is the Henon [7] attractor. The Henon map

Xn+1 = Vn + 1- a*n (la)

t/n+1 = bxn (lb)
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is the most general quadratic mapping with constant Jacobian (= b). For

certain values of parameters, say, a = 1.4 and b = 0.3, the existence of a

strange attractor is strongly suggested by numerical iteration.

It is natural to ask whether persistent chaos continuously exists when a

Hamiltonian system is smoothly transformed into a strongly dissipative system.

The numerical evidence that we present strongly suggests that this does not

occur. Instead, an intervening regime of weak dissipation (1-J<1) appears

for which all persistent chaotic motion is destroyed. Although the motion may

be transiently chaotic over hundreds of thousands of iterations, ultimately the

trajecctory is attracted to an embedded island sink and the motion becomes

periodic.

To illustrate these features numerically, We consider a modified Henon

map, introduced by Huberman [8], which is (1) with x and y taken modulo 4,

i. e.,

xn+i = yn + 1- axl, (2a)

yn+1 = 6xn, (2b)

N,M<2. (2c)

Figure la shows the first 10000 iterations of (2) for a = 1.4 and b = 0.9

with initial condition at (—0.672,-0.392). The y-x plane has been partitioned

into 100 x 100 cells, and the number inside each cell (not readily seen) is a

logarithmic measure of the number of occupations, with a blank denoting zero

occupations. Bending and folding structures like those in a strange attractor are
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seen. Previous work [9,10] introduced an analytical method to obtain invariant

distributions / on a strange attractor. Application of this method with /(°) be

ing uniform [9] in the range (2c) yields successive approximations /(°\/^,...

to the numerically calculated structures as shown in Fig. lb-d. It is evident

that Fig. lb-d exhibits structures resembling Fig. la. More and more "white"

regions are added as the order is increased. Patterns in /^5^ look almost iden

tical to those obtained numerically. However, we find numerically that Fig. la

is an example of transient chaos instead of a strange attractor! Figure 2 shows

the trajectories from two different initial conditions chosen at random. These

trajectories are attracted to a period six attractor after about 25 000 and 5 000

iterations respectively. It is also found that continual iteration of the trajec

tory in Fig. la yields the same periodic attractor after about 320000 iterations.

We see the existence of transient chaotic motion before the trajectories enter

embedded islands and are eventually attracted into sinks.

In the following sections, we present an analytical study of transient chaotic

motion for a class of near-integrable Hamiltonian twist maps [2] that are per

turbed by small dissipation. We determine analytically such properties as the

exponential decay rate of the chaotic transient, the quasistatic distribution for

the transiently chaotic region, and the distribution of trajectories into the var

ious sinks.
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II. Weakly Dissipative Fermi Map

We illustrate the calculation procedure for transient chaos and compare

the results to those obtained by numerical iteration, using as an example the

dissipativeFermi map [9,10]. However the procedure is directly applicablewhen

dissipation is introduced into other twist maps such as the Chirikov-Taylor

[11,12] and the separatrix maps [2,11]. The Fermi map describes a cosmic

ray acceleration mechanism [13] in which charged particles are accelerated by

collisions with moving magnetic field structures. In the model, a ball bounces

in one-dimensional motion between a fixed and an oscillating wall. We adapt a

simplified model [14] in which the moving wall oscillates sinusoidally, xw(i) =

a cosut, and elastically imparts momentum to the ball according to its velocity

iw without the wall changing its position in space. We introduce dissipation by

assuming that the ball suffers a fractional loss 6 in velocity upon collision with

the fixed wall. The map is then

u = (1 —6)un —sinV'nj (3a)

$ = i)n + 2ttM/u, (3b)

(V>„+i, un+i) = ($, u)sgnu, (3c)

where un = vn/(2ua) is the normalized ball velocity and ipn = utn is the phase

of the oscillating wall, and M = l/(2ira) is the normalized distance between the

two walls. The function sgnu = ±1 for u ^ 0, and is introduced to maintain

Un+i ^ 0 f°r l°w velocities un < (1 —£)-1, as physically occurs in the exact

model, while preserving the continuity of the map near u = 0. The Jacobian of

the map is 1 —6, and thus the map is area-preserving for 6 = 0.
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The primary fixed points of the map are found by setting un+i = un and

fa+i = ^n(niod27r) in (3). We obtain

(ukifa) = (M/k,sm-1(--uk6)), (4)

where A; is an integer. There are two fixed points for each k : fa « 0 or fa & *"

for UkS < 1. Vfc « *" is stable for uk > u3 = (ttM/2)1^2) fa » 0 is always

unstable. For <5 = 0, invariant (KAM) island orbits surround the stable fixed

points. The location, stability and bifurcations of these fixed points have been

described previously [2,14-17].

We summarize the behavior of the motion, determined by numerical iter

ation, as the parameters M and 6 are varied. For 6 = 0, there is no dissipation

and the usual Hamiltonian chaos ensues, with intermingled areas of persistent

chaotic and regular motion in the (u-ij)) phase plane. Numerical iterations for

10 < M < 104 show [14- 17] that the phase plane divides into three charac

teristic regions: (i) For large velocities, u > Uf, « 2its, invariant (KAM) curves

span the plane in tj) and isolate the narrow layers of stochasticity near the sepa-

ratrices surrounding the fixed points of the map; (ii) there is an interconnected

stochastic region for intermediate velocities, u& > u > uai in which invariant

islands near stable fixed points of the map are embedded in a stochastic sea;

and (iii) there is a predominantly stochastic region for small velocities, u < us,

in which all primary fixed points are unstable. The globally stochastic motion

within the connected regions (ii) and (iii) is isolated from region (i) by a KAM

barrier at «6, and has a constant equilibrium invariant distribution /o(«,V0

[18].
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For weak dissipation, 0 < 6 < 6C, where 8C depends on M, the numerical

iterations show that the fixed points of the Hamiltonian map become attracting

centers (sinks), the KAM curves no longer exist, and all persistent chaotic

motion is destroyed. An initial phase point chosen randomly in region (iii)

then undergoes transient chaotic motion for a mean number of iterations N =

N(M, 6) before it enters an embedded island in region (ii) and becomes trapped

in an island sink. [We also find that when 6 > 6C (roughly when 8M is large,

say, larger than two), then none of one hundred initial phase points entered

any island after 5 x 104 iterations. This indicates the possibility of a strange

attractor, or at least a very long transient chaos. Studies of the equilibrium

invariant distribution for this case were performed in references 9 and 10.]

For the case of transient chaos, Fig. 3 shows the number of unattracted

trajectories out of 100 as a function of the number of iterations. After a short

transient, we observe that the number decays exponentially for each set of M

and 6 in Fig. 3. Thus a constant fraction of the remaining trajectories are lost

at each iteration.

In Fig. 4, we plot (solid curve) the cumulative phase-integrated distribution

f(u) =100 / dn / di/>f(u,j;,n)
Jo Jo

for various M and 6> after N = 5 x 104 iterations, for 100 initial conditions at

low velocities chosen randomly. We see evidence of attracting sinks between us

and Ub (except the case M = 300 and 6 = 0.01, which indicates the existence

of a strange attractor, or at least a very long transient chaos). The density

leaving the stochastic region flows into these sinks, forming the spikes in the
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figure. For all cases studied, the location and structure of these sinks correspond

to the Hamiltonian (6 = 0) structure of the stable fixed points (2) of the Fermi

map. Sinks of higher periods correspond to secondary fixed points encircling

the period one primary fixed points.

An important feature of the numerical results for 6 <C 1 is that an expo

nentially decaying quasistatic distribution

f{u, if,n) = fQ{u) exp(-dn) (5)

is formed for values of u outside of the "sticky" islands, for n > u\ « 2ttM.

Here, a = N"1 is the exponential rate of decay of the chaotic trajectories.

The numerically determined decay rates are given in Table I (first entry). For

various M and 6, Table H shows the distribution of trajectories into sinks of

period p at if « Mjk after N = 50000 iterations (unless otherwise stated) for

100 initial conditions chosen randomly with small u's.

HE. Quasistatic Distribution

We now show that the distribution fq can be found analytically by solving

the appropriate Fokker-Planck equation for the map [19]

dn 2duy du} du v '

where, to first order in 6, D is the diffusion coefiicient for the area-preserving

(6 = 0) map, and B = —u6 is the friction coefiicient due to the dissipation [18].

For u < ua,D = 1/2, the quasilinear value. However, the domain of interest

includes the region us < u < u&, in which the quasilinear diffusion coefiicient is
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invalid. To obtain an estimate of D in this region, we locally expand (3) in u

about a fixed point uki which yields

In+i =In(l-6) + KsmOn- uk6, (7a)

0«+i=0«+/n+i, (7b)

where

and

In = -K(un - ufc), (8a)

On = fa, (8b)

K = 2irM/ul (9)

is the stochasticity parameter. For 6 = 0, (7) is the Chirikov-Taylor or standard

map [20], which has a diffusion coefiicient D that depends on K. For K > 4,

corresponding to u < ua, D « K2/2, the quasilinear value. For 4 > K > 1,

corresponding to ua < u < u^ one finds

D a (K - I)**, (10)

with the estimate [11] 7 w 2.5 for 4 > K > 1 obtained numerically, and the

asymptotic result [21,22] near K = 1, 7 pa 3.01. However, over the entire K > 1

range, a reasonable fit to the numerical data for D is

*"t(-H • (11)
with 7 = 2. Figure 5 shows the fit of this D to the numerically determined data

by Murray et al. [22]
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Transforming from I back to w, we have D = D/K2, and using (9) and

(11), we obtain, for u < u&,

Using B = —uS and (12) in (6) and the condition that the net flux is approxi

mately zero, we obtain

fQ(u) = Fexp[-2*U2u2/(u£ - u2)], (13a)

where

F = (2^Sul)-1[K1(l3) - Ko(0))~l exp(-^), (13b)

(3 = u^S, Ki and Kq are the modified Bessel functions, and

0

This distribution, scaled to the value of / at u = 0, is plotted as the dashed line

in Fig. 4 for the various sets of M and 6. The agreement with the numerical

result outside the island regions is generally good.

We can also try to use 7 = 3 to obtain fq. We find that for SM > 1, fq

obtained for 7 = 2 is very close to that for 7 = 3. However, for SM < 0.3,

7 = 2 yields a better fq to approximate / for most values of u. The difference

between 7 = 2 and 7 = 3 is shown in Fig. 4, where the 7 = 3 result is plotted

as the dotted line.

2ir I dufq(u) = 1.
Jo
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IV. Exponential Decay Rate

As mentioned before, we see secondary island chain sinks surrounding the

primary island sinks. This phenomenon can be understood by again looking at

(7), which becomes the standard map [20] for 6 = 0. We instead investigate the

modified standard map with 6 in the first (area-contracting) term on the right

hand side of (7a) set to zero, but with the small correction due to the last term

—uk6 retained:

In+i =In + Ksm0n- uk6. (7a')

The system is Hamiltonian and we can obtain the primary and secondary islands

either numerically or analytically.

Figure 6 shows the iteration of (7') for M = 100, 6 = 0.01, k = 7 and 8.

For k = 7, a period 3 island chain surrounds the primary island, and both are

enclosed within a large KAM curve. For k = 8, a period 5 island chain closely

surrounds the last KAM curve of the primary long island, and another period

3 island chain surrounds the period 5 chain. We further find that when the

first (dissipative) term is retained in (7'), the fixed points at the island centers

become sinks. Figure 7 shows the sinks for the Fermi map (3) with the same

M and 6. We see that a period 1 and a period 3 sink coexist at k = 7, and

that a period 2 and a period 5 sink coexist at k = 8. The patterns in Fig. 7

resemble those in Fig. 6, except for an inversion in polarity due to the minus

sign in (8a). It is evident that (7') locally approximates (3). The period 2 sink

in (3) arises as a bifurcation of the period 1 sink within the long island, due to

the finite value of 6. [For 6 = 0, the period 1 fixed point in (7') is just within
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the border of stability, whereas in (3) it is just outside the border, as described

below.]

For the standard map, a primary fixed point is stable for stochasticity

parameter K < 4. Therefore we expect to see sinks in the region u > ua of the

Fermi map (3) where

2ttM/u2 » 4. (14)

Moreover, for small initial velocities, u is bounded from above by the stochastic

barrier Ub corresponding to 27rM/u£ = Kb « 1. Therefore we expect to see

trajectories starting with low velocities to be attracted to sinks in the region

ub £ u < uai corresponding to:

f3<fc<4 forAf = 30,

5 < k < 8 for M = 100, (15)

U<fc<14 for M = 300.

For M = 100, K « 4.02 at the k = 8 fixed point at 6 = 0. A bifurcation

accounts for the period 2 sink shown in Fig. 7 and in Table II. The same effect

is found for k = 15 and 16 at M = 300.

In several cases shown in Table II, a few of the hundred initial conditions

were attracted to a primary resonance having period two and three (fractional

k). For period two, these resonances, u„+2 = wn, fa+2 = fa (mod27r), are

located nearuk « 2M/k, k odd, and are stable within some parts of region (ii).

Similar properties hold for period three. We believe the effect of these higher

period sinks can be included by considering the square, cube, etc. of the map

(3).
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We now determine the phase space area AAk in the transiently chaotic

region that is "eaten" by each primary island (including all its associated sec

ondary island chains) during one iteration of (7). The standard map [(7) with

6 = 0] has a closed KAM barrier 1(9) with area A surrounding the central fixed

point (7,0) = (0,7r). This barrier curve separates the outer chaotic region from

the inner closed island orbits. For 6 > 0, A contracts by the factor 1 —6. Thus

AA = A6. Transforming back to the (u,i)) variables of the Fermi map (3), we

obtain

AAk(uk) = ASIK. (16)

A is a function of K = u\ju\ alone that can be found analytically [22,23] or

numerically [11]. A good approximation forl<jRT<6isA« 2n2K~1'3 for the

standard map. Figure 8 shows the comparison of this approximation with the

numerically determined [11] A. But we have chosen to determine A numerically

using (7'). In this way, the small correction in A due to the last term —uk6

in (7a) is included. This numerically determined A is shown in Table III for

various M and k (note K = 2irMju\ = 2irk2/M).

Chirikov et al. [24] showed numerically that the decay rate into a sink varies

directly as the stable area AAk of the corresponding Hamiltonian (6 = 0) map.

For non-uniform fq, however, the decay rate should also be proportional to fq

at the sink.

We can then estimate the decay rate a for the transiently chaotic region

as follows:

a= ^2<xk, (17a)
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where

<** = fq(uk)AAk (17b)

and the sum is over all stable primary fixed points uk in the region ua < u < u^

With fq known from (13), we can obtain the exponential decay rate a from

(17). The second entry in Table I gives a thus obtained. The agreement with

the numerically determined a is generally quite good. The third entry in Table I

is obtained similarly, except that 7 = 3 is used instead of 7 = 2. The agreement

is not so good as for 7 = 2 in general.

V. Distribution of Trajectories into Sinks

We have seen that all trajectories in the eleven cases having transient chaos

are ultimately attracted to the stable fixed points of the map. The fraction of

initial phase points that ultimately stick to each sink (including its secondary

fixed points) can also be found analytically using (17b). Table IV shows the final

numerical distribution gn of 100 initial conditions into the various possible sinks

for various M and 6. The corresponding distribution g" obtained analytically

using (17b) with 7 = 2 is also shown, with the sum of points attracted chosen to

match that of the numerical sum. The ratios Rk = 9%{k)/gn(k) of analytical-

to-numerical occupations for the sinks with various fc's are shown in Fig. 9. We

see that the agreement between numerical observation and analytical theory is

good.

To compare the observations and the theory quantitatively, we use the

mean square hyperbolic deviation [9] E2 as the measure of resemblance between
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the analytical and numerical distributions, where the numerical distribution is

corrupted by the noise of Poisson counting statistics due to the finite number

L = 100 of initial phase points chosen. For two distributions ga (analytical)

and gn (numerical), each having L occupations in a domain that has been

partitioned into K sinks, we write

where gy > 0 and gf > 0 are the number ofoccupations in sink j. For M = 30,

100, 300, we have K = 2, 4, 10 respectively. Introducing the mean occupation

number /z = L/K, E represents the (hyperbolic rms) number of standard devi

ations y/ji by which ga and gn differ. Two distributions closely resemble each

other if E2 < 1. We see from Table IV that E2 between gn and ga is generally

less than or of the order E^; i. e. the fit between the analytical theory and the

numerical result, the latter corrupted by noise, is generally good. (Here E\ is

the square of the expected deviation [9] between a uniform distribution and a

random distribution having Poisson statistics, both having the same /z and K

as the numerical result.) However, the agreement is not so good for those cases

where a significant primary sink is found near u < u&, where fq obtained using

7 = 2 deviates much from /; an example is M = 30 and 6 = 0.01.

We repeat the calculation of E2 using 7 = 3 instead of 2 in (11); the result

is also shown in Table IV. For M = 30 and 6 = 0.01, 7 = 3 improves the

agreement, as it gives a better fit fq to / near the sink with largest u. For

M = 100 and 6 = 0.001, as well as for M = 300 and 6 = 0.0003, we see the same

improvement for 7 = 3 for the same reason. We expect a better estimate for
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D in (11) to yield even closer agreement between the theory and the numerical

results for a and ak as well as for the ratio of distributions into the various

sinks.

In three cases for M = 300, period 2 sinks corresponding to k = 15 and

16 are observed. These sinks are bifurcated fixed points at u < ua, and are

therefore not included in the analytical results. This accounts for the relatively

large E2 for each of these cases. We expect that including these bifurcated

sinks in the analysis will further improve the theory.

VI. Conclusion

The transient chaos for a dissipatively perturbed area-preserving twist map

has been studied analytically. The dissipative Fermi map has been used as as

illustrative example. The quasistatic distribution fq is found by solving the

appropriate Fokker-Planck equation for the map, with the diffusion coefficient

D obtained from the modified standard map as a local approximation. The

actual diffusion coefficient, and not its quasilinear approximation, must be used,

with D vanishing when the stochasticity parameter decreases to K « 1. We

find that for various M and 6, fq is a good approximation to the numerical

result.

The rate ctk that the transient chaos is absorbed into an island sink is

obtainedfrom the product of fq mentioned above and the effective phasespace

area AAk absorbed into the island sink per iteration. The island area Ak is

obtained from the product of the dissipation coefficient 6 and the area enclosed
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by the corresponding KAM curve(s) in the area preserving (6 = 0) map. We

then obtain the mean lifetime of the transient chaos, as well as the distribution

of initial trajectories into various sinks. We find that for various M and 6,

the mean lifetime thus obtained compares well to the numerical result, and the

distribution into the various sinks quantitatively resembles the numerical result.

We also observe from Table n that surrounding a primary sink at uk, there

are a number of secondary sinks of longer period than unity. For instance, Fig.

7 shows secondary sinks surrounding primary ones at uj = 14.3 and u& = 12.5.

We have determined only the total fraction of initial trajectories absorbed by

an island, but not the distribution among the primary and secondary sinks

within the island. We believe that the latter distribution might be determined

by applying the same theory to a separatrix map [2,11] obtained from a trans

formation [25] at the primary resonance uk.

We note that the dynamics of dissipatively perturbed systems can gener

ally be described in terms of dissipatively perturbed twist maps, to which the

application of the above theory seemsquite straightforward. Weexpect that the

theory is appUcable to a wide class of dissipatively perturbed near-integrable

systems.
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Tables

Table I. Decay rates a (in units of 10~5), for various M and 6. The first

entry is determined by numerical iteration of the Fermi map; The second and

the third entries are determined analytically by the method introduced in Sec.

Ill using 7 = 2 and 3 respectively.

Table H. Numbers of trajectories entering sinks of period p and at u « M/k,

for 100 initial conditions chosen randomly at small u. Number of iterations

N = 50000 except for M = 300 or for 6 = 0.0003, where N = 200000 instead.

Table HI. Area A of regular regions for the modified standard map determined

numerically (in units of 47r2), with K = 2irk2/M.

Table IV. Final distributions gn (numerical) and g° (analytical, 7 = 2 and 3),

into sinks corresponding to different fc's for 100 initial conditions, the expected

deviation from Poisson counting statistics E\, and the deviations E2 and E3

between the numerical and the two analytical results; (a) M = 30; (b) M = 100;

and (c) M = 300.
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Figure Captions

Fig. 1. Phase space y-x for the periodic Henon map with a = 1.4 and 6 = 0.9.

(a) Numerically obtained from one initial condition (x) with 10000 iterations;

(b-d) analytically obtained second, third, and fifth order results using uniform

zeroth order distribution.

Fig. 2. Phase space y-x for the periodic Henon map with a = 1.4 and b = 0.9

obtained numerically for 100000 iterations; (a) and (b) are two different initial

conditions (x). Both are attracted to a period six attractor (dots).

Fig. 3. Number of unattracted trajectories Nu versus number of iterations n

for the dissipative Fermi map with various £'s. (a) M = 30; (b) M = 100; (c)

M = 300.

Fig. 4. Cumulative, phase-averaged distributions / versus u, after 5 x 104

iterations of 100 randomly chosen initial conditions, for various M and 6. The

solid curve shows the numerical result; the dashed and dotted curves show the

quasistatic theory fq with 7 = 2 and 3 respectively.

Fig. 5. Diffusion coefficient D versus stochasticity parameter K for the stan

dard map. The solid curve showsthe numerical result [22]; dashed curve shows

the parabolic approximation used to obtain fq.

Fig. 6. Features of the modified standard map obtained numerically with M =

100 and 6 = 0.01. The stochasticity parameter K corresponds to (a) k = 7; (b)

k = S.
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Fig. 7. Sinks for the Fermi map obtained numerically with M = 100 and

6 = 0.01. Note the correspondence to Fig. 6. (There is an inversion in polarity

since 1"« —Au, i> = 9)

Fig. 8. Area of regular regions A(K) for standard map versus the stochasticity

parameter K. The solid curve shows the numerical result [11]; the dashed curve

shows an analytical fit to the numerical result: A = 2tc2K~iz.

Fig. 9. The ratio Rk of the analytically-to-numerically determined fractions

of trajectories atractted to the various sinks, for all the cases given in Table I.



TABLE I

m\6 .0003 .001 .003 .01

30 2.0/2.5/2.4 2.7/6.6/5.5 7.4/12.0/7.8 7.7/8.6/5.1

100 1.2/2.0/1.6 2.0/3.6/2.4 2.9/2.6/1.7 1.1/.29/.12

300 1.1/1.1/.70 1.1/.90/.53 .40/.16/.07



TABLE II

M\6 3x10"4 10-3 1 3x10'3 10-2

x< c 2 2iL 3 3 4 iH 3 4r
-

P\k 3 4 p\k 3 4

1
0

0 47 13 1 55 9 1 59 13 1 1 30

2 8 0 0 0 3 0 7 3 0 25 3 0 65

3

5

0

0

2

0

0

4

6

0

5 6 0 5 1 0 5 2 0

30

7 0 0 0 1

9 0 0 4 0

p\k 5 4 6 7 8 ^5 4 6 7 8 p\K 6 7 8 p\k 7 I\

01 20 0 13 8 0 10 0 11 1 0 1 5 8 0 1 2

2 0 6 0 0 5 2 0 1 0 0 5 2 0 0 14 2 0 26

3 0 0 0 9 0 3 0 0 0 21 1 3 0 24 0 3 6 0

4

5

6

0

5

2 •

0

0

1

9

1

0

0

0

0

0

1

0

4 0

51

0

0

17

0

0

0

0

3

4

5

12

0

0

0

0

12

5 0 10

100

8 0 0 0 0 1
J

|

p\k 9 9ly 2 10 11 12 13 14 15 P\ki<D 11 12 13 14 15 16 P\k 11 12 1 3 14 15

1 7 0 9 11 2 10 0 0 1 5 7 5 14 0 0 0 1 1 0 6 0 0

2 0 1 0 0 0 0 7 1 2 3 0 0 0 16 3 1 2 0 0 0 11 4

300
3 0 0 0 0 6 6 0 0 3 3 0 17 3 0 0 0 3 0 8 6 0 0

4 0 0 16 0 0 0 0 0 4 -% 0 0 0 0 0 0 5 0 0 0 8 0

5 2 0 0 0 0 0
1

0 5

7

0 0

0 0

0

2

0

0

5

4

0

0

0

0

7 0 0 0 5 0

8 D 0 0 0 1 0 0

9 0 0 0 0 l|0 0



•

TABLE III

M k 6 = 0.0003 6 = 0.001 6 = 0.003 6 = 0.01
30 3 .27 .23 .22 .18

4 .12 .11 .105 .10

100 5 .26 .22 .23 .25
6 .20 .18 .11 .25
7 .12 .12 .12 .10
8 .09 .095 .065 .05

300 8 .30 _ — —

9 .22 .24 - -

10 .22 .24 .20 -

11 .11 .10 .09 -

12 .11 .11 .11 -

13 .10 .105 .10 -

14 .07 .06 .07 -



M =30 TABLE IV(a)

6 k gn E2
g2

E2
t2 4 4

0.0003 c
(N=2xl05)

*

3 65
.024

66.9
.003

66.0
.001

4 20 18.1 19.0

0.001
3 61

.026
57.0

.015
53.8

.0464 16 20.0 23.2

0.003
3 60

.020
61.4

.001
46.5

.077
4 38 36.6 '51.5

0.01
3 3

.020
18.0

.283
2.7

.000
4 95 80.0 95.3

1 9including k=2^ and 2f

TABLE IV(b)

M=100

6
k gn 4 g2

E2
g3 4

0.0003 ,-
(N=2xl0°)

*

5 34

.049

34.1

.020

24.8

.0736 23 26.1 30.1

7 17 12.9 16.1

6 7 7.9 10.0

0.001

*

5 2

.067

11.4

.329

"2.5

.0966 28 21.6 21.6

7 22 15.6 20.1

8 9 11.4 15.9

0.003

5 0

.053

1.1

.073

0.0

.1586 17 13.5 6.5

7 ""32 34.9 35.7

8 26 25.5 32.8

0.01

5 0 '

• .091

0.0

.134

0.0

.0086 0 0.8 0.0

7 3 12.3 6.8

8 •-3B' 30.9 37.1

including k = 3 2



TABLE IV(c)

M= 300 (N=2xl0°)

6 k gn E2 «S 4 g3 4

0.0003

8 0

.112

4.5

.359

0.1

.159

*

9 10 14.3 6.8

10 25 21. d 19.9

11 11 11.7 14.0

12 8 11.7 15.5
13 16 10.2 14.2

14 8 6.6 $.6
15 1. 0 0

16 0 0 0

0.001

8 0

.110

0.0

.457

0.0

.365

9 0 2.1 0.1
10 10 12.3 4.3

11 7 11.4 8.6

12 24 18.§ 20.1

13 17 22.6 28.6

14 27 14.6 20.3

15 3 0 0

16 1 0 0

8 0

.184

0.0

.382

0.0

.451

9 0 0.0 0.0

0.003

10 0 0.2 0.0

11 1 1.2 0.2
12 8 7.0 3.9

13 12 17.2 15.9

14 24 23.4 28.9

15 4 0 0

16 0 0 0

including k = 9 -^
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