Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



TRANSIENT CHAOTIC DISTRIBUTIONS
IN DISSIPATIVE SYSTEMS

by

Kwok Yeung Tsang and M. A. Lieberman

Memorandum No. UCB/ERL M85/56
12 July 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



TRANSIENT CHAOTIC DISTRIBUTIONS
IN DISSIPATIVE SYSTEMS

Kwok Yeung TSANG and M. A. LIEBERMAN

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, California 94720

When near-integrable Hamiltonian systems are perturbed by weak dissi-
pation, all persistent chaotic motion is destroyed. However, transiently
chaotic motion appears before the trajectories enter embedded islands and
are attracted into sinks. We determine analytically such properties as the
exponential decay rate of the chaotic transient, the quasistatic distribution
for the transiently chaotic region of phase space, and the distribution of
trajectories into the various sinks. The dissipative Fermi map is used as

an illustrative example.



I. Introduction

Near-integrable, measure-preserving maps are used to model conservative
physical phenomena in such fields as celestial mebhanics, cosmic ray physics, ac-
celerator theory, and plasma heating and confinement [1]. Conservative systems
of nonlinear coupled oscillators are also widely used as physical models. These
systems also generate such maps as the phase space orbit repeatedly pierces a

Poincaré surface of section.

The phase plane structure in two-dimensional near-integrable measure-
preserving maps is well known [2]. There is persistent regular motion on some
perturbed KAM orbits and on KAM island orbits surrounding stable fixed
points of the map. Regions of persistent chaotic motion are densely interwoven
with these regular regions. The measures of the regular and the chaotic regions
can vary widely, both ‘within the phase plane and as a function of the system

parameters.

New phenomena appear for dissipative systems. Since the (two-dimen-
sional) area of the Poincaré surface of section contracts (by the Jacobian factor
J of the map) after each iteration, the motion ultimately lies on a set of lower
dimensionality called an attractor. For large dissipation (J < 1), it is known
that one or more strange attractors [3—6] having fractional dimensionality can
exist. The persistent motion on a strange attractor is mixing and chaotic. An

example is the Hénon (7] attractor. The Hénon map
Tnt1 =Yn+1- a:z:f,‘: (1a)

Yn+1 = bz, (lb)
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is the most general quadratic mapping with constant Jacobian (= b). For
certain values of parameters, say, a = 1.4 and b = 0.3, the existence of a

strange attractor is strongly suggested by numerical iteration.

It is natural to ask whether persistent chaos continuously exists when a
Hamiltonian system is smoothly transformed into a strongly dissipative system.
The numerical evidence that we present strongly suggests that this does not
occur. Instead, an intervening regime of weak dissipation (1 —J < 1) appears
for which all persistent chaotic motion is destroyed. Although the motion may
be transiently chaotic over hundreds of thousands of iterations, ultimately the
trajecctory is attracted to an embedded island sink and the motion becomes
periodic.

To illustrate these features numerically, We consider a modified Hénon

map, introduced by Huberman (8], which is (1) with z and y taken modulo 4,

i. e.,
Tnt1 =Yn+1-— ax?u (22)
Ynt1 = bxna (2b)
||, ly| < 2. (2¢)

Figure la shows the first 10000 iterations of (2) for a = 1.4 and b = 0.9
with initial condition at (—0.672,—0.392). The y-z plane has been partitioned
into 100 x 100 cells, and the number inside each cell (not readily seen) is a
logarithmic measure of the number of occupations, with a blank denoting zero

occupations. Bending and folding structures like those in a strange attractor are



_4_

seen. Previous work [9,10] introduced an analytical method to obtain invariant
distributions .f on a strange attractor. Application of this method with £(°) be-
ing uniform [9] in the range (2c) yields successive approximations f(9, f(1) ...
to the numerically calculated structures as shown in Fig. 1b—d. It is evident
that Fig. 1b-d exhibits structures resembling Fig. 1a. More and more “white”
regions are added as the order is increased. Patterns in f(5) look almost iden-
tical to those obtained numerically. However, we find numerically that Fig. la
is an example of transient chaos instead of a strange attractor! Figure 2 shows
the trajectories from two different initial conditions chosen at random. These
trajectories are attracted to a period six attractor after about 25000 and 5000
iterations respectively. It is also found that continual iteration of the trajec-
tory in Fig. la yields the same periodic attractor after about 320 000 iterations.
We see the existence of transient chaotic motion before the trajectories enter

embedded islands and are eventually attracted into sinks.

In the following sections, we present an analytical study of transient chaotic
mc;tion for a class of near-integrable Hamiltonian twist maps [2] that are per-
turbed by small dissipation. We determine analytically such prop;erties as the
exponential decay rate of the chaotic transient, the quasistatic distribution for

the transiently chaotic region, and the distribution of trajectories into the var-

ious sinks.



II. Weakly Dissipative Fermi Map

We illustrate the calculation procedure for transient chaos and compare
the results to those obtained by numerical iteration, using as an example the
dissipative Fermi map [9,10]. However the procedure is directly applicable when
dissipé.tion is introduced into other twist maps such as the Chirikov—Taylor
[11,12] and the separatrix maps [2,11]. The Fermi map describes a cosmic
ray acceleration mechanism [13] in which charged particles are accelerated by
collisions with moving magnetic field structures. In the model, a ball bounces
in one-dimensional motion between a fixed and an oscillating wall. We adapt a
simplified model t14] in which the moving wall oscillates sinusoidally, z,(t) =
a cos wt, and elastically imparts momentum to the ball according to its velocity
., without the wall changing its position in space. We introduce dissipation by
assuming that the ball suffers a fractional loss 6 in velocity upon collision with

the fixed wall. The map is then

g = (1 - 6)u, —sin,, (3a)
"Z = Yn + 27VM/'&, (3b)
(Yr+1,Un+1) = (¥, ) sgn d, (3¢)

where u, = v,/(2wa) is the normalized ball velocity and ¥, = wt, is the phase
of the oscillating wall, and M = l/(27a) is the normalized distance between the
two walls. The function sgn% = +1 for & 2 0, and is introduced to maintain
Unt+1 = 0 for low velocities u, < (1 — 6)—1, as physically occurs in the exact
model, while preserving the continuity of the map near u = 0. The Jacobian of

the map is 1 — &, and thus the map is area-preserving for 6 = 0.
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The primary fixed points of the map are found by setting u,+1 = u, and
Yn+1 = Yn(mod27) in (3). We obtain

(ug, ¥r) = (M/k,sin "t (=u6)), (4)

where k is an integer. There are two fixed points for each k: Y ~Qor Y ~ 7
for upd < 1. o ~ 7 is stable for ux > u, = (*M/2)/?; Y ~ 0 is always
unstable. For § = 0, invariant (KAM) island orbits surround the stable fixed
points. The location, stability and bifurcations of these fixed points have been

described previously (2,14-17].

We summarize the behavior of the motion, determined by numerical iter-
ation, as the parameters M and § are varied. For § = 0, there is no dissipation
and the usual Hamiltonian chaos ensues, with intermingled areas of persistent
chaotic and regular motion in the (u—%) phase plane. Numerical iterations for
10 < M < 10* show [14- 17] that the phase plane divides into three charac-
teristic regions: (i) For large velocities, u > up & 2u,, invariant (KAM) curves
span the plane in ¥ and isolate the narrow layers of stochasticity near the sepa-
ratrices surrounding the fixed points of the map; (ii) there is an interconnected
stochastic region for intermediate velocities, up > u > u,, in which invariant
islands near stable fixed points of the map are embedded in a stochastic sea;
and (iii) there is a predominantly stochastic region for small velocities, u < us,
in which all primary fixed points are unstable. The globally stochastic motion
within the connected regions (ii) and (iii) is isolated from region (i) by a KAM
barrier at up, and has a constant equilibrium invariant distribution fo(u,)

[18].
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For weak dissipation, 0 < 6§ < &, where §. depends on M, the numerical
iterations show that the fixed points of the Hamiltonian map become attracting
centers (sinks), the KAM curves no longer exist, and all persistent chaotic
motion is destroyed. An initial phase point chosen randomly in region (iii)
then undergoes transient chaotic motion for a mean number of iterations N =
N (M, §) before it enters an embedded island in region (ii) and becomes trapped
in an island sink. [We also find that when 6§ > 6. (roughly when 6 M is large,
say, larger than two), then none of one hundred initial phase points entered
any island after 5 x 10* iterations. This indicates the possibility of a strange
attractor, or at least a very long transient chaos. Studies of the equilibrium

invariant distribution for this case were performed in references 9 and 10.]

For the case of transient chaos, Fig. 3 shows the number of unattracted
trajectories out of 100 as a function of the number of iterations. After a short
transient, we observe that the number decays exponentially for each set of M
and § in Fig. 3. Thus a constant fraction of the remaining trajectories are lost

at each iteration.

In Fig. 4, we plot (solid curve) the cumulative phase-integrated distribution

N 2%
F(u) = 100 /0 dn /0 dof (u, b, m)

for various M and 6, after N = 5 x 10 iterations, for 100 initial conditions at
low velocities chosen randomly. We see evidence of attracting sinks between u,
and up (except the case M = 300 and 6 = 0.01, which indicates the existence
of a strange attractor, or at least a very long transient chaos). The density

leaving the stochastic region flows into these sinks, forming the spikes in the
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figure. For all cases studied, the location and structure of these sinks correspond
to the Hamiltonian (§ = 0) structure of the stable fixed points (2) of the Fermi
map. Sinks of higher periods correspond to secondary fixed points encircling

the period one primary fixed points.

An important feature of the numerical results for § < 1 is that an expo-

nentially decaying quasistatic distribution

f(u,%,n) = fq(u) exp(-an) (5)

is formed for values of u outside of the “sticky” islands, for n > u? ~ 27 M.
Here, @ = N~! is the exponential rate of decay of the chaotic trajectories.
The numerically determined decay rates are given in Table I (first entry). For
various M and &, Table II shows the distribution of trajectories into sinks of
period p at u ~ M/k after N = 50000 iterations (unless otherwise stated) for

100 initial conditions chosen randomly with small u’s.

III. Quasistatic Distribution

We now show that the distribution fg can be found analytically by solving

the appropriate Fokker—Planck equation for the map [19]

af _ 10 ,.8f 8(Bf)
an =282 P3s) " ou ™0 | (6)

where, to first order in §, D is the diffusion coefficient for the area-preserving
(6 = 0) map, and B = —ué is the friction coefficient due to the dissipation [18].
For u < ug, D = 1/2, the quasilinear value. However, the domain of interest

includes the region u; <

~y

u < up, in which the quasilinear diffusion coefficient is
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invalid. To obtain an estimate of D in this region, we locally expand (3) in u

about a fixed point ug, which yields

Ing1 = In(1 - 6) + Ksinf, — w6, (7a)
0n+1 = on + In+1, _ (7b)
where
I, = -K(u, — ug), (8a)
0 = Y, (8b)
and
K =2rM[ul (9)

is the stochasticity parameter. For § = 0, (7) is the Chirikov-Taylor or standard
map [20], which has a diffusion coefficient D that depends on K. For K > 4,
corresponding to u < uy, D ~ K?/2, the quasilinear value. For 4 > K > 1,

corresponding to u; <

~J

u < up, one finds
D (K -1), (10)

with the estimate [11] ¥ ~ 2.5 for 4 2 K > 1 obtained numerically, and the
asymptotic result [21,22] near K = 1, 4y ~ 3.01. However, over the entire K > 1

range, a reasonable fit to the numerical data for D is

_  K?(K-1\"

with 4 = 2. Figure 5 shows the fit of this D to the numerically determined data
by Murray et al. [22]
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Transforming from I back to u, we have D = D/K?, and using (9) and

(11), we obtain, for u < up,
1 u2 2
_Llg_vye 12
D=3-%) (12)

Using B = —ué and (12) in (6) and the condition that the net flux is approxi-

mately zero, we obtain
fo(u) = F exp[—26uiu?/(uf — u?)), (13a)

where

F = (2r6ug) " [K1(B) — Ko(B)] ™" exp(—A), (13b)

B = u26, K; and K, are the modified Bessel functions, and

21r[ub dufg(u) =1.
0

This distribution, scaled to the value of f at u = 0, is plotted as the dashed line
in Fig. 4 for the various sets of M and §. The agreement with the numerical

result outside the island regions is generally good.

We can also try to use v = 3 to obtain fg. We find that for 6M 2 1, fg
obtained for 4 = 2 is very close to that for v = 3. However, for 6M < 0.3,
~ = 2 yields a better fg to approximate f for most values of u. The difference
between v = 2 and 4 = 3 is shown in Fig. 4, where the 4 = 3 result is plotted

as the dotted line.
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IV. Exponential Decay Rate

As mentioned before, we see secondary island chain sinks surrounding the
primary island sinks. This phenomenon can be understood by again looking at
(7), which becomes the standard map [20] for § = 0. We instead investigate the
modified standard map with § in the first (area-contracting) term on the right
hand side of (7a) set to zero, but with the small correction due to the last term
—urd retained:

In+1 = I, + Ksin 0, — ué. (7a%)

The system is Hamiltonian and we can obtain the primary and secondary islands

either numerically or analytically.

Figure 6 shows the iteration of (7’) for M = 100, 6 = 0.01, k = 7 and 8.
For k = 7, a period 3 island chain surrounds the primary island, and both are
enclosed within a large KAM curve. For k& = 8, a’period 5 island chain closely
surrounds the last KAM curve of the primary long island, and another period
3 island chain surrounds the period 5 chain. We further find that when the
first (dissipative) term is retained in (7°), the fixed points at the island centers
become sinks. Figure 7 shows the sinks for the Fermi map (3) with the same
M and §. We see that a period 1 and a period 3 sink coexist at £k = 7, and
that a period 2 and a period 5 sink coexist ét k = 8. The patterns in Fig. 7
resemble those in Fig. 6, except for an inversion in polarity due to the minus
sign in (8a). It is evident that (7’) locally approximates (3). The period 2 sink
in (3) arises as a bifurcation of the period 1 sink within the long island, due to

the finite value of §. [For § = 0, the period 1 fixed point in (7°) is just within
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the border of stability, whereas in (3) it is just outside the border, as described

below.|

For the standard map, a primary fixed point is stable for stochasticity
parameter K < 4. Therefore we expect to see sinks in the region u 2 u, of the
Fermi map (3) where

2rM/ul ~ 4. (14)

Moreover, for small initial velocities, u is bounded from above by the stochastic
barrier u; corresponding to 2rM/uZ = K, ~ 1. Therefore we expect to see
trajectories starting with low velocities to be attracted to sinks in the region
up S u < ug, corresponding to:

35kg<4 for M =30,

5<k<8 for M =100, (15)

7T<k<14 for M = 300. '

For M = 100, K ~ 4.02 at the k = 8 fixed point at 6 = 0. A bifurcation
accounts for the period 2 sink shown in Fig. 7 and in Table II. The same effect

is found for k£ = 15 and 16 at M = 300.

In several cases shown in Table II, a few of the hundred initial conditions
were attracted to a primary resonance having period two and three (fractional
k). For period two, these resonances, upi2 = Un, Ynt+2 = ¥n (mod27), are
located near uy =~ 2M/k, k odd, and are stable within some parts of region (ii).
Similar properties hold for period three. We believe the effect of these higher

period sinks can be included by considering the square, cube, etc. of the map

(3)-



-18-

We now determine the phase space area AA; in the transiently chaotic
region that is “eaten” by each primary island (including all its associated sec-
ondary island chains) during one iteration of (7). The standard map [(7) with
§ = 0] has a closed KAM barrier I(f) with area A :s,urrounding the central fixed
point (I,8) = (0,x). This barrier curve separates the outer chaotic region from
the inner closed island orbits. For § > 0, A contracts by the factor 1 — §. Thus
AA = A§. Transforming back to the (u,) variables of the Fermi map (3), we
obtain

AAk(uk) = A&/K (16)

A is a function of K = u?/u} alone that can be found analytically [22,23] or
numerically [11]. A good approximation for 1 < K < 6is A ~ 2r2K 13 for the
standard map. Figure 8 shows the comparison of this approximation with the
numerically determined [11] A. But we have chosen to determine A numerically
using (7). In this way, the small correction in A due to the last term —ué
in (7a) is included. This numerically determined A is shown in Table III for

various M and k (note K = 2rM/ul = 2nk?/M).

Chirikov et al. [24] showed numerically that the decay rate into a sink varies
directly as the stable area A Ag of the corresponding Hamiltonian (6 = 0) map.
For non-uniform fg, however, the decay rate should also be proportional to fg

at the sink.

We can then estimate the decay rate & for the transiently chaotic region

as follows:

a= Z Qs (17a)
k
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where

ax = fo(ux)AAx (17b)

and the sum is over all stable primary fixed points u in the region u; < u < up.
With fo known from (13), we can obtain the exponential decay rate & from
(17). The second entry in Table I gives & thus obtained. The agreement with
the numerically determined & is generally quite good. The third entry in Table I
is obtained similarly, except that 4 = 3 is used instead of v = 2. The agreement

is not so good as for ¥ = 2 in general.

V. Distribution of Trajectories into Sinks

We have seen that all trajectories in the eleven cases having transient chaos
are ultimately attracted to the stable fixed points of the map. The fraction of
initial phase points that ultimately stick to each sink (including its secondary
fixed points) can also be found analytically using (17b). Table IV shows the final
numerical distribution g™ of 100 initial conditions into the various possible sinks
for various M and 6. The corresponding distribution g5 obtained analytically
using (17b) with 4 = 2 is also shown, with the sum of points attracted chosen to
match that of the numerical sum. The ratios Ry = g3(k)/g"(k) of analytical-
to-numerical occupations for the sinks with various k’s are shown in Fig. 9. We
see that the agreement between numerical observation and analytical theory is

good.

To compare the observations and the theory quantitatively, we use the

mean square hyperbolic deviation [9] E? as the measure of resemblance between
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the analytical and numerical distributions, where the numerical distribution is
corrupted by the noise of Poisson counting statistics due to the finite number
L = 100 of initial phase points chosen. For two distributions ¢g¢ (analytical)
and ¢" (numerical), each having L occupations in a domain that has been

partitioned into K sinks, we write

w=13(vE - ) 2
Jj=1

where 95 2 0 and gJ'.‘ > 0 are the number of occupations in sink j. For M = 30,
100, 300, we have K = 2, 4, 10 respectively. Introducing the mean occupation
number pu = L/K, E represents the (hyperbolic rms) number of standard devi-
ations /g by which ¢ and g" differ. Two distributions closely resemble each
other if E2 < 1. We see from Table IV that E? between g™ and ¢° is generally
less than or of the order E%; i. e. the fit between the analytical theory and the
numerical result, the latter corrupted by noise, is generally good. (Here E% is
the square of the expected deviation [9] between a uniform distribution and a
random distribution having Poisson statistics, both having the same y and K
as the numerical result.) However, the agreement is not so good for those cases
where a significant primary sink is found near u < up, where fg obtained using

~ = 2 deviates much from f; an example is M = 30 and § = 0.01.

We repeat the calculation of E2? using 4 = 3 instead of 2 in (11); the result
is also shown in Table IV For M = 30 and § = 0.01, 4 = 3 improves the
agreement, as it gives a better fit fg to f near the sink with largest u. For
M = 100 and § = 0.001, as well as for M = 300 and § = 0.0003, we see the same

improvement for ¥ = 3 for the same reason. We expect a better estimate for
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D in (11) to yield even closer agreement between the theory and the numerical
results for & and oy as well as for the ratio of distributions into the various
sinks.

In three cases for M = 300, period 2 sinks corresponding to k = 15 and
16 are observed. These sinks are bifurcated fixed points at © < us, and are
therefore not included in the analytical results. This accounts for the relatively
large E?, for each of these cases. We expect that including these bifurcated

sinks in the analysis will further improve the theory.

V1. Conclusion

The transient chaos for a dissipatively perturbed area-preserving twist map
has been studied analytically. The dissipative Fermi map has been used as as
illustrative example. The quasistatic distribution fq is found by solving the
appropriate Fokker-Planck equation for the map, with the diffusion coefficient
D obtained from the modified standard map as a local approximation. The
actual diffusion coefficient, and not its quasilinear approximation, must be used,
with D vanishing when the stochasticity parameter decreases to K ~ 1. We
find that for various M and §, fq is a good approximation to the numerical

result.

The rate o that the transient chaos is absorbed into an island sink is
obtained from the product of fo mentioned above and the effective phase space
area AA; absorbed into the island sink per iteration. The island area Ay is

obtained from the product of the dissipation coefficient § and the area enclosed
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by the corresponding KAM curve(s) in the area preserving (§ = 0) map. We
then obtain the mean lifetime of the transient chaos, as well as the distribution
of initial trajectories into various sinks. We find that for various M and 4,
the mean lifetime thus obtained compares well to the numerical result, and the

distribution into the various sinks quantitatively resembles the numerical result.

We also observe from Table II that surrounding a primary sink at ug, there
are a number of secondary sinks of longer period than unity. For instance, Fig.
7 shows secondary sinks surrounding primary ones at u7 = 14.3 and ug = 12.5.
We have determined only the total fraction of initial trajectories absorbed by
an island, but not the distribution among the primary and secondary sinks
within the island. We believe that the latter distribution might be determined
by applying the same theory to a separatrix map [2,11] obtained from a trans-

formation [25] at the primary resonance ug.

We note that the dynamics of dissipatively perturbed systems can gener-
ally be described in terms of dissipatively perturbed twist maps, to which the
application of the above theory seems quite straightforward. We expect that the
theory is applicable to a wide class of dissipatively perturbed near-integrable

systems.
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Tables

Table I. Decay rates @ (in units of 1075), for various M and 6. The first
entry is determined by numerical iteration of the Fermi map; The second and
the third entries are determined analytically by the method introduced in Sec.

III using v = 2 and 3 respectively.

Table II. Numbers of trajectories entering sinks of period p and at u ~ M/k,
for 100 initial conditions chosen randomly at small u. Number of iterations

N = 50000 except for M = 300 or for § = 0.0003, where N = 200000 instead.

Table III. Area A of regular regions for the modified standard map determined

numerically (in units of 472), with K = 2xk?/M.

Table IV. Final distributions ¢g" (numerical) and g3 (analytical, ¥ = 2 and 3),
into sinks corresponding to different k’s for 100 initial conditions, the expef:ted
deviation from Poisson counting statistics E%, and the deviations EZ and E2
between the numerical and the two analytical results; (a) M = 30; (b) M = 100;
and (c) M = 300.
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Figure Captions

Fig. 1. Phase space y—z for the periodic Hénon map with a = 1.4 and b = 0.9.
(a) Numerically obtained from one initial condition (x) with 10000 iterations;
(b—d) analytically obtained second, third, and fifth order results using uniform

zeroth order distribution.

Fig. 2. Phase space y—z for the periodic Hénon map with @ = 1.4 and b = 0.9
obtained numerically for 100000 iterations; (a) and (b) are two different initial

conditions (x). Both are attracted to a period six attractor (dots).

Fig. 3. Number of unattracted trajectories N, versus number of iterations n
for the dissipative Fermi ma:p with various é’s. (a) M = 30; (b) M = 100; (c)
M = 300.

Fig. 4. Cumulative, phase-averaged distributions f versus u, after 5 x 10*
iterations of 100 randomly chosen initial conditions, for various M and 6. The
solid curve shows the numerical result; the dashed and dotted curves show the

quasistatic theory fg with ¥ = 2 and 3 respectively.

Fig. 5. Diffusion coefficient D versus stochasticity parameter K for the stan-
dard map. The solid curve shows the numerical result [22]; dashed curve shows

the parabolic approximation used to obtain fq.

Fig. 6. Features of the modified standard map obtained numerically with M =
100 and 6 = 0.01. The stochasticity parameter K corresponds to (a) k = 7; (b)
k =8.
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Fig. 7. Sinks for the Fermi map obtained numerically with M = 100 and
6 = 0.01. Note the correspondence to Fig. 6. (There is an inversion in polarity
since I ~ —Au, ¥ =0)

Fig. 8. Area of regular regions A(K) for standard map versus the stochasticity
parameter K. The solid curve shows the numerical result [11]; the dashed curve

shows an analytical fit to the numerical result: A = 272K 13,

Fig. 9. The ratio Rx of the analytically-to-numerically determined fractions

of trajectories atractted to the various sinks, for all the cases given in Table I.
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TABLE III

M k § = 0.0003 § = 0.001 § = 0.003 § = 0.01
30 3 .27 .23 .22 .18
4 12 1 .105 .10
100 5 .26 .22 .23 .25
6 .20 .18 | 1 .25
7 12 12 12 .10
8 .09 .095 .065 .05
300 8 .30 - - -
9 .22 .24 - -
10 .22 .24 .20 -
n 1 .10 .09 -
12 11 1 1 -
13 .10 .105 .10 -
14 07 - .06 07 -
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5 0’ 0.0 0.0
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M = 300 (N=2x10°)
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9 0 0.0 0.0
10 0 0.2 —0.0]
i 1 T7 0.7
0.003 (12 51 .18 70| .382 [ 3.9] .451
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