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ABSTRACT

A framework for the synthesis of combinational logic functions in a dynamic CMOS
technology is presented. The input to the package of programs. which may be run as a
pipeline, is a set of Boolean equations. The synthesis package generates mask-level
geometries as output. Circuit optimizations for both speed and area have been developed.
This approach compares favorably with other automated synthesis systems, such as PLA-

based methods, in terms of circuit delay and layout area.

Different technologies and design styles for the implementation of combinational logic
have been studied. Static and dynamic circuits have been characterized and extensively
simulated. Two experimental chips were fabricated to further examine dynamic CMOS cir-
cuits. One of the test chips. a 32-bit ALU. is being used as part of a VLSI RISC micropro-
cessor. The test measurements show that many dynamic circuits will have charge redistri-
bution problems unless precautions are laken in design. Algorithms have been developed

which partition complex circuits so that charge redistribution problems are avoided.

The regular structure generated by the pipeline is an extension of Weinberger arrays.
The use of the Domino design style allows the construction of complex gates. Rather than
perform a two level expansion on the Boolean equations. the framework maintains a
multi-level expression hierarchy. This hierarchy is implemented in a multi-level matrix
which can be topologically compacied. The algorithms for compaction presented in this
dissertation allow simple-column and multiple-row folding with external constraints. The
folded connectivity matrix is translated to the mask level by a context-based 1tiler. The

tiler reads from a tile library and is process independent.
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CHAPTER 1

Introduction and Review of Previous Work

Much of the circuitry in a VLSI design may be cast in a regular. or array-based. form
and thus may be generated automatically. However, blocks of complex combinational
logic often require hand layout because they are not structured: the time spent on this por-
tion of the design is often the most significant part of the project [1at181). The aim of the
work presented in this dissertation was to explore methods of automating the design of
complex logic functions. In addition to reducing the time between circuit conception and
circuit fabrication. automated methods of circuit design and layout decrease the possibility
of design error, ease the overhead of circuit modification and often lead 1o efficient testing

strategies.

1.1. Need for Automation of Combinational Logic

A typical VLSI chip is comprised of a relatively small number of different sections.
In almost any VLSI design there will be sections of RAM and ROM. There will likely be a
processing section. for example an ALU in a microprocessor architecture. In addition. sig-
nal buffering. conditioning circuitry. and control logic are required. In general. a processor
may be divided into two broad sections: control and datapath. The control section consists
of complex combinational logic and a small amount of storage circuitry. The datapath sec-
tion includes ROM, RAM. an ALU, and intermediate storage latches. Even in a highly struc-
tured chip design. such as the reduced instruction set CMOS SOAR processor [pati81). over
30% of the chip area was used explicitly for control purposes [mari85). On the other hand
the combinational part of the control logic contributes only 10% of the total device count.
The disparity in these figures reflects the patently irregular nature of combinational logic.

Irregular in this sense means that the pieces of combinational logic do not fit together well
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and a substantial amount of routing is required to connect them.

So—called random or arbitrary combinational logic used in a custom design has a repli-
cation factor close 10 one. Replication factor is defined as the number of times the same
cell is used or placed in the design. The replication factor of the datapath is typically
skewed by on-chip ROM or RAM. For SOAR the RAM replication factor is over 2300. SOAR
is a 32-bit bitslice machine, and therefore. even excluding RAM. the replication factor is
. over 32 since storage latches and buffers are used several times in each bitslice. For the
control logic of the SOAR chip common latch, buffer. and inverter library cells were used
wherever possible. Still, almost all of the control logic is implemented using 14 PLAs.
Even though this logic may make up only a small part of the total device count. it
represents a significant amount of chip area and ofien the majority of distinci. designed

cells. A major portion of the design time is expended in layout of this logic.

1.2. Goals of Current Research

The goal of this research was 1o create a framework to study the automatic genera-
tion. optimization. and layout of arbitrary, multi-level combinational logic. As explained
in Section 1.4, the input to the package presented in this dissertation is an optimized.
multi-level combinational logic description. The logic function may have been hand-
optimized or optimized automatically [bray84b] [rude85] for logic compactness. The goal
of the work described here is 10 optimize the function for both speed and area. taking into
account electrical considerations. Since the process—critical parts of the package read from
technology files. changes in processing parameters, within the given design style and tech-
nology. can be easily accounted for. The actual layout generation is performed by a
design-rule-independen: tiling program which means that the program does not have 10 be

modified as design rules change.

The synthesis framework has been implemented as a pipeline of CAD programs that
allows a circuit designer 1o specify combinational logic at a high level and produce an

efficient circuit realization at the mask level. A pipeline of programs is a set of programs
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that may be used either separately or as a package. If used as a eomplete package. the out-
put of one program drives the nexi without need for user intervention. A program or
package of programs that generates a particular type of cell automatically is called a
module generator [newt81]. In Figure 1.1 the stages in the implemented pipeline. known as
MAMBO. are shown. The names of the associated tools in the pipeline are given in

parentheses.

In the pipeline implementation a technology, electrical design style, and layow method
must be chosen. Large-scale digital designs are typically implemented in 2 MOS technology
because of its superior packing density. For this project the CMOS technology bas been
chosen because it is possible to design low power, dense circuits in CMOS. The choice of
design style is an implementation-level decision. The relevani design parameters are the
speed of a basic gate. area consumption. and ease of automated layout. topological optimi-
zation. and Boolean minimization. Afier extensive simulation. a mixed static and dynamic,
clocked design style was chosen. The term layowr method applies to the geometric level of
design. The layout method used in this project is a generalization of Weinberger arrays. It

bas the advantage of guaranteeing a regular, structured layout.

1.3. Organization of this Dissertation

This dissertation bas nine chapters. The remainder of the introduction provides a
review of previous work in the area of automated synthesis of combinational logic
modules. Contrasts between static and dynamic CMOS design styles are drawn in Chapter
2. The advantages and deficiencies of each style. along with their best application areas.
are described. Detailed results of simulations of static and dynamic circuits in a specific
CMOS process are presented in Chapter 3. Results from a test chip constructed to examine
problems with dynamic circuits are also described. Chapter 3 concludes with results from
a 32-bit ALU test chip designed in the Domino style. In Chapter 4 an overview of the
stages in the MAMBO synthesis sysiem is presented. The objective and constraints at each

synthesis step are stated and the initial parsing and logic optimization phases are described
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MAMBO Pipeline
User-Defined
N-level

logic function

Convert to ' anvert to |

minimal implementable
2-level form N-level form
(EQNTOTT, ESPRESSO) (MGMG)

Delay Model
Generation
] (MKTBL)

“Topological
Design
(MKMAT, TWIST
r’hysliml
Design
(TINKER, TAILOR)

{Mask Layout

Figure 1.1: Stages in the MAMBO Automated Logic Synthesis System

in detail. In Chapter S the tradeoffs involved in partitioning large. dynamic. combinational
circuits are explained. Circuits may be partitioned according to several criteria to result in

reduced delay and greater ease of layout. In Chapter 6 algorithms for the area
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optimization of matrix structures are explored. The current structure is contrasted with
previous work on folded, tiled PLA structures. Chapter 7 contains an overview of layout
tiling methods and a comparison between tiled and routed methods. The separation of
electrical and geometrical rules is examined. A comparison of layouts and delays of
several PLAs from the SOAR chip with multi-level dynamic jmplememations is presented

in Chapter 8. Conclusions and directions for further work are presented in Chapter 9.

14. Comparison with Previous Work

The combinational logic synthesis problem can be broken up into four parts as shown

in Figure 1.2.
LOGIC ELECTRICAL TOPOLOGICAL PHYSICAL
OPTIMIZATION DESIGN COMPACTION LAYOUT

RREAS FOCUSSED ON IN THIS DISSERTATION

Figure 1.2: The Four Steps in Logic Synthesis

The first step. logic optimization, is a2 multi-faceted problem. The goal of logic optimiza-
tion is to reduce circuit complexily in some manner so that the optimized circuil requires
less chip area. The front-end program in the MAMBO pipeline. MGMG. will-perform simple
logic optimization if requested. however it is assumed that the logic expressions input to
the MAMBO package are already in a logically optimized form. Two methods of logic
optimization are reviewed here. The first method reduces circuil complexity by partition-
ing the function. The methods of functional and hierarchical partitioning are described.

The second method is logic optimization by muiti-level Boolean minimization.
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14.1. Logic Optimization by Circuit Partitioning

A circuit may be partitioned accordiﬁg to the function it performs. That is. if the
designer knows something in particular about the function he wishes 10 implement he may
be able 10 use this to advantage in circuit generation. An example circuit where such tech-
niques are useful is the exclusive-or (XOR) function. In an n -input XOR the function has
the value 1 if and only if an odd number of inputs are 1. The following example is t1aken
from [flei75). A calculation is carried out on the number of bits it would take to represent
an XOR function on 16 inputs. using different decoding schemes. For the case of one
decoder with 16 inputs the XOR maps into a single column with 216 bits. This represents
the completely decoded case. where each bit (a / or a 0) indicates the function output.
This could be mapped into a single circuit. The other extreme is to employ 16 1-bit
decoders. Each decoder produces two outputs, the input variable and its inversion. Now
there are just two possible cases per decoder times 16 decoders or 2! x 2 = 25 = 32 bits
per column. However 21 columns are reguired. since there are 2!° ways of representing
two variables across 16 inputs. This case. which could be implemented by partitioning a

single PLA into 16 smaller arrays, is clearly the worst case.

There are intermediate solutions and these are tabulated in Figure 1.3.

Number Inputs Total
of decoders r decoder | number of bits
1 16 26 = 65,536
2 8 219 = 1024
4 4 2° =512
8 2 212 = 4096
16 1 24" = 1,048.576

Figure 1.3: Total number of bits to implement XOR

The bst.case turns out to be four J-input decoders. This situation could be realized by
four small PLA circuits. In this example. the output of each decoder produces 2= 16
lines. Since four decoders are used this is a total of 4 X 2* or 64 bits per column. Since
each decoder deals with only four inputs there are just 2° minterms per PLA. Thus the

total bit count across all columns of all PLAs is just 4 X 2* x 23 or 512 bits overall.
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In this presentation the routing between the component circuils has been neglected.
This can represent a significant portion of the circuit area. An example circuit which illus-

trates the interconnection routing problem is presented at the end of this section.

Another partitioning method 1o reduce total cell area is 1o implement a hierarchy of
cells. This approach does best when the functions are complex and heavily interdepen-
dent. This method is similar in effect 10 the approach employed by the current work.
where a multi-level form of the input Boolean expressions is retained. The following
example is taken from [ayre79]. Here the designer wishes to implement a 16-bit counter.
It can be implemented as single circuit in two-level logic. A schematic representation of a

sing:e PLA implementation is shown in Figure 1.4. PLA area is 32,000 units.

AND Terms

Figure 1.4: 16-bit Counter as a Single PLA
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However. by introducing additional logic stages. so that the circuit is now AND-OR-AND-
OR. the overall area of the counter can be reduced. The total area for the two-deep imple-

mentation is 11,500 units.

The decomposition can be continued until the minimum branching factor of two is
reached. In this case. if each bit of the 16-bit counter is handled by a single PLA. 2 five-
level representation can be obtained. A schematic representation of such an implementa-

tion is presented in Figure 1.5. Total area of the circuit is 7.000 units.
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Figure 1.5: 16-bit Counter as Five Levels of PLA

Because total cell area has been reduced significantly. the speed of the counter,
although not reported. would increase. other factors remaining equal. It is not clear from

layre79] whether or not the additional routing area for the PLA interconnections was taken
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into account. It would appear from the diagrams that routing area has been factored into
the area calculation. In general. as circuit function is broken up into more and more levels
of logic. the ratio of routing area to cell area increases. The total area may, in fact,
increase in absolute terms. The amount of space dedicated to routing in the last two
examples appears significantly greater than the amount of space occupied by the PLA
module area. The curve shown in Figure 1.6. from [sans81), shows that as the area of
individual cells. for example PLAs. decreases in size and complexity proportionally more

area is taken up by interconneci.

tolol area

b\

;

i ' ic

10 100 200 number of cells

Figure 1.6: Ratio of Interconnect Area to
Cell Area as Fragmentation Increases

In the extreme. total chip area may increase even though there are fewer device placements.

1.4.1.1. Example Interconnection Problem in Partitioning

When a larger block is partitioned by either of the two methods just presented inter-
block routing becomes an issue. Layout schemes which route by block abutment. there-
fore. can result in a substantial area savings. A partitioned 32-bit ALU implemented as
six PLAs has been compared with a bitslice approach [sout82). Four 8-bit PLAs. based on

the highly optimized, compact design presented in [schm80] form the core of the NMOS
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design. Two other carry-lookahead PLAs are employed for speed. The floorplan of the ,

32-bit ALU-PLA layout is shown in Figure 1.7.

CONTROL AND paTA QUT

DRATAR IN
RLU4 - ¢ ALUL
L
24.31 c23 Qd g 7
lm
BA
ALLn O S ALl 2.1 m
16. 23| L |C1S 04 g. 15
CPLA [crLa
3 4

22t m—>

Figure 1.7: Floorplan of Partitioned ALU-PLA

The biislice approach was based on a single cell per bit design. Carry generation was

accomplished by a Manchester-type carry chain which is able to bypass 4-bit sections of
the ALU for fast carry propagation.

Both designs were fabricated in a single layer metal. polysilicide process. A com-

parison of the two designs is shown in Figure 1.8.
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Auribute PLA Bitslice |
Worst-case Speed 22ns 35ns
Power 200mW | 125mW
Total Area 4.2mm? | 1.0mm*
Routing Area 1.8mm* -

Figure 1.8: Comparison of PLA and Bitslice Techniques

A significant portion of the PLA design. 1.8mm?, or 43%, is taken up in routing area. This
is because it is very difficult, if not impossible. 10 generate partitioned PLAs that route by
abuiment. Presumably the bitslice design iakes up less space not only because the slices
connect by abutment. but also because they are more regular in structure. The speed
advantage of the PLA is due largely to the full carry-lookahead: the tiling approach itself
does not compromise circuil speed. The comparison indicates that a layout scheme which
routes by abutment gives a more compact result. This result is especially important in

multi-leve] circuits where the amount of intercell routing is large.

1.4.2. Logic Optimization by Boolean Minimization

Rather than apply special knowledge about a circuit to minimize its area. direct
multi-level Boolean minimization can be employed.to reduce device count and hence circuit
area. Several algorithms have been published [bray82] [risc82] [bray84b] which deal with
fast, heuristic methods for both decomposition and factorization of Boolean expressions.
Decomposition is a technique for discovering common subexpressions in a system of (two
or more) Boolean expressions. Factorization is a similar technique. used to rearrange a sin-
gle expression. Braylon and McMullen [bray82] outline an algorithm which simplifies a
set of functions until they are “relatively prime” by successive substitution of new vari-

ables for common subexpressions.:

Before examining the process of decomposition. it is useful to define some terms.
Two expressions are said to be relazively kernel free if they have no kernels in common. A
kernel of an expression is a cube free primary divisor. A cube is a set ¢ of literals such

that if Boolean variable x is an element of ¢. X is not in ¢. A literal is a Boolean variable
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or its negation. An expression is said 10 be cube free if the only cube evenly dividing the
expression is 1. Function g divides function fevenly if (f / g)g = f . The product and
division operators are defined for f orthogonal to g. Functions f and g are said to be
orthugonal if none of the literals of f/ are in g. The primary divisors of an expression f
are those cubes ¢ which divide f. ie. f/ c#=¢. For example. if f = EF (A4 + BC) and
g =(A+BC) then f/ g = EF bence g divides f and. in this case since (f/ g)g = f .2
divides f evenly and (A + BC) is a primary divisor of f.

Decomposition is applicable to sets of Boolean expressions. while factorization applies
to single functions. It is the decomposition methods that are useful for matrix optimiza-
tion. Decomposition is a two step process. First. common subexpressions. consisting of
two or more cubes. are extracted from of a set of funciions until the expressions are rela-
tively kernel free. At this point expressions can. at most. share a single cube. In the
second step. these are located and extracted also. The result is that the only common divi-

sors are single literals: all global commonality has been discovered.

Braytlon and McMullen call the first step distillazion and the second siep condensa-
tion . Both steps involve simplification of an expression by extracting a common subex-
pression: each step is repeated until no common subexpression can be found among any

pair of expressions.

Both sieps require a selection heuristic. In distillation the object is to find a pair of
kernels X, X' such tbat at least 2 cubes are common, for X, X" not in the same function.
In the condense algorithm a pair of cubes ¢. ¢’ must be found such that at least 2 literals
are common, for ¢, ¢’ not in the same function. The effectiveness of these steps depends on
the selection heuristic. Rather than search for all kernels. one can define the level for a
kernel and then restrict the search 1o all kernels at a given level. The level of a kernel is
recursively defined. Level O kernels are all kernels in which no literal appears twice. Ker-
nels K" *1(f ) are those kernels. not including f itself. which are kernels of K" (f ). By

this definition the complete kernel set, K(f ). is the union of all levels n of K" (f ).
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The table in Figure 1.9. from [bray82)], shows an example of O- and 1-level partial

kernel decomposition.

Decomposition | Transistor
Level Count
None 2750

O-Level 1928
1-Level 1786

Figure 1.9: Example of Boolean Decomposition

Partial decomposition is supplemented by an additional collapsing step after the condensa-
tion algorithm. This extra step is useful because some kernel terms may not have multiple
instances. in other words they appear only once in the set of Boolean functions. In this
case back substitwzion into the kernel list allows the discovery of complex subexpressions
and reduces the number of separate subexpressions. As a practical consideration the com-
plement of the extracted kernel is also computed: it may form part of the subexpression as

well.

The result of using the above approach is a smaller number of gates and perhaps a
decrease in the total number of Boolean variables. Gate reduction comes from elimination
of duplicate function implementation. The number of Boolean variables in a set of logic
expressions is the sum of input. output, and inlermediate variables. The number of input
and output variables remains fixed. The number of intermediate variables will be reduced
if it is possible to collapse subexpressions. The logic-optimized circuit is thus both smaller

and denser than the original circuit.

1.4.3. Implementation of Logic-Optimized Circuits

After logic optimization. the combinational circuit proceeds through the stages of
electrical, topological and physical design— the topics of this dissertation. Combinational
logic may be realized in many different ways. The structured forms of layout include
Weinberger arrays [wein67]. storage/logic arrays or SL4s [pali79]). and gaie matrices

[lope81). These methods are termed tiled methods because connection between cells is by
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abutment. just like tiling a floor. ln comparison, there are rawzed schemes where intercon-
nection between blocks of logic is performed by a router. Hand layout or the layout of
partitioned PLAs are examples of routed approaches. Another common technique for
implementing combinational logic is the “standard cell” approach. [souk81). In a standard
cell system simple functions are performed by each of many different cells. The cell col-
lection makes up a library. Each cell in the library has the same height but a variable
. width.’ The height constraint allows for the construction of rectangular routing channels
to interconnect cells. The cells are selected from the library on the basis of their function
and are placed in rows. perhaps by an automated placement program. based on the number
and position of their inputs and outpuis. The cells are then routed automatically. A typi-

cal standard cell layout is shown in Figure 1.10 [duni83).

I PIPIPIPIRID

L»urL

- 1T |
i A

Figure 1.10: Automated Standard Cell Layout

R TR

IRecently standard cell sysiems have been developed which permit both variable height and variable width
cells.
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Other tools that work from high-level circuit descriptions are the MACPITTS program
[sout83] and work on silicon compilation at IBM [bray84a). The MACPITTS program gen-
erates Weinberger arrays for the control structures and is an example of a tiled method.
The IBM approach is based on a form of Dynamic CMOS logic known as differential cascode
voltage switched logic (DCVS). In this routed method. compact function cells are con-

structed and an automated program performs the cell interconnection.

1.5. PLA Design

The most successful structured approach to date is based on a two-level circuit
representation. It is possible 10 represent any combinational circuit in two-level form (i.e.
product-of-sums, sum-of-products) [nagl?5]). The classical implementation of such a
representation is the Programmable Logic Array or (PLA) [carr72j. Because research into
PLA generation and optimization is well advanced it is reviewed in detai] here. PLAs are
often the approach of choice for combinational logic design because they are easy 10
machine generate and. for small circuits. give good speed due to their two-level nature. In
practice. however. PLAs which implement functions of many inpul and output variables
(e.g.. 20 10 100) tend to be slow. This is a direct result of their large size. Such PLAs are
large because they provide the possibility for every input term. or its complement. to take
part in every product lerm and. therefore. 10 influence every output. These PLAs often
bave a correspondingly large number of product lerms which adds to the worst-case cir-
cuit delay. Large PLAs have high source capacitances on product term lines. Unless special
precautions are laken. there will .leo be large /R drops on input and output signal paths

[mah84).

1.5.1. PLA Compaction by Folding

Not long after the first PLA generation programs were introduced [glas80] [hofm80]
[1and82] it was recognized that PLA density could be increased by topologically rearranging

the input and output blocks or planes of the PLA. Functionally the PLA remains



§1.5.1 16

unchanged. however some of the unused placement sites have been discarded. This topo-
logical rearrangement is called folding. Folding compacts the PLA by taking advantage of
the fact that though all inputs may contribute 10 a given product term, and all product
terms may contribute 1o a given output. it is very rare that such fully connected terms
exist. Therefore. in what is known as simple folding two inputs can share the space form-
erly occupied by a single input. This can be done likewise for output and product terms.
In multiple folding more than two input. output. or product terms are collapsed into the

space of a single term.

Early work on PLA folding theory and implementation was carried out by [hach82]
and by [bofm80). In [luby82] the optimal PLA folding problem was shown to be NP-
complete. Therefore, heuristics are employed to generate fast, near-optimal compaction.
Several early folding heuristics were shown to be near-optimal only for certain classes of
PLAs and an exhaustive search algorithm using branch-and-bound! techniques was found
useful on small (e.g <20 inputs/outputs) or dense PLAs [bofm80]. The program runtime
proved prohibitive for large. sparse structures.

While many of the early folding programs provided significant area reduction they
often did so at the expense of increased esternal routing.? Specifically. the designer had no
control over the placement of input and output signals. This meant that while the area of
the core planes of the PLA was reduced the overall area of the PLA, with the interconnec-
tion routing taken into account. might actually have been worse. More recent work by De
Micheli [demi84] [demi82] addresses the folding problem with input and output con-
straints in detail. De Micheli presents a set of heuristics for both constrained and uncon-
strained multiple folding. Running in a constrained mode. area reductions appear 10 be
about 20% less (referenced o original area at 100%) than their unconstrained compacted
counterparts [demi84]. This work repr&ems the current state-of-the-art in PLA compac-

tion.

3The BLAM program [hofm80) was able 1o reduce a large UC Berkeley RISC | processor control PLA by 40%.
The compacted version of the PLA was not used because inpu1 signal routing from the surrounding circuitry to the
PLA was difBcult using the layout techniques available at that time.
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1.5.2. PLA Compaction by Block-Partitioning

Partitioning a circuit into independent pieces. that is subcircuits which have distinct
inputs and outputs. will reduce circuit area. Partitioning 2 PLA in this manner is in effect
performing block diagonalization on the original PLA. For example. in the case of an AND
plane with n inputs and m product terms. the unpartitioned plane occupies O(n Xm)
area. In the partitioning limit, if each input contacts only a single product term. the AND
planes of the m fully partitioned PLAs total O(n) in area. This type of block-

partitioning is employed by the SMILE program described in [demi83].

1.5.3. Deficiencies of PLA Compaction Approaches

While folding and partitioning produce area-efficient circuits. which is one of the key
parameters in the assessment of module generators. such programs only indirectly address
the problem of circuit delay. The fan-in of the PLA planes may be reduced by compaction
and this may indirectly decrease the critical path delay. but no delay optimization is pro-
vided by folding or partitioning itself. The work in this dissertation recognizes that tim-
ing analysis and delay optimization are crucial points in high-performance circuit design.
In contrast 1o the PLA-based combinational logic systems. the work presented here takes as
its primary goal the optimization of critical path delay. Topological compaction is per-

formed after delay optimization and care is taken not to degrade circuit performance.

1.6. Summary of Results

The target specification of this research was to build a tool that produces delay-
optimized circuits which are also compact in layout area. This goal has been met. Typical
worst-case circuil speeds. as a result of delay optimization, are around a factor of two fas-
ter than comparable optimized PLA implementations of the same logic function. Of the
examples tested. circuit speedups ranged from 1.2 to 2.5 times a PLA with the greater
speedups seen on the more complex circuits. The tradeoff with speed is circuit area. The

straightforward automated tiling scheme used in MAMBO produced structures typically
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twice the size of comparable PLAs, though the range was from 1.5 times for large PLAs to
S times for small circuits. For particular circuits MAMBO designs are both faster and
smaller than comparable PLA implementations. These results show that the optimized
multi-level approach yields circuits with a speed advantage at a cost in area. The designer
may tune the synthesized circuit for the most favorable area-speed tradeoff. The multi-
level approach is most effective for complex combinational circuits where it yields circuits
more than twice as fast as comparable PLAs with a only a small increase in circuit area.
Detailed comparisons of combinational logic synthesized using the MAMBO pipeline appear

in Chapter 8.
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CHAPTER 2

Comparison of Static and Dynamic CMOS Circuits

2.1. Design of Static CMOS Logic

To provide active pullup and pulldown of logic signals in static CMOS design. the cir-

cuit function is duplicated by n - and p-channel devices. The two groups of devices are

logic duals of one another. The example circuit of Figure 2.1 realizes the NAND function

of five inputs.

| 1-”:: z-”:: 34”'_'\ 4-¢”: 5-4[: oivwss

P-CHANNEL

N-CHANNEL
3 _{ DEVICES

Figure 2.1: Static CMOS NAND Function of 5 Inputs

A conducting path is opened between GND and the output node when all five inputs are

asserted high. By contrast. a path between Vpp and the output node exists when any one

of the p-channel devices is asseried low. Each input signal drives two gates. an n —channel

and a p-channel device.
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2.1.1. Ratioing N- and P-Devices

For the NAND gate. at least one input signal must be low 1o drive the output node
high. To drive the output low. all input signals must be high. Since both states are
driven. it is important that the rise and fall times be approximately equal if overall circuit
performance is to be optimized. It n standard practice to ratio the FETs to obtain this goal.
There are two factors which exert first-order effects on gate delay. For particular values
of Vgs and Vpg. the MOSFET current is directly proportional 1o X . a transconductance

parameter, Where

W,

An = L,, l‘ncm (213)
and
'
X, = L—L/"p Cox (2.1b)
P

for the n ~channel and the p-channel devices, respectively. Here it is assumed that the
thickness of gate oxide is the same for both devices thus C,, . the gate oxide capacitance per
unit area. is identical for both devices. W and L represent the width and length of the
MOSFET active area. respectively. The surface mobility of electrons in the p-type sub-
strate. u, . is typically two to three times higher than the surface mobility of holes in the
n -type substrate. u,. The exact ratio depends on a variety of factors. including substrate

doping, and therefore depends on whether an n -well. p-well. or twin-tub technology is

used. The second factor is the effective -1“1 ratio of ““on” devices between V,, and Vpp or

between V., and GND. By varying W and L of the series and parallel connected devices in

Figure 2.1, both of these factors can be overcome. In the SPICE2 [nage75] simulations that

follow it is assumed that g, = 2.54,.

2.1.2. Fanout Loading Calculations

Since static CMOS gates consist of functions duplicated in p- and n -logic. each input

signal must drive both an n- and a p-device. The firsi-order input gate capacitance of
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such a static circuit is given by:

Con =Cu(W,L,+W,L,) (2.2)
For an inverter. the p-channel device contributes about twice as much gate capacitance as
the n -device. Therefore. a single inverter load in static CMOS is equivalent to approxi-
mately three inverter loads in NMOS technology and. in general. dynamic CMOS circuits

show a smaller input capacitance than their static CMOS counterparts [pret85).

2.1.3. Design of NAND and NOR in Static CMOS

The logic functions NAND and NOR are realized more simply than AND and OR in
static CMOS. This is because the unimplanted n -device turns on when Vg5 is large posi-
tive. hence when the gate is high and the source is grounded. The p-device turns on when
Vs is large negative. hence when the source is tied to Vpp and the gate is low. That is,
for both device types. when the input voltage increases the output voltage decreases. This
contributes the basic inverting component. A positive logic NAND is fashioned by placing
n -devices in series and p-devices in parallel. A positive logic NOR is built by placing the

p —devices in series and the n -devices in parallel.

In practice. there is a bias toward building static CMOS gates in NAND form. The two
factors which affect device sizing, series chain length and mobility differences. tend to can-
cel in the design of a NAND gate. For the NOR case the two factors are multiplicative.
resulting in a large disparity in p- and n -device sizes, especially for high fan-in gates. The
large p-devices add capacitance to the output node and consume circuit area. It is for this
reason that some circuits. for example the gale matrix designs in the BELLMAC chip.

[kang83a] bave been built using only NAND gates.

2.1.4. Worst-Case Delays for Static NAND Gates

For a NAND configuration the worst-case delay time is Tz;; . the amount of time it
takes the output to go from high 1o low. This definition is illustrated in Figure 2.2 (from

[bodg83]). The delay time is given by:
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T = Cr(Vou—Vo.)
L 27 D(avg)

where the total capacitance is given by:

(2.3)

Cr = NoCg +N;Copp +N;Capn +H(N;=1)Cqss +K o [N;Cpgp +(2N; —1)Cpgn ] (2.4)
In Equation 2.4 Ny represents the gate funout. Ip is inversely proportional to N;. the

number of inputs:
_ K/2(Ves=V, ¥ (2.5)

N;
K is the process-dependent transconductance parameter.
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Figure 2.2: Delay Time Calculation for Static NAND

2.1.5. Relative Placement of Gate Input Signals

Consider a high fan-in NAND gate. The speed at which the gate makes the 1 -0
transition depends on the speed at which all the n -devices react. By placing the fastest
switching FET closest to the output node. the output voltage will begin to fall and the gate
will begin to make the transition. even before the more distant transistors have fully
turned on. It is important that the designer take advantage of this information in circuit

layout. This concern applies only to the n-devices since the p-devices are in parallel:
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hence there is no “"closest’™” transistor to the output node.

2.1.6. Static CMOS Speed

Pullup and pulldown times for best and worst case SPICE2 simulations for a S-input
AND gate (NAND with inverted output) are tabulated in Figure 2.3. In the worst-case
analysis a single input was switched, in the best-case simulation all inputs were switched
in parallel. The sizes of n - and p-channel devices were adjusied 1o achieve roughly equal
rise and fall times in the worst case. As with other simulations described here. the circuits
were laid out and all parasitic capacitances were extracied and accounted for in the simu-

lations. The SPICE2 models used for simulation appear in Appendix A.

S-Input AND | L,/ W, | L,/ W, | risetime (ns) | falltime (ns)

Best case 3/6 3/10 7.3 2.9
Worst case 3/6 3/10 9.8 10.0

Figure 2.3: Delay Times for S-Input Static CMOS AND Gate

2.2. Design of Dynamic CMOS Logic

The design of dynamic circuits in CMOS offers considerably more layout flexibility
than static methods. Dynamic methods rely on charge storage for correct operation. The
most commonly employed dynamic methods use two-phase clocking (one clock). In the
initial or precharge phase. output nodes are precharged 1o either logic high or low. In the
second phase. called the evaluare phase. output nodes either remain stable or are allowed
to make a single, unidirectional transition. With this latter constraint circuit “glitches”
are avoided. This is imporiant in charge transfer circuits. because once a node is improp-

erly discharged it cannot return its valid state until the next precharge.

Dynamic circuits offer an advantage over static designs: fewer devices are needed in
most cases since circuit function is not duplicated. Removal of the dual network makes
design-for-testability easier [gonc83]. The logic used 10 realize the function. called the

core, may be of either n- or p-devices. In the examples that follow n-cores are most
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often used.
Dynamic circuit design also bas several disadvantages. Some of these drawbacks are
summarized:
@ The electrical design of dynamic circuits is unquestionably more
difficult than in the static case.
@ The circuits must be simulated 10 determine the necessary precharge time.
@ Dynamic circuits potentially suffer from a charge redistribution problem
on the output node.
® It is especially imporiant to consider the ordering of
“internal” versus “external” signals to address this charge probiem.
@ Certain dynamic design styles are not logically complete.

e Dynamic circuits utilizing two different clocks can have
circuit races if not carefully designed.

In the following sections each of these topics is considered with regard to the two most

commonly used dynamic design techniques.

2.2.1. Dynamic CMOS with Domino Logic

The most basic dynamic design is a style termed Domino after Krambeck. et. al.
[kram82]. This style involves the use of a single clock. denoted by ¢. This clock controls
a p~channel and an n -channel device: the former between circuit logic output and Vpp.
the latier between the circuit logic and GND. as shown in Figure 2.4. In addition. a static
inverter is required at the output of the gate. The Domino representation of a S-input

AND circuit is shown in Figure 2.4.
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Figure 2.4: CMOS Domino S-input AND circuit

While a standard (static) gate requires 2k devices to realize such a function. where & is
the number of inputs. a Domino gate requires k +4 transistors. The core is composed of
devices: two additional transistors are gated by the clock. and two devices are required for

the static output inverter.

The Domino gate works in the following way: During the precharge phase ¢ is held
low. The p-channel pullup device charges the Domino core output node high and the core
is isolated from GND. At the end of precharge the core node is at Vpp. In the evaluate
phase ¢-goes high which connects the core to GND and isolates the core output from Vpp.
If, during evaluate. inputs to the core devices are asserted such that a path is created
between the output node and GND. then the output node makes 2 single 1 — O transition.

Otherwise. the output node remains in its precharged (high) state.
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This process is then repeated with the next precharge phase. The term “Domino”
comes about from the analogy of setting up a line of dominoes (precbarging) and then let-
ting the first domino make a transition. This may cause a further transition whick may,
in turn. cause a succeeding transition and so forth— much like the effect of toppling a

chain of dominoes.

) 2.2.2. Device Sizing in Dynamic CMOS

Dynamic logic is ratioless, which is 1o say that pullup and pulldown devices are not
sized depending on the amount of current they draw. or their relative mobility. The static
circuits just examined were ratioed in order to compensate for series stacking and for
mobility variations so rise and fall times were about equal. In precharged logic only a sin-
gle state transition is possible. To save circuit area. minimum devices can be used: 10 gain
speed. wide devices can be employed in the core. The sizing of n-channel and p-channel

devices are essentially independent tasks.

2.2.3. Static Inverter Requirement

The need for the static inverter is explained fully in the original paper on Domino
logic. Briefly. the inverter is required because the precharge state brings the (n -core) out-
put node high. If there is no inverter. a logic high will turn on the following n channel}
device. Al the beginning of evaluate. therefore. the n —core of a succeeding gate will be
active and may be falsely discharged. This occurs because a momentary connection exists
between the output of the driven gate and GND. Once this node is discharged it cannot be
recharged until the next precharge phase. To prevent this. all input gates are required to
be off at the beginning of the evaluate phase. It is therefore necessary 1o add an inverter in

between precharged (high) nodes and driven n -channel (active high) devices.
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2.2.4. Distinction Between External and Internal Signals .

It is important in a dynamic design style. like Domino. 1o draw the distinction
between an infernal and an external signal. An internal signal is one which comes from a
previous Domino gate. An external signal comes from a siatic source such as a latch.
Internal signals must be “off " at the beginning of the evaluate phase. An external signal.
however, is expected to be szable at the beginning of the evaluate phase— whether it is on
or off. That is, internal signals are stable and off during precharge and may make a single
transition during evaluation. External signals are expected to stabilize before the end of
precharge and remain in their final state during evaluation. Thus. another consideration in
the calculation of the precharge interval is the length of time it takes external signals to
stabilize.

In dynamic circuits relative signal placement is also important. Since external signals
must be stable before the beginning of evaluation. they are placed closest o the output
node. The internal signals come next and their placement depends on the order in which
they switch. Note that if a series external signal is “off " during evaluation the state of
any internal signals does not matter, since the external signal blocks any output node

transition.

2.2.5. The Charge Redistribution Problem in Dynamic Circuits

It has already been pointed out that in dynamic circuits care must be taken 1o avoid
improper discharge of a precharged node. Charge may also be lost from the output node
due to the phenomenon of charge redistribution. This problem is most evident in circuits

with a high fan-in of largely internal signals. Figure 2.5 illustrates the problem.
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Figure 2.5: The Charge Redistribution Problem
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Assume all signals are internal. If. during evaluation, the two devices closest to the out-

put node turn on but the third device remains off. the output node should remain high.

However, when the internally driven FETs turn on, charge stored on the output node capa-

citance flows into the source/drain capacitances of the n -devices. The output charge is

thus split across several nodes. If the collective source/drain capacitances are of the same

order as the gate capacitance of the stalic inverter. the charge lost from the precharged

node may cause the voltage there to drop and the static inverter 10 make a false transition.
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The charge redistribution problem can be quantified and a simple criterion for the
onset of charge redistribution is now defined. This criterion is used by the MOSMESH pro-
gram, described in Chapter 4, to determine the presence of a charge redistribution problem.
The precharged capacitance (prech) lies on the node designated by an asterisk in Figure 2.5.
All other capacitances represent parasitics (para). A charge redistribution (CR) problem is

defined to exist if:

prech + (head )xpara < Vi (2.6)
prech + (head + middle )Xpara Vop )

where:
head: number of drain nodes from the core devices which touch the prech node

middle: number of source/drain nodes from the core devices which are not head
and which do not touch the grounded pulldown device gated by the clock

Vp3; : the switching threshold of the output buffer/inverter

Vpp: positive power supply rail

The buffer capacitances which contribute 10 the prech capacitance are:

Wx L,xCox, + WX L, X Cox» + (gate capacitance)
Copop X Wy + Cesop X W, + (s/d overlap cap)
Copon X Wr + Coson X W, + (s/d overlap cap)
Ceson X Ln + Coaop X Lp (gate/bulk overlap cap)

The pullup device also contributes 1o the prech capacitance:

Cjp X Areanuy + Crswp X Perimeterpus, + (bulk capacitance)

Co00p X Wputiup (overlap cap)

The parasitic contributions come from two sources: from junction capacitances of the
source and drain 10 the substrate and from source/drain overlap capacitances. Note that
the parasitic capacitances contributed by the head devices add 1o the prech capacitance.

The capacitances given below are per source or drain region per device.
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Cjn X Areas,, + Crsw, X Perimeter,, + (core bulk cap)

Cason X Weore ' (s/d overlap cap)

A breakdown of the parasitic contributions is shown in Figure 2.6.
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Figure 2.6: Parasitic Contributions

There are two solutions to the CR problem, both involve keeping the ratio of output
node capacitance to parasitic input capacitance large. The first method is to make the static
inverter larger. This bhas the advantage that the circuit can now drive a large fanout.
Adding capacitance slows the swilching time, bowever. Small circuit area. one of the
advantages of dynamic designs. is also compromised. The second approach is to decrease
the size of the core devices. If these devices are of minimum size. however. they represent
a higher resistance and thus cause the gate to switch more slowly. Thus, without
significantly modifying the circuit. the only solution to the redistribution problem requires
slowing down the circuit. This is a drawback which both Domino style circuits and NORA

circuits. described in Section 2.3, suffer.

2.2.6. Domino Circuits Are Not Logically Complete

The addition to the dynamic circuit of the interstage inverier means that Domino

gates are either AND or OR in function. Neither configuration can produce an inversion and
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hence the Domino family is not logically complete by itself. This drawback can be over-
come by moving the inversions to the last Domino stage. The last stage has no restrictions
on its output. assuming it drives standard static CMOS logic. This moving of inversions,
also called bubble pushing, can be accomplished by expression-iree transformation. The
software 100l MGMG. described in Chapter 4, can transform an arbitrarily deep expression

tree 10 AND—OR form.

2.2.7. OR Gates Preferred in Dynamic CMOS

In contrast to static CMOS. where device ratioing for mobility plays a role. the practi-
cal gate for implementing dynamic circuits is the OR function (n -core). Since the single
p-device is only active in precharge. it is not affected by the n -core devices (which are
only active in evaluate). It is pref erable 10 arrange the n -devices in parallel to reduce the
resisiance path between output node and GND. Parallel n -devices give the OR function.
By creating the same device configuration with a p-core in place of the n —channel devices.

the AND function is construcied. Typically. Domino design is n —core only.

The pure n -core OR function and the pure p-core AND function have the additional
advantage over their counterparts of being immune 10 the charge redistribution problem.
This is because of the single device between output node and clocked device: there are no

internal nodes for redistribution.

2.3. Dynamic CMOS Design Using NORA

A style of dynamic CMOS design which utilizes both n - and p-core gates in an alter-
natling patiern bas been described by Goncalves and DeMan [gonc83]. This style is more
complicated than the Domino approach. which it is based on. NORA logic uses two clocks,
commonly denoted by ¢ and . The nﬁme NORA comes from NO RAce logic. A NORA cir-

cuit is shown in Figure 2.7.
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Figure 2.7: A Simple NORA Circuit

The first gate in this figure resembles a Domino gate except that the intersiage inverter is
not used. NORA obviates the need for such inverters by requiring a p -core gate follow an
n -core one. Alternatively, an inverter could be used 10 connect two n ~core gates in suc-
cession in which case NORA reduces 1o the Domino style. By eliminating the need for an
intersiage inverter. both n- and p-core gates can be built realizing the NAND and NOR
functions. Since negations can also be realized it would appear at first glance that NORA
designs are logically complete. This is not the case. As a result of the construction rules
to preserve the racefree properties of NORA. explained below, the designer realizes no
greater design flexibility from NORA circuits than from standard Domino designs. How-
ever. because the static inverter is not required. the overhead for a NORA circuit is reduced:

NORA gates require only k +2 devices to impiement a k -inpul. single-output function.

Like Domino logic. NORA utilizes a precharge and an evaluate phase. Unlike Domino.

two clock phases are employed. This allows pipelining of interconnecting stages but also
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introduces the potential problem of circuit races due 1o skewed clocks. In Domino logic
circuit races are not possible since all gates are controlled from the same clock. There is a

problem of clock distribution about a large circuit, a problem common to all dynamic

designs.

2.3.1. The C>MOS latch in NORA logic

By employing a C2MOS (clocked CMOS) laich between pipelined circuit stages one can
guarantee that races are avoided. This laich was first proposed and analyzed in [suzu73).

Figure 2.8a shows the laich in ils most common configuration.
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Figure 2.8a: CMOS Latch
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Figure 2.8b: Standard CMOS Transmission Gate

This latch., which uses four transistors. is used in place of the CMOS transmission gate,
shown in Figure 2.8b. In Figure 2.9 SPICE2 simulation waveforms are shown for a shift

register using first a pair of simple pass gates and then a pair of C*MOS latches. It can be
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seen that the former configuration is sensitive to clock skew. As skew is increased logic o
levels are compromised. This occurs because in the skew period the transfer gate is neither
on nor off, therefore logic levels are undefined. The skew period is that interval when ¢
and 3 are both 1 or both 0. By comparison. the clocked latch is always in a defined state.

Note that the clocked CMOS latch inverts its input data.
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Figure 2.9a: 10ns Skew in Transmission Gate Shift Register
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Figure 2.9b: 20ns Skew in Transmission Gate Shift Register
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Figure 2.9c: 10ns Skew in C’MOS Shift Register
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The operation of the clocked CMOS latch is shown in Figure 2.10.
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Figure 2.10: Operation of C’MOS Latch

If a O is shifted into the first latch. then it is only possible for node B to take a 1 =0

transition if node A makes the O = 1 transition and $ = O and @ = 1. & must equal 0in
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order for node A to make the transition high. but it must be 1 so that node B can make
the transition low. Since @ can only be either on or off such a skew problem cannot affect
the laiched signals. This example of skew is called (1,]) skew because it is analogous to
the pass gate example with both ¢ and @ high. A similar potlential race condition exists in
the case where ¢ and  are botb low. This is called (0,0) skew. Again, the operation of the

C2MOS latch is immune 1o these skew conditions.

Unfortunately, it is still possible 10 have skewed-clock-induced races in C°MOS cir-
cuits. If the V,’s of the complementary devices are mismatched then there exists a voltage
range. V, . where the n -device is beginning to turn on and the p-device is not yet off, and
vice versa. Notice in Figure 2.10 that ¢ drives an n -channel device in the iirst laich, but a
p-channel device in the second lawch. This insures that the latches work on opposite
phases. However. it also means that the conditions ¢ = 0 and ¢ = 1 are not mutually
exclusive. It is still possible to have clocked feedthrough between latches. The SPICE2
simulation result given in Figure 2.11 shows this effect when V,, is —=2.0V and V,, is

+0.5V. The C*MOS latch is immune to clock skew but is still sensitive to V, mismatches.
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Figure 2.11: 20ns Skew in C*MOS Shift Register
with V Mismatch

2.3.2. Pipelining NORA stages

In the NORA style stages are coupled via the clocked CMOS latches. Each stage. which
may be composed of an arbitrary number of n - and p-core gates. is clocked by ¢ and

signals. ¢ sections are interleaved with @ sections to create a continuous pipeline. A ¢
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section is in precharge when ¢ = 0 and & = 1. A @ section precharges under the opposite

conditions. This allows the stages to be connected as shown in Figure 2.12 [gonc83].
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Figure 2.12: Pipelined NORA Stage

By using this technique. a result becomes available at the end of each evaluation phase.
thus at the end of each clock cycle. It is assumed that the ¢ and @ sections are of roughly
equal complexity and. therefore, precharge and evaluate times will equal each other. In
NORA. half the clock cycle is spent in precharge and half in evaluation. Domino logic.
which is not pipelined, does not require an even split between precharge and evaluation
phases. It is important in speed comparisons with static logic to factor in the precharge or

setup time of dynamic circuits.

2.3.3. Construction Rules to Preserve Racefree Properties

In order to preserve the “‘racefree” properties of NORA conferred by the C*MOS latch
a number of construction rules must be observed. As summarized by Goncalves and

DeMan [gonc83] the rules are:
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(1) There is an even number of static inversions between the last dynamic stage of a sec-
tion (¢ or &) and the C°MOS output latch. (Precharge racefree.)

(2) There is at least one dynamic block placed in such a way that there is an even
number of inversions between this dynamic block and the c*MOs input latch.
(Evaluation racefree.)

The total number of (dynamic and static) inversions between the input and output
C>MOS latches is even. (Evaluation racefree.)

. These constraints are in addition to the requirement of a static inverter to eliminate the

Domino internal delay problem.

The intent of these rules is to insure that within each (¢ or $) section the data signal
is corurolled by only one clock: it is independent of the opposite phase clock. The data sig-
nal must be immune from races in both precharge and evaluation phases. For the
precharge phase consider the converse of the first rule; assume a single (static) inversion
between the last precharged node and the output latch. For the n-core device in a ¢ sec-
tion shown in Figure 2.12 the precharge node goes high in precharge as a result of a ¢-
controlled precharge FET. The output of the static inverter goes low and information on
the latch output could be lost if the p-channel clocked FET. controlled by &. was clocked
late with respect 1o the ¢-controlled precharge. This configuration depends on both clocks.
Without the inversion (an even number of inversions) the input 1o the laich goes high.
Now for the latched information to be lost the ¢-contirolled n —channel device would have
to turn on. But both the precharge device and the controlling latch device are gated by the
same clock. This clock is low in ¢-section precharge by definition and therefore laiched

information is preserved.

When the clock is high. the ¢-section is in evaluation. Consider the converse of the
second evaluation racefree constraint; assume that between the output latch from a & sec-
tion and the output laich from the next ¢ section there is a single static inversion. This

configuration is shown in Figure 2.13.
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Figure 2.13: ¢—section with Single Static Inversion
(Contradiction of NORA rule 2.)

In ¢~evaiuation. ¢ goes high: if the output from the inverter is also high then information
on the output laich may change because the n ~channel clocked device gated by ¢ is on.
But if the inverter output is high. the input must be low. The logic O was the result of the
n —channel clocked device of the previous ($ section) laich being on. This device is gated
by @. Again. if skew exists between the two clock phases. laiched information may be
lost. With an even number of interstage inversions it is only possible for one laich to be
“on"". allowing its output 1o reflect changes at its input. Because the ¢ and @ latches are
active on opposite phases. the same clock that activates the ¢ latch deactivates the @ laich.

The racefree properties are preserved because data transfer depends only on a single clock.

The first evaluation racefree rule guarantees that the racefree properties are preserved
by assuring that a dynamic block is gated by the same clock that gates the input c*MOSs

latch. as illustrated in Figure 2.14.
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Figure 2.14: Precharge Racefree Rule: Even number of
static inversions between last dynamic stage and output latch.

If this dynamic block is the last dynamic block of the section then it must be followed by
an even number of (static) inversions- as required by the precharge constraint. If the
dynamic block is not the last block then it is followed by an even or odd number of
dvnamic blocks. If there are an odd number more blocks. then the total number of inver-
sions is even. which is the second evaluation racefree rule. If the number of succeeding
dynamic blocks is even, then there must be an even number of inversions between this
logic block and the CMOS output laich. This again assures that data signals depend only

on a single clock.

It is often possible to change a circuit which vioiates these constraints into one which
obeys the rules. Three possibilities are suggested [gonc83}:
1) A static inversion can be converted into a dynamic one.
2) A static inversion can be converted 1o a C:MOS laich.

3) The static inverter can be placed after the C*MOS latch.
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2.4. Special Design Considerations in Dynamic CMOS

In this section three aspects of CMOS design particular to dynamic logic are examined.
First. inverter buffer sizing is considered with regard to noise margin. delay. and charge
redistribution. Second. the effect of an added static pullup to the precharge node is
described. Finally. a stacking scheme is examined which can often speed up a high fan-in
series gate. Such circuits are typically slow and. therefore. speedup is especially impor-

tant.

2.4.1. Noise Margins in the CMOS Inverter

A static inverter is employed 10 connect stages in Domino and NORA logic. The noise
margin of this inverter is of particular importance in the design of dynamic circuits. The
high and low noise margins used in this analysis are defined as:

NML = Vu_ -VOI. (2.72)

and

NMy = Vo =Viy (2.7b)
respectively. Following a standard text. for example [hodg83], the points V;y and V), on
the voltage transfer curve are defined by dV,,/ dV,, = —1. By solving for this derivative
and using the result in the appropriate drain equation the noise margin parameters can be

obtained.

The drain current of a device in saturation 1s given by

Ip = g(VGS-V: » (2.8a)

where Vps 2 Vgs=V,. The drain current in the linear region is

k
ID = ?lz(VGS-Vl )VDS-VDSZ] (2.8b)
where Vg5 2 V, and Vps €Vgs=V,. To find V;y and Vj,; . assume the n channel device

is in the linear region and the p channel device is in saturation. Thus Jpy(tin) = Ipp(sar) OF
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X b4
-—2’.—[2(Vm -Vm )VOL -VOL 2] = —ZP—(VDD -VIH _V‘P )2 (29)
In this equation and those that follow the absolute value of V,, is used. KX, is kW,/ L,

and K, iskW,/ L,. Solving this equation for Vp; yields

2K, (Vppy—=K, (Vor Y2K, (Vy, +V,y NH+(K, =K, Wor IV ?

Vg = .10
IH X (2.10)
+X,(V,, =K, (Vor =K, (Vpp)
KI
Solving the dV,, / dV;, equation {or a slope of =1 yields
2V, +V,, +(K,/ K, XVpp=V,
= oL [ ( P / X o)) ®p ) (2.11)

1%
" 1+(X,/ X,)
By equating these two expressions and iteraling. a solution can found simultaneously for

Vi and Vo, Results for various pullup/pulldown ratios are given in Figure 2.15 for the
worst-case SPICE2 model. It can be seen that the NMOS device is. in fact, in the linear
region while the PMOS device is saturated.

To find V;; and Voy assume the n —channel device is in saturation and the p-channel
device is in the linear region. Thus /pp(in) = IpNn(sar) OF

il (V) =V, ) (2.12)

K -
—-12(Vpp=V1 XVpp Vo (Voo =Von ¥l=—
Solving this equation for V,; yields:
VIL = i(VOH —VDD )(ZKn Vin +(Kp -X, )VOH -(Kr +X, )VDD )]” 2 (2.13)
K,
.K,, Vm -KP (VOH +VDD)
K,

Solving the dV,,, / dV,, equation for a slope of —1 yields:

2Von=Vop -le + X,/ Kp Won

Vip = (2.14)
i 1+(X,7 X,)

By equating these expressions and solving as before. values for V;; and Voy are oblained.

Results for various pullup/pulldown ratios are given in Figure 2.15. It can be seen that

the NMOS device is in saturation while the PMOS device is in Lhe linear region of operation.
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A factor related to noise margin is the V,, = V,,, point. sometimes called Vrz; or the
logic threshold volzage. This point occurs between V;; and V;y . when both devices are in

saturation. thus Jpy(sar) = Ipp(sar) OF

X,
2
Vry values are summarized in Figure 2.15.

X
(Vp=V, P = .2L(VDD =V =V, ¥ (2.15)

Noise Margins for Selecied Device Ratios (in volts)

Lo/ W, | L,/ W, | Voo | Viz | Viw | Vou | NMy | NMy | Vim
3/4 3/24 | 0.38 | 2.96 | 3.55 | 4.25 | 2.58 | 0.70 | 2.93
3/4 3/10 | 0.50 | 2.05 | 2.99 | 4.56 | 1.55 | 1.57 | 2.50
3/4 3/8 | 0.52 | 1.84 | 2.85 | 4.62 | 1.32 | 1.77 | 2.39
3/16 3/24 | 0.53 | 1.58 | 2.66 | 4.70 | 1.05 | 2.04 | 2.25
3/14 3/12_ | 0.53 | 1.12 | 2.31 | 4.85 | 0.59 | 2.54 | 1.98

Figure 2.15: Noise Margins versus Device Ratios

2.4.1.1. Effects of Device Ratioing on Noise Margin

For the static CMOS inverter case it is preferable to have symmetric noise margins and
10 place Vr; midway between Vy; and V. For the SPICE2 parameters used in the simu-
lations in this report. where u, is 2.5 times 4, . it can be seen that ratioing devices 1o can-
cel mobility differences also gives symmetric noise margins and a good V. This is shown
in the second line of Figure 2.15. This device ratio also guarantees approximately equal
rise and fall times. It is the ratio of pullup to pulldown. not their absolute size. that

determines noise margin.

In dynamic design there is the additional constraint of signal degradation due to leak-
age and charge redistribution. Also. precharged dynamic gales are unidirectional in nature.
making either a O =1 or 1 =0 transition. Therefore best performance is obtained when
noise margins are not equal.

Unfortunately. these additional constraints argue for opposing constructions. Con-
sider an n -core dynamic circuit, precharged high. The accompanying buffer-inverter (if

used) has its output driven low. The important transition is O =1 at the output. To
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obtain least delay, the p-channel device should be wide to bring the inverter output up
quickly. This corresponds 10 a narrow NMy . In theory this is fine, since the input node is
precharged. via a p -channel device. to V. However, if operating frequency is low or the
dynamic gate is composed largely of internal signals. the precharged node voltage may dip.
If NMj; is made too small the buffer may make a false transition. Therefore. a smaller
P-channel device seems better. In addition. if a long, static pullup device supplements the
dynamic precharge. a slower-acting inverter allows the static pullup to recover {rom

charge redistribution or leakage.

It has been found by simulation that a smaller p-channel device and thus a wider
NMy is preferable. Circuits with potential charge redistribution problems cannot take
advantage of the unidirectional transition of precharged logic. By making the p-channel
device smaller. and thus slower, the n -channel device. ofien enlarged for added capaci-
tance. can also be reduced in size. The result is a circuil with delay equivalent to a sym-
metric inverter. but which consumes less area. Inverters with ratios shown in the last two

lines of Figure 2.15 were used in various test circuits with severe redistribution problems.

In circuits where a charge redistribution problem is known not to exist. for example
in n -core NOR circuits or circuits with largely external signals. the p-channel device is
widened 1o decrease delay. In this case the ratio of device widihs is determined by the
lower limit on the NMy band that the designer wishes 1o tolerate. The lowest frequency

of operation now determines the noise margin.

2.4.2. Addition of Static Pullups to Precharged Nodes

In [kram82] and [gonc83] it is pointed out that one can add high L/W static pullup
devices to the precharge node of dynamic gates. This helps with low frequency operation
where charge may begin leaking from a node. The static pullup device may be either p-
channel (gate connected to GND) or n-channel (gate connected to Vpp). depending on
whether the core is n- or p-type. A further reason for using static pullup devices is

reduction of the charge sharing problem. In Domino logic. the output node is isolated from
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the precharge node by an inverter which has some associated dela:'. If the devices are sized
properly. the static pullup device can begin pulling the precharged node up. after a faise
trigger, before the inverter reacts fully. This requires careful ratioing since the designer
wants the inverter fast on the one hand to react to solid transitions. but slow on the other

hand to allow the pullup to aid on false transitions.

2.43. Speedup of Dynamic Logic By Gate Stacking
Finally, it is possible 1o speed up the operation of dynamic circuits by pyramiding or

stacking devices. In Figure 2.16 a schematic of two 5-input AND gates is shown.

Figure 2.16: Comparison of Standard and Stacked AND gates

The gate on the left has six 10u FETs in the n -core. The gate on the right has six FETs in
the n —core with widths (from botiom to top) of 15, 13. 11. 9. 7. and 5 microns. The total
source/drain area is identical for the two cases. The stacked circuit is slightly faster under
worst-case conditions. as shown in Chapter 3. A circuit configuration similar to that

shown on the right was employed in the design of the BELLMAC-32A and -32B. successors
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1o the origina] BELLMAC-32. This stacking technique was first mentioned by Shoji
[shoj82). Note also that the stacking technique reduces the charge redistribution problem.
since the FETs closest 10 the output have the least capacitance. This allows the inverter
follower 10 be smaller and accounts for part of the speedup seen. The main reason that
the stacked circuit is faster, according to Shoji. is that the decrease in capacitance more

than offsets the increase in device resistance due 10 narrower channels [shoj85].

2.5. Conclusions

Standard static CMOS is easier 10 design in than dynamic CMOS and is quite fast.
NORA circuits require fewer devices to realize a given circuit function than static or Dom-
ino CMOS. They require more distinct signals, namely ¢ and &. but in general consume
less area. By stacking devices and proper ratioing of inverters and static pullups Domino
and NORA circuits can be made faster than static CMOS designs. However. dynamic cir-
cuits must be precharged: static circuits have no such requirement. Dynamic designs have
potential race problems due 1o clock skew. The addition of the clocked laich helps relieve
this problem but does not eliminate it. In addition. the consiraints placed by the NORA
design style on the designer may prove cumbersome and yield relatively complex circuits
for simple functions. Therefore, for simple circuits. standard static CMOS is best. Where
complex circuit function is involved. for example in combinational logic or an ALU, and
clock signals are readily available and needed by other on-chip circuits. dynamic Domino
or NORA logic should be considered. While the design constraints required for dynamic
implementation make manual design a complex task. these constrainis can be accounted
for in a computer program. By using computer generation of dynamic logic. the speed and
area advantages of this approach can be achieved without the risk of electrical design prob-

lems.
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CHAPTER 3

Simulation and Measurement of Static and Dynamic Circuits

The first stage in the design of a software tool for automated generation of im.égrated
circuits is the characterization of the circuit building blocks which will be used to create
the larger circuit. In this chapter a basic building block. the S-input AND function. is used
as a benchmark circuit to compare various static and dynamic CMOS implementations
introduced in the previous chapter. Circuit performance is simulated using parameter
values extracted from the MOSIS 3u CMOS p-well process [mosi82]. These values have
been translated into SPICE2 level =2 MOS model parameters and used in simulations. The
SPICE2 models appear in Appendix A. In the second part of this chapter measured results
of a dynamic CMOS test chip. fabricated in a 2u n-well process. are presented. Charge
redistribution effects and circuit delay times are reported and correlated with predicted
values. The chip measurement procedures are explained fully in Appendix B. In the clos-
ing portion of this‘chapter. the design and f abricaiion of a Domino 32-bit ALU, which is
part of a microprocessor chip. is described. This ALU was designed in the same style as

that employed by the automated synthesis 100ls used in the MAMBO package.

3.1. Range of Circuits Simulated

The simulations described here address two main points: First, how does a straight-
forward static circuit compare in performance 10 a standard dynamic circuit as fan-in
varies? Second. keeping fan-in constant. how do various extensions to dynamic circuits
affect their performance relative to the static circuit and the basic dynamic implementa-
tion? To solve the charge redistribution problem examined in Chapter 2 the dynamic cir-

cuits must be modified. The effects of such modifications are also presented here.
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" 3.2. Rationale for Choice of Benchmark Circuit

The basic benchmark is a S-input AND function. The AND function was chosen over
the OR because circuit delay varies strongly with increased AND-gate fan-in. This varia-
tion is not as strong with CMOS OR gates. A 5-input gate was chosen because device counts
are nearly equal for most static and dynamic designs at this point and. hence, area should
be roughly equal. The static AND gate requires 12 devices, the basic dynamic version uses
9 devices. The layout of the dynamic circuit needs additional area because of the clocked
gates.

An atlempt was made to examine the functions that are most troublesome to realize
as high speed circuits. Most common dynamic logic design methods involve stringing
together, either in series or in parallel. the even functions AND and OR. Since the speed of
a dynamic logic gate depends on the length of its worst-case path from outiputl node to
voltage rail. the OR gate was not examined. In a dynamic OR gate the worst-case path is
always through two FETs— the paralleled input FETs and the clocked gate. Thus the OR
gate is always faster than the AND gate. In addition the OR gate bas no charge redisiribu-
tion problem because only one input device separates the core outpul from the clock.
There are no parasitic source/drain capacitances. AND gates presenl problems and are

examined exclusively here.

3.3. Simulation Technique

All circuits were simulated using the level =2 SPICE2 models. The core of both the
static and dynamic circuits were laid out according 10 the 3u design rules. Many of the
modified circuits were laid out as well. The capacitances of all circuits were extracted and
corrections were made where shoricomings with the current extraction tools were known.
Where possible in the simulations initial conditions were established by cycling the circuit.
When this proved impractical. due either 1o convergence problems or excessive simulation
time. initial conditions were forced by use of the SPICE2 .ic option. All circuit inputs were

conditioned by passing them through a minimum size inverter 10 decouple them {rom ideal
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sources. The fanout of all simulated circuits was three inverters. Where multiple clocks
were necessary. one clock was chosen as primary and assumed to come from an ideal

source and all other clocks were derived from it.

3.4. Standard Static CMOS Benchmark

A schematic diagram of the static CMOS benchmark circuit appears in Figure 3.1. A
layout plot of a static CMOS AND gate appears in Figure 3.2. The n -channel] devices have a
width of 10u. It was found by simulation that roughly equal rise and fall times were
obtained when the p-channel devices had a width of 6u. This counteracts for a mobility
mismatch between the two types of devices in the range of 2.5 - 3. The 5-input NAND
gate drives a static inverter. The n —channel device is 4x. the minimum width allowed by
the design rules. The p-channel device is 8. again ratioed in width to give roughly equal

rise and fall times.

The delay test for this circuit consisted of two parts. First the pulldown time was

measured. The four inputs of the series devices nearest the output were driven on. The

1 - CHANNEL
14[2' 2-4[: 34]: 4-|[|Ls-4[; DEVICES >_m1

INPUTS N-CHANNEL
3 _| DEVICES

Figure 3.1: Schematic Static CMOS Circuit
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Figure 3.2: Layout of Static CMOS Circuit

input to the botiom device was initially off. This means that its counterpart p-device is
on. The output node is charged high through this path. In addition the source/drain capa-
citances of the four n —channel devices closest to the output are charged high. After these
nodes are charged. the fifth input goes high and the series outpul node begins to drop only
after the series-leg nodes have discharged. The resulting delay lime represents the worst-

case pulldown time for the gate.

Pullup time is measured by first discharging all the series n ~channel devices. This is
achieved by driving all inputs imtially high, so that the output from the series leg is low.
The input 1o the fifth. or bottom. n -channel device is then switched off and the p-channel
counterpart is switched on. Thus the NAND gate output is brought high by the a single
p-device. This FET must charge the output node which now represents the collective
source capacitances of the p-devices and the source/drain capacitances of four of the n-
channel devices. The resulting delay lime represents the worsi-case pullup time for the
NAND gate. Delay time is measured between the 2.5V level of the falling input signal and

the 2.5V level of the falling output inverier.
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In like manner. 2-input and 9-input static CMOS AND gates, were simulated. In all
cases the width of the n -channel devices was kept constant at 10ux. This value was used
in the simulation of the dynamic circuits described later. In order 10 keep rise and fall
times roughly equal. the p-devices of the 2- and 9-inputs gates were modified. Figure 3.3
summarizes the rise and fall times found for the static circuit as a function of number of

inputs. The width of n - and p- devices is also listed.

| Rise and Fall Times for Static CMOS AND Gates |

Fan-in | Risetime (ns) | Falltime (ns) | PD width (u) | PU width (u)
2 4.2 4.1 10 15
S 9.8 10.0 10 6
9 23.4 19.8 10 4

Figure 33: Delay Times for CMOS AND Gates

3.5. Dynamic CMOS Benchmark

The operation of dynamic circuits was examined in detail in Chapter 2. A schematic
diagram of a basic dynamic circuit performing the 5-input AND function is shown in Fig-

ure 3.4.
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CORE

Figure 3.4: Schematic of Basic Dynamic Circuit

A layout of the basic circuit is shown in Figure 3.5.

N # 2 . : . LTzt ] [IRRET ¥ N
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Figure 3.5: Layout of Basic Dynamic Circuit

o

The basic dynamic configuration was ‘evaluated for two implementations. A circuil
employing 10u-wide devices in the n -core was laid out to compare dynamic and static
speeds. A 4u-wide n-core series chain was also simulated Lo provide an area-compacl

benchmark circuit. These two sets of simulations are used 1o bracket the design space for
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a typical dynamic circuit.

3.5.1. Test Regime for Dynamic Circuits

Since these dynamic circuits are precharged high (i.e. the output after the static
inverter is low) the only transition time to measure is the 0 — 1 risetime at the inverter
output. Dynamic circuits, however, may suffer from charge redisiribution and the perfor-

mance in this regard must also be verified.

35.1.1. Dynamic Speed Test

For the speed test all input signals are assumed to be external. Exiernal signals may
change during precharge and must be siable in evaluate. For a worst-case analysis of an
externally-driven gate, it is assumed that all inputs are high so that all n channel devices
are on. During precharge the p-channel clocked device is on and deposits charge on the
core output node as well as on the source/drain capacitances of all the core devices. When
the clock signal goes high. indicating the beginning of the evaluate phase. a path is opened
between the core output node and GND. The capacitance of the output node as well as all
source/drain nodes must drain off before the output node goes low. The static inverter
output is driven high. This represenis the worsi-case delay through the dvnamic gate.
Delay is measured from the 2.5V value of the rising ¢ signal and 2.5V signal of the rising

invertier outpul node.

3.5.1.2. Dynamic Charge Redistribution Test

For this test all signals are assumed 10 be inzernal. Internal signals are those signals
which are driven by the ouipuis of other dynamic gates. Such gates are stable and off
during precharge. they may turn on during evaluate. All source/drain core nodes are
grounded through use of the initial condition option in SPICE2. The core output node is
then precharged by bringing ¢ low. Because all inputs are off. internal source/drain capa-

citances remain at ground potential. When ¢ goes high at the beginning of evaluate. the

-~
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charge stored on the output node begins to redistribute through the core devices. If all but
the bottom input now turn on. the worst-case charge redistribution case occurs. The
charge on the output node is split between four source/drain capacitances. If no
modification to the circuit is made this will result in a false trigger. an unwanted transi-
tion of the core output node from high to low, causing the inverter output node to be
driven high. In order for a circuit 10 pass the charge redistribution test the voliage on the

output node should not rise above a specified value, taken 10 be 0.3V for this technology.

3.5.2. Speed Comparison of 4u- and 10u-Wide Dynamic Circuits

Four micron- and ten micron-wide n —core dvnamic AND gates were laid out. It was
assumed that all signals were external so that no charge redistribution problem exists. If
all inputs were internal. simulations show that a charge redistribution problem would
exist for even a three-input AND gate. The resulis of the simulations are summarized in
Figure 3.6 below and in graphic form in Figure 3.7. The 4u-wide devices represent a com-
pact circuit while the 10u-wide devices are meant to give an indication of the speed of

dvnamic gates where area is not a primary consideration.

Rxseumes for 4u- and 10u-Wide Dynamic AND gates
Risetime (ns) | Risetime (ns)
Fan-in du-wide 10u-wide
2 7.4 4.5
) 13.3 7.7
9 19.8 1 12.2

Figure 3.6: Risetimes for Dynamic AND Gates
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Figure 3.7: Comparison of 4u- and 10u-Wide Devices
With No Charge Redistribution Problem

3.6. Simulation of Dynamic Circuits with Charge Redistribution

If not enough of the inputs of a given gatie are external and can therefore be placed at
the top of the input core to reduce charge redistribution. then it is necessary 10 compensate
for the problem in another way. There are two possible solutions. Firsi. the ratio of capa-
citance of parasitic source/drain nodes to the output node can be altered— either by mak-
ing the "input devices smaller or the output static inverter bigger. Both of these
modifications result in a slower-switching circuit. The second solution is to add a static
device 10 pull up the precharged node. In the n ~core case a long. weak p-channel device
with grounded gate is added to the core output node. It has been found by simulation that

a 12u-long. 4u-wide p-channel device is more than sufficient to counter the worst-case
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charge redistribution problem. Figure 3.8 presents a graph showing how the charge redis-

tribution problem is cured by addition of the weak p-channe] pullup.

10{
. /
with 12/4 pchanns! -
sodc palisp without static
s compensation
gé
8 4
] ®
-
g 4 -
7/ °
2
° o 2 4 [ 8 10
Maximum Logic *0° (volts)

*Value at 100ns after switching: output voltage still increasing

Figure 3.8: Comparison of Output Voltage Due to Charge
Redistribution With and Without Pullup Compensation

Because the p-device is always on it opposes the pull down of the core output. hence when
the node should fall there is some additional delay. However, this circuit can be optimized
to remove the extra pulldown time by ratioing the devices in the output inverier. Figure
3.9 shows the worst-case speed characteristics for circuits with charge redistribution prob-
lems. The highest voltage that the inverter oulput reaches on false trigger is also listed.
The values in this figure are overly conservative because they assume that all inputs are at
once internal and external. These values therefore give a loose bound on worst-case circuit

performance.
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Risetimes for 10u-Wide Dynamic AND
Gates with Charge Redistribution
Fan-in | Risetime (ns) Peak Yoltage
False Trigger (V )
2 5.2 0.003
5 9.2 0.105
9 15.5 0.244

Figure 3.9: Risetimes for Dynamic Gates with Charge Redistribution

A comparison between different cases of standard dynamic AND gates is presented in
graphical form in Figure 3.10. The lefitmost curve represents a “best’” case where no
charge redistribution problem exists and the externally-driven signals happen to all be in
the off state. This means that switching is rapid because only the precharged node itself
has 10 be discharged: all parasitic source(drain capacitances are already at ground. The
middle curve has already been presented in Figure 3.7 and represents the worst case for
externally-driven inputs. The righumost curve is derived from the data presented in Fig-

ure 3.9.
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Figure 3.10: Comparison of 10u-Wide Dynamic AND Function
Under Various Input Situations

The lower-bound basic dynamic circuit can now be compared with the standard static
version of the AND gate examined previously. The comparison is given in Figure 3.11.
Note that the dynamic circuit now consists of 10 devices (due 10 the static pullup) while
the static circuit requires 12. Because the dynamic circuil requires a clock signal. some
additional routing is required which makes the circuits roughly equal in area. Both cir-

cuits can be sped up by increasing device widths.



§ 3.6 59

101
5
. Dynamic / /
~ -
¥ 7
3
gc
2
.O J' 10 18 20

Delay, in =8

Figure 3.11: Comparison of Worst-case Static and Dynamic
AND Functions versus Fan-in

3.7. Comparison of Optimized Dynamic Circuits

In addition 1o the standard Domino realization of a dynamic gate there are several
other ways of building dynamic circuits. The “stacking™ or “pyramiding” of gate widths.
examined in Chapter 2 and employed in the BELLMAC-32A processor. is one means of
speeding up circuit performance. A circuit which has a 10u gate width on the average is

shown in Figure 3.12a.
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Figure 3.12a: Layout of Stacked-Gate AND

-

IBM has used a version of the dynamic circuit which has a pseudo-siatic outpul stage

[bell84]. By feeding back the inverter output to control the weak p-channel pullup. any

problems with charge leakage in low-frequency operation are eliminated. Because negative

feedback is emploved. the circuit tends to switch more slowly on a valid transition at the

inputs— the output node lends to resist change. Figure 3.12b shows one realization of the

IBM-style circuit.
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Figure 3.12b: IBM-style Circuit with Positive Feedback

In order to lay out a2 Domino circuit easily it has been proposed that the n- and p-
channel clocked FETs be brought together 1o alleviate a potential crossover routing problem
[new183]. This “coupled” circuit still takes its output from between the clocked nodes.
but now the input devices are below the n -channel ¢-node. Such a configuration tends to
aggravate the charge redistribution problem by introducing another parasitic node between

the output node and GND. Figure 3.12c gives a layout of a coupled circuit.
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Figure 3.12c: Layout of Coupled-Clock Dymamic Circuit

Figure 3.13 summarizes the simulation results of the previous circuits. In each case
the outlput inverter ratio has been modified so that the p-channel device is 24u-wide and
gives a fast pullup time. It also alters the X ratio of the inverter, raises the logic thres-
hold. V. and degrades the high noise margin. Calculations examining these effects were
presented in Chapter 2. The calculations showed that symmelric noise margins are not
required since the dynamic circuit is unidirectional. Because the circuit is precharged 1o the

positive supply, loss of the high noise margin is not important.
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S and False Trigger Results for Various Optimized Gates

.. Pullu Inverter Ratio Peak FT
Circuit | Speed(ns) | (7%'4Py | (w_/ W) | Vohage (V)
Static 10.0 - 8/4 —_
Domino 7.0 12/4 24/4 0.159
Stacked 6.6 15/4 24/4 0.184

IBM 7.2 12/4 24/4 0.209

Coupled 8.1 12/4 24/4 0.284

Figure 3.13: Comparison of Optimized CMOS Gates

3.8. Delay and Charge Redistribution Measurements from a Test Chip

A test chip was designed to examine the problem of charge redistribution and also to
obtain direct measurements of gate speed as a function of number of inputs. The chip was
fabricated at an industrial facility in a 24. double-metal. n -well process. The test layout
contains 2-, 3-, 5-, 7-, 15-, 23-, and 31-input AND gates. It also has a collection of OR

gates and a chain of C*MOS laiches cascaded to form a serial shift register.

Two test chips were received. only one of which was functional enough for testing.

In this section results from the AND gates on the functional die are presented.

3.8.1. AND Gate Test Circuit

A template of the AND-gate circuit in schematic form is shown in Figure 3.14. In
order to ensure conditioned signals. all inputs were buffered from the pads by inveriers.
The top n—1 inputs to the AND gate were coupled together in order to reduce pin count.
Almost all delay and charge redistribution tests can be made with the AND gates connected
in this configuration. All AND gates shared a common bottorn signal. and many of the gates
shared a common top signal as well. This means that the circuits could be accessed in
parallel. however only one output was examined at a time. Each gate had an individual
output buffer. As shown in Figure 3.14, this was a large p-channel device set up in a
source-follower configuration. A p-cbannel device was used so that the potential of the

device well (brought out externally) could be changed as part of the measurement pro-
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Figure 3.14: Template Schematic of AND gate

cedure. An off-chip resistor was used to allow experimentation with switching speed.

For the AND gate measurements recorded here minimum size devices were used in the

n -channel core; minimum size devices are 2u long and 3x wide. The clock devices, driven

through an inverter, are 2u long and 6.5u wide. The conditioning input inverter and the

output inverter/buffer on the dynamic gate are made up of a 6u-wide n —channel device

and a 12u-wide p-channel device. Both devices are 2 long.
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3.8.2. Precharge and Parasitic Capacitances

From the process parameters are given in Appendix B the precharge capacitance is cal-
culated to be 47.1fF. the parasitic capacitance for a source/drain node pair is 7.7fF for
minimum sized devices and 10.6fF for the ¢ pulidown device. These capacitances are indi-
cated in Figure 3.14. The precharge capacitance takes into account the area and perimeter
of all polysilicon and diffusion regions. The capacitance of the metal layers was neglected.
The precharge capacitance is made up of the drain capacitance of the top n -channel gate.
the gate capacitance of the two devices that make up the output inverter. and the source

capacitance of the p-channel clock device.

3.8.3. Charge Redistribution Tests

The waveforms for the charge redistribution tests were generated by three different
pulse generators in sync with one another. The important input and output signals are
shown in Figure 3.15. The time scale is microseconds. If charge redistribution occurs it
will bappen on the order of hundreds of nanoseconds. At the other extreme is the change
of voltage on a node due to charge leakage. This usually becomes apparent in the mil-

lisecond time frame.

The worst-case charge redistribution problem is when the zop input is run by ¢ and
the bottom is run at half the ¢ frequency. In this example all signal polarities are those of
the circuit; since the pad input signals are buffered they are just the inverse. The setup is
as follows: Initially ¢. top. and botzom are high and the output is high. The AND chain
parasitic capacitances drain away through the DC ground path. 7Top. bottom. and ¢ go low.
The precharge node bas charged dumped in to it from Vpp. but the parasiti;:s remain at
ground potential because they are isolated from the precharge (prech) node. The output
goes low. Now ¢ and top are brought high. Bottom remains low. Precharge ends. evaluate
begins. the precharge node capacitance can drain into the parasitics (which were at ground
potential) however no DC path 10 GND exists. The output should therefore remain low. If

there is a charge redistribution problem. however, it will show up now and the output
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will go high. The cycle completes by ¢ and top going low and bottom going high. and the
output returns to (or remains at) ground. This cycle then repeats. This particular CR
problem should be independent of frequency— as long as there is enough time for the

precharge node to precharge and the parasitics to drain.

Charge redistribution is not the problem of low frequency operation. The low fre-
quency problem is leakage from the precharge node through the substrate and occurs
below 10KHz for the devices fabricated here. Leakage from the precharge node is almost
independent of fan-in; larger fan-ins have a greater leakage problem. but the amount of
leakage does not seem 1o be strongly related to fan-in. It was possible to cycle the test die
a1 frequencies up to 3MHz. the usable range of the frequency generator employed. A 1KQ
off-chip pullup resistor was used. A smaller resistor could have been used safely and

would have given better response.
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Figure 3.15: Waveforms for Charge Redistribution Test
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3.8.3.1. Charge Redistribution Measurements

Figures 3.16, 3.17, and 3.18 are oscilloscope photos from the 2-, 7-, and 31-input
AND gates, respectively. Figure (a) in each sequence shows the charge redistribution effect.
if any. Figure (b) in the sequence is a control. In thi< test both the precharge and the
parasitic capacitances were charged. then the top signal was toggled. Because the parasitic
capacitances are at the same potential as the precharge node there is no CR effect. For the
2-input AND case Figure 3.16a shows no evidence of charge redistribution. This is because

the ratio of parasitic 1o precharge capacitance is large, as described in Chapter 2.

' '500e 10a¥ :

Figure 3.16a: 2-Input AND Gate Charge Redistribution Test
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Figure 3.16b: 2-Input AND Gate Control Test

Figure 3.17. the 7-input AND gate, begins to show a CR effect. Coincident with the falling
edge of top (remember that pin signals have opposite the polarity of the internal signal)
the output begins 16 switch high. It is pulled to its maximum voltage when the borrom sig-

nal finally falls. opening a DC path from the precharge node to GND.
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Figure 3.17: 7-Input AND Gate Charge Redistribution Test

Figure 3.18 was made from a 15-input AND gate. The third trace from the top is the out-
put voltage of the AND inverter. As a result of charge redistribution it has risen about

0.2V this signals the onset of redistribution.
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Figure 3.18: 15-Input AND Gate Charge Redistribution Test

Figure 3.19a was taken from the 31-input AND gate which shows a CR effect. As soon as
the top signal falls the output of the inverter/buffer rises about 0.5V. The transition of

the botzom signal causes the output signal to complete its transition.

Figure 3.19a: 31-Input AND Gate Charge Redistribution Test
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Figure 3.19b: 31-Input AND Gate Control Test

These measurements show that it would be unsafe 1o consiruct circuits using 15-
input AND gates assuming minimum size devices and a fairly loose layout style that intro-
duces some extra capacitance in interconnection routing. The inverter/buffer, which con-
tributes almost all the precharge capacitance. was designed as a single cell for automated
generation. It might be used by a layout tiler, for example the tiler described in Chapter 7
of this dissertation. in the generation of a regular logic structure. If the circuit designer
used larger than minimum devices in the n -channel pulldown core i1 would aggravate the
charge redistribution effect. On the other hand. by employing a cell with a greater
precharge capacitance this effect would be lessened. In this case more devices could be
placed in series but the gate delay would be longer for two reasons— first because of the
greater chain length and second because the larger precharge capacitance must be
discharged before the output can switch. In other words. 1o safely increase the number of
series devices both the resistive path 1o GND and the capacitance which must be discharged

10 ground can be increased at the expense of greater circuit delay.

The p—channel V, appears 1o be higher than reported in Appendix A. This high V,
has the consequence of delaying the CR eflect; it can be compensated for by pumping less

initial charge into the precharge node. the effects of this compensation for 7-input and
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31-input AND gates are shown in Figures 3.20 and 3.21, respectively.
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Figure 3.21: 31-Input AND Gate V. Compensated

These results suggest that even a 7-input AND gate design would be unsafe. It is difficult
to assess the actual amount of compensation needed to overcome the V, disparity. It is rea-

sonable 10 expect that the chain length limit lies between 7 and 15 inputs.
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3.8.3.2. SPICE2 Simulations of Charge Redistribution Tests

SPICE2 simulations were performed on the 2-, 7-, 15-, and 31-input AND gates using
the parameters in Appendix A and also with the modified. higher V, for the p-channel
devices examined in Appendix B. Figures 3.22— 3.25 show the simulation results in order
of increasing fan-in. For the 2-input AND gate the difference in results due to the differing
V,’s is negligible. The larger V, in the 7- and 15-input gates more closely agrees with the
measured resulits. In these cases the simulated results bracket the measured figure. These
simulations also suggest that the V, -compensation measurement given above may be larger
than necessary. Simulations of the 31-input gate at both threshold levels indicate a very
strong CR effect, giving a full swing at the output buffer. which does not correlate with the
measured results. The observed result may be due 1o higher than expecied capacitances at

the precharge node.
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Figure 3.22b: 2-Input AND Gate, V = 2.2V
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Figure 3.24b: 15-Input AND Gate, V = 2.2V
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Figure 3.25b: 31-Input AND Gate, V = 2.2V
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3.8.4. Dynamic AND Delay Tests

The worst-case (longest delay) input configuration in the AND gate occurs when both
top and bottom are wired “on”. The testing regime is to first precharge both the precharge
node and all core parasitics (performed at the same time since all inputs are beld high).
Then when ¢ drops low the precharge phase ends shutting down the path from precharge
node to Vpp and opening a path from the precharge node to GND. The delay of the circuit
is measured from the 50% point of the falling ¢ signal against the 50% point of the rising

output buffer signal.

3.8.4.1. AND Gate Delay Measurements

The AND gate delay measurements were performed at the package pins and therefore
included the conditioning inverter delay as well as the delay of the output pad driver 1o
charge up the oscilloscope probe capacitance. The delay test measurements were taken on

2-, 15-. and 31-input ANDs. Figures 3.26. 3.27. and 3.28 show the measured delays for the

2-. 15-, and 31-input circuits. respectively.
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Figure 3.26: 2-Input AND Gate Delay Test
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Figure 3.27: 15-Input AND Gate Delay Test

Figure 3.28: 31-Input AND Gate Delay Test

After subtracting 23.3ns. which is the calculated delay through a conditioning inverter and
output pad plus routing, the actual gate delay can be derived. The resulis are summarized

in Figure 3.29.
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Pad-Pad Gate
Fan-in Delay (ns) | Delay (ns)
2 28ns 4.8ns
15 32ns 8.7ns
31 45ns 21.7ns

Figure 3.29: Derived AND Gate Delay

The second-order least-squares fit of this dataset is: 4.6 + 0.012f + 0.017f % where f is
fan-in. Fitting the data linearly one obtains: 2.27 + 0.591f . However the sum-of-
squares error is large and, therefore. the quadratic model is more appropriate, as one would
expect. Increasing fan-in increases both R and C if one considers the FET to be an RC dev-
ijce in a simple model. The large constant is due to the output inverter and to the

precharge capacitance which are independent of fan-in.

3.8.4.2. SPICE2 Simulations of Delay Tests

SPICE2 simulations were performed on 2-, 7-. and 15-input AND gates. The results
of these simulations give a second-order least-squares fit of 4.1 + 0.83f + 0.019f 2,
While the initial delay constant is about equal to the measured result this curve exhibits a
stronger linear component than the measured data. Again, this may be due 1o higher
diffusion capacitance per unit area on the test die than in the simulation models. The

delay values are summarized in Figure 3.30.

Gate
Fan-in Delay (ns)

_

2 5.8
7 10.8
15 20.8

Figure 3.30: Simulated AND Gate Delay
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3.9. Measurements of a 32-bit Dynamic Domino ALU

The design and measurement of a 32-bit Domino ALU is now presented. The tech-
niques used in the design of this circuit helped validate the design style used in the imple-
mented synthesis package. The design approach employed in the MAMBO automated ~vn-

thesis package is identical to the approach used in the ALU, which was handcrafted.

The SOAR project served as a test bed for the dynamic CMOS circuit work. SOAR
stands for Smalltalk On A RISC and is part of a larger architecture effort at UC Berkeley to
develop a compact, fast, reduced instruction set Smalltalk workstation. The SOAR chip
was implemented in both NMOS and CMOS technologies: the work described here was
applied in the CMOS version of the chip. In the sections that follow the definition. archi-

tecture, layout, and performance of the dynamic SOAR 32-bit ALU are presented.

3.9.1. Design of a Dynamic 32-bit ALU — General Issues

The ALU of the CMOS SOAR processor is partitioned into three components, the byte
inserter/extractor (BIE). the complementer/buffer (COM), and the ALU itself. The BIE
is used 10 extract or shift bytes of data within the 32-bit datapath. Its operation is mutu-
ally exclusive from the rest of the ALU and is described further in [hofm83]. The COM
receives the operands A and B and generates the buffered signals A. A.B. and B. The
COM was designed principally 1o provide clean. buffered inverted and non-inverted signals
10 the ALU and is described in detail in [hofm83). The remainder of this section covers the
design of the ALU proper. The block diagram in Figure 3.31 shows the interconnection
among the three major blocks. Data flow is left to right. from the A and B buses onto the

EAbus (output of the ALU).
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Figure 3.31: Block Diagram of SOAR ALU Section

CMOS SOAR was submitted through the MOSIS foundry system and the MOSIS
micron-based design rules were used. Micron-based rules allow the designer greater free-
dom and give greater flexibility as compared to lambda-based rules. Lambda-based rules
are more easily shared between different fabrication lines [gris82]. The 1982 MOSIS process
technology was 3u (drawn) p-well. It uses a single layer of polysilicon and a single layer

of metal; buried contacts are not allowed.

The ALU section was designed as a bitslice. Early in the design process it was decided
that GND would run along the bottom of the LSB cell and Vpp along the top. Every other

cell is mirrored so that GND and Vpp buses are shared.

The critical pitch for the datapath is in the y—direction. perpendicular to signal flow.
and is set by the ALU. The ALU is the most complex single cell in the datapath. The criti-
cal pitch was made loose to allow for later design changes. The final y—pitch of CMOS
SOAR is 117u. The BIE is 255 in the x—direction. while the is COM 171u and the ALU
513u. Figure 3.32 is a die photo of the ALU test chip. The photograph shows static

latches on either side of the ALU which are used to load operands and store results.
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Figure 3.32: Die Photograph of Dynamic CMOS ALU Test Chip
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3.9.2. ALU Design

Design of the ALU section was driven by design of the carry circuitry. The ALU com-
putes during ¢3 of a three phase, asymmetrical clock cycle. It was desired to perform an
ALU operation in around 110ns. In order to come close 10 this specification some type of
carry acceleration is required: a full ripple-carry would take too much time. A carry
bypass scheme was chosen which, while not as fast a full carry lookahead. speeds up the
worst-case carry and is quite economical in layout area. In fact the scheme appears 1o
represent a good tradeoff between layout area and circuit speed as shown in the table in

Figure 3.33 from [whal84].
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Design Metrics for CMOS Adders
Adder Device Count Area Speed
Breat-Kung
Static 2840
14230 2.975E06 u? 36.28ns
1423p .

Nora 3123
' 1677 3.373E06 4* 44.980s
1446p
Manachester carry ehain 1024
3200 | 8.606E05 5 2 87.45ps
704p

Carry Select

27/5 1504
6190 1.347E06 u? 83.060s
975p

15/17 1342
487n 1.143E06 2 59.47ns
855p
74181 1577
773 2.049E06 42 45.160s
804p
Kuck 1979
9078 2.251E06 p* . $7.96ns
1072p
Q Circuit 2108
1132 | 2.456E06 4* 33.9%0s
995p €25.22ns
Carry Bypass 1694
12910 2.068E06 2 | **45-50ns
403p

Figure 3.33: Comparison of Adder Schemes

The speed figure given for the carry bypass circuit, the method implemented here. is inac-
curate. The actual measured delay. as will be shown later. was 140ns. The number in the
table represents the worst-case measured delay for the carry bypass chain alone. A full
add with no carry requires about 95ns and to this the carry bypass delay must be added
to give the full worst-case adder time. Also, the area given for the carry bypass scheme
represents the area of the entire 7-function ALU portion (excluding the the BIE and COM)
of the circuil. for the other adders the area and device-count values reflect only the portion

required to perform an add operation.
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3.9.3. The Dynamic Carry Chain

The carry bypass scheme employed by Siemens in their MIKERW-83 [pomp82]. was
chosen for carry acceleration in SOAR. This scheme works by providing two separate carry
chains. The 32-bit circuit is divided into blocks. The idea is t§ have the carry signal
bypass a block entirely if there is a propagate signal in each bit of the particular block.

Figure 3.34 shows a block diagram of an NMOS carry bypass scheme.

¢ Je3 Je2 Jel J
} CARRY
3 EFP* E BYPASS

P
-
{CINX

COUTX <«
;;”_ FULL

BITSLICE CARRY
Figure 3.34: NMOS Carry Bypass Scheme

The signals P and P represent the presence and absence of a propagate condition for a
given bit, respectively. The block size bas been fixed at four bits. The upper signal run is
in effect a fast carry chain and is used 1o accelerate the carry logic value with the poten-
tially greater delay. For NMOS this is a logic J. This second chain can be thought of as
“propagate-kill”. In operation Cos is beld 10 the slower logic state (logic 7). If either Cuo
is high (no carry in) or any of the bit P signals are high (no propagate) then the
propagate-kill line is activated. It is pulled low which shuts down the path between Cour
and GND. Thus C,, remains high indicating no carry out. In the opposite case Ca is low
and all ;)f the P signals are low. This indicates a carry in which is not absorbed by any
bit in the current block and is thus propagated across the block. In this case the
propagate-kill lines remains high (ie. allow carry 1o propagate). This opens up the path
between C,, and GND and thus Cour goes low indicating a carry out. The standard

G + PC logic in the lower carry chain operates independently of the fast bypass. If a



§3.9.3 86

carry is generated in any of the intra-block bits it is then propagated via this slower

ripple-carry chain to (: . which is grounded 1o indicate a carry out.

The choice of number of bits per block is governed by two considerations. One con-
sideration is the amount of capacitance on the bypass line that must be discharged by the
pulldown devices (note that it is precharged or held high). The greater the number of bits
the higher the capacitance. On the other hand, the introduction of a non-inverting buffer
introduces additional circuit delay. The C,, line is buffered after each block. The second
consideration is the probability of bypassing a given number of bits versus the gain in
speed by taking the bypass. The larger the number of bits bypassed the greater the bypass
acceleration. In the limit. to bypass the greatest number of bits would mean a block size
of one, which is equivalent 10 no bypass at all. Again there is the consideration of the

additional device count versus speed gain. In [pomp82] a block size of four was used.

This NMOS carry bypass method relies heavily upon static. ratioed logic. In the
NMOS scheme the Coy signal is held high by a weak depletion load device and the signal is
activated (brought low) by a wide pulldown device. Thus the implementation relies on
device ratioing and consumes static power. In keeping with the Domino design style. the
bypass scheme has been modified to be ratioless and dynamic. A block diagram of the

modified bypass circuit is shown in Figure 3.35. Again four bits were used per block.
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Figure 335: Dynamic CMOS Carry Bypass Scheme

cy out

The idea of a faster. alternative carry chain. the bypass. has been retzined in the
Domino implementation. However, this line is now “propagate” instead of “propagate-
Kill”. This line is precharged high. rather than being held high. as in the static version. In
other words the sense of the line has been inveried. This was necessary to keep within the
Domino design rules that require all Domino gates run off the same clock to be precharged
10 the same siate. Since inversions are not allowed within Domino logic. the signals P and
P cannot both exist unless they were produced from other. more fundamental gates.
While this duplication of logic was considered. the idea was discarded as being 100 costly

in terms of device count.

In operation both the propagare bypass and carrynibble (full G + PC) lines are
precharged high. In this case the precharged level of logic / indicates no carry. A 1transi-
tion to logic state O indicates the presence of a carry. A schematic diagram of a 4-bit block
of the carry bypass is shown in Figure 3.36. The carry bypass is just the propagate func-
tion. If either or both of the operands (A or B in Figure 3.36) are asserted in each of the

four bits of the block then the propagate line, which was precharged high. is brought low.



85

§3.9.3

¥ooig ssedAg Auie) sjwvui( Jo opewdyog :9¢°¢ auandyg

- e @ o en - - - - -

Xinod



§3.9.3 89

If. in addition, there is a carry into the block then the carrynibble line will go low. indicat-
ing a carry out. However, if the carry into the block is high (indicating no carry in) or
there exists at least one intra-block bit that has neither A or B asserted then the propagate
line remains at its precharged high level and carrynibble remains high indicating no carry

out.

In this implementation of the carry bypass the important factor deciding block size is
the number of passgatles thal can be chained iogether before a buffer is required. SPICE2
simulations of CMOs passgates by [whal84). indicate that best speed is obtained when
buffers are inserted every three gates. There is only a slight degradation at four bits per
buffer and since this figure is an integral multiple of two it fits in better with a regularlyv-

structured bitslice approach.

Each bit of the ALU has a total of 51 devices: 39 of these devices are used in calcula-
tion of Boolean operations and add/subtract. There are 9 devices in the ripple-carry gen-
eration: an additional 3 devices per bit are required for the carry bypass in the dvnamic
cMoS implementation. This is the same number required in the static NMOS version. The
total number of devices in the ALU is 1694. This is greater than 51 X 32 due to control

signal buffering at the bit 15 — bit 16 boundary.

3.9.3.1. Speed of Worst-case Carry Bypass

Both carry bypass schemes work in the same way. Since it is assumed that all 32
bits of operands A and B are stable in paralle] at the same time. if a decision about the
outcome of the carry can be made on the basis of these bils only (and an initial carry sig-
nal from the LSB). carry generation can be accelerated. The carry bypass scheme achieves
its greatest speedup on the worsi-case carry propagale situation. It gives proportionally
less speedup the better the original case. The worst-case carry occurs during an add
instruction when a carry is generated in bit 0. This carry must ripple through the first
four-bit biock. It then bypasses six nibbles. It must ripple through the last nibble again

to effect the MSB. thus it ripples through the top four bits. This is the worst case, because
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any other carry bit generation must occur at a more significant bit (other than 0) and thus
have a shorter distance to travel to the MSB. It is entirely possible that there are 1wo or
more carries using the different parts bypass at the same time. Such a situation exists
when carries are generated in multiple bits. However in this case all generated carries will
follow a shorter path and so take less time. These shorter paths will probably involve
fewer block bypasses simply because there are fewer bits to jump around. Thus the

bypass scheme speeds up the worst case (longest carry propagation path) most.

The 32-bit NMOS ALU fabricated in [pomp82] uses a single metal. polysilicide process.
The polysilicide layer has a sheet resisiance of about 3 {¥O. A worst-case carry bypass
ALU operation was measured (from latch to latch) at 66ns. Simulations were also per-
formed assuming a standard polysilicon process with a sheet resistance of 30 /0. In this
case the authors found a fourfold increase in control signal delay. They estimate such a
circuit would work at clock frequencies of less than SMH2. Measured delay. summarized
below. of the MOSIS device which did not use a polysilicide layer was 140ns. In contrast.
[fries4) implemented a 16-bit ripple-carry adder in a Su CMOS polysilicon gate technology.
They utilized a NORA style of implementation which they claim should be 30% faster
than a corresponding Domino implementation. The authors report a total delay across the
16-bit adder of 180ns which corresponds 10 a ripple-carry delay per bit of 11.3ns. Since

this is a ripple-carry circuit the 32-bit add time should be 360ns.

3.9.4. ALU Logic Functions

The ALU performs seven functions. They are AND, OR, XOR, ADD, SUB. SR, and PASS.
The PASS function simply passes the operand A 1o the ALU output. The function SR shifts
the A operand one bit 1o the right. The shift is arithmetic or logical depending on control
signals provided by an external (off module) condition code PLA. The SUB function is A —
B and is performed exactly like an add. except that a carry is injecied at the LSB. The
COM circuit detects that a subtract operation has been requested and inverts the B

operand. The Boolean operations are all implemented in Domino logic. The XOR function
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is the only part of the ALU which requires A. A, B.and B. Inverted signals are provided
by the COM. XOR is implemented as AB + AB and is the only one of the Boolean func-
tions which breaks even in device count as a Domino function. The propagate/generate
logic saves one gale over a static implementation. Recall that the overhead for a Domino
gate is four devices. Thus when the fan-in is less than four, static CMOS implementations
require fewer devices. Because only the XOR required inverted signals it was placed at one
end of the ALU to avoid running these signals throughout the whole slice. N -core Domino
logic was used in the ALU design. A schematic of the ALU without the carry logic is

shown in Figure 3.37a. Figure 3.37b shows the mask layout of five contiguous bits.
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Figure 3.371x Plot of Five Bits of the Dynamic ALU

The ADD function is not pure Domino in implementation: it works by employing
carry_in and carry_in to gate signals XOR and XOR. respectively. Because the inverted
signals are generated by simply adding an inverter 10 the original gate some caution must

be exercised in dealing with signals controlled by these signals. In particular signals which
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are logic / and are fed through an n <channel] passgate may be degraded. Thus. while the
succeeding buffer is not ratioed in the normal sense of a static inverter, still transistor siz-
ing becomes important. By adjusting the pullup and pulldown sizes of the ALU output

bus drivers il is possible 10 use an n -channel passgate multiplexer to select ALU functions.

3.9.5. Miscellaneous ALU Operations

Because the output buffer to the ALU output is precharged high only a logic 0 must be
passed through the n -channel transmission gate. As part of its Smalltalk specialization
the ALU operates in a 31-bit tagged mode as well as non-tagged 32-bit mode. The decod-
ing scheme 1o control these modes is handled by a condition-code PLA. This preserves the
bitslice regularity of the ALU. The ALU also provides a flag for the case when A —38 =0.
This is accomplished through a precharged line which is active high. It is connected as a
32-bit NOR and goes low when any bit or bits of the inverted B-operand does not match
the corresponding A-operand bit. According to the SOAR architectural specification. this
flag is only checked as a result of a subtract (SUB) operation. Therefore it may be driven
directly by the XOR signal without requiring additional computation logic or time.
Because it is implemented in this manner, however, the A —B flag is only valid for the SUB

instruction.

3.9.6. Comparison of Simulated and Measured ALU Delays

The bitslice alufirsz, which is the first bit in every 4-bit block. was analyzed using
CRYSTAL [oust83). These results are compared with measured results from the a set of
five chips which made up the first silicon batch. For simplicity only 1 bit. rather than all
32 bits. was analyzed. The capacitance and resistance values used by CRYSTAL are listed
in Figure 3.38. These are relatively accurate figures for the MOSIS CMOS process. The capa-

citance figures for the p-channel devices in this p-well process are slightly pessimistic.
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Parameter Value Units Remarks
cperarea 0.0004 | pF/ u? | for nchan and pchan
cperwidth 0.00025 | pF/ u | for nchan and pchan

.| metalcperarea 0.00003 | pF/ u? | first layer metal
metalresistance | 0.03 Q/0
polycperarea 0.00004 | pF/ u? | inside or outside well
polyresistance | 30.0 Q/0
diff cperarea 0.0001 | pF/ pu* | inside or outside well
diffcperperim 0.0001 pF/ u
diff resistance 10.0 Q2/0

Figure 3.38: Process Parameters used in CRYSTAL Simulation

3.9.6.1. ALU Delay Simulations

For this analysis CRYSTAL's simple RC FET mode! (the default) was used. Results on

bitslice alufirst for the three Boolean operations and ADD are given in Figure 3.39.

lFunction CRYSTAL I Measured ’
ADD 41.70ns 45-50ns
XOR 23.69ns 40-45ns

AND 20.96ns 35-50ns
OR 17.48ns 30-40ns

Figure 3.39: Simulated versus Measured ALU Delays

It is expected that analysis of alueven, aluodd. and alulast. ibe remaining three bits in the
four-bit block replicating unit, would show similar results. A version of alufirst laid out
1o contain metal signal runs in place of polysilicon runs in an attempt to reduce the RC

time constant of these lines vielded the results shown in Figure 3.40.

l Funclion | CRYSTAL

ADD 41.53ns
XOR 23.39ns
AND 20.91ns
OR 17.47ns
A—B=0 11.98ns

Figure 3.40: Simulated Results with Metal Signal Lines

The delay time differences are insignificant and the metal version was not fabricated. The
delay times are similar probably because the on resistance of the minimum-sized FETs and

the parasitic capacitances associated with their sources and drains are the overriding fac-
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tors in determining RC delay. It is not completely clear, however. whether the timing

simulator has correctly modelled the circuit delay.

The test equipment used was not able to measure the small single-bit delay times
directly. Instead an indirect calculation was performed and hence some uncertainty is
reflected 1n the tolerances in the measured values. The measured values also span the
fastest and slowest of the five chips measured from the first lot. The test setup measured
a no-carry ADD at around 95ns. A PASS or SR operation takes 45-50ns on chips where the
ADD could also be measured. These latter operations do not depend on the ¢ clock signal
to start. Their delay time is purely a measure of the amount of time it takes the laich
control signal to travel across 32 bits. This time is roughly equivalent to the delay associ-
ated with the ¢ clock signal. Both must traverse 32 bits, and the same buffers are used in
each case. Thus. by subtracting the clock delay time of 50-45ns from the no-carry ADD.
the ADD time from clock pulse is seen to be 45-50ns. Similar calculations were performed

for XOR, AND, and OR with the results shown in Figure 3.39 above.

The CRYSTAL simulations were based on output from the circuit extractor. MEXTRA
[itz82). MEXTRA was run in a mode that reported the area and perimeter on all layers of
all circuit nodes. From this information CRYSTAL can infer aspect ratios and make resis-

tance estimates.

The CRYSTAL delay values are low in part because of the additional capacitance that
each ALU bitslice output must drive. Only the ALU bitslice was simulated in CRYSTAL
and no compensating capacitance to simulaie a bus load was added. This capacitance
should be small however. The ALU output travels about 100 microns in metal to the
input passgate of the destination latch. The destination latch holds the ALU result. The
ALU output bus (EAbus in SOAR) is driven by L=3u W=20u p-channel, L=3u W=16u
n -channel buffers. CRYSTAL resulits do not reflect the additional delay time from the ALU
output to the destination latch. The main delay-time component seems to be the slow
speed of the actual arithmetic and Boolean logic itself. Minimum devices are used almost

everywhere (exceptions are the n —channel pulldowns in inverters where a 7u width. equal
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10 a contact cut, were easy to construct). Greater speed could be obtained by increasing
the size of the logic gates. SPICE2 simulations. performed without extracted resistance
values. did not show this speedup. This is probably because the line capacitance. which

was modelled as a single lump. obscured the delay benefits of wider gates.

3.9.6.2. Measured ALU Speed

A detailed account of the test equipment and the testing procedures used to measure
the ALU speed can be found in Appendix C. The best results from the functional chips
tested are summarized in Figure 3.41. Not all chips were operational in all modes. Chip

number 5 failed basic power-up tests and does not appear in this figure.

. Chi Number
Function Delay (ns) al S ps Tested
ADD (wc¢ 140 1.3 3
SUB (we¢) 125 2 3
Cp-ADD (wec) 100 1.2.3 3
Cp-SUB (wec) 90 1.2 3
No Cp (ADD/SUB) 95 12.3.4 4
XOR 90 2 4
AND 85 1.2 4
OR 80 2.3 4
SR 35 6 5
PASS 35 6 5

Figure 3.41: Summary of First Silicon Speed

The add and subtract times represent worst-case carry propagate figures. The table entries
Cp-ADD and Cp-SUB are worst-case times for generation of C,, from bit 31. These times
are faster than the add and subtract times because bit 31 falls on an integral block boun-
dary. Therefore the carry_ow signal only ripples through four bils and bypasses seven
nibbles in the worst case. This is compared to a ripple of eight bits and a bypass of six
nibbles for the add and subtract times. The difference in these figures indicates a ripple-
carry time of 9-10ns per bit. The remaining table entries are self-explanatory. The more
complex functions have longer delays. The simple pass and shift functions are limited by

the time it takes the control signals (run in alternating poly and metal) 1o traverse 32 bits.
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The control signals are buffered between bits 15 and 16. If one assumes an RC model for
the control signals runs this effectively cuis delay lime by a factor of four by halving both
R and C. The control signal delay time could have been reduced even more if the signals
had been run in polysilicide or second-layer metal. Second and third silicon chips have

been fabricated but are not yet tested.

3.10. Summary

Simulations and comparisons of static and dynamic CMOS gales were presentied in
this chapler. The conclusion is that dynamic gates are faster in situalion where the
precharge phase can be hidden. They are more area compact as gale complexity increases
and are easier to layout because typically each signal drives only one device per gate.
Therefore. they are good candidates for an automated generation approach. In the second
major portion of this chapter measurements and simulations of dynamic CMOS charge
redistribution problems and gate delays were presenied. Due to V, variations of the test
chips it is difficult 10 accurately predicate a series chain length limit. but it appears to be
between 7 and 15 devices. The measured circuits were faster than the simulated versions.
This can be atiributed 1o higher device mobilities than those assumed by the circuit simu-
lation models. In the final part of the chapter the design and operation of a 32-bit ALU
laid out manually in the Domino style was examined. Measurements of the fabricated
chip indicale speeds competitive with similar published designs. The circuit delay meas-
urements were correlated with simulated results. Using the dynamic Domino scheme it is
possible to construct a fast. area-efficient complex combinational circuit that consumes
negligible static power. The Domino ALU serves to validate the dynamic approach used in

the combinational synthesis framework described in the following chapters.
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CHAPTER 4

The MAMBO Synthesis Package

This chapter serves both to introduce the MAMBO synthesis system and to explain
the “front-end” tools in the package. MAMBO is a collection of tools organized as pipeline
10 help a designer realize a combinational circuit at the mask-level. The primary goal of
the MAMBO package is to construct complex combinational functions which have been
optimized for circuit delay and lavout area. The designer specifies a function or set of
functions by Boolean equations which are then mapped into combinational logic. The
MAMBO package employs a contexi-based tiler to create the mask-level geometries. This
realizes a second goal of the package which is 10 be relatively process independent. New
tiles must be designed to reflect process changes but the tile assembly 100l itself does not

have to be altered.

4.1. Overview of the MAMBO Pipeline

The synthesis of a combinational logic function can be broken down into four broad
areas. The areas are logic minimizaiion, electrical design. topological compaction, and physi-
cal lavout. The synthesis process is illustrated in Figure 4.1. The tools used in each phase

of the pipeline are also mentioned.
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§4.1
INPUT ELECTRICARL TOPOLOGICAL PHYSICRL
TRANSFORMARTION DESIGN DESIGN DESIGN
AND BOOLEAN MKTBL MKMAT TINKER
RININZATION MOSMESH TWIST —> TAILOR
MGNG MIMIC

Figure 4.1: Stages in Synthesis Process

The input. output. and nature of each of the tools are examined more closely in the fol-

lowing sections.

4.1.1. Input Transformation and Logic Minimization

The MGMG program performs two services. First. it is the high-level interface 1o the
designer. It is used to parse and translate Boolean expressions into a specified targer tech-
nology. Second. MGMG will optionally perform two-level expansion of an n-level input
expression. It is assumed that the input Boolean equations are already in a logic-optimized
form. The equations may have been optimized by any of the methods mentioned in
Chapier 1. MGMG. however, can apply simple logic minimization rules 10 reduce circuit
complexity. Though MGMG can be used to produce a truth-table-like output. in the
MAMBO system it produces a gate-level netlist. This netlist specifies the function of each
gate and how it is connected with other gates. Each function is represented as a single.
complex gate in the netlist. A LISP-like syntax is used. A complete description of target-
technology transformations and of the types of logic minimization that MGMG provides is
given in the latter part of this chapter and an alternate logic minimization pathway is also

described.
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4.1.2. Electrical Design

The goal of electrical optimization is to decrease the delay from input to output of
the synthesized circuit. It is assumed that all signals are stable and valid at the beginning
of the evaluate phase in Domino-style logic. The delay optimization program MOSMESH
works by breaking up the large. complex gates generated by MGMG into smaller, manage-
able pieces. This process is termed partitioning. The partitioning depends both on electrical
and phyvsical factors. The elecirical constraints are the charge redisiribution effect seen in
dvnamic circuits and the direct effect of series chain length on gate speed. These effects
were described in detail in previous chapters. For ease of routing and automated genera-
tion 1t is best to have a regular layout structure. Structure regularity imposes physical
constraints on MOSMESH. If the designer wishes to use a more complex gate interconnec-

tion scheme the regularity restriction can be removed.

MOSMESH manipulates a gate netlist by first finding the electrical critical path
through the circuit. The critical path is found by recursively tracing each function output
back to its fundamental inputs. The tool MKTBL is used to produce a table of delays of
various gate clusters under various conditions. MOSMESH refers 10 this table in its search
for the longest delay path. MKTBL constructs a SPICE2 deck of a set of user-provided gate
configurations. The program then determines the critical path through the particular gate

under various conditions. performs transient analyses. and stores the results in a table.

Finally, the partitioned pieces of the circuit are examined to see if any are redundant.
Duplicate gates may be eliminated 10 reduce layout area if they do nol compromise circuit
speed. The MIMIC 100! performs this 12k by recursively checking for gates with identical
inputs and functionality. but different outputs. Typical reductions in cluster count vary

from 10 to 40%. The programs involved in electrical design are examined further in

Chapter 3.
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4.1.3. Topological Design

The MKMAT tool processes the netlist produced by MIMIC: it transforms the netlist
in1o a connectivity matrix. It does this by replacing each gate with a set of symbols which
declare whether a given input or output signal affects or is affected by a particular gate.
The result is a matrix of characters quite similar to a PLA’s personality matrix. To assem-
ble this matrix MKMAT must internally build two constraint matrices. Part of the job of
MOSMESH is 1o constrain signal ordering for least delay. This means that certain signals
(those that change fastest) are generally assigned 10 transistors that are closer to output
nodes than those signals which change more slowly. This ordering constraint must be
observed. Also. it is often the case thai a gate can be realized in a single column of the con-
nectivity matrix. However, for more complex gates. especially those which are parallel in
function at their top level. this is not the true. For such gates a column-constraint matrix
expresses which columns must be contiguous. MKMAT builds the connectivity matrix
based on these constr;int.s. An example of a connectivity matrix appears in Figure 4.2 and

in Chapter 6 where MKMAT is described in detail.
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Figure 4.2: Example Connectivity Matrix

Program TWIST reads the matrix siruciure and attempls 1o compact it topologically.
The designer may run this program either interactively or as a segment in a pipeline.
TWIST respects external constraints. Exiernal signals must be brought to the edge of the
circuit for connection off-module and. i.n addition. the designer can specify on which edge
(left. right, or both) each external signal must appear. TWIST performs simple column

folding and multiple row folding. Simple column folding is used so buffers. which are
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required on a per-gate basis. can be brought out at the top or bottom of the array. Multiple
row folding (with internal signals in the middle) increases layout density. TWIST can per-
form either row-after—~olumn or column-after-row folding or any mix in between. The
circuit designer makes such a decision generally based on which aspect ratio (1all and thin
or short and squat) is most favorable for layout. The general folding problem is NP-
complete: TWIST employs a series of heuristics 10 accomplish area compaction. In Chapter

6 the theoretical aspects of the algorithms used by TWIST are presented.

4.1.4. Physical Design

The output from TWIST is a (possibly row- and column-folded) connectivity matrix.
This is the input 1o TINKER which is a context-based electrical tiler. TINKER generates an
elecirical matrix based on the connectivity matrix and a separate, user-provided. conzext
file. This file gives possible situations for each of the characters in the connectivity matrix.
Each connectivity symbol represents a gate, an interconnection. or a cluster of gates (such
as a buffer). Depending on the number of signals a gate musi drive. or the number of dev-
ices in a series chain. a given connectivity symbol can be transformed into various charac-
ters in the elecirical array. By this approach TWIST performs purely topological operations
and is not required to deal with implementation considerations. On the other hand the last
100l in the package. TAILOR. need make only mask-level decisions. and does not require
knowledge about device sizing or drive capabililies. The output of TINKER is another

matrix of the same aspect ratio as its input. but drawn from a richer set of characters.

TAILOR is the final program in the MAMBO pipeline. I1 interprets the characier set in
the matrix provided by TINKER. For each character it refers 10 a cell library. TAILOR sim-
ply performs a one-for-one substitution of each characier for mask geometries from the
cell library. The cell library can be described in any layout language. The current imple-
mentation stores the cells in CIF format. but TAILOR has no knowledge of this and is
therefore fairly process independent. TAILOR gets information about tile extent from a

separate symbol file. This file provides TAILOR with the designer’'s view of the cell. The
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designer can have TAILOR generate abutting, overlapping. or completely enclosed cells by
giving such information in the symbd file. The output structure is regular and TAILOR is
careful to preserve constant row and column spacing on a per row and column basis. That
is. all cells in a given row must be the sam¢ height. all cells in a given column must be the
same width. The user may override this rule if he desires. Examples of botb the electrical
rules matrix and final mask-level layout are shown in Figure 4.3. The physical design

process. used 10 construct these figures, is presenied in detail in Chapter 7.
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Figure 4.3: (a) Electrical Rules Matrix (b) Mask-Level Layout

4.2. Representation of Boolean Expressions— MGMG

The remainder of this chapter is devoted 1o the first of the four major stages in com-
binational logic synthesis. that of Boolean transformation and minimization. This stage is

handled by the MGMG program. the first program in the seven segment MAMBO pipeline.
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Figure 4.4 shows the input equations for a 2-bit parallel adder.

/t

* 2-bit parallel adder example
s/

INORDER = cin a0 b0 al bl
OUTORDER = sumO sum1 coutl:

sumO0 = (1a0&'b0&cin) | (1a0&b0&!cin) | (a0&!b0&cin) | (a0&bO&cin) ;
sum] = (1al&'b1& ((b0&cin) | (a0&cin) | (a0&b0))) |

(la1&b1&! ((bO&cin) ! (aO&cin) | (a0&b0))) |

(a1&'1&! ((bO&cin) | (a0&cin) 1 (a0&b0))) |

(a1&b1& ((bO&cin) | (a0&ecin) | (a0&bO))) :
cout] = (bl&ecin) | (a1&((bO&cin) 1 (a0&cin) | (a0&b0))) | (al&bl) :

Figure 4.4: Input Format, 2-Bit Paralle] Adder

The equations have been expressed using a standard set of Boolean operators. The opera-

tors and their operations are shown in the Figure 4.5 below.

Talor ration Class
! negation monadic
& disjunction dyadic
i conjunction dvyadic
Figure 4.5: Boolean Operators

The operations in this figure form a logicallv complete set. It is possible to define other
operations, for example. exclusive-or, and add them to the set of legal input operations of
MGMG for convenience of expression.

The program MGMG can be used to manipulate this input format in a variety of
ways. Figure 4.6 shows the input example of Figure 4.4 transformed into two-level logic

and expressed as the personality matrix of a PLA.
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#INORDER = cin a0 b0 al bl
#OUTORDER = sum0 sum1 coutl

-0001 010
00001 010
-0010 010
00010 010
100-- 100
00-01 010
001-- 100
00-10 010
0-010 010
11-00 010
-1100 010
-1111 010
-111- 001
111-- 100
0-001 010
11-11 010
11-1- 001
1-111 010
1-11- 001
1---1 001
---11 001
010-- 100
1-100 010

Figure 4.6: Personality Matrix, 2-Bit Parallel Adder

Figure 4.7 explains each of the AND and OR plane characters.

Symbol | Plane Interpretation
1 AND variable affects product term
1 OR product term affects output term
0 AND | negated variable affects product term
0 OR product term does not aflect output term
— AND variable does not affect product term

Figure 4.8: PLA Personality Matrix Symbols
By invoking MGMG with the —expand option it is possible 1o see more directly the effect
of each input variable on the output variables. Figure 4.5 was produced by employing this

option on the 2-bit adder exampie.
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#MANORDER = ¢cin a0 b0 al bl
#OUTORDER = sumO sum1 cout!

120 'b0 !al bl suml
cin a0 'b0 'al bl suml
a0 b0 al bl suml
cin 1a0 b0 a1 b1 suml
¢in 'a0 'b0 sumO
fcin a0 fal bl suml
fcin a0 b0 sumO
Icin 'a0 al bl suml
fcin b0 al bl suml
cin a0 lal bl suml
a0 b0 'al bl suml
a0 b0 al bl suml
a0 b0 al coutl

c¢in a0 b0 sumoO

Icin b0 fal bl suml
cin a0 a1l bl suml
cin a0 al coutl

cin b0 al bl suml
¢in b0 al coutl

cin bl coutl

al bl coutl

fcin 20 'b0 sumO
cin b0 fal 'bl suml

Figure 4.8: Expanded Format, 2-Bit Parallel Adder

When MGMG is invoked with either personality mairix or expend options an input
expression or set of input expressions (possibly many levels deep) is transformed into
two-level logic. In this process MGMG prefroms some simple Boolean minimization by
reducing the number of product terms in the expansion. Standard cube covering algo-

rithms are used [bray84c). For example. if the strings:

100011-00011 0001
1000110100011 0001

represent the product terms (pterms) for a certain set of variables then the first pterm is
said 10 cover the second in that the second pierm is a subset of the values of the input

variables represented by the first pterm. Therefore the second term is unnecessary and
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may be eliminated. Likewise, given the two pterms:

1000110000011 0001

1000111100011 0001
A new pterm can be generated with covers both:

100011-00011 0001
This is called a distance one merge. Lastly, given the pterms:

1000110100011 0001

1000110100011 0010
which bave identical input values but which drive different outputs the new pterm:

1000110100011 0011
can be generated which covers both output variables. MGMG performs these
simplifications by creating a unique signature for each plerm based on its input string. The
signature is in the form of a hash function and is used 10 store the plerms in a binary tree.
After each new plerm’s hash function is computed it is either inserted into the binary tree
if it is unique or discarded as redundant if its signature is equivalent to a pterm already in
the tree. This type of minimization in product term cardinality is based purely on the
1/0/- signature of the pterm. MGMG has no notion of the Boolean relation of one variable

to another, hence it cannot perform more sophisticated minimizations based on the rules of

Boolean mathematics.

4.3. Transformation into Target Technology— MGMG

Though two-level logic expansions are often employed in the generation of combina-
tional circuits. and MGMG is capable of producing minimized two-level expressions of
Boolean functions. it is not always necessary or profitable to expand a function in this
way. In fact. when the target technology is Domino CMOS. it is often necessary that gates
with large fan-ins be broken into smaller multiple gates because of the problem of charge
redisiribution. Two possible ways of performing this fracturing of large gates are: 1) First

expand n levels of hierarchy into two. minimize the functions. because this is a well
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understood process for the two-level case. and then re-introduce hierarchy afierwards to
reduce fan-in. 2) Retain the designer’s original intent as much as possible by preserving
the input hierarchy with the transformations necessary for the target technology. Parti-
tioning will still be required but the enc result will be closer to the original input.
Minimization of common gates can be perjurmed afier the gates are broken up. Such
post-partitioning minimization could also be performed for the first approach mentioned.
The first approach has been explored in defail by Brayton ez. al. and was reviewed in
Chapter 1. This dissertation explores the second option for a number of reasons: The
problem of realizing a correct. efficient, complex circuit on silicon through automated gen-
eration is multi-faceted. It is felt that the low level details of circuit construction. such as
parasitic capacitance effects. required in-depth study. The second approach is simpler and
thus more time can be spent identifying and studying problems at the electrical and layout
levels. Also. since the second approach retains more of the designer’s original intent it
gives the designer more control over the final result. In the sections below options to the
delay optimization stage of the pipeline are detailed. The options allow the designer to
direct the circuit partitioning via specific constraints or according to a built-in clustering
algorithm. It is anticipated that future versions of MAMBO will use more sophisticated
multi-level logic synthesis techniques. Even in that case. however, detailed electrical and

constraint management will still be required.

43.1. Input Parsing and Netlist Generation

The initial step in the transformation of Boolean expressions into a particular tech-
nology is parsing of the input format and generation of an netlist. The netlist specifies
explicitly the type. fan-in. and fanout of all gates. In this case the target technology is
Domino CMOS and the gazeset is {AND OR}. The logic connectivity is also specified. For
the 2-bit paralle] example used above the input netlist for Domino-style design is shown

in Figure 4.9.
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#MNORDER = cin a0 b0 al bl
#OUTORDER = sum0 suml1 coutl

# Input expression OR 64 : 65 68
NOT 14 : a0 AND 71:a0 b0
NOT 16 : b0 OR63:64 71
AND 13:1416 NOT 62 : 63
AND 12 : 13 c¢in AND 57 : 58 62
NOT 21 :20 OR 39: 40 57
AND 20:21 b0 NOT 77 : bl
NOT 24 : cin AND 75 :a1 77
AND 19:20 24 AND 82 : b0 cin
OR11:1219 AND 85 : a0 cin
NOT 29 : 0 OR 81 : 82 85
AND 27 : a0 29 AND 88 : a0 b0
NOT 31 :cin OR 80: 81 88
AND 26:27 31 NOT 79 : 80

OR 10:1126 AND 74:75 79
AND 34 :a0 b0 OR 38:39 74
AND 33:34cin AND 92 : al bl
OR sum0 :10 33 AND 97 : b0 cin
# Input expression AND 100 : a0 cin
NOT 42 : al OR 96 : 97 100
NOT 44 : bl AND 103 : a0 b0
AND 41 :42 44 OR 95:96 103
AND 48 : b0 cin AND 91:92 95
AND 51 :a0cin OR sum1i : 38 91
OR 47 : 48 51 # Input expression
AND 54 : a0 b0 AND 107 : bl cin
OR 46 : 47 54 AND 114 : b0 cin
AND 40: 41 46 AND 117 : a0 cin
NOT 59 :al OR 113:114 117
AND 58 : 59 bl AND 120 : a0 b0
AND 65 : b0 cin OR 112 :113 120
AND 68 : a0 cin AND 110:al 112
OR 64 : 65 68 OR 106 : 107 110
AND 71:20 b0 AND 123 : al bl
OR63:64 71 OR coutl : 106 123

Figure 4.9%: Input Netlist, 2-Bit Parallel Adder

Each entry in the netlist is of the form:

gate_type owput :inputO inputl ... inputn
Gate_type is a gate from the given target technology. In this case the gates AND and OR
are allowed. The gate type NOT is always permitted because only logically complete

gatesets are allowed. Owpw and inputi are a signal names. Signal names beginning with
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alphabetic characiers are user-given, all other signal names bave been generated and

represent intermediate values used in the computation of a particular function.

The netlist contains AND, OR. and NOT gates. Inverters are not permitted in Domino
logic and hence the netlist as it stands cannot be implemented. This problem is overcome
by “bubble pushing” that is. pushing the inversions to the bottom. or leaf-level. of the
function using the theorems of Boolean algebra [nagl75). As an inversion or “bubble”
passes through a gate from output to input it may change the gate’s function. Figure 4.10
below lists the transformation which occur due to bubble pushing on various gate types
for inputs and outputs. The entry TRUE means the signal is invariant under the transfor-
mation while the entry FALSE indicates the signal is complemented under the iransforma-

tion.

Transformations on Inputs AND OR NAND NOR
w=m
AND TRUE | FALSE | TRUE [ FALSE
OR FALSE | TRUE | FALSE | TRUE
NAND TRUE | FALSE | TRUE | FALSE
NOR FALSE | TRUE | FALSE | TRUE
Transformations on Qutputs AND OR NAND | NOR
P  —  ———— ——  ——— |
AND TRUE | FALSE | FALSE | TRLE
OR FALSE | TRUE | TRUE ([ FALSE
NAND FALSE | TRUE | TRUE | FALSE
NOR TRUE | FALSE | FALSE | TRUE

Figure 4.10: Transformations of Inputs and Outputs for Various Gate Types

It was found convenient to store all logic equations. regardless of their target tech-
nology. in a canonical form. The canonical form is composed of AND and OR gates with
inversions pushed 10 the inputs. For the 2-bit adder example the canonical form is given

in Figure 4.11.
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#ANORDER = cin a0 b0 al bl

#OUTORDER = sum0 sum1 coutl

# Re-canonicalized expression
NOT 11 : a0

NOT 13: b0

AND 10:11 13 cin
NOT 17 : a0

NOT 20 :cin

AND 16 : 17 b0 20
NOT 24 : b0

NOT 26 : ¢cin

AND 22 :2a024 26
AND 28 : a0 b0 cin

OR sum0 :10 16 22 28
# Re-canonicalized expression
NOT 33 :al

NOT 35 : b1

AND 38 : b0 cin

AND 41 : a0 cin

AND 44 : 20 B0

OR 37 : 38 41 44

AND 32:33 35 37
NOT 48 : al

NOT 52 : b0

NOT 54 : cin

OR 51:52 54

NOT 57 : a0

NOT 59 : cin

OR 56 : 57 59

NOT 62 : a0

NOT 64 : b0

OR 61 : 62 64

AND 47 : 48 b1 51 56 61
NOT 68 : bl

NOT 71 : &0

NOT 73 : ¢cin

OR70:71 73

NOT 76 : a0

NOT 78 : cin

OR 75:76 78

NOT 81 : a0

NOT 83 : b0

OR 80: 81 83

AND 66 : al 68 70 75 80
AND 89 : b0 cin

AND 92 : a0 ¢in

AND 95 : a0 b0

OR 88 : 8992 95

AND 85 : al bl 88

OR sum1l : 32 47 66 85
# Re-canonicalized expression
AND 98 : bl cin

AND 104 : b0 cin

AND 107 : a0 ¢cin

AND 110:a0 b0

OR 103 :104 107 110
AND 101 : a1 103

AND 113 :al1 bl

OR coutl : 98 101 113

113

Figure 4.11: Canonical Form, 2-Bit Parallel Adder

4.3.2. Transformations on Canonical Form

Finally. after translation into canonical form. the target-technology transformation is
performed. For the Domino design style the targei form is identical to the canonical form.
The syniax is. however. modified somewhat to facilitaie later parsing of the expression. A
LISP-like syntax has been chosen. Again using the 2-bit parallel adder as an example. the

final transformation is shown in Figure 4.12.
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#NORDER = cin a0 b0 al bl
#OUTORDER = sum0 sum1 coutl

# Transformed expression
(o sum0O

(p
(s a0* b0* cin )
(s a0* b0 cin* )
(s a0 b0* cin* )
(s a0 b0 cin ) )):
# Transformed expression
(o sum1
(p
(s a1* b1*

(p

(s b0 cin )

(s alcin)

(sa0b0)))
(s a1* bl

(p bO* cin* )

(p a0* cin* )

(p a0* b0* ) )
(s a1l b1*

(p b0* cin* )

(p a0* cin*)

(p 20* b0* ) )
(s a1 b1

(p

(s ©0 cin )

(s a0 cin )

(sa0b0)))N:
# Transformed expression
(o coutl

P

(s bl cin )

(s a1

(p
(s b0 cin )
(s a0 cin )
(sa0b0)))

(salbl))):

Figure 4.12: Domino Target Technology, 2-Bit Parallel Adder

For comparison, Figure 4.13 shows the same function expressed in NAND gates only. Such

a transformation might be useful if the circuit were built using bipolar devices.
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#ANORDER = cin a0 b0 al bl
#OUTORDER = sum0 sum1l coutl

# Transformed expression
(o sum0
(s*
(s* a0* b0* cin )
(s* a0* b0 cin* )
(s* a0 b0* cin* )
(s* a0 b0 cin ) )):
# Transformed expression
(o sum1l
(s*
(s* a1* b1*
(s*
(s* b0 ¢cin )
(s* a0 cin )
(s*a0b0)))
(s* a1* bl
(s* bO cin )
(s* a0 cin )
(s*a0b0))
(s* al bl1*
(s* bO cin )
(s* a0 cin )
(s*20 b0 ) )
(s* al bl
(s*
(s* b0 cin )
(s* a0 cin )
(s*a0b0)))):
# Transformed expression
(o coutl
(s*
(s* bl cin )
(s* al
(s*
(s* b0 cin )
(s* a0 cin )
(s*a0b0)))
(s®* al b1 ) )):

Figure 4.13: NAND Technology, 2-Bit Parallel Adder

The example chosen to illustrate the steps that MGMG goes through through is a sim-
ple one. For more complicated circuits MGMG also performs compression of “even-
function™ gates. The AND function is even: if inputs to such a function are asserted high

the output is asserted high. In contirast. the opposite happens with a NAND gate. As a
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consequence, one AND gate feeding another can be collapsed into a single. large AND gate.
However. a hierarchy of NAND gates cannot be merged. This collapsing or compression of
even gates is pex;f ormed automatically by MGMG. The gales may be re-fragmented later to

correct charge sharing problems. if they exist.

4.4. Alternate Transformation into Target Technology

Much of the gain in Boolean minimization of logic comes from the way in which the
designer expresses his equations initially. The idea behind MGMG is to preserve the
designer’s intent. If the equations have been machine-generated. however. Boolean minimi-
zation at this stage may be beneficial. If the target gates are constrained to two-level logic.
one can make use of well-known. fast minimization heuristics such as those emploved in
ESPRESSO [rude85). The translation program EQNTOTT [cmel81] is first invoked to
translate the multi-level logic into a 1wo-level personality matrix. ESPRESSO is then run
on the matrix and it atlempts to minimize the functions by more general applications of
the covering and merging operations mentioned above. Normally ESPRESSO atiempts 10
reduce the number of cubes. However, in the MAMBO synthesis pipeline. literal count is
somelimes a betler optimization parameter since it maps directly into actual device count.
ESPRESSO has an option 1o perform this type of optimization as well. The results {from the
two differing approaches are contrasted in Chapter 8. A third possibility. which MGMG
implements. is to perform two-level minimization while atiempting to preserve the origi-
nal form of each function. This means thai. even though a multi-level expression is
expanded to two levels. the top level will remain constant. whether it is AND or OR. By
contrast. since ESPRESSO is more tuned 10 PLA implementations. the top-level is always

OR— which may not give a circuit configuration efficient in area or speed.

4.5. Summary

The MAMBO synthesis package was introduced in this chapter. The MAMBO package

addresses four major areas. These are: 1) Input transformation of Boolean eguations and
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logic minimization; 2) Electrical design. in which delay optimization and circuit partition-
ing issues are addressed: 3) Topological design which attempts to reduce circuit area: and
4) Physical design which considers the mask-level construction of the circuit. The MGMG
program. which transforms Boolean equations into a target technology. was described in
deail in this chapter. It is assumed the equations have been logic-optimized. MGMG
transforms the input into a canonical form. This canonical form can be translated inio
gatesets for implementation in NAND-only. NOR-only. or other technologies. In MAMBO
the translation is into AND-OR form with inversions pushed 10 the leaf-level. This form is

suitable for implementation in Domino CMOS.
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CHAPTER $§

Delay Optimization and Partitioning of Dynamic Meshes

Algorithms for optimization of delav in mulii-level combinational circuits are
explored in this chapter. The elecirical constraints of charge redistribution. series chain
length. input signal type and output buffer size direct the partitioning of complex func-
tions into a simpler set. Physical factors. such as those limiting the number of logic levels
in any given gate. impose additional constraints on delay optimization. The optimization
algorithms are implemented in the MOSMESH tool. A simple two-transistor model is
derived which allows the modeling of complex meshes of charged and discharged devices.
The model is an accurate predictor of transient delay in the Domino domain and does not

require as much computational effort to evaluate as the full mesh it replaces.

The MIMIC tool is also described. MIMIC traverses the optimized circuit 10 determine
whether any of the partitioned clusters are redundant. MIMIC removes duplicate gates

from the network so long as they do not compromise circuit speed.

S.1. Partitioning of Transformed Gates— MOSMESH

The output from MGMG or ESPRESSO may be written to a temporary file or may be
piped directly 10 MOSMESH. MOSMESH reads the LISP-like set of expressions and produces
a partitioned set of gates in the same syniax. A partition or cluster of devices which make
up a single, complex Domino circuit is considered a legal gate if it meets several criteria.
First. the gate must not have a charge redistribution problem. even under worst-case con-
ditions. Second, at the user’s option. the number of devices allowed in series may be con-
strained further. Third. the depth of each partition or cluster may be limited a1 the user’s
request. Currently the maximum partition depth allowed is two. This limitation is placed

by the automated layout section of the MAMBO pipeline which cannot bandle more com-
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plex clusters efficiently. However. MOSMESH itself places no restriction on gate complexity

and if a different layout technique is chosen this optional constraint can be removed.

5.2. The Charge Sharing Criterion in MOSMESH

In Chapter 2 the problem of charging sharing and redistribution in dynamic circuits
was examined. In the MOSMESH program the goal is to determine whether or not a given
circuit configuration is prone to this charge sharing problem. The criterion for charge shar-
ing was defined by Equation 2.6. MOSMESH makes reference 1o a technology file provided
by the user 10 obtain process-dependent quantities in the calculation of charge redisiribu-
tion. A sample technology file for a 3u p-well CMOS process is shown in Figure 5.1.

Capacitances are given in F/M or F/M?, lengths in meters, and areas in square meters.

While it is possible for the program to automatically calculate the inverter switching
threshold Vry from more fundamental values. instead the threshold voltage has been
made a command line option. By this method the user may elect how optimistic or conser-
vative a specification he wishes to design to. As MOSMESH tries each new cluster arrange-
ment it solves Equation 2.6. This calculation is computalionally simple. the only values
which must be freshly calculated are the number of devices contributing to the head and

middle capacitances.

53. Data Structure for Gate Partitioning

After being placed in a LISP-like syntax by MGMG it is a simple task to build a tree
data structure whose atomic elements are data-nodes and whose inter-nodal links reflect
the electrical connectivity of the circuit. A node in the data structure in this case holds a
logically grouped set of transistors. The node data siructure is shown in Figure 5.2. For
the purposes of the preseniation here many of the fields can be neglected. others are self-
explanatory. Briefly. the important fields are value which is the number of devices that
this node covers: top which declares this node 1o be an output node. that is the top node in

a newly-formed cluster: and seen which tells the program whether this node has been
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nchan

Cgso 1.3e-10
Cgdo 1.3e-10
Cgbo 4.1e-10
Cj 6.0e-4
Cijsw 4.0e-10
Tox S5.5e-8
pchan

Cgso 1.3e-10
Cgdo 1.3e-10
Cgbo 4.1¢-10
Cj 4.1e-4
Cisw 2.5¢-10
Tox 5.5¢-8
inverter

Pwidth  16.0e-6
Plength 3.0e-6
Nwidth 8.0e-6
Nlength 3.0e-6

pullup

Width 7.0e-6
Area 21.0e-12
Perimeter 20.0e-6
core

Width 4.0e-6
Area 12.0e-12

Perimeter 14.0e-6
On_Resist 5.0e+3

Figure 5.1: Technology File with Process-Dependent Parameters

examined yel. Pathhead. pathtail, and middle represent the number of source/drain
regions at the head, tail, and middle of a cluster, respectively. These values are only valid
when top is TRUE. Peer and kid represent the next node on this level and one level down.

respectively. The data structure is traversed using these pointers.
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struct node |
int id: /* unigue id for tracing */
char type: /* series(s) or parallel(p) ®/
int value: /* number of FET this branch s/
int top: /* Boolean, T if node is head */
int crit /* Boolean, T if node on cpath */
int seen:; /® Boolean, T if node marked */
int partition: /* # of levels to expand gate %/
double delay: /* valid delay to here if head %/
int pathhead: /* # edges incident wc pathhead */
int pathtail; /* # edges incident we pathiail */
int parallel: /* # parallel children */
int middle: /* # S/D jets - ph,pt we path s/
int depth: /* depth in mesh from Root (m=]) =/
int lasthi: /* node number closest tc Vdd */
int lastlo: /* node number closest to GND */
int next_output: /* node # this sub-cluster drives */
char *output; /* ptr to name this sub-c drives */
signal *ext. /* ptr to external sig l-list */
node *peer: /* next, this level */
node *kid: /* to lower level */

:
Figure 5.2: Node Data Structure

The input expression of a small series-parallel circuit is shown in Figure 5.3a. Some
of the steps in the transformation of this single gate into its final form. which is a circuit

made up of two clusters, are shown in Figure 5.3b.

(o out
(sabcde
(pfghi)d)

Figure 5.3a: Input Expression of a Simple Series-Parallel Circuit
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AR BCDE
1 i 2
GHI BCDE GHI

RERD- IN GETMESH

GH
2H3 1
2 4 3
SPLIT NODE SPLIT LEVEL

BH

REORDER SORT DELRY
Figure 53b: Steps in Transformation of Example in 5.3a

The notation s5 denotes a series node with 5 external signals: p4 denotes a parallel node
with 4 attached devices. An external signal, as defined in Chapter 2. is a signal which
comes from outside the module and becomes stable during the precharge period. A module

is a collection of Domino clusters. Internal signals are generated within the logic of the
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module and stabilize during the evaluation period of the module. MOSMESH automatically
fragments circuit nodes when it detects a charge sharing problem. In addition. in this case,
the user has asked the program to limit the number of devices in a series chain to four.
The user may limit partition depth. which is a measure of the layout complexity of the
circuit. A simple series or parallel circuit has a partition depth of one, a series-parallel or
parallel-series circuit has a depth of two. and so forth. In this example partition depth has
not been limited. but it cannot exceed two since that is the depth of the original circuit.

The transformation sieps are now examined.

S5.4. The Partitioning Algorithm

The top-level of the partitioning algorithm appears in Figure 5.4. After reading in
the expression of Figure 5.3a the data structure contains two data-nodes as shown in
Frame O of Figure 5.3b. The first step is to separate internal and external signals by plac-
ing them in separate data-nodes. Procedure getmesh() reads in the expression and performs
internal/external signal separation. This is shown graphically in Frame 1 of Figure 5.3b.
The presence of an internal signal is indicated by a non-nil kid pointer on a data-node.
Also in Frame 1 of Figure 5.3b data-node 0 has been marked &/ meaning it is a Zop or head
data-node. The root data-node is always a head data-node. Procedure spliz_node() frag-
menis the s5 data-node as shown in Frame 2 of Figure 5.3b. Split_node() breaks a single

I# data —node devices

data-node into n pieces where n is The last allocated data-node
| max # allowed

may get an odd remnant. Fragmenting data-nodes 1o meel the series restriction is not
enough. however. From head data-node 0 it still appears that the series lengtb is six. Pro-
cedure split_levell ) tallies the number of series devices per leve]l and may create new levels
if the series restriction has not been met. This is the case here. and the result is shown in
Frame 3 of Figure 5.3b. Now no level has more than f.our devices in series. However,
from data-node 0 the circuit connectivity has not changed, it has only been fragmented.

By marking data-node 2 as top the topology of the circuil does change. A second cluster
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mosmesh ()
/.

}

® Top level of partitioning algorithm.
*/

while (TRUE) {
/'

}

®* read in and build data structure
¢/
if (getmesh()) break; /* TRUE if EOF */

,‘

® construct initial mesh subject to chain restrictions
s/

split_node (chain);

split__level (chain);

clear mark field;

/‘

® make the list of partitioned gates
s/

makehead();

if (critical path analysis requested) {
sort_delay ();

r*

® build the partitioned gates
¢/

make output mesh;

Figure 5.4: Top-Level of Partitioning Algorithm

has been introduced. A1 this stage a search down the kid and peer pointers from data-

node O terminating in either a leaf data-node (ie. a data-node whose kid pointer is nil) or a

data-node with its top field TRUE shows that all clusters are found to satisfy the user's

constraints. Pseudo-code for splitting procedures is listed in Figure 5.5.
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split_node ()
/‘

® Case 1: When a given node excesds the length limit it is split
¢ into N. This is done by creating N—I nodes at the currera depth
® and distribxting the old elemerus over them as evenly as

¢ possible. The last allocated node may get an odd remnant.
*/

if (node is NIL) return;

if (node is SERIES and length > chain) {
if (chain is 0)
error("Intractable charge redistribution problem");

if (parent is PARALLEL or TOP)
add in a level by creating a SERIES parent;

compute number of elments to split node into;
create new nodes and apportion signals;

| continue search at end of newly allocated nodes;

if (cur_node isnt TOP) /* recursive, breadth first search
split_node (nodes at this level);
split__node (children of this node);

Figure 55a: Node-Splitting Procedure
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split_level ()

Case 2: The sum of SERIES node elemernts and the number of PARALLEL
nodes is greater than the langth limit & the total number of nodes

is less than the length limit. By converting nodes with more than !
elemerz int» parent nodes and pushing the elements down one level

the limit restriction is satisfied.

Case 3: As case 2 a the total rumber of nodes exceeds the length limit.
A new level is created by bdinary split. This level is inserted just

below the currerz level. Half the old nodes are attached to each of

the newly spawned nodes.

...Q.....l}

—_—
~

if (node is NIL or length is O) returnm;

check to see if all nodes are marked;
if (not all marked)
return;

count the number of devices in the longest series chain;
if (sum > chain) {
if (nodes exist with length > 1) { /* case 2 s/
if (chain is 1)
error("Intractable charge redistribution problem®);

for (all nodes) {
if (node is SERIES and length > 1)
create new node;

} else { /* case 3 2/
divide elements among two kid nodes (binary split);
increment node depth;
split_level(); /* recursive call until case 3 satisfied

}
if (node isnt TOP) /* recursive, breadth first search

split_level (nodes at this level);
return (split_level (children of this node));

Figure 5.5b: Level-Splitting Procedure

The cluster of Frame 3 in Figure 5.3b with the top data-node 0 is shown in Figure 5.6a.
This configuration may have a charge sharing problem due 10 the large amount of parasitic

capacitance represented by the parallel daia-nodes.



§5.4 127

e

Figure 5.6: Schematic of Frame 3 of Figure 53b

If such a situation is detected. procedure makehead() tries to remedy the problem by cal-
ling procedure reorder(). Makehead() and associated procedures are shown in Figure 5.7.
Reorder() atiempts to increase the amount of precharge capacilance and/or decrease the
amount of parasitic capacitance. If it is not possible 10 reorder the current cluster to get
rid of a CR problem then the current cluster is pruned of data-nodes. This is accomplished
by first calling the splitting procedures which mark likely candidates for deletion. The
procedure unmark_node() performs the mesh alieration by removing the data-nodes
furthest from the root data-node first. The result of reordering is shown in Frame 4 of

Figure 5.3b. Figure 5.6b shows the circuit schematic.
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makehead ()

Traverses the node list and creates a list of anchor nodes corresponding to
the top node in each partition A partition is a sub—cluster, a group of
gates sharing a single prech /buffer circuit and connecting to other
partitions in @ hierarchical manner. Presently, a partition is limited by
depth or series length. A partition will be rejected if it potentially causes
® g charge redistribution problem. It is possible to coalesce rodes or 1o

® fragment them.
s/

.....}

if (node_is NIL) return;

if (node is top) {
clear mark field;
if (chain limit unrestricted) {
limit by partition level;
} else {
mark all nodes within chain limit;

if (no partition restrictions) {
split_node();
split__level();

}
\ chgshare();

makehead (nodes at this level); /* recursive, breadth first search */
| makehead (children of his node);

chgshare ()
/‘.

* Checks for charge redistribution problem and attempis to rearrange
® circuit if problem exists. If no difficulty calls markhead(), else
'turausmtlamhaimlsfumdw'thcproblemmimrcaable.
*/
{
chain_length = critpath();
while (TRUE) {
while (node fails ratiochx()) {
if (can’t reorder())
break;
find new critpath();

if (charge sharing problem) {
if (no nodes to unmark)
if (chain_length is 1)
error(*Intractable charge redistribution problem”);

split_node (chain);

split_level (chain);
} else

unmark_ node();

find new critpath();
}

} new head nodes marked by markbead();

Figure 5.7: Head and Charge Sharing Procedures
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reorder ()

/.

® Searches from the curremt node visiting all marked nodes. Each time a
* parent godeBSRIEStuddUmmybemrrangediflttspas:iblew
* bring a more parallel piece to the pathhead.

*/

if (pode is NIL or not marked) return(FALSE);

if (kid isnt NIL and node is SERIES) {
for (all nodes) {
if (first node in list) {
} keep{ track of element count in node and its children;
else
if (no elements in node but a kid exists
or this pode is PARALLEL and marked and bas largest element count) {

alter pointers to insert this node as first in chain;
| return (TRUE);
}
}
}

if (reorder (nodes at this level)) return(TRUE); /® recursive, breadth first search */
} return (reorder (children of this node));

ratiochk ()
/.
® Checks the capacitance ratio between the

® precharged node and the worsicase path to ground.
*/

ratio = Prech Capacitance / (Prech Capacitance + Parasitic Capacitance);

return (ratio >= Vth/Vdd);

markbead ()

/"
‘FmemdaWaMmchbyBFSwmm.
'Mrbashmdﬁmcmrkcdmdcwﬂhmkcdkids.

s/
{
if (node is NIL or not marked) return;

if (node isnt TOP and kid isnt NIL and kid isnt marked) {
node—>t0p = TRUE; done = TRUE;

if (node isnt TOP) markhead (nodes at this level); /* recursive, breadth first search */
if (not done) markhead (children of this node);

Figure 5.7, continued: Reordering, Ratioing, and Marking Procedures
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unmark_node ()

/‘

¢ Tries to find most lkely candidate from set of nodes eligible to unsmark.

8 The idea is to reduce charge redistribuzion. Nodes are not removed if they
* gre less than unmark_depth level of the tree.

*/

{

get most distant children of current node;
if (depth of parent < unmark_depth) return (FALSE);

for (all children of selected parent mnode)
set marked field to FALSE;

return (TRUE);

Figure 5.7, continued: Unmarking Procedure

The final stage in partitioning is a call to procedure sort _delay() which looks up the
transient delay times for signals to reach each of a cluster’s inputs. Inputs are then sorted
according to their delay times. with the fastest switching FETs being placed closest to the
cluster's output. The justification for this is as follows: For the cluster’s output buffer to
switch the charge stored on the inverter input must be drained away. By placing the
fastest signals closest to the buffer input this charge redistribution may be expedited. Note
that the buffer will not switch until a path exists between precharge node and GND.
assuming the circuit is properly designed. However. when slower changing inputs finally

do switch the RC time constant of the shortened path will be less.

There is one added consideration in this process. Sorting input signals according 1o
switching delay will only be performed if the output node will switch more rapidly. It is
possible that the inputs which switch fastest are part of a paralle] block. for example. By
placing this parallel block at the top of the clusier the amount of precharge capacitance is
increased. The increased precharge capacitance slows down the switching of the output
inverter. Sori_delay() checks for this condition by calculating precharge and parasitic capa-
citances and by referring to the user-provided technology file 1o obtain process-dependent
quantities. The RC time constants of different legal configurations are compared. and the

circuit with the smallest time constant is selected. The final result for the example of Fig-
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ure 5.3 is shown in Frame 5 of Figure 5.3b and schematically in Figure 5.6c. The pseudo-

code in Figure 5.8 lists the sort_delay() algorithm.

sort_delay ()

the function tree is BFS fashion. Al children of the current node
are first sorted and then their sub—delays are calculated. If the currem
nedci:umdSRIESthmﬂumpmstnkcupl;hi:chcwrmy
be to give dest speed. The ement . s 2 where N is
t}nmmg.dmubc”f kidE'. typically thanr?";:rtg w'derallsg with fastest gate
done if no CRP exists and additional
precharge capacitance doss not slow the gate cluster down.

%’

1
g
i
4
:
i

..Q....'}

if (node is NIL) return;

for (all kids of this node)
sort_delay();

if (pode is TOP and node is SERIES) {
begin bubble sort on this node’s kids |
if (sort vector{il.delay > sort vector{jldelay) {
swap nodes;
find new critpath();
if (ratiochk() is okay) {
if ;ror) {

® precharge capacitance may have been modified.
* make sure change speeds up gate overall
*/
if (new_delay > old_delay) {
T .
® new configumation is slower, so swap back to original state
¢/
swap nodes;
find old critpath();

}e)lse{
/.

® charge problem exists, set things as they were
*/

swap nodes;
find old critpath();

Figure 5.8: Delay Sorting Procedure
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55. An Example of MOSMESH Partitioning

There are many ways to remedy the charge sharing problem and some of these were
examined in Chapter 2. MOSMESH. as the previous example illustrates. tries 1o decrease
the parasitic capacitance or it may increase the precharge capacitance- but only by moving
around already existent capacitances. However, if the user wishes. he can add a larger
precharge capacitance by specifying it in the technology file. The effect of a large capaci-
tance at the precharge node will be 10 slow that particular circuit cluster down: however it
may reduce the charge sharing problem and therefore allow more complex clusters to be
built. which in turn will result in a2 shallower buffer hierarchy and possibly a faster cir-

cuit overall.

The sequence of Figures 5.10-5.12 shows the function of Figure 5.9 in various

configurations.
(of0(p(s1234)
(s(s1)
(p(s12)
(s
(p(s1)
(s(p(s12)
(s123))
(p(s12)(s12)(s1))))
(s1)))
(s12)))):

Figure 5.9: 8-Level Parallel/Serial Function
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SINGLE, COMPLEX DOMINO GARTE

s-u:- xmm[-

4 L L L

PARTITION DEPTH: 8
CHAIN LENGTH: 8
BUFFER HIERARCHY: 1

Figure 5.10a: Monolithic Domino Gate
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Partition Depth: 8 Chain Length: 9
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time(ns)
Figure 5.10b: Transient Analysis of 5.10a

Figure 5.10a shows the function realized as a single. monolithic cluster. This circuit
nas a buffer hierarchy of one bul a worst-case series length of nine. In order 10 make the
.ircuit work under worst-case conditions it was necessary to add extra capacilance to the
~recharge node. Figure 5.10b shows the result of a SPICE2 simulation of the circuit. At
ume 1 =0 all external signals begin 1o switch. Exiernal signals were conditioned by driv-
ing them through nominal size buffers. The voliage on the precharge node falls. the output
buffer switches. and the output signal rises. It was assumed that the output buffer drives
three nominal size inputs. For this example a voltage of 3.0V was chosen as the logic
threshold. Figure 5.10b sbows that the voltage on the precinarge node begins to fall early
but, because the precharge capacitance is large. the output voltage does not reach 3.0V

until 15.6ns. In conirast. Figure 5.11a shows the same function this time broken up into
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clusters, each with a partition depth of one. The deepest buffer hierarchy is eight. the long-
est series string is four devices. Figure 5.11b shows SPICE2 results of transient simulation.
The waveforms are clean and sharp but that the total delay is very close to the monolithic
function block. In this case no exira capacitance was added. but the circuit switches

slowly due to the eight-deep buffer hierarchy.

14 SIMPLE GARTES
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Figure 5.11a: Set of Single Partition Domino Gates
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Partition Depth: 1 Chain Length: 4

15.3ns 2.9volts

volts

0 10 20 30 40

time(ns)
Figure 5.11b: Transient Analysis of S.11a
Figure 5.12a represents a compromise between the previous two exiremes. Here the
complexity of eéch cluster is commensurate with the precharge capacitance. No extra capa-
citance was required. The associaled simulation in Figure 5.12b shows that the function

switches in 8.9ns a speedup of more than 40% over the previous solutions. This solution

was obtained by MOMSESH.
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4 GRTE CLUSTERS
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PARTITION DEPTH: 3
CHAIN LENGTH: 4
BUFFER HIERARCHY: 3

Figure 5.12a: 4-Cluster Domino Function
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Partition Depth: 3 Chain Length: 4

—

volts

8.9ns 3.0volts

0 10 20 30 40

time (ns)
Figure 5.12b: Transient Analysis of 5.12a

While such large speed improvements will not be obtained in all cases. this response
argues for matching parasitic and precharge capacitances. rather than adding “dummy”
capacitance or over-partitioning a circuit. In Figure 5.12b there is an initial voltage drop at
the output node. This is due to charge redistribution. The buffer does not switch. but
when the other inputs become valid it does switch faster than other configurations. In fact
it can be seen thal as the parasitic capacitance is increased with respect 10 the precharge
capacitance or, more exactly. as the lhs of Equation 2.6 approaches the rhs the gate will
switch faster and faster until it finally functions improperly. The idea is 1o match capaci-
tances as closely as possible without causing a CR problem. Another example from a RISC

microprocessor [mari85). which produces a different result. is summarized in Figure 5.13.
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Number Deepest Buffer | Worst-case Approx. Prech Critical
of Clusters Hierarchy Delay (ns) Capacitance (pF) Signal
247 16 41.0 0.02 CPIPE1lloadl
148 9 31.0 0.16 pALUtoMAL

Figure 5.13: Delay in Critical Path of Complex Circuit

In this case. because the functions being generated are complex. a charge sharing problem
still exists. even after topological rearrangement. The first line of Figure 5.13 shows how
breaking complex clusters into smaller ones yields a deep buffer hierarchy and a slow criti-
cal path. The second line of the figure shows the result when parasitic and precharge capa-
citances are balanced. not by subtracting parasitics but by adding to the precharge value.
The result is individual clusters which switch more slowly but an overall critical path
delay which is faster. Note that the critical signal in the two implementations of the cir-
cuit is different. produces the designer is able to explicitly specify both the switching
threshold and the amount of capacitance on the precharge node. he can try several

configurations and choose a high-speed or more conservative design.

The detailed partitioning steps for the function shown in Figure 5.9, with an inverter
voltage switching threshold of 2.4V for a 3u p-well process, are shown in Figures 5.14a-{.
The set of three integers separated by slashes indicales the number of source or drain

parasitics that contribute 10 the head. middle. and tail of each cluster, respectively.
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AFTER FIRST MARKHEAD [) | AFTER SECOND MARKHEAD

Figure 5.14: 8-Level Parallel/Serial Partitioning Sequence



AFTER THIRD MARKHERD

Figure 5.14, continued: 8-Level Parallel/Serial Partitioning Sequence

141

RFTER SORT DELRY

For the process conditions given and no user restrictions on chain length and partition

depth the end result is the 5-cluster partition shown in Figure 5.15.
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# charge tolerance ratio is 2.78374
(o fO

(p

(sdcba)2))

(02
(sabad))

(o 10

(p

(sba)
(scba)))

(013
(p
(sba)
(sba)
(sa)))

# 5 cluster(s)

# Longest series string: 4 [target maximum unrestricted]

# Deepest Partition: 4 [1arget maximum unrestricted)

# Deepest Buffer Hierarchy: 4

# Worst Ratioing Problem: 0.505734 [target minimum: 0.48 (Vih 2.4)]
# Signa) :f0: has worst delay of 8.21233ns

Figure 5.15: 8-Level Function; Chain Length and
Partition Depth Unrestricted

5.6. Calculation of Signal Delay in a Partitioned Mesh— MKTBL

After MOSMESH has produced a legally-partitioned circuit the final step is the use of
procedure sort_delay() which may alter the order of signals for greater speed. Sort _delay!()
does not calculate the delay of a circuit cluster each time it performs an analysis. Instead.

it refers 10 a pre-calculaied table of delays for a given clusier. This table is produced by
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another tool. called MKTBL. MKTBL reads a simple file. calied a partern file. and produces
a series of SPICE2 decks for each pattern (cluster). The tool then invokes SPICE2 automati-
cally, after first identifying the critical path in the cluster. A transient simulation is per-
formed and MKTBL reads the SPICE2 result and computes the delay from input o output.
It summarizes this information and for each cluster, for different sets of input conditions.

MKTBL writes a single line to the output file.

Example input patterns and their corresponding circuit schematics are shown in Fig-

ure 5.16.

HE‘
e
4 | .

2 _.| (s (p3) (p2))

(s (p2) (p3))

TOP: 3 MIDDLE: S BOTTOM: 2 TOP: 2 MIDOLE: S BOTTOM: 3
Figure 5.16: MKTBL Patterns and Corresponding Circuit

Each line in the transient delay table is of the form:

Morph: (head middle) Buf: (width, width, width,, ) ..

...Ext number external Cr: slowest signal Time: delay (ns)
Morph stands for morphology: the two integer quantities represent the number of source
and drain nodes which contribute to the precharge and the parasitic capacitance. respec-
tively. Buf gives information about the size of the output buffer as well as the pullup
clock device and the core devices. The user may provide different sizes of output buffers or

core devices for transient evaluation. Ext is the number of inputs which are driven
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externally. External inputs switch at time z =0 and are assumed 10 be closest 1o the out-
put buffer. Of the remaining, internally &ivm signals Cr marks the slowest, or critical
one. Finally, Time is the delay time in nanoseconds for the particular circuit
configuration. To run MKTBL the user must provide two files in addition to the pattern
file and the technology file. First. the user must supply a mode! file. This file contains the
SPICE2 models to be used to evaluate n - and p—channel devices. The models may be any
valid SPICE2 model. All transient analyses presenied here were run with the leve/ =2
model. Second. the user constructs a subckts file which holds both a single iransistor core
device subcircuit and the inverter/pullup encapsulated as a subcircuit. The user may pro-
vide several sizes of both core subcircuit and buffer subcircuit. If multiple subcircuits are
found then MKTBL will run each patiern in the pattern file for all possible combinations
of subcircuits. Figure 5.17 lists the transient delay table for the two patierns given in Fig-

ure 5.16.

Morph:(3 8) Buf:(8 4 4) Ex1:2 Cr:0 time:3.08344e-09
Morph:(3 8) Buf:(8 4 4) Exu1 Cr:1 time:2.71408e-09
Morph:(3 8) Buf:(8 4 4) Ext:0 Cr:2 time:1.87178e-09
Morph:(3 8) Buf:(8 4 4) Ext:0 Cr:1 time:1.42817e-09
Morph:(3 8) Buf:(16 8 4) Ext:2 Cr:0 time:3.23581e-09
Morph:(3 8) Buf:(16 8 4) Ext:1 Cr:1 1ime:2.88215e-09
Morph:(3 8) Buf:(16 8 4) Ex1:0 Cr:2 1ime:2.0516e-09
Morph:(3 8) Buf:(16 § 4) Ex1:0 Cr:1 time:1.67881e-09

Morph:(2 7) Buf:(8 4 4) Ex1:2 Cr:0 time:3.12969e-09
Morph:(2 7) Buf:(8 4 4) Exu:1 Cr:1 time:2.58566e-09
Morph:(2 7) Buf:(8 4 4) Ex1:0 Cr:2 time:1.7723e-09
Morph:(2 7) Buf:(8 4 4) Ex1:0 Cr:1 time:1.32752¢-09
Morph:(2 7) Buf:(16 8 4) Ext:2 Cr:0 lime:3.12352¢-09
Morph:(2 7) Buf:(16 8 4) Exu:1 Cr:] time:2.7229e-09
Morph:(2 7) Buf:(16 8 4) Ext:0 Cr:2 1ime:1.92684¢-09
Morph:(2 7) Buf:(16 8 4) Ext:0 Cr:1 1ime:1.55663e-09

Figure 5.17: Transient Delay Table Created by MKTBL
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5.6.1. Flexibility and Accuracy of MKTBL Transient Model

Since each entry in the transient delay table represents a separate transient analysis
of SPICE2 it can be seen that for many different patierns in different configurations such a
table is computationally expensive 10 generate. However the transient analyses are per-
formed on relatively simple circuits and it is anticipated 1hat several designers will share a
common transient delay table if they are designing in the same process. The table needs to
be regenerated only when there are major changes in the process. In everyday use a
designer or synthesis tool will occasionally need to append a new pattern to the delay
table as a less common cluster type is encountered. The current pattern file contains
around 70 different morphologies and has been found to cover a wide variety of combina-
tional circuits. Note also that MKTBL handles construction and interpretation of the
SPICE2 simulation automatically so tbat the designer may start up the program and let it
run as a background job. Anomalies encountered during execution of any SPICE2 run are

written to a logfile for later reference.

The transient delay time that MKTBL computes is based on conditioned inputs and an
output with a fanout of three. The delay time is taken to be the difference between the
50% level of the rising input signal and the 50% level of the rising output signal (Domino
functions are even). The computation of worsi-case path delay in MOSMESH is obtained
by searching recursively from the function output to the inputs and summing the cluster
delays. This superposition approach is valid because each cluster is buffered and because
the threshold switching voltage at the output is taken 1o be equal to the threshold switch-

ing voltage of the input.

The accuracy of the transient analysis of each clusier must also be justified. The pat-
tern which describes each circuit cluster type is reduced 10 a more general morphology. In
general, it is possible Lo construct mullif»]e circuits which have the same morphology. It is
clear that different circuits with identical morphologies will have different transient
responses. but Domino circuits represent a restricted class of dynamic circuits. N-channe]

Domino circuits are always precharged high: if they make a transition it must therefore be
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from a logic high to low. In fact. a simple RC model can be substituted for each FET. If
such 2 model were found to be accurate. then the aggregation of parasitic capacitances
discharging through a MOSFET. which is the MKTBL model, should be still more accurate.
In practice a simple RC model was not found to give sufficiently accurate results. However.
a model which aggregated capacitances and collapsed all MOSFETs into two series devices
was found 1o give reasonable results. Therefore., the MKTBL model, which does not alter
the number of MOSFETs. is accurate. The next section presents the derivation of a simple

model for representation of a Domino cluster.

5.7. A Simple MOS Model for an Arbitrary Mesh
of Mixed Precharged and Discharged MOS Devices

Delay calculations are process- and design-style-dependent. The transient delay
model needed here must cover Domino logic circuits. Domino logic is built entirely out of
n- or p-core devices and uses a single clock. This core of the gate may comprise an arbi-
trarily complex AND-OR logic function. The devices may or may not be precharged. on a
device-by-device basis. The problem. therefore. is 1o construct a model which is flexible
enough 10 handle these logic conditions. The model should be simple and its accuracy
comparable 1o the other process-dependent procedures in the package. In the following
presentation a MOSFET mesh is defined 10 be an arbitrary configuration of a graphical
representation of FETs which may be cyclic. Specifically. there may be more than one path
10 ground. In this way a mesh differs from a tree which has no cycles: from any given
node there is only a single ground ‘path. This definition of mesh is consistent with that

given in [horo84).

5.7.1. Approach to Solution

Two possible approaches were considered. The first approach is to simulate. via
SPICE2. those extreme cases of MOS meshes which bracket the useful Domino

configurations. For a particular layout method. termed Lhe zero-deep model. it is possible
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to construct a set of equations which can accurately predict Domino circuit delay. The
zero-deep model does not allow for arbitrary Domino mesh circuits. Instead it constrains
the circuit such that an inverting buffer is placed between each NAND or NOR function.
This constraint strongly limits the set of circuits that can be constructed because complex
Domino functions, for example an AND/OR gate. cannot be built. By simulating a range of
AND and OR gates, and by varving the ratio of external to internal gates. it is possible to
completely characterize this model. A set of four equations is used: one equation each to
predict delay versus fan-in for AND and OR gaies and two more eguations Lo predict the
effect the ratio of internal to external signals has on gate delay. Quadratic equations.
created by the method of leasi-squares. give a good fit to the data from the simulations.
The fit from linear formulae was not accurate enough for critical path prediction. In this
approach the nature of the driving gates and the loading of the driven gates may be
ignored. This is because each AND or OR gate is buffered. The bufler is of a fixed size and
its gate capacitance is considered in the circuit simulations. All inputs are assumed to be
driven by these buffers. Figure 5.18 lists results of this approach. not compensated, how-

ever, for different ratios of internal to exiernal inputs.

Comparison of Simulated Resuits with Zero—Deep Model
Circuit | Model | SPICE2 (%?’]“ — C;:;;:” Notes
1.n 13.20 15.0 -12.0% 1.8 2
2.n 18.90 20.5 - 71.8% 1.6 3
timing.n | 28.87 28.2 +23% | 0.9 4
ao.n 35.64 27.5 +20.6% 7.1 4 (23.0 reordered)
ipla.n 67.34 555 | +19.1% | 12.8 6 (from SOAR)
cla.n 91.18 93.5 -2.5% | 2.3 8 (8-bit ripple-carry)

Figure 5.18: Comparison of Simulated Results versus Zero—Deep Model

While this approach is feasible for the zero-deep model. it is too difficult to apply to
the more general arbitrary mesh problem. In general. the number of bracketing cases to be
considered becomes 100 large. and the method proves unworkable. The general problem is
to simulate an arbitrary mesh of devices under various input loads and output drive

requirements. However, for the simulation of regular structures. one can assume inputs
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and ouiputs are well buffered. Therefore one can consider the more restricted case of

modeling meshes with conditioned inputs and outputs.

This formulation still proves too complex to solve directly. Instead a simplifying
step is used. For the arbitrarily complex logic beiween two inverting buffers a two-
transistor (2—T) equivalent MOS circuit is substituted. It is then possible to simulate the
usable range of equivalent gates and produce an equation which accurately predicts delay
of the original complex mesh without baving o do any additional simulation. The crux of

this method lies in the construction of the 2—7 circuit. The derivation of the model is now

examined.

- 8.7.2. Derivation of 2—T Model from an Arbitrary Mesh

5.7.2.1. Difference between RC and MOS models of MOSFETs

Recently there have been a number of papers published on the modeling of RC-
networks [horo84] [rube83] [wyat83] [toku83] [1in84]. The goal of this research has been
10 accurately characterize gate delays and signal waveforms so that complex sets of gates
could be evaluated quickly. Typic;lly the goal is 1o produce results comparable to direct
simulation programs like SPICE2 but Wwith at least an order of magnitude reduction in com-

putation time.

For the most part these papers confine themselves Lo modeling RC trees and not MOS$
devices. The paper by Tokuda ezal. does consider the modeling of MOS inverters and
transmission gates but not more complex circuits. If it were possible 10 model a MOS dev-
ice by an equivalent RC network then the resulis of the RC modeling papers could be
exploited. Unfortunately due 10 the inherently non-linear nature of a transistor. FETs

cannot be simply translated into RC equivalents. Figure 5.19 shows two curves.
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Figure 5.19: Comparison of Two MOSFET Chains

Curve A is the waveform produced by circuit 1. Curve B is the waveform produced by cir-
cuit 2. It can be seen thal the shape of the two curves does not match. Circuit 1 was
simulated by SPICE2 with no intrinsic source/drain capacitance specified. A separate capa-
citance element was explicitly added to all source and drain nodes 10 make the comparison
more relevant. Circuit 2 was modeled in a similar fashion. The difference between the
two circuits is that the source/drain capacitance of circuit 1 is twice that of circuit 2 and
the MOSFETSs of circuit 1 are twice as wide as those of circuit 2. If the MOS device behaved
approximately linearly as Vs varied. then one would expect the two circuits to exhibit
similar waveforms since their RC time constants are identical. The faci that this is not the

case shows that a simple RC model cannot suppiant a MOS device for the purpose of this
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work.

For reference. Figure 5.20 shows two curves from RC Circuits 3 and 4.
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Figure 5.20: Comparison of Two RC Chains

Circuit 4 is related to Circuit 3 in the way Circuit 2 is related to Circuit 1. It can be seen

in this case that the shapes of the two curves maich quite closely.

Instead of approximating the behavior of a MOS device by a linear or nonlinear RC
network. a MOSFET model is used. An arbitrary mesh is collapsed into two equivalent
MOS devices. This eguivalent circuit can then be simulated. for example by SPICE2. The
MOS model may be as simple or detailed as the designer wishes. Simulation time is greater

than for an RC model. however accuracy is better. It is also possible to store results of
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various equivalent devices and interpolate between them. In such cases no simulation is

required.

5.7.2.2. Determination of an Equivalent Circuit

An example of 2 mesh of devices representing a complex Domino gate is shown in
Figure 5.21. This is the n-channel core of the 8-level parallel/serial function of Figure

5.9.

T0 PRECH
T PULLUP

A L L L

4
CRITICAL | 5 -
TO PRECH

PATH
PULLDOWN
Figure 5.21: Complex Mesh in Domino CMOS

Even though this gate contains 21 devices, only 9 directly participate in the calculation of
an equivalent circuit. These devices are connected by the heavy black line. This line indi-

catles the worst-case path through the Domino gate. In a worsti-case model all but a single
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gate in a parallel OR configuration is on and the longest series AND path is 1aken so that
from output to ground the maximum number of devices is traversed. It is assumed that
all devices are of the same length and width. The equivalent circuit devices have the stan-
dard width. The sum of the length of the 2=T devices is proportional to the sum of dev-
ice lengths along the worsi-case path. Source and drain parasitics are calculated by sum-
ming the area and perimeter of nodes along the critical path. Wide deviations in the
number of FETs tied 10 a given node will cause worse agreement between the eguivalent
and actual circuit; conversely if the distribution of FETs along the critical path is uniform.
the equivalent model will be in good agreement with the actual circuit. Figure 5.22 com-

pares simulations of the actual and equivalent circuit of Figure 5.21.

S
4
sctual circait
3
3
-]
2
2
T
equivaismt
circuit \
1 \
— =~ W
olm 120 140 160 180 200

®s)
Figure 5.22: Comparison of Actual- and Equivalent-Circuit Simulations

In this simulation all nodes were precharged: this corresponds 10 the exiernal input case

for Domino devices.
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In general. a Domino gate will have some of its gates charged and some discharged.
Whether or not a gate's source/dr;in nodes are charged depends on the gate’s driving sig-
nal. Internal signals— signals which come from other Domino circuits— must hold their
gates off during precharge. Therefore all source/druin nodes below this gate will not be
charged. Gates driven by external. or non-Domino signals. may be either on or off during
precharge. Externally driven gates just below the clocked precharge gate will therefore be
charged high. if the exiernal signal is high. For reasons of speed. and to reduce charge
sharing problems. i1 is advantageous to locate external inputs close to the Domino circuil

output and place the internally driven devices below these inputs.

The mix of precharged and discharged devices is modeled in the 2=T case by lumping
precharged devices into the proximal FET (the transistor closer to the Domino output node)
and the discharged devices into the distal FET (further from the Domino output). The
precharge/discharge ratio affects the length and source/drain parasitic calculation of the

equivalent devices. Consider the circuit in Figure 5.23.

Figure 5.23: Complex Domino Gate
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Assume all inputs are internal. In this case the precharged node (starred node) consists of
the parasitic capacitances contributed by the three n -core devices 1. 4, 6 (as well as the
p-channel pullup and the output buffer). Discharged parasitic capacitances are contributed
by the source nodes of FETs 1, 2, 3. 4. and 5 and by the drain nodes of devices 2 and 3.
The 2—T model for this circuit has a proximal FET of length equal to the length of FET 1.
The drain capacitance is three times a single FET drain, the source capacitance is that of a

single FET. The distal FET length is given by:

Lyiga = 0.9 X ZL (5.1
where i = 1. N_ Lo el devies T 1. The multiplication factor of 0.9 was determined
empirically by simulation. For the example shown the worst-case length is three so
Lyt = 1.8 X L zr. The discharged parasitics are distributed equally between source and
drain. Thus Cauree = Curain = Cuischarges / 2. In the example the parasitic is three times the
single FET parasitic.

The length and parasitic components of the 2=T devices are varied to correspond
with the mixture of precharged and discharged nodes. It is advantageous 1o place all
external devices in a cluster closer 1o the Domino output node than the internal devices.
The 2—T model. however. does not require this assumption for accurate modeling. If
internal and external devices are intermixed, the proximal device models devices and capa-
citances from the Domino output until the first internal node is reached. The distal FET
models the remainder of the devices. Thus the proximal device models at mosi one inter-

nal device (if all devices are internal. as in the Figure 5.23 case) while the distal FET may

mode] any mix of internal and exiernal devices.

5.7.3. Limitations to the 2—T Model

Dynamic circuits are prone to the problem of charge redistribution described in
Chapter 2. The 2—T model assumes that no charge redistribution problem exists. For rea-

sons of automated layout and compaction it is often more convenient 10 deal with circuits
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which have no CR problem rather than to atiempt to correct the problem. Therefore the
2—T model is useful once it has been ascertained that the circuit is CR-free. This can be
determined by summing up capacitances on the Domino output node and on the parasitic

nodes and comparing the two values as explained in Chapter 2.

A larger example, which does exhibit charge redistribution effects but which func-
tions properly, is now examined. The circuit of Figure 5.21 has a CR problem. The circuit
of Figure 5.24 has no CR problem: it represents the optimal charge sharing partition chosen

by MOSMESH and was shown previously in Figure 5.12a.

Figure 5.24: Partitioned Circuit of Figure 5.21

Figures 5.25a-d show simulation pairs of each of the four sub-functions.
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Figure 5.25a: Simulation Comparison of 2-3 AND/OR Function
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Figure 5.25d: Simulation Comparison of 4-4 AND/OR Function

One curve of each pair represents a worsti-case SPICE2 simulation of full circuit. while the
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other curve is the result of the 2—7 model simulation. For each set the product of the
RMS error in x and y between the two results is given (in volt-ns). When the RMS error is
less than 0.1volt-ns the simulation results are seen to be nearly identical. Figures 5.26a-b
show the result of a SPICE2 simulation on the full circuit versus simulation with 2=T

models.
6
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Figure 5.26a: Simulation Comparison of Full Circuiw
Input to Last Stage
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Figure 5.261x Simulation Comparison of Full Circuit
Output from Last Stage

The actual circuit exhibits a dip at the precharged node before switching. This is due
to charge redistribution. The problem is not serious enough to affect proper circuit opera-
tion: in fact. the circuit switches faster because of charge redisiribution. The 2—T model.
which assumes no CR problem. switches more slowly. This example represents an
extreme. A slightly greater charge redisiribution effect would have caused improper opera-
tion: a circuit which exhibits a smaller effect will agree better with the 2= model. The
2=T model can be adjusted to account for the charge redistribution effect by precharging
“on™ devices 10 one V, below Vpp. In this condition any charge redistribution between
precharged and parasitic capacitances will cause an immediate switching of the output
buffer. Therefore this represents the most sensitive charge sharing case. The simulation
results shown in Figure 5.27 confirm the match between the actual circuit and the model.
The precbarge waveforms are in closer agreement and the RMS error at the output node has

decreased by more than an order of magnitude.
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Figure 5.27a: Simulation Comparison of Charge-Compensated Modek:
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Figure 5.27b: Simulation Comparison of Charge-Compensated Model:
Output from Last Stage

5.8. Elimination of Redundant Clusters— MIMIC

After a collection of Boolean expressions has been processed by the delay optimiza-
tion stage of MAMBO, the MIMIC 100l is used to reduce the number of gate clusters. MIMIC
reads in the LISP-like netlist and performs a recursive matching of all inputs of each parti-
tioned cluster with every other cluster. MIMIC thus requires O (n 2) operations where n is

the number of partitioned clusters.

When substituting one gate for another MIMIC is careful 1o preserve both input signal
order and primary outputs. It is assumed that the series inputs Lo each cluster have been
sorted for optimum delay. Therefore, even if two gates have the same inputs in a series
string. MIMIC does not assume they are interchangeable. If two equivalent clusters are
found (ie. with like inputs in the same sequence) then one gale may be deleted. The choice
of gate 1o delete is based on the output signal. Clusters which produce exiernal signals

take precedence over internally used signals. External signals are part of the designer’'s
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specification. If the matching signals are both external or both internal then either signal
may be deleted. The existence of two identical external signals implies the designer has

specified two separate Boolean equations which actually perform tbe same function.

A circuit from CMOS SOAR before and after processing by MIMIC is shown in Figure

5.28.
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# charge tolerance ratio is 9.71276

((o readRFaccessAl

s

(p CPIPE1s<7> CPIPE1s < >* )

(p CPIPE1s<7> CPIPE1s <> )3)):

(03

(p pbusDwINA DSTvalid®* SRClequalDST2*
(s CPIPE1s <7>* CPIPE1s <S> )

(s CPIPE1s <7>* CPIPE1s<5>* ) )):

(Ea readRFaccessB1

s

(p CPIPE1s<7> CPIPE1s <S> )

(p CPIPE1s<7>CPIPE1s <S>) 11 )):

(o1

(p pbusD10INA DSTvalid®* SRC2equalDST2* SRC2equal16
(s CPIPE1s <7>* CPIPE1s <S> )

(s CPIPE1s <7>* CPIPE1s<5>* ) ));

(o Alzerol

(p
(s CPIPE1s <7>* CPIPE1s <S> )
(s CPIPE1s <7>* CPIPE1s<5>* ) 18 )):

(018

(s pbusDtoINA* SRC1s<4> SRC1s <3 >* SRC1s Q2 >* SRC1s<1 >* SRC1sD>*
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <S> ) )):

(o Alzeroforce

(p ‘
(s CPIPE1s <7>* CPIPE1s <S> )
(s CPIPE1s <7>* CPIPE1s < >* ) ).

(o busDiobusAa
(p 26 29 32 36 )):

(o0 26
(s pbusDtoINA®* SRC1s<4> SRC1s 3>* SRCis <> SRC1s<1>* SRCis<0>*

(p CPIPE1s<7> CPIPEI1s < >* )
(p CPIPE1s<7> CPIPE1s <> ) )):

(0 29

(s pbusD1oINA* SRC1s<4> SRC1s 3>* SRC1s > SRC1s<1>* SRC1s<0>
(p CPIPE1s<7> CPIPE1s S>* )

(p CPIPE1s<7> CPIPE1s <> ) )):

(0 32

(s pbusDtoINA®* DSTvalid opc2load* SRClequalDST2
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s <7> CPIPE1s <S> ) )):
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(o 36

(s pbusDtoINA* SRC1s<4> SRC1s <3 >* SRCls < >* SRC1s<1>* SRC1s<0>
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <5> ) )):

(o DSTiobusDa2
(p pbusDtoINA 44 48 )):

(o 44

(s pbusD1oINA* DSTvalid opc2load* SRClequalDST2
(p CPIPE1s<7> CPIPE1s <5 >* )

(p CPIPE1s<7> CPIPE1s <S> ) )):

(0 48

(s pbusDioINA* DSTvalid opc2load* SRC2equalDST2 SRC2equall6*
(p CPIPE1s<7> CPIPEls $>* )

(p CPIPE1s<7> CPIPE1s <S> ) )):

(o preadTBtoA

(s pbusD1oINA* SRC1s<4> SRC1s <3 >* SRC1s 2 > SRC1s<1>* SRC1s<D>
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <> ) )).

(o preadSWP1oA

(s pbusDtoINA* SRC1s<4> SRC1s 3 >* SRC1s > SRCi1s<1 >* SRC1s<0>*
(p CPIPE1s<7> CPIPE1s <S5 >* )

(p CPIPE1s<7> CPIPE1s <> ) )):

(o pForward1oINB

(s pbusDwoINA* DSTvalid opc2load* SRC2equalDST2 SRC2equall6*
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <S> ) )):

(o preadPCtoA

(s pbusD1oINA* SRC1s<4> SRC1s 3 >* SRCIs Q2 >* SRC1s<1>* SRC1s 0>
(p CPIPE1s<7> CPIPE1s S >* )

(p CPIPE1s<7> CPIPE1s S >) )):

# 19 cluster(s)

# Longest series string: 8 [target maximum unrestricted]

# Deepest Partition: 2 [target maximum 2]

# Deepest Buffer Hierarchy: 2

# Worst Ratioing Problem: 0.526874 [target minimum: 0.48 (Vth 2.4)]

Figure 5.28a: Delay Optimized Circuit Before MIMIC

# Deleted gates

# (o0 48

# (s pbusDwoINA* DSTvalid opc2load® SRC2equalDST2 SRC2equal16*
# (p CPIPE1s<7> CPIPE1s<S>* )

# (p CPIPE1s<7> CPIPE1s <S> ) )):

# (0 36
# (s pbusD10INA* SRC1s<4> SRC1s <3 >* SRC1s2>* SRC1s<1>* SRCis<0>

# (p CPIPE1s<7> CPIPEls S>* )
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# (p CPIPE1s<7> CPIPE1s <S> ) ) .

# (0 44

# (s pbusDtoINA®* DSTvalid opc2load® SRClequalDST2
# (p CPIPE1s<7> CPIPE1s <S>* )
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#(0 29
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# (p CPIPE1s<7> CPIPEIs <S> )

# (p CPIPE1s<7> CPIPE1s <S> ) )):

# Irredundant gates
(o readRFaccessAl

S
(p CPIPE1s<7> CPIPEls <S>* )
(p CPIPE1s<7> CPIPE1s<5>) 3 )):

(03

(p pbusDtoINA DSTvalid®* SRClequalDST2*
(s CPIPE1s <7>* CPIPE1s <S> )

(s CPIPE1s <7>* CPIPE1s<5>* ) )):

(o readRFaccessB1

(s

(p CPIPE1s<7> CPIPE1s <> )

(p CPIPE1s<7> CPIPE1s <$>) 11 )):

(o 11

(p pbusD1oINA DSTvalid® SRC2equalDST2* SRC2equall6
(s CPIPE1s<7>* CPIPE1s <S> )

(s CPIPE1s<7>* CPIPE1s <5>* ) )):

((o Alzerol
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(s CPIPE1s <7>* CPIPE1s <S> )

(s CPIPE1s <7>* CPIPE1s<$>* ) 18 ));

(018
(s pbusDtoINA* SRC1s<4> SRC1s 3>* SRC1s <2 >* SRC1s<1>* SRC1s<0>*

(p CPIPE1s<7> CPIPE1s <5>* )
(p CPIPE1s<7> CPIPE1s <> ) ).

(o Alzeroforce

(p
(s CPIPE1s <7>* CPIPE1s<5> )
(s CPIPE1s <7>* CPIPE1s<5>* ) )):

(o busDiobusAa
(p preadSWP10A preadTBtoA 32 preadPCioA )):



§5.8 166

(o preadSWPt0A

(s pbusDtoINA* SRC1s<4> SRC1s 3>* SRC1s Q> SRC1s<1>* SRC1s<0>*
(p CPIPE1s<7> CPIPE1s S >* )

(p CPIPE1s<7> CPIPE1s <> ) )):

(o preadTBtoA

(s pbusDtoINA* SRC1s<4> SRC1s G3>* SRC1s Q2> SRC1s<1>* SRC1s<0>
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <> ) ));

(0 32

(s pbusDtoINA* DSTvalid opc2load* SRClequalDST2
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <S> ) )):

(o preadPCtoA

(s pbusDtoINA* SRC1s<4> SRC1s 3>* SRC1s Q2 >* SRC1s<1>* SRC1s<0>
(p CPIPE1s<7> CPIPE1s <5>* )

(p CPIPE1s<7> CPIPE1s <> ) )):

(o DSTiobusDa2
(p pbusDtoINA 32 pForwardioINB )):

(o pForwardtoINB

(s pbusD1oINA* DSTvalid opc2load®* SRC2equalDST2 SRC2equall16*
(p CPIPE1s<7> CPIPE1s <>* )

(p CPIPE1s<7> CPIPE1s <5> ) )):

# 5 gates deleted: 14 gates in irredundant set

Figure 5.28b: Delay Optimized Circuit After MIMIC

The results of MIMIC on two delay optimized circuits are summarized in Figure 5.29.

.. Initial] | Deleted Final
Circuit Clusiers | Clusters | Clusters
~apla 19 5 14

cplal 148 60 88

Figure 5.29: Results of MIMIC Processing

After redundant gates have been eliminated the remaining gates drive a higher fanout. The
user should bear this in mind in the design of buffers. The tool does not yet automatically
increase buffer size. As a result of gate elimination that critical path will not be altered.

The goal of gate elimination is 10 reduce device count without adversely affecting speed.
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$.9. Summary

In this chaptler the delay optimization algorithms for electrical circuit design were
examined. The MOSMESH program partitions complex combinational gates according to
charge redistribution and series chain length constraints. The MKTBL program performs
SPICE2 transient analyses on the partitioned gates. MOSMESH then uses this information
to optimize the critical path of the combinational circuit. A simple two-transistor model
bas been developed to evaluate arbitrary meshes of precharged and discharged devices.
The model assumes no charge redistribution problem exisis and gives excellent results
when simulating circuits with minimal charge sharing effects. Circuits which exhibit
charge redistribution effects can be properly simulaied by the 2—7T model if the proximal

FET is precharged to0 a V, below the supply rail.

After the circuit has been partitioned into gate clusters. the MIMIC program recur-
sively removes duplicate gates. A gate is considered redundant if its inputs and function
are logically equivalent to those of another gate cluster. MIMIC does not remove clusters if

doing so would decrease circuit speed.
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CHAPTER 6

Compaction and Layout of Domino Matrix Structures

The delay optimization methods presented in the previous chapter were used on par-
titioned meshes or gate clusters. The Boolean minimization step was performed by first
translating each group of clusters that realizes a particular function into a group of two-
level personality matrices. For the topological compaction and succeeding stages in the
MAMBO package it is necessary to work with a representation that more closely resembles
the finished layout. The tool MKMAT is used to construct the initial mairix structure
from the list of gate clusters. The three remaining programs to be described. TWIST,
TINKER. and TAILOR, produce matrix-like structures with increasing detail. At the topo-
logical compaction level only connectivity information is needed. while TAILOR. the
automated layout tiler, deals with mask-level geometries. This chapter examines circuits

at their topological level.

6.1. Conversion of Partitioned Circuit to Matrix Structure— MKMAT

TWIST accepts as input an uncompacled connectivily matrix and produces a com-
pacted connectivity matrix. The tool which constructs the initial connectivily matrix is
MKMAT. MKMAT tries 10 create an efficient representation of the partitioned circuit. A

fragment of an adder circuit, which will serve as an illustration. is shown in Figure 6.1.
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Figure 6.1: Adder Fragment, Input to MKMAT

The fragment contains 18 gate clusters and 30 distinct signals (inputs. outputs. and inter-
nal. numbered signals). As a result of running MKMAT the output shown in Figure 6.2 is

constructed.
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Figure 6.2 Adder Fragment, Output from MKMAT
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In this figure external and internal inputs and oulpuls run horizontally. forming rows of

the connectivity matrix. The columns of the matrix are gate clusiers. The row at the top

of the matrix holds header information. The character s declares thai the gate in this

column is series or AND in nature at its top level. Similarly the characier p declares that

the cluster in this column is parallel or OR in nature at its top level. The character o indi-

cates a gate-column output connection 1o a signal-row: the . character indicates that signals
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are bussed through this tile without connection to the current gate. In this small example
all but two clusters are single-level in nature and therefore can be adequately described by

a single column. For the two clusters:

(0o 4
(s 14
(p b0 a0 ) )):

(07
(p
(s b0 a0* )
(s b0* a0 ) ));

of Figure 6.1 it would be necessary to allocate 1wo columns each 10 realize their functions
following the rule that each column is either AND (s) or OR (p) in nature. However two-
level expressions are permitied in each gate or column. Higher level expressions are
currently forbidden. The addition of the character ~ ., interpreted 10 mean toggle. allows
two-level logic to be expressed symbolically. For example. referring to Figure 6.2, the
two-level gate with output 4 and inputs /4. 0. and a0 is shown in the fifth column from
the left. The column realizing the gate is series al the top-level, indicated by the beader
characier. After a series transisior placement at signal J4 the gate toggles 10 the parallel

type at signal a0. The transistor at 80 is also parallel so the gaie type remains unchanged.

Note that being able to generate two-level clusters is not a guarantee that all such
clusters can be placed in a single column. Again referring 10 Figure 6.2 it can be seen that
the gale with an output of 7 takes up two columns. Two columns are used because the
two series groups or legs of the gate made up of {a0 50*} and {50 a0*}, respectively. inter-
sect one another. It is not possible 1o interconnect all the devices in each of the series
groups without intersecting devices in another group. It is sometimes possible 1o work
around this problem by reordering the signal rows. Figure 6.3 shows the result of running

MKMAT on the example of Figure 6.1 with additional ordering constraints.
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Figure 6.3: Output from MKMAT with Additional Constraints
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6.1.1. Constraints Placed on MKMAT by MOSMESH
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It is not possible o sort signals in general so that the number of columns per gate is

minimum. As a result of delay optimization performed by MOSMESH the ordering of sig-

nals in series gates or series portions of two-level gates is constrained. MOSMESH orders

signals so that the fastest changing ones are closest to the gale cluster output. Even

though a gate may not be on the critical path of a module il is currently considered
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constrained. However, external signals which by convention begin with a non-numeric
character, are all assumed to change (if they change at all) at time ¢=0. This rule is
enforced by design in Domino logic. In the adder fragment example the delay optimization
was turned off to show the effect of reordering rows. When delay optimization is in eflect
the placement of internal signals is considered immutable. The ordering of gates is not

constrained by MOSMESH.

The designer is not allowed to specify the ordering of external signals. It was felt
that the optimization for delay more than compensates for this. The circuil designer may.
however, specify on which side of the array he wishes the signals to be accessible. This

specification will be described in detail later in this chapter.

There is one more condition which forces MKMAT 1o use multiple columns for gate
realization and that is multipie instances of an input signal. Assume one has the following

gate:

(o output

P
(sab)(sac)(sad))):

Though this is a two-level structure it could be realized as a single column if all input sig-
nals were distinct. For this gate, however, signal name a is repeated. Rather than dupli-
cate a signal line, which introduces routing problems to the module. an extra column is
added. The rule is that all signals realized in a single column are distinct. The gate shown

in the example would thus require three columns.

The above example factors easily. Expressed in LISP-like notation the expression may

be rewritten:
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(o output
(sa
(pbecd) )

The factored expression not only needs fewer devices but it remains two-level. In general.
pulling out one or more factors of a function will increase the depth of the expression. In
MAMBO the rule is that factoring can be done when the resulling expression’s depth does

not exceed two.

6.1.2. Valid MKMAT Structures

While the output of MKMAT is limited to clusters two levels deep. it can construct
some three level partitions. For simplicity. because not all three-level partitions can be
formed. none are permitied. There are four primary structures and concatenations thereof
that MKMAT may generaie. Examples of the four ‘primary structures in schematic
representation with their corresponding connectivity matrix shorthand are shown in Figure

6.4.
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I(D
L

In order to create a regular structure which may be densely packed by folding algorithms
only these four basic structures are permitted. For reference Figure 6.5 shows two three-
level structures as a designer might envision them and as they would look in the matrix
layout style. While the structure in Figure 6.52a can be built with the current system. the

layout shown in Figure 6.5b is not amenable 1o structured layout.
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Figure 6.5: Three-level Domino Structures

If special wide cells were built 10 accommodate three-level layouts topological compaction
would be complicated by the different size cells. On the other hand, if cell sizes were
standardized they would have 1o accommodate the most complex structures. which would
mean that those cells housing si:gple structures. usually in the majority, would waste
area. It is also pointed out that the notation system of {s po~ .} does not extend beyond

two levels.

6.1.3. How MKMAT Works

MKMAT has three major sections. Aftier parsing the input netlist and storing it in a

tree data structure. the tool builds a list of distinct signal names. This includes not only
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external inputs and outputs but also internal. machine-generated signal names that feed

from one cluster to another. Each signal name will be represented as exactly one row in

the output matrix.

The second section of MKMAT builds a row constraint matrix. The constraints in
this matrix are of two types: hard constraints which are inviolable and which are imposed
by prior delay optimization and optional soft constraints which, if obeved. may result in a

more compact matrix. with fewer columns. The expression:

(o001
(s1234)):

produces the constraint matrix of Figure 6.6.

Figure 6.6: Cycle-Free Constraint Matrix

The x’s indicate hard constrainis imposed by the series ordering of internal signals. The
matrix indicates that rows 4 and o/ may be placed without constraint. Signal 3 can only
be placed after 4 has been placed. Likewise signal 2 can only be placed after signals 3 and
4 have be positioned. It can be seen that eventually all rows will be placed. In contrast.

the two eguations:
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(o001
(s1234)):

(002
(s2134));

will generate the constraint matrix of Figure 6.7.

Figure 6.7: Cyclic Constraint Matrix

This matrix contains a cycle. The hard constraints at positions (2,J) and (7,2) of the
matrix indicate that row / must be placed after row 2 but that row 2 must be placed after
row 1. The delay optimization tool ensures that such a case cannot occur. If MKMAT

detects cycles a faial error is generated and the program exits. In this case the message is:

sort_signals: faial errur: Signal 2 is involved in cyclic constraint.

Finally. MKMAT can also generate soft constraints. The input:

(0 o1
(p
(s12)(s34))):

will create the constraint matrix shown in.Figure 6.8.
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Figure 6.8: Matrix with Hard and Soft Constraints

The o's indicate soft constraints. If these constraints are followed signals / and 2 will be
placed before signals 3 and 4. This guarantees that the gate can be realized in a single
column. However this is not the only configuration that gives a single column result.
Since the general problem of optimum placement of groups for best packing is O (n/) where
n represents the number of signal groups. and all that is really necessary is that signals {7/
2} and signals {3 4} form contiguous. disjoint groups. by finding a single solution through

the use of constraint matrices. MKMAT reduces computation time.

The last step in MKMAT is to determine the depth of each individual cluster. Clus-
ters with a depth of one can be directly translated into a single column. For gates with a
depth of two MKMAT determines the number of columns the gate will require. It does
this by finding the upper and lower extremes of each group or subclustier of signals. A
subcluster is an atomic expression— either (s sig,...sig,) or (p sig;...sig,). Once the
extent of each subcluster is calculated the well-known “lefi-edge” algorithm [hash71] can
be used to find the optimum packing. After the gates have been placed in an output struc-

ture a print procedure creates the actual character personality matrix.

6.2. Algorithms for Topological"(.:ompaction— TWIST
TWIST reads tbe array generated by MKMAT and produces the potentially compactied
array in the same format. To indicate where rows and columns have been broken. extra

information. in addition to the matrix personality. is produced. TWIST has two modes of

operation. It may be used as part of the MAMBO pipeline like the rest of the tools men-
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tioned here or it may be used interactively. In interactive mode the designer may enter a
personality matrix directly 1o try out a configuration or input may be read from a file. In
either case, when TWIST is used imefactively the designer may manually fold rows and
columns 1o create the compact structure he wants. The remainder of this chapter will
examine TWIST running as part of a pipeline. In this mode TWIST automatically folds as
many rows and columns as possible, though the user still controls the sequence of fold-
ing— row- or column-first. The designer may also specify on which side external signals
must be brought out. Signals may be made available on two sides of the matrix as bus-

through connections.

TWIST implements simple column folding and multiple row folding. The buffering
and precharge devices are contained in a single cell and may be placed either on the top or
bottom of the multi-level array. The left and right boundaries are reserved for
input/output access 1o/from the module by external signals. Since the buffer cell can only
be placed at the top or bottom of the module. only simple column folding is allowed. The
term simple folding means that only two terms may be folded into one. Rows may be
multiply folded. While external signals can only be brought out on the left and right
sides of the module, internal signals joining one cluster 1o anotber do not need 1o touch the
module boundaries. Thus it is possible to fold an arbitrary number of row signals into a
single physical row.

The ordering of signals is significant. Signals are ordered relative 10 the location of
the output buffer. When columns are folded the column on the botiom of the array is
inverted. The buffer is placed along the bottom edge of the array and the ordering of sig-
nals that contact the flipped gate must also be inveried. The ordering of these signals is
recorded in a row ordering matrix or rom. The necessity 10 invert or “flip” constraints
when a column is folded differentiates the folding of these arrays from other structured
arrays. like PLAs or static gate matrices. The consequences of column inversion are exam-

ined more closely in the column folding heuristic presenied below.
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The methods used to produce simple column and multiple row folding are now
explored. The core of TWIST consists of three basic steps. These are: 1) selection of trial
folding candidates; 2) detection of folding cycles: and 3) construction of the folded

matrix. These topics are the subject of the nex1 three sections.

6.2.1. Selection of Trial Folding Candidates

As mentioned above. TWIST may fold either rows or columns or both. In pipeline
mode. TWIST either creates a complete set of row folds and then attempts column folding.
or tries column folding first and row folding second. In interactive mode the user has finer
control: he mav elect to fold several rows, then fold several columns. and then try row
folding again. The beuristics employed are order sensitive and row-after-column folding
will in general produce a finished module of different aspect ratio than column-after-row
folding. The designer may prefer a tall. thin module 10 a shori. squat one. TWIST uses a
“straight through” algorithm for row folding and a slightly more complex approach for

column folding.

6.2.1.1. Row Folding Heuristic

Because multiple row folds are allowed. a relatively fasi heuristic was needed 10
eliminate the many folding possibilities in the often-sparse matrix. Figure 6.9 lists the

row folding heuristic in pidgin-C.

o
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if (Cycle.cfm or Cyclexfm or Cyclesom) {
Cycle.stop = TRUE;
return (stop);
} else {
new_try = get_right();
if (new_try is NOT_SET) {
Cycle.stop = TRUE;
return (stop);

}
store(new__try);
new_try = get_left();
while (new_try is NOT_SET) {
reset (row vector);
reset (external conmstraints);
new_try = get_right(); /* Get a new right element for pair */
store (new_try);
if (new_try is NOT_SET) {
Cycle.stop = TRUE;
return (stop);

new_try = get_left();

}
store (new_try); /* instail left element of latest row fold */
return (new);

Figure 6.9: Row Folding Heuristic

This code fragment chooses the next pair of row folding candidates. Immediately upon
entering the procedure cycle checking is performed. There are three possible types of
cvcles: each of them indicates that further folding is not possible. Cycle.cfm indicates the
presence of a cycle in the column folding (or intersection) matrix. Likewise. the rfm flag
indicates a cvcle in the row folding (iniersection) matrix. The final flag. rom. checks the
row ordering matrix. If any of these flags are TRUE the row folding procedure terminates
after setung the stop flag. When the calling procedure becomes active again it detects that
the stop flag is TRUE. The last consistent state of the matrix (ie. with no cvcles). saved

previously. is resiored and row folding is declared done.

If none of the cycle flags are sel the “"best” next right folding element of a row pair is
selecied by procedure ger_right(). The “besi” right element is defined as that element with
the rightmost leftmost non-DOT character. This is the row which has the shoriest exient
from the right edge module boundary to the left. The idea is o atlempt a fold while dis-

turbing the current matrix structure as little as possible. Thus the assumption is that the
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initia] ordering is reasonable. In fact this is the case. since. as a result of previous delay
optimization, signals which participate in the same function will be grouped together. In
the case of a tie. two or more rows with identical left exients. that row is chosen which
has the fewest non-DOT elements in columns not already used by previous folds. The
notion here is to introduce as few new constraints on the remaining unfolded rows and
columns as possible. Elements in columns used in previous folds are already constrained
and further constraining these columns restricts future folding possibilities less than con-
straining unfolded elements. The ger_right() procedure respects the designer’s external sig-
nal constraints. The chosen row may have already been folded previously. Signals which
must be brought out on either side of the module are marked here as terminating on a
module boundary:; the procedure ensures that signals which must terminate on the right
side are not internally buried in the array. A signal which must be brought out on the left
side may be brought out on the right side as well. Such a signal might be used as a bus
through. If all right side signals have been used. ger_righs() returns with NOT_SET, the
matrix is taken to be fully folded. the stop flag is set. and the procedure terminates. If a
right row element is chosen successfully it is stored and procedure ger_left() is called.
Get_Lleft() chooses a row which not only is disjoint from the right elemen1 but also does
not overlap it. The choice of left row is guided by the position of the right row. The left
row closest to the right row which does not overlap it is chosen. The procedure ger_lefi()
searches in widening oscillations about the right row position. Ger_left() also checks boun-

dary conditions in the same manner as ger_right( ).

If get_left() can find no row to match the current right choice then the right element
is unfolded. ger_right(! is called ‘again. and the procedure for finding a left element is
repeated. Eventually. either a {left. right} pair is found or all rows have been examined as
choices for right rows. In the latier case the stop flag is set and the folding algorithm ter-
minates. If the selection of a new folding pair is successful the coordinates of the new pair
are entered into the state vector and the folder returns to its calling parent. Row folding

is straight through: it proceeds from an initial matrix to a final placement without
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exploring alternate folding paths. If a rigbt or left row choice is unacceptable other possi-
bilities will be tried. but once a cycle is introduced the procedure terminates. By contrast
an exhaustive approach would push back cycles to the initial unfolded matrix and keep
track of the largest number of folds obtained by doing a depth first search on all valid

folding combinations.

6.2.1.2. Column Folding Heuristic

Typically. fewer columns than rows can be folded. Also. the number of rows will
generally exceed the number of columns since each column has an output which runs on a
row either to the module boundary or to the input of another gate. Thus the number of
rows is equal to the number of columns at minimum, and in addition there must be at
least one external input. so row count exceeds column count. However, some gates take
more than one column 1o realize. There may be a single function (and therefore 2 single
output) which spans an arbitrary number of columns. Currently the column folding algo-
rithm leaves multiple-column gates alone. For these reasons and because only simple fold-
ing is allowed a more detailed column folding algorithm is employed. The column folding
algorithm attempts to break cycles and continue folding until all possibilities from a given

initial choice are exhausted. Figure 6.10 lists the column folding heuristic in Pidgin-C.
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if (Cycle.cfm or Cycle.rfm) {

Dew_try = get_top();

if (pew try is NOT_SET) {
Cyclesiop = TRUE;
return (deleted);

} else {
store (new_try); /* Substitute ons fold for another, update state vector */
return (stop);

}
} elif (Cycle.som) {
new_1ry = break_intra():
if (pew_try is NOT_SET) {
if (break_inter())
new_try = get_top();
if (new_try is NOT_SET) {
Cyclestop = TRUE; /* Delate an old fold */
return (deleted);
} else {
reset (cov);
store (new_try); /% Substitute one fold for another, update state vector ®/
| return (stop);
| else {
Cyclestop = TRUE; /* Delete an old fold */
) return (deleted);
} else {
pflist— >element = new_try; /* Flp a single column, enzer it irnto flip list */
return (stop);

} else {
if (flip_list ismt NIL) {
store (pflist— >element);
new_try = get_top();
#f (new_try ism NOT_SET) {
pflist— >element = NOT_SET;
store (new_try);
return (new);
} }
new_try = get_bottom();
if (new_try is NOT_SET) {
Cyclestop = TRUE; /* No more folding possibilities so give up */
return (stop);
store (new_try);
new_try = get_top();
if (new try is NOT_SET) {
Cyclestop = TRUE; /* No more folding posstbilities so give up */
return (stop);

store (new_try); /* Add a new folding pair */
return (new);

Figure 6.10: Column Folding Heuristic

Immediately upon entering this code fragment ¢fm and rfm cycles are checked for. If at
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least one of these cycles exisis then the 10p gate in the last attempted foid is deleted and
perhaps replaced. This gate must participate in the fold since the column procedure
always starts with a consistent state. The procedure ger_top() looks for columns which are
disjoint from the bottom folding partner. From this set of columns a column is chosen
with the highest lowest non-DOT element. This is analogous 1o the row folding procedure.
where the idea is to cause the least disturbance to the current matrix. The only difference
here is that the column folding pairs may overlap. that is the top element of the botiom
column may exiend past the botiom element of the top column. Again, if there is a tie for
the shortest downward extent. the chosen column will be the one with the fewest non-

DOT elements that do not already participate in previous folds.

If ger_topl) rewurns NOT_SET then no more top folding candidates exist: the last top
fold is deleted, the stop flag is set and folding terminates. If a new top element was found

it replaces the last top element.

If no ¢fm or rfm cycles exist but a rom cycle does exist then the algorithm atiempts
10 break the cycle. Cycles are caused by two different types of constiraints. intra- and
inter-column. and different methods of attack are used to break each. An intra-column
constraint is caused by a signal ordering conflict between top and bottom elements within
a folding pair. For example. the top element of a pair may demand that signals be ordered
{foo. bar] while the bottom element requires {bar. foo]. All bottom elements have had
their constraints inverted at this time. Intra-column constraints. if they exist, are fixed
before inter-column constraints. Procedure break_intra( ) attempts to find a veriex in the
current cycle which is caused by a single botlom element. A veriex in the cycle graph
corresponds 10 an x in the rom. It is possible that more than one column is responsible for
a vertex in the cycle. lf there are several vertices with a constraint multiplicit‘y of one
then the column that has its elements most compressed toward the bottom of the matrix
is removed. The chosen column will be added to the flip_list. This is a list of columns
which have been inverted but which currently have no matiching top element. The column

with most elements compressed toward the bottom causes least rearrangement of the
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matrix since this column will now have its output buffer placed along the bottom of the
matrix. If no vertex is found which has a multiplicity of one. break_intrafl) returns

NOT_SET.

Instead of removing a column from the folded pairs an attempt is made here to main-
tain those columns already folded by flipping additional columns. Flipping columns does

not increase the number of folds but it may allow previous folds to be retained.

If break_irura() was not successful in finding a column to flip the procedure
dreak_inter() is called. Break_inter() ascertains whether the last top folded element is
involved in the current cycle. If it is not then the cycle must be caused by another, ear-
lier. fold. Rather than unfolding columns 1o locate the cause of the cycle. the stop flag is
set and the column folder terminates. However, if the last folded top element does parti-
cipate in the current cycle it is deleted and get _top{) is called to replace it with another
column. If ger_top() finds no eligible columns the stop flag is set and the folder ter-
minates, otherwise the new folded column is substituted for the old. and the state veclor
is updated.

If no cycles exist when the code fragment of Figure 6.10 is called then a new fold can
be created. First an attempt is made 1o fold a top column with currently unfolded botiom
elements on the flip_list. If the list is not empty and a top fold match is returned by
get_topl) then the state vecior is updated and the algorithm returns 1o the calling pro-
gram. If there are no items in the flip_list or no suitable top columns can be found then
the procedure get_borzom() is called. Ger_bottom() searches through the set of unfolded
columns (recall that only simple folding is permitted) for a column with the lowest
highest non-DOT element, in other words. the column most compressed toward the bottom
of the matrix. If there is a tie, then the column with the smallest weight is chosen. The
“weight” of a column is computed as follows: DOT elements count 0. PARALLEL and OUT-
PUT elements count 1. and SERIES elements count 2. These values reflect the number of
constraints each element causes. SERIES elements not only cause constrainis between

columns. they also dictate signal ordering within a column. Since the botiom element of a
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folding pair will have its constraints inverted the smaller-weight algorithm attempts to

minimize the number of new constraints introduced.

If ger_bortorn() finds no unfolded columns among gates that span a single column #
returns NOT_SET. stop is set, and the folder terminates. If a botiom element is found the:
get_top() is called 1o try to find a match. Again. if no match is found. stop is set and th:
folder terminates. If a new folding pair is identified the state vector is updated and the

column folder returns to the calling program.

The cycle—checking algorithm is run in concert with the folding selection algorithms.

The next section describes the cycle detection algorithm and give bounds on its complexity.

6.2.2. Matrix Representation of Gate Matrix Folding Problem

This section considers theoretical aspects of the topological compaction of the multi-
level structures produced by MKMAT. The algorithms presented here have been imple-
mented in TWIST. De Micheli [demi84] presented a graph theoretic interpretation of the
general multiple folding problem for PLAs. The wc;rk detailed below describes a similar
approach based on that of De Micheli but in matrix form and tailored 1o particular aspects

of multi-level matrix (MLM) structures.

6.2.2.1. Problem Statement

Given a connectivity matrix. like that produced by MKMAT. construct column and
row intersection matrices which indicate which columns and rows. respectively. can be
merged. From the intersection matrices determine what folds are implementable to give a
minimum cardinality (area) Ml..M. The connectivity matrix may be translated into a more
abstract form. This abstract form closely resembles the AND piane personality matrix of a
PLA. Figure 6.11 presents an example personality matrix. A device placement, shown as a

1. indicates a connection between the ith row and jth column. A 0 indicates no connection.
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ANEWN -

Figure 6.11: Personality Matrix

A column-inlersection matrix indicates which columns have intersecting row contact
sets. A row-intersection matrix indicales which rows have intersecting column contact
sets. Hachtel [bach80] presented the same information in graphical form. Figure 6.12 is

the column-intersection matrix for the example in Figure 6.11.

Figure 6.12 Column Intersection Matrix

The x's indicate which columns intersect. The matrix is symmetrical about the

{0.0}/—(nn) diagonal.

6.2.2.2. Folding Algorithm

Folding candidates are chosen subjecl to extlernal constraints imposed by the prior
delay optimization stage and by the designer. In addition.. folding candidates must be dis-
joint. This rule is enforced by the intersection graphs. Another requirement is that the

folding candidates must not create a { —cycle. This requirement is examined below.
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The condition that two unfolded candidates be disjoint is enforced by the x's in the
intersection matrix. A folded candidate may be folded with another folded or unfolded
candidate to create a multiply folded result. In this case all folding candidates must be

disjoint from all other folding candidates.

There are three different cases of {—cycles. Cycles are potentially introduced when
folding candidates are entered into the column folding matrix (cfm). The x—axis of the
cfm is defined as the from-axis and the y—axi.s as the ro-axis. If column p is to be folded
on top of column ¢ the from-axis is p. the l0-axis is . A potential fold is entered into the
cfm at (p.g). Since the fold bas a “polarity”. once the column intersection matrix has fold-

ing candidates il is no longer symmetric and it becomes a column folding matrix.

The first cycle case is indicated by the matrix:

10110 b ) b 4 x x
20100 > S 4 oxXX
31001 X X0 XX O0
41000 b 4 x x X
1234 1234 1234

Figure 6.13: Case-1 (Simple) { —Cycle

The svmbo!l o indicates a requested fold. Since it does not fall on an x it is necessarily dis-

joint. The cfm is no longer diagonally symmetric.

Remark:
(simple case)
Given folds a1 CFAM(i.j) and CFM(mna) if CFM(m.j) and CFM(in) are x then a
simple case-1 {—cycle exists and the MLM cannot be folded.

(general case)

Or. in general. given folds at CFMIi.j) and CFM(m.n) for (i,j) and {m.n) chosen
from the set of disjoint columns then a case-1 {—cycle exists if vertices
CFM(m.j) or CFM(i,n) chosen from the set of intersecting columns induce a cycle
with the vertices alternating disjoint. intersecting, disjoint and so forth.

An example of a complex case-1 cycle is shown if Figure 6.14.
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1 0000000101 1: x x XXX x

2 0000010000 : x x x

3 0100010100 3: x x x---0

4 1010100000 : x-0 1

S 1000000010 5: x x | x 1

6 1000100000 s x X ! X X-X-0

7 0100000000 O { | xx |

8§ 0000000100 8: x | x x | x

9 0001000000 HE & Q=== o==-- x

101000011000 10: x x
12345678910 123456178910

matrix has at least 1 cycle
Figure 6.14: Case-1 (Complex) {—Cycle

Case 1 corresponds to the x—cycle case of De Micheli [demi84]. In Figure 6.13c the top-
bottom ordering of the requested folds of Figure 6.13b has been altered. Now no cycle

exists and the fold is said 10 be implementable [egan82].

The case-2 {—cycle is shown in Figure 6.15:

1010 X [, x
2011 0XX 00X X
3010 b 3 4 00X X
4100

123 123 123

Figure 6.15: Cases 2 and 3 {—Cycle

Remark:
Given folds at CFM(i,j) and CFMImn)if i = n and CFM(m,j)is x or j = m and
CFM(in)is x then a case-2 {—cycle exists and the folds cannot be impiemented.

A case-2 cycle is a multiple folding reguest (ie. more than two logical columns are folded
into a physical column). A case-2 cycle is detecied in tandem with case-1 {—cycles. This

type of cycle has one or zero undirected edges. Such a cycle cannot be broken by
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reordering the fold. or by breaking up the multiple fold into several simpler folds. In

fact. breaking up this fold into its components yields a case-3 { —cycle.

Figure 6.15¢c shows a case-3 {—cycle oblained by fracturing the fold 2—J—3 into its

two parts: 2—/J and 3—1I.

Remark:
Given folds at CFMii.j) and CFM(mn)if i =m and CFM(jn)isxor j =n and
CFM(im} is x then a case-3 { —cvcle exists and the folds cannot be implement-

ed.

Note that case-3 folds are parallel to a matrix axis. The presence of a case-3 cycle indi-
cates that multiple folds emanate from or terminale in a particular folding candidate.
Because case-3 cycles are in-line a special consideration must be made to detect them.
Either a cycle-{7 2} or a cycle-3 check is performed. but not both, so the order of the

cycle—check algorithm is not increased.

The only way 10 break the case-2 and case-3 cycles is by removing a requested fold
from the matrix. If the 2—7 fold were removed in the examples above both case-2 and

case-3 cycles would disappear.

6.2.3. Bounds on CFM Construction and Cycle Checking Algorithm

The construction of the column intersection matrix requires O(c?xr ) operations
where ¢ represenis the number of columns and r represents the number of rows in the
MLM. This is an upper bound. The algorithm is as follows: Compare each column C, with
every other column to check for intersection. The intersection check is performed by and-
ing the row entries of the columns under test. If the sum of the bits of the row-wise and
is non-zero then the columns in question intersect. The anding requires r operations. Of
course. if it is performed serially. as soon as an intersection is found the process may be

halted. Since the column compare procedure is commutative (checking column C; against

c2

3 tests must be performed. Thus the total

C..} is the same as checking C, ., against C,)
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number of steps is O(c?Xx 7 ) in the worst case.

The cycle-checking algorithm will now be shown to be O (f 2) where f represents the
number of trial folding candidates. The argument is as follows: Assume a set of folding
candicutes F. To detect cycles one must ascertain for each f, in F whether it forms any
cycles with any other element or elements in F. To do this an empty link list is created
and some first element is inserted: the element is marked as used. Each remaining, unused
element is then compared against the list. If the candidate adds 1wo links 1o the elements
in the list (corresponding 10 two x's between o's in the CFM) then a cvcle exists and the
procedure terminates. If the folding element adds no new cycles it is temporarily dis-
carded. If the element adds one link it is added to the new list and marked. This process
continues until all elements are marked or unti] all unmarked elements are compared
against the link list. Each time a complete pass of the folding candidates finishes the link

list becomes the new list and the new list is set to nil.

Since remaining unmarked elements must be checked against a list each time the list
is updated. O (f ?) operations are needed. At the end of each pass some number of candi-
dates will potentially remain unfolded. These are the elements which were discarded ear-
lier. For these unmarked elements the same process is required to check for cycles. It thus
appears that the algorithm is O(f ) overall. This is. however. not the case, as is now
shown. Suppose there are k partitions of folding candidates. A partition is a singly-linked
set of folding candidates. Suppose. also. that a particular partition requires p passes or
separate new lists 10 generate. Each new list represents a subcluster of linked candidates.
Then the number of operations per partition is equal 10

IE, n, X(n -jzzin, ) " (6.1)

i=1 i=l
Where n is equal to [ . the total number of folding candidates and n; represents the
number of candidates in link list i. Thé In, term represents those candidates which have

already been chosen and are therefore used on previous link lists. The expression can be

rearranged:
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n.Zn - i nin, 6.2)
=1 =1 =1
Clearly
-% Thn, <n? 6.3)
=1 J=

because I, £n by definition. The toial number of operations is the sum over k¥ paru-

tions: In, . By the “triangle theorem™:

1=t izl 2
Tn?<(In) (6.4)
=] is)

Thus an upper bound on the complexity of the cycle-checking algorithm is O(f2). It
remains only 10 demonstrate the goodness of this bound. There are two exireme cases:
either all candidates can be folded and there are no cycles or all candidates combine to
form a single. complex cycle. In the former case there are [ folding lists but only f checks
are required of each list. since all candidates are distinct. Thus this case is O(f 2). In the
latier case the construction of the single folding list requires O (f ?) operations but at the
end of the process all elements have been marked. so the process terminates. In addition. a

cycle has been found. For this latter case.

(}' -i) (6.5)

I Mll

operations are required. which is O(f?). Therefore both exireme cases exacily fil the
bound and hence O(f 2) represents a tight upper bound on the complexity of the cycle-

checking algorithm.

6.2.4. Construction of the Folded Matrix

The final stage in TWIST is the consiruction of the ouilput matrix. In the cycle-
checking phase it was determined whether or not a solution exisied: at this point an
acceptable solution must be found.

A solution (in general there will be more than one) which satisfies the folding

requests is constructed by building constraint matrices. One matrix is built jor column

constraints. another for row constraints. These consiraint matrices are exactly analogous
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to the constraint matrix used by MKMAT 1o construct an initial signal (row) ordering. For
the folded matrix a slight elaboration of the consiraint matrix is needed. Row folding
imposes constraints on column ordering. column folding imposes constraints on row order-
ing. In addition in the column constraint matrix. for example. where two columns are to
be folded into one. the constraints on both (unfolded) columns must be satisfied in order
to properly place the single (folded) column. Similarly all the constraints on each of the
rows that are 1o be folded together must be met simultaneously for the folded row to be
properly placed. Folded rows and columns are placed by the constiraint matrices as a
group. The output consiruction procedure creates the folded matrix by referring to the
constraint matrices. Where there is latitude in column or row placement. topmost and
lefumost slots are chosen. respectively. This results in the now emptly exira rows and
columns being pushed to the edges of the matrix. In the fina] printing of the matrix these

elements are trimmed away.

It was shown in the previous section that the cycle detection algorithm is O(f ?) for
/ the number of trial candidates in the c¢fm and rfm or folding constrainis in the rom.
The constraint checking procedure is O(n?) where n is the number of rows or columns in
the constraint matrix. Thus it can be seen that if the input matrix has many folds the
constraint matrix yields a faster check on the consistency of the matrix. For the ¢/m and
rfm. f will always be less than the number of columns or rows. by definition. In the
rom. however. where f is the number of constraints it is quite possible that / exceeds the
row count. since a single column may introduce many rom constraints. Therefore the con-
straint matrix algorithm is used as a pre-check for cycles in the rom. The constraint
matrix procedure only asserts that a cycle must exist. it does not provide any information
about the cycle or cycles. Therefore. once it is known that a cycle exists. recursive cycle-
checking procedures are called 10 find the cycle's vertices. Such information is necessary in

order to attempt to break the cycle.
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6.3. Examples of Row and Column Folding

The folded matrix is built from the same set of characters as the input, unfolded
matriz. For clarity in display. the uppercase characters {S P O} are employed to represent
SERIES. PARALLEL. and OUTPUT devices. respectively, in the botiom element of a folded
column. The fold locations are indicated by additional information displayed on the edge
of the matrix. Figure 6.16 shows an unfolded. unconstrained multi-leve] matrix. part of
an adder circuit, in both personality matrix and mask-level form. Mask-level generation

is described in Chapter 7.

new 27 15

pssssssssp.ssss

cl tesscecceBeccB.8 “ e T e e T
cl® cecencescecBoS. .llr'g'_.‘lv‘ei-llir'jt ';'.':' ;
18 0.’0.0.......00 r:, e .‘} q o
20 eoeBecccceeeODee : e ".;m:

28 ceceeeB80cconcoe i e :

c2 ceccecBecesc8S. i t
14 ceceS8csscecOecse

16 eS8cecscaccssssO

c3s* e88 .ccccccosSee

bo ce88 ceee cseee

cin . T

bo* cesecaeBes caes

c2s T I XY

fo L Y

1 PO.coceccccccns

2 PeOcccccccccnns

3 PreOcecccaccnas

4 p...o..‘.‘.....

6 PeeveOceccccanse

10 PoeceeOccccccecs

ll p.....‘...‘...'
12 p.o.ol..!....Q.

a0 e8.8PrccccB.oen
15 cecceBeeOacaccs
7 cecceBecaOecacs
c3 cececeBeSceBane
a0* eeeccceBeBacacs 30 1B

Figure 6.16: Unfolded Unconstrained Matrix
(a) Personality Matrix (b) Mask-Level Layout
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This MLM has 27 rows and 15 columns. The term “unconstrained” means that the
designer has not imposed additional constraints on the routing of exiernal signal lines.
One would expect a betier compaction with an unconstrained matrix compared to the same
example. constrained: this is illustrated in the examples that follow. Figure 6.17 shows
column folding and then row folding for the unconsirained input case. This example was

produced by letting TWIST first compact all columns and then attempt row compaction.
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[

folded 23 11

$33S3p.8SSS

cls® e8S.cce8cas cin(8)
cl 8..88..08.. 28(8)

c2* $.5.3 .S... b0*(6)
14 Y. P B

c2 e8e8.00e8..

18 eO0cecoceceseS

c3 $.8cccccS..

7 eSeeeeDeenn

1§ 0Sccceccoce

a0 §$.S..8...p.

c3* S..8.c00048

bo eeS.i .o S

20 es80ceeecne

12 c..P..8s... a0*(7)
11 S -

10 eeePeeeeOee

6 OPicecees

4 coesPeecesO.

3 O.w.....‘.

2 ceeePeccecas0

1 0..P.......

f0 PR o TR

16 S.¢c:0cceece

sssp
(10) (8) (10) (14)

Current column folds/flips:
(14,6) (13,1) (9,2) (12,4)
Current row folds:
(c1%cin) (c1,28) (12,a0°) (c2*,b0*)
Signals brought out to the right:
cin b0* a0*
Signals brought out to the left:
clcl®*c2*

Figure 6.17: Column — Row Folded Unconstrained Matrix

The example shows four column folds and four row folds. As a result of column
folding buffers appear along the bottom edge of the matrix. The signals 1o the right of the
matrix indicate those brought out on the righthand side. The numbers in parentheses indi-

cate on what column the folded row signal begins or on what row the folded column sig-
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nal begins for rows and columns. respectively. The upper lefthand corner is taken to be
location (1,1). State information is printed out and the folded column indices and folded
signal name pairs are identified. In addition. signals which are available only on the right
or left side of the module are listed. External signals not appearing on the list are avail-

able on both module boundaries, for example signal fO.
Figure 6.18 shows the matrix of Figure 6.16 this time with rows folded first and then

columns.
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folded 17 14

cls®
cl
16
c2
18
c3*
20
cin
c2®
bO*
b0
a0*
c3

15
a0
14

Current column folds/flips:

(13,6)
Current row folds:

$33SSpP.SSSSSSP
8S0.ccce8cccnn
ee:85..80....P
Y N
8..8.c008c000s
Y I
Y A I L
eesO0teaocseSens
ee80. .0 eP
eS..8..8.0...P
ce8cs c04s0..P

ee8c0s8..0+0.P
e8ceese85...0P
eeeS.0cceeseP
ess8icie0ceccns
essee8e..PS.SP
eOceoseceSecsl

s
(8)

(a0,12) (14,£0) (7,11) (c3,1) (a0%,2)
(b0%,3) (c2¢,4) (cin,6) (c1,10) (c1%,28)

Signals brought out to the right:
f0

Signals brought out to the left
cl c1* cin b0® c2® a0 c3 a0*

28(3)
10(9)

6(4)
4(10)
3(11)

2(12)
1(13)
11(14)

12(14)
£0(14)

Figure 6.18: Row — Column Folded Unconstrained Matrix
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This result shows a single column fold and ten row folds. In this case all inputs are avail-

able on the left side of the array while f0. the output. is available on the right side. The

area of this module is slightly less than its column/row folded counterpart and the aspect

ratio is closer 10 1:1 which might mean that this module fits better in the context of an

overall chip design. The designer can. of course. adjust the aspect ratio by manually issu-

ing row and column folding commands in the interaclive mode of TWIST.
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The next series of three examples shows the same matrix. but this time with con-
straints placed on several of the external signals. Note that signal ¢3 is being used as a

bus-through connection.

new 27 15

pssssssssp.ssss
cl csecesssBecc8.8
cl® T I 8
18 O P
20 eee8ceccecocsOen
28 tsee2e80cccanas
c2 NP TY N
14 ceeeB8ccccccDene
16 eSccecccnccnesD
c3s* e88cccccccceS.e
bo o888 ciee cenee
cin cesesesBecccnne
bo* ceescesSee eens
c2* eccsccscseBcecS..8
fo0 Oceccccsncccncca
1 POcccccccccscns
2 PeOccccccccecnes
3 PeeOcoscoconssnoe
4 PeeeOoroecaaces
6 PeeeeOcecccanas

lo po...oo...‘.ooo
11 poo.o‘....o.oo.
12 pﬁcoo.o»..ooooo

a0 e8.8PcccccSecne
15 ceeseBceOccaccs
7 cecee8ceeOcccce
c3 cecece3.80.8...
a0* cececeeB8eScecce

right c1c1*c3* c3 cin;
left £O b0 bO* c3;
Figure 6.19: Unfolded Constrained Mawrix

The external folding constraints have been entered by the designer and included in the

input file to TWIST.
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Figure 6.20 shows the constrained matrix after column-then-row folding.

folded 26 11

28
cls
cl
c2®
bO*
14
c2
18
c3

15
a0
c3*
b0
20
a0*
12
11

e o N WO

(-

Current column folds/flips

(14,6) (13,1) (9,2) (12,4)
Current row folds:
(c2*cin)

Signals brought out to the right:

cl c1®*c3*cin c3

Signals brought out to the left:

b0 bO* c2* f0 c3

333SSp.3SSS
ceesesesOS..
8.ce8ceanses
e88.8.00s00
88S....8...
ceeee o8ces
OcesoosocaSe
eee88cce8.e
cesOacesceS
8SccecesSen
eeeSic0ccne
eO0eSicennns
SS...5...p.
eSeeSceeseS
Sieeee oo 8
Y. TR
.O..O"S'..
OOOOP..Q...
seeosPececsns
cessPeeiOee
eesOPecevee
ecesPec..0.
0...P...ceee
cecePecece0
O..Pieeee
SRR o J
eSO0ceecases
ss s

cin(8)

P
(12) (12) (10) (17)

Figure 6.20: Column — Row Folded Constrained Matrix
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In this case it was still possible to achieve four column folds. however only a single row

fold was possible. The signal list a1 the end of the matrix structure recapitulates the
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designer’'s request and adds any additional signals that are available on only one edge of

the matrix. Signal ¢3 appears on both the left and right edge. as the designer requested.

Figure 6.21 shows the constrained example of Figure 6.19 this time with row folding

first and then column folding.

folded 20 14
$33Sp.33388SSD
28 cesseseO8cecns
cl® e8e8cccoscccns
cl 8.8:c08ccccces
c2® $..5..8..0...D 4(10)
16 OcocassccocceSe
c2 Oss.....8....p 6(1)
18 Y, YO T
cin ceceseeSecconse
c3* Y PR I B
20 eeOcecccceBoce
bo* cess 2e8..00.P 3(11)
bo AT T
a0* ces::8.8...0.D 2(12)
c3 ceeS8cse8.8.ccen
7 [ YA J S 11(14)
15 S.ciee0cccvene
a0 ceeeS..s.PS.8P 12(14)
10 cecesceceOceseP
fo0 cecsseccaccss o
14 ces0csces8..0P 1(13)
s
(6)
Current column folds/flips
(15,6)

Current row folds:
(20,12) (7,11) (14,1) (a0%,2) (b0*,3)
(c2%,4) (c2,6)

Signals brought out to the right:
clc1®* c3*cin c3

Signals brought out to the left
¢2 b0 b0* c2* £0 a0 c3 a0*

Figure 6.21: Row — Column Folded Constrained Matrix

In this case only a single column fold was possible afier seven row folds were made. This
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case may be compared 10 the unconstrained row-then-column folded example. For the
unconstrained case four column folds and ten row folds were found. as a result of con-

siraints there were three fewer column and three fewer row foids.

6.4. Summary

In this chapter an algorithm for topological compaction of a multi-level matrix was
described. In the first part of the chapter a technique for translating a netlist into a con-
neclivity matrix was examined. The MKMAT program accomplishes this translation by
constructing a sel of constraint matrices which indicate in what order rows and columns
should be placed in the MLM. The TWIST program. examined in the lauier part of the
chapter. is employed to fold the MLM. TWIST can function as part of the MAMBO package
or interactively. It employs heuristics to perform simple column and multiple row fold-
ing. TWIST also uses constraint matrices and cycle-checking algorithms to guarantee a
folding selection is implementable. The cycle-checking algorithm is O (f 2), where / is the
number of folding candidaies. The compaction program allows both constrained and
unconstrained {olding.

In the next chapter methods for the automatled generation of the topologically com-

pacied matrices are described. The physical design considerations involved in mask layout

generation are implemented in two programs which form the final stages of the MAMBO

svstem.



CHAPTER 7

Physical Design: Comparison of Layout Tiling Methods

In this chapter the physical design aspects of MAMBO are described. These design
considerations are implemented in two programs used by MAMBO. The layout method
emploved by the present synthesis package is contrasted with methods currently used in
the semi-automatic and automatic generation of asynchronous and synchronous circuits.
Three well-known styles of layout: Weinberger Arrays. Gate Matrix. and Sworage/Logic
Arrays. are examined. These styles cover the range of present tiled techniques. The
contest-based tiled approach for structured layout of dynamic circuits such as Domino
and NORA. which is used in MAMBO. is then presented. The contexi-based translator is
implemented in tool TINKER, while the tiling into mask-level geometries is the domain of

TAILOR.

7.1. Distinction Between Routed and Tiled Methods

There are two distinct methods of automated circuit generation. The first method
keeps the active circuil area separate {rom the interconnection area. This style is typified
by the gate array and standard cell [souk81] approaches. In the gate array approach com-
pact. general purpose. uncommitted logic blocks of fixed pitch are placed in a regular array
on chip. A programming step. involving the modification of a small number of masks.
commits the function of each circuit block. In the standard cell scheme cells of fixed pitch.
with predetermined inputs and outputs. are chosen from a library of previously designed
modules. In both these approaches a channel router is required 1o connect the proper

inputs and outputs between the logic blocks. Hence. these methods are termed routed.

The advantage of this approach lies in its generality. A single gate array can be made

to perform a myriad of different functions- depending only on mask steps o program the
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blocks and channel route between them. The disadvantage of such approaches lies chiefly
in their inefficient use of area due to the need for preassigned channels and to the “uncom-
mittedness™ of circuit function. These approaches find their ‘use principally in full gate
array or standard cell chips: they are only infrequenti. mixed with custom logic on the

same chip.

The second se1 of methods presented here falls under the beading of tiled methods.
These metbods generate circuits by gluing together cells from a cell library. Cells are
routed by abuzrnent. Therefore there is no need for 2 routing tool. Because no routing is
required. i1 is not necessary to allocaie space for routing channels. This fact. coupled with
a higher degree of customization (all mask lavers are generated). results in a more area-
efficient layout. Within the tiled category there are methods which admit of greater
optimization and methods which are better suited 10 particular technologies. One draw-
back of tiled approaches is that the cells that compose the layout may. themselves. be
sparse. This is because the routing is now internal 10 the cell: if no optimization algorithm

is employed. tiling may also be area-inefficient.

The distinction between the two methods is imporiant. Automated generation tools
which deal which synthesis of active area separately from routing can lose in routing area
whatever gain they may make from a tight cell lavout. The need 1o handle interconnec-
lvity together with active area is especially imporiant in the creation of multi-level logic.
In two-level logic. for example as realized by a PLA. large matrices of active devices or
placement sites are created. A single matrix corresponds to one level of logic. Hence. for
the two-level PLA. the interconnection problem is almost trivial. It involves the connec-
tion of two regular arrays plus connections to input and output buffers. In multi-level
logic, on the other hand. the number of levels is greater and the amount of active area con-
lained in each level is less. Therefore the percentage of area taken up by routing increases.

SO a compacl inlerconnection scheme is a requirement.
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7.2. Tiled Methods

7.2.1. Weinberger Arrays

Weinberger arrays were first proposed in 1967 [wein67). At that time they were
used 1o fabricate PMOS gates in metal gate technology. A Weinberger array is one dimen-

sional. Figure 7.1 shows a layout of a simple Weinberger array.
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Figure 7.1: Weinberger Array Layout

Since PMOS gates were used in the original realization. the tile of choice was the NAND
gate. To first order. switching speed is constant with increased fan-in for a PMOS NAND
gate. Thus it is possible 1o build large fan-in gates. Increased fan-in seriously degrades
the switching time of PMOS NOR gates. NAND-only circuits are logically complete. Since

bigh fan-in gates can be constructed. synthesis programs need not be concerned with parti-
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tioning large gates into smaller ones and the consequent speed tradeoffs between a single.
large gate and a series of smaller gates. Thus module generators targeted to this style are
straightforward. The MACPITTS/LBS [sisk82] system in use at MIT Lincoln Laboratories is

an example of a datapath and control generation program using this approach.

The disadvantage of such a scheme is that internally the array may be quite sparse.
To see why. note that in the Weinberger style. where power and ground busses are at fixed
pitch. one dimension of the array is constrained by that gate with the greatest combination
of fan-in and route-through. For Weinberger arrays composed of hundreds of NANDs it is

likely that there will be a wide variation in gate fan-in.

It is possible to optimize the layout of Weinberger arrays and so compact them some-
what. Optimization can be accomplished on a purely topological level by rearranging the
ordering of the NAND gates. Since both input and output signal lines must traverse the
array and can be intermixed. it is possible through gate reordering to have two or more
distinct signals occupy a single physical track. This method of rearrangement is similar to
the permutation of product terms in a PLA so that multiple inputs and outputs may share

a single physical input or output term.

Optimization algorithms to obtain the best packing on a one-dimensional interval
bave been intensively investigated [ohts79] [asan82). In conjunction with such optimiza-
tion programs Weinberger layout tiles can produce area-efficient results for single MOS (eg.
NMOS. PMOS) technologies. Such technologies are favored because their simple tile abut-
ment allows routing in the array. By contrasi. CMOS technology presents difficulties in
Weinberger layout routing since each signal must drive both a PMOS and an NMOS device.
Optimization in this case also is more involved. One method suitable for tile layout of

CMOS logic is gate matrix.
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7.2.2. Gate Marmrix

The gate matrix technique was first proposed in 1981 [lope81]. This approach came
about as an outgrowth of a system to symbolically represent the topology of matrix cir-
cuits. It was used in the design of the BELLMAC-32 series microprocessors. Gate matrices
have been used 1o implement both static and dynamic CMOS circuits. While this technique

can also be used with single MOS technologies, it is clearly well-suiled for CMOS.

Static CMOS gate matrix favors the implementation of low fan-in NAND gates. Figure
7.2 contains a schematic representation of a 2-input NAND gate and a 2-input NOR gate.

These two gates represent the most commonly used CMOS gates.

- 4

\/

NAND NOR

Figure 7.2: Static CMOS NAND and NOR Functions

Because of mobility differences in n- and p-type devices. the p-channel device must be
two to three limes wider than its n -channel counterpart. In the construction of a static
NAND gate the effect of ratioing due 1o mobility tends to be canceled by the requirement of
ratioing to compensate for the series arrangement of the n -channel devices. If one assumes
a mobility difference of two 1o one between n- and p-channel devices. then for a two-
input NAND gate the two effects exactly cancel one another and all devices may have

minimum width. Not only does this reduce circuit area. it also reduces the capacitance on
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the gate output. Tlris means that the NAND gate exhibits a smaller gate delay. On the
other hand. for a CMOS NOR gate the two effects are multiplicative. Thus. if one draws a
minimum width n -channel device. the p-channel device must be twice as wide as the n -
device for mobility and twice as wide again because the p-devices are now in series. The
additional capacitance of the p-channel source node that is shared by the output of the
gate slows down the circuit. Figure 7.3 shows a portion of a BELLMAC-32 gate matrix

which is entirely NAND in structure.
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Figure 7.3: Gate matrix from BELLMAC-32

Topological optimization of these circuits is more difficult due to the branching struc-
ture of the individual gales. Reordering techniques are not usually applied to such cir-
cuits. The automation of gate matrix layout is a topic of current research [kang83b] and
there are a number researchers developing automated tools which use heuristic one-
dimensional methods 1o achieve compact layouts [wing85] [ishi83]. These results indicate
that optimization algorithms can greatly reduce matrix area. The results also show that
band optimization is still better than machine compaction so that more work remains to be
done in this field. The optimization algorithm described in [ishi83] solves the NP-complete

problem heuristically in O (n3) steps. where n corresponds 10 the number of distinct gates
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in the matrix.

While optimization is more difficult, gate matrix is nonetheless better suited 10 the
CMOS technology because it has a smaller “granularity”. That is, instead of constructing a
tile which forms a whole gate. the gate matrix approach places separate rectangles of
polysilicon. diffusion. and metal. Thus. gate matrix is more flexible. This can lead 10 more
area-efficient circuits but is also responsible. in part, for the difficulty in circuit compac-

tion.

7.23. Storage/Logic Arrays (SLAs)

SLAs were first described in 1975 [pati75] and later extended by Patil and Welch
[pati79). They are regular structures derived from PLAs. Their chief advantage over PLAs

is their ability 1o embed storage functions within the combinational logic array.

Typically a designer will construct an SLA from a tile se1 designed for a specific tech-
nology. SLAs have been built in ]2L. NMOS and CMOS. The CMOS SLAs appear most
promising. CMOS SLA elements include a single inverter, a double inverter. a simple NAND
gate laich. and a pass ransistor [smit82]. Each of these cells is represented by a single
character 1o the designer. In much the same way as the personality matrix of a PLA can be
manipulalied symbolically. the characiers representing the SLA elements can be arranged.

Figure 7.4 shows the svmbolic layout of an adder/subiractor in CMOS.
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Figure 7.4 Symbolic Representation of USCM Adder/Subtractor

Because the layout is very similar 10 a PLA. it is possible to employ similar folding and
splitting algorithms 1o optimize SLA area. Again because the SLA. like the PLA. is regular.

such structures are easy to machine generale.

While SLAs bave proven useful in static NMOS and CMOS circuits [smit82]. they are
more difficult to construct for dynamic circuits. Because of the embedded logic concepl
used in SLAs an additional clock would be required for each level of inverter logic. The
extra space needed 10 route these signals would override any gain in other paris of the cir-
cuit. Another drawback of SLAs is that the minimum cell pitch is constraiﬁed by the larg-
est cell in the tile set. Since some tiles are quite complex (ie. 2 D flip-flop) area utilization
can suffer. An alternative approach is 1o allow cells which are multiples of some funda-
mental dimension. This was done in the CMOS tile case. However, when this is done. spe-
cial “blank™ cells and “bender” cells must be created 10 route signals. The result is that
SLAs in CMOS are best suited to static applications and 1o designs where the majority of
logic is combinational. Notice that the USCM example shown contains a core of compact

combinational cells (represented by / and 0 svmbols) surrounded by a periphery of latches
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and flip-flops. The “embeddedness” of the SLA has been lost. The structure begins to
resemble a PLA with external synchronizing logic.

A further disadvantage of the CMOS SLA approach is the necessity for a prt;ces that
supports Schottky diodes. The AND and OR planes of the SLA are compact because they
utilize these diodes 1o create a “folded-plane” structure. Diagrams of AND and OR plane

construction are shown in Figure 7.5.
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Figure 7.5: CMOS AND Plane(a) and OR Plane(b)

The conclusion is that SLAs offer a structured design approach quite similar to PLAs.
SLAs can implement multi-level and dynamic logic. but best success appears to have been
obtained with single AND and OR plane implementations in static designs. CMOS SLA
designs do not appear particularly area-efficient. While designs based on the SLA have been

submitted for fabrication. no 1est results have yet been published in the literature.

7.3. A Structure for the Layout of Complex Domino Cells

It bas been shown that the Weinberger array layout technique is a good maich for
single MOS technologies and that the gaie matrix technique is suitable for layout tiling of
static and dynamic CMOS circuits. because of its greater flexibility. SLAs offer a means of
combining combinational functions with storage but appear 10 have drawbacks in fabrica-

tion and area efficiency.
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One advantage the Domino configuration has over static CMOS approaches is a smaller
gate count and hence. a more compact layout. To take advantage of Domino-style circui-
try individual gate clusters should be complex. In other words. since the overhead of
clocking gates and output inverter is constant, greatest benefil is realized when complex
AND/OR functions are packed into a single gate. None of the layout tiled structures
reviewed here is ideally suited for Domino-style CMOS logic layout and a new structure is

needed. This structure should have the following characteristics:

@ Ability to take advantage of complex AND/OR gates

@ Suitable for dynamic logic

e Able to handle multi-level logic without an extra routing penalty

e Allow mixing of static and dynamic functions and static laiches
so that the module may be used as part of a finite-state machine

@ Can be generated and optimized by a synthesis tool

A hybrid structure having characteristics of both gate matrix and Weinberger arrays
fits these requirements. The ALU portion of the BELLMAC-32 was designed employing
gate matrix and using dynamic Domino CMOS logic. A section of the ALU block appears in

Figure 7.6 (from [law83]).
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Figure 7.6: Gate Matrix Domino CMOS

I A N -

The Domino gates in Figure 7.6a are compiex: they combine two or more Boolean functions
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but have a single output. The dual p-channel devices are employed to correct for the
charge redistribution problem in dynamic circuits. The gates shown in Figure 7.6b are
static inverters. It is clear thai gate matrix allows intermixing of static and dynamic
styles. The advantage of Weinberger arrays is that they are easy 1o layout, since there are¢
only two basic cell types (NAND and NOR). They are also easy 1o optimize since they have
a simple structure. While Weinberger arrays are routinely machine generated. gaie matrix
layout has traditionally been performed by a layout engineer at a text terminal. The
designer manipulates symbols which correspond to layout geometry. The current gate

matrix cell sei contains about 20 symbols.

The new layout structure resembles gate matrix but exiends it in an important way.
Instead of hand-eniry of symbols which map one-to-one into layout. the layout is gen-
erated from the higher-level Boolean description. This extenéion is important, not only
because it frees the designer of hand-eniry. but also because computer-aided algorithms
can be employed to optimize the circuit layout. In particular. it is possible to generate
more complex individual gates and increase area efficiency and circuit speed through the
methods used by MOSMESH and TWIST and mentioned in Chapters 5 and 6. The new tiled

approach is examined in detail in the next section.

7.4. Context-Based Tiling— TINKER

The ool TINKER fits in the MAMBO pipeline between the topological compaction of a
logic array and its mask-level generation. It generaies an intermediate representation of
the logic array. This intermediate form contains more information than the personality
matrix but not as much as the actual mask-level] layout. It may reflect electrical design
considerations and can contain information needed in the layout of folded rows and
columns. While TWIST is technology independent since it deals only with connectivity.
TINKER is certainly technology dependent and may be process dependent as well if it is

used to resize devices based on electrical characteristics.
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The personality matrix needed for topological operations is quite abstract. The input
matrix 10 TWIST is composed of characters from the set {s po . |. The output matrix
characters include, in addition. the characters {S P O} 10 denote gate columns which have
been flipped. The output matrix from TINKER. by comparison. contains characters from a
much richer set of symbols. Currently there are about 60 different symbols defined in the
TINKER/TAILOR library. The larger cell set is used to define the personality matrix cells

in different contexts.

Two reasons to define a multiplicity of layout cells to bandle a single cell are: 1)
electrical resizing of a device in context and 2) need to truncate or stretch a cell as a result
of a local anomaly (such as a break or fold) in the structured array. Electrical resizing of
devices is generally most important in ratioed logic. such as static logic where device size
relates directly to speed. For the dynamic circuits used in MAMBO cells with differing
device lengths and widths are not currently employed. However. siretched and truncated

cells are used.

7.4.1. Definition of the CONTEXT File

The notion of context-based tiling allows the construction of two separate tools: one
which considers only topological aspects of an array and another which can do a simple
one-for-one iranslation of a character matrix into mask geometries. The translation from
a personality matrix to a more detailed. electrical matrix is accomplished by a user-

supplied conzext file. A fragment of such a file is reproduced in Figure 7.7.
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((symbol s) (shift z) (boundary )
((lef 1 sSpPoO" ) (below sSpPoO" .) (right sSpPo0” ) (above sSpPoO".) r )
((ef t sSpPoO" ) (below ;) (right ;) (above ) m )
(Q(lef 1 sSpPoO~ ) (below sSpPoO" .) (righ1 ;) {above ;1))
(Qef1 ;) (below ;) (right sSpPo0"~ ) (above ) t)

)

((symbol o} (shift s)
(Qeft sSpPoO" ) (below sSpPoO” .) (right sSpPoO" ) (above sSpPoO".) u )
((lef 1 sSpPoO" ) (below sSpPoO" ) (right ;) (above sSpPoO"~.) d ) )
((lef t 3) (below sSpPoO" .) (right sSpPoO~ ) (above ) b )
((1ef1 ;) (below sSpPoO" .) (right sSpPoO" ) (above sSpPoO~ .} b)
((ef1 ) (below ) (right sSpPo0” ) (above ) e )

)

((symbol o) (shift p) (adjacent )
{(eft sSpPoO"~ ) (below sSpPo0" .) (right sSpPoO" ) (above sSpPo0~.) U)
(Qef t 3) (below sSpPoO" .) (right sSpPoO” ) (above .) b)
(Qef 1 sSpPoO" ) (below .3) (right .)) (above ) ¢ )
((lef 1 ;) (below sSpPo0" ) (right ) (above sSpPoO~ ) K )

)

((symbol .) (shift s) (boundary )
((1ef t sSpPoO" ) (below sSpPoO" .) (right sSpPo0O" ) (above sSpP0o0O"~.) +)
((ef 1 ;) (below sSpPo0O" .) (right ;) (above sSpPoO™.) 1)
(Q1ef t ) (below ;) (right ;) (above sSpPo0O” .) - )
(Qef1.) (below ) (right .) (above ).)

Figure 7.7: Fragment of TINKER Context File

Each cell is assumed 1o be rectangular and thus has up to four neighbors. (It may
have fewer if it is on the edge of the tile matrix.) The four edges of the cell are named lef:.

right, above, and below as shown in Figure 7.8.
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Figure 7.8: The Four Borders of a Tile

For each svmbol appearing in the personality matrix there is an associated set of rules
which specify which electrical tile implements that particular personality tile. Each sym-
bol and a shift character are defined in the contexi file. Thus there should be a line of the

form:
((symbol persanality_character) (shift column_header) [(boundary ) (adjacent )]

Each personality character is defined for each possible gate type. At present the two possi-
ble column_headers are s and p. In addition there may be two optional arguments boun-
dary and adjacent. Boundary applies in the horizontal direction (the direction of signal
flow) and specifies that signal lines are to be brought out to the module boundary. This
option is important in the routing of external signals. Normally mask geometries carrying
signal information are suppressed when a “blank™ cell. a cell which has no active devices.
is encountered. Exiernal signals. however, must bus through such cells and be available a1
the module boundary for interconnection. The adjacen: option applies only in the vertical
direction (ibe gate orientation). Normally TINKER searches the entire extent of a logical
gate (a gate may be only a fraction of an entire column if that column has been folded ).
With the adjacent argument TINKER will only look at the cells immedialely above and
below the current tile to determine if a particular rule is satisﬁed. These options apply on
a per personality_character basis. In the future. the context file format may be generalized
1o support the adjacent flag on a tile character basis. Also. al present. the search depth is a

binary flag. Future versions might allow a variable search depth limit.
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For each personality character. for each column header type. there is a rule set. The

rule set has the form:

((left char_set) (below char_set) (right char_set) (above char_set) tile_char )

This is taken 10 mean:

Relative to the current matrix character. if a character on the left is in the left set
and a character on the right is in the right set and a character above is in the above
set and a character below is in the below ser then select the targe! character.

There is a special character for “edge” and if any set is null the predicate will never be
selected. The edge character is ;" and musi not be one of the usual personality matrix

characlers. When the edge character is a member of a border set it is taken to mean:

If the border matrix character is a member of the specified set or if there is no bord-
er character in this direction because the current matrix character is on a logical
signal or gate edge then declare the border character to match the conditions.

It is oftien possible 10 come up with a sel of orthogonal rules. If this is the case the
order of rule evaluation will not matter. However, it is easier 10 express rules in the form

of:
If expression then expression else if expression then expression ...

Rules are evaluated in the order they are entered into the context file by the designer. As

soon as a match fails on any component of a rule evaluation the entire rule fails.

If a context arises which the designer has not anticipated then no rule will maich. In
this case the tiler will return “?" for the tile character. By turning on the —debug flag 1o

TINKER the designer can trace the execution of each rule for the offending context.

The simplest rule set consists of a single rule which maiches everything. In this case
all edges contain the full personality character set. Such a rule might be used if a cell is
completely contexi-independent. On the other end of the spectrum there may be a very

large number of rules 1o maich special cases. In practice about 10 1o 15 rules per
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personality matrix cell is found to be about average.

220

Figure 7.9 shows a personality matrix afier compaction by the TWIST topological

felding tool.
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Figure 7.% Personality Matrix after folding by TWIST

After translation by TINKER the electrical matrix shown in Figure 7.10 is obtained.
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Figure 7.10: Electrical Matrix of Figure 7.9 after TINKER

The supplementary information about where row and column folds occur is now
contained within the tile matrix. The “+™ indicales placement sites occupied by intercon-
nection area only. This file forms the input for the final 100l in the MAMBO pipeline. This

is the layout generation tool and is presented in the nex1i section.

75. Mask-Level Layout Generation— TAILOR

The last stage in the MAMBO pipeline involves the transiation of the electrical matrix
produced by TINKER into a mask-level representation. While TINKER may need 1o be pro-
cess dependent to express elecirical considerations it is possible to make the back-end tiler
completely technology and process independent. TAILOR need have no knowledge of the
process that the array logic is 10 be fabricated in. The designer simply construcis a tile

library in the mask-level language of his choice. The language used for the examples
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presented here is CIF2.0 [mead80). The circuit designer must also provide a symbol file
which contains bounding box information about each tile. Also contained in this file is the
binding between the tile's library name and its one character representation in the electri-
cal matrix. All that TAILOR need do is refer 10 the information in the symbol file. look up
each tile in the tile library. and “'stitch™ it together with the other tiles. to form the final
matrix. In fact. TAILOR might be made independent of the geomertric layout language.
except that in the process of stitching tiles together it must produce a few constructs in the
layout syniax. The language-dependent parts of TAILOR are restricted to a few pro-

cedures.

Since the designer specifies tile bounding box data it is possible to have cells abut.
overlap. or have one tile wholly contained within another. For most structured layout
applications, however, it is often best 10 enforce strict tile abutment and disallow overlaps.
This rule may be enforced by giving the proper options to TAILOR. Two options.
—constaru_width and —constant_height tell TAILOR that all cells in each row and column
are expected 10 have the same dimension. TAILOR thus allows enough space for the largest
liles and assumes that all tiles abut. TAILOR does not understand design rules and does
not check for design rule violations. It is the tile designer’s responsibility to enter correct
tiles into the tile library. Tiles are design rule checked upon entry into the library. This
is more economical than checking them each time a mairix is assembled. Of cox;rse. the

tiles must not violate design rules at their boundaries with neighboring tiles.

TAILOR works by first building up an internal representation of the matrix. Depend-
ing on the options selected TAILOR makes several passes over the matrix. for example 10
determine row and column spacing. Signal names are produced on an optional label layer
which the designer may specify. TAILOR traverses the input matrix along its y—axis. thus
along the gates of the circuit structure. It first must ascertain the type of each gate by
looking at the column header information. In the case of folded or flipped columns this
information appears along the bottom edge of the array. TAILOR then places each tile.

translating symbol for symbol from the tile matrix. Tiles are placed assuming their lower
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left hand corner is the index origin. If the constant spacing options are invoked tiles will
be spaced at regular intervals: without the constant spacing options tile are aligned so their
bounding boxes. as specified by thé user. abut. Finally. TAILOR calculates the physical

bounding box in the user’s units.

75.1. Tile Construction and Layout of Tiled Structures

This section examines the tliles required to build the one- and two-level structures
produced by MKMAT and compacied by TWIST. The four basic gate structures were previ-
ously presented in Chapter 6. These basic gates are reproduced here in more detail and

showing potential column folds.
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Figure 7.11: Four Basic Gates
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Figure 7.11, continued: Four Basic Gates

These structures can be broken down. in turn. into more fundamental cells which are the
atomic tiles. There are two basic active element tiles, the SERIES and the PARALLEL tile.
Cifplots showing their mask-level appearance in a current CMOS process are shown in Fig-

ure 7.12
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Figure 7.12b: Basic PARALLEL Tile

In addition 1o these tiles is an OUTPUT tile. used 10 connect the output from a gate. which

runs vertically, to a signal term which runs horizontally. An OUTPUT tile is shown in

Figure 7.13.
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Figure 7.13: Basic OUTPUT Tile

The final core tile is the INTERCONNECT tile. This has two major variations depending on
whether it spans a parallel or a series gate. This tile carries a signal line horizontally. If it
is a parallel INTERCONNECT tile it carries power, ground. and gate output in the vertical
direction. If it is a series INTERCONNECT tile it carries the gate signal. ground return, and
output in the vertical direction. Examples of the interconnect tile are shown in Figure

7.14.
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These tiles or variations of them. selecied by TINKER. are placed according to bounding
box information to make up the gates shown schematically in Figure 7.11. The final mask

layout of the electrical matrix of Figure 7.10 appears in Figure 7.15.
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.15: Mask Layout of Figure 7.10 after TAILOR

Figure 7
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7.5.2. Modification of Tiles to Reflect Process Changes

The tiles shown in this chapter are based on a double metal. single poly process. It
would be possible. though less area-efficient. 10 design an analogous set of tiles for a single
metal. single poly technology. Alternatively. if a polysilicide layer were added it would
be possible 10 design an electrically superior tile. The horizontal signal lines could be run
in polysilicide. The inclusion of buried contacts and relaxation of design rules between
vias connecting different layers would reduce tile area. When the process technology
changes the tile sets can be redesigned to take advantiage of the latest modifications. If the
changes are small, for example a new set of design rules but no new layers. probably only
the tilesel at the TAILOR level need be updated. If. however. the process changes to the
extent that the designer wishes to introduce new tile variations. then TINKER's conzext file
would need modification. Note that it is only necessary to modify the tileset and context
file but not the synthesis tool itself in order to reflect process changes. After such
modification old designs can be regenerated in the new process. lf greater modifications to
the layout scheme were required. such as the addition of multiple column folding. then it

would be necessary to extend MAMBO.

7.6. Summary

Three common lavout methods, which cover the range of tiled techniques. have been
been presented. .Layout methods which require the use of routers were not examined: the
focus of this research is on an automated ﬁpproach where routing is not required. In order
1o take advantage of the property of dynamic CMOS circuits that allows construction of
comp.lex gates. as exemplified by the Domino style. a hybrid. context-based approach has
been developed. This scheme has the flexibility of gate matrix and is efficient in the layout
of dynamic. non-ratioed logic structures. Automated layout generation tools TINKER and
TAILOR combined with the topological optimizer TWIST provide efficient. machine-

generated layout much like the automation of Weinberger array construction.
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CHAPTER 8

Comparison of Synthesis Methods

In this chapter several of the larger pieces of combinational logic used in the control
portion of the CMOS SOAR chip are used as basis of comparison between synthesis
metbods. Much of the combinational logic in SOAR was implemented in 14 PLAs of vary-
ing sizes. Circuits designed by MAMBO are contrasted in delay and area with PLA imple-

mentations of the same logic functions.

8.1. Comparison Criteria for Multi-Level Matrices and PLAs

In the tables below the standard PLA implementations of the SOAR control logic are
compared to the multi-level matrix implementation produced by MAMBO and presented in

the previous chapters.

There are two basic metrics for comparison of logic implementations: critical path
speed and circuit area. Often the optimization of one of these quantities is to the detri-
ment of the other. This is the case in the MAMBO system. However. one can also use gates
of differing capacitances 1o produce a range of circuits from fast. large designs to slower.
more area-efficient ones. This area—speed tradeofl is one advantage the multi-level syn-
thesis sysiem has over a straight PLA tool which performs only area compaction and pro-

vides no convenient method for delay optimization.

The table in Figure 8.1 compares PLA and MAMBO implementations of five SOAR
PLAs. In this figure the fastest multi-level implementation was chosen. Some explanation
is necessary to understand this figure. Firsi, the worst-case speed is easily determined in
the MAMBO case where a recursive routine can trace back from all outputs to fundamental
inputs and keep track of the longest path. This is not the case for the PLA-based imple-

mentation. To determine the worst-case delay through a PLA one must try all possible
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combinations of input vectors and observe all outputs. Instead of doing such prohibitively
expensive exbaustive tests. each input Iihe was toggled individually and the longest delay
at the outputs, indicating highest capacitance on the pierm lines. was taken as a “worst
average” case. Both circuits were measured by transient analyses using SPICE2 and both
circuits bad outputs driving a nominal fanout of three. Circuit areas are given in tile
units. The actual size of tile unit will vary according to implementation. A typical PLA
tile might be 8A X 8A. A typical MAMBO tile in a current double-metal. single-poly pro-
cess is larger, about 8A X 15A. It is assumed that the PLAs are implemented using an n -
channel core and p-channe! pullups with their gates grounded. Thus the PLA consumes
static power. The MAMBO design consumes zero static power. If the dual of the n-
channel PLA core were built then PLA power consumption would be reduced bui device
count. and area. would almost double. Area values for the folded PLAs were created using
the simple folding bption in PLEASURE [demi82]. For the MAMBO circuits simple column
folding with multiple row folding was allowed since the more complex tiles can accommo-

date this without need for special folding cases.

Speed (ns) - Area (tiles)
Circuit PLA
PLA | MAMBO Unfolded | Folded MAMBO

xcplal [ 20.6 8.1 1763 1075 2948
cplal 18.] 8.8 2346 1587 3696
apla 9.0 8.7 578 408 1591
tpla 16.0 8.3 805 483 2772
condpla | 20.5 9.5 816 612 4026

Figure 8.1: Two-level Versus Multi-level Implementations

From the figure it is apparent that decreased circuit delay is paid for by increased circuit
area. The largest MAMBO circuit is condpla. a circuil which is not particularly large as a
PLA. Condpla bas only two outputs but a very high dependency of input signals on these
outputs. MAMBO achieves its speedup in part because it builds smaller, faster gates. For
the condpla case a large number of these gates is needed. The result is a large. very sparse
matrix. The condpla PLA matrix is relatively dense. If multiple column folding were pos-

sible the area could be significantly reduced.
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8.2. Area Versus Speed Tradeoff in MAMBO

By constructing a high capacitance cell it is sometimes possible 1o make a good tra-
deoff between reduced circuit area and decreased speed. The table in Figure 8.2 shows runs

using the same set of test cases but with a high capacitance tile.

Circuit | Speed | Area !
xcplal 18.7 1479
cplal 21.5 1242

apla 8.1 841

Figure 8.2: Area/Speed Tradeoff in MAMBO

The control circuit xcpla/ is both smaller and faster implemented as a multi-level matrix
by MAMBO than the PLA implementation. Figure 8.3 shows the MAMBO mask layout in a
24 industrial process. For comparison, the PLA implemeﬁtalion is shown in Figure 8.4 in

the 3u process employed to fabricate the SOAR chip. The plots are at the same scale.
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H

Figure 8.3: Control Circuit xcplal Synthesized by MAMBO
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Circuit xcplal Implemented as a PLA

While cplal is now slower than the

PLA implementation it is also more compact. Since the
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designer can easily modify a tile 10 increase capacitance he has the opportunity to create a

cell which meets a variety of specifications.

8.3. Effect of Series Chain Length on Circuit Speed

By making use of the —chain option in MOSMESH it is possible to study the effect of
limiting chain length on circuit size and speed. The table in Figure 8.5 shows that limiting
chain length ofien increases circuit speed. In those cases where it does not it is because the
chain restriction has forced the introduction of more stages into the critical path and thus

caused a slower circuit overall.

Circuit Series Buffer Clusters Speed (ns)
Length | Depth | before | after pee
8 2 32 30 26.0
3cplal 5 3 66 54 18.9
6 4 68 52 13.1
tpla 5 4 66 52 10.0
4 3 70 55 8.3
7 3 25 24 21.5
cplal 5 3 29 28 223

Figure 8.5: Series Chain Length Versus Circuit Complexity and Speed

8.4. Effect of ON-set Versus Literal Count Minimization

If the designer chooses to construct circuits which have individual gate clusters with
a depth limited 10 two levels, then the ESPRESSO program can be used to perform Boolean
minimization. ESPRESSO can be invoked in two ways. In its normal usage within the
MAMBO pipeline it performs single output circuit minimization by merging cubes and
checking for containment of one cube within another cube or set of cubes. It produces the
resulting minimum ON-set of cubes. If the Boolean equations are entered by a circuil
designer with knowledge of the function he wishs to construct. this mode will frequently
yield the best results. However. if the Boolean equations have been generated by a
higher-level tool and are themselves an intermediate step. then minimization of equations

by literal count is ofien helpful. When this form of minimization is used the resulting
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circuit will often be of a mixed ON-set, OFF-set form. That set which has the fewest
literals will be selected to implement the function. In ESPRESSO the natural ON-set is
always in AND-OR form. thus the OFF-set will be in OR-AND form. By complementing
inputs and outputs ESPRESSO can be made to produce an ON-set which is OR-AND and an
OFF-set which is AND-OR. In uncomplemented form the top-level of a two-level OFF-set
gate will be series (AND) in nature. Unless a long series gate can be tolerated (for example
by a high capacitance cell) the OFF-set optimized cell will generally be slower than its
ON-set dual. However, the circuit which has been literal-minimized and built with a high
capacitance cell may not only be faster than its dual, it may be more compact as well.

Figure 8.6 below summarizes results for various test cases with and without literal optim-

ization.

Circuit | Optimization Ls:’” ™ fg:s‘”ﬁs ——| Speed (ns)

ON-set 3 32 30 26.0

Literal 8 30 28 18.7

xcplal ON-set s 66 54 18.9

Literal 5 41 35 15.2

ON-set 8 30 28 25.0

a1 Literal 7 25 24 21.5

P ON-set 5 58 52 21.7

Literal 5 29 28 22.3

ON-set 9 25 25 30.9

condpla | y:ieral s 14 14 69.5

Figure 8.6: ON-set Versus Literal Boolean Minimization

For xcplal the literal minimization gives smaller. faster circuits: for cplal/ the circuits are
smaller but not always faster; for condpla a very compact. but very slow circuit is gen-

erated with literal count minimization.

The literal count/ON-set minimization switch gives the designer another way to trade
off the parameters of circuit speed and layout area. Therefore the designer can choose the
speed-area ratio he needs by constraining the number of devices in a series chain, by

adding in precharge capacitance, and by selecting different Boolean minimization schemes.
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8.5. Summary

The multi-level synthesis technique implemented in the MAMBO pipeline has been
compared with the two-level approach of PLAs on combinational circuits. It was shown
that the parameters of circuit area and speed trade off against each other. For all the
examples tested it was possible to construct a multi-level circuit which was faster than
the PLA implementation. In a particular case the multi-level array was both faster and
more compact than the PLA version of the same circuit. By constructing varying capaci-
tance tiles or constraining the number of devices in series the designer can choose an imple-
mentation that meets specification. The MAMBO system may also be run on two-level
logic functions. In this case powerful Boolean minimization algorithms can be used to

reduce the number of devices by literal count minimization.
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CHAPTER 9

Conclusions and Further Work

The purpose of the research presented in this dissertation was to create a system for
the synthesis of combinational logic. The system was constructed as a sequence of smaller
programs called the MAMBO synthesis package. Each program in the sequence or pipeline
reads from and writes to a text file; and thus new tools may be inserted into the pipeline
easily. As a result. the system can be used as a framework for the development of combi-
national logic synthesis algorithms. An example of this framework nature is the addition
of the ESPRESSO minimization program. After many of the other tools had been
developed, the need for a two-level Boolean minimization tool became apparent. Because
the framework is modular, the ESPRESSO program was inserted into the pipeline within a

few days.

To focus on a number of specific synthesis issues the problem of constructing a struc-
tured multi-level logic circuit in a dynamic technology was chosen. A tiled -layout
approach was used because such methods combine active circuit area with routing area.
This obviates the need for an additional routing tool. Muiti-level logic was selected
because it provides a degree of flexibility in circuit construction not found in methods like
the PLA, which expand all logic expressions to two levels. This flexibility allows the
designer to trade off layout area and circuit speed. Finally. a dynamic CMOS design style
was selected as the target technology. The CMOS technology was chosen over NMOS
because of the former's lower power consumption. By using a dynamic style device count
may be significantly reduced over static CMOS designs. Further. dynamic designs pose
fewer problems for automatic layout transistors with each input, thus easing the problem

of signal routing.



§9 239

In the first chapter the problem of combinational circuit synthesis was introduced
and previous approaches were reviewed. Chapters 2 and 3 contain a comparison of
different implementation technologies and present the results of two fabricated test chips.
Chapters 4. 5. 6. and 7 are devoted to explaining :he minimization. delay optimization,
area compaction. and physical design algorithms employed in MAMBO. In Chapter 8
results of the MAMBO package and comparisons with PLAs used to implement the same

combinational logic functions from a 32-bit microprocessor were presented.

The major topics of this dissertation are threefold. First, the design and implementa-
tion of a novel multi-level combinational logic synthesis system with a regular matrix
layout structure was presented. The synthesis package creates a mask-level layout from
Boolean expressions and the circuits generated are efficient in both speed and layout area.
In addition the circuit has been electrically optimized to be free of charge redistribution
problems. The second major topic is the development of a delay model to evaluate an
arbitrary mesh of charged and discharged MOS devices. This model allows one 10 quickly
and accurately determine the transient delay of a cluster of devices. for example a complex
Domino-style gate. rather than requiring a detailed circuit simulation. The third aspect of
this work is the context-based layout tiler. Layout tilers have been constructed in the
past. but by adding the notion of context 10 a basic tile, one of a series of variant tiles may
be selected depending on the tile’s neighbors. This feature is useful in resizing active dev-
ices, for example. in a series chain. or for substituting compacted tiles in a region where a
column or row of the layout matrix is folded. In addition to these topics a 32-bit dynamic
Domino CMOS ALU was designed and fabricated 10 gain insight into Domino design tech-
niques. :l’he ALU uses a novel modification of the carry bypass scheme 10 provide carry

acceleration while maintaining zero static power consumption and a ratioless style.

The current MAMBO pipeline consists of the seven stages described in this report plus
an auxiliary program to generate transient delay times for circuit clusters. In addition. the
tools EQNTOTT and ESPRESSO may be inserted into the pipeline. Figure 9.1 gives a break-

down of the amount of ‘C’ code (including comments) in each of the various pipeline
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stages.

I Tool l Lines of Code |

MGMG 2665
MKTBL 1538
MOSMESH 2882
MIMIC 843
MKMAT 1653
TWIST 4112
TINKER 1048
TAILOR 1244
Total 15985

Figure 9.1: Breakdown of MAMBO Pipeline

As a result of studying synthesis problems with the MAMBO framework a number of
conclusions can be drawn. First. it has been shown that the problem of charge redistribu-
tion must be taken into account in dealing with dynamic circuits. Because of the charge
redistribution effect it is often necessary to partition large, complex dynamic networks into
a tree of smaller clusters. The partitioning of circuit networks has a direct result on the
speed of the logic circuit and circuits may be partitioned into many low capacitance nodes
for less delay. or a smaller number of higher capacitance nodes for greater area compac-
tion. Second. it is possible to topologically rearrange circuits to reduce layout area in much
the same manner as topclogical folding of PLAs. In the current framework algorithms
have been developed which allow simple column and multiple row folding. Signals may
be placed according to external constraints. Third. context-based tiling is a convenient
method for implementing circuits which have been modified geometrically or electrically
depending on area compaction or electrical optimization. respectively. Finally. by perform-
ing both delay optimization and topological compaction the circuit designer can build the
module which best fits into a larger scheme. MAMBO results show that circuit
configurations can be constructed which are more than twice as fast as similar PLA imple-
mentations and further speed improvements may be possible with betier multi-level
optimization techniques. At the other extreme are configurations slightly faster than PLAs

which are comparable or more compact in size.
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Several aspects of circuit design described in this dissertation involve the analysis of
“special cases” and it does not seem likely that a single algorithmic approach will ever
handle these cases uniformly. A number of the MAMBO tools, for example MOSMESH, use
beuristic “rules” to process these special cases. It would be interesting to re-implement
these tools using a rule-based system. However, at various stages of circuit optimization.
powerful algorithmic procedures are used (eg. the cycle detection algorithms in TWIST)
and therefore a framework which supports a mixed rule-based ax}d algorithmic approach

seems best.

There are many open questions in multi-level logic design. As yet there are no good
methods for efficient logic optimization of multi-level networks. Presently MAMBO can
take advantage of Boolean minimization by using the standard two-level techniques
employed by MGMG and ESPRESSO. It would be interesting to insert a multi-level optimi-

zation tool into the MAMBO pipeline.

The present synthesis tool is designed for a matrix layout structure. In this structure
cells are routed by abutment. One of the drawbacks with this approach is that although
Domino logic allows complex gates (in fact complex gates are more area-efficient than sim-
ple gates) the matrix scheme only accepts two-level clusters. If a layout method were
created which supported multi-level circuits. such as standard cells. then it would be pos-
sible 10 compare the area efficiency.of the two approaches. Standard cells have the draw-

back that channel area is required for cell interconnection.

At present the precharge and ‘buffer devices of each Domino gate are constrained to lie
along the top and bottom edges of the matrix layout and input and output signals are
availaBle from the left and right sides. This approach was chosen to simplify bussing of
Vpp. GND. and clock signals and to aid in folding the matrix. It may be worthwhile to
relax these constraints and create matrices in which all four sides of the array are treated
uniformly. By doing this routing problems between the generated matrix and other cells

of a floorplan may be eased.
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Tuning a circuit for greater speed often directly conflicts with reducing circuit area.
In current minimization schemes one often attempts 1o minimize the number of literals in
a single function. as is done here, or across several functions. as for example in [bray82].
While these methods directly reduce device count an. therefore result in more compact
circuits they may also lengthen the electrical critical path. Delay optimization and area
compaction are coupled problems. It might be beneficial to try different minimization algo-
rithms along the electrical critical path of a circuit as opposed to non-critical paths. It
would then be necessary to iteratively apply the delay and compaction steps until the crit-

ical path does not change.
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APPENDIX A

SPICE2 MOS Models

MOSIS MOS Models

* as from MOSIS, note low vto values
* device models

.model nmo nmos level=2 vto=0.5 lambda=0.01

uo=475 phi=0.5

cgso=1.3e-10 cgdo=1.3e-10 cgbo=4.10e-10 rsh=40 cj=be-4
cjswmde-10 js=3.5¢-5 tox=5.5e-8 nsub=5elS nss=-2.8el11 nfs=lel0
Xj=be-7 ld=de-7 ucrit=8ed4 uexp=0.25 utra=0.25 vmax=5Sed
mj=0.5 mjsw = 0.5 pb = 0.7 peff = 2.5

+ 4+ 4+t

.model pmo pmos level=2 vto=-0.5 lambda=0.01

uo=190 phi=0.492

cgso=1.3e-10 cgdo=1.3e-10 cgbo=4.10e-10 rsh=40 cj=4.1e-4
cjsw=2.5e-10 js=3.5e-5 tox=5.5e-8 nsub=3eld4 nss=11.7ell nfs=lelO
Xj=be-7 ld=de-7 ucrit=8ed uexp=0.25 utra=0.25 vmax=5e4

mj=0.5 mjsw = 0.5 pb = 0.7 neff = 2.5

+4+ 4+ + 4



SPICE2 MOS Models

Industrial MOS Models

* nmos model
.model cmosn nmos level=2 1d=(.23u t0x=300.00e-10 nsub=1.0e+16

+ Viow.9 kp=5.9e-5 gammae.44 phi=.6 uo=512.6

+ Xj=.3u lambda=2.7e-2 tpg=]1 rsh=35.0 uexp=6.0e-2
+ vmax=5.7e4 cgso=2.7e-10 cgdo=2.7e-10 cj=2.8e-4
+ cjsw=]1.5¢-10 mj=.5 mjswm=.3333

* pmos model

.model cmosp pmos level=2 ]ld=.38u tox=300e-10 nsub=1el6
+ Vio=-.9 kp=2e-5 gamma=.492 phi=.6 uo=173.8

+ Xj=.5u lambda=4e-2 tpg=1 rsh=120 uexp=.44

+ vmax=9e4 cgso=4.5e-10 cgdo=d4.5e-10 cj=3.1e-4

+ cjsw=3e-10 mj=.5 mjsw=.3333

244
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APPENDIX B

Measurement of the Dynamic CMOS Test Chip

In this appendix the equipment and testing procedures for a chip to test the proper-
ties of dynamic CMOS circuits are described. Two bonded test dies were received in late
1984 and testing was begun in December. 1984. The chips were fabricated in a double
metal 2u (drawn) n -well process at an industrial site. Specifically. the first chip (referred
10 as “chip #1°°) has a buried contact layer. a single level of polysilicon, and two layers of
metal. The pre-implant oxidation was wet: there was no post-implant oxidation. The die
was not passivated. The second chip (“chip #2°) does not have a buried contact layer, but
does have a polysilicide layer and two layers of metal. There was a 50:1 gate oxide etch
for the polysilicide. The pre-implant and post-implant oxidations were dry. The die was
not passivated. Neither chip made use of the buried contacts. Most of the results

presented here were obtained from chip #1, with the polysilicon layer.

The test setup consisted of a super-strip mounted on a metal jig which was grounded
to the power supplies. There were separate power supplies for Vpp and V,. For most of
the measurements reported in Chapter 3 V., was 0.0V. The chip was driven by three sig-
nal generators. The first. an HP 8011A. provided synchronization trigger puises for the
other two generators. The HP 8011A provided the botzorn input signal mentioned in
Chapter 3. An HP 3312A provided the clock signal. ¢. An Exact 126 provided the input

signal top. Waveforms were displayed on a Tektronix 7094 series oscilloscope.

Figure B.1 shows the bondmap for the chip and Figure B.2 is a mask-level plot.
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The chip was laid out in three main blocks. The largest block is a bank of AND gates.
There are 2-, 3-, 5-, 7-. 15-, 23-, and 31-input AND gates with minimum-sized devices and
two S-input AND gates with larger n -channel devices in the core. The OR bank contains
2-, 5-. and 15-input gates with minimum-sized devices. There is also a set of four C"MOS
latches hooked up as a shift register. There are a total of 38 active pins, 17 signals pertain
10 the AND gates, 8 to the OR gates, 5 to the C?MOS latches, and 8 to miscellaneous signals.
In this appendix only the delay and charge redistribution measurements of the minimum

size AND gates are presented.

Derivation of AND gate Delay

The measurement of the worst-case delay for the AND gates was complicated by the
need to subtract off delays caused by conditioning inverters and by the time required to
charge up an 11pF oscilloscope probe. There was also a pronounced inverter feedthrough
effect in the conditioning inverters. The source follower test on chip #1 was found to be
unreliable but a source follower test was écrformed on chip #2 to ascertain the amount of
feedtbrough contributed by the p-channel pad pulldown device. The results show a
feedthrough effect of about 0.12V for the falling waveform. and no appreciable
feedthrough on a rising waveform (input = output for a follower). Delay measured by the
50% test is negligible, about 1ns. The input waveform from the pulse generator bad a
risetime of about 10ns (10-90%) for a 0.0 to 5.0V swing. The feedthrough effect for the
inverter test for an input waveform with the'same characteristics as that in the source fol-
lower test is about 1.0V. The inverter itself cannot be measured directly. but since the p-
channel pad does not have a large feedthrough it must be the inverter that gives the major
contribution. The AND gates show less feedthrough because the output inverter is driven
internally by a more slowly changing waveform. The feedthrough effect is sirongly

dependent on the steepness of the input signal, as SPICE2 simulations confirm.

The inverter delay test was run twice, once with a large swing on the input and once

with a swing of about 1.0V. The reduced swing lessened the feedthrough effect. The
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falling input signal shows about 0.3V feedthrough at the output. The rising input signal
shows about 0.27V feedthrough at the output. Test results for this test and the previous

inverter test are summarized in Figure B.3.

Falling Input Rising Input
Feedthrough (v) | Dela¥ (ns) Feedthrough (V) Delay (ns)
0.3 28 0.27 15
1.0 39 1.2 21
Figure B.3: Feedthrough Effect on Inverter Delay

All the AND gates show a negligible feedthrough effect. Applying a linear fit to the values
in the figure implies a risetime of about 23.3rs with 0.0V feedthrough and a falltime of
about 13.3ns. This figure is the calculated delay through a conditioning inverter plus

routing and an output pad driving the oscilloscope probe.

Charge Redistribution Measurements

Probably due to careless handling of the unpassivated chips., AND gates 3, 5, 15, and
23 were damaged. Charge redistribution (CR) tests were performed with the 2-, 7-, and
31-input AND gates. Chip # did not have functional AND gates. as mentioned above.
Tests were set up using the 3 signal generators, 1 each for signals ¢, top. and bortom. The
scheme was to first discharge the AND chain. then charge up the precharge (prech) node,
and then allow the charge on the prech node to redistribute along the AND chain. The
result is that the potential on the prech node decreases and. thus. the inverter which is
driven by this node may react by making a false 0 =1 transition. Therefore there are 3
parts to the CR test cycle: 1) dump chain charge: 2) charge up precharge node: and 3) look
for a false transition (0 = 1) at the output of the inverter. The 3 signal generators were
triggered by the generator that provided the dottom signal. Bottorn was a square wave; it
was low for about 12us and then high for 12us. Signal top, triggered from dotzom. was a
pulse. The rising edge of the pulse was approximately coincident (slightly delayed) with
the rising edge of dotzorn. It had a duration of about 4us. Signal ¢ was delayed slightly

with respect to both bottorm and top. It was a pulse beginning about lus after top and of
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less than 1lus duration. Special care was taken to ensure that fop—gated devices were
turned off before the p-channel ¢—gated device (prech device) was turned on. Also
top—gated devices were turned on only after the ¢—gated p-channel prech device was
turned off. Depending on device thresholds it might have been possible to drive the top of
the AND chain and the clock devices from one signal. This latter arrangement. however.
would not have guaranteed that there was no time at which both prech and chain devices
were on. If such a condition existed then the prech current would charge up not only the
prech node but all devices in the AND chain gated by fop. Thus the chain would not be
discharged to ground. Phase 1 occurs when all signals (t0p, bortom, ¢) are low- thus it is
bounded by the 12us bottorn signal. Remember that these signals are input to the chip and
that all signals are fed through conditioning inverters before affecting the test circuitry.
Therefore when all signals are low the clock p-channel device is off. the zop— and
bottom—gated n -channel devices and n -channel clock device is on. Charge is cleared from
the AND chain. Phase 2 begins when ¢ goes high. Thus there is a short dead time when boz-
tom and top are high and ¢ is low. In this period all devices except the n -channel clock
device are off. In phase 2. when ¢ goes high (all signals are now high). the p-channel clock
device is turned on. the n-channel FET is turned off. Charge is pumped into the prech
node. The precharged area includes only the gates of the n- and p-channel output
inverter, the p-channel pullup (prech device) and the drain of the topmost n —channel AND
FET; none of the AND chain parasitics are charged since top and dottom are off. Still in phase
2. ¢ is lowered. Now ¢ is low, but zop and dorzom are high just like the beginning of phase
2. In this last part of phase 2 charge leaks slowly from the prech node. Tests show, how-
ever, that leakage takes milliseconds to occur while this stage has a duration of about 3us.
Phase 3 begins when top is lowered. Now ¢ and top are low, but dottom is still high. At
this point the p-channel clock device remains off so there is no path from Vpp to the
prech node. Top is low now so the top n —1 AND n -channel devices are turned on and CR
takes place from the prech node to AND n —channel source/drain parasitics. This lowers the

prech -~ in words it is

voltage on the prech node. The new voltage is: Vpp X C = C
prech parasutic
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proportional to the ratio of the prech capacitance to the prech capacitance plus the parasitic
capacitance. If Cporusuic is large enough. compared 10 Cprecs then the voltage at the prech
node falls to the point that the p-channel device in the inverter switches on and the out-
put of the inverter goes high, making an incorrect 0 — 1 transition. This is called “false
trigger”. There is no DC path to ground (bottom is still high). so the n -channel AND gate
(the last in the chain) is still off. Therefore, the output should remain off (low). Phase 3
ends when bottom goes low. At this point all signals are once again low and Phase 1 begins.

This test was used to produce the measurements detailed in Chapter 3.

As a control experiment to show that the effect observed was due to CR. tests were
conducted in which both the prech node and all the top—gated (n —1) AND devices were
charged up. Then the top input was toggled to cause a transient. The oscilloscope photos
show a very slight opposite CR effect: that is charge flowing from the parasitics into the
prech node. The prech node voltage decreases slightly. The exact same voltage decrease is
seen in the 2-input AND as the 31-input AND case. It is independent of gate fan-in. This
test was conducted by modifying the prech phase (2) of the test described above. In phase
1 the charge is still dumped from the parasitics because all devices except the n ~channel
clock FET are off. However. in phase 2 ¢ goes high while zop is still low. thus fop and ¢
are on at the same time. Bottom is high, or off. Now the p-channel clock device charges
both the prech node and the parasitics. Then top goes high. turning off the AND chain
parasitic devices. Then ¢ goes low. so the p-channel clock device is off and the n channel
clock device is on. At this point prech is off, top is off . bottom is still off . and the n -channel
clock is on. Thus charge remams on the prech node and the (isolated) top nodes. Now top
goes low (on) allowing CR between prech node and parasitics. However, there is little
redistribution because both nodes are at virtually the same potential. having been charged

by the same p-channel device about 1us before. This concludes the CR measurements.

Voltage Threshold Measurements



252

The process parameters for circuit simulation were provided by the industrial facil-
ity. The voltage threshold of a p—channel device can be measured however, since the out-
put driver is a p-channel device. The measurement was made as a check on the given

parameters. Figure B.4 shows the circuit schematic of the output pad.

+

g 1KOoHM
OFF -CHIP DUTPUT
[VOUTJ

P- CHRNNEL

uE zsau

SOURCE
FOLLOWER

A
INPUT

[VIN]

Figure B.4: Output Pad Schematic

The table in Figure B.5 shows results of V;, versus V,,, 1ests on chip #2.

PadGnd = GND = V,, = -0.098V
| Vpp = 5.15V; Resistor: 1K Q off chi
Input (V) Output (V)

Pad30 Pad31
0.00 3.13
0.50 5.13
1.00 35.13
1.50 5.13
2.00 3.13
2.50 5.13
3.00 4.09
3.50 .n
4.00 3.70
4.50 3.69
5.00 3.69

Figure B.S: V,, versus V,,, for Chip #2

Figure B.6 presents these results in graphical form from an oscilloscope photo. The hor-
izontal and vertical axes are 0.5V per division. The lower, lefthand corner represents 0.0V

in x and y.
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Figure B.6: V,, versus V,, for Chip #2

The V, calculations are based on a first-order Shichman-Hodges model which assumes a
quadratic dependence of voltage on current and ignores short-channel effects. When V,, is

Vpp (5.0V) then V, g, is 0.0V. Thus. |Vgslis 5.0V and the p-channel device is assumed

to be in saturation because |Vgg|=|V,| < |Vps|. In saturation the current flowing in the
. Xp 2 Vow . . .
source node is = X(V,=-V, )= o where R is the value of the resistor in the source

leg. Therefore,

2xVy

Vi =Vpp=Vau—

because V,, =V, = Vpp—=Vo,=V,. X

w
= L—P,u, C,.. Using the values from Appendix A,
P

o = 174em?/ volt —sec, T,, =300d. and W =250u, L =4u, R =1000 Q and
Voo = 3.69V then X, = 125x10"® (factoring out W and L. X, =2.02x107°) and
V, = 2.24V. Thus, fo_r the p-channel device. V, = —2.24V. This value seems high.
According to [pugh85] the measured V, for 2u p-channel devices was about 1.0V. Apply-
ing a scale-up factor provided by the industrial site and 4u device should exhibit a V, of
about 1.15V. One possible explanation for the disparity is the lack of a passivation layer
on the test die. The chips were not carefully handled initially and some impurities may
have affecied the thresholds. The AND gates. however, all seemed to operate within a more

reasonable V, range.
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APPENDIX C

Evaluation of a 32-bit Dynamic CMOS ALU

In this appendix the equipment and testing procedures for the dynamic ALU are
described. The first silicon run of the 32-bit dynamic CMOS$ ALU was fabricated in March
1984 and tesied in early June. The MOSIS P-name is domalu. the P-id was 16362. and the
Fab-id was M31VHAL. The chips were fabricated in a 3u. p-well. CMOS process at Telmos.
Masks were made at Burroughs. There were six first silicon chips but the sixth chip. num-
bered 5. failed basic equality/carry chain tests and was not tested further. A test jig was
built consisting of a piece of vectorboard and a 64-pin ZIF socket. A Tektironix Digital
Analysis System DAS 9100 was used both to provide test vectors and to acquire and store
the result vectors. An HP 8011A pulse generator was occasionally used outboard to pro-

vide slightly higher resolution timing pulses.

Figure C.1 shows the bondmap for the first silicon ALU. Forty-seven pins were
bonded. 32 of which are hooked to tri-state buffers and used for 170: 10 pins are used as
control signals to load laiches and select ALU operations: the ¢ clock is a single pin. power

and ground take two pins and the signals A =B =0 and Cow _H are also brought out.



255

[ L Jd L2 Jd 2 YL LL <
JUWWWLUUWULWUWLUUW

BOBHERE OB

1

DO DODOOR go
g

1)

B
-.-l

]

Figure C.1: Bondmap for ALU chip

Figure C.2 shows the basic ALU timing diagram.
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73R LOADA-L

LOADB-L

28 ALuvAaLID-L™

* | TorECH | TEVAL

M- DATA IN MUST BE STARBLE OR
ORTA OUT IS VALID
m SIGNAL MAY CHANGE
WAVEFORM AT ARROW HEAD DEPENDS
\—"2 0N WAVEFORM AT ARROW TAIL
PRECH AND EVAL TIMES DETERMINED BY EXPERIMENTATION
* EVAL CANNOT BEGIN UNTIL A AND B RRE LORDED

AND PRECH IS COMPLETE

> ALUVALID-L = RLUEVAL-H = LORDD-L
Figure C.2 Basic ALU Timing Diagram

First the A operand is placed on the 1/0 pins and the A laich is loaded. then the B operand
is placed on the same set of pins and the B laiwch is loaded. During this load time the ALU
is in precharge. The precharge time was never measured. bul simulations suggest it is not
greater than 10ns, therefore the time to load the laiches was the constraining factor in this
part of the clock cycle. The ALU computes during the evaluation phase of ¢. when signal

ALUVALID_L is high. Bringing ALUNVALID_L low stops ALU evaluation and simultane-
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ously loads the ALU result into the destination laich. The 1/0_L signal may then be
brought high allowing the destination laich information to be read out through the 170
pins.

The Tektronix DAS 9100 was programmed to generate test vectors and loop on the
data acquired from the output latch. Instructions were fed to the chip at a 200ns rate by

the DAS. The template test program was:

ABC — —_— 0001
—_— — 0000
— — 0002
o — 0000 2345
XXXX XXXX 0000 repeat 20
XXXX XXXX 0000 goto ABC

The symbol '-' represents data 10 be filled in. The first 2 dashed lines should agree. as

should the second pair of dashed lines. The symbol "X’ represents a *“don’t care” condition.

The 200ns cycle time is not critical. During each pair of instructions the A and B
regisiers, respectively, are loaded. The 2345 field activates four time-critical strobes which
control the evaluation time of the Domino circuit. The Domino circuit is precharged during
the loading of the A and B registers (The time required 10 do this should be less than 20ns.
although it has not been measured.). The repear 20 instruction is a wait loop to allow the
chip's output buffers to drive the offchip probe capacitances. Finally the goto ABC instruc-
tion makes the program an infinite loop. The test case repeals until stopped by an external
interrupt. |

The time-critical strobes were generated externally by the HP 8011A Pulse Generator.
The trigger signal for the pulses was a 40ns pulse provided by the DAS strobe lines. The
pulse generator provides a continuously variable pulse. The pulse height is also variable.

Rise/Falltimes are about 20ns. All pulse widths were measured between the 2.5V points.

In the paragraphs that follow the test veclors for each of the various timing tesis are

described. The accompanying photograph was taken from the CRT of the DAS910(, and
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contains the values of the input and output latches in HEX format.

ADD test:

FFFF
FEFE
0000
0000

FFFF 0001
FFFF 0000
0001 0002
0001 0000

This is a worst-case add. F's in reg A, 0...01 in reg B. The last group of four digits

0001 and 0002 is a command to load latches A and B. respectively. A carry is thus gen-

erated in the least significant bit and must propagate the full length of the carry chain. It

goes through the first nibble slowly. the bypass for the next six nibbles. and finally

through the last nibble in order to affect bit 31. which is the slowest settling bit. Since the

carry_out signal does not have 1o go through this last nibble (it goes through seven byvpass

nibbles instead) it is faster. Figure C.3 shows the bytes (from MSB to LSB) D. C, B, A of

operands A and B and then the result laich in order. Only the last two bits of field £ are

used. The LSB is the signal A—B=(0_L, the second bit is the signal Cowz_H. The final result

at line 21 shows an output value of 0 with a carrv out and A not equal to B.

14

Figure C.3: DAS9100 ADD Test

SUB test

FFFF FFFF 0001
FFFF FFFF 0000
FFFF FFFF 0002
FFFF FFFF 0000

alternate:

FFFF FFFE 0001
FFFF FFFE 0000
FFFF FFFD 0002
FFFF FFFD 0000
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This is a worst-case subtract. F's in both A and B regs. Since the B reg. is comple-
mented, this means that B really looks like: 0...0. In a SUB the carry_in bit is set to 1 and
this injected carry {orces carry propagation the length of the carry chain. In this case the
carry is injected. not generated. so the first slow nibble is bypassed. Thus the worst case is
seven bypass nibbles and one slow nibble. This SUB should be faster than the worst-case
ADD. The final] result at line 21 shows an output value of 0 with a carry out and A egual

1o B.

The alternate SUB stops the carry_in propagation and instead forces a generate at bit
1. This is contrasied with the forced generate at bit O for the worst ADD case. Thus this
situation should also be faster than the worsi-case ADD. It provides an alternate worst-

case path for the SUB operation.

XOR test:

9393 3939 0001
9393 3939 0000
3939 9393 0002
3939 9393 0000

This is one of many possible configurations to test this logic operation. The resultant
pattern should be alternate 1's and O’s- in this case: AAAA AAAA. The 1/0 patiern of the
lest vector should also be complemented 1o make sure that all bits can be driven both high

and low. The final result at line 22 shows an output value of AAAA AAAA with no
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carry out and A not equal to B.

Ar.frfiv e bt

Figure C.5: DAS9100 XOR Test

AND test:
9C9C C9C9 0001
9C9C C9C9 0000

C9C9 9C9C 0002
C9C9 9C9C 0000

This is one of many possible configurations to test .this logic operation. The resultant
pattern should be a one 1 and three O's. in this case: §888 8888. The 1/0 pattern of the
test vector should also be rotated through its four possible configurations. This particular
patlern gives a 1 in the high-order which is the slowest to change since the AND control
signal must travel through 32 bit slices to reach this bit. The final result a1 line 21 shows

an output value of 8888 8888 with a carry out and A not equal to B.
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Figure C.6: DAS9100 AND Test

OR test

3636 6363 0001
3636 6363 0000
6363 3636 0002
6363 3636 0000

This is one of many possible configurations to test this logic operation. The resultant
patiern should be a one 0 and 3 1's. in this case: 7777 7777. The 1/0 pattern of the test
vector should also be rotated through its four possible configurations. This particular pat-
tern complements the above AND test patlern. so these two patierns ensure that all 32 bits
can be driven both high and low. The final result at line 21 shows an output value of

7777 7777 with no carry out and A not equal o B.
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DAS9100 OR Test

SR test

AAAA  AAAA 0001
AAAA  AAAA 0000
7654 3210 0002
7654 3210 0000

This is one of many possible configurations to test the shift right logic operation. The
resultant pattern should be an aliernating 0/1 pattern. shified right by one bit position. in
this case: 5555 5555. The input vector is also a 1/0 pattern. to test that all bits toggie. The
complemented vector should also be used 10 test that the bils can be loggled in the oppo-
site direction. The argument in the B reg. is simply a foil. It must not affect the result
The final result at line 20 shows an output value of 5555 5555 with no carry out and the
A—B=0_L line in its precharged state (A equal to B). This signal is not valid on SR and

PASS.
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Figure C.8: DAS9100 SR Test
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PASS test

AAAA  AAAA
AAAA  AAAA
5555 5555
5555 5555

0001
0000
0002
0000
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This is one of many possible configurations to test this logic operation. The resultant

pattern should be the contents of reg A., in this case the alternating 0/1 pattern: AAAA

AAAA. The complemented pattern should also be tesied to ensure that all bits can be

driven both high and low. The contents of reg. B are a foil. and must not affect the result.

The final result at line 22 shows an output value of AAAA AAAA with no carry out and

the 4—B8=0_L line in its precharged state (A equal to B). This signal is not valid on SR and

PASS.
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—

00 PASS Test

Carry Propagate test:

FFFF FFFF 0001
FFFF FFFF 0000
0000 0000 0002
0000 0000 0000

FFFF
FFFF
FFFF
FFFF

SUB:

FFFF
FEFF
FEFFF
FEFF

0001
0000
0002
0000

The Couwr_H signal becomes valid before bit 31 is valid in ADD and SUB operations.

This is because separate circuitry. the fast carry bypass. generates this signal. These two

vectors lest the worst Cow_H cases. The SUB case should be faster because i1t begins with

carry injection. In the ADD case. by contrast. the carry must be generated at bit 0. The

difference in the delays is the difference in the delay through a 4-bit bypass and full 4-bit

ripple-carry circuitry. Figure C.10 shows the carry propagate lest for the SUB instruction.

The final result at line 20 shows an unsettled output value of FEC8 0000 with a carry out

and A equal to B.
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Figure C.10: DAS9100 Cp-SUB Test

Minimum Carry Arithmetic test

0000
0000
0000
0000

ADD:

0000
0000
0000
0000

0001
0000
0002
0000

0000
0000
FFFF
FFFF

SUB:

0000
0000
FFEF
FFFF

0001
0000
0002
0000
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These 1ests represent the best-case ADD and SUB operations respectively. Many other

vectors would also give this result. In the ADD test no carries are generaled. in the SUB test

there is a carTv into the least significant bit (bit 0) as a result of carry injection. Outputs

are precharged to 1 as a result of tbe Domino logic. thus the tests shown here are the most

sensilive no-carry tests— the ADD result should be: 0000 0000: the SUB resuli: 0000 0001.

Figure C.11 shows the minimum carry lest for the SUB instruction. The final result at line

21 shows an output value of 0000 0001 with no carry out and A not equal to B.
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Figure C.11: DAS9100 Minimum Carry SUB Test

Figure C.12 shows a pulse generated from by the HP 80114 pulse generator. The
x—scale is 20ns per division. the y—scale is 1.0V per division. The pulse shown has a
duration of 100ns measured from the transition between the 2.5V rising edge to the 2.5V

falling edge.

-+

e "
- |

Figure C.12: HP8011A 100ns Pulse

Results of ALU Timing Tests

The best results from the table in Figure C.13 appear in Chapter 3. The full timing

tests are presented below. If. in a given lest. a particular chip does not appear it is an indi-



cation that it was completely non-functional under that particular test vector.

Function | Chip | Delav (ns) Remarks
1 140 inter-carry bit 4 bad
ADD 3 140
4 150
1 130 inter-carry bit 4 bad. both SUB tests
SUB 3 135 inter-carry bit 4 bad. both SUB tests
4 125
1 95
2 90
XOR 3 95
4 95
AND 1 85
2 85 bit 11 stuck at 0
3 95
4 95
OR 1 85
2 80 low 16 bits not available
3 80 bit 8 stuck at 0
4 85 bit 8 stuck at 0
1 50
2 50 :
SR 3 45 complementary tests. bit 8 stuck at 0
: 4 50 AAAA vecior. bit 8§ stuck at 0
45 5555 vecior
6 35 complementiarv lests
1 45
2 50
PASS 3 50
4 50
6 35
1 100 ADD test
90 SUB tesl
Cowt _H 2 90 SUB test
3 100 ADD/SUB test
4 100 ADD test
1 95 ADD/SUB test
. 2 95 ADD/SUB test
Min Carry | 3 95 ADD/SUB test
4 95 ADD test

Figure C.13: Measured ALU Delays
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APPENDIX D

MAMBO Source Listing

This appendix contains the C language source code for all the programs in the

MAMBO package. To obtain this program contact Deborah Dunster at the following

address:

EECS Industrial Liaison Program
457 Cory Hall

University of California
Berkeley. CA 94720
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