
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



AUTOMATED SYNTHESIS OF MULTI-LEVEL

COMBINATIONAL LOGIC IN CMOS TECHNOLOGY

by

M. E. Hofmann

Memorandum No. UCB/ERL M85/53

1 July 1985

\
0

\j



AUTOMATED SYNTHESIS OF MULTI-LEVEL

COMBINATIONAL LOGIC IN CMOS TECHNOLOGY

by

M. E. Hofmann

Memorandum No. UCB/ERL M85/53

1 July 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



AUTOMATED SYNTHESIS OF MULTI-LEVEL

COMBINATIONAL LOGIC IN CMOS TECHNOLOGY

by

M. E. Hofmann

Memorandum No. UCB/ERL M85/53

1 July 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ACKNOWLEDGMENTS

Professor Richard Newton, my research advisor, provided the inspiration for this

work. I wish to acknowledge his contribution first.

Over the course of the research described in this thesis I have had the opportunity to

work with and ask the help of many people. They are not too numerous to mention. I

want to thank Rick Spickelmier. Tom Quarles. and Peter Moore for general advice, pro

gramming help, and those things which "only take five minutes".

Several discussions with Professor Hugo DeMan provided useful insight into the

design of NORA CMOS circuits. For work on specific problems I want to acknowledge

several people: Peter Moore spent many hours on the ALU design and hacked the logic-

level simulator to handle CMOS gates. (I also thank Peter for his uncanny ability to prove

mathematical theorems in the time it takes him to go from a seated position to the black

board.) Richard Rudell contributed to my knowledge of Boolean minimization problems

and quickly added new features to the ESPRESSO program that helped in the evaluation of

various minimization strategies. Ron Gyurcsik wrote a program to do least-squares fits

and one to aid in MOSFET threshold voltage calculations. Ron also helped in the formula

tion of the charge redistribution equations. In the design of the ALU chip I wish to thank

Dave Wallace for design of the input latches. John Zapisek for design of the destination

logic, and B.K. Bose for design of the input and output pads. Thanks to their diligence the

chip worked on first silicon. On the dynamic CMOS test chip I want to thank Joan Pen

dleton for work on the DRC rules file and for the design of the input and output pads.

Chuck Kring contributed many hours in lab helping me benchmark this chip and Kok

Chang ran a multitude of SP1CE2 simulations.

The dynamic CMOS test chip was fabricated at XEROX PARC. Ben Pugh and Bridget

Scamporrino at XEROX provided wafer processing details and test parameters. Their assis

tance in chip fabrication is gratefully acknowledged. Partial funding by Tektronix. Inc..



Digital Equipment Corporation, and DARPA under grant N00039-83-C-0107 is also ack

nowledged.

I want to thank Jeff Burns in his editorial capacity for reading numerous drafts of

this thesis. I would like to thank Jeff Burns. Ron Gyurcsik. Ken Keller. Grace Mah. Karti

Mayaram. Tom Laidig. Deirdre Ryan, and Chris Marino for being regular guys. They are a

credit to this universe and I think they are really swell. If it weren't for people like these

life would be far less entertaining.

I want to thank my parents. Garda and Peter. They provided support and encourage

ment and gave me good advice when 1wasn't in the most optimistic of moods. More than

anyone else, they provided me with a reason and a goal for undertaking this project.

Finally. I would like to thank myself. I'm glad now that I stuck with it. though on

the whole, if I had it to do over again. I think I'd rather move up to the Yukon and shoot

moose. In finishing this work it seems only fitting and proper to quote the immortal phi

losopher and observer of goings-on. F. Flintstone: "Yabba-Dabba-DOOr



AUTOMATED SYNTHESIS OF MULTI-LEVEL COMBINATIONAL LOGIC
IN CMOS TECHNOLOGY

Mark Eric Hofmann

pn p. Department of Electrical Engineering
and Computer Science

Sponsors: Tektronix. Inc.. Signature,
Digital Equipment Corporation -Richard Newton

Committee Chairman

ABSTRACT

A framework for the synthesis of combinational logic functions in a dynamic CMOS

technology is presented. The input to the package of programs, which may be run as a

pipeline, is a set of Boolean equations. The synthesis package generates mask-level
geometries as output. Circuit optimizations for both speed and area have been developed.
This approach compares favorably with other automated synthesis systems, such as PLA-

based methods, in terms of circuit delay and layout area.

Different technologies and design styles for the implementation ofcombinational logic

have been studied. Static and dynamic circuits have been characterized and extensively

simulated. Two experimental chips were fabricated to further examine dynamic CMOS cir

cuits. One of the test chips, a 32-bit ALU. is being used as pan of a VLSI RISC micropro

cessor. The test measurements show that many dynamic circuits will have charge redistri

bution problems unless precautions are taken in design. Algorithms have been developed

which partition complex circuits so that charge redistribution problems are avoided.

The regular structure generated by the pipeline is an extension of Weinberger arrays.

The use of the Domino design style allows the construction of complex gales. Rather than

perform a two level expansion on the Boolean equations, the framework maintains a

multi-level expression hierarchy. This hierarchy is implemented in a multi-level matrix

which can be lopologically compacted. The algorithms for compaction presented in this

dissertation allow simple-column and multiple-row folding with external constraints. The

folded connectivity matrix is translated to the mask level by a context-based tiler. The

tiler reads from a tile library and is process independent.

htjb^



Table of Contents

Chapter 1: Introduction and Review of Previous Work - 1

1.1 Need for Automation of Combinational Logic ~ - 1

1.2 Goals of Current Research - 2

1.3 Organization of this Dissertation - 3

1.4 Comparison with Previous Work - - 5

1.5 PLA Design 15

1.6 Summary of Results ~ - - - 1?

Chapter 2: Comparison of Static and Dynamic CMOS Circuits - 19

2.1 Design of Static CMOS Logic - *9

2.2 Design of Dynamic CMOS Logic 23

2.3 Dynamic CMOS Design Using NORA 31

2.4 Special Design Considerations in Dynamic CMOS - 41

2.5 Conclusions - • - 46

Chapter 3: Simulation and Measurement of Static and Dynamic Circuits 47

3.1 Range of Circuits Simulated 47

3.2 Rationale for Choice of Benchmark Circuit - 48

3.3 Simulation Technique - 48

3.4 Standard Static CMOS Benchmark 49

3.5 Dynamic CMOS Benchmark - - 51

3.6 Simulation of Dynamic Circuits with Charge Redistribution 55

3.7 Comparison of Optimized Dynamic Circuits ~ 59



11

3.8 Delay and Charge Redistribution Measurements from a Test Chip - 63

3.9 Measurements of a 32-bit Dynamic Domino ALU - 80

3.10 Summary .. - - 98

Chapter 4: The MAMBO Synthesis Package ~ 99

4.1 Overview of the MAMBO Pipeline - ~ 99

4.2 Representation of Boolean Expressions— MGMG ~ 105

4.3 Transformation into Target Technology—MGMG 109

4.4 Alternate Transformation into Target Technology ~ 116

4.5 Summary - ~ 116"

Chapter 5: Delay Optimization and Partitioning of Dynamic Meshes 118

5.1 Partitioning of Transformed Gates— MOSMESH ~ 118

5.2 The Charge Sharing Criterion in MOSMESH 119

5.3 Data Structure for Gate Partitioning ~ - 119

5.4 The Partitioning Algorithm - - 123

5.5 An Example of MOSMESH Partitioning ~ 132

5.6 Calculation of Signal Delay in a Partitioned Mesh— MKTBL 142

5.7 A Simple MOS Model for an Arbitrary Mesh 146

5.8 Elimination of Redundant Clusters— MIMIC 161

5.9 Summary - 16*7

Chapter 6: Compaction and Layout of Domino Matrix Structures 168

6.1 Conversion of Partitioned Circuit to Matrix Structure— MKMAT ~ 168

6.2 Algorithms for Topological Compaction— TWIST 179

6.3 Examples of Row and Column Folding ~ 196

6.4 Summarv - 204



Ill

Chapter 7: Physical Design: Comparison of Layout Tiling Methods - 205

7.1 Distinction Between Routed and Tiled Methods - 205

7.2 Tiled Methods 207

7.3 A Structure for the Layout of Complex Domino Cells ~ 213

7.4 Context-Based Tiling—TINKER 215

7.5 Mask-Level Layout Generation— TAILOR 221

7.6 Summary ~ ~ 229

Chapter 8: Comparison of Synthesis Methods ~ 230

8.1 Comparison Criteria for Multi-Level Matrices and PLAs 230

8.2 Area Versus Speed Tradeoff in MAMBO 232

8.3 Effect of Series Chain Length on Circuit Speed - - 235

8.4 Effect of ON-set Versus Literal Count Minimization 235

8.5 Summary ~ 237

Chapter 9: Conclusions and Further Work ~ ~ 238

Appendix A: SP1CE2 MOS Models ~ 243

Appendix B: Measurement of the Dynamic CMOS Test Chip ~ 245

Appendix C: Evaluation of a 32-bit Dynamic CMOS ALU 254

Appendix D: MAMBO Source Listing 268

References - 269



CHAPTER 1

Introduction and Review of Previous Work

Much of the circuitry in a VLSI design may be cast in a regular, or array-based, form

and thus may be generated automatically. However, blocks of complex combinational

logic often require hand layout because they are not structured: the time spent on this por

tion of the design is often the most significant part of the project [latt8l]. The aim of the

work presented in this dissertation was to explore methods of automating the design of

complex logic functions. In addition to reducing the time between circuit conception and

circuit fabrication, automated methods of circuit design and layout decrease the possibility

of design error, ease the overhead of circuit modification and often lead to efficient testing

strategies.

1.1. Need for Automation of Combinational Logic

A typical VLSI chip is comprised of a relatively small number of different sections.

In almost any VLSI design there will be sections of RAM and ROM. There will likely be a

processing section, for example an ALU in a microprocessor architecture. In addition, sig

nal buffering, conditioning circuitry, and control logic are required. In general, a processor

may be divided into two broad sections: control and datapath. The control section consists

of complex combinational logic and a small amount of storage circuitry. The datapath sec

tion includes ROM, RAM. an ALU, and intermediate storage latches. Even in a highly struc

tured chip design, such as the reduced instruction set CMOS SOAR processor [patt8l], over

30% of the chip area was used explicitly for control purposes [mari85]. On the other hand

the combinational part of the control logic contributes only 10% of the total device count.

The disparity in these figures reflects the patently irregular nature of combinational logic.

Irregular in this sense means that the pieces of combinational logic do not fit together well



§1.1

and a substantial amount of routing is required to connect them.

So-called random or arbitrary combinational logic used in a custom design has a repli

cation factor close to one. Replication factor is defined as the number of times the same

cell is used or placed in the design. The replication factor of the datapath is typically

skewed by on-chip ROM or RAM. For SOAR the RAM replication factor is over 2300. SOAR

is a 32-bit bitslice machine, and therefore, even excluding RAM. the replication factor is

over 32 since storage latches and buffers are used several times in each bitslice. For the

control logic of the SOAR chip common latch, buffer, and inverter library cells were used

wherever possible. Still, almost all of the control logic is implemented using 14 PLAs.

Even though this logic may make up only a small part of the total device count, it

represents a significant amount of chip area and often the majority of distinct, designed

cells. A major portion of the design time is expended in layout of this logic.

1.2. Goals of Current Research

The goal of this research was to create a framework to study the automatic genera

tion, optimization, and layout of arbitrary, multi-level combinational logic. As explained

in Section 1.4. the input to the package presented in this dissertation is an optimized,

multi-level combinational logic description. The logic function may have been hand-

optimized or optimized automatically [bray84b] [rude85] for logic compactness. The goal

of the work described here is to optimize the function for both speed and area, taking into

account electrical considerations. Since the process-critical parts of the package read from

technology files, changes in processing parameters, within the given design style and tech

nology, can be easily accounted for. The actual layout generation is performed by a

design-rule-independent tiling program which means that the program does not have to be

modified as design rules change.

The synthesis framework has been implemented as a pipeline of CAD programs that

allows a circuit designer to specify combinational logic at a high level and produce an

efficient circuit realization at the mask level. A pipeline of programs is a set of programs



§1.2 3

that may be used either separately or as a package. If used as a complete package, the out

put of one program drives the next without need for user intervention. A program or

package of programs that generates a particular type of cell automatically is called a

module generator [newt8l]. In Figure 1.1 the stages in the implemented pipeline, known as

MAMBO. are shown. The names of the associated tools in the pipeline are given in

parentheses.

In the pipeline implementation a technology, electrical design style, and layout method

must be chosen. Large-scale digital designs are typically implemented in a MOS technology

because of its superior packing density. For this project the CMOS technology has been

chosen because it is possible to design low power, dense circuits in CMOS. The choice of

design style is an implementation-level decision. The relevant design parameters are the

speed of a basic gate, area consumption, and ease of automated layout, topological optimi

zation, and Boolean minimization. After extensive simulation, a mixed static and dynamic,

clocked design style was chosen. The term layout method applies to the geometric level of

design. The layout method used in this project is ageneralization of Weinberger arrays. It

has the advantage of guaranteeing a regular, structured layout.

13. Organization of this Dissertation

This dissertation has nine chapters. The remainder of the introduction provides a

review of previous work in the area of automated synthesis of combinational logic

modules. Contrasts between static and dynamic CMOS design styles are drawn in Chapter

2. The advantages and deficiencies of each style, along with their best application areas,

are described. Detailed results of simulations of static and dynamic circuits in a specific

CMOS process are presented in Chapter 3. Results from a test chip constructed to examine

problems with dynamic circuits are also described. Chapter 3 concludes with results from

a 32-bit ALU test chip designed in the Domino style. In Chapter 4 an overview of the

stages in the MAMBO synthesis system is presented. The objective and constraints at each

synthesis step are stated and the initial parsing and logic optimization phases are described



§1.3

MAMBO Pipeline

User-Defined

N-level

logic function

Convert to

minimal

2-level form

(EQNTOTT, ESPRESSO)

Electrical

Design f—
(MOSMESH. MIMIC)

Topological
Design

(MKMAT, TWIST)

Physical

Design

(TINKER, TAILOR)

Convert to

implementable
N-level form

(MGMG)

Delay Model
Generation

(MKTBL)

fMask Layout]

Figure 1.1: Stages in the MAMBO Automated Logic Synthesis System

in deuil. In Chapter 5 the tradeoffs involved in partitioning large, dynamic, combinational

circuits are explained. Circuits may be partitioned according to several criteria to result in

reduced delay and greater ease of layout. In Chapter 6 algorithms for the area



§ 1.3 5

optimization of matrix structures are explored. The current structure is contrasted with

previous work on folded, tiled PLA structures. Chapter 7 contains an overview of layout

tiling methods and a comparison between tiled and routed methods. The separation of

electrical and geometrical rules is examined. A comparison of layouts and delays of

several PLAs from the SOAK chip with multi-level dynamic implementations is presented

in Chapter 8. Conclusions and directions for further work are presented in Chapter 9.

1.4. Comparison with Previous Work

The combinational logic synthesis problem can be broken up into four parts as shown

in Figure 1.2.

LOGIC

OPTIMIZATION

ELECTRICAL

DESIGN

TOPOLOGICAL

CQflPACTION

PHYSICAL

LAYOUT

RREflS FOCUSSED ON IN THIS DISSERTATION

Figure 1.2: The Four Steps in Logic Synthesis

The first step, logic optimization, is a multi-faceted problem. The goal of logic optimiza

tion is to reduce circuit complexity in some manner so that the optimized circuit requires

less chip area. The front-end program in the MAMBO pipeline. MGMG. will perform simple

logic optimization if requested, however it is assumed that the logic expressions input to

the MAMBO package are already in a logically optimized form. Two methods of logic

optimization are reviewed here. The first method reduces circuit complexity by partition

ing the function. The methods of functional and hierarchical partitioning are described.

The second method is logic optimization by multi-level Boolean minimization.



§1.4

1.4.1. Logic Optimization by Circuit Partitioning

A circuit may be partitioned according to the function it performs. That is. if the

designer knows something in particular about the function he wishes to implement he may

be able to use this to advantage in circuit generation. An example circuit where such tech

niques are useful is the exclusive-cr (XOJt) function. In an n -input XOR the function has

the value 1 if and only if an odd number of inputs are 1. The following example is taken

from [flei75]. A calculation is carried out on the number of bits it would take to represent

an XOR function on 16 inputs, using different decoding schemes. For the case of one

decoder with 16 inputs the XOR maps into a single column with 216 bits. This represents

the completely decoded case, where each bit (a J or a 0) indicates the function output.

This could be mapped into a single circuit. The other extreme is to employ 16 1-bit

decoders. Each decoder produces two outputs, the input variable and its inversion. Now

there are just two possible cases per decoder times 16 decoders or 21 X24 = 25 = 32 bits

per column. However 215 columns are required, since there are 215 ways of representing

two variables across 16 inputs. This case, which could be implemented by partitioning a

single PLA into 16 smaller arrays, is clearly the worst case.

There are intermediate solutions and these are tabulated in Figure 1.3.

Number

of decoders

Inputs
ner decoder

Total

number of bits

1 16 216 = 65.536

2 8 210 = 1024

4 4 29 =512

8 2 212 = 4096

16 1 220= 1.048.576

Figure 1.3: Total number of bits to implemerit XOR

The best case turns out to be four 4-input decoders. This situation could be realized by

four small PLA circuits. In this example, the output of each decoder produces 24 = 16

lines. Since four decoders are used this is a total of 4 x 24 or 64 bits per column. Since

each decoder deals with only four inputs there are just 23 minterms per PLA. Thus the

total bit count across all columns of all PLAs is just 4 x 24 x 23 or 512 bits overall.



§ 1.4.1 7

In this presentation the routing between the component circuits has been neglected.

This can represent a significant portion of the circuit area. An example circuit which illus

trates the interconnection routing problem is presented at the end of this section.

Another partitioning method to reduce total cell area is to implement a hierarchy of

cells. This approach does best when the functions are complex and heavily interdepen

dent. This method is similar in effect to the approach employed by the current work,

where a multi-level form of the input Boolean expressions is retained. The following

example is taken from [ayre79]. Here the designer wishes to implement a 16-bit counter.

It can be implemented as single circuit in two-level logic. A schematic representation of a

single PLA implementation is shown in Figure 1.4. PLA area is 32.000 units.

ANDTtrms

Figure 1.4: 16-bit Counter as a Single PLA



§ 1.4.1
8

However, by introducing additional logic stages, so that the circuit is now AND-OR-AND-

OR. the overall area of the counter can be reduced. The total area for the two-deep imple

mentation is 11.500 units.

The decomposition can be continued until the minimum branching factor of two is

reached. In this case, if each bit of the 16-bit counter is handled by a single PLA. a five-

level representation can be obtained. Aschematic representation of such an implementa

tion is presented in Figure 1.5. Total area of thecircuit is 7.000 units.

m

I I m
^33

S

m
m

"W n
ffi

1

Figure 13: 16-bit Counter asFive Levels of PLA

Because total cell area has been reduced significantly, the speed of the counter,

although not reported, would increase, other factors remaining equal. It is not clear from

[ayre79] whether or not the additional routing area for the PLA interconnections was taken



§ 1.4.1

into account. It would appear from the diagrams that routing area has been factored into

the area calculation. In general, as circuit function is broken up into more and more levels

of logic, the ratio of routing area to cell area increases. The total area may. in fact,

increase in absolute terms. The amount of space dedicated to routing in the last two

examples appears significantly greater than the amount of space occupied by the PLA

module area. The curve shown in Figure 1.6. from [sans8l]. shows that as the area of

individual cells, for example PLAs. decreases in size and complexity proportionally more

area is taken up by interconnect.

tOtaOTQu

WO number ofcells

Figure 1.6: Ratio of Interconnect Area to
Cell Area as Fragmentation Increases

In the extreme, total chip area may increase even though there are fewer device placements.

1.4.1.1. Example Interconnection Problem in Partitioning

When a larger block is partitioned by either of the two methods just presented inter

block routing becomes an issue. Layout schemes which route by block abutment, there

fore, can result in a substantia] area savings. A partitioned 32-bit ALU implemented as

six PLAs has been compared with a bitslice approach [sout82]. Four 8-bit PLAs. based on

the highly optimized, compact design presented in [schm80] form the core of the NMOS



§ 1.4.1.1 10

design. Two other carry-lookahead PLAs are employed for speed. The floorplan of the

32-bit ALU-PLA layout is shown in Figure 1.7.

CONTROL AND npTA niiT
DATA IN DRTR °UT

<r 2. l m >

A

2.1 nn

v

Figure 1.7: Floorplan of Partitioned ALU-PLA

The bitslice approach was based on a single cell per bit design. Carry generation was

accomplished by a Manchester-type carry chain which is able to bypass 4-bit sections of

the ALU for fast carry propagation.

Both designs were fabricated in a single layer metal, polysilicide process. A com

parison of the two designs is shown in Figure 1.8.



§ 1.4.1.1

Attribute PLA Bitslice

Worst-case Speed 22ns 35nj

Power 200mW 125mW

Total Area 4.2mm2 1.0mm2

Routing Area 1.8mm2 -

11

Figure 1.8: Comparison of PLA and Bitslice Techniques

A significant portion of the PLA design. 1.8mm2. or 43%. is taken up in routing area. This

is because it is very difficult, if not impossible, to generate partitioned PLAs that route by

abutment. Presumably the bitslice design takes up less space not only because the slices

connect by abutment, but also because they are more regular in structure. The speed

advantage of the PLA is due largely to the full carry-lookahead: the tiling approach itself

does not compromise circuit speed. The comparison indicates that a layout scheme which

routes by abutment gives a more compact result. This result is especially important in

multi-level circuits where the amount of intercell routing is large.

1.4.2. Logic Optimization by Boolean Minimization

Rather than apply special knowledge about a circuit to minimize its area, direct

multi-level Boolean minimization can be employed to reduce device count and hence circuit

area. Several algorithms have been published [bray82] [risc82] [bray84b] which deal with

fast, heuristic methods for both decomposition and factorization of Boolean expressions.

Decomposition is a technique for discovering common subexpressions in a system of (two

or more) Boolean expressions. Factorization is a similar technique, used to rearrange a sin

gle expression. Brayton and McMullen [bray82] outline an algorithm which simplifies a

set of functions until they are "relatively prime" by successive substitution of new vari

ables for common subexpressions.

Before examining the process of decomposition, it is useful to define some terms.

Two expressions are said to be relatively kernelfree if they have no kernels in common. A

kernel of an expression is a cube free primary divisor. A cube is a set c of literals such

that if Boolean variable x is an element of c. x is not in c. A literal is a Boolean variable



§ 1.4.2 12

or its negation. An expression is said to be cube free if the only cube evenly dividing the

expression is 1. Function g divides function f evenly if (/ / g )g =/. The product and

division operators are defined for / orthogonal to g. Functions / and g are said to be

ortitiigonal if none of the literals of / are in g. The primary divisors of an expression /

are those cubes c which divide /. ie. f / c 5*0. For example, if / = EF {A + BC ) and

g » (A +BC ) then fig = EF hence g divides f and. in this case since (f / g)g - f . g

divides / evenly and (A + BC ) is a primary divisor of /.

Decomposition is applicable to sets of Boolean expressions, while factorization applies

to single functions. It is the decomposition methods that are useful for matrix optimiza

tion. Decomposition is a two step process. First, common subexpressions, consisting of

two or more cubes, are extracted from of a set of functions until the expressions are rela

tively kernel free. At this point expressions can. at most, share a single cube. In the

second step, these are located and extracted also. The result is that the only common divi

sors are single literals: all global commonality has been discovered.

Brayton and McMulIen call the first step distillation and the second step condensa

tion . Both steps involve simplification of an expression by extracting a common subex

pression: each step is repeated until no common subexpression can be found among any

pair of expressions.

Both steps require a selection heuristic. In distillation the object is to find a pair of

kernels K, K' such that at least 2 cubes are common, for K, A" not in the same function.

In the condense algorithm a pair of cubes c. c' must be found such that at least 2 literals

are common, for c, c' not in the same function. The effectiveness of these steps depends on

the selection heuristic. Rather than search for all kernels, one can define the level for a

kernel and then restrict the search to all kernels at a given level. The level of a kernel is

recursively defined. Level 0 kernels are all kernels in which no literal appears twice. Ker

nels K""*l(/ ) are those kernels, not including / itself, which are kernels of K" (/ ). By

this definition the complete kernel set. K(/ ). is the union of all levelsn of Kn (/ ).



§ 1.4.2 13

The table in Figure 1.9. from [bray82], shows an example of 0- and 1-level partial

kernel decomposition.

Decomposition
Level

Transistor

Count

None 2750

O-Level 1928

1-Level 1786

Figure 1.9: Example of Boolean Decomposition

Partial decomposition is supplemented by an additional collapsing step after the condensa

tion algorithm. This extra step is useful because some kernel terms may not have multiple

instances, in other words they appear only once in the set of Boolean functions. In this

case back substitution into the kernel list allows the discovery of complex subexpressions

and reduces the number of separate subexpressions. As a practical consideration the com

plement of the extracted kernel is also computed: it may form part of the subexpression as

well.

The result of using the above approach is a smaller number of gales and perhaps a

decrease in the total number of Boolean variables. Gate reduction comes from elimination

of duplicate function implementation. The number of Boolean variables in a set of logic

expressions is the sum of input, output, and intermediate variables. The number of input

and output variables remains fixed. The number of intermediate variables will be reduced

if it is possible to collapse subexpressions. The logic-optimized circuit is thus both smaller

and denser than the original circuit.

UJ. Implementation of Logic-Optimized Circuits

After logic optimization, the combinational circuit proceeds through the stages of

electrical, topological and physical design— the topics of this dissertation. Combinational

logic may be realized in many different ways. The- structured forms of layout include

Weinberger arrays [wein67], storage/logic arrays or SLAs [pati79], and gate matrices

[lope8l]. These methods are termed tiled methods because connection between cells is by



§ 1.4.3 14

abutment, just like tiling a floor. In comparison, there are routed schemes where intercon

nection between blocks of logic is performed by a router. Hand layout or the layout of

partitioned PLAs are examples of routed approaches. Another common technique for

implementing combinational logic is the "standard cell" approach. [souk8l]. In a standard

cell system simple functions are performed by each of many different cells. The cell col

lection makes up a library. Each cell in the library has the same height but a variable

width.1 The height constraint allows for the construction of rectangular routing channels

to interconnect cells. The cells are selected from the library on the basis of their function

and are placed in rows, perhaps by an automated placement program, based on the number

and position of their inputs and outputs. The cells are then routed automatically. A typi

cal standard cell layout is shown in Figure 1.10 [dunl83].

nTfiiini 11 ii mi in ii i

:<>.«iwm« tin !][!••

i mi 111! imil

••IIIM&BW •••"•I •• ii••mmhi!!••!• n•MMKilHIB

« t i

Figure 1.10: Automated Standard Cell Layout

'Recently standard cell systems have been developed which permit both variable height and variable width
cells.



§ 1.4.3 15

Other tools that work from high-level circuit descriptions are the MACPITTS program

[sout83] and work on silicon compilation at IBM [bray84a]. The MACPITTS program gen

erates Weinberger arrays for the control structures and is an example of a tiled method.

The IBM approach is based on a form of Dynamic CMOS logic known as differential cascode

voltage switched logic (DCVS). In this routed method, compact function cells are con

structed and an automated program performs the cell interconnection.

L5. PLA Design

The most successful structured approach to date is based on a two-level circuit

representation. It is possible to represent any combinational circuit in two-level form (i.e.

product-of-sums. sum-of-products) [nagl75]. The classical implementation of such a

representation is the Programmable Logic Array or (PLA ) [carr72]. Because research into

PLA generation and optimization is well advanced it is reviewed in detail here. PLAs are

often the approach of choice for combinational logic design because they are easy to

machine generate and. for small circuits, give good speed due to their two-level nature. In

practice, however. PLAs which implement functions of many input and output variables

(e.g.. 20 to 100) lend to be slow. This is a direct result of their large size. Such PLAs are

large because they provide the possibility for every input term, or its complement, to take

part in every product term and. therefore, to influence every output. These PLAs often

have a correspondingly large number of product terms which adds to the worst-case cir

cuit delay. Large PLAs have high source capacitances on product term lines. Unless special

precautions are taken, there will also be large IP drops on input and output signal paths

[mah84].

1.5.1. PLA Compaction by Folding

Not long after the first PLA generation programs were introduced [glas80] [hofm80]

[land82] it was recognized thai PLA density could be increased by topologically rearranging

the input and output blocks or planes of the PLA. Functionally the PLA remains



§ 1.5.1 16

unchanged, however some of the unused placement sites have been discarded. This topo

logical rearrangement is called folding. Folding compacts the PLA by taking advanuge of

the fact that though all inputs may contribute to a given product term, and all product

terms may contribute to a given output, it is very rare that such fully connected terms

exist. Therefore, in what is known as simple folding two inputs can share the space form

erly occupied by a single input. This can be done likewise for output and product terms.

In multiple folding more than two input, output, or product terms are collapsed into the

space of a single term.

Early work on PLA folding theory and implementation was carried out by [hach82]

and by [hofm80]. In [luby82] the optimal PLA folding problem was shown to be NP-

complete. Therefore, heuristics are employed to generate fast, near-optimal compaction.

Several early folding heuristics were shown to be near-optimal only for certain classes of

PLAs and an exhaustive search algorithm using branch-and-bound techniques was found

useful on small (e.g <20 inputs/outputs) or dense PLAs [hofm80]. The program runtime

proved prohibitive for large, sparse structures.

While many of the early folding programs provided significant area reduction they

often did so at the expense of increased external routing.2 Specifically, the designer had no

control over the placement of input and output signals. This meant that while the area of

the core planes of the PLA was reduced the overall area of the PLA. with the interconnec

tion routing taken into account, might actually have been worse. More recent work by De

Micheli [demi84] [demi82] addresses the folding problem with input and output con

straints in detail. De Micheli presents a set of heuristics for both constrained and uncon

strained multiple folding. Running in a constrained mode, area reductions appear to be

about 20% less (referenced to original area at 100%) than their unconstrained compacted

counterparts [demi84]. This work represents the current state-of-the-art in PLA compac

tion.

'The BL\M program [hofm80j was able to reduce a large UC Berkeley RISC 1processor control PLA by 40<*.
The compacted version of the PLA was not used because input signal routing from the surrounding circuitry to the
PLA was difficult using the layout techniques available at that time.



§ 1.5.1 17

1.5.2. PLA Compaction by Block-Partitioning

Partitioning a circuit into independent pieces, that is subcircuits which have distinct

inputs and outputs, will reduce circuit area. Partitioning a PLA in this manner is in effect

performing block diagonalization on the original PLA. For example, in the case of an AND

plane with n inputs and m product terms, the unpartitioned plane occupies Oin x m)

area. In the partitioning limit, if each input contacts only a single product term, the AND

planes of the m fully partitioned PLAs total O( n) in area. This type of block-

partitioning is employed by the SMILE program described in [demi83].

1.5.3. Deficiencies of PLA Compaction Approaches

While folding and partitioning produce area-efficient circuits, which is one of the key

parameters in the assessment of module generators, such programs only indirectly address

the problem of circuit delay. The fan-in of the PLA planes may be reduced by compaction

and this may indirectly decrease the critical path delay, but no delay optimization is pro

vided by folding or partitioning itself. The work in this dissertation recognizes that tim

ing analysis and delay optimization are crucial points in high-performance circuit design.

In contrast to the PLA-based combinational logic systems, the work presented here takes as

its primary goal the optimization of critical path delay. Topological compaction is per

formed after delay optimization and care is taken not to degrade circuit performance.

1.6. Summary of Results

The target specification of this research was to build a tool that produces delay-

optimized circuits which are also compact in layout area. This goal has been met. Typical

worst-case circuit speeds, as a result of delay optimization, are around a factor of two fas

ter than comparable optimized PLA implementations of the same logic function. Of the

examples tested, circuit speedups ranged from 1.2 to 2.5 times a PLA with the greater

speedups seen on the more complex circuits. The tradeoff with speed is circuit area. The

straightforward automated tiling scheme used in MAMBO produced structures typically



§1.6 IS

twice the size of comparable PLAs. though the range was from 1.5 times for large PLAs to

5 times for small circuits. For particular circuits MAMBO designs are both faster and

smaller than comparable PLA implementations. These results show that the optimized

multi-level approach yields circuits with a speed advantage at a cost in area. The designer

may tune the synthesized circuit for the most favorable area-speed tradeoff. The multi

level approach is most effective for complex combinational circuits where it yields circuits

more than twice as fast as comparable PLAs with a only a small increase in circuit area.

Detailed comparisons of combinational logic synthesized using the MAMBO pipeline appear

in Chapter 8.



CHAPTER 2

Comparison of Static and Dynamic CMOS Circuits

19

Zl. Design of Static CMOS Logic

To provide active pullup and pulldown of logic signals in static CMOS design, the cir

cuit function is duplicated by a- and p-channel devices. The two groups of devices are

logic duals of one another. The example circuit of Figure 2.1 realizes the NAND function

of five inputs.

_^ ♦

hcKhl
1 _J K-UHHNNLL

4-c 5-^r oevices

HE

HE
1 N-CHRNNEL

DEVICES

HC

HC

Figure 2.1: Static CMOS NAND Function of 5 Inputs

A conducting path is opened between GND and the output node when all five inputs are

asserted high. By contrast, a path between VDD and the output node exists when any one

of the p-channel devices is asserted low. Each input signal drives two gates, an n-channel

and a p -channel device.



§2.1 20

2.1.1. Ratioing N- and P-Drvices

For the NAND gate, at least one input signal must be low to drive the output node

high. To drive the output low. all input signals must be high. Since both states are

driven, it is important that the rise and fall times be approximately equal if overall circuit

performance is to be optimized. It is standard practice to ratio the FETs to obtain this goal.

There are two factors which exert first-order effects on gate delay. For particular values

of VG5 and VDS. the MOSFET current is directly proportional to K. a transconductance

parameter, where

A'„=^„Col (2.U)
and

K, =-!£-M,C„ (2.1b)
for the n -channel and the p -channel devices, respectively. Here it is assumed that the

thickness of gate oxide is the same for both devices thus Cox . the gate oxide capacitance per

unit area, is identical for both devices. W and L represent the width and length of the

MOSFET active area, respectively. The surface mobility of electrons in the />-type sub

strate. /Xi» • is typically two to three times higher than the surface mobility of holes in the

n -type substrate. fip . The exact ratio depends on a variety of factors, including substrate

doping, and therefore depends on whether an n-well. />-well. or twin-tub technology is

Wused. The second factor is the effective -y- ratio of"on" devices between V^ and VDD or

between V^ and GND. By varying W and L of the series and parallel connected devices in

Figure 2.1. both of these factors can be overcome. In the SP1CE2 [nage75] simulations that

follow it is assumed that ft„ = 2.5{ip.

2.1.2. Fanout Loading Calculations

Since static CMOS gates consist of functions duplicated in p- and n-logic, each input

signal must drive both an n - and a p-device. The first-order input gate capacitance of



§2.1.2 21

such a static circuit is given by:

C„ -C^OV.Ln+WpLp) (2.2)

For an inverter, the />-channel device contributes about twice as much gate capacitance as

the n -device. Therefore, a single inverter load in static CMOS is equivalent to approxi

mately three inverter loads in NMOS technology and. in general, dynamic CMOS circuits

show a smaller input capacitance than their static CMOS counterparts [pret85].

2.1.3. Design of NAND and NOR in Static CMOS

The logic functions NAND and NOR are realized more simply than AND and OR in

static CMOS. This is because the unimplanted n -device turns on when VGS is large posi

tive, hence when the gate is high and the source is grounded. The p -device turns on when

VGS is large negative, hence when the source is tied to VDD and the gate is low. That is.

for both device types, when the input voltage increases the output voltage decreases. This

contributes the basic inverting component. A positive logic NAND is fashioned by placing

n -devices in series and p -devices in parallel. A positive logic NOR is built by placing the

p -devices in series and the n -devices in parallel.

In practice, there is a bias toward building static CMOS gates in NAND form. The two

factors which affect device sizing, series chain length and mobility differences, tend to can

cel in the design of a NAND gate. For the NOR case the two factors are multiplicative,

resulting in a large disparity in p- and n -device sizes, especially for high fan-in gales. The

large p -devices add capacitance to the output node and consume circuit area. It is for this

reason that some circuits, for example the gate matrix designs in the BELLMAC chip.

[kang83a] have been built using only NAND gates.

2.1.4. Worst-Case Delays for Static NAND Gates

For a NAND configuration the worst-case delay time is TmL. the amount of lime it

takes the output to go from high to low. This definition is illustrated in Figure 2.2 (from

[hodg83]). The delay time is given by:



§2.1.4

JfiL ~

cT<y0H-v0L)

where the total capacitance is given by:

Cr = N0CG+NjCGDp+NiCGDn+(Xj-l)CCs„+lC€il[NICDBp+(.2Nj-l)CDBn] (2.4)
In Equation 2.4 N0 represents the gate fanout. Id is inversely proportional to Mj. the

number of inputs:

KI2{VQS-Vt?
In =

Nj

K is the process-dependent transconductance parameter.

V„k

Figure 22: Delay Time Calculation for Static NAND

22

(2.3)

(2.5)

2.1.5. Relative Placement of Gate Input Signals

Consider a high fan-in NAND gate. The speed at which the gate makes the 1-0

transition depends on the speed at which all the n-devices react. By placing the fastest

switching FET closest to the output node, the output voltage will begin to fall and the gate

will begin to make the transition, even before the more distant transistors have fully

turned on. It is important that the designer take advantage of this information in circuit

layout. This concern applies only to the n-devices since the p-devices are in parallel:



§2.1.5 23

hence there is no "closest" transistor to the output node.

2.1.6. Static CMOS Speed

Pullup and pulldown times for best and worst case SPICE2 simulations for a 5-input

AND gate (NAND with inverted output) are tabulated in Figure 2.3. In the worst-case

analysis a single input was switched, in the best-case simulation all inputs were switched

in parallel. The sizes of n - and />-channel devices were adjusted to achieve roughly equal

rise and fall times in the worst case. As with other simulations described here, the circuits

were laid out and all parasitic capacitances were extracted and accounted for in the simu

lations. The SP1CE2 models used for simulation appear in Appendix A.

5-lnput AND Lp/Wp L\tW« risetime (ns ) falltime (ns )

Best case 3/6 3/10 7.3 2.9

Worst case 3/6 3/10 9.8 10.0

Figure 23: Delay Times for 5-Input Static CMOS ANDGate

2.2. Design of Dynamic CMOS Logic

The design of dynamic circuits in CMOS offers considerably more layout flexibility

than static methods. Dynamic methods rely on charge storage for correct operation. The

most commonly employed dynamic methods use two-phase clocking (one clock). In the

initial or precharge phase, output nodes are precharged to either logic high or low. In the

second phase, called the evaluate phase, output nodes either remain stable or are allowed

to make a single, unidirectional transition. With this latter constraint circuit "glitches"

are avoided. This is important in charge transfer circuits, because once a node is improp

erly discharged ii cannot return its valid state until the next precharge.

Dynamic circuits offer an advantage over static designs: fewer devices are needed in

most cases since circuit function is not duplicated. Removal of the dual network makes

design-for-testability easier [gonc83]. The logic used to realize the function, called the

core, may be of either n- or ^-devices. In the examples that follow n-cores are most



§2.2 24

often used.

Dynamic circuit design also has several disadvantages. Some of these drawbacks are

summarized:

• The electrical design of dynamic circuits is unquestionably more
difficult than in the static case.

• The circuits must be simulated to determine the necessary precharge time.
• Dynamic circuits potentially suffer from a charge redistribution problem

on the output node.
• It is especially important to consider the ordering of

"internar* versus "external" signals to address this charge problem.
• Certain dynamic design styles arenot logically complete.
• Dynamic circuits utilizing two different clocks can have

circuit races if not carefully designed.

In the following sections each of these topics is considered with regard to the two most

commonly used dynamic design techniques.

2.2.1. Dynamic CMOS with Domino Logic

The most basic dynamic design is a style termed Domino after Krambeck. et. al.

[kram82]. This style involves the use of a single clock, denoted by $. This clock controls

a p-channel and an n-channel device: the former between circuit logic output and VDD.

the latter between the circuit logic and GND. as shown in Figure 2.4. In addition, a static

inverter is required at the output of the gate. The Domino representation of a 5-input

AND circuit is shown in Figure 2.4.



§ 2.2.1

H!

N-CHRNNEL
CORE

»

Figure 2^4: CMOS Domino 5-input AND circuit

25

While a standard (static) gate requires 2k devices to realize such a function, where k is

the number of inputs, a Domino gate requires *+4 transistors. The core is composed of k

devices: two additional transistors are gated by the clock, and two devices are required for

the static output inverter.

The Domino gate works in the following way: During the precharge phase <f> is held

low. The />-channel pullup device charges the Domino core output node high and the core

is isolated from GND. At the end of precharge the core node is at VDD. In the evaluate

phase 0-goes high which connects the core to GND and folates the core output from VDD.

If. during evaluate, inputs to the core devices are asserted such that a path is created

between the output node and GND. then the output node makes a single 1—0 transition.

Otherwise, the output node remains in its precharged (high) state.



§2.2.1 26

This process is then repeated with the next precharge phase. The term "Domino"

comes about from the analogy of setting up a line of dominoes (precharging) and then let

ting the first domino make a transition. This may cause a further transition which may.

in turn, cause a succeeding transition and so forth— much like the effect of toppling a

chain of dominoes.

2.2.2. Device Sizing in Dynamic CMOS

Dynamic logic is ratioless. which is to say that pullup and pulldown devices are not

sized depending on the amount of current they draw, or their relative mobility. The static

circuits just examined were ratioed in order to compensate for series sucking and for

mobility variations so rise and fall times were about equal. In precharged logic only a sin

gle state transition is possible. To save circuit area, minimum devices can be used: to gain

speed, wide devices can be employed in the core. The sizing of n-channel and />-channel

devices are essentially independent tasks.

2.2.3. Static Inverter Requirement

The need for the static inverter is explained fully in the original paper on Domino

logic. Briefly, the inverter is required because the precharge state brings the (n -core) out

put node high. If there is no inverter, a logic high will turn on the following n-channel

device. At the beginning of evaluate, therefore, the n -core of a succeeding gate will be

active and may be falsely discharged. This occurs because a momentary connection exists

between the output of the driven gate and GND. Once this node is discharged it cannot be

recharged until the next precharge phase. To prevent this, all input gates are required to

be off at the beginning of the evaluate phase. It is therefore necessary to add an inverter in

between precharged (high) nodes and driven n-channel (active high) devices.



§ 2.2.4 27

2^4. Distinction Between External and Internal Signals •

It is important in a dynamic design style, like Domino, to draw the distinction

between an internal and an external signal. An internal signal is one which comes from a

previous Domino gate. An external signal comes from a static source such as a latch.

Internal signals must be "off" at the beginning of the evaluate phase. An external signal.

however, is expected to be stable at the beginning of the evaluate phase— whether it is on

or off. That is. internal signals are stable and off during precharge and may make a single

transition during evaluation. External signals are expected to stabilize before the end of

precharge and remain in their final state during evaluation. Thus, another consideration in

the calculation of the precharge interval is the length of time it takes external signals to

stabilize.

In dynamic circuits relative signal placement is also important. Since external signals

must be stable before the beginning of evaluation, they are placed closest to the output

node. The internal signals come next and their placement depends on the order in which

they switch. Note that if a series external signal is "off" during evaluation the state of

any internal signals does not matter, since the external signal blocks any output node

transition.

2.2-5. The Charge Redistribution Problem in Dynamic Circuits

It has already been pointed out that in dynamic circuits care must be taken to avoid

improper discharge of a precharged node. Charge may also be lost from the output node

due to the phenomenon of charge redistribution. This problem is most evident in circuits

with a high fan-in of largely internal signals. Figure 2.5 illustrates the problem.



§ 2.2.5

0

0

25

T

K

4

* PRECH

HERD

CON]

INPUTS ( 2 J-|r niDDLE
V I [ON]

,£=-1^ N-CHANNEL
3 U\ TAIL CORE

COFF]

$—»»
ij

^

>
TO

—I N-CHflNNEL
K7 DEVICES

Figure 2^: The Charge Redistribution Problem

Assume all signals are internal. If. during evaluation, the two devices closest to the out

put node turn on but the third device remains off. the output node should remain high.

However, when the internally driven FETs turn on. charge stored on the output node capa

citance flows into the source/drain capacitances of the n -devices. The output charge is

thus split across several nodes. If the collective source/drain capacitances are of the same

order as the gate capacitance of the static inverter, the charge lost from the precharged

node may cause the voltage there to drop and the static inverter to make a false transition.



29
§ 2.2.5

The charge redistribution problem can be quantified and asimple criterion for the
onset of charge redistribution is now defined. This criterion is used by the MOSMESH pro
gram, described in Chapter 4. to determine the presence of acharge redistribution problem.
The precharged capacitance (prech) lies on the node designated by an asterisk in Figure 25.
All other capacitances represent parasitics {para). Acharge redistribution iCX) problem is

defined to exist if:

prech +(head )xpara < vm (2.6)
prech + (head + middle )Xpara VDD

where: head: number of drain nodes from the core devices which touch the prech node

middle: number of source/drain nodes from the core devices which are not W
and which do not touch the grounded pulldown device gated by the clock

Vth :the switching threshold of the output buffer/inverter

VDD: positive power supply rail

The buffer capacitances which contribute to the prech capacitance are:

Wx Lp xC0Xp ♦ Wx Z. xC0Xn + <•«• capacitance)
CaDOpXWp +CGSOpXWp +

CGDOn x W„ + CG50n x Wn +

(s/d overlap cap)

(s/d overlap cap)

r st 7 4. r xL (gate/bulk overlap cap)

The pullup device also contributes to the prech capacitance:

CjF XArea^iup +Cjsvp x Perimeter^u^ +

CqdOp X ™pullup

(bulk capacitance)

(overlap cap)

The parasitic contributions come from two sources: from junction capacitances of the
source and drain to the substrate and from source/drain overlap capacitances. Note that

the parasitic capacitances contributed by the head devices add to the prech capacitance.
The capacitances given below are per source or drain region per device.



§ 2.2.5 30

CJn XArea^r, + CJSVn XPerimeter^ + (core bulk cap)

Ccson x W^ (s/d overlap cap)

A breakdown of the parasitic contributions is shown in Figure 2.6.

INPUT >

-SH^

, tTO PULLUP
! CIRCUIT

!S/D

n

CORE
DEVICE

i 4 TO GND

Figure 2& Parasitic Contributions

There are two solutions to the CR problem, both involve keeping the ratio of output

node capacitance to parasitic input capacitance large. The first method is to make the static

inverter larger. This has the advantage that the circuit can now drive a large fanout.

Adding capacitance slows the switching time, however. Small circuit area, one of the

advantages of dynamic designs, is also compromised. The second approach is to decrease

the size of the core devices. If these devices are of minimum size, however, they represent

a higher resistance and thus cause the gate to switch more slowly. Thus, without

significantly modifying the circuit, the only solution to the redistribution problem requires

slowing down the circuit. This is a drawback which both Domino style circuits and NORA

circuits, described in Section 2.3. suffer.

2.2.6. Domino Circuits Are Not Logically Complete

The addition to the dynamic circuit of the interstage inverter means that Domino

gates are either AND or OR in function. Neither configuration can produce an inversion and



I 2.2.6 31

hence the Domino family is not logically complete by itself. This drawback can be over

come by moving the inversions to the last Domino stage. The last stage has no restrictions

on its output, assuming it drives standard static CMOS logic. This moving of inversions,

also called bubble pushing, can be accomplished by expression-tree transformation. The

software tool MGMG. described in Chapter 4. can transform an arbitrarily deep expression

tree to AND—OR form.

2^.7. OR Gates Preferred in Dynamic CMOS

In contrast to static CMOS, where device ratioing for mobility plays a role, the practi

cal gate for implementing dynamic circuits is the OR function (n -core). Since the single

p-device is only active in precharge. it is not affected by the n-core devices (which are
only active in evaluate). It is preferable to arrange the n-devices in parallel to reduce the

resistance path between output node and GND. Parallel n-devices give the OR function.

By creating the same device configuration with ap-core in place of the n-channel devices,

the AND function is constructed. Typically. Domino design isn -core only.

The pure a-core OR function and the pure p-core AND function have the additional

advanuge over their counterparts of being immune to the charge redistribution problem.

This is because of the single device between output node and clocked device: there are no

internal nodes for redistribution.

23. Dynamic CMOS Design Using NORA

A style of dynamic CMOS design which utilizes both n- and p-core gates in an alter

nating pattern has been described by Goncalves and DeMan [goncS3]. This style is more

complicated than the Domino approach, which it is based on. NORA logic uses two clocks,

commonly denoted by * and $. The name NORA comes from NO SAce logic. A NORA cir

cuit is shown in Figure 2.7.



§2.3

PHI
N-LOGIC

Figure 2.7: A Simple NORA Circuit

OUT

CLOCKED

cnos
STRGE

32

The first gate in this figure resembles a Domino gate except that the interstage inverter is

not used. NORA obviates the need for such inverters by requiring a ^-core gate follow an

n -core one. Alternatively, an inverter could be used to connect two n-core gates in suc

cession in which case NORA reduces to the Domino style. By eliminating the need for an

interstage inverter, both n- and />-core gates can be built realizing the NAND and NOR

functions. Since negations can also be realized it would appear at first glance that NORA

designs are logically complete. This is not the case. As a result of the construction rules

to preserve the racefree properties of NORA, explained below, the designer realizes no

greater "design flexibility from NORA circuits than from standard Domino designs. How

ever, because the static inverter is not required, the overhead for a NORA circuit is reduced:

NORA gates require only k+2 devices to implement ak-input, single-output function.

Like Domino logic. NORA utilizes a precharge and an evaluate phase. Unlike Domino,

two clock phases are employed. This allows pipelining of interconnecting stages but also



§2.3 33

introduces the potential problem of circuit races due to skewed clocks. In Domino logic

circuit races are not possible since all gates are controlled from the same clock. There is a

problem of clock distribution about a large circuit, a problem common to all dynamic

designs.

23.1. The C^MOS latch in NORA logic

By employing a C^MOS (clocked CMOS) latch between pipelined circuit stages one can

guarantee that races are avoided. This latch was first proposed and analyzed in [suzu73].

Figure 2.Sa shows the latch in its most common configuration.

INPUT

INPUT

r€

PH1BAR

PHI

PHI

PHIBRR b OUT

HI HC
PHI - SECTION

LATCH

PHIBAR - SECTION

LATCH

Figure 2Jta C*MOS Latch

PHIBAR PHI

PHI PHIBRR

Figure 2£b: Standard CMOS Transmission Gate

PHIBRR

CM OUT

PHI

This latch, which uses four transistors, is used in place of the CMOS transmission gate,

shown in Figure 2.8b. In Figure 2.9 SP1CE2 simulation waveforms are shown for a shift

register using first a pair of simple pass gates and then a pair of C*MOS latches. It can be



§2.3.1 34

seen that the former configuration is sensitive to clock skew. As skew is increased logic •

levels are compromised. This occurs because in the skew period the transfer gate is neither

on nor off. therefore logic levels are undefined. The skew period is that interval when <f>

and $ are both 1 or both 0. By comparison, the clocked lauh is always in a defined state.

Note that the clocked CMOS latch inverts its input data.

too ISO

Figure 2.9a: 10ns Skew in Transmission Gate Shift Register

iaypstto
2* torn- J

um)

50 HO 150

Figure 2.9b: 20Vu Skew in Transmission Gate Shift Register

100 ISO

Figure 2.9c: 10ns Skew in C^MOS Shift Register



§ 2.3.1

4 ~

1

TO I50 W>

Figure 2.9ct 20nj Skew in C^MOS Shift Register

RB 150 200

Figure 2.9e: 30/u Skew in C^MOS Shift Register

The operation of the clocked CMOS latch is shown in Figure 2.10.

Hf

PHIBRR

INPUT a PHI

PHI WiIBHK

H i

**?» I , /
IT latch / te^tto

l" latch

(m)

(mm)

r<

-* OUTP
H i

35

VUlpUt XTOB

^tatch

Cl. 11 SKEU

< >
SKEU PERIOD

BOTH CLOCKS HIGH

PHI

PHIBRR

Figure 2.10: Operation of C^MOS Latch

If a 0 is shifted into the first latch, then it is only possible for node B to take a 1 —0

transition if node A makes the 0 -»1 transition and $ = 0 and $ = 1. $ must equal 0 in



§ 2.3.1 36

order for node A to make the transition high, but it must be 1 so that node B can make

the transition low. Since 0 can only be either on or off such a skew problem cannot affect

the latched signals. This example of skew is called (1,1) skew because it is analogous to

the pass gate example with both 0 and 0 high. A similar potential race condition exists in

the case where 0 and 0 are both low. This is called (0,0) skew. Again, the operation of the

C*MOS latch is immune to these skew conditions.

Unfortunately, it is still possible to have skewed-clock-induced races in C^MOS cir

cuits. If the V, 's of the complementary devices are mismatched then there exists a voltage

range. V\ . where the n -device is beginning to turn on and the p-device is not yet off. and

vice versa. Notice in Figure 2.10 that 0 drives an n -channel device in the first latch, but a

/>-channel device in the second latch. This insures that the latches work on opposite

phases. However, it also means that the conditions 0 = 0 and 0=1 are not mutually

exclusive. It is still possible to have clocked feedthrough between latches. The SPICE2

simulation result given in Figure 2.11 shows this effect when Vtp is —2.0V and VM is

+0.5V. The c'MOS latch is immune to clock skew but is still sensitive to Vf mismatches.

100 ISO 200

Figure 2.11: 20ns Skew in C^MOS Shift Register
with V. Mismatch

23.2. Pipelining NORA stages

In the NORA style stages are coupled via the clocked CMOS latches. Each stage, which

may be composed of an arbitrary number of n- and />-core gates, is clocked by 0 and 0

signals. 0 sections are interleaved with 0 sections to create a continuous pipeline. A 0



§ 2.3.2 37

section is in precharge when 0 = 0 and 0=1. A 0 section precharges under the opposite

conditions. This allows the stages to be connected as shown in Figure 2.12 [gonc83].

Ul

x
0

X

X
V

=51
PHI\ /PHIBflR

=0

PHIBRR

SECTION

EVflLUHTION

TRANSFER

CPRECHRRQE3

EVflLUHTION

3

=>

5

PHI

SECTION
=>

TRANSFER

CPRCCHRR6E3

CVRLURTION

TRflNSFCR

CPRECHARGE3

3

3

=>

PHIBRR *y
SECTION |—/

EVflLUHTION

TRANSFER

CPRECHRRGC3

EVflLUHTION

=>

=>

=>

Figure 2.12: Pipelined NORA Stage

By using this technique, a result becomes available at the end of each evaluation phase,

thus at the end of each clock cycle. It is assumed that the 0 and 0 sections are of roughly

equal complexity and. therefore, precharge and evaluate times will equal each other. In

NORA, half the clock cycle is spent in precharge and half in evaluation. Domino logic,

which is not pipelined, does not require an even split between precharge and evaluation

phases. It is important in speed comparisons with static logic to factor in the precharge or

setup time of dynamic circuits.

23J. Construction Rules to Preserve Racefree Properties

In order to preserve the "racefree" properties of NORA conferred by the C^MOS latch

a number of construction rules must be observed. As summarized by Goncalves and

DeMan [gonc83] the rules are:



§ 2.3.3 38

(1) There is an even number of static inversions between the last dynamic stage of a sec
tion (0 or 0) and the C^MOS output latch. (Precharge racefree.)

(2) There is at least one dynamic block placed in such a way that there is an even
number of inversions between this dynamic block and the C^MOS input latch.
(Evaluation racefree.)

or

The total number of (dynamic and static) inversions between the input and output
C^MOS latches is even. (Evaluation racefree.)

,These constraints are in addition to the requirement of a static inverter to eliminate the

Domino internal delay problem.

The intent of these rules is to insure that within each (0 or 0) section the data signal

is controlled by only one clock: it is independent of the opposite phase clock. The data sig

nal must be immune from races in both precharge and evaluation phases. For the

precharge phase consider the converse of the first rule: assume a single (static) inversion

between the last precharged node and the output latch. For the n -core device in a 0 sec

tion shown in Figure 2.12 the precharge node goes high in precharge as a result of a 0-

conirolled precharge FET. The output of the static inverter goes low and information on

the latch output could be lost if the ^-channel clocked FET. controlled by 0. was clocked

late with respect to the 0-controlled precharge. This configuration depends on both clocks.

Without the inversion (an even number of inversions) the input to the latch goes high.

Now for the latched information to be lost the 0-controlled n -channel device would have

to turn on. But both the precharge device and the controlling latch device are gated by the

same clock. This clock is low in 0-section precharge by definition and therefore latched

information is preserved.

When the clock is high, the 0-section is in evaluation. Consider the converse of the

second evaluation racefree constraint: assume that between the output latch from a 0 sec

tion and the output lauh from the next 0 section there is a single static inversion. This

configuration is shown in Figure 2.13.



§ 2.3.3

PHIBRR - SECTION PHI - SECTION

INPUT

rl

PHI

PHIBRR

H i

£

^9l
STATIC

INVERSION
INPUT

i
OYNRniC

INVERSION

t>
PHIBfiR

PHI

SINGLE
STATIC

INVERSION

TOTAL NUriBER OF INVERSIONS: 3

Figure 2.13: 0—section with Single Static Inversion
(Contradiction of NORA rule 2.)

39

Hf

J- OUT

H i

In 0-evaJuation. 0 goes high: if the output from the inverter is also high then information

on the output latch may change because the n -channel clocked device gated by 0 is on.

But if the inverter output is high, the input must be low. The logic 0 was the result of the

n -channel clocked device of the previous (0 section) latch being on. This device is gated

by 0. Again, if skew exists between the two clock phases, latched information may be

lost. With an even number of interstage inversions it is only possible for one latch to be

"on", allowing its output to reflect changes at its input. Because the 0 and 0 latches are

active on opposite phases, the same clock that activates the 0 latch deactivates the 0 latch.

The racefree properties are preserved because data transfer depends only on a single clock.

The first evaluation racefree rule guarantees that the racefree properties are preserved

by assuring that a dynamic block is gated by the same clock that gates the input (TMOS

latch, as illustrated in Figure 2.14.



§ 2.3.3

PHIBRR - SECTION

Hf PHI Hf

PHI

INPUT ft
PHIBRR

PHI - SECTION

-OI>
PHIBRR

PHI

EYENNUT1BER OF
STATIC INVERSIONS

Hf

b
HI PHI H[ Hi

LRST
DYNAMIC

BLOCK

Figure 2.14: Precharge Racefree Rule: Even number of
static inversions between last dynamic stage and output latch.

40

OUT

If this dynamic block is the last dynamic block of the section then it must be followed by

an even number of (static) inversions- as required by the precharge constraint. If the

dynamic block is not the last block then it is followed by an even or odd number of

dynamic blocks. If there are an odd number more blocks, then the total number of inver

sions is even, which is the second evaluation racefree rule. If the number of succeeding

dynamic blocks is even, then there must be an even number of inversions between this

logic block and the C^MOS output latch. This again assures that data signals depend only

on a single clock.

It is often possible to change a circuit which violates these constraints into one which

obeys the rules. Three possibilities are suggested [gonc83]:

1) A static inversion can be converted into a dynamic one.

2) A static inversion can be converted to a C*MOS latch.

3) The static inverter can be placed after the C?MOS latch.



§ 2.3.3 41

2A. Special Design Considerations in Dynamic CMOS

In this section three aspects of CMOS design particular to dynamic logic are examined.

First, inverter buffer sizing is considered with regard to noise margin, delay, and charge

redistribution. Second, the effect of an added static pullup to the precharge node is

described. Finally, a stacking scheme is examined which can often speed up a high fan-in

series gate. Such circuits are typically slow and. therefore, speedup is especially impor

tant.

2.4.1. Noise Margins in the CMOS Inverter

A static inverter is employed to connect stages in Domino and NORA logic. The noise

margin of this inverter is of particular importance in the design of dynamic circuits. The

high and low noise margins used in this analysis are defined as:

NML = V;i-Voi (2.7a)

and

NMH =V0H-VJH (2.7b)

respectively. Following a standard text, for example [hodg83], the points Vm and V7i on

the voltage transfer curve are defined by dV^, I dVm = -1. By solving for this derivative

and using the result in the appropriate drain equation the noise margin parameters can be

obtained.

The drain current of a device in saturation is given by

Id =y(VG5-^)2 (2.8a)
where VDS ^ VGS —V,. The drain current in the linear region is

Id =y[2(VG5-V, )VDS-VDS2) (2.8b)
where VGS > V, and VDS < VC5-V,. To find Vm and Vol. assume the n -channel device

i the linear region and the p -channel device is in saturation. Thus Idnuu, ) = Idpis* ) <>ris



§2.4.1 42

^WVm -V. )V0l -Vol 2] - ^'dp-V»-V„ )2 (2.9)
In this equation and those that follow the absolute value of Vtp is used. K„ is kWn I L„

and Kp is kWp/ Lp . Solving this equation for Vm yields

aft^CV^j-jr. (V0L )(2Kp(Vlp +Vttt ))+(*„ -Jg, )V0i P7 2 f Q.
V/if as — u,,v"

+JT, (V,p Kfr, (Vqi )-*, (Vpp )

Solving the dV^ I dVm equation for a slope of -1 yields

_ 2Vm +VW HKP/ Kn )(VDD-Vtp) (2n)
m \+(Kp/ Kn)

By equating these two expressions and iterating, a solution can found simultaneously for

VIH and V0L Results for various pullup/pulldown ratios are given in Figure 2.15 for the

worst-case SP1CE2 model. It can be seen that the NMOS device is. in fact, in the linear

region while the PMOS device is saturated.

To find VJL and V0H assume the n -channel device is in saturation and the />-channel

device is in the linear region. Thus Idpum ) = IpNisa) or

^-WVoo-Vtt )(Vdd-\'oh WVM-VM« =̂
Solving this equation for VJL yields:

d(Vqh 'Vpp X2JJT. Vtn HKp -Kn )V0HMKp +Kn )VDD )]l/ 2 (2 n)
vJL = Tn

-KnVtn-Kp(V0H+Vpp)

Solving the dVw I dVm equation for a slope of -1 yields:

.. _ Wqh"Vpp-V„ +<*. I Kp )V,„ (214)
VlL \+(K„/Xp)

By equating these expressions and solving as before, values for VJL and V0H are obtained.

Results for various pullup/pulldown ratios are given in Figure 2.15. It can be seen that

the NMOS device is in saturation while the PMOS device is in the linear region of operation.

i-Btv^-V/i XvM-v„ WVm-VmPI o • tvn-vmy (2.12)



§2.4.1 43

A factor related to noise margin is the Vm = V^, point, sometimes called Vm or the

logic threshold voltage. This point occurs between VIL and VIH. when both devices are in

saturation, thus IpN(s<a) = IppKsa) or

%-lvm -v. )J =̂ -(vDD-v„ -v„ y
Vth values are summarized in Figure 2.15.

(2.15)

Noise Margins for Selected Device Ratios (in volts)

Ln/Wn Lp/Wp Vol VlL Vm Voh NML NMH Vm

3/4 3/24 0.38 2.96 3.55 4.25 2.58 0.70 2.93

3/4 3/10 0.50 2.05 2.99 4.56 1.55 1.57 2.50

3/4 3/8 0.52 1.84 2.85 4.62 1.32 1.77 2.39

3/16 3/24 0.53 1.58 2.66 4.70 1.05 2.04 2.25

3/14 3/12 0.53 1.12 2.31 4.85 0.59 2.54 1.98

Figure 2.15: Noise Margins versus Device Ratios

2*4.1.1. Effects of Device Ratioing on Noise Margin

For the static CMOS inverter case it is preferable to have symmetric noise margins and

to place Vth midway between V0L and Vofi. For the SPICE2 parameters used in the simu

lations in this report, where fi„ is 2J times fip. it can be seen that ratioing devices to can

cel mobility differences also gives symmetric noise margins and a good Vm. This is shown

in the second line of Figure 2.15. This device ratio also guarantees approximately equal

rise and fall times. It is the ratio of pullup to pulldown, not their absolute size, that

determines noise margin.

In dynamic design there is the additional constraint of signal degradation due to leak

age and charge redistribution. Also, precharged dynamic gates are unidirectional in nature,

making either a0-»lorl-»0 transition. Therefore best performance is obtained when

noise margins are not equal.

Unfortunately, these additional constraints argue for opposing constructions. Con

sider an n-core dynamic circuit, precharged high. The accompanying buffer-inverter (if

used) has its output driven low. The important transition is 0 -• 1 at the output. To



§ 2.4.1.1 44

obtain least delay, the />-channel device should be wide to bring the inverter output up

quickly. This corresponds to a narrow NMH. In theory this is fine, since the input node is

precharged. via a />-channel device, to VDD. However, if operating frequency is low or the

dynamic gate is composed largely of internal signals, the precharged node voltage may dip.

If NMjj is made too small the buffer may make a false transition. Therefore, a smaller

/>-channel device seems better. In addition, if a long, static pullup device supplements the

dynamic precharge. a slower-acting inverter allows the static pullup to recover from

charge redistribution or leakage.

It has been found by simulation that a smaller p -channel device and thus a wider

NMH is preferable. Circuits with potential charge redistribution problems cannot take

advantage of the unidirectional transition of precharged logic. By making the />-channel

device smaller, and thus slower, the n -channel device, often enlarged for added capaci

tance, can also be reduced in size. The result is a circuit with delay equivalent to a sym

metric inverter, but which consumes less area. Inverters with ratios shown in the last two

lines of Figure 2.15 were used in various test circuits with severe redistribution problems.

In circuits where a charge redistribution problem is known not to exist, for example

in n-core NOR circuits or circuits with largely external signals, the ^-channel device is

widened to decrease delay. In this case the ratio of device widths is determined by the

lower limit on the NMh band that the designer wishes to tolerate. The lowest frequency

of operation now determines the noise margin.

2.4.2. Addition of Static Pullups to Precharged Nodes

In [kram82] and [gonc83] it is pointed out that one can add high L/W static pullup

devices to the precharge node of dynamic gates. This helps with low frequency operation

where charge may begin leaking from a node. The static pullup device may be either p-

channel (gate connected to GND) or n-channel (gate connected to Vpp). depending on

whether the core is n- or />-type. A further reason for using static pullup devices is

reduction of the charge sharing problem. In Domino logic, the output node is isolated from



§ 2.4.2 45

the precharge node by an inverter which has some associated delay. If the devices are sized

properly, the static pullup device can begin pulling the precharged node up. after a false

trigger, before the inverter reacts fully. This requires careful ratioing since the designer

wants the inverter fast on the one hand to react to solid transitions, but slow on the other

hand to allow the pullup to aid on false transitions.

2A3. Speedup of Dynamic Logic By Gate Stacking

Finally, it is possible to speed up the operation of dynamic circuits by pyramiding or

stacking devices. In Figure 2.16 a schematic of two 5-input ANDgates is shown.

HI

HI

.HI

HI

HI

HI

•HI

L: 3U

U: 10U

L: 3U
U: 10U

•HI

-]["«: 5U

-|fU: 7U

-H~U: SU

-|m4: UU

-JTW: 13U

9-JQl: 15U

L: 3U

Figure 2.16: Comparison of Standard and Stacked AND gates

The gate on the left has six 10/x FETs in the n-core. The gate on the right has six FETs in

the n -core with widths (from bottom to top) of 15. 13. 11. 9. 7. and 5 microns. The total

source/drain area is identical for the two cases. The slacked circuit is slightly faster under

worst-case conditions, as shown in Chapter 3. A circuit configuration similar to that

shown on the right was employed in the design of the BELLMAC-32A and -32B. successors



§ 2.4.3 46

to the original BELLMAC-32. This stacking technique was first mentioned by Shoji •

[shoj82]. Note also that the stacking technique reduces the charge redistribution problem,

since the FETs closest to the output have the least capacitance. This allows the inverter

follower to be smaller and accounts for part of the speedup seen. The main reason that

the slacked circuit is faster, according to Shoji. is that the decrease in capacitance more

than offsets the increase in device resistance due to narrower channels [shoj85].

25. Conclusions

Standard static CMOS is easier to design in than dynamic CMOS and is quite fast.

NORA circuits require fewer devices to realize a given circuit function than static or Dom

ino CMOS. They require more distinct signals, namely 0 and $. but in general consume

less area. By stacking devices and proper ratioing of inverters and static pullups Domino

and NORA circuits can be made faster than static CMOS designs. However, dynamic cir

cuits must be precharged: static circuits have no such requirement. Dynamic designs have

potential race problems due to clock skew. The addition of the clocked latch helps relieve

this problem but does not eliminate it. In addition, the constraints placed by the NORA

design style on the designer may prove cumbersome and yield relatively complex circuits

for simple functions. Therefore, for simple circuits, standard static CMOS is best. Where

complex circuit function is involved, for example in combinational logic or an ALU. and

clock signals are readily available and needed by other on-chip circuits, dynamic Domino

or NORA logic should be considered. "While the design constraints required for dynamic

implementation make manual design a complex task, these constraints can be accounted

for in a computer program. By using computer generation of dynamic logic, the speed and

area advantages of this approach can be achieved without the risk of electrical design prob

lems.



47

CHAPTER 3

Simulation and Measurement of Static and Dynamic Circuits

The first stage in the design of a software tool for automated generation of integrated

circuits is the characterization of the circuit building blocks which will be used to create

the larger circuit. In this chapter a basic building block, the 5-input AND function, is used

as a benchmark circuit to compare various static and dynamic CMOS implementations

introduced in the previous chapter. Circuit performance is simulated using parameter

values extracted from the MOSIS 3/ti CMOS ^-well process [mosi82]. These values have

been translated into SP1CE2 level =2 MOS model parameters and used in simulations. The

SP1CE2 models appear in Appendix A. In the second part of this chapter measured results

of a dynamic CMOS test chip, fabricated in a 2m n-well process, are presented. Charge

redistribution effects and circuit delay times are reported and correlated with predicted

values. The chip measurement procedures are explained fully in Appendix B. In the clos

ing portion of this chapter, the design and fabrication of a Domino 32-bit ALU. which is

part of a microprocessor chip, is described. This ALU was designed in the same style as

that employed by the automated synthesis tools used in the MAMBO package.

3.1. Range of Circuits Simulated

The simulations described here address two main points: First, how does a straight

forward static circuit compare in performance to a standard dynamic circuit as fan-in

varies? Second, keeping fan-in constant, how do various extensions to dynamic circuits

affect their performance relative to the static circuit and the basic dynamic implementa

tion? To solve the charge redistribution problem examined in Chapter 2 the dynamic cir

cuits must be modified. The effects of such modifications are also presented here.



§3.2 48

3.2. Rationale for Choice of Benchmark Circuit

The basic benchmark is a 5-input AND function. The AND function was chosen over

the OR because circuit delay varies strongly with increased AND-gate fan-in. This varia

tion is not as strong with CMOS OR gates. A 5-input gate was chosen because device counts

are nearly equal for most static and dynamic designs at this point and. hence, area should

be roughly equal. The static AND gate requires 12 devices, the basic dynamic version uses

9 devices. The layout of the dynamic circuit needs additional area because of the clocked

gates.

An attempt was made to examine the functions that are most troublesome to realize

as high speed circuits. Most common dynamic logic design methods involve stringing

together, either in series or in parallel, the even functions AND and OR. Since the speed of

a dynamic logic gate depends on the length of its worst-case path from output node to

voltage rail, the OR gate was not examined. In a dynamic OR gate the worst-case path is

always through two FETs— the paralleled input FETs and the clocked gate. Thus the OR

gate is always faster than the AND gate. In addition the OR gate has no charge redistribu

tion problem because only one input device separates the core output from the clock.

There are no parasitic source/drain capacitances. AND gates present problems and are

examined exclusively here.

33. Simulation Technique

All circuits were simulated using the level =2 SPICE2 models. The core of both the

static and dynamic circuits were laid out according to the 3fi design rules. Many of the

modified circuits were laid out as well. The capacitances of all circuits were extracted and

corrections were made where shortcomings with the current extraction tools were known.

Where possible in the simulations initial conditions were established by cycling the circuit.

When this proved impractical, due either to convergence problems or excessive simulation

lime, initial conditions were forced by use of the SP1CE2 Jc option. All circuit inputs were

conditioned by passing them through aminimum size inverter to decouple them from ideal



§3.3 49

sources. The fanout of all simulated circuits was three inverters. Where multiple clocks

were necessary, one clock was chosen as primary and assumed to come from an ideal

source and all other clocks were derived from it.

XA. Standard Static CMOS Benchmark

A schematic diagram of the static CMOS benchmark circuit appears in Figure 3.1. A

layout plot of a static CMOS AND gate appears in Figure 3.2. The n-channel devices have a

width of 10m- It was found by simulation that roughly equal rise and fall times were

obtained when the ^-channel devices had a width of 6^- This counteracts for a mobility

mismatch between the two types of devices in the range of 2.5 - 3. The 5-input NAND

gate drives a static inverter. The n-channel device is Aft, the minimum width allowed by

the design rules. The p-channel device is 8^. again ratioed in width to give roughly equal

rise and fall times.

The delay test for thLs circuit consisted of two parts. First the pulldown time was

measured. The four inputs of the series devices nearest the output were driven on. The

< hC he! h(hj; s
HI

HI
INPUTS J M-CHfiNNEL

3 J| DEVICES

HI

HI

CHANNEL
DEVICES

Figure 3.1:Schematic Static CMOS Circuit

OUTPUT



§3.4 50

Figure 3.2: Layout of Static CMOS Circuit

input to the bottom device was initially off. This means that its counterpart p-device is

on. The output node is charged high through this path. In addition the source/drain capa

citances of the four n -channel devices closest to the output are charged high. After these

nodes are charged, the fifth input goes high and the series output node begins to drop only

after the series-leg nodes have discharged. The resulting delay time represents the worst-

case pulldown time for the gate.

Pullup time is measured by first discharging all the series n-channel devices. This is

achieved by driving all inputs initially high, so that the output from the series leg is low.

The input to the fifth, or bottom, n-channel device is then switched off and the />-channel

counterpart is switched on. Thus the NAND gate output is brought high by the a single

p-device. This FET must charge the output node which now represents the collective

source capacitances of the p-devices and the source/drain capacitances of four of the n-

channel devices. The resulting delay time represents the worst-case pullup time for the

NAND gate. Delay time is measured between the 2.5V level of the falling input signal and

the 2.5V level of the falling output inverter.



§3.4 51

In like manner. 2-input and 9-input static CMOS AND gates*were simulated. In all

cases the width of the n -channel devices was kept constant at 10/*. This value was used

in the simulation of the dynamic circuits described later. In order to keep rise and fall

limes roughly equal, the ^-devices of the 2- and 9-inputs gales were modified. Figure 3.3

summarizes the rise and fall times found for the static circuit as a function of number of

inputs. The width of n - and p- devices is also listed.

Rise and Fa 11 Times for Static CMOS AND Gates

Fan-in Risetime (ns ) Falltime (ns) PD width (ft) PL* width (fi)

2 4.2 4.1 10 15

5 9.8 10.0 10 6

9 23.4 19.8 10 4

Figure 33: Delay Times for CMOS AND Gates

33. Dynamic CMOS Benchmark

The operation of dynamic circuits was examined in detail in Chapter 2. A schematic

diagram of a basic dynamic circuit performing the 5-input AND function is shown in Fig

ure 3.4.



§3.5

.1
HI

HI

3 -IF N-CHRNNEL
^ CORE

INPUTS

HI

HI

Figure 3.4: Schematic of Basic Dynamic Circuit

A lavout of the basic circuit is shown in Figure 3J.

—I !•' »

OUTPUT

(Ulfi)

^^•HI'^IIi^P^MSi*^

Figure 3.5: Layout of Basic Dynamic Circuit

52

The basic dynamic configuration was evaluated for two implementations. A circuit

employing 10/x-wide devices in the n-core was laid out lo compare dynamic and static
speeds. A 4/x-wide n-core series chain was also simulated to provide an area-compact

benchmark circuit. These two sets of simulations are used to bracket the design space for



§ 3.5 53

a typical dynamic circuit.

3.5.1. Test Regime for Dynamic Circuits

Since these dynamic circuits are precharged high (ie. the output after the static

inverter is low) the only transition time to measure is the 0 -• 1 risetime at the inverter

output. Dynamic circuits, however, may suffer from charge redistribution and the perfor

mance in this regard must also be verified.

3.5.1.1. Dynamic Speed Test

For the speed test all input signals are assumed to be external. External signals may

change during precharge and must be stable in evaluate. For a worst-case analysis of an

externally-driven gate, it is assumed that all inputs are high so that all n -channel devices

are on. During precharge the />-channel clocked device is on and deposits charge on the

core output node as well as on the source/drain capacitances of all the core devices. When

the clock signal goes high, indicating the beginning of the evaluate phase, a path is opened

between the core output node and GND. The capacitance of the output node as well as all

source/drain nodes must drain off before the output node goes low. The static inverter

output is driven high. This represents the worst-case delay through the dynamic gate.

Delay is measured from the 2.5V value of the rising 0 signal and 2.5V signal of the rising

inverter output node.

3.5.1.2. Dynamic Charge Redistribution Test

For this test all signals are assumed lo be internal. Internal signals are those signals

which are driven by the outputs of other dynamic gates. Such gates are stable and off

during precharge: they may turn on during evaluate. All source/drain core nodes are

grounded through use of the initial condition option in SP1CE2. The core output node is

then precharged by bringing 0 low. Because all inputs are off. internal source/drain capa

citances remain at ground potential. When 0 goes high at the beginning of evaluate, the



§3.5.1.2 54

charge stored on the output node begins to redistribute through the core devices. If all but

the bottom input now turn on. the worst-case charge redistribution case occurs. The

charge on the output node is split between four source/drain capacitances. If no

modification to the circuit is made this will result in a false trigger, an unwanted transi

tion of the core output node from high to low. causing the inverter output node to be

driven high. In order for a circuit to pass the charge redistribution test the voltageon the

output node should not rise above a specified value, taken to be 0.3V for this technology.

3.5.2. Speed Comparison of 4ft- and lOfi-Wide Dynamic Circuits

Four micron- and ten micron-wide n -core dynamic AND gates were laid out. It was

assumed that all signals were external so that no charge redistribution problem exists. If

all inputs were internal, simulations show ihat a charge redistribution problem would

exist for even a three-input AND gate. The results of the simulations are summarized in

Figure 3.6 below and in graphic form in Figure 3.7. The 4^-wide devices represent a com

pact circuit while the 10/x-wide devices are meant to give an indication of the speed of

dynamic gates where area is not a primary consideration.

Risetimes for An- and 10/u-Wide Dynamic AND gates

Fan-in

Risetime (ns)

4p-wide

Risetime (ns )

10/a-wide

2 7.4 4.5

5 13.3 7.7

9 19.8 ! 12.2

Figure 3.6: Risetimes for Dynamic AND Gates



§ 3.5.2 55

to

I

!

/
/ lOp wc daisy

/^iwcdeUy

/

2010

May, la

15

Figure 3.7: Comparison of 4//- and 10^-Wide De-rices
With No Charge Redistribution Problem

3.6. Simulation of Dynamic Circuits with Charge Redistribution

If not enough of the inputs of a given gate are external and can therefore be placed at

the top of the input core to reduce charge redistribution, then it is necessary to compensate

for the problem in another way. There are two possible solutions. First, the ratio of capa

citance of parasitic source/drain nodes to ihe output node can be altered— either by mak

ing the' input devices smaller or the output static inverter bigger. Both of these

modifications result in a slower-switching circuit. The second solution is to add a static

device to pull up the precharged node. In the n-core case a long, weak p-channel device

with grounded gate is added to the core output node. It has been found by simulation that

a 12^-long. Afi-wide p -channel device is more than sufficient to counter the worst-case



§3.6 56

charge redistribution problem. Figure 3.8 presents a graph showing how the charge redis

tribution problem is cured by addition of the weak p -channel pullup.

* « »

Mudam Logic*0* fartta)

•Value at lOOru after twitching: output voltagettill increasing

Figure 3.8: Comparison of Output Voltage Due to Charge
Redistribution With and Without Pullup Compensation

10

Because the />-device is always on ii opposes the pull down of the core output, hence when

the node should fall there is some additional delay. However, this circuit can be optimized

to remove the extra pulldown time by ratioing the devices in the output inverter. Figure

3.9 shows the worst-case speed characteristics for circuits with charge redistribution prob

lems. The highest voltage that the inverter output reaches on false trigger is also listed.

The values in this figure are overly conservative because they assume thai all inputs are at

once internal and external. These values therefore give a loose bound on worst-case circuit

performance.



§3.6

Risetimes for 10/a-Wide Dynamic AND
Gates with Charge Redistribution

Fan-in Risetime (ns)

5.2

9.2

15.5

Peak Voltage
False Trigger (V)

0.003

0.105

0.244

57

Figure 3.9: Risetimes for Dynamic Gates with Charge Redistribution

A comparison between different cases of standard dynamic AND gates is presented in

graphical form in Figure 3.10. The leftmost curve represents a "best" case where no

charge redistribution problem exists and the externally-driven signals happen lo all be in

the off state. This means that switching is rapid because only the precharged node itself

has to be discharged: all parasitic source/drain capacitances are already at ground. The

middle curve has already been presented in Figure 3.7 and represents the worst case for

externally-driven inputs. The rightmost curve is derived from the data presented in Fig

ure 3.9.



§3.6

Figure 3.10: Comparison of 10/u-Wide Dynamic AND Function
Under Various Input Situations

58

The lower-bound basic dynamic circuit can now be compared with the standard static

version of the AND gate examined previously. The comparison is given in Figure 3.11.

Note that the dynamic circuit now consists of 10 devices (due to the static pullup) while

the static circuit requires 12. Because the dynamic circuit requires a clock signal, some

additional routing is required which makes the circuits roughly equal in area. Both cir

cuits can be sped up by increasing device widths.



§3.6

Daisy; is ae

Figure 3.11: Comparison of Worst-case Static and Dynamic
AND Functions versus Fan-in

59

3.7. Comparison of Optimized Dynamic Circuits

In addition lo the standard Domino realization of a dynamic gate there are several

other ways of building dynamic circuits. The "stacking" or "pyramiding" of gate widths,

examined in Chapter 2 and employed in the BELLMAC-32A processor, is one means of

speeding up circuit performance. A circuit which has a 10m gate width on the average is

shown in Figure 3.12a.



§3.7 60

Figure 3.12a: Layout of Stacked-Gate AND

IBM has used a version of the dynamic circuit which has a pseudo-static output stage

[hell84]. By feeding back the inverter output to control the weak /?-channel pullup. any

problems with charge leakage in low-frequency operation are eliminated. Because negative

feedback is employed, the circuit tends to switch more slowly on a valid transition at the

inputs— the output node tends to resist change. Figure 3.12b shows one realization of the

IBM-style circuit.



§3.7 61

Figure 3.12k IBM-style Circuit with Positive Feedback

In order to lay out a Domino circuit easily it has been proposed that the n - and p -

channel clocked FETs be brought together to alleviate a potential crossover routing problem

[newt83]. This "coupled" circuit still takes its output from between the clocked nodes,

but now the input devices are below the n -channel <£-node. Such a configuration tends to

aggravate the charge redistribution problem by introducing another parasitic node between

the output node and GND. Figure 3.12c gives a layout of a coupled circuit.



§3.7 62

(SffM»)

Figure 3.12c Layout of Coupled-Clock Dynamic Circuit

Figure 3.13 summarizes the simulation results of the previous circuits. In each case

the output inverter ratio has been modified so that the p-channel device is 24^-wide and

gives a fast pullup time. It also alters the k ratio of the inverter, raises the logic thres

hold. Vth • and degrades the high noise margin. Calculations examining these eifects were

presented in Chapter 2. The calculations showed that symmetric noise margins are not

required since the dynamic circuit is unidirectional. Because the circuit is precharged to the

positive supply, loss of the high noise margin is not important.



§3.7

Speed and False Trigger Results for Various Optimized Gates

Circuit SpeedCrtj) Pullup
U/W)

Inverter Ratio

(W,,,/ W,*)
Peak FT

Voltage (V)

Static 10.0 — 8/4 —

Domino 7.0 12/4 24/4 0.159

Stacked 6.6 15/4 24/4 0.184

IBM 12 12/4 24/4 0.209

Coupled 8.1 12/4 24/4 0.284

63

Figure 3.13: Comparison of Optimized CMOS Gates

3.8. Delay and Charge Redistribution Measurements from a Test Chip

A test chip was designed to examine the problem of charge redistribution and also to

obtain direct measurements of gate speed as a function of number of inputs. The chip was

fabricated at an industrial facility in a 2/t. double-metal, n -well process. The test layout

contains 2-. 3-. 5-. 7-. 15-. 23-. and 31-input AND gates. It also has a collection of OR

gates and a chain of C^MOS latches cascaded to form a serial shift register.

Two test chips were received, only one of which was functional enough for testing.

In this section results from the AND gates on the functional die are presented.

3.8.1. AND Gate Test Circuit

A template of the AND-gate circuit in schematic form is shown in Figure 3.14. In

order to ensure conditioned signals, all inputs were buffered from the pads by inverters.

The top *—1 inputs to the AND gate were coupled together in order to reduce pin count.

Almost all delay and charge redistribution tests can be made with the AND gates connected

in this configuration. All AND gates shared a common bottom signal, and many of the gates

shared a common top signal as well. This means that the circuits could be accessed in

parallel, however only one output was examined at a time. Each gale had an individual

output buffer. As shown in Figure 3.14. this was a large p-channel device set up in a

source-follower configuration. A />-channel device was used so that the potential of the

device well (brought out externally) could be changed as part of the measurement pro-



§ 3.8.1

PHI -

TOP —

BOTTOn -

PHI -

L: 2U

U: 3U

ih^7.7FF

^7.7FF

•Ih ^ 10.6FF

H L: 2U
W: 6.5U

64

OFF-CHIP

•>

P-CHANNEL

SOURCE

FOLLOWER

#: 47.IFF

Figure 3.14: Template Schematic of AND gate

cedure. An off-chip resistor was used to allow experimentation with switching speed.

For the AND gate measurements recorded here minimum size devices were used in the

n -channel core: minimum size devices are 2m long and 3m wide. The clock devices, driven

through an inverter, are 2m long and 6.5m wide. The conditioning input inverter and the

output inverter/buffer on the dynamic gate are made up of a 6M-wide n -channel device

and a 12M-wide />-channel device. Both devices are 2m long.



§ 3.8.2 65

3.8.2. Precharge and Parasitic Capacitances

From the process parameters are given in Appendix B the precharge capacitance is cal

culated to be 47.1/F. the parasitic capacitance for a source/drain node pair is 1.1fF for

minimum sized devices and 10.6/F for the 0 pulldown device. These capacitances are indi

cated in Figure 3.14. The precharge capacitance ukes into account the area and perimeter

of all polysilicon and diffusion regions. The capacitance of the metal layers was neglected.

The precharge capacitance is made up of the drain capacitance of the top n -channel gate,

the gate capacitance of the two devices thai make up the output inverter, and the source

capacitance of the />-channel clock device.

3.8.3. Charge Redistribution Tests

The waveforms for the charge redistribution tests were generated by three different

pulse generators in sync with one another. The important input and output signals are

shown in Figure 3.15. The time scale is microseconds. If charge redistribution occurs it

will happen on the order of hundreds of nanoseconds. At the other extreme is the change

of voltage on a node due to charge leakage. This usually becomes apparent in the mil

lisecond time frame.

The worst-case charge redistribution problem is when the top input is run by <f> and

the bottom is run at half the 0 frequency. In this example all signal polarities are those of

the circuit: since the pad input signals are buffered they are just the inverse. The setup is

as follows: Initially 0. top. and bottom are high and the output is high. The AND chain

parasitic capacitances drain away through the DC ground path. Top. bottom, and <f> go low.

The precharge node has charged dumped in to it from VDD. but the parasitics remain at

ground potential because they are isolated from the precharge (prech) node. The output

goes low. Now <f> and top are brought high. Bottom remains low. Precharge ends, evaluate

begins, the precharge node capacitance can drain into the parasitics (which were at ground

potential) however no DC path to GND exists. The output should therefore remain low. If

there is a charge redistribution problem, however, it will show up now and the output



§ 3.8.3 66

will go high. The cycle completes by 0 and top going low and bottom going high, and the

output returns to (or remains at) ground. This cycle then repeats. This particular CR

problem should be independent of frequency— as long as there is enough time for the

precharge node to precharge and the parasitics to dram.

Charge redistribution is not the problem of low frequency operation. The low fre

quency problem is leakage from the precharge node through the substrate and occurs

below lOKHz for the devices fabricated here. Leakage from the precharge node is almost

independent of fan-in: larger fan-ins have a greater leakage problem, but the amount of

leakage does not seem to be strongly related to fan-in. It was possible to cycle ihe lest die

at frequencies up to 3MHz. the usable range of ihe frequency generator employed. A IK ft

off-chip pullup resistor was used. A smaller resistor could have been used safely and

would have given better response.

PHI

CLOCK

OUTPUT

PHI1

DUMP

PHI2 .PHI3 ,PHI1
PRECH1 F.T. 'DUMP

PHI2 . PHI3

PRECH1 F.T.
I

Figure 3.15: Waveforms for Charge Redistribution Test



§3.8.3.1 67

3.83.1. Ch&r^e Redistribution Measurements

Figures 3.16. 3.17. and 3.18 are oscilloscope photos from the 2-. 7-. and 31-input

AND gates, respectively. Figure (a) in each sequence shows the charge redistribution effect,

if any. Figure (b) in the sequence is a control. In this test both the precharge and the

parasitic capacitances were charged, then the top signal was toggled. Because the parasitic

capacitances are at the same potential as the precharge node there is no CR effect. For the

2-input AND case Figure 3.16a shows no evidence of charge redistribution. This is because

the ratio of parasitic to precharge capacitance is large, as described in Chapter 2.

Figure 3.16a: 2-Input AND Gate Charge Redistribution Test



§ 3.8.3.1 6&

Figure 3.16b: 2-Input AND Gate Control Test

Figure 3.17. the 7-input AND gate, begins to show a CR effect. Coincident with the falling

edge of top (remember that pin signals have opposite the polarity of the internal signal)

the output begins to switch high. It is pulled to its maximum voltage when the bottom sig

nal finally falls, opening a DC path from the precharge node to GND.

Figure 3.17: 7-Input AND Gate Charge Redistribution Test

Figure 3.18 was made from a 15-input AND gate. The third trace from the top is the out

put voltage of the AND inverter. As a result of charge redistribution it has risen about

0.2V: this signals the onset of redistribution.



§ 3.8.3.1 69

Figure 3.18: 15-Input AND Gate Charge Redistribution Test

Figure 3.19a was taken from the 31-input AND gate which shows a CH effect. As soon as

the top signal falls the output of the inverter/buffer rises about 0.5V. The transition of

the bottom signal causes the output signal to complete its transition.

Figure 3.19a: 31-input AND Gate Charge Redistribution Test



§ 3.8.3.1 70

Figure 3.19b: 31-input AND Gate Control Test

These measurements show that it would be unsafe to construct circuits using 15-

input AND gates assuming minimum size devices and a fairly loose layout style that intro

duces some extra capacitance in interconnection routing. The inverter/buffer, which con

tributes almost all the precharge capacitance, was designed as a single cell for automated

generation. It might be used by a layout tiler, for example the tiler described in Chapter 7

of this dissertation, in the generation of a regular logic structure. If the circuit designer

used larger than minimum devices in the n-channel pulldown core it would aggravate the

charge redistribution effect. On the other hand, by employing a cell with a greater

precharge capacitance this effect would be lessened. In this case more devices could be

placed in series but the gate delay would be longer for two reasons— first because of the

greater chain length and second because the larger precharge capacitance must be

discharged before the output can switch. In other words, to safely increase the number of

series devices both the resistive path to GND and the capacitance which must be discharged

to ground can be increased at the expense of greater circuit delay.

The p-channel V, appears to be higher than reported in Appendix A. This high V,

has the consequence of delaying the CR effect; it can be compensated for by pumping less

initial charge into the precharge node, the effects of this compensation for 7-input and



§ 3.8.3.1 71

31-input AND gates are shown in Figures 3.20 and 3.21. respectively.

Figure 3.20: 7-input AND Gate V Compensated

Figure 3.21: 31-input AND Gate V Compensated

These results suggest that even a 7-input AND gate design would be unsafe. It is difficult

to assess the actual amount of compensation needed to overcome the V, disparity. It "is rea

sonable to expect that the chain length limit lies between 7 and 15 inputs.



§ 3.8.3.2 72

3.8.3.2. SPICE2 Simulations of Charge Redistribution Tests

SPICE2 simulations were performed on ihe 2-. 7-. 15-. and 31-input AND gates using

the parameters in Appendix A and also with the modified, higher V, for the p -channel

devices examined in Appendix B. Figures 3.22— 3.25 show the simulation results in order

of increasing fan-in. For the 2-input AND gale the difference in results due to the differing

V, 's is negligible. The larger V, in the 7- and 15-input gates more closely agrees with the

measured results. In these cases the simulated results bracket the measured figure. These

simulations also suggest thai the V, -compensation measurement given above may be larger

than necessary. Simulations of the 31-input gate at both threshold levels indicate a very

strong CR effect, giving a full swing at the output buffer, which does not correlate with the

measured results. The observed result may be due to higher than expected capacitances at

the precharge node.



§ 3.8.3.2

output from
inverter

Figure 3.22a: 2-Input AND Gate, \%« 0.9V

output from
inverter

Figure 3.22b: 2-Input AND Gate, Vf - 2^V

73

100

100



§ 3.8.3.2

output from
inverterter ^

Figure 3.23a: 7-Input AND Gate, V% • 0.9V

74

100

input to/n
inverter J^

' i\^7\
3 V

t output from
inverter *—s

0 5 0 1(X)

(ns)

Figure 3.23k 7-Input AND Gate, \\ - 2.2V



§ 3.8.3.2 75

6
input tq^n
inverteT^"\

]
4

a

I
A 0 V

2
output from
inverter "~1

^*>
0

0 5 o ioo

<ns)

Figure 3J24a: 15-Iaput AND Gate, Vt- 0.9V

Figure 3.24b: 15-Input AND Gate, Vf- 2.2V



§ 3.8.3.2
76

Figure 3.25a: 31-Input AND Gate, Vf - 0.9V

Figure 3.25b: 31-Input AND Gate, Vt « 2.2V



§ 3.8.3.2 77

3.8.4. Dynamic AND Delay Tests

The worst-case (longest delay) input configuration in the AND gate occurs when both

top and bottom are wired "on". The testing regime is to first precharge both the precharge

node and all core parasitics (performed at the same time since all inputs are held high).

Then when 0 drops low the precharge phase ends shutting down the path from precharge

node to VDD and opening a path from the precharge node to GND. The delay of the circuit

is measured from the 50% point of the falling <t> signal against the 50% point of the rising

output buffer signal.

3.8.4.1. AND Gate Delay Measurements

The AND gate delay measurements were performed at the package pins and therefore

included the conditioning inverter delay as well as the delay of the output pad driver to

charge up the oscilloscope probe capacitance. The delay test measurements were taken on

2-. 15-. and 31-input ANDs. Figures 3.26. 3.27. and 3.28 show the measured delays for the

2-. 15-. and 31-input circuits, respectively.

Figure 3.26: 2-Input AND Gate Delay Test



§ 3.8.4.1 78

Figure 3.27: 15-Input AND Gate Delay Test

Figure 3.28: 31-Input AND Gate Delay Test

After subtracting 23.3nj. which is the calculated delay through a conditioning inverter and

output pad plus routing, the actual gate delay can be derived. The results are summarized

in Figure 3.29.



§ 3.8.4.1

Fan-in
Pad-Pad

Delay ins)

Gate

Delay (ns)

2 28ns 4.8ns

15 32ns 8.7ns

31 45ns 21.7ns

79

Figure 3^9: Derived AND Gate Delay

The second-order least-squares fit of this dataset is: 4.6 + 0.012/ + 0.017/2 where / is

fan-in. Fitting the data linearly one obtains: 2.27 + 0.591 / . However the sum-of-

squares error is large and. therefore, the quadratic model is more appropriate, as one would

expect. Increasing fan-in increases both R and C. if one considers the FET to be an RC dev

ice in a simple model. The large constant is due to the output inverter and to the

precharge capacitance which are independent of fan-in.

3.8.4.2. SPICE2 Simulations of Delay Tests

SP1CE2 simulations were performed on 2-. 7-. and 15-input AND gates. The results

of these simulations give a second-order least-squares fit of 4.1 + 0.83/ + 0.019/ 2.

While the initial delay constant is about equal to the measured result this curveexhibits a

stronger linear component than the measured data. Again, this may be due to higher

diffusion capaciunce per unit area on the test die than in the simulation models. The

delay values are summarized in Figure 3.30.

Fan-in

Gate

Delay (ns)

2 5.8

7 10.8

15 20.8

Figure 3.30: Simulated AND Gate Delay



§3.9 80

3.9. Measurements of a 32-bit Dynamic Domino ALU

The design and measurement of a 32-bit Domino ALU is now presented. The tech

niques used in the design of this circuit helped validate the design style used in the imple

mented synthesis package. The design approach employed in the MAMBO automated svn-

thesis package is identical to the approach used in the ALU. which was handcrafted.

The SOAR project served as a test bed for the dynamic CMOS circuit work. SOAP

stands for SmaUtalk On A RISC and is part of a larger architecture effort at UC Berkeley to

develop a compact, fast, reduced instruction set SmallUlk workstation. The SOAR chip

was implemented in both NMOS and CMOS technologies: the work described here was

applied in the CMOS version of the chip. In the sections that follow the definition, archi

tecture, layout, and performanceof the dynamic SOAR 32-bit ALU are presented.

3.9.1. Design of a Dynamic 32-bit ALU — General Issues

The ALU of the CMOS SOAR processor is partitioned into three components, the byte

inserter/extractor (BlEl the complementer/buffer (COM), and the ALU itself. The BIE

is used to extract or shift bytes of data within the 32-bit datapath. Its operation is mutu

ally exclusive from the rest of the ALU and is described further in [hofm83]. The COM

receives the operands A and B and generates the buffered signals A. A . B. and B. The

COM was designed principally lo provide clean, buffered inverted and non-inverted signals

to the ALU and is described in detail in [hofm83]. The remainder of this section covers the

design of the ALU proper. The block diagram in Figure 3.31 shows the interconnection

among the three major blocks. Data flow is left to right, from the A and B buses onto the

EAbus (output of the ALU).



§ 3.9.1

fl

LATCH
fl

BYTE
INSERT/EXTRACTOR

fl

u

Z
u

u
-J

Q
.

o
o

fl

BUS

BB

fl*

I

GOh- C
T -J

B
*

BUS
B

ALU

Figure 331: Block Diagram of SOAR ALU Section

81

^ BUS

CMOS SOAR was submitted through the MOSIS foundry system and the MOSIS

micron-based design rules were used. Micron-based rules allow the designer greater free

dom and give greater flexibility as compared to lambda-based rules. Lambda-based rules

are more easily shared between different fabrication lines [gris82]. The 1982 MOSIS process

technology was 3/i (drawn) ^-well. It uses a single layer of polysilicon and a single layer

of metal; buried contacts are not allowed.

The ALU section was designed as a bitslice. Early in the design process it was decided

that GND would run along the bottom of theLSB cell and VDD along the top. Every other

cell is mirrored so that GND and VDD buses are shared.

The critical pitch for the datapath is in the y—direction, perpendicular to signal flow,

and is set by the ALU. The ALU isthe most complex single cell in the datapath. The criti

cal pitch was made loose to allow for later design changes. The final y—pitch of CMOS

SOAR is 117ft. The BIE is 255ft in the x—direction, while the is COM 171m and the ALU

513ft. Figure 3.32 is a die photo of the ALU test chip. The photograph shows static

latches on either side of the ALU which are used to load operands and store results.



§ 3.9.1
S2



§ 3.9.2 83

3.9.2. ALU Design

Design of the ALU section was driven by design of the carry circuitry. The ALU com

putes during 03 of a three phase, asymmetrical clock cycle. It was desired to perform an

ALU operation in around llOns. In order to come close to this specification some type of

carry acceleration is required: a full ripple-carry would take too much time. A carry

bypass scheme was chosen which, while not as fast a full carry lookahead. speeds up the

worst-case carry and is quite economical in layout area. In fact the scheme appears to

represent a good tradeoff between layout area and circuit speed as shown in the table in

Figure 3.33 from [wha!84].



§ 3.9.2

Desij|D Metrics for CMOS Adders

Adder Device Count Area Speed

Breat-Kaag
Static

Nora

2846

1423b

1423p

3123

1677b

1446p

2.975E06 v*
»

3.373E06 ji*

36.28ns

44.98ns

Manchester carry ehain 1024

320b

704p
8.696E05 M2 87.45&S

Carry Select
27/5

15/17

1594

619b

975p

1342

487b

855p

\M7EMfi*

1.143E06 v*

83.06ns

59.47bs

74181 1577

773b

804p
2.049E06 i? 45.16ns

Kock 1979

907b

1072p
2£5lE06/i* 37.96ns

Q Circuit 2108

1113b

995p
2.456E06 ft* 38.99ns

•25.22bs
Carry Bypass 1694

1291b

403p
2.068E06 n2 **45-50as

84

Figure 333: Comparison of Adder Schemes

The speed figure given for the carry bypass circuit, the method implemented here, is inac

curate. The actual measured delay, as will be shown later, was 140ns. The number in the

table represents the worst-case measured delay for the carry bypass chain alone. A full

add with no carry requires about 95ns and to this the carry bypass delay must be added

to give the full worst-case adder time. Also, the area given for the carry bypass scheme

represents the area of the entire 7-function ALU portion (excluding the the BIE and COM)

of the circuit: for the other adders the area and device-count values reflect only the portion

required to perform an add operation.



§ 3.9.2 85

3.93. The Dynamic Carry Chain

The carry bypass scheme employed by Siemens in their MrKERW-83 [pomp82]. was

chosen for carry acceleration in SOAR. This scheme works by providing two separate carry

chains. The 32-bit circuit is divided into blocks. The idea is to have the carry signal

bypass a block entirely if there is a propagate signal in each bit of the particular block.

Figure 3.34 shows a block diagram of an NMOS carry bypass scheme.

k

COUTX «•

1H

J*3 J*2 J*l

1

BITSLICE

Figure 334: NMOS Carry Bypass Scheme

|-P* J h

CARRY
BYPASS

<CIN*
FULL

CARRY

The signals P and P represent the presence and absence of a propagate condition for a

given bit. respectively. The block size has been fixed at four bits. The upper signal run is

in effect a fast carry chain and is used to accelerate the carry logic value with the poten

tially greater delay. For NMOS this is a logic J. This second chain can be thought of as

**propagate-kiir. In operation CZ" is held to the slower logic state (logic J). If either Cm

is high (no carry in) or any of the bit P signals are high (no propagate) then the

propagate-kill line is activated. It is pulled low which shuts down the path between C^,

and GND. Thus C^Z remains high indicating no carry out. In the opposite case Cm is low

and all of the P signals are low. This indicates a carry in which is not absorbed by any

bit in the current block and is thus propagated across the block. In this case the

propagate-kill lines remains high (ie. allow carry to propagate). This opens up the path

between C^~ and GND and thus C^ goes low indicating a carry out. The standard

G + PC logic in the lower carry chain operates independently of the fast bypass. If a



§ 3.9.3 86

carry is generated in any of the intra-block bits it is then propagated via this slower

ripple-carry chain to C^ . which is grounded to indicate a carry out.

The choice of number of bits per block is governed by two considerations. One con

sideration is the amount of capacitance on the bypass line that must be discharged by the

pulldown devices (note that it is precharged or held high). The greater the number of bits

the higher the capacitance. On the other hand, the introduction of a non-inverting buffer

introduces additional circuit delay. The C^, line is buffered after each block. The second

consideration is the probability of bypassing a given number of bits versus the gain in

speed by taking the bypass. The larger the number of bits bypassed the greater the bypass

acceleration. In the limit, to bypass the greatest number of bits would mean a block size

of one. which is equivalent to no bypass at all. Again there is the consideration of the

additional device count versus speed gain. In [pomp82] a block size of four was used.

This NMOS carry bypass method relies heavily upon static, ratioed logic. In the

NMOS scheme the C^ signal is held high by a weak depletion load device and the signal is

activated (brought low) by a wide pulldown device. Thus the implementation relies on

device ratioing and consumes static power. In keeping with the Domino design style, the

bypass scheme has been modified to be ratioless and dynamic. A block diagram of the

modified bypass circuit is shown in Figure 3.35. Again four bits were used per block.



§ 3.9.3

cyia

aO bO al bl a2 b2 a3 b3

^ ~£^ -iH

samO saml smm2 s«m3

Figure 335: Dynamic CMOS Carry Bypass Scheme

87

—^\ cy out

-3>

The idea of a faster, alternative carry chain, the bypass, has been retained in the

Domino implementation. However, this line is now "propagate" instead of "propagate-

kill". This line is precharged high, rather than being held high, as in the static version. In

other words the sense of the line has been inverted. This was necessary to keep within the

Domino design rules that require all Domino gates run off the same clock to be precharged

to the same state. Since inversions are not allowed within Domino logic, the signals P and

P cannot both exist unless they were produced from other, more fundamental gates.

While this duplication of logic was considered, the idea was discarded as being too costly

in terms of device count.

In operation both the propagate bypass and carrynibble (full G + PC) lines are

precharged high. In this case the precharged level of logic 1 indicates no carry. A transi

tion to logic state 0 indicates the presence of a carry. A schematic diagram of a 4-bit block

of the carry bypass is shown in Figure 3.36. The carry bypass is just the propagate func

tion. If either or both of the operands {A or B in Figure 3.36) are asserted in each of the

four bits of the block then the propagate line, which was precharged high, is brought low.



P
H

I

C
O

U
T

X
<

o
_

1
_

o
o

>
P

H
I

n
f

!
pH

in
f

•
PM

in
f

i
ph

hT

Jh
PH

I
,

jh
PH

I
I

>P
HI

•
Jl-

PH
I

C
IN

X

C
G

•
P

C
1

X

1
-C

IN
X

F
ig

ur
e

3
3

6
:

Sc
he

m
at

ic
o

f
D

yn
a

m
ic

C
a

rr
y

B
yp

as
s

B
lo

ck

o
o



§ 3.9.3 89

If. in addition, there is a carry into the block then the carrynibble line will go low. indicat

ing a carry out. However, if the carry into the block is high (indicating no carry in) or

there exists at least one intra-block bit that has neither A or B asserted then the propagate

line remains at its precharged high level and carrynibble remains high indicating no carry

out.

In this implementation of the carry bypass the important factor deciding block size is

the number of passgates that can be chained together before a buffer is required. SPICE2

simulations of CMOS passgates by [whal84]. indicate that best speed is obtained when

buffers are inserted every three gates. There is only a slight degradation at four bits per

buffer and since this figure is an integral multiple of two it fits in better with a regularly-

structured bitslice approach.

Each bit of the ALU has a total of 51 devices: 39 of these devices are used in calcula

tion of Boolean operations and add/subtract. There are 9 devices in the ripple-carry gen

eration: an additional 3 devices per bit are required for the carry bypass in the dynamic

CMOS implementation. This is the same number required in the static NMOS version. The

total number of devices in the ALU is 1694. This is greater than 51 X 32 due to control

signal buffering at the bit 15 — bit 16 boundary.

3.93.1. Speed of Worst-case Carry Bypass

Both carry bypass schemes work in the same way. Since it is assumed that all 32

biis of operands A and B are stable in parallel ai the same lime, if a decision about the

outcome of the carry can be made on the basis of these bits only (and an initial carry sig

nal from the LSB). carry generation can be accelerated. The carry bypass scheme achieves

its greatest speedup on the worst-case carry propagate situation. It gives proportionally

less speedup the better the original case. The worst-case carry occurs during an add

instruction when a carry is generated in bit 0. This carry must ripple through the first

four-bit block. It then bypasses six nibbles. It must ripple through the last nibble again

to effect the MSB. thus it ripples through the top four bits. This is the worst case, because



§3.9.3.1 90

any other carry bit generation must occur at a more significant bit (other than 0) and thus

have a shorter distance to travel to the MSB. It is entirely possible that there are two or

more carries using the different parts bypass at the same time. Such a situation exists

when carries are generated in multiple bits. However in this case all generated carries will

follow a shorter path and so take less time. These shorter paths will probably involve

fewer block bypasses simply because there are fewer bits to jump around. Thus the

bypass scheme speeds up the worst case (longest carry propagation path) most.

The 32-bit NMOS ALU fabricated in [pomp82] uses a single metal, polysilicide process.

The polysilicide layer has a sheet resistance of about 3 Q/D. A worst-case carry bypass

ALU operation was measured (from latch to latch) at 66ns. Simulations were also per

formed assuming a standard polysilicon process with a sheet resistance of 30 Q/D. In this

case the authors found a fourfold increase in control signal delay. They estimate such a

circuit would work at clock frequencies of less than 5MH2. Measured delay, summarized

below, of the MOSIS device which did not use a polysilicide layer was 140ns. In contrast.

[frie&4] implemented a 16-bit ripple-carry adder in a 5fi CMOS polysilicon gate technology.

They utilized a NORA style of implementation which they claim should be 30% faster

than a corresponding Domino implementation. The authors report a total delay across the

16-bil adder of 180ns which corresponds to a ripple-carry delay per bit of 11.3ns. Since

this is a ripple-carry circuit the 32-bit add time should be 360ns.

3.9.4. ALU Logic Functions

The ALU performs seven functions. They are AND, OR. XOR, ADD, SUB, SR, and PASS.

The PASS function simply passes the operand A lo the ALU output. The function SR shifts

the A operand one bit to the right. The shift is arithmetic or logical depending on control

signals provided by an external (off module) condition code PLA. The SUB function is A —

B and is performed exactly like an add. except that a carry is injected at the LSB. The

COM circuit detects that a subtract operation has been requested and inverts the B

operand. The Boolean operations are all implemented in Domino logic. The XOR function



§ 3.9.4 91

is the only part of the ALU which requires A . A . B. and B. Inverted signals are provided

by the COM. XOR is implemented as AB + AB and is the only one of the Boolean func

tions which breaks even in device count as a Domino function. The propagate/generate

logic saves one gate over a static implementation. Recall that the overhead for a Domino

gate is four devices. Thus when the fan-in is less than four, static CMOS implementations

require fewer devices. Because only the XOR required inverted signals it was placed at one

end of the ALU to avoid running these signals throughout the whole slice. W-core Domino

logic was used in the ALU design. A schematic of the ALU without the carry logic is

shown in Figure 3.37a. Figure 3.37b shows the mask layout of five contiguous bits.



A
f
l
l
*

A
U

«
i*

I

ff
ti

u
s
.L

=
c

A
u

ii
s

.1

B
u

u
s

t
=

£
>

—

B
b

u
*

.L
.

A
b

u
?

L
.

x
>

P
A

S
S

«

A
t
o

r
B

n
o

r
C

m

O
t
z

I
l>

>

s
h

i
I
l
l
n

i
l
i
n

.1

1S
f

I
«

IJ
S

H

J
.

«
A

S
C

IA
L

U
O

R

1

p
h

i
3

9
C

L
A

L
U

A
N

0

1
k
k o

-
t
>

T
l.

S
C

L
A

L
tP

tO
R

1
T

S
h

l
f

tt
M

IS
O

U
t

r

C
A
b
a
s

o
u
t
p
u
t

s
t
a
y
s

h
i
g
h

u
n
t
i
l

a
n
s
w
e
r

s
t
s
b
i
i
n
a
s

d
u
r
i
n
g

p
h
i
3

•
.
=
2

p
h

i
3

F
ig

ur
e

3.
37

a:
Sc

he
m

at
ic

o
f

a
Si

ng
le

B
it

o
f

th
e

D
yn

am
ic

AL
U

O
n
l
y
o
n
*

p
r
a
c
h
a
r
g
a
p
u
l
I
u
p

t
o
r

t
h
e

l
u
l
l

d
a
t
a
p
a
t
h

b
u
s
*
*
K
b
u
s
B

K
r
-
.
t
W

S
I
O
I
H
(

a
t

n
«
.
|
i
*
<
I
N
i

o
r

P
i
H
J

V
O V
O

t
o



§ 3.9.4 93

Figure 3.37k Plot of Fire Bits of the Dynamic ALU

The ADD function is not pure Domino in implementation: it works by employing

carryjn and carryjn to gate signals XOR and XOR. respectively. Because the inverted

signals are generated by simply adding an inverter to the original gate some caution must

be exercised in dealing with signals controlled by these signals. In particular signals which



§ 3.9.4 94

are logic / and are fed through an n -channel passgate may be degraded. Thus, while the

succeeding buffer is not ratioed in the normal sense of a static inverter, still transistor siz

ing becomes important. By adjusting the pullup and pulldown sizes of the ALU output

bus drivers it is possible to use an n -channel passgate multiplexer to select ALU functions.

3.9.5. Miscellaneous ALU Operations

Because the output buffer to the ALU output is precharged high only a logic 0 must be

passed through the n -channel transmission gate. As part of its Smalltalk specialization

the .ALU operates in a 31-bit lagged mode as well as non-tagged 32-bit mode. The decod

ing scheme to control these modes is handled by a condition-code PLA. This preserves the

bitslice regularity of the ALU. The ALU also provides a flag for the case when A —B =0.

This is accomplished through a precharged line which is active high. It is connected as a

32-bit NOR and goes low when any bit or bits of the inverted ^-operand does not match

the corresponding A -operand bit. According to the SOAR architectural specification, this

flag is only checked as a result of a subtract (SUB) operation. Therefore it may be driven

directly by the XOR signal without requiring additional computation logic or time.

Because it is implemented in this manner, however, the A —B flag is only valid for the SUB

instruction.

3.9.6. Comparison of Simulated and Measured ALU Delays

The bitslice alujurst. which is the first bit in every 4-bit block, was analyzed using

CRYSTAL [oust83]. These results are compared with measured results from the a set of

five chips which made up the first silicon batch. For simplicity only 1 bit. rather than all

32 bits, was analyzed. The capacitance and resistance values used by CRYSTAL are listed

in Figure 3.38. These are relatively accurate figures for the MOSIS CMOS process. The capa

citance figures for the />-channel devices in this ^-well process are slightly pessimistic.



§ 3.9.6

Parameter Value Units Remarks

cperarea 0.0004 PFI M2 for nchan and pchan
cperwidth 0.00025 pFI fi for nchan and pchan
metalcperarea 0.00003 pF/ fi2 first layer metal
metalresisiance 0.03 O/O
polycperarea 0.00004 pFI M2 inside or outside well

polyresistance 30.0 O/D
diffcperarea 0.0001 pFI yr inside or outside well

diffcperperim 0.0001 pFI fi
diffresistance 10.0 O/D

Figure 338: Process Parameters used in CRYSTAL Simulation

95

3.9.6.1. ALU Delay Simulations

For this analysis CRYSTAL'S simple RC FET model (the default) wasused. Results on

bitslice aiup-st for the three Boolean operations and .ADD are given in Figure 3.39.

Function CRYSTAL Measured

ADD AlJOns 45-5Ons

XOR 23.69nj 40-45/u

AND 20.96ru 35-50rw

OR 17.48nj 3O-40nj

Figure 339: Simulated versus Measured ALU Delays

It is expected that analysis of atueven, abuodd. and ahdast. the remaining three bits in the

four-bit block replicating unit, would show similar results. A version of alufirst laid out

to contain metal signal runs in place of polysilicon runs in an attempt to reduce the RC

time constant of these lines yielded the results shown in Figure 3.40.

Function CRYSTAL

ADD 41.53nj

XOR 23.39nj

AiND 20.9 Ins

OR 17.41ns

A—B-0 11.98n*

Figure 3.40: Simulated Results with Metal Signal Lines

The delay time differences are insignificant and the meul version was not fabricated. The

delay times are similar probably because the on resisunce of the minimum-sized FETs and

the parasitic capaciunces associated with their sources and drains are the overriding fac-



§ 3.9.6.1 96

tors in determining RC delay. It is not completely clear, however, whether the timing

simulator has correctly modelled the circuit delay.

The test equipment used was not able to measure the small single-bit delay times

directly. Instead an indirect calculation was performed and hence some uncertainty is

reflected in the tolerances in the measured values. The measured values also span the

fastest and slowest of the five chips measured from the first lot. The test setup measured

a no-carry ADD at around 95nj. A PASS or SR operation takes 45-5Ons on chips where the

ADD could also be measured. These latter operations do not depend on the 4> clock signal

to stan. Their delay time is purely a measure of the amount of time it ukes the latch

control signal to travel across 32 bits. This time is roughly equivalent to the delay associ

ated with the <t> clock signal. Both must traverse 32 bits, and the same buffers are used in

each case. Thus, by subtracting the clock delay time of 50-45/w from the no-carry ADD.

the ADD time from clock pulse is seen to be 45-50ru. Similar calculations were performed

for XOR, AND. and OR with the results shown in Figure 3.39 above.

The CRYSTAL simulations were based on output from the circuit extractor. MEXTRA

[fitz82]. MEXTRA was run in a mode that reported the area and perimeter on all layers of

all circuit nodes. From this information CRYSTAL can infer aspect ratios and make resis

unce estimates.

The CRYSTAL delay values are low in part because of the additional capaciunce thai

each ALU bitslice output must drive. Only the .ALU bitslice was simulated in CRYSTAL

and no compensating capaciunce to simulate a bus load was added. This capacitance

should be small however. The ALU output travels about 100 microns in meul to the

input passgate of the destination latch. The destination latch holds the ALU result. The

ALU output bus (EAbus in SOAR) is driven by L«3^t W-20^ p -channel. L-3/u W-16^

n -channel buffers. CRYSTAL results do not reflect the additional delay time from the ALU

output to the destination latch. The main delay-time component seems to be the slow

speed of the actual arithmetic and Boolean logic itself. Minimum devices are used almost

everywhere (exceptions are the n -channel pulldowns in inverters where a 7/u width, equal



§ 3.9.6.1 97

to a conuct cut. were easy to construct). Greater speed could be obuined by increasing

the size of the logic gates. SP1CE2 simulations, performed without extracted resisunce

values, did not show this speedup. This is probably because the line capaciunce. which

was modelled as a single lump, obscured the delay benefits of wider gates.

3.9.6.2. Measured ALU Speed

A deuiled account of the test equipment and the testing procedures used to measure

the ALU spttd can be found in Appendix C. The best results from the functional chips

tested are summarized in Figure 3.41. Not all chips were operational in all modes. Chip

number 5 failed basic power-up tests and does not appear in this figure.

Function Delay (ns) Chips
at Speed

Number

Tested

ADD (wc) 140 1.3 3

SUB (wc) 125 2 3

Cp-ADD (wc) 100 1.2.3 3

Cd-SUB (wc) 90 1.2 3

No Cp (ADD/SUB) 95 1.2.3.4 4

XOR 90 2 4

AND 85 12 4

OR 80 2.3 4

SR 35 6 5

PASS 35 6 5

Figure 3-41: Summary of First Silicon Speed

The add and subtract limes represent worst-case carry propagate figures. The uble entries

Cp-ADD and Cp-SUB are worst-case times for generation of C*,, from bit 31. These times

are faster than the add and subtract times because bit 31 falls on an integral block boun

dary. Therefore the carry_gut signal only ripples through four bits and bypasses seven

nibbles in the worst case. This is compared to a ripple of eight bits and a bypass of six

nibbles for the add and subtract times. The difference in these figures indicates a ripple-

carry time of 9-1 Onj per bit. The remaining Uble entries are self-explanatory. The more

complex functions have longer delays. The simple pass and shift functions are limited by

the time it ukes the control signals (run in alternating poly and meul) to traverse 32 bits.



§3.9.6.2 9S

The control signals are buffered between bits 15 and 16. If one assumes an RC model for

the control signals runs this effectively cuts delay lime by a factor of four by halving both

R and C. The control signal delay time could have been reduced even more if the signals

had been run in polysilicide or second-layer meul. Second and third silicon chips have

been fabricated but are not yet tested.

3.10. Summary

Simulations and comparisons of sutic and dynamic CMOS gates were presented in

this chapier. The conclusion is that dynamic gates are faster in situation where the

precharge phase can be hidden. They are more area compact as gate complexity increases

and are easier to layout because typically each signal drives only one device per gate.

Therefore, they are good candidates for an automated generation approach. In the second

major portion of this chapter measurements and simulations of dynamic CMOS charge

redistribution problems and gate delays were presented. Due to V, variations of the test

chips it is difficult to accurately predicate a series chain length limit, but it appears to be

between 7 and 15 devices. The measured circuits were faster than the simulated versions.

This can be attributed lo higher device mobilities than those assumed by the circuit simu

lation models. In the final part of the chapter the design and operation of a 32-bit ALU

laid out manually in the Domino style was examined. Measurements of the fabricated

chip indicate speeds competitive with similar published designs. The circuit delay meas

urements were correlated with simulated results. Using the dynamic Domino scheme it is

possible to construct a fast, area-efficient complex combinational circuit that consumes

negligible sutic power. The Domino ALU serves to validate the dynamic approach used in

the combinational synthesis framework described in the following chapters.



99

CHAPTER 4

The MAiMBO Synthesis Package

This chapter serves both to introduce the MAMBO synthesis system and to explain

the "front-end" tooLs in the package. MAMBO is a collection of tools organized as pipeline

to help a designer realize a combinational circuit at the mask-level. The primary goa] of

the MAMBO package is to construct complex combinational functions which have been

optimized for circuit delay and layout area. The designer specifies a function or set of

functions by Boolean equations which are then mapped into combinational logic. The

M.AMBO package employs a context-based tiler to create the mask-level geometries. This

realizes a second goal of the package which is to be relatively process independent. New

tiles must be designed to reflect process changes but the tile assembly tool itself does not

have to be altered.

4.1. Overview of the MAMBO Pipeline

The synthesis of a combinational logic function can be broken down into four broad

areas. The areas are logic minimization, electrical design, topological compaction, and physi

cal layout. The synthesis process is illustrated in Figure 4.1. The tools used in each phase

of the pipeline are also mentioned.



§4.1

INPUT

TRANSFORMATION

AND BOOLEAN

MNItlZATION

HGHG

>

ELECTRICAL

DESIGN

flKTBL

nOSHESH

ninic

>

TOPOLOGICAL

DESIGN

riKriAT

TUIST

Figure 4.1: Stages in Synthesis Process

•>

100

PHYSICAL

DESIGN

TINKER

TRILOR

The input, output, and nature of each of the tools are examined more closely in the fol

lowing sections.

4.1.1. Input Transformation and Logic Minimization

The MGMG program performs two services. First, it is the high-level interface to the

designer. It is used to parse and translate Boolean expressions into a specified target tech-

nology. Second. MGMG will optionally perform two-level expansion of an n-level input

expression. It is assumed that the input Boolean equations are already in a logic-optimized

form. The equations may have been optimized by any of the methods mentioned in

Chapter 1. MGMG. however, can apply simple logic minimization rules to reduce circuit

complexity. Though MGMG can be used to produce a truth-Uble-like output, in the

MAMBO system it produces a gate-level netlist. This netlist specifies the function of each

gate and how it is connected with other gates. Each function is represented as a single,

complex gate in the netlist. A USP-like synux is used. A complete description of target-

technology transformations and of the types of logic minimization that MGMG provides is

given in the latter part of this chapter and an alternate logic minimization pathway is also

described.



§4.1.2 101

4.1.2. Electrical Design

The goal of electrical optimization is to decrease the delay from input to output of

the synthesized circuit. It is assumed that all signals are stable and valid at the beginning

of the evaluate phase in Domino-style logic. The delay optimization program MOSMESH

works by breaking up the large, complex gates generated by MGMG into smaller, manage

able pieces. This process is termed partitioning. The partitioning depends both on electrical

and physical factors. The electrical constraints are the charge redistribution effect seen in

dynamic circuits and the direct effect of series chain length on gate speed. These effects

were described in detail in previous chapters. For ease of routing and automated genera

tion it is best to have a regular layout structure. Structure regularity imposes physical

constraints on MOSMESH. If the designer wishes to use a more complex gate interconnec

tion scheme the regularity restriction can be removed.

MOSMESH manipulates a gate netlist by first finding the electrical critical path

through the circuit. The critical path is found by recursively tracing each function output

back to its fundamental inputs. The tool MKTBL is used to produce a uble of delays of

various gate clusters under various conditions. MOSMESH refers to this uble in its search

for the longest delay path. MKTBL constructs a SP1CE2 deck of a set of user-provided gate

configurations. The program then determines the critical path through the particular gate

under various conditions, performs transient analyses, and stores the results in a uble.

Finally, the partitioned pieces of the circuit are examined to see if any are redundant.

Duplicate gates may be eliminated to reduce layout area if they do not compromise circuit

speed. The MIMIC tool performs this task by recursively checking for gates with identical

inputs and functionality, but different outputs. Typical reductions in cluster count vary

from 10 to 40%. The programs involved in electrical design are examined further in

Chapter 5.



§4.1.3 102

4.13. Topological Design

The MKMAT tool processes the netlist produced by MIMIC: it transforms the netlist

into a connectivity matrix. It does this by replacing each gate with a set of symbols which

declare whether a given input or output signal affects or is affected by a particular gate.

The result is a matrix of characters quite similar to a PLA s personality matrix. To assem

ble this matrix MKMAT must internally build two constraint matrices. Part of the job of

MOSMESH is to constrain signal ordering for least delay. This means that certain signals

(those that change fastest) are generally assigned to transistors that are closer to output

nodes than those signals which change more slowly. This ordering constraint must be

observed. Also, it is often the case that a gate can be realized in a single column of the con

nectivity matrix. However, for more complex gates, especially those which are parallel in

function at their top level, this is not the true. For such gates a column-constraint matrix

expresses which columns must be contiguous. MKMAT builds the connectivity matrix

based on these constraints. An example of a connectivity matrix appears in Figure 4.2 and

in Chapter 6 where MKMAT is described in detail.



§4.1.3 103

new 30 19

pssssssssssssp.ssss

18 . .s o.

20 .. .s o..

14 ... .s o.. •

24 s...o

26 s.o

fO o

1 po
2 p.o
3 p..o
4 p...o.

6 p....o
10 p o
11 p o
12 p o
16 .s o

c3* -ss s..

• • • •

bO •.ssp s
15 s o

7 s o

28 s. .o

c2 sss ss.

c3 SSS . . .5 . .s . . .

cin .s

bO* ss...s....

aO* s.s.s

cin* ss

cl S...S.S

c2* s..s..s

cl* s.s.

Figure 4.2: Example Connectivity Matrix

Program TWIST reads the matrix structure and attempts to compact it topological!y.

The designer may run this program either interactively or as a segment in a pipeline.

TWIST respects external constraints. External signals must be brought to the edge of the

circuit for connection off-module and. in addition, the designer can specify on which edge

(left, right, or both) each external signal must appear. TWIST performs simple column

folding and multiple row folding. Simple column folding is used so buffers, which are



§4.1.3 104

required on a per-gate basis, can be brought out at the top or bottom of the array. Multiple

row folding (with internal signals in the middle) increases layout density. TWIST can per

form either row-after-column or column-after-row folding or any mix in between. The

circuit designer makes such a decision generally based on which aspect ratio (ull and thin

or short and squat) is most favorable for layout. The general folding problem is In

complete: TWIST employs a series of heuristics to accomplish area compaction. In Chapter

6 the theoretical aspects of the algorithms used by TWIST are presented.

4.1.4. Physical Design

The output from TWIST is a (possibly row- and column-folded) connectivity matrix.

This is the input to TINKER which is a context-based electrical tiler. TINKER generates an

electrical matrix based on the connectivity matrix and a separate, user-provided, context

file. This file gives possible situations for each of the characters in the connectivity matrix.

Each connectivity symbol represents a gate, an interconnection, or a duster of gates (such

as a buffer). Depending on the number of signals a gate must drive, or the number of dev

ices in a series chain, a given connectivity symbol can be transformed into various charac

ters in the electrical array. By this approach TWIST performs purely topological operations

and is not required to deal with implemenution considerations. On the other hand the last

tool in the package. TAILOR, need make only mask-level decisions, and does not require

knowledge about device sizing or drive capabilities. The output of TINKER is another

matrix of the same aspect ratio as its input, but drawn from a richer set of characters.

TAILOR is the final program in the MAMBO pipeline. It interprets the character set in

the matrix provided by TINKER. For each character it refers to a cell library. TAILOR sim

ply performs a one-for-one substitution of each character for mask geometries from the

cell library. The cell library can be described in any layout language. The current imple

mentation stores the cells in CIF format, but TAILOR has no knowledge of this and is

therefore fairly process independent. TAILOR gets information about tile extent from a

separate symbol file. This file provides TAILOR with the designer's view of the cell. The



§4.1.4 105

designer can have TAILOR generate abutting, overlapping, or completely enclosed cells by

giving such information in the symbol file. The output structure is regular and TAILOR is

careful to preserve constant row and column spacing on a per row and column basis. That

is. all cells in a given row must be the same height, all cells in a given column must be the

same width. The user may override this rule if he desires. Examples of both the electrical

rules matrix and final mask-level layout are shown in Figure 4.3. The physical design

process, used to construct these figures, is presented in deuil in Chapter 7.

sssssp.sssss

+r++l I Ibr-HH-

+rr+++++r+++

+b+++++++++r

r+rr++++++++

r—H-r+++r+++

+T+-n-+d+++++
DR++-H-++++++

m++rr+++++++

++b+++++++r+

R+-++"+++~r+
++RI Il"r++++
++L+++++++++

-H-L++-H-+d-H-+

+DL+-H-++++++

++L++++++C++

++L+++++++d+
++L++++++++d

b+LIlr+r++++

++KI Ilr++Rrr

R++dI I Ir++++

+++-e " --
ssp

S&&$£^^E&&

Figure 43: (a) Electrical Rules Matrix (b) Mask-Level Layout

4.2. Representation of BooleanExpressions— MGMG

The remainder of this chapter is devoted to the first of the four major suges in com

binational logic synthesis, that of Boolean transformation and minimization. This suge is

handled by the MGMG program, the first program in the seven segment MAMBO pipeline.



§4.2

Figure 4.4 shows the input equations for a 2-bit parallel adder.

/•

* 2-bit parallel adder example
*/

INORDER - cin aO bO al bl :
OUTORDER - sumO suml coutl:

sumO - (!aO&!bO&cin) I(!aO&bO&!cin) I(aO&!bO&!cin) I(aO&bO&cin)
sum! - (!al&!bl& ((bO&cin) I (aO&cin) I (aO&bO))) I

(!al&bl&! ((bO&cin) I (aO&cin) I(aO&bO))) I
(al&!bl&! ((bO&cin) I (aO&cin) I(aO&bO))) I
(al&bl& ((bO&cin) I (aO&cin) I (aO&bO))) ;

coutl - (bl&cin) I (al&((bO&cin) I (aO&cin) I (aO&bO))) I (al&bl) :

Figure 4.4: Input Format, 2-Bit Parallel Adder

106

The equations have been expressed using a sundard set of Boolean operators. The opera

tors and their operations are shown in the Figure 4.5 below.

Operator Operation Class
j negation monadic

& disjunction dyadic

1 conjunction dyadic

Figure 4-5: Boolean Operators

The operations in this figure form a logically complete set. It is possible to define other

operations, for example, exdusive-or. and add them to the set of legal input operations of

MGMG for convenience of expression.

The program MGMG can be used to manipulate this input formal in a variety of

ways. Figure 4.6 shows the input example of Figure 4.4 transformed into two-level logic

and expressed as the personality matrix of a PLA.



§4.2

#INORDER - cin aO bO al bl

#OLTORDER - sumO suml coutl

107

-0001 010

00001 010

-0010 010

00010 010

100-- 100

00-01 010

001-- 100

00-10 010

0-010 010

11-00 010

-1100 010

-1111 010

-111- 001

111-- 100

0-001 010

11-11 010

11-1- 001

1-111 010

1-11- 001

1---1 001

---11 001

010-- 100

1-100 010

f Matrix, 2-Bit Parallel Adder

Figure4.7 explains each of the AND and OR planecharacters.

Symbol Plane

1 AND

OR

AND

0 OR

AND

lnterrreution

variable affects product term
product term affects output term

negated variable affects product term
product term does not affect output term

variable does not affect product term

Figure 4.8: PLA Personality Matrix Symbols

By invoking MGMG with the —expand option it is possible to see more directly the effect

of each input variable on theoutput variables. Figure 4.8 was produced by employing this

option on the 2-bit adder example.



§4.2

UNORDER - cin aO bO al bl
#OUTORDER - sumO suml coutl

!a0 !b0 !al bl suml

!cin !a0 !b0 !al bl suml

!a0 !b0 al !bl suml

!cin !a0 !b0 al !bl suml
cin !a0 !b0 sumO

!cin !a0 !al bl suml

!cin !a0 bO sumO
!cin !a0 al !bl suml

!cin !bO al !bl suml

cin aO !al !bl suml
aO bO !al !bl suml

aO bO al bl suml

aO bO al coutl

cin aO bO sumO

!cin !b0 !al bl suml

cin aO al bl suml

cin aO al coutl

cin bO al bl suml
cin bO al coutl

cin bl coutl

al bl coutl

!cin aO IbO sumO

cin bO !al !bl suml

Figure 4.8: Expanded Format, 2-Bit Parallel Adder

108

When MGMG is invoked with either personality matrix or expand options an input

expression or set of input expressions (possibly many levels deep) is transformed into

two-level logic. In this process MGMG prefroms some simple Boolean minimization by

reducing the number of product terms in the expansion. Standard cube covering algo

rithms are used [bray84c]. For example, if the strings:

100011-00011 0001

1000110100011 0001

represent the product terms (pterms) for a ceruin set of variables then the first pterm is

said to cover the second in that the second pterm is a subset of the values of the input

variables represented by the first pterm. Therefore the second term is unnecessary and



§ 4.2 109

may be eliminated. Likewise, given the two pterins:

1000110000011 0001

1000111100011 0001

A new pterm can be generated with covers both:

100011-00011 0001

This is called a distance one merge. Lastly, given the pterins:

1000110100011 0001

1000110100011 0010

which have identical input values but which drive different outputs the new pterm:

1000110100011 0011

can be generated which covers both output variables. MGMG performs these

simplifications by creating a uniquesignature for each pterm based on its input string. The

signature is in the form of a hash function and is used to store the pterins in a binary tree.

After each new pterm's hash function is computed it is either inserted into the binary tree

if it is unique or discarded as redundant if its signature is equivalent to a pterm already in

the tree. This type of minimization in product term cardinality is based purely on the

1/0/- signature of the pterm. MGMG has no notion of the Boolean relation of one variable

to another, hence it cannot perform more sophisticated minimizations based on the rules of

Boolean mathematics.

43. Transformation into Target Technology— MGMG

Though two-level logic expansions are often employed in the generation of combina

tional circuits, and MGMG is capable of producing minimized two-level expressions of

Boolean functions, it is not always necessary or profitable to expand a function in this

way. In fact, when the urget technology is Domino CMOS, it is often necessary that gates

with large fan-ins be broken into smaller multiple gates because of the problem of charge

redistribution. Two possible ways of performing this fracturing of large gates are: l) First

expand n levels of hierarchy into two. minimize the functions, because this is a well



§ 4.3 no

understood process for the two-level case, and then re-introduce hierarchy afterwards to

reduce fan-in. 2) Reuin the designer's original intent as much as possible by preserving

the input hierarchy with the transformations necessary for the urget technology. Parti

tioning will still be required but the en< result will be closer to the original input.

Minimization of common gates can be perJormed after the gates are broken up. Such

post-partitioning minimization could also be performed for the first approach mentioned.

The first approach has been explored in deuil by Brayton et. al. and was reviewed in

Chapter 1. This disserution explores the second option for a number of reasons: The

problem of realizing a correct, efficient, complex circuit on silicon through automated gen

eration is multi-faceted. It is felt that the low level details of circuit construction, such as

parasitic capaciunce effects, required in-depth study. The second approach is simpler and

thus more time can be spent identifying and studying problems at the electrical and layout

levels. Also, since the second approach reuins more of the designer's original intent it

gives the designer more control over the final result. In the sections below options to the

delay optimization suge of the pipeline are deuiled. The options allow the designer to

direct the circuit partitioning via specific constraints or according to a built-in clustering

algorithm. It is anticipated that future versions of MAMBO will use more sophisticated

multi-level logic synthesis techniques. Even in that case, however, deuiled electrical and

constraint management will still be required.

4.3.1. Input Parsing and Netlist Generation

The initial step in the transformation of Boolean expressions into a particular tech

nology is parsing of the input format and generation of an netlist. The netlist specifies

explicitly the type, fan-in. and fanout of all gates. In this case the urget technology is

Domino CMOS and the gateset is {AND OR). The logic connectivity is also specified. For

the 2-bit parallel example used above the input netlist for Domino-style design is shown

in Figure 4.9.



§ 4.3.1

UNORDER - cin aO bO al bl
#OLTORDER - sumO suml coutl

# Input expression
NOT 14 : aO

:b0

:14 16
: 13 cin

:a0
:21b0

: cin

:20 24

12 19

NOT 16
AND 13

AND 12

NOT 21
AND 20

NOT 24

AND 19

OR 11 :
NOT 29 : bO
AND 27 : aO 29
NOT 31 : cin
AND 26 : 27 31
OR 10: 11 26
AND 34 : aO bO
AND 33 : 34 cin
OR sumO : 10 33
# Input expression
NOT 42 : al

:bl
:42 44

: bO cin

: aO cin

48 51

NOT 44
AND 41

AND 48

AND 51
OR 47:

AND 54 : aO bO
OR 46 : 47 54
AND 40 : 41 46
NOT 59 : al
AND 58 : 59 bl
AND 65 : bO cin
AND 68 : aO cin
OR 64 : 65 68
AND 71 : aO bO
OR 63 : 64 71

OR 64 : 65 68
AND 71 : aO bO
OR 63 : 64 71

NOT 62 : 63
AND 57 : 58 62
OR 39 : 40 57
NOT 77 : bl

AND 75 : al 77
AND 82 : bO cin

AND 85 : aO cin
OR 81 : 82 85
AND 88 : aO bO
OR 80 : 81 88
NOT 79 : 80
AND 74 : 75 79
OR 38 : 39 74
AND 92 : al bl
AND 97 : bO cin
AND 100 : aO cin
OR 96 : 97 100
AND 103 : aO bO
OR 95 : 96 103
AND 91 : 92 95
OR suml : 38 91
# Input expression
AND 107 : bl cin
AND 114 :b0cin
AND 117 :aOcin
OR 113 : 114 117
AND 120 : aO bO
OR 112 : 113 120
AND110:al 112
OR 106 : 107 110
AND 123 : al bl
OR coutl : 106 123

Figure 4.9: Input Netlist, 2-Bit Parallel Adder

111

Each entry in the netlist is of the form:

gate_type output: inputO input! ... inputn

Gate_type is a gate from the given Urget technology. In this case the gates AND and OR

are allowed. The gate type NOT is always permitted because only logically complete

gatesets are allowed. Output and inputi are a signal names. Signal names beginning with



§4.3.1 112

alphabetic characters are user-given, all other signal names have been generated and

represent intermediate values used in the compuution of a particular function.

The netlist conuins AND. OR. and NOT gates. Inverters are not permitted in Domino

logic and hence the netlist as it stands cannot be implemented. This problem is overcome

by "bubble pushing" that is. pushing the inversions to the bottom, or leaf-level, of the

function using the theorems of Boolean algebra [nagl75]. As an inversion or "bubble"

passes through a gau from output to input it may change the gate's function. Figure 4.10

below lists the transformation which occur due to bubble pushing on various gate types

for inputs and outputs. The entry TRUE means the signal is invariant under the transfor

mation while the entry FALSE indicates the signal is complemented under the transforma

tion.

Transformations on Inputs
AND OR NAND NOR

AND TRUE FALSE TRUE FALSE

OR FALSE TRUE FALSE TRUE

NAND TRUE FALSE TRUE FALSE

NOR FALSE TRUE FALSE TRUE

Transformations on Outputs
AND OR NAND NOR

AND TRUE FALSE FALSE TRUE

OR FALSE TRUE TRUE FALSE

NAND FALSE TRUE TRUE FALSE

NOR TRUE FALSE FALSE TRUE

Figure 4.10c Transformations of Inputs and Outputs for Various Gate Types

It was found convenient to store all logic equations, regardless of their urget tech

nology, in a canonical form. The canonical form is composed of AND and OR gates with

inversions pushed to the inputs. For the 2-bit adder example the canonical form is given

in Figure 4.11.



§4.3.1

UNORDER - cin aO bO al bl
#OUTORDER - sumO suml coutl

113

# Re-canon icalized expression OR 61 : 62 64
NOT 11 :aO AND 47 : 48 bl 51 56 61

NOT 13 : bO NOT 68 : bl
AND 10: 11 13 cin NOT 71 : bO
NOT17:aO NOT 73 : cin
NOT 20 : cin OR 70 : 71 73
AND 16 : 17 bO 20 NOT 76 : aO
NOT 24 : bO NOT 78 : cin

NOT 26 : cin OR 75 : 76 78
AND 22 : aO 24 26 NOT 81 : aO
AND 28 : aO bO cin NOT 83 : bO

OR sumO : 10 16 22 28 OR 80 : 81 83

# Re-canonicalized expression AND 66 : al 68 70 75 80

NOT 33 : al AND 89 : bO cin

NOT 35 : bl AND 92 : aO cin

AND 38 : bO cin AND 95 : aO bO

AND 41 :a0cin OR 88 : 89 92 95

AND 44 : aO bO AND 85 : al bl 88

OR 37 : 38 41 44 OR suml : 32 47 66 85

AND 32 : 33 35 37 # Re-canonicalized expression
NOT 48 : al AND 98 : bl cin

NOT 52 : bO AND 104 : bO cin

NOT 54 : cin AND 107 : aO cin

OR 51 : 52 54 AND H0:a0b0

NOT 57 : aO OR 103 : 104 107 110

NOT 59 : cin AND 101 : al 103

OR 56 : 57 59 AND 113 :al bl

NOT 62 : aO OR coutl : 98 101 113

NOT 64 : bO

Figure 4.11: Canonical Form, 2-Bit Parallel Adder

43.2. Transformations on Canonical Form

Finally, after translation into canonical form, the urget-technology transformation is

performed. For the Domino design style the urget form is identical to the canonical form.

The synux is. however, modified somewhat to faciliute later parsing of the expression. A

LlSP-like syntax has been chosen. Again using the 2-bit parallel adder as an example, the

final transformation is shown in Figure 4.12.



§4.3.2 U4

UNORDER - cin aO bO al bl
#OUTORDER - sumO suml coutl

# Transformed expression
(o sumO

(P
(s aO* b0« cin )
(s aO* bO cin* )
(s aO bO* cin* )
(s aO bO cin ) )):

# Transformed expression
(o suml

(P
(s al* bl*

(p
(s bO cin )
(s aO cin )
(s aO bO ) ) )

(s al* bl
(p bO* cin* )
(p aO* cin* )
(p aO* bO* ) )

(s al bl*
(p bO* cin* )
(p aO* cin* )
(p aO* bO* ) )

(s al bl

(P
(s bO cin )
(s aO cin )
(s aO bO ) ) ) )):

# Transformed expression
(o coutl

(s bl cin )
(s al

(P
(s bO cin )
(s aO cin )
(s aO bO ) ) )

(s al bl ) )):

Figure 4.12: Domino Target Technology, 2-Bit Parallel Adder

For comparison. Figure 4.13 shows the same function expressed in NAND gates only. Such

a transformation might be useful if the circuit were built using bipolar devices.



§4.3.2 115

tfNORDER - cin aO bO al bl
#OUTORDER - sumO suml coutl

# Transformed expression
(o sumO
(s*
(s* aO* bO* cin )
(s* a0» bO cin* )
(s* aO bO* cin* )
(s* aO bO cin ) )):

# Transformed expression
(o suml
(s*
(s* al* bl*
(s*
(s* bO cin )
(s* aO cin )
(s* aO bO ) ) )

(s* al* bl
(s* bO cin )
(s* aO cin )
(s* aO bO ) )

(s* al bl*
(s* bO cin )
(s* aO cin )
(s* aO bO ) )

(s* al bl
(s*
(s* bO cin )
(s* aO cin )
(s* aO bO ) ) ) )):

# Transformed expression
(o coutl
(s*
(s* bl cin )
(s*al
(s*
(s* bO cin )
(s* aO cin )
(s* aO bO ) ) )

(s* al bl ) )):

Figure 4.13: NAND Technology. 2-Bit Parallel Adder

The example chosen to illustrate the steps that MGMG goes through through is a sim

ple one. For more complicated circuits MGMG also performs compression of "even-

function" gates. The AND function is even: if inputs to such a function are asserted high

the output is asserted high. In contrast, the opposite happens with a NAND gate. As a



§4.3.2 116

consequence, one AND gate feeding another can be collapsed into a single, large .AND gate.

However, ahierarchy of NAND gates cannot be merged. This collapsing or compression of

even gates is performed automatically by MGMG. The gales may be re-fragmented later to

correct charge sharing problems, if they exist.

4.4. Alternate Transformation into Target Technology

Much of the gain in Boolean minimization of logic comes from the way in which the

designer expresses his equations initially. The idea behind MGMG is to preserve the

designer's intent. If the equations have been machine-generated, however. Boolean minimi

zation at this stage may be beneficial. If the urget gates are constrained to two-level logic,

one can make use of well-known, fast minimization heuristics such as those employed in

ESPRESSO [rude85]. The translation program EQNTOTT [cmel8l] is first invoked to

translate the multi-level logic into a two-level personality matrix. ESPRESSO is then run

on the matrix and it attempts to minimize the functions by more general applications of

the covering and merging operations mentioned above. Normally ESPRESSO attempts to

reduce the number of cubes. However, in the MAMBO synthesis pipeline, literal count is

sometimes a better optimization parameter since it maps directly into actual device count.

ESPRESSO has an option to perform this type of optimization as well. The results from the

two differing approaches are contrasted in Chapter 8. A third possibility, which MGMG

implements, is to perform two-level minimization while attempting to preserve the origi

nal form of each function. This means that, even though a multi-level expression is

expanded to two levels, the top level will remain consunt. whether it is AND or OR. By

contrast, since ESPRESSO is more tuned to PLA implementations, the top-level is always

OR— which may not give a circuit configuration efficient in area or speed.

4.5. Summary

The MAMBO synthesis package was introduced in this chapter. The MAMBO package

addresses four major areas. These are: 1) Input transformation of Boolean equations and



§4.5 117

logic minimization: 2) Electrical design, in which delay optimization and circuit partition

ing issues are addressed: 3) Topological design which attempts to reduce circuit area: and

4) Physical design which considers the mask-level construction of the circuit. The MGMG

program, which transforms Boolean equations into a urget technology, was described in

deuil in this chapter. It is assumed the equations have been logic-optimized. MGMG

transforms the input into a canonical form. This canonical form can be translated into

gatesets for implemenution in NAND-only. NOR-only. or other technologies. In MAMBO

the translation is into AND-OR form with inversions pushed to the leaf-level. This form is

suiuble for implemenution in Domino CMOS.



118

CHAPTER 5

Delay Optimization and Partitioning of Dynamic Meshes

Algorithms for optimization of delay in multi-level combinational circuits are

explored in this chapter. The electrical constraints of charge redistribution, series chain

length, input signal type and output buffer size direct the partitioning of complex func

tions into a simpler set. Physical factors, such as those limiting the number of logic levels

in any given gau. impose additional constraints on delay optimization. The optimization

algorithms are implemented in the MOSMESH tool. A simple two-transistor model is

derived which allows the modeling of complex meshes of charged and discharged devices.

The model is an accurate predictor of transient delay in the Domino domain and does not

require as much compuutional effort to evaluate as the full mesh it replaces.

The MIMIC tool is also described. MIMIC traverses the optimized circuit to determine

whether any of the partitioned clusters are redundant. MIMIC removes duplicate gates

from the network so long as they do not compromise circuit speed.

5.1. Partitioning of Transformed Gates— MOSMESH

The output from MGMG or ESPRESSO may be written to a temporary file or may be

piped directly to MOSMESH. MOSMESH reads the LlSP-like set of expressions and produces

a partitioned set of gates in the same synux. A partition or cluster of devices which make

up a single, complex Domino circuit is considered a legal gate if it meets several criteria.

First, the gate must not have a charge redistribution problem, even under worst-case con

ditions. Second, at the user's option, the number of devices allowed in series may be con

strained further. Third, the depth of each partition or cluster may be limited at the user's

request. Currently the maximum partition depth allowed is two. This limiution is placed

by the automated layout section of the MAMBO pipeline which cannot handle more com-



§5.1 119

plex clusters efficiently. However. MOSMESH itself places no restriction on gau complexity

and if a different layout technique is chosen this optional constraint can be removed.

53. The Charge Sharing Criterion in MOSMESH

In Chapter 2 the problem of charging sharing and redistribution in dynamic circuits

was examined. In the MOSMESH program the goal is to determine whether or not a given

circuit configuration is prone to this charge sharing problem. The criterion for charge shar

ing was denned by Equation 2.6. MOSMESH makes reference to a technology file provided

by the user to obuin process-dependent quantities in the calculation of charge redistribu

tion. A sample technology file for a 3u p-well CMOS process is shown in Figure 5.1.

Capacitances are given in F/M or F/M2. lengths in meters, and areas in square meters.

While it is possible for the program to automatically calculate the inverter switching

threshold Vm from more fundamental values, instead the threshold voluge has been

made a command line option. By this method the user may elect how optimistic or conser

vative a specification he wishes to design to. As MOSMESH tries each new cluster arrange

ment it solves Equation 2.6. This calculation is computationally simple, the only values

which must be freshly calculated are the number of devices contributing to the head and

middle capaciunces.

53. Data Structure for Gate Partitioning

After being placed in a LlSP-like syntax by MGMG it is a simple task to build a tree

dau structure whose atomic elements are dau-nodes and whose inter-nodal links reflect

the electrical connectivity of the circuit. A node in the dau structure in this case holds a

logically grouped set of transistors. The node dau structure is shown in Figure 5.2. For

the purposes of the presenution here many of the fields can be neglected, others are self-

explanatory. Briefly, the important fields are value which is the number of devices that

this node covers: top which declares this node to be an output node, that is the top node in

a newly-formed cluster: and seen which tells the program whether this node has been



§5.3

nchan

Cgso 1.3e-10

Cgdo 1.3e-10

Cgbo 4.1e-10

Cj 6.0e-4

Cjsw 4.0e-10

Tox 5.5e-&

pchan
Cgso 1.3e-10

Cgdo 1.3e-10

Cgbo 4.1e-10

Cj 4.1e-4

Cjsw 2.5e-10

Tox 5.5e-8

inverter

Pwidth 16.0e-6

Plength 3.0e-6

Nwidth 8.0e-6

Nlength 3.0e-6

pullup
Width 7.0e-6

Area 21.0e-12

Perimeter 20.0e-6

core

Width 4.0e-6

Area 12.0e-12

Perimeter 14.0e-6

On Resist 5.0e+3

Figure 5.1: Technology File with Process-Dependent Parameters

120

examined yet. Paihhead. paihiail, and middle represent the number of source/drain

regions at the head. tail, and middle of a cluster, respectively. These values are only valid

when top is TRUE. Peer and kid represent the next node on this level and one level down,

respectively. The dau structure is traversed using these pointers.



§5.3

struct node {
int id:

char type:
int value:

top:
crit:

seen:

partition:
double delay:
int pathhead:

pathuil:
parallel:
middle:

depth:
lasthi:

lastlo:

next_putput:
char "output:
signal *ext:
node *peer:
node *kid:

int

int

int

int

int

int

int

int

int

int

int

/* unique id for tracing
/* seriesis) or paralleUp)
/* number of FET* this branch
/* Boolean, T if node is head
/* Boolean, T if node on cpath
/* Boolean, T if node marked
/* # o/ levels to expand gate
/* valid delay to here if head
/* # edges incident wc paihhead
/* # edges incident wc paihiail
/* # parallel children
/* # S/D jets - ph,pt wc path
/* depth in mesh from Root (—1)
/* node number closest to Vdd
/* node number closest to GND
/* node # this sub-cluster drives
/* ptr to name this svb-c drives
/* ptr to external sig l-list
/* next, this level
/* to lower level

Figure 5.2: Node Data Structure

*/

*/

•/

•/

»/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

V

*/

*/

*/

•/

121

The input expression of a small series-parallel circuit is shown in Figure 5.3a. Some

of the steps in the transformation of this single gau into its final form, which is a circuit

made up of two clusters, are shown in Figure 5.3b.

(o out
(s a b c d e

(p f g h i )))

Figure 53a: Input Expression of a Simple Series-Parallel Circuit



§5.3

G H I

READ-IN

SPLIT NODE

B C D E

B C D E 4- G H I

GETHESH

REORDER SORT DELAY

Figure 53b: Steps in Transformation of Example in 53a

122

The noution s5 denotes a series node with 5 external signals: p4 denotes a parallel node

with 4 atuched devices. An external signal, as defined in Chapter 2. is a signal which

comes from outside the module and becomes suble during the precharge period. A module

is a collection of Domino clusters. Internal signals are generated within the logic of the



§5-3 123

module and stabilize during the evaluation period of the module. MOSMESH automatically

fragments circuit nodes when it detects a charge sharing problem. In addition, in this case,

the user has asked the program to limit the number of devices in a series chain to four.

The user may limit partition depth, which is a measure of the layout complexity of the

circuit. A simple series or parallel circuit has a partition depth of one. a series-parallel or

parallel-series circuit has a depth of two. and so forth. In this example partition depth has

not been limited, but it cannot exceed two since that is the depth of the original circuit.

The transformation steps are now examined.

5.4. The Partitioning Algorithm

The top-level of the partitioning algorithm appears in Figure 5.4. After reading in

the expression of Figure 53a the dau structure contains two dau-nodes as shown in

Frame 0 of Figure 5.3b. The first step is to separate internal and external signals by plac

ing them in separate dau-nodes. Procedure geimeshi) reads in the expression and performs

internal/external signal separation. This is shown graphically in Frame 1 of Figure 5.3b.

The presence of an internal signal is indicated by a non-nil kid pointer on a data-node.

Also in Frame 1 of Figure 5.3b dau-node 0 has been marked H meaning it is a top or head

data-node. The root data-node is always a head dau-node. Procedure split jtodei) frag

ments the s5 dau-node as shown in Frame 2 of Figure 5.3b. Splitjioded breaks a single

# data—node devices
data-node into n pieces where n is

max # allowed

may get an odd remnant. Fragmenting dau-nodes to meet the series restriction is not

enough, however. From head dau-node 0 it still appears that the series length is six. Pro

cedure split JevelO ullies the number of series devices per level and may create new levels

if the series restriction has not been met. This is the case here, and the result is shown in

Frame 3 of Figure 5.3b. Now no level has more than four devices in series. However,

from data-node 0 the circuit connectivity has not changed, it has only been fragmented.

By marking dau-node 2 as top the topology of the circuit does change. A second cluster

The last allocated dau-node



§5.4

mosmesh ()
/•

• Top level of partitioning algorithm.

{
while (TRUE) {

/•

* read in and build data structure
V

if (getmeshO) break; /• TRUE if EOF •/

/•

* construct initid mesh subject to chain restrictions
•/

split_node (chain);
iplit_level (chain);
clear mark field;

/•

* make the list of partitioned gates
•/

makeheadO;

if (critical path analysis requested) {
sort delay ();

make output mesh;

Figure 5.4: Top-Level of Partitioning Algorithm

124

has been introduced. At this suge a search down the kid and peer pointers from dau-

node 0 terminating in either a leaf dau-node (ie. a data-node whose kid pointer is nil) or a

dau-node with its top field TRUE shows that all clusters are found to satisfy the user's

constraints. Pseudo-code for splitting procedures is listed in Figure 5.5.



§ 5.4 125

split_node 0
/•

* Case 1: When a given node exceeds the length limit it is split
• into N. This is done by creating N—l nodes at the current depth
* and distributing the old elements over them as evenly as
• possible. The last allocated node may get an odd remnant.

{
if (node is NIL) return;

if (node is SERIES and length > chain) {
if (chain is 0)

errorCIntractable charge redistribution problem");

if (parent is PARALLEL or TOP)
add in a level by creating a SERIES parent;

compute number of elments to split node into;
create new nodes and apportion signals;

continue search at end of newly allocated nodes;
}

if (cur_node isnt TOP) /* recursive, breadth first search
split_node (nodes at this level);

split_node (children of this node);

Figure 53a: Node-Splitting Procedure



§5.4

split_level ()
/•

Case 2: The sum of SERIES node elements and the number of PARALLEL
nodes is greater than the length limit but the totd number of nodes
is less than the length limit. By converting nodes with more than 1
element into parent nodes and pushing the elements down one level
the limit restriction is satisfied.
Case 3: As case 2 but the totd number of nodes exceeds the length limit.
A new level is created by binary split. This level is inserted Just
below the current level. Hdf the old nodes are attached to each of
the newly spawned nodes.

7

{
if (node is NIL or length is 0) return;

check to see if all nodes are marked;
if (not all marked)

return;

count the number of devices in the longest series chain;
if (sum > chain) {

if (nodes exist with length > 1) { /* case 2
if (chain is 1)

errorCIntractable charge redistribution problem");

for (all nodes) {
if (node is SERIES and length > 1)

create new node;

}
} else { /» case 3

divide elements among two kid nodes (binary split);
increment node depth;
split_level(); f* recursive call until case 3 satisfied

)

if (node isnt TOP) /• recursive, breadth first search
splii_level (nodes at this level);

return (split_level (children of this node));

Figure 5.5b: Level-Splitting Procedure

126

The cluster of Frame 3 in Figure 5.3b with the top data-node 0 is shown in Figure 5.6a.

This configuration may have a charge sharing problem due to the large amount of parasitic

capaciunce represented by the parallel dau-nodes.



§5.4 127

Figure 5.6: Schematic of Frame 3 of Figure 53b

If such a situation is detected, procedure makeheadi) tries to remedy the problem by cal

ling procedure reorderO. Makeheadi) and associated procedures are shown in Figure 5.7.

Reorder() attempts to increase the amount of precharge capaciunce and/or decrease the

amount of parasitic capaciunce. If it is not possible to reorder the current cluster to get

rid of a CR problem then the current cluster is pruned of dau-nodes. This is accomplished

by first calling the splitting procedures which mark likely candidates for deletion. The

procedure unmarkjiodei) performs the mesh alteration by removing the dau-nodes

furthest from the root dau-node first. The result of reordering is shown in Frame 4 of

Figure 5.3b. Figure 5.6b shows the circuit schematic.



§5.4

makehead 0

^ Traverses the node list and creates alist of ^^^"J*™^*! *• the top node in each partition A partition is a sub-cluster a.jpxup of
• gates sharing a singU prech/buffer circuit and connecting to other
• V^MonTln a hierlrchLl manner. Presently, a partition is limited by• a^th^ series length. Apartition will be rejected if it P^iUaUy causes
• Tcharge redlstribJion problem. It is possible to coalesce rodes or to
• fragment them.
•/

{

if (node, is NIL) return;

if (node is top) {
clear mark field;
if (chain limit unrestricted) {

limit by partition level;
} else {

mark all nodes within chain limit;

if (no partition restrictions) {
split_nodeO;
split_levelO;

}
chgshareO;

makehead (nodes at this level); /• recursive, breadth first search
makehead (children of his node);

}
chgshare ()
f
• Checks far charge redistributian problem and attempts to rearrange
• circuit if problem exists. If no difficulty calls markheadf). else
• iterates until a solution is found or the problem becomes intractable.
•/

chain length • critpathO;
white" (TRUE) { /vx ,

while (node fails ratiochkO) {
if (can't reorderO)

break;
find new critpathO;

if (charge sharing problem) {
if (no nodes to unmark) {

if (chain_ length is 1)
errorCIntractable charge redistribution problem ;;

split_node (chain);
split"level (chain);

} else
unmark_node( );

find new critpathO;
I

I

new head nodes marked by markheadO;

Figure 5.7: Head and Charge Sharing Procedures

128



§5.4 "9

reorder 0
/•
• Searches from the current node visiting all marked nodes. Each time a
• parent node is SERIES its children may be rearranged if it is possible to
• bring a' more parallel piece to the pathhead.
•/

if (node is NIL or not marked) retorn(FALSE);

if (kid isnt NIL and node is SERIES) {
for (all nodes) {

if (first node in list) {
keep track of element count in node and its children;

} else {
if (no elements in node but a kid exists

or this node is PARALLEL and marked and has largest element count) {

alter pointers to insert this node as first in chain;
return (TRUE);

}
}

}
}

if (reorder (nodes at this level)) retura(TRUE); f recursive, breadth first search •/
return (reorder (children of this node));

ratiochk 0
/•
* Checks the capacitance ratio between the
* precharged node and the worstcase path to pound.
•/

ratio » Prech Capacitance / (Prech Capacitance ♦ Parasitic Capacitance);

return (ratio >- Vth/Vdd);
}

marIr head O

• From the tree rooted at the current node proceeds by BFS to traverse tree.
• Marks as head those marked nodes with unmarked kids.
•/

if (node is NIL or not marked) return;

if (node isnt TOP and kid isnt NIL and kid isnt marked) {
node-Mop - TRUE; done - TRUE;

}

if (node isnt TOP) markhead (nodes at this level); /• recursive, breadth first search •/
if (not done) markhead (children of this node);

)

Figure 5.7, continued: Reordering, Ratioing, and Marking Procedures



§5.4 130

unmark_node 0
/» ~
• Tries to find most likely candidate from set of nodes eligible to unmark.
• The idea is to reduce charge redistribution. Nodes are not removed if they
• ore less than unmark_depth level of the tree.
•/

get most distant children of current node;

if (depth of parent < unmark_depth) return (FALSE);

for (all children of selected parent node)
set marked field to FALSE;

return (TRUE);
}

Figure 5.7, continued: Unmarking Procedure

The final suge in partitioning is a call to procedure sort_delayi) which looks up the

transient delay times for signals to reach each of a cluster's inputs. Inputs are then sorted

according to their delay limes, with the fastest switching FETs being placed closest to the

cluster's output. The justification for this is as follows: For the cluster's output buffer to

switch the charge stored on the inverter input must be drained away. By placing the

fastest signals closest to the buffer input this charge redistribution may be expedited. Note

that the buffer will not switch until a path exists between precharge node and GND.

assuming the circuit is properly designed. However, when slower changing inputs finally

do switch the RC lime constant of the shortened path will be less.

There is one added consideration in this process. Sorting input signals according to

switching delay will only be performed if the output node will switch more rapidly. It is

possible that the inputs which switch fastest are part of a parallel block, for example. By

placing this parallel block at the top of the cluster the amount of precharge capaciunce is

increased. The increased precharge capaciunce slows down the switching of the output

inverter. Son_delay() checks for this condition by calculating precharge and parasitic capa-

ciunces and by referring to the user-provided technology file to obuin process-dependent

quantities. The RC time consunts of different legal configurations are compared, and the

circuit with the smallest time consunl is selected. The final result for the example of Fig-



fS.4 131

ure 5.3 is shown in Frame 5 of Figure 5.3b and schematically in Figure 5.6c. The pseudo

code in Figure 5.8 lists the sort_delay() algorithm.

sort delay ()
/• "
• Traverses the function tree is BFS fashion AU children of the current node
• are first sorted and then their sub—delays are calculated. If the current
• node is TOP and SERIES then the components that make up this cluster may
• be rearranged to give best speed. The rearrangement alg. Is N" 2 where N is
• the number of kids, typically less than 5. Sort order is with fastest gate
• closest to output node and is only done if no CRP exists and additlond
*m precharge capacitance does not slow the gate cluster down

{
if (node is NIL) return;

for (all kids of this node)
sort_delayO;

if (node is TOP and node is SERIES) {
begin bubble sort on this node's kids {

if (sort vector{i].delay > sort vectoHjldelay) {
swap nodes;
find new critpathO;
if (ratiochkO is okay) {

if (TOP) {
/•
* precharge capacitance may have been modified.
* make sure change speeds up gate overall
•/

if (new_delay > old delay) {
/•

* new configuration is slower, so swap back to original state
•/

swap nodes;
find old critpathO;

}
}

} else {
/•

* charge problem exists, set things as they were
•/

swap nodes;
find old critpathO;

}
}

}

Figure 5.8: Delay Sorting Procedure



§ 5.5 132

53. An Example of MOSMESH Partitioning

There are many ways to remedy the charge sharing problem and some of these were

examined in Chapter 2. MOSMESH. as the previous example illustrates, tries to decrease

the parasitic capaciunce or it may increase the precharge capaciunce- but only by moving

around already existent capacitances. However, if the user wishes, he can add a larger

precharge capaciunce by specifying it in the technology file. The effect of a large capaci

unce at the precharge node will be to slow that particular circuit cluster down: however it

may reduce the charge sharing problem and therefore allow more complex clusters to be

built, which in turn will result in a shallower buffer hierarchy and possibly a faster cir

cuit overall.

The sequence of Figures 5.10-5.12 shows the function of Figure 5.9 in various

configurations.

( o fO ( p (s 1 2 3 4 )
(s(sl )

(p(sl 2 )
(s
(p(sl)

(s(p(sl2 )
(si 23 ))

(p(sl 2 )(sl 2)(sl ))))
(si )))

(sl2)))):

Figure 5.9: 8-Level Parallel/Serial Function



§5.5

SINGLE, COMPLEX DOMINO GfiTE

XPKECH

PARTITION DEPTH: 8

CHAIN LENGTH: 9

BUFFER HIERARCHY: I

Figure 5.10a: Monolithic Domino Gate

133



§5.5 134

Partition Depth: 8 Chain Length: 9

time(ns)
Figure 5.10bc Transient Analysis of 5.10a

Figure 5.10a shows the function realized as a single, monolithic cluster. This circuit

nas a buffer hierarchy of one but a worst-case series length of nine. In order to make the

vircuit work under worst-case conditions it was necessary to add extra capaciunce to the

^recharge node. Figure 5.10b shows the result of a SP1CE2 simulation of the circuit. At

ume i -0 all external signals begin to switch. External signals were conditioned by driv

ing them through nominal size buffers. The voltage on the precharge node falls, theoutput

buffer switches, and the output signal rises. It was assumed that the output buffer drives

three nominal size inputs. For this example a voluge of 3.0V was chosen as the logic

threshold. Figure 5.10b shows that the voluge on the precharge node begins to fall early

but. because the precharge capaciunce is large, the output voluge does not reach 3.0V

until I5.6fu. In contrast. Figure 5.11a shows the same function this time broken up into



§5.5 135

clusters, each with a partition depth of one. The deepest buffer hierarchy is eight, the long

est series string is four devices. Figure 5.11b shows SPICE2 results of transient simulation.

The waveforms are clean and sharp but that the toul delay is very close to the monolithic

function block. In this case no extra capaciunce was added, but the circuit switches

slowly due to the eight-deep buffer hierarchy.

0^

0H

14 SIMPLE GATES

•̂ ChojF'>>< 0j. PARTITION DEPTH: 1

^ IV^^^H? CHAIN LENGTH: 4
/ H5 BUFFER HIERARCHY: 8

Figure 5.1 la: Set of Single Partition Domino Gates

0HI

I «< •< and
0<



§5.5 136

Partition Depth: 1 Chain Length: 4

"^

\
3

1
Wl5.3ns 2.9volts

k
10 20 30 40

time(ns)
Figure 5.11b: Transient Analysis of 5.11a

Figure 5.12a represents a compromise between the previous two extremes. Here the

complexity of each cluster is commensurate with the precharge capaciunce. No extra capa

ciunce was required. The associated simulation in Figure 5.12b shows that the function

switches in &.9ns a speedup of more than 40% over the previous solutions. This solution

was obtained bv MOMSESH.



§5.5

4 GfiTE CLUSTERS

<¥>vl

PARTITION DEPTH: 3

CHAIN LENGTH: 4

BUFFER HIERARCHY: 3

Figure 5.12a: 4-Cluster Domino Function

137



§5.5

Partition Depth: 3 Chain Length: 4

* \ /
1 \M1.9ns 3.0volts

138

10 20 30 40

time (ns)
Figure 5.12b: Transient Analysis of 5.12a

While such large speed improvements will not be obuined in all cases, this response

argues for matching parasitic and precharge capaciunces. rather than adding "dummy"

capaciunce or over-partitioning a circuit. In Figure 5.12b there is an initial voluge drop at

the output node. This is due to charge redistribution. The buffer does not switch, but

when the other inputs become valid it does switch faster than other configurations. In fact

it can be seen that as the parasitic capaciunce is increased with respect to the precharge

capaciunce or. more exactly, as the Ihs of Equation 2.6 approaches the rhs the gate will

switch faster and faster until it finally functions improperly. The idea is to match capaci

unces as closely as possible without causing a CR problem. Another example from a RISC

microprocessor [mari85], which produces a different result, is summarized in Figure 5.13.



§5.5 139

Number

of Ousters

Deepest Buffer
Hierarchy

Worst-case

Delay (ns )
Approx. Prech

Capaciunce (pF)
Critical

Signal

247 16 41.0 0.02 CPIPElloadl

148 9 31.0 0.16 pALUtoMAL

Figure 5.13: Delay in Critical Path of Complex Circuit

In this case, because the functions being generated are complex, a charge sharing problem

still exists, even after topological rearrangement. The first line of Figure 5.13 shows how

breaking complex clusters into smaller ones yields a deep buffer hierarchy and a slow criti

cal path. The second line of the figure shows the result when parasitic and precharge capa

citances are balanced, not by subtracting parasitics but by adding to the precharge value.

The result is individual clusters which switch more slowly but an overall critical path

delay which is faster. Note that the critical signal in the two implemenutions of the cir

cuit is different, produces the designer is able to explicitly specify both the switching

threshold and the amount of capaciunce on the precharge node, he can try several

configurations and choose a high-speed or more conservative design.

The deuiled partitioning sups for the function shown in Figure 5.9. with an inverter

voluge switching threshold of 2.4V for a 3/tx />-well process, are shown in Figures 5.14a-f.

The set of three integers separated by slashes indicates the number of source or drain

parasitics that contribute to the head, middle, and tail of each cluster, respectively.



§5.5 140

R] BEFORE SPLIT CALLS 3 AFTER FIRST PIAKEHEAO

i AFTER FIRST P1ARKHEAD AFTER SECOND MARKHEAD

Figure 5.14: 8-Level Parallel/Serial Partitioning Sequence



§5.5 141

AFTER THIRD HARKHEAO AFTER SORT DELAY

Figure 5.14, continued: 8-Level Parallel/Serial Partitioning Sequence

For the process conditions given and no user restrictions on chain length and partition

depth the end result is the 5-cluster partition shown in Figure 5.15.



§ 5.5 142

# charge tolerance ratio is 2.78374

(ofO

(p
(s d c b a ) 2 )):

(o2
(s a b a 4 )):

(o4

(p x(sba )
(s

(P
(sa)
(s 10 13 ))a))):

(o 10

(p ,(sba)
(s c b a ) )):

(ol3

(P
(sba)
(sba )
(s a ) )):

# 5 clusteKs)
# Longest series string: 4 [urget maximum unrestricted]
# Deepest Partition: 4 [urget maximum unrestricted]
# Deepest Buffer Hierarchy: 4
# Worst Ratioing Problem: 0.505734 [urget minimum: 0.48 (Vth 2.4)]
# Signal :f0: has worst delay of 8.21233ns

Figure 5.15: 8-Level Function; Chain Length and
Partition Depth Unrestricted

5.6. Calculation of Signal Delay in a Partitioned Mesh— MKTBL

After MOSMESH has produced a legally-partitioned circuit the final step is the use of

procedure son_delay() which may alter the order of signals for greater speed. Sort_delay()

does not calculate the delay of a circuit cluster each time it performs an analysis. Instead,

it refers to a pre-calculated uble of delays for a given cluster. This uble is produced by



§5.6 143

another tool, called MKTBL. MKTBL reads a simple file, called a pattern file, and produces

a series of SP1CE2 decks for each pattern (cluster). The tool then invokes SP1CE2 automati

cally, after first identifying the critical path in the cluster. A transient simulation is per

formed and MKTBL reads the SP1CE2 result and computes the delay from input to output.

It summarizes this information and for each cluster, for different sets of input conditions.

MKTBL writes a single line to the output file.

Example input patterns and their corresponding circuit schematics are shown in Fig

ure 5.16.

0 —[T (•(p3)(p2)) 0-|f (s(p2)(p3))

TOP:3 MIDDLE:5 BOTTOM:2 TOP:2 MIDDLE:5 BOTTOM:3
Figure 5.16: MKTBL Patterns and Corresponding Circuit

Each line in the transient delav uble is of the form:

Morph: (head middle) Buf: (widthp width„ widths,) ...
...Ext: number externalCn slowest signal Time: delay ins)

Morph sunds for morphology: the two integer quantities represent the number of source

and drain nodes which contribute to the precharge and the parasitic capaciunce. respec

tively. Buf gives information about the size of the output buffer as well as the pullup

clock device and the core devices. The user may provide different sizes of output buffers or

core devices for transient evaluation. Ext is the number of inputs which are driven



§5.6 144

externally. Exurnal inputs switch at time t =0 and are assumed to be closest to the out

put buffer. Of the remaining, internally driven signals Cr marks the slowest, or critical

one. Finally. Time is the delay time in nanoseconds for the particular circuit

configuration. To run MKTBL the user must provide two files in addition to the pattern

file and the technology file. First, the user must supply a model file. This file conuins the

SP1CE2 models to be used to evaluate n - and p-channel devices. The models may be any

valid SPICE2 model. All transient analyses presented here were run with the level =2

model. Second, the user constructs a subckts file which holds both a single transistor core

device subcircuit and the inverter/pullup encapsulated as a subcircuit. The user may pro

vide several sizes of both core subcircuit and buffer subcircuit. If multiple subcircuits are

found then MKTBL will run each pattern in the pattern file for all possible combinations

of subcircuits. Figure 5.17 lists the transient delay Uble for the two patterns given in Fig

ure 5.16.

Morph:(3 8
Morph:(3 8
Morph:(3 8
Morph:(3 8
Morph:(3 8
Morph:(3 8
Morph:(3 8
Morph:(3 8

Morph:(2 7
Morph:(2 7
Morph:(2 7
Morph:(2 7
Morph:(2 7
Morph:(2 7
Morph:(2 7
Morph:(2 7

Buf:(8 4 4) Ext:2 Cr:0 time:3.08844e-09
Buf:(8 4 4) Ext:l Cr:l time:2.71408e-09
Buf:(8 4 4) Ext:0 Cr:2 time:1.8717Se-09
Buf:(8 4 4) Ext:0 Cr:l time:1.42817e-09
Buf:(16 8 4) Ext:2 Cr:0 time:3.23581e-09
Buf:(16 8 4) Ext:l Cr:l time:2.88215e-09
Buf:(l6 8 4) ExtrO Cr:2 time:2.05l6e-09
Buf:(16 8 4) ExtrO Cr:l time:1.6788le-09

Buf:(8 4 4) Ext:2 Cr:0 time:3.12969e-09
Buf:(8 4 4) Ext:l Cr:l time:2.58566e-09
Buf:(8 4 4) ExtrO Cr:2 time:1.7723e-09
Buf:(8 4 4) Ext:0 Cr:l time:1.32752e-09
Buf:(l6 8 4) Ext:2 Cr:0 time:3.12352e-09
Buf:(16 8 4) Extrl Cr:l time:2.7229e-09
Buf:(16 8 4) ExtrO Cr:2 time:1.92684e-09
Buf:(16 8 4) Ext:0 Cr:l time:1.55663e-09

Figure 5.17: Transient DelayTable Created by MKTBL



§ 5.6.1 145

5.6.1. Flexibility and Accuracy of MKTBL Transient Model

Since each entry in the transient delay uble represents a separate transient analysis

of SPICE2 it can be seen that for many different patterns in different configurations such a

Uble is computationally expensive to generate. However the transient analyses are per

formed on relatively simple circuits and it is anticipated that several designers will share a

common transient delay uble if they are designing in the same process. The Uble needs to

be regenerated only when there are major changes in the process. In everyday use a

designer or synthesis tool will occasionally need to append a new pattern to the delay

table as a less common cluster type is encountered. The current pattern file contains

around 70 different morphologies and has been found to cover a wide variety of combina

tional circuits. Note also that MKTBL handles construction and interpretation of the

SPICE2 simulation automatically so that the designer may start up the program and let it

run as a background job. Anomalies encountered during execution of any SP1CE2 run are

written to a logfile for later reference.

The transient delay time that MKTBL computes is based on conditioned inputs and an

output with a fanout of three. The delay lime is Uken to be the difference between the

50% level of the rising input signal and the 50*& level of the rising output signal (Domino

functions are even). The compulation of worst-case path delay in MOSMESH is obtained

by searching recursively from the -function outpui to ihe inputs and summing the cluster

delays. This superposition approach is valid because each cluster is buffered and because

the threshold switching voluge at the output is uken to be equal to the threshold switch

ing voluge of the input.

The accuracy of the transient analysis of each cluster must also be justified. The pai-

Urn which describes each circuit cluster type is reduced to a more general morphology. In

general, it is possible lo construct multiple circuits which have the same morphology. It is

clear that different circuits with identical morphologies will have different transient

responses, but Domino circuits represent a restricted class of dynamic circuits. N-channel

Domino circuits are always precharged high: if they make a transition it must therefore be



§5.6.1 146

from a logic high to low. In fact, a simple RC model can be substituted for each FET. If

such a model were found to be accurate, then the aggregation of parasitic capaciunces

discharging through a MOSFET. which is the MKTBL model, should be still more accurate.

In practice a simple RC model was not found to give sufficiently accurate results. However,

a model which aggregated capaciunces and collapsed all MOSFETs into two series devices

was found to give reasonable results. Therefore, the MKTBL model, which does not alter

the number of MOSFETs. is accurate. The next section presents the derivation of a simple

model for represenution of a Domino cluster.

5.7. A Simple MOS Model for an Arbitrary Mesh
of Mixed Precharged and Discharged MOS Devices

Delay calculations are process- and design-style-dependeni. The transient delay

model needed here must cover Domino logic circuits. Domino logic is built entirely out of

7i - or p -core devices and uses a single clock. This core of the gate may comprise an arbi

trarily complex AND-OR logic function. The devices may or may not be precharged. on a

device-by-device basis. The problem, therefore, is to construct a model which is flexible

enough to handle these logic conditions. The model should be simple and its accuracy

comparable to the other process-dependent procedures in the package. In th* following

presenution a MOSFET mesh is defined to be an arbitrary configuration of a graphical

represenution of FETs which may be cyclic Specifically, there may be more than one path

to ground. In this way a mesh differs from a tree which has no cycles: from any given

node there is only a single ground path. This definition of mesh is consistent with that

given in [horo84].

5.7.1. Approach to Solution

Two possible approaches were considered. The firsi approach is to simulate, via

SPICE2. those extreme cases of MOS meshes which bracket the useful Domino

configurations. For a particular layout method, termed the zero-deep model, it is possible



§5.7.1 147

to construct a set of equations which can accurately predict Domino circuit delay. The

zero-deep model does not allow for arbitrary Domino mesh circuits. Instead it constrains

the circuit such that an inverting buffer is placed between each NAND or NOR function.

This constraint strongly limits the set of circuits that can be constructed because complex

Domino functions, for example an AND/OR gate, cannot be built. By simulating a range of

AND and OR gates, and by varying the ratio of external to internal gates, it is possible to

completely characterize this model. A set of four equations is used: one equation each to

predict delay versus fan-in for AND and OR gates and two more equations to predict the

effect the ratio of internal to external signals has on gate delay. Quadratic equations,

created by the method of least-squares, give a good fit to the dau from the simulations.

The fit from linear formulae was not accurate enough for critical path prediction. In this

approach the nature of the driving gates and the loading of the driven gates may be

ignored. This is because each AND or OR gate is buffered. The buffer is of a fixed size and

its gate capaciunce is considered in the circuit simulations. All inputs are assumed to be

driven by these buffers. Figure 5.18 lists results of this approach, not compensated, how

ever, for different ratios of interna] to external inputs.

Comparison of Simulated Results with Zero—Deep Model

Circuit Model SP1CE2
Delu Critpath

Suges
Notes

(%) (ns)

l.n 13.20 15.0 -12.07f l.S 2

2.n 18.90 20.5 - 7.87c 1.6 3

liming.n 28.87 28.2 •f 2.3% 0.7 4

ao.n 35.64 27.5 +20.6% 7.1 4 (23.0 reordered)

tpla.n 67.34 S5.5 +19.17c 12.S 6 (from SOAR)
cla.n 91.18 93.5 - 2.57c 2.3 8 (8-bit ripple-carry)

Figure 5.18: Comparison of Simulated Results versus Zero—Deep Model

While this approach is feasible for the zero-deep model, it is too difficult to apply to

the more general arbitrary mesh problem. In general, the number of bracketing cases to be

considered becomes too large, and the method proves unworkable. The general problem is

to simulate an arbitrary mesh of devices under various input loads and output drive

requirements. However, for the simulation of regular structures, one can assume inputs



§5.7.1 148

and outputs are well buffered. Therefore one can consider the more restricted case of

modeling meshes with conditioned inputs and outputs.

This formulation still proves too complex to solve directly. Instead a simplifying

sxep is used. For the arbitrarily complex logic between two inverting buffers a two-

transistor (2-7 ) equivalent MOS circuit is substituted. It is then possible to simulate the

usable range of equivalent gates and produce an equation which accurauly predicts delay

of the original complex mesh without having to do any additional simulation. The crux of

this method lies in the construction of the 2-7 circuit. The derivation of the model is now

examined.

5.7.2. Derivation of 2—T Model from an Arbitrary Mesh

5.7.2.1. Difference between RC and MOS models of MOSFETs

Recently there have been a number of papers published on the modeling of RC-

networks [horo84] lrube83] [wyat83] [toku83] [lin84]. The goal of this research has been

to accurately characterize gau delays and signal waveforms so that complex sets of gates

could be evaluated quickly. Typically the goal is to produce results comparable to direct

simulation programs like SP1CE2 but with at least an order of magnitude reduction in com-

puution time.

For the most part these papers confine themselves to modeling RC trees and not MOS

devices. The paper by Tokuda etjd. does consider the modeling of MOS inverters and

transmission gates but not more complex circuits. If it were possible to model a MOS dev

ice by an equivalent RC network then the results of the RC modeling papers could be

exploited. Unfortunately due to the inherently non-linear nature of a transistor. FETs

cannot besimply translated into RC equivalents. Figure 5.19 shows two curves.



§5.7.2.1 149

Figure 5.19: Comparison of Two MOSFET Chains

Curve A is the waveform produced by circuit 1. Curve B is the waveform produced by cir

cuit 2. It can be seen that the shape of the two curves does not match. Circuit 1 was

simulated by SPICE2 with no intrinsic source/drain capaciunce specified. A separate capa

ciunce element was explicitly added to all source and drain nodes to make the comparison

more relevant. Circuit 2 was modeled in a similar fashion. The difference between the

two circuits is that the source/drain capaciunce of circuit 1 is twice that of circuit 2 and

the MOSFETs of circuit 1 are twice as wide as those of circuit 2. If the MOS device behaved

approximately linearly as VG5 varied, then one would expect the two circuits to exhibit

similar waveforms since their RC time consunts are identical. The fact that this is not the

case shows that a simple RC model cannot supplant a MOS device for the purpose of this



§ 5.7.2.1 150

work.

For reference. Figure 5.20 shows two curves from RC Circuits 3 and 4.

Figure 5.20: Comparison of Two RC Chains

Circuit 4 is related to Circuit 3 in the way Circuit 2 is related to Circuit 1. It can be seen

in this case that the shapes of the two curves match quite closely.

Instead of approximating the behavior of a MOS device by a linear or nonlinear RC

network, a MOSFET model is used. An arbitrary mesh is collapsed into two equivalent

MOS devices. This equivalent circuit can then be simulated, for example by SP1CE2. The

MOS model may be as simple or deuiled as the designer wishes. Simulation lime is greater

than for an RC model, however accuracy is better. It is also possible to store results of



§5.7.2.1 151

various equivalent devices and interpolate between them. In such cases no simulation is

required.

5.7.2.2. Determination of an Equivalent Circuit

An example of a mesh of devices representing a complex Domino gate is shown in

Figure 5.21. This is the n -channel core of the 8-level parallel/serial function of Figure

5.9.

CRITICAL
PATH

TO PRECH

A PULLUP

TO PRECH

PULLDOUN

Figure 5.21: Complex Mesh in Domino CMOS

Even though this gate conuins 21 devices, only 9 directly participate in the calculation of

an equivalent circuit. These devices are connected by the heavy black line. This line indi

cates the worst-case path through the Domino gate. In a worst-case model all but a single



§ 5.7.2.2
152

gate in a parallel OR configuration is on and the longest series AND path is uken so that

from output to ground the maximum number of devices is traversed. It is assumed that

all devices are of the same length and width. The equivalent circuit devices have the stan

dard width. The sum of the length of the 2-7 devices is proportional to the sum of dev

ice lengths along the worst-case path. Source and drain parasitics are calculated by sum

ming the area and perimeter of nodes along the critical path. Wide deviations in the

number of FETs tied to a given node will cause worse agreement between the equivalent

and actual circuit: conversely if the distribution of FETs along the critical path is uniform,

the equivalent model will be in good agreement with the actual circuit. Figure 5.22 com

pares simulations of the actual and equivalent circuit of Figure 5.21.

100 — — („)

Figure 5.22: Comparison of Actual- and Equivalent-Circuit Simulations

In this simulation all nodes were precharged: this corresponds to the external input case

for Domino devices.

120
200



§ 5.7.2.2 153

In general, a Domino gate will have some of its gates charged and some discharged.

Whether or not a gate's source/drain nodes are charged depends on the gates driving sig

nal. Internal signals— signals which come from other Domino circuits— must hold their

gates off during precharge. Therefore all source/drain nodes below this gate will not be

charged. Gates driven by external, or non-Domino signals, may be either on or off during

precharge. Externally driven gates just below the clocked precharge gate will therefore be

charged high, if the external signal is high. For reasons of speed, and to reduce charge

sharing problems, it is advantageous to locate external inputs close to the Domino circuit

output and place the internally driven devices below these inputs.

The mix of precharged and discharged devices is modeled in the 2—7 case by lumping

precharged devices into the proximal FET (the transistor closer to the Domino output node)

and the discharged devices into the distd FET (further from the Domino output). The

precharge/discharge ratio affects the length and source/drain parasitic calculation of the

equivalent devices. Consider the circuit in Figure 5.23.

*

H^^ThC
H

3H <

Figure 5.23: Complex Domino Gate



§5.7.2.2 154

Assume all inputs are internal. In this case the precharged node (starred node) consists of

the parasitic capaciunces contributed by the three n-core devices 1. 4. 6 (as well as the

p-channel pullup and the output buffer). Discharged parasitic capaciunces are contributed

by the source nodes of FETs 1. 2, 3. 4. and 5 and by the drain nodes of devices 2 and 3.

The 2—7 model for this circuit has a proximal FET of length equal to the length of FET 1.

The drain capaciunce is three times a single FET drain, the source capaciunce is that of a

single FET. The disul FET length is given by:

Ldinel = 0.9x£L, (5.1)
i

where i = 1 ,N , - 1. The multiplication factor of 0.9 was determinedwucjc •• wc jntenul devices *

empirically by simulation. For the example shown the worst-case length is three so

I>dutai s1.8xIOT. The discharged parasitics are distributed equally between source and

drain. Thus CSOttree = Cdrain = Cditehar^ I 2. In the example the parasitic is three times the

single FET parasitic.

The length and parasitic components of the 2-7 devices are varied to correspond

with the mixture of precharged and discharged nodes. It is advanugeous to place all

external devices in a cluster closer to the Domino output node than the internal devices.

The 2-7 model, however, does not require this assumption for accurate modeling. If

inurnal and external devices are inurmixed. the proximal device models devices and capa

ciunces from the Domino output until the first internal node is reached. The distal FET

models the remainder of the devices. Thus the proximal device models at most one inter

nal device (if all devices are internal, as in the Figure 5.23 case) while the disul FET may

model any mix of inurnal and external devices.

5.73. Limitations to the 2—T Model

Dynamic circuits are prone to the problem of charge redistribution described in

Chapter 2. The 2-7 model assumes that no charge redistribution problem exists. For rea

sons of automated layout and compaction it is often more convenient to deal with circuits



§ 5.7.3 155

which have no CR problem rather than to attempt to correct the problem. Therefore the

2—7 model is useful once it has been asceruined that the circuit is CR-free. This can be

determined by summing up capaciunces on the Domino output node and on the parasitic

nodes and comparing the two values as explained in Chapter 2.

A larger example, which does exhibit charge redistribution effects but which func

tions properly, is now examined. The circuit of Figure 5.21 has a CR problem. The circuit

of Figure 5.24 has no CR problem: it represents the optimal charge sharing partition chosen

by MOSMESH and was shown previously in Figure 5.12a.

Figure 5.24: Partitioned Circuit of Figure 5.21

Figures 5.25a-d show simulation pairs of each of the four sub-functions.



§ 5.7.3 156

-tf
1

HCJ
~S "IL|

J \ H[j

IMS am 04069

120109 110 119
(at)

Figure 5.25a: Simulation Comparison of 2-3 AND/OR Function

120

uu)

Figure 5.25b: Simulation Comparison of 2-2-1 AND/OR Function



§ 5.7.3 157

Figure 5.25c: Simulation Comparison of OR/AND/OR Function

120

Figure 5.25d: Simulation Comparison of 4-4 AND/OR Function

One curve of each pair represents a worst-case SP1CE2 simulation of full circuit, while the



§ 5.7.3 15&

other curve is the result of the 2—7 model simulation. For each set the product of the

RMS error in x and y between the two results is given (in volx-ns). When the RMS error is

less than 0.1volt-ns the simulation results are seen to be nearly identical. Figures 5.26a-b

show the result of a SP1CE2 simulation on the full circuit versus simulation with 2—7

models.

6

•^\ 2-TM

Ftall Simulation

[odel^X

3 \

MO 103 110

(hi)
IIS

Figure 5.26a: Simulation Comparison of Full Circuit:
Input to Last Stage

120



§ 5.7.3 159

120

(n»)

Figure 5.261s Simulation Comparison of Full Circuit:
Output from Last Stage

The actual circuit exhibits a dip at the precharged node before switching. This is due

to charge redistribution. The problem is not serious enough to affect proper circuit opera

tion: in fact, the circuit switches faster because of charge redistribution. The 2—7 model,

which assumes no CR problem, switches more slowly. This example represents an

extreme. A slightly greater charge redistribution effect would have caused improper opera

tion: a circuit which exhibits a smaller effect will agree better with the 2—7 model. The

2—7 model can be adjusted to account for the charge redistribution effect by precharging

"on" devices to one V, below VDD. In this condition any charge redistribution between

precharged and parasitic capaciunces will cause an immediate switching of the output

buffer. Therefore this represents the most sensitive charge sharing case. The simulation

results shown in Figure 5.27 confirm the match between the actual circuit and the model.

The precharge waveforms are in closer agreement and the RMS error at the output node has

decreased by more than an order of magnitude.



§ 5.7.3

6

—^. Pall Simalatiao

i

i

2-TModel-^

3
|

160

MO 109 110

uu)
115 120

Figure 5.27a: Simulation Comparison of Charge-Compensated Model:
Input to Last Stage



um)

Figure 5.27b: Simulation Comparison of Charge-Compensated Model:
Output from Last Stage

161

120

5.8. Elimination of Redundant Clusters— MIMIC

After a collection of Boolean expressions has been processed by the delay optimiza

tion stage of MAMBO. the MIMIC tool is used to reduce the number of gate clusters. MIMIC

reads in the LlSP-like netlist and performs a recursive matching of all inputs of each parti

tioned cluster with every other cluster. MIMIC thus requires O(n2) operations where n is

the number of partitioned clusters.

When substituting one gate for another MIMIC is careful to preserve both input signal

order and primary outputs. It is assumed that the series inputs to each cluster have been

sorted for optimum delay. Therefore, even if two gates have the same inputs in a series

string. MIMIC does not assume they are interchangeable. If two equivalent clusters are

found (ie. with like inputs in the same sequence) then one gate may be deleted. The choice

of gate to delete is based on the output signal. Clusters which produce external signals

Uke precedence over internally used signals. External signals are part of the designer's



§5.8 162

specification. If the mauhing signals are both external or both internal then either signal

may be deleted. The existence of two identical external signals implies the designer has

specified two separate Boolean equations which actually perform the same function.

A circuit from CMOS SOAR before and after processing by MIMIC is shown in Figure

5.28.



§ 5.8 163

# charge tolerance ratio is 9.71276

(o readRFaccessAl
(s
(pCPIPEls<7>CPIPEls<5>» )
(p CPIPEls<7>CPIPEls<5> ) 3 )):

(o3
(p pbusDtoINA DSTvalid* SRClequalDST2*
(s CPIPEls<7>» CPIPEls<5> )
(s CPIPEls<7>» CPIPEls<5>* ) )):

(o readRFaccessBl
(s
(p CPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7>CPIPEls<5>) 11 )):

(o 11
(p pbusDtoINA DSTvalid* SRC2equalDST2* SRC2equall6
(s CPIPEls<7>» CPIPEls<5> )
(s CPIPEls<7>* CPIPEls«3>* ) ));

(o Alzerol

(s CPIPEls<7>* CPIPEls^> )
(s CPIPEls<7>* CPIPEls<5>* ) 18 )):

(ol8
(s pbusDtoINA* SRCls<4> SRCls<3>» SRCls<2>* SRCls<l >* SRCls<D>*
(p CPIPEls<7>CPIPEls<5>» )
(p CPIPEls<7>CPIPEls<5> ) )):

(o Al2eroforce

(s CPIPEls<7>» CPlPEls<5> )
(s CPIPEls<7>* CPlPEls<5>* ) )):

(o busDiobusAa
(p 26 29 32 36 )):

(o26
(s pbusDtoINA* SRCls<4> SRCls<3>* SRCls<2> SRCls<l>* SRCls<D>*
(p CPlPEls<7>CPIPEls<5>» )
(p CPIPEls<7>CPIPEls<5> ) )):

(o29
(s pbusDtoINA* SRCls<4>SRCls<3>» SRCls<2>SRCls<l>* SRCls«»
(p CPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7>CPIPEls<5>) )):

(o32
(s pbusDtoINA* DSTvalid opc21oad» SRClequalDST2
(p CPIPEls<7>CPIPEls^>* )
(p CPIPEls<7>CPIPEls<5> ) )):



§5.8

(o36
(s pbusDtoINA* SRCls<4>SRCls<3>* SRCls<2>* SRCls<l>* SRClsO>
(p CPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7> CPIPEls <5> ))):

(o DSTtobusDa2
(p pbusDtoLNA 44 48 )):

(o44
(s pbusDtoINA* DSTvalid opc21oad* SRClequalDST2
(p CPIPEls<7> CPIPEls <5>* )
(pCPIPEls<7>CPlPEls<5>) )):

(o48
(s pbusDtoINA* DSTvalid opc21oad* SRC2equalDST2 SRC2equall6*
(p CPIPEls<7> CPIPEls«5>* )
(pCPIPEls<7> CPIPEls <5>) )):

(o preadTBtoA
(s pbusDtoINA* SRCls<4>SRCls<3>* SRCls<2>SRCls<l>* SRClsO>
(p CPIPEls<7 > CPIPEls <5 >* )
(p CPIPEls<7> CPIPEls<5>) ));

(o preadSWPtoA
(s pbusDtoINA* SRCls<4> SRCls<3>* SRCls<2>SRCls<l >» SRCls<D>*
(p CPIPEls<7> CPIPEls<5>* )
(pCPIPEls<7> CPIPEls<5>) )):

(o pForwardtoINB
(s pbusDtoINA* DSTvalid opc21oad* SRC2equalDST2 SRC2equall6*
(p CPIPEls<7> CPIPEls <5>* )
(p CPIPEls<7> CPIPEls<5> ) )):

(o preadPCtoA
(s pbusDtoINA* SRCls<4>SRCls<3>* SRCls<2>* SRCls<l>* SRCls<D>
(p CPIPEls<7> CPIPEls <5 >* )
(p CPIPEls<7>CPIPEls^>)));

# 19 clusteKs)
# Longest series string: 8 [urget maximum unrestricted]
# Deepest Partition: 2 [urget maximum 2]
# Deepest Buffer Hierarchy: 2
# Worst Ratioing Problem: 0.526874 [urget minimum: 0.48 (Vth 2.4)J

Figure 5.28a: Delay Optimized Circuit Before MIMIC

# Deleted gates
# (o 48
# (s pbusDtoINA* DSTvalid opc21oad* SRC2equalDST2 SRC2equall6*
# (p CPlPEls<7>CPIPEls<5>* )
# (p CPIPEls<7> CPIPEls <5> ) )):

# (o 36 ^ _ ^
# (s pbusDtoINA* SRCls<4>SRCls<3>* SRCls<2>* SRCls<l>* SRCls<0>
# (p CPIPEls<7>CPIPEls<5>»)

164



§ 5.8 165

# (p CPD>Els<7>CPIPEls<5> ) )):

#(o44
# (s pbusDtoLNA* DSTvalid opc21oad* SRClequalDST2
# (p CPIPEls <7>CPIPEls<5>*)
# (p CPIPEls<7>CPIPEls<5>))):

#(o29
# (s pbusDtoLNA* SRCls<4> SRCls<3>* SRCls<2> SRCls<3>* SRCls<0>
# (p CPIPEls<7>CPIPEls<5>* )
# (p CPIPEls<7> CPIPEls <5> ) )):

#(o26
# (s pbusDtoINA* SRCls<4> SRCls<3>* SRCls<2> SRCls<l>* SRCls<D>*
# (pCPIPEls<7>CPIPEls<5>* )
# (p CPIPEls<7>CPIPEls<5> ) )):

# Irredundani gates
(o readRFaccessAl
(s
(pCPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7>CPIPEls<5>) 3 ));

(o3
(p pbusDtoINA DSTvalid* SRClequalDST2*
(s CPIPEls<7>* CPIPEls<3> )
(s CPIPEls<7>* CPIPEls^ >* ))):

(o readRFaccessBl
(s
(p CPIPEls <7> CPIPEls <5>* )
(pCPIPEls<7>CPIPEls<5>)ll )):

(o 11
(p pbusDtoINA DSTvalid* SRC2equalDST2* SRC2equall6
(s CPIPEls <7>* CPIPEls<5> )
(s CPIPEls<7>* CPIPEls<5>* ))):

(o Alzerol

(P
(s CPIPEls <7>* CPIPEls<5> )
(s CPIPEls<7>* CPIPEls<5>* ) 18 )):

(o 18
(s pbusDtoLNA* SRCls<4>SRCls<3>* SRCls<2>* SRCls<l>* SRCls<0>*
(p CPIPEls<7>CPlPEls<5>* )
(p CPIPEls<7> CPIPEls<5>))):

(o Alzeroforce

(P
(s CPIPEls<7>* CPIPEls<5> )
(s CPIPEls<7>* CPIPEls<5>* ))):

(o busDiobusAa
(p preadSWPtoA preadTBtoA 32 preadPCtoA )):



§5.S

(o preadSWPtoA
(s pbusDtoINA* SRCls<4>SRCls<3>* SRCls<2>SRCls<l>* SRClsOX
(p CPIPEls<7>CPIPEls<5>> )
(p CPIPEls<7>CPIPEls<5>) )):

(o preadTBtoA
(s pbusDtoINA* SRCls<4> SRCls<3>* SRCls<2> SRCls<l>* SRCls<0>
(p CPIPEls <7>CPIPEls <5>* )
(p CPIPEls<7> CPIPElsO) )):

(o32
(s pbusDtoINA* DSTvalid opc21oad* SRClequalDST2
(p CPIPEls<7> CPIPEls<5>* )
(p CPIPEls<7>CPIPEls<5> ) )):

(o preadPCtoA
(s pbusDtoINA* SRCls<4> SRCls<3>* SRCls<2X SRCls<l >*SRCls<D>
(p CPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7>CPIPEls<5> ) )):

(o DSTtobusDa2
(p pbusDtoINA 32 pForwardtoINB )):

(o pForwardtoINB
(s pbusDtoINA* DSTvalid opc21oad* SRC2equalDST2 SRC2equall6*
(p CPIPEls<7>CPIPEls<5>* )
(p CPIPEls<7> CPIPEls<5> ) )):

#5 gates deleted: 14 gates in irredundani set

Figure 5.28b: Delay Optimized Circuit After MIMIC

The results of MIMIC on two delay optimized circuits are summarized in Figure 5.29.

Circuit
Initial

Clusters

Deleted

Clusters

Final
Clusters

apla 19 5 14

cplal 148 60 88

166

Figure 5.29: Results of MIMIC Processing

After redundant gates have been eliminated the remaining gates drive a higher fanout. The

user should bear this in mind in the design of buffers. The tool does not yet automatically

increase buffer size. As a result of gate elimination that critical path will not be altered.

The goal of gate elimination is to reducedevice count without adversely affecting speed.



§5.9 167

5.9. Summary

In this chapter the delay optimization algorithms for electrical circuit design were

examined. The MOSMESH program partitions complex combinational gates according to

charge redistribution and series chain length constraints. The MKTBL program performs

SPICE2 transient analyses on the partitioned gates. MOSMESH then uses this information

to optimize the critical path of the combinational circuit. A simple two-transistor model

has been developed to evaluate arbitrary meshes of precharged and discharged devices.

The model assumes no charge redistribution problem exists and gives eicellent results

when simulating circuits with minimal charge sharing effects. Circuits which exhibit

charge redistribution effects can be properly simulated by the 2—7 model if the proximal

FET is precharged to a V, below the supply rail.

After the circuit has been partitioned into gate clusters, the MIMIC program recur

sively removes duplicate gates. A gau is considered redundant if its inputs and function

are logically equivalent to those of another gate cluster. MIMIC does not remove clusters if

doing so would decrease circuit speed.



168

CHAPTER 6

Compaction and Layout of Domino Matrix Structures

The delay optimization methods presented in the previous chapter were used on par

titioned meshes or gate clusurs. The Boolean minimization step was performed by first

translating each group of clusters that realizes a particular function into a group of two-

level personality matrices. For the topological compaction and succeeding suges in the

MAMBO package it is necessary to work with a represenution that more closely resembles

the finished layout. The tool'MKMAT is used to construct the initial matrix structure

from the list of gate clusters. The three remaining programs to be described. TWIST.

TINKER, and TAILOR, produce matrix-like structures with increasing deuil. At the topo

logical compaction level only connectivity information is needed, while TAILOR, the

automated layout tiler, deals with mask-level geometries. This chapter examines circuits

at their topological level.

6.1. Con-version of Partitioned Circuit to Matrix Structure— MKMAT

TWIST accepts as input an uncompacted connectivity matrix and produces a com

pacted connectivity matrix. The tool which constructs the initial connectivity matrix is

MKMAT. MKMAT tries to create an efficient represenution of the partitioned circuit. A

fragment of an adder circuit, which will serve as an illustration, is shown in Figure 6.1.



§6.1

(ofO
(p 1 2 346 10 11 12 )):

(ol
(s 16 c3* aO )):

(o2
(s 18 c3* bO )):

(o 3(o 15
(s 20 bO aO )):

(0 4
(s 14
(p bO aO ) )):

(06
(s 15 7 )):

(olO
(s 28 c2 c3 )):

(o 11
(s 24 c2 c3 )):

(o 12
(s 26 c2 c3 )):

o28

s cin bO* aO* )):

o26

s cin* bO* aO )):

o24

s cin* bO aO* )):

s cl c2* c3 )):

o7

P
s bO aO* )
s bO* aO ) )):

o 14

s cl* c2* c3 )):

o20
s cl c2 c3* )):

o 18

s cl* c2 )):

o 16
s cl c2* )):

Figure 6.1: Adder Fragment, Input to MKMAT

169

The fragment conuins 18 gate clusters and 30 distinct signals (inputs, outputs, and inter

nal, numbered signals). As a result of running MKMAT the output shown in Figure 6.2 is

constructed.



§6.1

new 30 19

pssssssssssssp.ssss

18 ••* °*
20 •••* °-'
14 * 0"
24 ••••«
26
f0 o

1 po...

2 p.o..

3 p.-o.
4 p...o.

g p o

10 P °

11 P °

s .o

12 P °
16 s o
c3» 'ss,«* j.s..
a0 .s.s..*.*s
bO ..ssp s.

15 » °'
7 s o

28

c2

c3

cin

bO* ss" -s
aO* s.s.s.
cin* ss'-
cl

c2*

cl*

s. .o

sss ss

sss...s . .s . .

,...s

s...s .s

s..s. ,s

...s.s.

Figure 6.2: Adder Fragment, Output from MKMAT

170

In this figure external and internal inputs and outputs run horizonully. forming rows of

the connectivity matrix. The columns of ihe matrix are gate clusters. The row at the top

of ihe matrix holds header information. The character s declares lhai the gate in this

column is series or AND in nature at iis top level. Similarly the character p declares thai

the cluster in this column is parallel or OR in nature ai its top level. The character o indi

cates a gate-column output connection to asignal-row: the . character indicates lhal signals



§6.1 171

are bussed through this tile without connection to the current gate. In this small example

all but two clusters are single-level in nature and therefore can be adequately described by

a single column. For the two clusurs:

(o 4

(s 14

(p bO aO ) )):

(o 7

(p
(s bO aO* )
(s bO* aO ))):

of Figure 6.1 it would be necessary to allocate two columns each to realize their functions

following the rule thai each column is either AND (s) or OR (p) in nature. However two-

level expressions are permitted in each gate or column. Higher level expressions are

currently forbidden. The addition of the character ". interpreted to mean toggle, allows

two-level logic to be expressed symbolically. For example, referring lo Figure 6.2. the

two-level gate with output 4 and inputs 14. bO. and aO is shown in the fifth column from

the left. The column realizing the gate is series at the top-level, indicated by the header

character. After a series transistor placement at signal 14 the gate toggles to the parallel

type at signal aO. The transistor at bO is also parallel so the gate type remains unchanged.

Note that being able \o generate two-level clusters is not a guarantee that all such

clusters can be placed in a single column. Again referring to Figure 6.2 it can be seen that

the gale with an output of 7 ukes up two columns. Two columns are used because the

two series groups or legs of the gate made up of [aO 30*} and [bO aO*). respectively, inter

sect one another. It is not possible to interconnect all the devices in each of the series

groups without intersecting devices in another group. It is sometimes possible to work

around this problem by reordering the signal rows. Figure 6.3 shows the result of running

MKMAT on the example of Figure 6.1 with additional ordering constraints.



§6.1 172

new 30 18

psssssssssssspssss

20 ...s o..

14 s ©•••

18 ..s.j J'*0,
bO ..ss ••••••S.

24 s...o..

26 s.o...

aO* s.s. a

fO o

1 po..

2 p.o.

3 P-.o

4 p...o.

6 p o

10 P o..

11 P o,

...

12 P o

16 •» °
c3* .89 •»• •
aO •s•sp.••••a•• ••••

15 * o
7 s o. •. •

28 ^..o
c2 sss S3.
c3 ......SSS...3.S...

scin

bO* SS. .3
* sscin

cl S..S.S
c2« .s.s. .s

cl» ...s.s.

Figure 63: Output from MKMAT with Additional Constraints

6.1.1. Constraints Placed on MKMAT by MOSMESH

It is not possible to sort signals in general so that the number of columns per gate is

minimum. As a result of delay optimization performed by MOSMESH the ordering of sig

nals in series gates or series portions of two-level gates is constrained. MOSMESH orders

signals so that the fastesi changing ones are closest to the gate cluster output. Even

though a gaie may not be on the critical path of a module it is currently considered



§6.1.1 173

constrained. However, external signals which by convention begin with a non-numeric

character, are all assumed to change (if they change at all) at time t =0. This rule is

enforced by design in Domino logic. In the adder fragment example the delay optimization

was turned off to show the effect of reordering rows. When delay optimization is in eflect

the placement of internal signals is considered immuuble. The ordering of gates is not

constrained by MOSMESH.

The designer is not allowed to specify the ordering of external signals. It was felt

that the optimization for delay more than compensates for this. The circuit designer may.

however, specify on which side of the array he wishes the signals to be accessible. This

specification will be described in deuil later in this chapter.

There is one more condition which forces MKMAT to use multiple columns for gate

realization and that is multiple instances of an input signal. Assume one has the following

gate:

(o output
(p

(s a b ) (s a c ) (s a d ))):

Though this is a two-level structure it could be realized as a single column if all input sig

nals were distinct. For this gate, however, signal name a is repeated. Rather than dupli

cate a signal line, which introduces routing problems to the module, an extra column is

added. The rule is that all signals realized in a single column are distinct. The gate shown

in the example would thus require three columns.

The above example factors easily. Expressed in LlSP-like notation the expression may

be rewritten:



§6.1.1 174

(o output
(s a

(p b c d ))):

The factored expression not only needs fewer devices but it remains two-level. In genera],

pulling out one or more factors of a function will increase the depth of the expression. In

MAMBO the rule is that factoring can be done when the resulting expression's depth does

not exceed two.

6.1.2. Valid MKMAT Structures

While the output of MKMAT is limited to clusters two levels deep, it can construct

some three level partitions. For simplicity, because not all three-level partitions can be

formed, none are permitted. There are four primary structures and concatenations thereof

that MKMAT may generate. Examples of the four primary structures in schematic

representation with their corresponding connectivity matrix shorthand are shown in Figure

6.4.



§6.1.2 175

© ©
Figure 6^4: Primary MKMAT Structures

In order to create a regular structure which may be densely packed by folding algorithms

only these four basic structures are permitted. For reference Figure 6.5 shows two three-

level structures as a designer might envision them and as they would look in the matrix

layout style. While the structure in Figure 6.5a can be built with the current system, the

layout shown in Figure 6.5b is not amenable to structured layout.



§6.1.2

HLH

HE

HI

NOT RERLIZRBLE

®
Figure 6^: Three-level Domino Structures

.TOO
UIDE

176

If special wide cells were built to accommodate three-level layouts topological compaction

would be complicated by the different size cells. On the other hand, if cell sizes were

sundardized they would have to accommodate the most complex structures, which would

mean that those cells housing simple structures, usually in the majority, would waste

area. It is also pointed out that the noution system of is po" .} does not extend beyond

two levels.

6.13. How MKMAT Works

MKMAT has three major sections. After parsing the input netlist and storing it in a

tree data structure, the tool builds a list of distinct signal names. This includes not only



§6.1.3 177

external inputs and outputs but also internal, machine-generated signal, names that feed

from one cluster to another. Each signal name will be represented as exactly one row in

the output matrix.

The second section of MKMAT builds a row constraint matrix. The constraints in

this matrix are of two types: hard constraints which are inviolable and which are imposed

by prior delay optimization and optional soft constraints which, if obeyed, may result in a

more compact matrix, with fewer columns. The expression:

(ool
(s 1 2 3 4 )):

produces the constraint matrix of Figure 6.6.

4 3 2 1 ol
4

x --- - 3
xx 2
X x x - - 1

ol

Figure 6.6: Cycle-Free Constraint Matrix

The x's indicate hard constraints imposed by the series ordering of inurnal signals. The

matrix indicates that rows 4 and ol may be placed without constraint. Signal 3 can only

be placed after 4 has been placed. Likewise signal 2 can only be placed after signals 3 and

4 have be positioned. It can be seen that eventually all rows will be placed. In contrast,

the two equations:



§6.1.3 178

(ool
(s 1 2 3 4 )):

(oo2
(s 2 1 3 4 )):

will generate the constraint matrix of Figure 6.7.

o24 3 2 1 ol

o2

4

- x - - - - 3

- x x - x - 2

-XXX- - 1

ol

Figure 6.7: Cyclic Constraint Matrix

This matrix conuins a cycle. The hard constraints at positions (2,1) and (12) of the

matrix indicate that row / must be placed after row 2 but that row 2 must be placed after

row 1. The delay optimization tool ensures that such a case cannot occur. If MKMAT

detects cycles a faul error is generated and the program exits. In this case the message is:

sort^signds: fold error: Signd 2 is invdved in cydic constraint.

Finally. MKMAT can also generate soft constraints. The input:

(ool

(P
(s 1 2 ) (s 3 4 ) )):

will create the constraint matrix shown in Figure 6.8.



§6.1.3 179

2 1 4 3 ol
2

x .--- 1
o o - - - 4
o o x - - 3

ol

Figure 6.8: Matrix with Hard and Soft Constraints

The o's indicate soft constraints. If these constraints are followed signals I and 2 will be

placed before signals 3 and 4. This guarantees that the gate can be realized in a single

column. However this is not the only configuration that gives a single column result.

Since the general problem of optimum placement of groups for best packing \sO(n!) where

n represents the number of signal groups, and all that is really necessary is that signals {1

2) and signals [3 4) form contiguous, disjoint groups, by finding a single solution through

the use of constraint matrices. MKMAT reduces compuution time.

The last step in MKMAT is to determine the depth of each individual cluster. Clus

urs with a depth of one can be directly translated into a single column. For gates with a

depth of two MKMAT determines the number of columns the gate will require. It does

this by finding the upper and lower extremes of each group or subcluster of signals. A

subcluster is an atomic expression— either is sigi...sign) or ip sig i... sig„ ). Once the

extent of each subcluster is calculated the well-known "left-edge" algorithm [hash 71] can

be used to find the optimum packing. After the gates have been placed in an output struc

ture a print procedure creates the actual character personality matrix.

6.2. Algorithms for Topological Compaction— TWIST

TWIST reads the array generated by MKMAT and produces the potentially compacted

array in the same format. To indicate where rows and columns have been broken, extra

information, in addition to the matrix personality, is produced. TWIST has two modes of

operation. It may be used as part of the MAMBO pipeline like the rest of the tools men-



§6.2 180

tioned here or it may be used inuractively. In interactive mode the designer may enter a

personality matrix directly to try out a configuration or input may be read from a file. In

either case, when TWIST is used interactively the designer may manually fold rows and

columns to create the compact structure he wants. The remainder of this chapter will

examine TWTST running as part of a pipeline. In this mode TWIST automatically folds as

many rows and columns as possible, though the user still controls the sequence of fold

ing— row- or column-first. The designer may also specify on which side external signals

must be brought out. Signals may be made available on two sides of the matrix as bus-

through connections.

TWIST implements simple column folding and multiple row folding. The buffering

and precharge devices are conuined in a single cell and may be placed either on the top or

bottom of the multi-level array. The left and right boundaries are reserved for

input/output access to/from the module by external signals. Since the buffer cell can only

be placed at the top or bottom of the module, only simple column folding is allowed. The

term simple folding means that only two terms may be folded into one. Rows may be

multiply folded. While exurnal signals can only be brought out on the left and right

sides of the module, internal signals joining one cluster to another do not need to touch the

module boundaries. Thus it is possible to fold an arbitrary number of row signals into a

single physical row.

The ordering of signals is significant. Signals are ordered relative to the location of

the output buffer. When columns are folded the column on the bottom of the array is

inverted. The buffer is placed along the bottom edge of the array and the ordering of sig

nals that contact the flipped gate must also be inverted. The ordering of these signals is

recorded in a row ordering matrix or rom. The necessity to invert or "flip" constraints

when a column is folded differentiates the folding of these arrays from other structured

arrays, like PLAs or sutic gate matrices. The consequences of column inversion are exam

ined more closely in the column folding heuristic presented below.



§6.2 181

The methods used to produce simple column and multiple row folding are now

explored. The core of TWIST consists of three basic steps. These are: 1) selection of trial

folding candidates: 2) detection of folding cycles: and 3) construction of the folded

matrix. These topics are the subject of the next three sections.

6.2.1. Selection of Trial Folding Candidates

As mentioned above. TWIST may fold either rows or columns or both. In pipeline

mode. TWIST either creates a complete set of row folds and then attempts column folding,

or tries column folding first and row folding second. In interactive mode the user has finer

control: he may elect to fold several rows, then fold several columns, and then try row

folding again. The heuristics employed are order sensitive and row-after-column folding

will in general produce a finished module of different aspect ratio than column-after-row

folding. The designer may prefer a tall, thin module to a short, squat one. TWIST uses a

"straight through" algorithm for row folding and a slightly more complex approach for

column folding.

6.2.1.1. Row Folding Heuristic

Because multiple row folds are allowed, a relatively fast heuristic was needed to

eliminate the many folding possibilities in the often-sparse matrix. Figure 6.9 lists the

row folding heuristic in pidgin-C.



§6.2.1.1 182

if (Cyclc.cfm or Cyclcrfm or Cyclcrom) {
Cycle.stop - TRUE;
return (stop);

} dse {
nev_try • get_right();
if (new_try is NOT_SET) {

Cydeistop » TRUE;
return (stop);

}
store(«ew_try);
new_try • get_left();
while (new_try is NOT_SET) \

reset (row vector);
reset (external constraints);
ncw_try - get rightO; /* Get a new right element for pair V
store" (new_tryT;
if (new_try is NOT_SET) {

Cycle^stop • TRUE;
return (stop);

}
new_try - get_left();

store (new_try); /• install left element of latest row fold */
return (nev);

}

Figure 6.9: Row Folding Heuristic

This code fragment chooses the next pair of row folding candidates. Immediately upon

entering the procedure cycle checking is performed. There are three possible types of

cycles: each of them indicates that further folding is not possible. Cydccfm indicates the

presence of a cycle in the column folding (or intersection) matrix. Likewise, the rfm flag

indicates a cycle in the row folding (intersection) matrix. The final flag. rom. checks the

row ordering matrix. If any of these flags are TRUE the row folding procedure terminates

after setting the stop flag. When the calling procedure becomes active again it detects that

the stop flag is TRUE. The last consistent state of the matrix (ie. with no cycles), saved

previously, is restored and row folding is declared done.

If none of the cycle flags are set the "best" next right folding element of a row pair is

selected by procedure get^righti). The "best" rightelement is defined as that element with

the rightmost leftmost non-DOT character. This is the row which has the shortest extent

from the right edge module boundary lo the left. The idea is to attempt a fold while dis

turbing the current matrix structure as little as possible. Thus the assumption is that the



§6.2.1.1 183

initial ordering is reasonable. In fact this is the case, since, as a result of previous delay

optimization, signals which participate in the same function will be grouped together. In

the case of a tie. two or more rows with identical left extents, that row is chosen which

has the fewest non-DOT elements in columns not already used by previous folds. The

notion here is to introduce as few new constraints on the remaining unfolded rows and

columns as possible. Elements in columns used in previous folds are already constrained

and further constraining these columns restricts future folding possibilities less than con

straining unfolded elements. The get.rightO procedure respects the designersexternal sig

nal constraints. The chosen row may have already been folded previously. Signals which

must be brought out on either side of the module are marked here as terminating on a

module boundary: the procedure ensures that signals which must terminate on the right

side are not internally buried in the array. A signal which must be brought out on the left

side may be brought out on the right side as well. Such a signal might be used as a bus

through. If all right side signals have been used. get_righti) returns with NOT_SFT. the

matrix is uken to be fully folded, the stop flag is set. and the procedure terminates. If a

right row element is chosen successfully it is stored and procedure getJeftO is called.

GetJeftO chooses a row which not only is disjoint from the right element but also does

not overlap it. The choice of left row is guided by the position of the right row. The left

row closest to the right row which does not overlap it is chosen. The procedure getJeftO

searches in widening oscillations about the right row position. GetJeftO also checks boun

dary conditions in the same manner as geijrighti).

If getJeftO can find no row to match the current right choice then the right element

is unfolded. get_right(> is called again, and the procedure for finding a left element is

repeated. Eventually, either a {left, right} pair is found or all rows have been examined as

choices for right rows. In the latter case the stop flag is set and the folding algorithm ter

minates. If the selection of a new folding pair is successful the coordinates of the new pair

are entered into the state vector and the folder returns to its calling parent. Row folding

is straight through: it proceeds from an initial matrix to a final placement without



§6.2.1.1 1S4

exploring alurnate folding paths. If a right or left row choice is unaccepuble other possi

bilities will be tried, but once a cycle is introduced the procedure terminates. By contrast

an exhaustive approach would push back cycles to the initial unfolded matrix and keep

track of the largest number of folds obuined by doing a depth first search on all valid

folding combinations.

6.2.1.2. Column Folding Heuristic

Typically, fewer columns than rows can be folded. Also, the number of rows will

generally exceed the number of columns since each column has an output which runs on a

row either to the module boundary or to the input of another gate. Thus the number of

rows is equal to the number of columns at minimum, and in addition there must be at

least one external input, so row count exceeds column count. However, some gates take

more than one column to realize. There may be a single function (and therefore a single

output) which spans an arbitrary number of columns. Currently the column folding algo

rithm leaves multiple-column gates alone. For these reasons and because only simple fold

ing is allowed a more deuiled column folding algorithm is employed. The column folding

algorithm attempts to break cycles and continue folding until all possibilities from a given

initial choice areexhausted. Figure 6.10 lists the column folding heuristic in Pidgin-C.



§ 6.2.1.2

if (Cyde.cfm or Cyclcrfm) {
new_try - get_top();
if (new_try is NOT.SET) {

Cydcstop • TRUE;
return (deleted);

1 else {
store (new_try); /* Substitute one fold for another, update state vector •/
return (stop);

, }
} elif (Cydcrom) {

new try • break_intra();
If (new_try is NOT SET) {

if (break.interO) 1
nev_try - get_topO;
if (new_try is NOT_SET) {

Cydcstop - TRUE;
return (deleted);

} else {
reset (ccv);
store (new_try);
return (stop);

, I
} else {

Cycle.stop - TRUE;
return (deleted);

}
} else {

pflist—>element • new_try;
return (stop);

}
} else {

if (flip.lisi isnt NIL) {
store (pflist—>element);
nev_try - get_top();
if (new_try isnt NOT_SET) {

pflist—Element - NOT_SET;
store (new_try); ""
return (new);

/* Delete an old fold •/

185

/* Substitute one fold for another, update state vector */

/• Delete an old fold */

/* Flip a single column, enter it into flip list */

1
}
ne«r_try » get bottom();
if (new_try is~NOT_SET) {

Cycle.stop - TRUE; /* No more folding possibilities so give up */
return (stop);

I
store (nev_try);
new_try » get_top();
if (new_try is NOT_SET) {

Cycle.stop - TRUE; /* No more folding possibilities so give up •/
return (stop);

}
store (new^try);
return (new);

/* Add a new folding pair •/

Figure 6.10: Column Folding Heuristic

Immediately upon entering this code fragment cfm and rfm cycles are checked for. If at



§6.2.1.2 186

least one of these cycles exists then the top gate in the last attempted fold is deleted and

perhaps replaced. This gate must participate in the fold since the column procedure

always suns with a consistent sute. The procedure getJppO looks for columns which are

disjoint from the bottom folding partner. From this set of columns a column is chosen

with the highest lowest non-DOT element. This is analogous to the row folding procedure,

where the idea is to cause the least disturbance to the current matrix. The only difference

here is that the column folding pairs may overlap, that is the top element of the bottom

column may extend past the bottom element of the top column. Again, if there is a lie for

the shortest downward extent, the chosen column will be the one with the fewest non-

DOT elements that do not already participate in previous folds.

If getjppi) returns NOT_SFT then no more top folding candidates exist: the last top

fold is deleted, the stop flag is set and folding terminates. If a new top element was found

it replaces the last lop element.

If no cfm or rfm cycles exist but a rom cycle does exist then the algorithm attempts

to break the cycle. Cycles are caused by two different types of constraints, intra- and

inter-column, and different methods of atuck are used to break each. An intra-column

constraint is caused by a signal ordering conflict between top and bottom elements within

a folding pair. For example, the top element of a pair may demand that signals be ordered

Ifoo. bar) while the bottom element requires {bar. foo}. All bottom elements have had

their constraints inverted at this time. Intra-column constraints, if they exist, are fixed

before inter-column constraints. Procedure breakJntrai) attempts to find a vertex in the

current cycle which is caused by a single bottom element. A vertex in the cycle graph

corresponds to an x in the rom. It is possible that more than one column is responsible for

a vertex in the cycle. If there are several vertices with a constraint multiplicity of one

then the column that has its elements most compressed toward the bottom of the matrix

is removed. The chosen column will be added to the flipjist. This is a list of columns

which have been inverted but which currently have no matching lop element. The column

with most elements compressed toward the bottom causes least rearrangement of the



§ 6.2.1.2 187

matrix since this column will now have its output buffer placed along the bottom of the

matrix. If no vertex is found which has a multiplicity of one. breakJmraO returns

NOTJEI.

Instead of removing a column from the folded pairs an attempt is made here to rr.ain-

uin those columns already folded by flipping additional columns. Flipping columns does

not increase the number of folds but it may allow previous folds to be reuined.

If breakJntraO was not successful in finding a column to flip the procedure

breakJnterO is called. BreakJnierO asceruins whether the last top folded element is

involved in the current cycle. If it is not then the cycle must be caused by another, ear

lier, fold. Rather than unfolding columns to locate the cause of the cycle, the stop flag is

set and the column folder terminates. However, if the last folded top element does parti

cipate in the current cycle it is deleted and getjopO is called to replace it with another

column. If getjopO finds no eligible columns the stop flag is set and the folder ter

minates, otherwise the new folded column is substituted for the old. and the sute vector

is updated.

If no cycles exist when the code fragment of Figure 6.10 is called then a new fold can

be created. First an attempt is made to fold a top column with currently unfolded bottom

elements on the flipjist. If the list is not empty and a top fold match is returned by

getjopO then the sute vector is updated and the algorithm returns to the calling pro

gram. If there are no iums in the flipjist or no suiuble top columns can be found then

the procedure getbotiomi) is called. GetbotiomO searches through the set of unfolded

columns (recall that only simple folding is permitted) for a column with the lowest

highest non-DOT element, in other words, the column most compressed toward the bottom

of the matrix. If there is a tie. then the column with the smallest weight is chosen. The

"weight" of a column is computed as follows: DOT elements count 0. PARALLEL and OUT

PUT elements count 1. and SERIES elements count 2. These values reflect the number of

constraints each element causes. SERIES elements not only cause constraints between

columns, they also dicute signal ordering within a column. Since the bottom element of a



§6.2.1.2 18o

folding pair will have its constraints inverted the smaller-weight algorithm atumpts to

minimize the number of new constraints introduced.

If getJottomO finds no unfolded columns among gates that span a single column ii

returns NOT_SET. stop is set. and the folder terminates. If a bottom element is found th*:

getjopO is called to try to find a match. Again, if no match is found, stop is set and th».

folder urxninates. If a new folding pair is identified the slate vector is updated and the

column folder returns to the calling program.

The cycle-checking algorithm is run in concert with the folding selection algorithms.

The nexi section describes the cycle detection algorithm and give bounds on its complexity.

6.2.2. Matrix Representation of Gate Matrix Folding Problem

This section considers theoretical aspects of the topological compaction of the multi

level structures produced by MKMAT. The algorithms presented here have been imple-

menud in TWIST. De Micheli [demi84] presented a graph theoretic inurpreution of the

general multiple folding problem for PLAs. The work deuiled below describes a similar

approach based on that of De Micheli but in matrix form and uilored to particular aspects

of multi-level matrix (MLM) structures.

6.2.2.1. Problem Statement

Given a connectivity matrix, like that produced by MKMAT. construct column and

row interseciion matrices which indicate which columns and rows, respeciively. can be

merged. From the intersection matrices determine what folds are implemenuble to give a

minimum cardinality (area) MLM. The conneciivity matrix may be translated into a more

abstract form. This abstract form closely resembles the AND plane personality matrix of a

PLA. Figure 6.11 presents an example personality matrix. A device placement, shown as a

1. indicates a connection between the tth row and yth column. A 0 indicates no connection.



§6.2.2.1 189

10 110 0 1
2 0 10 10 0
3 10 0 0 0 1
4 10 0 0 10
5 10 0 0 0 0

6 0 0 0 0 0 1

12 3 4 5 6

Figure 6.11: Personality Matrix

A column-intersection matrix indicates which columns have intersecting row contact

sets. A row-intersection matrix indicates which rows have intersecting column contact

sets. Hachtel [hachSO] presented the same information in graphical form. Figure 6.12 is

the column-intersection matrix for the example in Figure 6.11.

1 X XX

2 xxx x

3 x x x

4 x x

5 x x

6 x x x x

12 3 4 5 6

Figure 6.12: Column Intersection Matrix

The x's indicate which columns intersect. The matrix is symmetrical about the

i0.0l—(nn) diagonal.

6.2.2.2. Folding Algorithm

Folding candidates are chosen subject to external constraints imposed by the prior

delay optimization stage and by the designer. In addition, folding candidates must be dis

joint. This rule is enforced by the intersection graphs. Another requirement is that the

folding candidates must not create a £—cycle. This requirement is examined below.



§ 6.2.2.2 1°0

The condition that two unfolded candidates be disjoint is enforced by the x's in the

intersection matrix. A folded candidate may be folded with another folded or unfolded

candidau to create a multiply folded result. In this case all folding candidates must be

disjoint from all other folding candidates.

There are three different cases of £—cycles. Cycles are potentially introduced when

folding candidates are entered into the column folding mairix (cfm). The x—axis of the

cfm is defined as the /roro-axis and the y—axis as the ro-axis. If column p is to be folded

on top of column q the from-axis is p. the to-axis is q. A potential fold is entered into the

cfm at ipjq). Since the fold has a "polarity", once the column iniersection matrix has fold

ing candidates it is no longer symmetric and it becomes a column folding matrix.

The first cycle case is indicated by the matrix:

10110 xox x x
20100 xx oxx
31001 xxo xxo
41000 x x x x

1234 1234 1234

Figure 6.13: Case-1 (Simple) {—Cycle

The symbol o indicates a requested fold. Since it does not fall on an x it is necessarily dis

joint. The cfm is no longer diagonally symmetric.

Remark:
(simple case)
Given folds at CFM(i.j) and CFMimn) if CFM(mJ) and CFMiin) are x then a
simple case-1 {—cycle exists and the MLM cannot be folded.

(general case)
Or. in general, given folds at CFMliJ) and CFMimn) for ii.j) and (mn) chosen
from the set of disjoint columns then a case-1 r—cycle exists if vertices
CFMim.j) or CFMiin) chosen from the set of intersecting columns induce a cycle
with ihe vertices alternating disjoint, intersecting, disjoint and so forth.

An example of a complex case-1 cycle is shown if Figure6.14.



§ 6.2.2.2

1 0000000101

2 0000010000

3 0100010100

4 1010100000

5 1000000010

6 1000100000

7 0100000000

8 0000000100

9 0001000000

10 1000011000

123456789 10

191

1: x z X XX X

2: X X X

3: X X x-—o

4: X'-o 1

5: X x 1 X 1

6: X x 1 X x-x-o

72 x I X X 1

8:

9:

x I X X 1 X

x o

10: X X

123456789 10

matrix has at least 1 cycle
Figure 6.14: Case-1 (Complex) {—Cycle

Case 1 corresponds to the X—cycle case of De Micheli [demi84]. In Figure 6.13c the top-

bottom ordering of the requested folds of Figure 6.13b has been altered. Now no cycle

exists and the fold is said to be implemeraable [egan82].

The case-2 {—cycle is shown in Figure 6.15:

Remark:

10 10

2 0 11
3 0 10
4 10 0

x o

o x x

X X

X

O X X

O X X

123 123 123

Figure 6.15: Cases 2 and 3 {—Cycle

Given folds at CFM(i,j) and CFMlmji) if i = n and CFM(mJ) is x or j = m and
CFM.Ua) is x then a case-2 {—cycle exists and the folds cannot be implemented.

A case-2 cycle is a multiple folding request (ie. more than two logical columns are folded

into a physical column). Acase-2 cycle is detected in tandem with case-1 {—cycles. This

type of cycle has one or zero undirected edges. Such a cycle cannot be broken by



§6.2.2.2 392

reordering the fold, or by breaking up the multiple fold into several simpler folds. In

fact, breaking up this fold into its components yields a case-3 {—cycle.

Figure 6.15c shows a case-3 {—cycle obtained by fracturing the fold 2—7—3 into its

two parts: 2—7 and 3—7.

Remark:
Given folds at CFMli.j) and CFM(mji) if i = m and CFM(jji) is x or j = n and
CFM(ijn) is x then a case-3 {—cycle exists and the folds cannot be implement
ed.

Note that case-3 folds are parallel to a matrix axis. The presence of a case-3 cycle indi

cates that multiple folds emanate from or terminate in a particular folding candidate.

Because case-3 cycles are in-line a special consideration must be made to detect them.

Either a cycle-! V 2\ or a cycle-3 check is performed, but not both, so the order of the

cycle-check algorithm is not increased.

The only way to break the case-2 and case-3 cycles is by removing a requested fold

from the matrix. If the 2—7 fold were removed in the examples above both case-2 and

case-3 cycles would disappear.

6.23. Bounds on CFM Construction and Cycle Checking Algorithm

The construction of the column intersection matrix requires 0(c2xr) operations

where c represents the number of columns and r represents the number of rows in the

MLM. This is an upper bound. The algorithm is as follows: Compare each column C, with

every other column to check for intersection. The intersection check is performed by and-

ing the row entries of the columns under test. If the sum of the bits of the row-wise and

is non-zero then the columns in question intersect. The anding requires r operations. Of

course, if it is performed serially, as soon as an intersection is found the process may be

halted. Since the column compare procedure is commutative (checking column d against

C,*i is the same as checking C,*i against C,) -=- tests must be performed. Thus the total
4*



§6.2.3 193

number of steps is 0(c2x r) in the worst case.

The cycle-checking algorithm will now be shown to be O(/ 2) where / represents the

number of trial folding candidates. The argument is as follows: Assume a set of folding

candidates F. To detect cycles one must ascertain for each /, in F whether it forms any

cycles with any other element or elements in F. To do this an empty link list is created

and some first element is inserted: the element is marked as used. Each remaining, unused

element is then compared against the list. If the candidate adds two links to the elements

in the list (corresponding to two x's between o's in the CFM) then a cycle exists and the

procedure terminates. If the folding element adds no new cycles it is temporarily dis

carded. If the element adds one link it is added to the new list and marked. This process

continues until all elements are marked or until all unmarked elements are compared

against the link list. Each time a complete pass of the folding candidates finishes the link

list becomes the new list and the new list is set to nil.

Since remaining unmarked elements must be checked against a list each lime the list

is updated. Oif 2) operations are needed. At the end of each pass some number of candi

dates will potentially remain unfolded. These are the elements which were discarded ear

lier. For these unmarked elements the same process is required to check for cycles. It thus

appears that the algorithm is 0(/3) overall. This is. however, not the case, as is now

shown. Suppose there are k partitions of folding candidates. A partition is a singly-linked

set of folding candidates. Suppose, also, that a particular partition requires p passes or

separate new lists to generate. Each new list represents a subcluster of linked candidates.

Then the number of operations per partition is equal to

'£f n, x(n-yfn, ) (6.1)

Where n is equal to / . the total number of folding candidates and nk represents the

number of candidates in link list i. The In; term represents those candidates which have

already been chosen and are therefore used on previous link lists. The expression can be

rearranged:



§ 6.2.3 194

»=r< j -i

^,-IlM; (6.2)
, = 1 1= 1 ;=1

Clearly.

**-'£ £«,«; <*2 (6.3)
because L/;, <n by definition. The total number of operations is the sum over k parti

tions: ZnL 2. By the "triangle theorem":

Z»i-2 <(Zii)" (6-4)
/=1 i»l

Thus an upper bound on the complexity of the cycle-checking algorithm is 0(j2). It

remains only to demonstrate the goodness of this bound. There are two extreme cases:

either all candidates can be folded and there are no cycles or all candidates combine to

form a single, complex cycle. In the former case there are / folding lists but only / checks

are required of each list, since all candidates are distinct. Thus this case is 0(f 2). In the

latter case the construction of the single folding list requires 0(/2) operations but at the

end of the process all elements have been marked, so the process terminates. In addition, a

cycle has been found. For this latter case.

I(/-n (6.5)
(=1

operations are required, which is 0(f2). Therefore both extreme cases exactly fit the

bound and hence 0(f 2) represents a tight upper bound on the complexity of the cycle-

checking algorithm.

6.2.4. Construction of the Folded Matrix

The final stage in Tfc'lST is the construction of the output matrix. In the cycle-

checking phase it was determined whether or not a solution existed: at this point an

acceptable solution must be found.

A solution (in general there will be more than one) which satisfies the folding

requests is constructed by building constraint matrices. One matrix is built ;'or column

constraints, another for row constraints. These constraint matrices are exactly analogous



§ 6.2.4 195

to the constraint matrix used by MKMAT to construct an initial signal (row) ordering. For

the folded matrix a slight elaboration of the constraint matrix is needed. Row folding

imposes constraints on column ordering, column folding imposes constraints on row order

ing. In addition in the column constraint matrix, for example, where two columns are to

be folded into one. the constraints on both (unfolded) columns must be satisfied in order

to properly place the single (folded) column. Similarly all the constraints on each of the

rows that are to be folded together must be met simultaneously for the folded row to be

properly placed. Folded rows and columns are placed by the constraint matrices as a

group. The output construction procedure creates the folded matrix by referring to the

constraint matrices. Where there is latitude in column or row placement, topmost and

leftmost slots are chosen, respectively. This results in the now empty extra rows and

columns being pushed to the edges of the matrix. In the final printing of the matrix these

elements are trimmed away.

It was shown in the previous section that the cycle detection algorithm is0(f 2) for

/ the number of trial candidates in the cfrn and rfm or folding constraints in the rom.

The constraint checking procedure is0(n2) where n is the number of rows or columns in

the constraint matrix. Thus it can be seen that if the input matrix has many folds the

constraint matrix yields a faster check on the consistency of the matrix. For the cfrn and

rjm. f will always be less than the number of columns or rows, by definition. In the

rom. however, where / is the number of constraints it is quite possible that / exceeds the

row count, since a single column may introduce many rom constraints. Therefore the con

straint matrix algorithm is used as a pre-check for cycles in the rom. The constraint

matrix procedure only asserts that a cycle must exist, it does not provide any information

about the cycle or cycles. Therefore, once it is known that a cycle exists, recursive cycle-

checking procedures are called to find the cycle's vertices. Such information is necessary in

order to attempt to break the cycle.



§6.3 196

63. Examples of Sow and Column Folding

The folded matrix is built from the same set of characters as the input, unfolded

matrix. For clarity in display, the uppercase characters {S PO) are employed to represent

SERIES. PARALLEL, and OUTPUT devices, respectively, in the bottom element of a folded

column. The fold locations are indicated by additional information displayed on the edge

of the matrix. Figure 6.16 shows an unfolded, unconstrained multi-level matrix, part of

an adder circuit, in both personality matrix and mask-level form. Mask-level generation

is described in Chapter 7.

new 27 15

pssssssssp. S38S

cl»

18

20

28

c2

••••••so..« • • • •

14

16

c3*

bO

c in

bO*

c2*

fO

1

2

3

4

6

10
11

12

aO

15

•s •sp• ••••< 1 . • • •

7

c3

aO*

•ix :a it ji tr ii a: -ii •:

,:l«.'.: lb:lll;_Mb:H!:.:I1L-.

•'iiii.:-*l:inv:i^ii3iix
•jllfaiilli-jittBvlU.'.
-'-1 Iiv:ll/: IIJv:tir. I!»>"• >li.\
; i»"••«•-'• iij";:jr:; ir'-'-iii"
::iij;'::ii;:iiK::ii;:iij'-'.iii:-
x: iii jl- :i6". i«?I: riiV: i ii.':lii>~

:;iii.i.:B::lii-j:ilDiir/lH::
;:in''"::i»*: 111 v4t.«; {«'-"•!«>!
•liiK"H/:iii":ii:.iii-":ii"-.'
•'••\iiV\i\; m;'::ii' iii-*iii;'

.\iii.'.'ii:.iii.-.:ii:.ii!:..iii;.
;:'..l;.:|L\iiiv'ibJli-.lil"
•*:ic'-':j': iM-'-ih tif-" iii"
-*sit*v:Tn/- ;'.i:"V. ti»"-" iii.V
'inY.•:&• triy.-lii ajV.:iii.\

. •i.£..}\\--i:u>i\

l»HUH:-l!'l:_

'iibiwiii^v:
;i«i5twrm-:
:Illumining
:iiiiciiiiiiiii-
':iitfcffliti~i»:.
Vnti-iiitibiii::
'i»i»iini:-ii!i'/;
iui=i;iini:.:

;iBcamian.!
liriiiiitiriiiV
iiu:uiti:i:i;:

.IliWiltl^lH;.
iin-i;i(i-iii.-.

'liiKiwriu;:
'•|iifcii«i=ii;!':
:iincintnii;i;:
jiiiiiaiitraii.\

•«.\iir.i-iiii»

:itlt-i-JiJJ
:«.'.:,>•? :iirJt
•ii'iii^iriiwt
•ii*" ift"'-ti-jt
/jXir./i-Mrh
•n"iir;:-ikji'
:iL\li.-.i:iLJI

:ii/.'ir/-:"iifji
:ii<"n^":ii'U

ilL-lEei-iiUt
:ib.ir.::iwf

:iL\ii:"»iihii
iii'-'if-rii7!!
:.ii/'iiH:n;ii
:iii:ii*£Jiiji

.^\i;JiBi.::il.\lll.^:«.\llL:.'Jr.i:IL-lHIHI«H=IU:::ll.vlCfl-H.*lJ
:i-ii'-iii.'":*: iii;.:''ii>: m'-': iii"; ^liK-i i«R«i»ifliw^'ii\ ii^-iwi
:; -"»?j iii-T;: iilLiii -~;" -ti^i •!-~- iii'-I -^ii?I-1 wisiri•^^»|'::. fi|--: i*iL-i -flcii ¥

iiiiihiii'*\--&\iiwiii' lit-'-m^^iia^\y^'^^^i^iiia

ii»|i'V.: ij. •. jiV . p.- ..ii; . n--.ii:. V - ii'- _

Figure 6.16: Unfolded Unconstrained Matrix
(a) Personality Matrix (b) Mask-Level Layout



§ 6.3 197

This MLM has 27 rows and 15 columns. The term "unconstrained" means that the

designer has not imposed additional constraints on the routing of external signal lines.

One would expect a better compaction with an unconstrained matrix compared to the same

example, constrained: this is illustrated in the examples that follow. Figure 6.17 shows

column folding and then row folding for the unconstrained input case. This example was

produced by letting TWIST first compact all columns and then attempt row compaction.



§6.3

folded 23 11

cl«

cl

c2«

14

c2

18

c3

7

15

aO

c3«

bO

20

12

11

10

6

4

3

2

1

fO

16

sssssp.ssss

.as.••.s... cin(8)
s..ss..os.. 28(8)
s.s.s~.s... bO»(6)
. .o s •

• S • S .••.s..

.0 s

S.S.....S*.

.S....o....

oS

A • d . • S • . • P •

S. .s s

..S...".."s
• •dO • ••••••

...P..ss... a0«(7)

...P

...P o..

...P o.

• «m* ••••••

...P o

O. .P

.. .O

S...0

sssp

(10) (8) (10) (14)

Current column folds/flips:
(14,6) (13,1)(W) (12,4)

Current row folds:
(cl»,cin) (cl,28) (12*0*) (c2*,b0*)

Signals brought out to the right:
cinb0»a0»

Signals brought out to the left:
cl cl* c2*

Figure 6.17: Column—Row Folded Unconstrained Matrix

198

The example shows four column folds and four row folds. As a result of column

folding buffers appear along the bottom edge of the matrix. The signals to the right of the

matrix indicate those brought out on the righthand side. The numbers in parentheses indi

cate on what column the folded row signal begins or on what row the folded column sig-



§ 6.3 199

nal begins for rows and columns, respectively. The upper lefthand corner is taken to be

location (1,1). State information is printed out and the folded column indices and folded

signal name pairs are identified. In addition, signals which are available only on the right

or left side of the module are listed. External signals not appearing on the list are avail

able on both module boundaries, for example signal fO.

Figure 6.IS shows the matrix of Figure6.16 this time with rows folded first and then

columns.



§6.3

folded 17 14

sssssp.ssssssp

cl* sso s 28(3)
cl •..ss..so....p 10(9)
16 o s.
c2 s. .s.. •.s

18 o s..

c3* . . .3 ss.

20 .. .o s...

cin •. sO *p 6(4)
c2* .s..s..s.o...p 4(10)
bO* •.s.."....o..p 3(11)
bO " .." ss..
aO* ..s...s....o.p 2(12)
c3 .s ss...op 1(13)
7 ...S..o p 11(14)
15 ...S...0
aO s...ps.sp 12(14)
14 .o s.-.o f0(14)

s

(8)

Current column folds/flips:
(13,6)

Current row folds:
(a0,12) (14^0) (7,11) (c3,l) (a0*,2)
(b0*,3) (c2*,4) (cin^6) (cl,10) (cl*,28)

Signals brought out to the right:
fO

Signals brought out to the left:
cl cl* cin bO* c2* aO c3 aO*

Figure 6.18: Row —Column Folded Unconstrained Matrix

200

This result shows a single column fold and ten row folds. In this case all inputs are avail

able on the left side of the array while fO. the output, is available on the right side. The

area of this module is slightly less than its column/row folded counterpart and the aspect

ratio is closer to 1:1 which might mean that this module fits better in the context of an

overall chip design. The designer can. of course, adjust the aspect ratio by manually issu

ing row and column folding commands in the interactive mode of TWIST.



§ 6.3 201

The next series of three examples shows the same matrix, but this time with con

straints placed on several of the external signals. Note that signal c3 is being used as a

bus-through connection.

new 27 15

pssasssss-p.ssss
Cl S. . .3 .3

cl* s.s.

18 . .s.... o.

20 .. .s o..

*o ••*•••SO•.•••••

c2 s ss.

14 s o...

16 .3 o

c3* .ss . .3 . .

bO • •••"••••"
cin s

bO* s..~
c2* .S. .3. .s

fO o

1 po
2 p.o
3 p..o.
4 p.•.o
6 p.•..o
10 p o

11 P
12 p
Aw •f•IDiiiitSciat

15 s. .o

7 s.. .o

c3 s .s. .s...

aO* s.s

right cl cl* c3* c3 cin ;
left f0 bO bO* c3 ;

Figure 6.19: Unfolded Constrained Matrix

The external folding constraints have been entered by the designer and included in the

input file to TWIST.



§6.3

Figure 6.20 shows the constrained matrix after column-then-row folding.

folded 26 11

28

cl*

cl

c2*

bO*

14

c2

18

c3

7

15

aO

c3*

bO

20

aO*

12

11

10

6

4

3

2

1

fO

16

sssssp.ssss

.......OS..

8. .8

.ss.s......

sss• •. .s.•. cin(8)
..... • s. • •

O 8.

...8S...S*.

.. .0 s

ss s..

...S..o

•O.d.......

SS.•.3...p.

•S..S.....S

S.«... » • S

S...o

......ss...

p

p

P...0..

...\jif ......

P o.

O...P
P o

.O. .P
o

• So

(12) (12) (10) (17)

Current column folds/flips
(14,6) (13,1) (9,2) (12,4)

Current row folds:
(c2*,cin)

Signals brought out to the right:
cl cl* c3* cin c3

Signals brought out to the left:
bO bO» c2* f 0 c3

Figure 6.20: Column —Row Folded Constrained Matrix

202

In this case it was still possible to achieve four column folds, however only a single row

fold was possible. The signal list at the end of the matrix structure recapitulates the



§6.3 203

designer's request and adds any additional signals that are available on only one edge of

the matrix. Signal c3 appears on both the left and right edge, as the designer requested.

Figure 6.21 shows the constrained example of Figure 6.19 this time with row folding

first and then column folding.

folded 20 14

28

cl*

cl

c2«

16

c2

18

cin

c3*

20

bO*

bO

aO*

c3

7

15

aO

10

fO

14

ssssp.sssssssp

.......OS .....

• s.s

8.8. . .8

S..8..3..O...p

O 8.

OSS 8. . . .p
.O 8..

8

. .3 88.

..O.j 8...

...."..8..O..p
"..."si..

....«3.S...O.p

...3..S.S.....

S.. ..o p
S o

....8..•.pS.Sp

o p
o

. . . O 8. .Op

8

(6)

Current column folds/flips:
(15,6)

Current row folds:
<a0,12) (7,11) (14,1) (a0*,2) (b0*,3)
(c2\4) (c2,6)

Signals brought out to the right:
cl cl* c3* cin c3

Signals brought out to the left:
c2 bO bO* c2* f 0 aO c3 aO*

Figure 6.21: Row —Column Folded Constrained Matrix

4(10)

6(1)

3(11)

2(12)

11(14)

12(14)

1(13)

In this case only a single column fold was possible after seven row folds were made. This



§ 6.3 204

case may be compared to the unconstrained row-then-column folded example. For the

unconstrained case four column folds and ten row folds were found; as a result of con

straints there were three fewer column and three fewer row folds.

6*4. Summary

In this chapter an algorithm for topological compaction of a multi-level matrix was

described. In the first part of the chapter a technique for translating a netlist into a con

nectivity matrix was examined. The MKMAT program accomplishes this translation by

constructing a set of constraint matrices which indicate in what order rows and columns

should be placed in the MLM. The TWIST program, examined in the latter part of the

chapter, is employed to fold the MLM. TWIST can function as part of the MAMBO package

or interactively. It employs heuristics to perform simple column and multiple row fold

ing. TWIST also uses constraint matrices and cycle-checking algorithms to guarantee a

folding selection is implementable. The cycle-checking algorithm is0(/ 2). where / is the

number of folding candidates. The compaction program allows both constrained and

unconstrained folding.

In the next chapter methods for the automated generation of the topologically com

pacted matrices are described. The physical design considerations involved in mask layout

generation are implemented in two programs which form the final stages of the MAMBO

svstem.



205

CHAPTER 7

Physical Design: Comparison of Layout Tiling Methods

In this chapter the physical design aspects of MAMBO are described. These design

considerations are implemented in two programs used by MAMBO. The layout method

employed by the present synthesis package is contrasted with methods currently used in

the semi-automatic and automatic generation of asynchronous and synchronous circuits.

Three well-known styles of layout: Weinberger Arrays. Gate Matrix, and Storage/Logic

Arrays, are examined. These styles cover the range of present tiled techniques. The

context-based tiled approach for structured layout of dynamic circuits such as Domino

and NORA, which is used in MAMBO. is then presented. The context-based translator is

implemented in tool TINKER, while the tiling into mask-level geometries is the domain of

TAILOR.

7.1. Distinction Between Routed and Tiled Methods

There are two distinct methods of automated circuit generation. The first method

keeps the active circuit area separate from the interconnection area. This style is typified

by the gate array and standard cell [souk8l] approaches. In the gate array approach com

pact, general purpose, uncommitted logic blocks of fixed pitch are placed in aregular array

on chip. A programming step, involving the modification of a small number of masks,

commits the function of each circuit block. In the standard cell scheme cells of fixed pitch,

with predetermined inputs and outputs, are chosen from a library of previously designed

modules. In both these approaches a channel router is required to connect the proper

inputs and outputs between the logic biocks. Hence, these methods are termed routed.

The advantage of this approach lies in its generality. A single gate array can be made

to perform a myriad of different functions- depending only on mask steps to program the



§ 7.1 206

blocks and channel route between them. The disadvantage of such approaches lies chiefly

in their inefficient use of area due to the need for preassigned channels and to the "uncom-

mittedness" of circuit function. These approaches find their use principally in full gate

array or standard cell chips: they are only infrequent1/ mixed with custom logic on the

same chip.

The second set of methods presented here falls under the heading of tiled methods.

These methods generate circuits by gluing together cells from a cell library. Cells are

routed by abutment. Therefore there is no need for s routing tool. Because no routing is

required, it is not necessary to allocate space for routing channels. This fact, coupled with

a higher degree of customization (all mask layers are generated), results in a more area-

efficiem layout. Within the tiled category there are methods which admit of greater

optimization and methods which are better suited to particular technologies. One draw

back of tiled approaches is that the cells that compose the layout may. themselves, be

sparse. This is because the routing is now internal to the cell: if no optimization algorithm

is employed, tiling may also be area-inefficient.

The distinction between the two methods is important. Automated generation tools

which deal which synthesis of active area separately from routing can lose in routing area

whatever gain they may make from a tight cell layout. The need to handle interconnec-

tivity together with active area is especially important in the creation of multi-level logic.

In two-level logic, for example as realized by a PLA. large matrices of active devices or

placement sites are created. A single matrix corresponds to one level of logic. Hence, for

the two-level PLA. the interconnection problem is almost trivial. It involves the connec

tion of two regular arrays plus connections to input and output buffers. In multi-level

logic, on the other hand, the number of levels is greater and the amount of active area con

tained in each level is less. Therefore the percentage of area taken up by routing increases,

so a compact interconnection scheme is a requirement.



§7.2 207

7.2. Tiled Methods

7.2.1. Weinberger Arrays

Weinberger arrays were first proposed in 1967 [wem67]. At that time they were

used to fabricate PMOS gates in metal gate technology. A Weinberger array is one dimen

sional. Figure 7.1 shows a layout of a simple Weinberger array.

Q mmmm E2

Figure 7.1: Weinberger Array Layout

RESET

Since PMOS gates were used in the original realization, the tile of choice was the NAND

gate. To first order, switching speed is constant with increased fan-in for a PMOS NAND

gate. Thus it is possible to build large fan-in gates. Increased fan-in seriously degrades

the switching time of PMOS NOR gates. NAND-only circuits are logically complete. Since

high fan-in gales can be constructed, synthesis programs need not be concerned with parti-



§ 7.2.1 208

tioning large gates into smaller ones and the consequent speed tradeoffs between a single,

large gate and a series of smaller gates. Thus module generators targeted to this style are

straightforward. The MACPITTS/LBS [sisk82] system in use at MTT Lincoln Laboratories is

an example of a datapath and control generation program using this approach.

The disadvantage of such a scheme is that internally the array may be quite sparse.

To see why. note that in the Weinberger style, where power and ground busses are at fixed

pitch, one dimension of the array is constrained by that gate with the greatest combination

of fan-in and route-through. ForWeinberger arrays composed of hundreds of NANDs it is

likely that there will be a wide variation in gate fan-in.

It is possible to optimize the layout of Weinberger arrays and so compact them some

what. Optimization can be accomplished on a purely topological level by rearranging the

ordering of the NAND gates. Since both input and output signal lines must traverse the

array and can be intermixed, it is possible through gate reordering to have two or more

distinct signals occupy a single physical track. This method of rearrangement is similar to

the permutation of product terms in a PLA so that multiple inputs and outputs may share

a single physical input or output term.

Optimization algorithms to obtain the best packing on a one-dimensional interval

have been intensively investigated [ohts79] [asanS2]. In conjunction with such optimiza

tion programs Weinberger layout tiles can produce area-efficient results for single MOS (eg.

NMOS. PMOS) technologies. Such technologies are favored because their simple tile abut

ment allows routing in the array. By contrast. CMOS technology presents difficulties in

Weinberger layout routing since each signal must drive both a PMOS and an NMOS device.

Optimization in this case also is more involved. One method suitable for tile layout of

CMOS logic is gate matrix.



§ 7.2.2 209

7.2.2. Gate Matrix

The gate matrix technique was first proposed in 1981 [lope8l]. This approach came

about as an outgrowth of a system to symbolically represent the topology of matrix cir

cuits. It was used in the design of the BELLMAC-32 series microprocessors. Gate matrices

have been used to implement both static and dynamic CMOS circuits. While this technique

can also be used with single MOS technologies, it is clearly well-suited for CMOS.

Static CMOS gate matrix favors the implementation of low fan-in NAND gates. Figure

7.2 contains a schematic representation of a 2-input NAND gate and a 2-input NOR gate.

These two gates represent the most commonly used CMOS gates.

NRND NOR
Figure 7.2: Static CMOS NAND and NOR Functions

Because of mobility differences in n- and />-type devices, the />-channel device must be

two to three times wider than its n -channel counterpart. In the construction of a static

NAND gate the effect of ratioing due to mobility tends to be canceled by the requirement of

ratioing to compensate for the series arrangement of the n-channel devices. If one assumes

a mobility difference of two to one between n- and p-channel devices, then for a two-

input NAND gate the two effects exactly cancel one another and all devices may have

minimum width. Not only does this reduce circuit area, it also reduces the capacitance on



§ 7.2.2 210

the gate output. This means that the NAND gate exhibits a smaller gate delay. On the

other hand, for a CMOS NOR gate the two effects are multiplicative. Thus, if one draws a

minimum width n-channel device, the ^-channel device must be twice as wide as the n -

device for mobility and twice as wide again because the p -devices are now in series. The

additional capacitance of the p-channel source node that is shared by the output of the

gate slows down the circuit. Figure 7.3 shows a portion of a BELLMAC-32 gate matrix

which is entirely NAND in structure.

$OC*UT(C

HIT HALF-AOOCR

C0NC£*T

Odh
|0«l

I 2 S 4 a 6 T

MCmeSENTATIONAL

LINE ORMING

LC6CN0 .
.tfeTAL |POLYSlUCON

SIFFUSION(TIUNSSTOM) •CONTACT
ICXFFUSlON(COMCCT)

Figure 7.3: Gate matrix from BELLMAC-32

Topological optimization of these circuits is more difficult due to the branching struc

ture of the individual gates. Reordering techniques are not usually applied to such cir

cuits. The automation of gate matrix layout is a topic of current research [kang83b] and

there are a number researchers developing automated tools which use heuristic one-

dimensional methods to achieve compact layouts [wing85] [ishi83]. These results indicate

that optimization algorithms can greatly reduce matrix area. The results also show that

hand optimization is still belter than machine compaciion so that more work remains to be

done in this field. The optimization algorithm described in [ishi83] solves the NP-complete

problem heuristically in 0(n*) steps, where n corresponds lo ihe number of distinct gates



§7.2.2 211

in the matrix.

While optimization is more difficult, gate matrix is nonetheless better suited to the

CMOS technology because it has a smaller "granularity". That is. instead of constructing a

tile which forms a whole gate, the gate matrix approach places separate rectangles of

polysilicon. diffusion, and metal. Thus, gate matrix is more flexible. This can lead to more

area-efficient circuits but is also responsible, in part, for the difficulty in circuit compac

tion.

7.23. Storage/Logic Arrays (SLAs)

SLAs were first described in 1975 [pati75] and later extended by Patil and Welch

[pati79]. They are regular structures derived from PLAs. Their chief advantage over PLAs

is their ability to embed storage functions within the combinational logic array.

Typically a designer will construct an SLA from a tile set designed for a specific tech

nology. SLAs have been built in I2L. NMOS and CMOS. The CMOS SLAs appear most

promising. CMOS SLA elements include a single inverter, a double inverter, a simple NAND

gale latch, and a pass transistor [smitS2]. Each of these cells is represented by a single

character to the designer. In much the same way as the personality matrix of a PLA can be

manipulated symbolically, the characters representing the SLA elements can be arranged.

Figure 7.4 shows the symbolic layoul of an adder/subiractor in CMOS.



§ 7.2.3
212

ag

I-t -i-i"i

L^fel
(33

E „

^HJTJ Laigial fgl S^ ±

Si iIHHH3H3
3333aJ3

(3 H Si 3
11

iiimill

Figure 7.4: Symbolic Representation of USCM Adder/Subtractor

Because the layout is very similar to aPLA. ii is possible to employ similar folding and
splitting algorithms to optimize SLA area. Again because the SLA. like the PLA. is regular,
such structures are easy to machine generate.

While SLAS have proven useful in sialic NMOS and CMOS circuits [smit82]. they are
more difficult to construct for dynamic circuits. Because of the embedded logic concept

used in SLA* an additional clock would be required for each level of inverter logic. The
extra space needed to route these signals would override any gain in other parts of the cir
cuit. Another drawback of SLAs is that the minimum cell pilch is constrained by the larg
est cell in the tile set. Since some tiles are quite complex (ie. aDflip-flop) area utilization
can suffer. An alternative approach is to allow cells which are multiples of some funda
mental dimension. This was done in the CMOS tile case. However, when this is done, spe
cial "blank" cells and "bender" cells must be created to route signals. The result is that
SLAs in CMOS are best suited to sialic applications and to designs where the majority of
logic is combinational. Notice thai the USCM example shown contains acore of compact
combinational cells (represented by / and 0symbols) surrounded by aperiphery of latches



§ 7.2.3 213

and flip-flops. The "embeddedness** of the SLA has been lost. The structure begins to

resemble a PLA with external synchronizing logic.

A further disadvantage of the CMOS SLA approach is the necessity for a process that

supports Schottky diodes. The AND and OR planes of the SLA are compact because they

utilize these diodes to create a "folded-plane" structure. Diagrams of AND and OR plane

construction are shown in Figure 7.5.

' i<r i<r i<r

<•>

Figure 7.5: CMOS AND Plane(a) and OR PlaneCb)

The conclusion is that SLAs offer a structured design approach quite similar to PLAs.

SLAs can implement multi-level and dynamic logic, but best success appears to have been

obtained with single AND and OR plane implementaiions in static designs. CMOS SLA

designs do not appear particularly area-efficient. While designs based on the SLA have been

submitted for fabrication, no lest results have yet been published in the literature.

7.3. A Structure for the Layout of Complex Domino Cells

It has been shown that the Weinberger array layout technique is a good maich for

single MOS technologies and that the gate matrix technique is suiuble for layout tiling of

static and dynamic CMOS circuits, because of its greater flexibility. SLAs offer a means of

combining combinational functions with storage but appear to have drawbacks in fabrica

tion and area efficiency.



§7.3 214

One advantage the Domino configuration has over static CMOS approaches is a smaller

gate count and hence, a more compact layout. To take advantage of Domino-style circui

try individual gate clusters should be complex. In other words, since the overhead of

clocking gates and output inverter is constant, greatest benefit is realized when complex

AND/OR functions are packed into a single gate. None of the layout tiled structures

reviewed here is ideally suited for Domino-style CMOS logic layout and a new structure is

needed. This structure should have the following characteristics:

• Ability to take advantage of complex AND/OR gates
• Suitable for dynamic logic
• Able to handle multi-level logic without an extra routing penalty
• Allow mixing of static and dynamic functions and static latches

so that the module may be used as part of a finite-state machine
• Can be generated and optimized by a synthesis tool

A hybrid structure having characteristics of both gate matrix and Weinberger arrays

fits these requirements. The ALU portion of the BELLMAC-32 was designed employing

gate matrix and using dynamic Domino CMOS logic. A section of the ALU block appears in

Figure 7.6 (from [law83]).

STRB2 I1ET36-^|

r*T36-||

©

STRBt-|

Figure 7.6: Gate Matrix Domino CMOS

The Domino gates in Figure 7.6a are complex: they combine two or more Boolean functions



§ 7.3 215

but have a single output. The dual />-channel devices are employed to correct for the

charge redistribution problem in dynamic circuits. The gates shown in Figure 7.6b are

static inverters. It is clear that gate matrix allows intermixing of static and dynamic

styles. The advantage of Weinberger arrays is that they are easy to layout, since there are

only two basic cell types (NAND and NOR). They are also easy to optimize since they have

a simple structure. While Weinberger arrays are routinely machine generated, gate matrix

layout has traditionally been performed by a layout engineer at a text terminal. The

designer manipulates symbols which correspond to layout geometry. The current gate

matrix cell set contains about 20 symbols.

The new layout structure resembles gate matrix but extends it in an important way.

Instead of hand-entry of symbols which map one-to-one into layout, the layout is gen

erated from the higher-level Boolean description. This extension is important, not only

because it frees the designer of hand-entry, but also because computer-aided algorithms

can be employed to optimize the circuit layout. In particular, it is possible to generate

more complex individual gates and increase area efficiency and circuit speed through the

methods used by MOSMESH and TWIST and mentioned in Chapters 5 and 6. The new tiled

approach is examined in detail in the next section.

7.4. Context-Based Tiling— TINKER

The tool TINKER fits in the MAMBO pipeline between the topological compaction of a

logic array and its mask-level generation. It generates an intermediate representation of

the logic array. This intermediate form contains more information than the personality

matrix but not as much as the actual mask-level layout. It may reflect electrical design

considerations and can contain information needed in the layout of folded rows and

columns. While TWIST is technology independent since it deals only with connectivity.

TINKER is certainly technology dependent and may be process dependent as well if it is

used to resize devices based on electrical characteristics.



§ 7.4 216

The personality matrix needed for topological operations is quite abstract. The input

matrix to TWIST is composed of characters from the set [s p o . ~ }. The output matrix

characters include, in addition, the characters [S P O] to denote gate columns which have

been flipped. The output matrix from TINKER, by comparison, conuins characters from a

much richer set of symbols. Currently there are about 60 different symbols defined in the

TINKER/TAILOR library. The larger cell set is used to define the personality matrix cells

in different contexts.

Two reasons to define a multiplicity of layout cells to handle a single cell are: l)

electrical resizing of a device in context and 2) need to truncate or stretch a cell as a result

of a local anomaly (such as a break or fold) in the structured array. Electrical resizing of

devices is generally most important in ratioed logic, such as static logic where device size

relates directly to speed. For the dynamic circuits used in MAMBO cells with differing

device lengths and widths are not currently employed. However, stretched and truncated

cells are used.

7.4.1. Definition of the CONTEXT File

The notion of context-based tiling allows the construction of two separate tools: one

which considers only topological aspects of an array and another which can do a simple

one-for-one translation of a character matrix into mask geometries. The translation from

a personality matrix to a more detailed, electrical matrix is accomplished by a user-

supplied context file. A fragment of such a file is reproduced in Figure 7.7.



§ 7.4.1 217

((symbol s) (shift s) (boundary )
((left sSpPoO" ) (below sSpPoO" .) (right sSpPoO" ) (above sSpPoO'.) r )
((left sSpPoO' ) (below ;)(right 4) (above 0 m )
((left sSpPoO" ) (below sSpPoO".) (right 4) (above ;»1 )
((left 4) (below 0 (right sSpPoO' )(above 01)

)

((symbol o) (shift s)
((left sSpPoO" ) (below sSpPoO~ .) (right sSpPoO" ) (above sSpPoO* .) u )
((left sSpPoO" ) (below sSpPoO*.)(right 4) (above sSpPoO' .) d )
((left 4) (below sSpPoO".) (right sSpPoO" ) (above ) b )
((left 4) (below sSpPoO" .) (right sSpPoO' ) (above sSpPoO'.) b )
((left 4) (below 0 (right sSpPoO" )(above 0 e )

)

((symbol o) (shift p) (adjacent)
((left sSpPoO" ) (below sSpPoO~.) (right sSpPoO" ) (above sSpPoO'.) U )
((left 4) (below sSpPoO' .) (right sSpPoO" ) (above .) b )
((left sSpPoO' ) (below 4)(right 4) (above 4) c )
((left 4) (below sSpPoO".)(right 4) (above sSpPoO".)K )

)

((symbol.) (shift s) (boundary )
((left sSpPoO' ) (below sSpPoO" .) (right sSpPoO" ) (above sSpPoO'.) + )
((left 4) (below sSpPoO".) (right 4) (above sSpPoO".) I)
((left 4) (below $ (right 4) (above sSpPoO" .) - )
((left.) (below ) (right.) (above ). )

Figure 7.7: Fragment of TINKER Context File

Each cell is assumed to be recungular and thus has up to four neighbors. (It may

have fewer if it is on the edge of the tile matrix.) The four edges of the cell are named left.

right, above, and below as shown in Figure 7.8.



§ 7.4.1 218

ABOVE

LEFT TILE RIGHT

BELOW

Figure 7.8: The Four Borders of a Tile

For each symbol appearing in the personality matrix there is an associated set of rules

which specify which electrical tile implements that particular personality tile. Each sym

bol and a shift character are defined in the context file. Thus there should be a line of the

form:

((symbol personality^character) (shift columnJieader) [(boundary ) (adjacent )]

Each personality character is defined for each possible gate type. At present the two possi

ble columnJteaders are s and p. In addition there may be two optional arguments boun

dary and adjacent. Boundary applies in the horizontal direction (the direction of signal

flow) and specifies that signal lines are to be brought out to the module boundary. This

option is important in the routing of external signals. Normally mask geometries carrying

signal information are suppressed when a "blank" cell, a cell which has no active devices,

is encountered. External signals, however, must bus through such cells and be available at

the module boundary for interconnection. The adjacent option applies only in the vertical

direction (the gate orientation). Normally TINKER searches the entire extent of a logical

gate (a gate may be only a fraction of an entire column if that column has been folded).

With the adjacent argument TINKER will only look at the cells immediately above and

below the current tile to determine if a particular rule is satisfied. These options apply on

a per personality^character basis. In the future, the context file format may be generalized

to support the adjacent flag on a tile character basis. Also, at present, the search depth is a

binary flag. Future versions might allow a variable search depth limit.



§ 7.4.1 219

For each personality character, for each column header type, there is a rule set. The

rule set has the form:

((left char_set) (below char_set) (right charjiei) (above char_sei) tile_char )

This is taken to mean:

Relative to the current matrix character, if a character on the left is in the left set
and a character on the right is in the right set and a character above is in the above
set and a character below is in the below set then select the target character

There is a special character for "edge" and if any set is null the predicate will never be

selected. The edge character is ";" and must not be one of the usual personality matrix

characters. When the edge character is a member of a border set it is taken to mean:

If the border matrix character is a member of the specified set or if there is no bord
er character in this direction because the current matrix character is on a logical
signal or gate edge then declare the border character tomatch the conditions.

It is often possible to come up with a set of orthogonal rules. If this is the case the

order of rule evaluation will not matter. However, it is easier to express rules in the form

of:

If expression then expression else if expression then expression ...

Rules are evaluated in the order they are entered into the context file by the designer. As

soon as a match fails on any component of a rule evaluation the entire rule fails.

If a context arises which the designer has not anticipated then no rule will match. In

this case the tiler will return "?" for the tile character. By turning on the —debug flag to

TINKER the designer can trace the execution of each rule for the offending context.

The simplest rule set consists of a single rule which matches everything. In this case

all edges contain the full personality character set. Such a rule might be used if a cell is

completely context-independent. On the other end of the spectrum there may be a very

large number of rules to match special cases. In practice about 10 to 15 rules per



§ 7.4.1 220

personality matrix cell is found to be about average.

Figure 7.9 shows a personality matrix after compaction by the TWIST topological

folding tool.

sssssp.sssss

cl* .s..s..os... 28(8)
c2 .ss s.. •

18 .o s

cl s.ss

c3 i...s...s...

7 .S....O

15 oS
c2 s..ss.•»••..

c3* S.s s
20 ..O.......S.

&0 d***a ••• s.

12 ..P..."i.... a0*(7)
11 ..P

10 ..P o...
6 .OP

4 ..P o..

3 ..P o.

2 ..P o
1 O.P..S.S.... b0*(6)
fO ..O...s..pss b0(7)
16 S..o...s.... cin(8)
14 ....o...."..

ssp

(9) (6) (12)

Figure 7.9: Personality Matrix after folding by TWIST

After translation by TINKER the electrical matrix shown in Figure 7.10 is obtained.



§ 7.4.1 221

sssssp.sssss

+r++ll lbr+-H-
+rr+++++r-H-+

•fb-m i ii it»r

r+rr< •••••••

r-++r+++r+++

+T+-H-fd+++++

bR+++++++4++

mf+rr+++++++

T+r+4iiii fr+r
++b+++++-H-r+

R+-++"+++~r+
++RI I l"r++++

++L+++++d+++

+bL+ HiiiiM
++L++++++C++

++L+++++++d+

b+L IIr+r-H-H-

++KI Ilr++Rrr

R«4-+d IIIr+j-H-
+++-e " —
tap

Figure 7.10: Electrical Matrix of Figure 7.9 after TINKER

The supplementary information about where row and column folds occur is now

contained within the tile matrix. The "+" indicates placement sites occupied by intercon

nection area only. This file forms the input for the final tool in the MAMBO pipeline. This

is the layout generation tool and is presented in the next section.

7.5. Mask-Level Layout Generation— TAILOR

The last stage in the MAMBO pipeline involves the translation of the electrical matrix

produced by TINKER into a mask-level representation. While TINKER may need to be pro

cess dependent to express electrical considerations it is possible to make the back-end tiler

completely technology and process independent. TAILOR need have no knowledge of the

process that the array logic is to be fabricated in. The designer simply constructs a tile

library in the mask-level language of his choice. The language used for the examples



§ 7.5 222

presented here is C1F2.0 [meadSO]. The circuit designer must also provide a symbol file

which contains bounding box information about each tile. Also contained in this file is the

binding between the tile's library name and its one character representation in the electri

cal matrix. All that TAILOR need do is refer to the information in the symbol file, look up

each tile in the tile library, and "stitch" it together with the other tiles, to form the final

matrix. In fact. TAILOR might be made independent of the geometric layout language,

except that in the process of stitching tiles together it must produce a few constructs in the

layout syntax. The language-dependent parts of TAILOR are restricted to a few pro

cedures.

Since the designer specifies tile bounding box data it is possible to have cells abut,

overlap, or have one tile wholly contained within another. For most structured layout

applications, however, it is often best to enforce strict tile abutment and disallow overlaps.

This rule may be enforced by giving the proper options to TAILOR. Two options.

—constant jpidth and —constant^height tell TAILOR that all cells in each row and column

are expected to have the same dimension. TAILOR thus allows enough space for the largest

tiles and assumes that all tiles abut. TAILOR does not understand design rules and does

not check for design rule violations. It is the tile designer's responsibility to enter correct

tiles into the tile library. Tiles are design rule checked upon entry into the library. This

is more economical than checking them each time a matrix is assembled. Of course, the

tiles must not violate design rules at their boundaries with neighboring tiles.

TAILOR works by first building up an internal representation of the matrix. Depend

ing on the options selected TAILOR makes several passes over the matrix, for example to

determine row and column spacing. Signal names are produced on an optional label layer

which the designer may specify. TAILOR traverses the input matrix along its y—axis, thus

along the gates of the circuit structure. It first must ascertain the type of each gate by

looking at the column header information. In the case of folded or flipped columns this

information appears along the bottom edge of the array. TAILOR then places each tile,

translating symbol for symbol from the tile matrix. Tiles are placed assuming their lower



§7.5 223

left hand corner is the index origin. If the constant spacing options are invoked tiles will

be spaced at regular intervals: without the constant spacing options tile are aligned so their

bounding boxes, as specified by the user. abut. Finally. TAILOR calculates the physical

bounding box in the user's units.

7.5.1. Tile Construction and Layout of Tiled Structures

This section examines the tiles required to build the one- and two-level structures

produced by MKMAT and compacted by TU'IST. The four basic gate structures were previ

ously presented in Chapter 6. These basic gates are reproduced here in more detail and

showing potential column folds.

SERIES/
SERIES

M1

<
PARALLEL/
PARALLEL

Figure 7.11: Four Basic Gates



§ 7.5.1

H f
Hf

h_r

h t
^

SERIES-PARALLEL/

SERIES-PARALLEL

PARALLEL-SERIES/

PARALLEL-SERIES

Figure 7.11, continued: Four Basic Gates

224

These structures can be broken down, in turn, into more fundamental cells which are the

atomic tiles. There are two basic active element tiles, the SERIES and the PARALLEL tile.

Cifplots showing their mask-level appearance in a current CMOS process are shown in Fig

ure 7.12



§ 7.5.1

SIGNAL

GATE

SIGNAL/^

225

GATE OUTPUT

o
>»»»»»»»y

GND

**4!!!S!J?;i

Figure 7.12a:Basic SERIES Tile

OUTPUT

^

GND
Figure 7.12b: Basic PARALLEL Tile

In addition to these tiles is an OLTPUT tile, used to connect the output from a gate, which

runs vertically, to a signal term which runs horizontally. An OUTPUT tile is shown in

Figure 7.13.



§7.5.1

GRTE OUTPUT

SIGNflL<I^

GND

Figure 7.13: Basic OUTPUT Tile

226

The final core tile is the INTERCONNECT tile. This has two major variations depending on

whether it spans a parallel or aseries gate. This tile carries asignal line horizonully. If it

is a parallel INTERCONNECT tile it carries power, ground, and gate output in the vertical

direction. If it is a series INTERCONNECT tile it carries the gate signal, ground return, and

output in the vertical direction. Examples of the interconnect tile are shown in Figure

7.14.



§ 7.5.1

SIGNAL

GRTE

S,
SIGNflL^I^.

GATE

Si
OUTPUT

J

GND

OUTPUT

XGND

000000000}
0+0*****0%<
000000000%

,g£::.i::::::ti:
as:::::::::;::

••••••w********!..«••«•••' SlslIJII.JI;**.
;;;..Ip<v»*<*<<^I......... <fSIJ«!!!S.K••
......y*****"*A......... K5i!!!!2!St!*.*

;ja:::;::::::t:
::&s::::::::::::

^::«ss::::::::::::
zaz. ***»»•••••••••* • •

^^3::f«s::;:::::K::
rcrcfli%;z?fffr''

Figure 7.14: Two Examples of the INTERCONNECT Tile

227

These tiles or variations of them, selected by TINKER, are placed according to bounding

box information to make up the gates shown schematically in Figure 7.11. The final mask

layout of the electrical matrix of Figure 7.10 appears in Figure 7.15.



§ 7.5.1 228

Figure 7.15: Mask Layout of Figure 7.10 after TAILOR



§ 7.5.1 229

7.5.2. Modification of Tiles to Reflect Process Changes

The tiles shown in this chapter are based on a double metal, single poly process. It

would be possible, though less area-efficient, to design an analogous set of tiles for a single

metal, single poly technology. Alternatively, if a polysilicide layer were added it would

be possible to design an electrically superior tile. The horizontal signal lines could be run

in polysilicide. The inclusion of buried contacts and relaxation of design rules between

vias connecting different layers would reduce tile area. When the process technology

changes the tile sets can be redesigned to take advantage of the latest modifications. If the

changes are small. for example a new set of design rules but no new layers, probably only

the tileset at the TAILOR level need be updated. If. however, the process changes to the

extent that the designer wishes to introduce new tile variations, then TINKER'S context file

would need modification. Note that it is only necessary to modify the tileset and context

file but not the synthesis tool itself in order to reflect process changes. After such

modification old designs can be regenerated in the new process. If greater modifications to

the layout scheme were required, such as the addition of multiple column folding, then it

would be necessary to extend MAMBO.

7.6. Summary

Three common layout methods, which cover the range of tiled techniques, have been

been presented. Layout methods which require the use of routers were not examined: the

focus of this research is on an automated approach where routing is not required. In order

to uke advantage of the property of dynamic CMOS circuits that allows construction of

complex gates, as exemplified by the Domino style, a hybrid, context-based approach has

been developed. This scheme has the flexibility of gate matrix and is efficient in the layout

of dynamic, non-ratioed logic structures. Automated layout generation tools TINKER and

TAILOR combined with the topological optimizer TWIST provide efficient, machine-

generated layout much like the automation of Weinberger array construction.



230

CHAPTER 8

Comparison of Synthesis Methods

In this chapter several of the larger pieces of combinational logic used in the control

portion of the CMOS SOAR chip are used as basis of comparison between synthesis:

methods. Much of the combinational logic in SOAR was implemented in 14 PLAs of vary

ing sizes. Circuits designed by MAMBO are contrasted in delay and area with PLA imple

mentations of the same logic functions.

8.1. Comparison Criteria for Multi-Level Matrices and PLAs

In the tables below the standard PLA implementations of the SOAR control logic are

compared to the multi-level matrix implementation produced by MAMBO and presented in

the previous chapters.

There are two basic metrics for comparison of logic implementations: critical path

speed and circuit area. Often the optimization of one of these quantities is to the detri

ment of the other. This is the case in the MAMBO system. However, one can also use gates

of differing capacitances to produce a range of circuits from fast, large designs to slower,

more area-efficient ones. This area—speed tradeoff is one advantage the multi-level syn

thesis system has over a straight PLA tool which performs only area compaction and pro

vides no convenient method for delay optimization.

The table in Figure 8.1 compares PLA and MAMBO implementations of five SOAR

PLAs. In this figure the fastest multi-level implementation was chosen. Some explanation

is necessary to understand this figure. First, the worst-case speed is easily determined in

the MAMBO case where a recursive routine can trace back from all outputs to fundamental

inputs and keep track of the longest path. This is not the case for the PLA-based imple

mentation. To determine the worst-case delay through a PLA one must try all possible



§8.1 231

combinations of input vectors and observe all outputs. Instead of doing such prohibitively

expensive exhaustive tests, each input line was toggled individually and the longest delay

at the outputs, indicating highest capacitance on the pterm lines, was taken as a "worst

average" case. Both circuits were measured by transient analyses using SP1CE2 and both

circuits had outputs driving a nominal fanout of three. Circuit areas are given in tile

units. The actual size of tile unit will vary according to implementation. A typical PLA

tile might be 8X x 8A. A typical MAMBO tile in a current double-metal, single-poly pro

cess is larger, about 8X x 15X. It is assumed that the PLAs are implemented using an n -

channel core and p -channel pullups with their gates grounded. Thus the PLA consumes

static power. The MAMBO design consumes zero static power. If the dual of the n-

channel PLA core were built then PLA power consumption would be reduced but device

count, and area, would almost double. Area values for the folded PLAs were created using

the simple folding option in PLEASURE [demi82]. For the MAMBO circuits simple column

folding with multiple row folding was allowed since the more complex tiles can accommo

date this without need for special folding cases.

Circuit

Speed (ns) - Area (tiles)

PLA MAMBO
PLA

MAMBO
Unfolded Folded

xcplal 20.6 | 8.1 1763 1075 2948

cplal 18.1 i 8.8 2346 1587 3696

apla 9.0 { 8.7 578 408 1591

tpla 16.0 1 8.3 805 483 2772

eondpla 20.5 9.5 816 612 4026

Figure 8.1: Two-Jevel Versus Multi-level Implementations

From the figure it is apparent that decreased circuit delay is paid for by increased circuit

area. The largest MAMBO circuit is eondpla. a circuit which is not particularly large as a

PLA. Condpla has only two outputs but a very high dependency of input signals on these

outputs. MAMBO achieves its speedup in part because it builds smaller, faster gates. For

the condpla case a large number of these gates is needed. The result is a large, very sparse

matrix. The condpla PLA matrix is relatively dense. If multiple column folding were pos

sible the area could be significantly reduced.



§8.1 232

8.2. Area Versus Speed Tradeoff in MAMBO

By constructing a high capacitance cell it is sometimes possible to make a good tra

deoff between reduced circuit area and decreased speed. The table in Figure 8.2 shows runs

using the same set of test cases but with a high capacitance tile.

Circuit Speed 1 Area

xcplal 18.7 1479

cplal 21.5 1242

apla 8.1 I 841

Figure 8.2: Area/Speed Tradeoff in MAMBO

The control circuit xcplal is both smaller and faster implemented as a multi-level matrix

by MAMBO than the PLA implementation. Figure 8.3 shows the MAMBO mask layout in a

2m industrial process. For comparison, the PLA implementation is shown in Figure 8.4 in

the 3p process employed to fabricate the SOAR chip. The plots are at the same scale.



§ 8.2 233

Figure 83: Control Circuit xcpla 1 Synthesized by MAMBO



§8.2

_ ^.^caw-iefc.itBf imi*_

Xtmtrjmlty.m-ik

.-TT^r^ri»«HOI--»Hi!«:>::-»r>h«^!<t:»:lf;!:«jfc

'' ^SstfK'di^'di^K^Ki^^Mii^iilf:!:

a. t n n h nns • a S n. it n ,n aa IB ana

's/s. rx.-.rx. tx.-ex.-tx.-xx.< tx.-xx.-X; Xx.-'xx-xt-

BoaaiTiiciii""

&999WB BSWBT '•§• si. ••••inti' til

• :grfi!«««ippripriiii

iMiFM^s^nrriiiiii

234

9223

jna |aQg «•;. •»«•••«* ^isLiilll

5P"BslWl!Rf=TO

^«ilB:l^i:»:l3rj^)r.t»;^:M.!Ki:«l);i-Hit:
" ibmir.m-\ivmiz

^**Mn4i*lii^"4i;ta:ir±^y:B^
^^i^n^n^i»j^l;B^^i^i»:BMip.ifliif.Bi:]5i: "'"'•"

' rr^SiaW'-ii:W"di:«^«-»!<i-«::'f:i:«W:»jP!:-' '
:^S^»Tdi.»Hi-«^«^J-lt^.r:m;i>-j':»ny.l:
:[jj^S^MfTTiWriht^yC^c^lf^iW-yiiPi:

'• ; :~ iai«i^t:«:;ii:«::^:^t;r^itr^ri£:i:

"ili|I!!a=:!=:?i:l-

25333 spfea

^•--•••-rriaa|iiiirnrti|||
'S.'s'rr.-'rr. rr.-rr.-rr. -nr-'rr•rr-i' xt•••xt.'n.-jr •rj.si.'rz-T;;'}, nr.-rr.-'rKrr.-rr.-rr-rr.-r*

^- B*- - - • 9 l.fl ILil III LII111111
sJ^HH »•)•;•:•;• n; t'-a^a:i!l3HI:f f-jrPr^|j||||

K' I f'g tf'gg'rg'g B

'iSlii51^1310^
!•:•:• •*: tKBBBIHS!1'

//. oo.co u..<a<:u. oc.:cc-.4A'4.: ** aa-«u-*x aa-aa.a+j

M. •!•:!'. BL

x-rx.rx. Tx.-risfz.-r. xx^xt-'xj-vt •xj.-xj.-xj.'xj'.'j.

WlWWl-lMM
afcga as s Mii.iiiLiijjas
»X«VBIB;B1' BBIBIBiBIHKB:!:

Mll&&C€&(ft(ft(&&fi 5c3i>*2v<Cv85oKvi

i&&SS:SS:S:S:S:S 5::& Si &Si ^S S S SSSS

Figure 8.4: Control Circuit xcplal Implemented as a PLA

While cplal is now slower than the PLA implementation it is also more compact. Since the



§8.2 235

designer can easily modify a tile to increase capacitance he has the opportunity to create a

cell which meets a variety of specifications.

83. Effect of Series Chain Length on Circuit Speed

By making use of the —chain option in MOSMESH it is possible to study the effect of

limiting chain length on circuit size and speed. The table in Figure 8.5 shows that limiting

chain length often increases circuit speed. In those cases where it does not it is because the

chain restriction has forced the introduction of more stages into the critical path and thus

caused a slower circuit overall.

Circuit
Series

Length
Buffer

Depth
Clusters

Speed (ns)
before after

xcplal
8

5

2

3

32

66

30

54

26.0

18.9

tpla
6
5
4

4

4

3

68

66

70

52

52

55

13.1

10.0

8.3

cplal
7

5

3

3

25

29

24

28

21.5

22.3

Figure 8-5: Series Chain Length Versus Circuit Complexity and Speed

8.4. Effect of ON-set Versus Literal Count Minimization

If the designer chooses to construct circuits which have individual gate clusters with

a depth limited to two levels, then the ESPRESSO program can be used to perform Boolean

minimization. ESPRESSO can be invoked in two ways. In its normal usage within the

MAMBO pipeline it performs single output circuit minimization by merging cubes and

checking for containment of one cube within another cube or set of cubes. It produces the

resulting minimum ON-set of cubes. If the Boolean equations are entered by a circuit

designer with knowledge of the function he wishs to construct, this mode will frequently

yield the best results. However, if the Boolean equations have been generated by a

higher-level tool and are themselves an intermediate step, then minimization of equations

by literal count is often helpful. When this form of minimization is used the resulting



§8.4 236

circuit will often be of a mixed ON-set. OFF-set form. That set which has the fewest

literals will be selected to implement the function. In ESPRESSO the natural ON-set is

always in AND-OR form, thus the OFF-set will be in OR-AND form. By complementing

inputs and outputs ESPRESSO can be made to produce an ON-set which is OR-AND and an

OFF-set which is AND-OR. In uncomplemented form the top-level of a two-level OFF-set

gate will be series (AND) in nature. Unless a long series gate can be tolerated (for example

by a high capacitance ceil) the OFF-set optimized cell will generally be slower than its

ON-set dual. However, the circuit which has been literal-minimized and built with a high

capacitance cell may not only be faster than its dual, it may be more compact as well.

Figure 8.6 below summarizes results for various test cases with and without literal optim

ization.

Circuit Optimization
Series

Length
Clusters Speed (ns)

Before After

xcplal

ON-set

Literal
ON-set

Literal

8

8

5

5

32

30

66
41

30

28

54

35

26.0
18.7

18.9
15.2

cplal

ON-set

Literal

ON-set

Literal

8

7

5

5

30

25

58

29

28

24

52

28

25.0

21.5

21.7

22.3

condpla ON-set

Literal

9
5

25

14

25

14

30.9
69.5

Figure 8.6: ON-set Versus Literal Boolean Minimization

For xcplal the literal minimization gives smaller, faster circuits: for cplal the circuits are

smaller but not always faster: for condpla a very compact, but very slow circuit is gen

erated with literal count minimization.

The literal count/ON-set minimization switch gives the designer another way to trade

off the parameters of circuit speed and layout area. Therefore the designer can choose the

speed-area ratio he needs by constraining the number of devices in a series chain, by

adding in precharge capacitance, and by selecting different Boolean minimization schemes.



§ 8.5 237

8.5. Summary

The multi-level synthesis technique implemented in the MAMBO pipeline has been

compared with the two-level approach of PLAs on combinational circuits. It was shown

that the parameters of circuit area and speed trade off against each other. For all the

examples tested it was possible to construct a multi-level circuit which was faster than

the PLA implementation. In a particular case the multi-level array was both faster and

more compact Than the PLA version of the same circuit. By constructing varying capaci

tance tiles or constraining the number of devices in series the designer can choose an imple

mentation that meets specification. The MAMBO system may also be run on two-level

logic functions. In this case powerful Boolean minimization algorithms can be used to

reduce the number of devices by literal count minimization.



238

CHAPTER 9

Conclusions and Further Work

The purpose of the research presented in this dissertation was to create a system for

the synthesis of combinational logic. The system was constructed as a sequence of smaller

programs called the MAMBO synthesis package. Each program in the sequence or pipeline

reads from and writes to a text file: and thus new tools may be inserted into the pipeline

easily. As a result, the system can be used as a framework for the development of combi

national logic synthesis algorithms. An example of this framework nature is the addition

of the ESPRESSO minimization program. After many of the other tools had been

developed, the need for a two-level Boolean minimization tool became apparent. Because

the framework is modular, the ESPRESSO program was inserted into the pipeline within a

few days.

To focus on a number of specific synthesis issues the problem of constructing a struc

tured multi-level logic circuit in a dynamic technology was chosen. A tiled layout

approach was used because such methods combine active circuit area with routing area.

This obviates the need for an additional routing tool. Multi-level logic was selected

because it provides a degree of flexibility in circuit construction not found in methods like

the PLA. which expand all logic expressions to two levels. This flexibility allows the

designer to trade off layout area and circuit speed. Finally, a dynamic CMOS design style

was selected as the target technology. The CMOS technology was chosen over NMOS

because of the former's lower power consumption. By using a dynamic style device count

may be significantly reduced over static CMOS designs. Further, dynamic designs pose

fewer problems for automatic layout transistors with each input, thus easing the problem

of signal routing.



19 «9

In the first chapter the problem of combinational circuit synthesis was introduced

and previous approaches were reviewed. Chapters 2 and 3 contain a comparison of

different implementation technologies and present the results of two fabricated test chips.

Chapters 4. 5. 6. and 7 are devoted to explaining •he minimization, delay optimization,

area compaction, and physical design algorithms employed in MAMBO. In Chapter 8

results of the MAMBO package and comparisons with PLAs used to implement the same

combinational logic functions from a 32-bit microprocessor were presented.

The major topics of this dissertation arethreefold. First, the design and implementa

tion of a novel multi-level combinational logic synthesis system with a regular matrix

layout structure was presented. The synthesis package creates a mask-level layout from

Boolean expressions and the circuits generated are efficient in both speed and layout area.

In addition the circuit has been electrically optimized to be free of charge redistribution

problems. The second major topic is the development of a delay model to evaluate an

arbitrary mesh of charged and discharged MOS devices. This model allows one to quickly

and accurately determine the transient delay of a cluster of devices, for example a complex

Domino-style gate, rather than requiring a detailed circuit simulation. The third aspect of

this work is the context-based layout tiler. Layout tilers have been constructed in the

past, but by adding the notion of context to a basic tile, oneof a series of variant tiles may

be selected depending on the tile's neighbors. This feature is useful in resizing active dev

ices, for example, in a series chain, or for substituting compacted tiles in a region where a

column or row of the layout matrix is folded. In addition to these topics a 32-bit dynamic

Domino CMOS ALU was designed and fabricated to gain insight into Domino design tech

niques. The ALU uses a novel modification of the carry bypass scheme to provide carry

acceleration while maintaining zero static power consumption and a ratioless style.

The current MAMBO pipeline consists of the seven stages described in this report plus

an auxiliary program to generate transient delay limes for circuit clusters. In addition, the

tools EQNTOTT and ESPRESSO may be inserted into the pipeline. Figure 9.1 gives a break

down of the amount of 'C code (including comments) in each of the various pipeline



§9

stages.

Tool Lines of Code

MGMG 2665

MXTBL 1538

MOSMESH 2882

MIMIC 843

MKMAT 1653

TWIST 4112

TINKER 1048

TAILOR 1244

Total 15985

Figure 9.1: Breakdown of MAMBO Pipeline

240

As a result of studying synthesis problems with the MAMBO framework a number of

conclusions can be drawn. First, it has been shown that the problem of charge redistribu

tion must be taken into account in dealing with dynamic circuits. Because of the charge

redistribution effect it is often necessary to partition large, complex dynamic networks into

a tree of smaller clusters. The partitioning of circuit networks has a direct result on the

speed of the logic circuit and circuits may be partitioned into many low capacitance nodes

for less delay, or a smaller number of higher capacitance nodes for greater area compac

tion. Second, it is possible to topologically rearrangecircuits to reduce layout area in much

the same manner as topological folding of PLAs. In the current framework algorithms

have been developed which allow simple column and multiple row folding. Signals may

be placed according to external constraints. Third, context-based tiling is a convenient

method for implementing circuits which have been modified geometrically or electrically

depending on area compaction or electrical optimization, respectively. Finally, by perform

ing both delay optimization and topological compaction the circuit designer can build the

module which best fits into a larger scheme. MAMBO results show that circuit

configurations can be constructed which are more than twice as fast as similar PLA imple

mentations and further speed improvements may be possible with better multi-level

optimization techniques. At the other extreme areconfigurations slightly faster than PLAs

which are comparable or more compact in size.



§ 9 241

Several aspects of circuit design described in this dissertation involve the analysis of

"special cases" and it does not seem likely that a single algorithmic approach will ever

handle these cases uniformly. A number of the MAMBO tools, for example MOSMESH. use

heuristic "rules" to process these special cases. It would be interesting to re-implement

these tools using a rule-based system. However, at various stages of circuit optimization,

powerful algorithmic procedures are used (eg. the cycle detection algorithms in TWIST)

and therefore a framework which supports a mixed rule-based and algorithmic approach

seems best.

There are many open questions in multi-level logic design. As yet there are no good

methods for efficient logic optimization of multi-level networks. Presently MAMBO can

take advantage of Boolean minimization by using the standard two-level techniques

employed by MGMG and ESPRESSO. It would be interesting to insert a multi-level optimi

zation tool into the MAMBO pipeline.

The present synthesis tool is designed for a matrix layout structure. In this structure

cells are routed by abutment. One of the drawbacks with this approach is that although

Domino logic allows complex gates (in fact complex gates are more area-efficient than sim

ple gates) the matrix scheme only accepts two-level clusters. If a layout method were

created which supported multi-level circuits, such as standard cells, then it would be pos

sible to compare the area efficiency of the two approaches. Standard cells have the draw

back that channel area is required for cell interconnection.

At present the precharge and buffer devices of each Domino gate are constrained to lie

along the top and bottom edges of the matrix layout and input and output signals are

available from the left and right sides. This approach was chosen to simplify bussing of

VDD. GND. and clock signals and to aid in folding the matrix. It may be worthwhile to

relax these constraints and create matrices in which all four sides of the array are treated

uniformly. By doing this routing problems between the generated matrix and other cells

of a floorplan may be eased.



§9 242

Tuning a circuit for greater speed often directly conflicts with reducing circuit area.

In current minimization schemes one often attempts to minimize the number of literals in

a single function, as is done here, or across several functions, as for example in [bray82].

While these methods directly reduce device count an> therefore result in more compact

circuits they may also lengthen the electrical critical path. Delay optimization and area

compaction are coupled problems. It might be beneficial to try different minimization algo

rithms along the electrical critical path of a circuit as opposed to non-critical paths. It

would then be necessary to iteratively apply the delay and compaction steps until the crit

ical path does not change.



APPENDIX A

SPICE2 MOS Models

MOSIS MOS Models

* as from MOSIS, note low vto values
* device models

.model nmo nmos level-2 vto-0.5 lambda-0.01
* uc-475 phi-0.5
f cgso-1.3e-10 cgdo-1.3e-10 cgbo-4.10e-10 rsh-40 cj-6e-4
f cjsw-4e-10 js«3.5e-5 tox«5.5e-8 nsub-5el5 hss—2.8ell nfs-lelO
f xj-6e-7 ld-4e-7 ucrit-8e4 uexp-0.25 utra«0.25 vmax-5e4
f mj - 0.5 mjsw - 0.5 pb - 0.7 neff - 2J

.model pmo pmos level-2 vto—0.5 lambda-0.01
+ uo-190 phi-0.492
+ cgso-1.3e-10 cgdo-1.3e-10 cgbo-4.10e-10 rsh-40 cj-4-le-4
+ cjsw-2.5e-10 js-3.5e-5 tox-5.5e-8 nsub-3el4 nss-11.7ell nfs-lelO
+ xj-6e-7 ld-4e-7 ucrit-8e4 uexp-0.25 utra-0.25 vmax-5e4
+ mj - 0.5 mjsw - 0.5 pb - 0.7 neff - 2.5

243



SPICE2 MOS Models

Industrial MOS Models

* nmos model

.model cmosn nmos level-2 ld-0.23u tox-300.00e-10 nsub-1.0e+16
+ vto-,9 kp-5.9e-5 gamma-.44 phi-.6 uo-512.6
+ xj-.3u larobda-2.7e-2 tpg-1 rsh-35.0 uexp-6.0e-2
+ vmax-5.7e4 cgso-2.7e-10 cgdo-2.7e-10 cj-2.8e-4
+ cjsw«1.5e-10 mj-.5 mjsw-.3333

* pmos model
.model cmosp pmos level-2 ld-.38u tox-300e-10 nsub-lel6

+ vto—.9 kp-2e-5 gamma-.492 phi-.6 uo-173.8
+ xj-.5u lambda-4e-2 tpg-1 rsh-120 \iexp-.44
«+ vmax-9e4 cgso-4.5e-10 cgdo-4.5e-10 cj-3.1e-4
+ cjsw-3e-10 mj-.5 mjsw-,3333

244



245

APPENDIX B

Measurement of the Dynamic CMOS Test Chip

In this appendix the equipment and testing procedures for a chip to test the proper

ties of dynamic CMOS circuits are described. Two bonded test dies were received in late

1984 and testing was begun in December. 1984. The chips were fabricated in a double

metal 2/* (drawn) n -well process at an industrial site. Specifically, the first chip (referred

to as "chip #1") has a buried contact layer, a single level of polysilicon. and two layers of

metal. The pre-implant oxidation was wet: there was no post-implant oxidation. The die

was not passivated. The second chip ("chip #2") does not have a buried contact layer, but

does have a polysilicide layer and two layers of metal. There was a 50:1 gate oxide etch

for the polysilicide. The pre-implant and post-implant oxidations were dry. The die was

not passivated. Neither chip made use of the buried contacts. Most of the results

presented here were obtained from chip #1. with the polysilicon layer.

The test setup consisted of a super-strip mounted on a metal jig which was grounded

to the power supplies. There were separate power supplies for VDD and V,^. For most of

the measurements reported in Chapter 3 V^ was 0.0V. The chip was driven by three sig

nal generators. The first, an HP 8011A. provided synchronization trigger pulses for the

other two generators. The HP 8011A provided the bottom input signal mentioned in

Chapter 3. An HP 3312A provided the clock signal. 0. An Exact 126 provided the input

signal top. Waveforms were displayed on a Tektronix 7094 series oscilloscope.

Figure B.1 shows the bond map for the chip and Figure B.2 is a mask-level plot.



246

99 99 94 93 92 91 90 49 49 47 49 49 44 43 4? 41

Figure B.1: Bondmap for Test chip



L;
til

liM
Ik

d

a I o P
i a



248

The chip was laid out in three main blocks. The largest block is a bank of AND gates.

There are 2-. 3-. 5-. 7-. 15-. 23-. and 31-input AND gates with minimum-sized devices and

two 5-input AND gates with larger n -channel devices in the core. The OR bank contains

2-. 5-. and 15-input gates with minimum-sized devices. There is also a set of four C^MOS

latches hooked up as a shift register. There are a total of 38 active pins. 17 signals pertain

to the AND gates. 8 to the OR gates. 5 to the C*MOS latches, and 8 to miscellaneous signals.

In this appendix only the delay and charge redistribution measurements of the minimum

size AND gates are presented.

Derivation of AND gate Delay

The measurement of the worst-case delay for the AND gates was complicated by the

need to subtract off delays caused by conditioning inverters and by the time required to

charge up an llpF oscilloscope probe. There was also a pronounced inverter feedthrough

effect in the conditioning inverters. The source follower test on chip #1 was found to be

unreliable but a source follower test was performed on chip #2 to ascertain the amount of

feedthrough contributed by the p -channel pad pulldown device. The results show a

feedthrough effect of about 0.12V for the falling waveform, and no appreciable

feedthrough on a rising waveform (input - output for a follower). Delay measured by the

50% test is negligible, about Ins. The input waveform from the pulse generator had a

risetime of about 10ns (10-90%) for a 0.0 to 5.0V swing. The feedthrough effect for the

inverter test for an input waveform with the same characteristics as that in the source fol

lower test is about 1.0V. The inverter itself cannot be measured directly, but since the p-

channel pad does not have a large feedthrough it must be the inverter that gives the major

contribution. The AND gates show less feedthrough because the output inverter is driven

internally by a more slowly changing waveform. The feedthrough effect is strongly

dependent on the steepness of the input signal, as SP1CE2 simulations confirm.

The inverter delay test was run twice, once with a large swing on the input and once

with a swing of about 1.0V. The reduced swing lessened the feedthrough effect. The



249

falling input signal shows about 0.3V feedthrough at the output. The rising input signal

shows about 0.27V feedthrough at the output. Test results for this test and the previous

inverter test are summarized in Figure B.3.

Falling Input
Feedthrough (V) Delay (ns) Rising Input

Feedthrough (V) Delay (ns)

0.3 28 0.27 15

1.0 39 1.2 21

Figure B3i Feedthrough Effect on Inverter Delay

All the AND gates show a negligible feedthrough effect. Applying a linear fit to the values

in the figure implies a risetime of about 233ns with 0.0V feedthrough and a falltime of

about 13.3n5. This figure is the calculated delay through a conditioning inverter plus

routing and an output pad driving the oscilloscope probe.

Charge Redistribution Measurements

Probably due to careless handling of the unpassivated chips. AND gates 3. 5. 15. and

23 were damaged. Charge redistribution (CB) tests were performed with the 2-. 7-. and

31-input AND gates. Chip #2 did not have functional AND gates, as mentioned above.

Tests were set up using the 3 signal generators. 1 each for signals 0. top. and bottom. The

scheme was to first discharge the AND chain, then charge up the precharge (prech) node,

and then allow the charge on the prech node to redistribute along the AND chain. The

result is that the potential on the prech node decreases and. thus, the inverter which is

driven by this node may react by making a false 0 -* 1 transition. Therefore there are 3

parts to the CR test cycle: l) dump chain charge: 2) charge up precharge node: and 3) look

for a false transition (0 -»l) at the output of the inverter. The 3 signal generators were

triggered by the generator that provided the bottom signal. Bottom was a square wave: it

was low for about 12/is and then high for 12fis. Signal top. triggered from bottom, was a

pulse. The rising edge of the pulse was approximately coincident (slightly delayed) with

the rising edge of bottom. It had a duration of about 4/is. Signal <f> was delayed slightly

with respect to both bottom and top. It was a pulse beginning about lfis after top and of



250

less than lfis duration. Special care was taken to ensure that top—gated devices were

turned off before the />-channel ^—gated device (prech device) was turned on. Also

top—gated devices were turned on only after the 0—gated />-channel prech device was

turned off. Depending on device thresholds it might have been possible to drive the top of

the AND chain and the clock devices from one signal. This latter arrangement, however,

would not have guaranteed that there was no time at which both prech and chain devices

were on. If such a condition existed then the prech current would charge up not only the

prech node but all devices in the AND chain gated by top. Thus the chain would not be

discharged to ground. Phase 1 occurs when all signals (top, bottom, 0) are low- thus it is

bounded by the \2fis bottom signal. Remember that these signals are input to the chip and

that all signals are fed through conditioning inverters before affecting the test circuitry.

Therefore when all signals are low the clock p -channel device is off. the top— and

bottom—gated n -channel devices and n -channel clock device is on. Charge is cleared from

the AND chain. Phase 2 begins when 0 goes high. Thus there is a short dead time when bot

tom and top are high and <f> is low. In this period all devices except the n -channel clock

device are off. In phase 2. when 0 goes high (all signals are now high), the p-channel clock

device is turned on. the n -channel FET is turned off. Charge is pumped into the prech

node. The precharged area includes only the gates of the n- and p -channel output

inverter, the f-channel pullup (prech device) and the drain of the topmost n -channel AND

FET; none of the AND chain parasitics are charged since top and bottom are off. Still in phase

2. <£ is lowered. Now 0 is low. but top and bottom are high just like the beginning of phase

2. In this last part of phase 2 charge leaks slowly from the prech node. Tests show, how

ever, that leakage takes milliseconds to occur while this stage has a duration of about 3ms.

Phase 3 begins when top is lowered. Now <f> and top are low. but bottom is still high. At

this point the p-channel clock device remains off so there is no path from VDD to the

prech node. Top is low now so the top n—1 AND n-channel devices are turned on and CR

takes place from the prech nodeto AND n -channel source/drain parasitics. This lowers the

prech .
voltage on the prech node. The new voltage is: VDD x C^-* s^* in words it is



251

* proportional to the ratio of the prech capacitance to the prech capacitance plus the parasitic

capacitance. If Cpantaic is large enough, compared to Cp^ then the voltage at the prech

node falls to the point that the p -channel device in the inverter switches on and the out

put of the inverter goes high, making an incorrect 0 -• 1 transition. This is called "false

trigger". There is no DC path to ground (bottom is still high), so the n -channel AND gate

(the last in the chain) is still off. Therefore, the output should remain off (low). Phase 3

ends when bottom goes low. At this point all signals are once again low and Phase 1 begins.

This test was used to produce the measurements detailed in Chapter 3.

As a control experiment to show that the effect observed was due to CR. tests were

conducted in which both the prech node and all the top—gated (n-l) AND devices were

charged up. Then the top input was toggled to cause a transient. The oscilloscope photos

show a very slight opposite CR effect: that is charge flowing from the parasitics into the

prech node. The prech node voltage decreases slightly. The exact same voltage decrease is

seen in the 2-input AND as the 31-input AND case. It is independent of gate fan-in. This

test was conducted by modifying the prech phase (2) of the test described above. In phase

1 the charge is still dumped from the parasitics because all devices except the n -channel

clock FET are off. However, in phase 2 0 goes high while top is still low. thus top and <f>

are on at the same time. Bottom is high, or off. Now the p -channel clock device charges

both the prech node and the parasitics. Then top goes high, turning off the AND chain

parasitic devices. Then 4> goes low. so the p-channel clock device is off and the n -channel

clock device is on. At this point prech is off. top is off. bottom is still off. and the n -channel

clock is on. Thus charge remains on the prech node and the (isolated) top nodes. Now top

goes low (on) allowing CR between prech node and parasitics. However, there is little

redistribution because both nodes are at virtually the same potential, having been charged

by the same p -channel device about l/*s before. This concludes the CR measurements.

Voltage Threshold Measurements



252

The process parameters for circuit simulation were provided by the industrial facil

ity. The voltage threshold of a p -channel device can be measured however, since the out

put driver is a ^-channel device. The measurement was made as a check on the given

parameters. Figure B.4 shows the circuit schematic of the output pad.

IKOHn
OFF-CHIP

P-CHflNNEL
L: 4U
U: 250U

SOURCE

FOLLQUER

OUTPUT
CV0UT3

Figure BM Output Pad Schematic

The table in Figure B.5 shows results of V^ versus V^ tests on chip *G.

PadGnd - GND - V^ - -0.098V
Van - 5.15V: Resistor: IK fl off-chip
Input (V)

Pad30

Output (V)
Pad31

0.00 5.13

0.50 5.13

1.00 5.13

1.50 5.13

2.00 5.13

2.50 5.13

3.00 4.09

3.50 3.77

4.00 3.70

4.50 3.69

5.00 3.69

Figure KS: V^ versus V^ for Chip #2

Figure B.6 presents these results in graphical form from an oscilloscope photo. The hor

izontal and vertical axes are 0.5V per division. The lower, lefthand corner represents O.OV

in x and y.



253

Figure B.6: Vm versus V^ for Chip #2

The V, calculations axe based on a first-order Shichman-Hodges model which assumes a

quadratic dependence of voltage on current and ignores short-channel effects. When V^ is

VDD (5.0V) then Vpm%att is O.OV. Thus. \Vcs\is 5.0V and the />-channel device is assumed

to be in saturation because iVG5|-|Vf|< |Vd5|. In saturation the current flowing in the

K V
source node is —— X (Vm - V, )2 = —-_ where R is the value of the resistor in the source

R

leg. Therefore.

2xVn

R xXr
(B.1)

. Wpbecause Vm - V, = VDD- V^ - V,. Kp = -y^-Pp C0» . Using the values from Appendix A.

Mo = 174cm2/ volt -sec. 7ox=300d. and W = 250fx. L = 4>. £=1000 U and

V^ = 3.69V then Kp = 1.25X10"3 (factoring out W and L. Kp = 2.02X10"5) and

V, = 2.24V. Thus, for the ^-channel device. V, =-2.24V. This value seems high.

According to [pugh85] the measured V, for 2fx />-channel devices was about 1.0V. Apply

ing a scale-up factor provided by the industrial site and 4fi device should exhibit a Vt of

about 1.15V. One possible explanation for the disparity is the lack of a passivation layer

on the test die. The chips were not carefully handled initially and some impurities may

have affected the thresholds. The AND gates, however, all seemed to operate within a more

reasonable V. range.



254

APPENDIX C

Evaluation of a 32-bit Dynamic CMOS ALU

In this appendix the equipment and testing procedures for the dynamic ALU are

described. The first silicon run of the 32-bit dynamic CMOS ALU was fabricated in March

1984 and tested in early June. The MOSIS P-name is domalu. the P-id was 16362. and the

Fab-id was M41VHA1. The chips were fabricated in a 3/u. p-well. CMOS process at Telmos.

Masks were made at Burroughs. There were six first silicon chips but the sixth chip, num

bered 5. failed basic equality/carry chain tests and was not tested further. A test jig was

built consisting of a piece of vectorboard and a 64-pin ZIF socket. A Tektronix Digital

Analysis System DAS 9100 was used both to provide test vectors and to acquire and store

the result vectors. An HP SOU A pulse generator was occasionally used outboard to pro

vide slightly higher resolution timing pulses.

Figure Cl shows the bondmap for the first silicon ALU. Forty-seven pins were

bonded. 32 of which are hooked to tri-state buffers and used for I/O: 10 pins are used as

control signals to load latches and select ALU operations: the # clock is a single pin. power

and ground take two pins and the signals A —5 =0 and Cout_H are also brought out.



255

Figure Cl: Bondmap for ALU chip

Figure C.2 shows the basic ALU timing diagram.



aggga^^ drtr

LORDR-L

LORDB-L

RLUVRLID-L

I/O-L

* TrPRECH 'EVRL

/////A DflTR IN "UST BE STABLE OR

*

DfiTfl OUT IS VfiLlD

SIGNAL MAY CHANGE

UAVEFORH AT flRROU HERO DEPENDS
ON UAVEFORH AT flRROU TAIL

PRECH AND EVAL TIMES DETERMINED BY EXPERIMENTATION
EVAL CANNOT BEGIN UNTIL A ANO B ARE LOADED
AND PRECH IS COMPLETE

ALUVALIO-L = ALUEVAL-H s LOADD-L

Figure C2: Basic ALU Timing Diagram

256

A

First the A operand is placed on the I/O pins and the A latch is loaded, then the B operand

is placed on the same set of pins and the B latch is loaded. During this load time the ALU

is in precharge. The precharge time was never measured, but simulations suggest it is not

greater than 10ns. therefore the time to load the latches was the constraining factor in this

part of the clock cycle. The ALU computes during the evaluation phase of 0. when signal

ALLA'ALIDJ. is high. Bringing AUA'AUDJ. low stops ALU evaluation and simultane-



257

ously loads the ALU result into the destination latch. The I/OJ. signal may then be

brought high allowing the destination latch information to be read out through the I/O

pins.

The Tektronix DAS 9100 was programmed to generate test vectors and loop on the

data acquired from the output latch. Instructions were fed to the chip at a200ns rate by

the DAS. The template test program was:

ABC 0001
0000

0002

0000 2345

XXXX XXXX 0000 repeat 20
XXXX XXXX 0000 goto ABC

The symbol '-* represents data to be filled in. The first 2 dashed lines should agree, as

should the second pair of dashed lines. The symbol X' represents a"don't care" condition.

The 200nj cycle time is not critical. During each pair of instructions the A and B

registers, respectively, are loaded. The 2345 field activates four time-critical strobes which

control the evaluation lime of the Domino circuit. The Domino circuit is precharged during

the loading of the Aand Bregisters (The time required to do this should be less than 20ns.

although it has not been measured.). The repeat 20 instruction is await loop to allow the

chips output buffers to drive the off-chip probe capacitances. Finally the goto ABC instruc

tion makes the program an infinite loop. The test case repeats until stopped by an external

interrupt.

The time-critical strobes were generated externally by the HP 8011A Pulse Generator.

The trigger signal for the pulses was a40nj pulse provided by the DAS strobe lines. The

pulse generator provides a continuously variable pulse. The pulse height is also variable.

Rise/Falltimes are about 20nj. All pulse widths were measured between the 2.5V points.

In the paragraphs that follow the lest vectors for each of the various timing tests are

described. The accompanying photograph was taken from the CRT of the DAS910G and



contains the values of the input and output latches in HEX format.

ADD test:

25S

FFFF FFFF 0001
FFFF FFFF 0000

0000 0001 0002

0000 0001 0000

This is a worst-case add. F's in reg A. 0...01 in reg B. The last group of four digits

0001 and 0002 is a command to load latches A and B. respectively. A carry is thus gen

erated in the least significant bit and must propagate the full length of the carry chain, h

goes through the first nibble slowly, the bypass for the next six nibbles, and finally

through the last nibble in order to affect bit 31. which is the slowest settling bit. Since the

carry_put signal does not have to go through this last nibble (it goes through seven bypass

nibbles instead) it is faster. Figure C.3 shows the bytes (from MSB to LSB) D, C, B. A of

operands A and B and then the result latch in order. Only the last two bits of field E are

used. The LSB is the signal A—B»Q_L. the second bit is the signal Cout_H. The final result

at line 21 shows an output value of 0 with a carry out and A not equal to B.

Figure C3: DAS9100 ADD Test

SUB test:

FFFF FFFF 0001

FFFF FFFF 0000

FFFF FFFF 0002

FFFF FFFF 0000

alternate:

FFFF FFFE 0001

FFFF FFFE 0000

FFFF FFFD 0002

FFFF FFFD 0000



259

This is a worst-case subtract. F"s in both A and B regs. Since the B reg. is comple

mented, this means that B really looks like: 0...0. In a SUB the carry_in bit is set to 1 and

this injected carry forces carry propagation the length of the carry chain. In this case the

carry is injected, not generated, so the first slow nibble is bypassed. Thus the worst case is

seven bypass nibbles and one slow nibble. This SUB should be faster than the worst-case

ADD. The final result at line 21 shows an output value of 0 with a carry out and A equal

to B.

FF FF
FF FF

FT FF

W 88

ae 08

88 8B
* 88
88 8B

88

88 88
» 88

FF FF

FF FF
FF

FF FF

FF FF

FF FF

88 SB

88 88 88800018
88 88 88888818

wf wi BBBBBolo

88 88 88888818
ae 88 8ee8&:*
88 88 .?»»»:.;•

Figiire C.4: DAS910O SUB Test

The alternate SUB stops the carry_in propagation and instead forces a generate at bit

1. This is contrasted with the forced generate at bit 0 for the worst ADD case. Thus this

situation should also be faster than the worst-case ADD. It provides an alternate worst-

case path for the SUB operation.

XOR test:

9393 3939 0001

9393 3939 0000

3939 9393 0002

3939 9393 0000

This is one of many possible configurations to test this logic operation. The resultant

pattern should be alternate 1's and O's- in this case: AAAA AAAA. The 1/0 pattern of the

test vector should also be complemented to make sure that all bits can be driven both high

and low. The final result at line 22 shows an output value of AAAA AAAA wiih no



carry out and A not equal to B.

c

93

B

39

A

39 88088001 1
= 53 93 39 39 1

; i S3 93 39 39 8888888 1

39 39 93 93 8888886 I

i 39 39 93 93 W8B8BB 1

: .- 39
i 39

39
39

93
93

91
93

88888881
0800000a

_ 39 39 93 92 8888888i
_ : •* AA Oft AA 080000C i
_ r •♦« AA Aft AA 88888881 -i
_ - Am AA AA AA 88888881
_ T H» Aft AA AA 88888881
_ £ Aft ftft Aft AA 08000001
_ ••» 4ft *4 M BQHIKAK*
. 5 •»• Mft Aft (to

H^H Aft Mft

Figure C5: DAS9100 XOR Test

260

AND test:

9C9C C9C9 0001
9C9C C9C9 0000

C9C9 9C9C 0002

C9C9 9C9COOOO

This is one of many possible configurations to test this logic operation. The resultant

pattern should be a one 1 and three 0's. in this case: 8888 8888. The 1/0 pattern of the

test vector should also be rotated through its four possible configurations. This particular

pattern gives a 1 in the high-order which is the slowest to change since the AND control

signal must travel through 32 bit slices to reach this bit. The final result at line 21 shows

an output value of 8888 8888 with a carry out and A not equal to B.



261

Figure C.6: DAS9100 AND Test

OR test:

3636 6363 0001
3636 6363 0000

6363 3636 0002

6363 3636 00O0

This is one of many possible configurations to test this logic operation. The resultant

pattern should be a one 0 and 3 l's. in this case: 7777 7777. The 1/0 pattern of the test

vector should also be routed through its four possible configurations. This particular pat

tern complements the above AND test pattern, so these two patterns ensure that all 32 bits

can be driven both high and low. The final result at line 21 shows an output value of

7777 7777 with no carry out and A not equal to B.



36 63 63
63 63
63 63

63 63
63 63
63 63
77 77 77 77

77 77 77
77 77 77
77 77 77 88088881

77 77
77 77 77

IWWWVII

Figure C7: DAS9100 OR Test

262

SR test:

.AAAA AAAA 0001
AAAA AAAA 0000

7654 3210 0002

7654 3210 0000

This is one of many possible configurations to test the shift right logic operation. The

resultant pattern should be an alternating 0/1 pattern, shifted right by one bit position, in

this case: 5555 5555. The input vector is also a 1/0 pattern, to test that all bits toggle. The

complemented vector should also be used to test that the bits can be toggled in the oppo

site direction. The argument in the B reg. is simply a foil. It must not affect the result.

The final result at line 20 shows an output value of 5555 5555 with no carry out and the

A—B~0_L line in its precharged state (A equal to B). This signal is not valid on SR and

PASS.



PASS test:

Figure C8: DAS9100 SR Test

AAAA AAAA 0001

AAAA AAAA 0000

5555 5555 0002

5555 5555 0000

263

This is one of many possible configurations to test this logic operation. The resultant

pattern should be the contents of reg A., in this case the alternating 0/1 pattern: AAAA

AAAA. The complemented pattern should also be tested to ensure that all bits can be

driven both high and low. The contents of reg. B are a foil, and must not affect the result.

The final result at line 22 shows an output value of AAAA AAAA with no carry out and

the .4—B-0_L line in its precharged state (A equal to B). This signal is not valid on SR and

PASS.



Carry Propagate test:

a c • • e

•D

»

2f

If AA Aft Aft Aft 88888888
AA Aft Aft Aft 8BB08BB8
Aft Aft AA Aft 88880008
55 55 35 35 8BB08080

i 35 35 55 35 88980808
55 55 35 55 88808808

9 35 55 55 55 88800888
M A8 82 AA 88008880

21 Aft Aft Aft AA —8888
Aft Aft AA Aft 88000000

I* AA Aft Aft Aft 88808888
11 Aft AA Aft AA 88880800
~ Aft Aft Aft Aft 88000000

_ ••» Hm p#» ••• vMffMXM

22 A» " Aft Aft Aft 80808088
—j? ••• *•• >•*• fW IRJV^WIWU

Figure C9: DAS9100 PASS Test

ADD:

FFFF FFFF 0001

FFFF FFFF 0000

0000 0000 0002

0000 0000 0000

SUB:

FFFF FFFF 0001

FFFF FFFF 0000
FFFF FFFF 0002

FFFF FFFF 0000

264

The CouzJJ signal becomes valid before bit 31 is valid in ADD and SUB operations.

This is because separate circuitry, the fast carry bypass, generates this signal. These two

vectors test the worst Cauijl cases. The SUB case should be faster because it begins with

cairy injection. In the ADD case, by contrast, the carry must be generated at bit 0. The

difference in the delays is the difference in the delay through a 4-bit bypass and full 4-bit

ripple-carry circuitry. Figure C.10 shows the carry propagate test for the SUB instruction.

The final result at line 20 shows an unsettled output value of FECS 0000 with a carry out

and A equal to B.



Figure CIO: DAS9100 Cp-SUB Test

Minimum Carry Arithmetic test:

ADD:

OOOO 0000 0001

0000 0000 0000

0000 0000 0002

0000 0000 0000

SUB:

0000 0000 0001
0000 0000 0000
FFFF FFFF 0002
FFFF FFFF 0000

265

These tests represent the best-case ADD and SUB operations respectively. Many other

vectors would also give this result. In the ADD test no carries are generated, in the SUB test

there is a carry into the least significant bit (bit 0) as a result of carry injection. Outputs

are precharged to 1 as a result of the Domino logic, thus the tests shown here are the most

sensitive no-carry tests- the ADD result should be: 0000 0000: the SUB result: 0000 0001.

Figure C.ll shows the minimum carry test for the SUB instruction. The final result at line

21 shows an output value of 0000 0001 with no carry out and Anot equal to B.



266

Figure Gil: DAS9100 Minimum Carry SUB Test

Figure C.12 shows a pulse generated from by the HP 8011A pulse generator. The

x—scale is 20rii per division, the y—scale is l.OV per division. The pulse shown has a

duration of lOOnj measured from the transition between the 2.5V rising edge to the 2.5V

falling edge.

Figure C.12: HP8011A 100n5 Pulse

Results of ALU Timing Tests

The best results from the table in Figure C.13 appear in Chapter 3. The full timing

tests are presented below. If. in a given test, a particular chip does not appear it is an indi-



cation that it was completely non-functional under that particular test vector.

Function Chin Delav (n*/ Remarks

1 140 inter-carry bit 4 bad
ADD 3 140

4 150

1 130 inter-carry bit 4 bad. both SUB tests
SUB 3 135 inter-carry bit 4 bad. both SUB tests

4 125

1 95

2 90
XOR

3 95

4 95

AND 1 85

2 85 bit 11 stuck at 0

3 95

4 95

OR 1 85

2 80 low 16 bits not available

3 80 bit 8 stuck at 0

4 85 bit 8 stuck at 0

1 50

2 50

SR .
3 45 complementary tests, bit 8 stuck at 0

4
50 AAAA vector, bit 8 stuck at 0

45 5555 vector

6 35 complementary tests

1 45

2 50

PASS 3 50

4 50 •

6 35

1
100 ADD test

90 SUB test

Coutjf 2 90 SUB test

3 100 ADD/SUB test

4 100 ADD test

1 95 ADD/SUB test

Min Carry 2 95 ADD/SUB test

3 95 ADD/SUB test

4 95 ADD test

Figure G13: Measured ALU Delays

267



268

APPENDIX D

MAMBO Source Listing

This appendix contains the C language source code for all the programs in the

MAMBO package. To obtain this program contact Deborah Dunster at the following

address:

EECS Industrial Liaison Program
457 Cory Hall
University of California
Berkelev. CA 94720



269

References

[asan82] 7. Asano. "An Optimum Gate Placement Algorithm for MOS One-
Dimensional Arrays". Journal of Digital Systems, vol. VI. no. 1. 1982. pp. 1-
28. Computer Science Press. Inc..

[ayre79] R. Ayres. "Silicon Compilation- A Hierarchical Use of PLAs". Proc. 16th
Design Automation Conference. June 1979. pp. 314-326.

[bray82] R. Brayton and C. McMullen. "The Decomposition and Factorization of
Boolean Expressions". Proc. International Symposium on Circuits and Systems.
May 1982. pp. 49-54.

[bray84a] R. Brayton. C. Chen. C. McMullen. R. Otten and Y. Yamour. "Automated
Implementation of Switching Functions as Dynamic CMOS Circuits". Proc.
1984 IEEE Custom Integrated Circuits Conference. May 1984, pp. 346-355.

[bray84b] R. Brayton and C. McMullen. "Synthesis and Optimization of Multistage
Logic"." Proc. 1984 International Conference on Computer Design. October
1984. pp. 23-30.

[bray84c] R. Brayton. G. Hachtel. C. McMullen and A. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers.
1984. ISBN 0-89838-164-9.

[carr72] W. Carr and J. Mize. MOS/LSI Design and Application. McGraw-Hill. 1972.
ISBN 0-07-010081-0.

[cmel8l] R. Cmelik. "Program EQNTOTT". Internal Memorandum. Department of
EECS. University of California. Berkeley. 1981.

[demiS2] G. DeMicheli and A. Sangiovanni-Vincentelli. "PLEASURE: A Computer
Program for Simple/Multiple Constrained/Unconstrained Folding of
Programmable Logic Arrays". UCB/ERL M82/57. Electronics Research
Laboratory. University of California. Berkeley. August 1982.

[demi83] G. DeMicheli and M. Santomauro. "SMILE: A Computer Program for
Partitioning of Programmed Logic Arrays". Computer-Aided Design. March
1983. pp. 89-97.

[demi84] G. DeMicheli. "Computer-Based Synthesis of PLA-Based Systems". UCB/ERL
M84/31. Electronics Research Laboratory. University of California. Berkeley.
April 1984.

[dunl83] A. Dunlop. "Automatic Layout of Gate Arrays". Proc. 1983 International
Symposium on Circuits and Systems, vol. 3. May 1983. pp. 1245-1248.

[egan82] J. Egan and C. Liu, "Optimal Bipartite Folding of PLAs". Proc. 19th Design
Automation Conference. June 1982, pp. 141-146.

[fitz82] D. Fitzpatrick. "Mextra: A Manhattan Circuit Extractor". UCB/ERL M82''42.
Electronics Research Laboratory. University of California. Berkeley. May



270

1982.

[flei75] H. Fleisher and L. Maissel. "An Introduction to Array Logic". IBM Journal of
Research and Development, vol. 19. March 1975. pp. 98-109.

[frie84] V. Friedman and S. Liu. "Dynamic Logic CMOS Circuits". IEEE Journal of
Solid-State Circuits, vol. SC-19, no. 2. April 1984, pp. 263-266.

[glasSO] L. Glasser and P. Penfield. "An Interactive PLA Generator as an Archtype for
a New VLSI Design Methodology". Proc. IEEE International Conference on
Circuits and Computers. October. 1980. pp. 608-611.

[gonc83] N. Goncalves and H. DeMan. "NORA: A Racefree Dynamic CMOS Technique
for Pipelined Logic Structures". IEEE Journal of Solid-State Circuits, vol. SC-
18. no. 3. June 1983. pp. 261-266.

[gris82] T. Griswold. "Portable Design Rules for Bulk CMOS". VLSI Design.
September/October 1982. pp. 62-67.

[hach80] G. Hachtel. A. Sangiovanni-Vincentelli and R. Newton. "Some Results in
Optimal PLA Folding". Proc. IEEE International Conference on Circuits and
Computers. October. 1980. pp. 1023-1027.

[hachS2] G. Hachtel. R. Newton and A. Sangiovanni-Vincentelli, "An Algorithm for
Optimal PLA Folding". IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. CAD-1. no. 2. April 1982. pp. 63-77.

[hash71] A. Hashimoto and J. Stevens. "Wire Routing by Optimizing Channel
Assignment within Large Apertures". Proc. of the 8th Design Automation
Conference. June 1971. pp. 155-169.

[hel!84] L. Heller. W. Griffin. J. Davis and N. Thoma. "Cascode Voltage Switch Logic—
A Differential Logic Family". IEEE International Solid-State Circuits
Conference, Digest of Technical Papers. 1984. pp. 16-17.

[hodg83] D. Hodges and H. Jackson. Analysis and Design of Digital Integrated Circuits.
McGraw-Hill. 1983. ISBN 0-07-029153-5.

[hofm80] M. Hofmann. "A Method for Topological Compaction of Programmed Logic
Arrays". Master's Report. Department of EECS. University of California.
Berkeley. December 1980.

[hofm83] M. Hofmann. "Aspects of Design and Layout of a CMOS ALU for SOAR".
Proceedings of CS292X. Department of EECS. University of California.
Berkeley. December 198 3.

[horo84] M. Horowitz. "Timing Models for MOS Circuits". PhD Dissertation. Integrated
Circuits Laboratory. Stanford University. Stanford. January 1984.

[ishi83] M. Ishii. "GMxMG: A System for Generating CMOS Gate Matrices", Internal
Memorandum. Department of EECS. University of California. Berkeley.
August 1983.

[kang83a] S. Kang. R. Krambeck. H. Law and A. Lopez. "Gate Matrix Layout of Random
Control Logic in a 32-bit CMOS CPU Chip Adaptable to Evolving Logic
Design". IEEE Transactions on CAD of Integrated Circuits and Systems, vol.



271

CAD-2. no. 1. January 1983. pp. 18-29.

[kang83b] S. Kang and H. Law. "Automation of VLSI Gate-Matrix Layout". Proc. IEEE
International Symposium on Circuits and Systems, vol. 3. May 1983, pp. 1017.

[kram82] R. Krambeck. C. Lee and H. Law. "High-Speed Compact Circuits with CMOS".
IEEE Journal of Solid-Sic:c Circuits, vol. SC-17. no. 3. June 1982. pp. 614-
619.

[land82] H. Landman. "Automatic Layout of Optimized PLA Structures". UCB/ERL
M82/64. Electronics Research Laboratory. University of California. Berkeley,
September 1982.

[Iatt8l] W. Lattin. J. Bayliss. D. Budde. S. Colley. G. Cox. A. Goodman. J. Rattner. W.
Richardson and" R. Swanson. "A 32-bit VLSI Micromainframe Computer
Svstem", IEEE International Solid-State Circuits Conference, Digest of
Technical Papers. New York. NY. February. 1981. pp. 110-111.

[Iaw83] H. Law. "Gate Matrix: A Practical. Stylized Approach to Symbolic Layout".
VLSI Design. September 1983. pp. 49-59.

[Iin84] T. Lin and C. Mead. "Signal Delay in General RC Networks". IEEE
Transactions on CAD of Integrated Circuits and Systems, vol. CAD-3. no. 4.
October 1984. pp. 331-349.

[lope8l] A. Lopez and H. Law. "A Dense Gate Matrix Layout Method for MOS VLSI".
IEEE Journal of Solid-State Circuits, vol. SC-15, no. 4, August 1981. pp. 736-
740.

[Iuby82] M. Luby. U. Vazirani. V. Vazirani and A. Sangiovanni-Vincentelli. "Some
Theoretical Results on the Optimal PLA Folding Problem". Proc. IEEE
International Conference on Circuits and Computers. New York. NY. October.
1982. pp. 165-170.

[mah84] G. Mah. "PANDA: A PLA Generator for Multiply-Folded PLAs". UCB/ERL
M84/95. Electronics Research Laboratory. University of California. Berkeley.
April 1984.

[mari85] C. Marino. "Smalltalk on a RISC - CMOS Implementation". Masters Report.
Department of EECS. University of California. Berkeley. March. 1985.

[meadSO] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley
Publishing Company. Inc.. 1980. ISBN 0-201-04358-0.

[mosi82] Mosis. "New Standard CMOS/Bulk 3-Micron CMOS Design Rules". The
MOSIS Project. University of Southern California. Information Sciences
Institute. August 1982.

[nage75] W. Nagel. "SPICE2: A Computer Program to Simulate Semiconductor
Circuits". UCB'ERL M75/520. Electronics Research Laboratory. University of
California. Berkeley. May 1975.

[nagl75] H. Nagle, B. Carroll and J. Irwin. An Introduction to Computer Logic.
Prentice-Hall. Inc.. 1975. ISBN 0-13-480012-5.



272

[newtSl] R. Newton, D. Pederson. A. Sangiovanni-Vincentelli and C. Sequin. "Design
Aids for VLSI: The Berkeley Perspective". IEEE Transactions on Circuits and
Systems, vol. CAS-28. no. 7. July 1981. pp. 666-680.

[newt83] R. Newton. Private Communication., March. 1983.

[ohts79] T. Ohtsuki. H. Mori. E. Kuh. T. Kashiwabara and T. Fujisawa. "One-
Dimensional Logic Gate Assignment and Interval Graphs". IEEE Transactions
on Circuits and Systems, vol. CAS-26. no. 9. September 1979. pp. 675-684.

[oust83] J. Ousterhout. "Crystal: A Timing Analvzer for NMOS VLSI Circuits". Proc.
Third Caltech Conference on VLSI. 1983."pp. 57-70. ISBN 0-914894-86-2.

[pati75] S. Patil. "An Asynchronous Logic Array", Project MAC Tech. Memo TM-62.
May 1975.

[pati79] S. Patil and T. Welch. "A Programmable Logic Approach for VLSI". IEEE
Transactions on Computers, vol. C-28. September 1979. pp. 594-601.

[pattSl] D. Patterson and C. Sequin. "RISC I: A Reduced Instruction Set Computer".
ACM S1GARCH Proceedings of the 8th Annual Symposium on Computer
Architecture, vol. 9.3. May 1981. pp. 443-457.

[pomp82] M. Pomper. W. Beifuss. K. Horninger and W. Kaschte. "A 32-bit Execution
Unit in Advanced NMOS Technology". IEEE Journal of Solid-State Circuits.
vol. SC-17. no. 3. June 1982. pp. 533-538.

[pretS5] J. Pretorius. A. Shubat and C. Salama. "Analysis and Design Optimization of
Domino CMOS Logic with Application to Standard Cells". IEEE Journal of
Solid-State Circuits, vol. SC-20. no. 2. April 1985. pp. 523-530.

[pugh85] B. Pugh. PrivateCommunication.. January 1985.

[risc82] R. Risch. "Staggered Input Networks: An Approach to Automatic Logic
Decomposition", Proc. International Symposium on Circuits and Systems. May
1982. pp. 55-57.

[rube83] J. Rubenstein. P. Penfield and M. Horowitz. "Signal Delay in RC Tree
Networks". IEEE Transactions on CAD of Integrated Circuits and Systems.
vol. CAD-2. no. 3. July 1983. pp. 202-211.

[rudeS5] R. Rudell and A. Sangiovanni-Vincentelli. "ESPRESSO-MV: Algorithms for
Multiple-Valued Logic Minimization". Proc. Custom Integrated Circuits
Conference. May, 1985.

[sansSl] W. Sansen, W. Heyns and H. Beke. "Layout Automation Based on Placement
and Routing Algorithms", in Computer Design Aids for VLSI Circuits. P.
Antognetti. D. O. Pederson and H. DeMan (editor). Sijthoff and Noordhoff.
1981. pp. 470. ISBN 90-286-2701-4.

[schm80] M. Schmookler. "Design of Large ALUs Using Multiple PLA Macros", IBM
Journal of Research and Development, vol. 24. no. 1, January 1980. pp. 2-14.

[shoj82] M. Shoji. "Electrical Design of BELLMAC-32A Microprocessor". Proc. IEEE
International Conference on Circuits and Computers. September-October 1982.
pp. 112-115.



273

[shoj85] M. Shoji. "FET Scaling in Domino CMOS Gates". Proc. International
Symposium on Circuits and Systems. June 1985.

[sisk82] J. Siskind. J. Southard and K. Crouch. "Generating Custom High Performance
VLSI Designs from Succinct Algorithmic Descriptions". Proc. Conference on
Advanced Research in VLSI. January 1982. pp. 28-40.

[smit82] K. Smith. T. Carter and C. Hunt. "Structured Logic Design of Integrated
Circuits Using the Storage/Logic Array (SLA)". IEEE Journal of Solid-State
Circuits, vol. SC-17. no. 2. April 1982. pp. 395-406.

[soukSl] J. Soukup. "Circuit Layout". Proceedings of the IEEE. vol. 69. no. 10. October
1981. pp. 1281-1304.

[soutS3] J. Southard. "MacPitts: An Approach to Silicon Compilation", Computer
Magazine. December 1983. pp. 74-82.

[sout82] E. Soutschek. M. Pomper and K. Horninger. "PLA Versus Bit Slice:
Comparison for a 32 Bit ALU", IEEE Journal of Solid-State Circuits, vol. SC-
17. no. 3. June 1982. pp. 584-^86.

[suzu73] Y. Suzuki. K. Odagawa and T. Abe. "Clocked CMOS Calculator Circuitry".
IEEE Journalof Solid-State Circuits, vol. SC-8. December 1973. pp. 462-469.

[toku83] T. Tokuda. K. Okazaki. K. Sakashita. I. Ohkura and T. Enomoto. "Delay-Time
Modeling for ED MOS Logic LSI". IEEE Transactions on CAD of Integrated
Circuits and Systems, vol. CAD-2. no. 3. July 1983. pp. 129-134.

[wein67] A. Weinberger. "Large Scale Integration of MOS Complex Logic: A Layout
Method". IEEE Journal of Solid-State Circuits, vol. SC-2. no. 4, December
1967. pp. 182-190.

[whal84] S. Whalen. "CMOS Adder Designs for High Performance Microprocessors".
Master's Report. Department of EECS. University of California. Berkeley.
August 1984.

[wing85] O. Wing. "Automated Gate Matrix Layout", Proc. 1985 International
Symposium on Circuits and Systems. June 1985.

[wyat83] J. Wyatt. C. Zukowski. L. Glasser. P. Bassett and P. Penfield. "The Waveform
Bounding Approach to Timing Analysis of Digital MOS IC's". VLSI Memo No.
83-148. Department of EECS. Massachusetts Institute of Technology,
Cambridge. July, 1983.


	Copyright noticE 1985
	ERL-85-53 (1 of 3)
	ERL-85-53 (2 of 3)
	ERL-85-53 (3 of 3)

