
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



SMALLTALK ON A RISC-CMOS IMPLEMENTATION

by

C. C. Marino

Memorandum No. UCB/ERL M85/48

6 June 1985



SMALLTALK ON A RISC-CMOS IMPLEMENTATION

by

C. C. Marino

Memorandum No, UCB/ERL M85/48

6 June 1985

ELECTROMLCS RESEARCH LABORATORY

Col 1ege of Engineering
University of California, Berkeley

94720



Smalltalk on a RISC - CMOS Implementation

Christopher C. Marino

May 14, 1985



Smalltalk on a RISC - CMOS Implementation

Abstract

A new 32 bit CMOS Reduced Instruction Set Computer (RISC) has been designed to
execute the Smalltalk-80 programming language efficiently. This processor. Smalltalk
On A RISC (SOAR) was designed using a 3 micron CMOS technology and is being
fabricated. The CMOS implementation is pin for pin compatible to the NMOS version
of SOAR. This version was designed using the Hawk-Squid system and took advantage
of some of the advanced IC design features that are available through Hawk. This
represents the first Berkeley RISC processor that uses CMOS and can show differences
in compatible circuits using different technologies.



Acknowledgements

I must thank the following people for their support and encouragement over the

past year. I would like to thank Richard Newton and David Patterson for giving me

the opportunity to work on this project. Their suggestions and contribution to my

work and the resources they provided are greatly appreciated. I must also thank Joan

Pendelton who helped me tremendously in understanding SOAR and tolerated my per

sistence and what seemed like perpetual ignorance. I thank Mark Hofmann who

taught me all about the Berkeley design tools and made me feel like I was a part of the

group from the very start. Peter Moore for helping me with some tricky system bugs,

even though he once described me as the fool with more guts than brains for taking on

this project. The work of James Reed is also greatly appreciated. Most of all I thank

Deirdre Ryan for keeping Hawk together and giving me the encouragement that I

needed to finish SOAR. Her support made the months of hard work much less pain

ful. This work was supported in part by DARPA under grant N00039-83-C-0107.

Their support is gratefully acknowledged.



Table Of Contents

Chapter 1 Introduction . 1

Chapter 2 Architectural Overview 5

2.1 SOAR Architecture 6

2.2 Tags , 8

2.3 Traps 9

2.4 The SOAR Pipeline 10

2.5 Loads and Stores 13

2.6 Register Window Control 13

2.7 Shadow Registers 15

Chapter 3 Design Approach 18

3.1 SOAR Implementation : 19

3.2 Floorplan 19

3.3 Random Logic 22

3.4 Domino ALU 25

3.5 Program Counter 26

3.6 Saved Window Pointer 29

3.7PLA*s 30

3.8 Register Window Mechanism 33

3.9 Opcode Latch design 35

3.10 Pad Design 36

Chapter 4 Design Environment 40



4.1 Hawk/Squid 40

4.2 YACR2 43

4.3 Data Representation and Conversion 46

Chapter 5 Simulation 47

5.1 Performance 50

Chapter 6 Conclusions „ 59

Appendix A. Interaction of the CWP and SWP 61

Appendix B. SPICE and Crystal Output 63

Appendix C. SPICE Parameters 86



CHAPTER 1

1. Introduction

In 1980 Professor David Patterson at the University of California started the

Berkeley Reduced Instruction Set Computer (RISC) projects [Patt8l] [Fitz8l]. The phi

losophy behind the RISC is to design a simple, fast microprocessor that has high per

formance characteristics. The performance of such a microprocessor is not gained

through sophisticated circuit design nor through exotic processing techniques, but

rather by designing the architecture of the processor so that only the essentials remain.

A fast Arithmetic Logic Unit (ALU), program counter, registers, barrel shifter, and

control logic is really all RISC I was. The high performance of RISC I was gained

through reducing the clock cycle to the absolute minimum. A pipelined architecture

and simple techniques to keep the pipeline full were used to attain maximum utiliza

tion of the chip circuitry. In 1980 when the RISC project began the techniques that

RISC I used were already throughly understood and commonplace. How could sim

ple components be integrated together on a single chip and attain an overall improve

ment in performance over complex computer architectures? If anything, the RISC pro

jects represent a step backwards in computer architecture when compared to the VAX,

Motorola 68000 and Intel iAPX-432. To understand fully the RISC philosophy it is

necessary to present some historical observations and the progression of computers,

their instruction sets, and architecture.

For many years there was a tendency to increase the size and complexity of a

computer's instruction set. The motivation behind this was that richer instruction sets

VAX is a trademark of the Digital Equipment Corp.
68000 is a trademark of Motorola Corp.
iAPX-432 is a trademark of Intel Corp.



would simplify software and compilers and computers that were easier to use were

thought to be better. Also, memory technology advanced so fast that additional

microcode added almost nothing to the cost of a machine. Microinstructions run much

faster than macroinstructions so every operation that could be put in microcode would

result in a faster operation. Register-based load/store architectures were difficult to

program, many addressing modes would further simplify the programs. These were

all valid arguments when the evidence was examined that compared the two types of

architectures. Richer instruction sets did yield better performance characteristics. But

were these comparisons valid? As with all comparisons, they are only as valid as the

assumptions they are based on. Using one comparison technique the memory to

memory architecture is superior, using another the load/store architecture is better

[Patt84].

With the validity of the architectural metrics questionable other things were

examined as the basis for the comparison of architectures. The overall performance of

a load/store architecture would be superior to that of a memory to memory architec

ture provided the registers could remain local to the processor. Most instructions in all

computers are simple ones and are burdened by the overhead of complex microcode

decoding. Since most instructions are simple, getting these simple instructions to run

the fastest would increase the overall speed. Any instruction that increased the cycle

time must provide a corresponding decrease in the number of instructions executed to

be a valid performance enhancement.

An example of this is the implementation of the MicroVAX. One version con

tained the entire VAX architecture and instruction set. another implements only a sub

set. The full VAX implementation outperforms the MicroVAX by 20% but uses 5 to

CDC-6600 is a trademark of Control Data Corp.
MicroVAX is a trademark of Digital Equipment Corp.



10 times the resources [Patt84]. In the full implementation of the VAX architecture

there are nine custom VLSI chips, in the MicroVAX there are only two. The perfor

mance gained through the complex instruction set was lost in chip to chip data transfer

delays. The performance gains of VLSI are maximized when everything can remain on

a single chip and not have to wait for chip to chip communications.

Complex addressing modes only lengthen the execution of simple instructions.

Simple techniques of pipelining, using a delayed branch and simple hardware tech

niques to keep the pipeline full can increase performance tremendously. Evidence of

this is the fact that the CDC-6600. one of the fastest computers in its time was a

register-based load/store architecture using pipelined execution in its function units.

-These observations, and other similar observations, were the basis for the RISC

processors. SOAR is the third project in the family of RISC processors developed at

UC Berkeley. RISC I and RISC II served to show the validity of the RISC philosophy.

SOAR takes this philosophy one step further and attempts to map an experimental

programming environment on a RISC machine. Smalltalk is an object-oriented

language that is heavily burdened with complex overhead operations [Patt83]. SOAR

expands the concept of the RISC to determine if simple hardware speed-ups can serve

to increase the performance of a Smalltalk system [Patt83b]. SOAR differs from a

traditional RISC in that it's control is a substantial part of the circuit and there are

multiple-cycle instructions. However, these instructions pay for themselves in the

increase in performance they provide. SOAR uses a tagged architecture to aid in the

execution of Smalltalk and requires more control circuitry than either RISC I or RISC

II. The tagged architecture is essential for efficient Smalltalk execution and the added

control circuitry is necessary for tag support. Both CMOS and NMOS implementations

of SOAR proceeded in parallel. The NMOS version was completed first and, where

appropriate, comparisons are made between the two implementations.



In this report the CMOS implementation of the SOAR microprocessor is described.

A brief architectural overview of SOAR is presented and then the approach taken in

the design is described. The processor was designed using the Hawk-Squid system and

a brief description of that system is also included. The simulation and performance

results for CMOS SOAR, including critical path, and overall speed estimation are also

included.



CHAPTER 2

2. Architectural Overview

The SOAR processor was designed to execute the Smalltalk language efficiently.

Smalltalk was developed by Xerox in the late 1970's and is a highly productive

software programming environment. It is implemented as a window-based system and

allows for the the use of a pointing device. Smalltalk is an object-orientated language

and programs are characterized by many calls (sends) and returns which result in a

great deal of overhead. The goal of the SOAR project is to have the SOAR processor

run Smalltalk as fast than an ECL mini-computer such as the Xerox Dorado [Deu83].

A problem with object-oriented languages is that objects are being created con

stantly. Often, these objects are used only once or twice and then become inactive.

Objects are checked to see if they are still active and inaccessible objects are discarded.

This memory reclamation process is called generation scavenging. This is a very time

consuming process and contributes to the medocre performance of Smalltalk on con

ventional microprocessors. SOAR uses a tagged architecture to keep track of the age of

an object which makes generation scavenging a much more efficient process. Observa

tions of Smalltalk programs and the lifetime of objects indicate that, in general, new

objects do not live long and old ones live forever. For example, the square root object

will always be needed but the object that was just created to perform a local trivial

task won't be used more than a few times [Unga83b]. The improved generation

scavenging technique and efficient call and return mechanism allow SOAR to achieve its

high performance.

Dorado is a trademark of Xerox Corp.



2.1. SOAR Architecture

Smalltalk-80 [DeS84] [Deu83] is an object-oriented software system which refer

ences objects through pointers called Object Oriented Pointers (OOP's). These OOP's

point to a variety of objects and SOAR uses a tagged architecture to identify a few

important cases. Both the pointer and its tag are contained in the same 32-bit data

word which simplifies the hardware that distinguishes the different kinds of objects.

The tag not only identifies the object but also contains a field that represents the age of

an object.

If a program attempts to access an inappropriate object type an exception condi

tion occurs and the condition is detected in hardware by examining the pointer's tag

bits. If such a tag mismatch occurs SOAR traps and jumps to a software routine to

service the exception. Special hardware in SOAR supports these traps and improves

the performance of Smalltalk on SOAR. Smalltalk programs generally consist of dee

ply nested calls sends. They are also characterized by needing few local registers and

few arguments. For this reason, the register file of RISC II was retained but the

number of new registers allocated to a new window was reduced from sixteen to eight.

Studies show that this eight window mechanism can cover 94% of all sends and 8

registers per window can cover 97%of all sends [Blak83]. The register window, global

registers, and special registers are labeled 0-31 and are shown in Table 2.1.

SOAR uses a technique of in-line caching that optimizes the search operations that

occurs on all sends. Measurements show that this optimization works 95% of the time

[DAmb83]. This optimization technique is worthwhile because Smalltalk objects have

many classes; if the caller's class is not the same as the callee's class Smalltalk climbs

up the chain of classes to search for a match. This is a very time-consuming process.

SOAR assumes that the classes are the same and traps if a mismatch occurs.



REGISTER GROUP REG NUM CONTENTS

GLOBAL

SPECIAL

HIGH

LOW

r31

r30

r29

r28

?27

r26

r25

r24

r23

r22

r21

r20

rl9

rl8

rl7

rl6

Scratch

Scratch

Scratch

Scratch

Scratch

Scratch

Scratch
Scratch

PSW-Program Status Word
CWP-Current Window Pointer
TB-Trap Base register
SWP-Saved Window Pointer
SHA-Shadow register A
SHB-Sbadow register B
PC-Program Counter
RZERO-AlwaysO

rl5 return address for this method
rl4 receiver/return value
rl3 argl/local
rl2 arg2/loca!
rll arg3/local
rlO arg4/local
ri> arg5/!ocal
rt arg6/local
r7 return address for called methods
r6 receiver/return value
r5 argl
r4 arg2
r3 arg3
r2 arg4
rl arg5
rO arg« _^__^_«

Table 2.1 SOAR register window

This describes briefly what makes SOAR different from RISC. The tags and traps

that are supported by SOAR make it well-suited to execute Smalltalk-80 programs.

SOAR can operate in a non-tagged mode so that it can also support the "C" and Pascal

languages. In addition. SOAR has the following unique architectural features that are

described before the hardware implementation of SOAR is presented.



8

SOAR has 32 bit address and data busses. These are non-multiplexed input and

outputs on the chip. The actual addresses of SOAR's memory data are only 28 bits

wide: bits 28 to 31 of the address bus are ignored by the external circuitry. The data

words are 32 bits wide. SOAR operates on a three-stage pipeline the details of which

are described in Section 2.4. SOAR is not a byte oriented processor and arbitrary

shifts are not supported. This simplifies the hardware implementation by eliminating

the need for a barrel shifter and byte aligner. Byte oriented operations are supported

for compatibility with other software environments by including a byte

inserter/extractor which can insert or extract a byte from the 32 bit data word. When

SOAR detects a trap it will jump to an address specified by logically ORing the opcode

of the offending instruction and the condition of the trap and the value contained in

the Trap Base register (TB). The TB serves as the base that is offset by the trap logic

in SOAR. This vectored trapping is a convenient method of handling many exceptional

conditions. The hardware that implements the tags and traps of SOAR represent a

large part of the circuitry in this processor. Some of these hardware features are

described in more detail in the following sections.

2.2. Tags

SOAR tags are an essential part of each OOP and contain information about the

object. The four tag bits are located in the 4 MSB's of each OOP. Small integers have

only one tag bit (bit 31) to allow for the largest integer. In Smalltalk-80's virtual

machine definition, all objects (except small integers) are referenced by pointers. The

hardware distinguishes between the types of tags and handles each accordingly.

A small integer object is recognized by a zero in bit 31 of the OOP. All other tags

fields are 4 bits wide and are shown in Table 2.2. The purpose of the tags is to keep

track of the age of an object to support efficient generation scavenging. SOAR objects

are divided into four 'tenure' groups that reflect the number of memory scavenging



OBJECT POINTED TO 32-BIT POINTER (OOP)

TAG BITS WORD BITS

Small Integer

Assistant Object

Associate Object

FuU Object

Emeritus Object
Context Object

0 Smalllnt

1000 OOP

1001 OOP

1010 OOP

1011 OOP

1111 OOP

Table 2.2 SOAR Tag Fields

operations that an object has survived. The other main use of the tags is to distinguish

a context object OOP from other OOP's. These objects in Smalltalk-80 do not follow a

LIFO stack convention. These objects must be identified specifically so that they are

not removed in LIFO order. The context lag "ll 11" generates a trap whenever a con

text object OOP is stored in memory so that it can be marked as non-LIFO [Samp84].

2.3. Traps

SOAR's Trap Base register gets concatenated with both the instruction that caused

the trap and the vector for that trap condition. This provides a.very flexible trap and

interrupt mechanism that replaces the typical execute-on-condition instructions and

allows for more hardware support for Smalltalk. This mechanism allows very

efficient data structure updates and memory reclamation (generation scavenging).

The trap conditions are listed in Table 2.3. The vector field is specified by the

type of trap. The trap base address is user specified by loading the Trap Base register



10

Name Vector Pri Class Explanation

ILL 0 A illegal opcode(i<31>=l | i<31>=0&i<28:23>=unus«d)

TT
SWI

1

2

B
B

tag trap: illegal tags or overflow
software interrupt

WO
WU
DPF
TI

3

4

S
8

C
C
C
C

window overflow (calls)
window underflow (on returns)
data page fault
trap instruction

GS 7 D GS trap(store new into old, store context, aanLIFO ret. context ret)

IPF a E Instruction page fault

I/O 9 F I/O request

Table 2.3 SOAR Trap Conditions

with an arbitrary address, the offending opcode makes up the lower six bits of the trap

vector.

These trap instructions were designed to provide flexibility in user defined single

cycle test instructions. Since the trap is taken only on the satisfied condition the pro

gram is only penalized one cycle for the test. This feature can be taken advantage of

if the condition is checked frequently, has a short instruction sequence to compute the

condition and has a global action to be performed when the condition is satisfied. A

more complete description of SOAR's tags and traps is included in [Unga83] and

[Samp84].

2.4. The SOAR Pipeline

There are hardware features of the architecture that aid in the execution of

Smalltalk-80 programs. SOAR operates on a three-stage pipeline. Each instruction

requires three cycles to execute: Instruction Fetch. Operate, and Register Write. Load



11

and store instructions are exceptions to this rule and require an extra cycle to read and

write to main memory. This allows the pipeline to execute an instruction every cycle.

Trap and return instructions lake longer since they flush the pipeline. The instruction

execution and SOAR operation is shown in Figure 2.1. Each cycle consists of three

non-overlapping clock phases and each operation is shown in Table 2.4.

-IF1-
1 h

Cycle 1 PHIl Instruction Fetch

PHI2 Instruction Fetch
PHI3 Instruction Fetch

Cycle 2 PHIl Pre Charge
PHI2 Register Read
PHI3 ALU Operation

Cycle 3 PHIl
PH12

PHI3 Register Write

Table 2.4 SOAR Clock Phases

I PCI • MM . A1.UI I . I RWI I

IF2| II I"!"!*"*! I iRWl
BF3

||| HiT"! I i""|

Figure 2.1 SOAR Pipeline Execution



12

SOAR's pipeline is three stages; if the source of any instruction is the destination

of the previous instruction there is a problem. Examination of Figure 2.1 shows that

the results of instruction IFl are not written to the register file until Phase 3 of its

third cycle of execution. This is long after the next instruction reads its own operands,

during Phase 2 of the previous cycle. The second instruction must know that the

value at the source is not yet valid. This data dependency is eliminated by the inter

lock and register-forwarding logic.

This special logic compares the source of the second and destination of the first

instructions and. if equal, passes the destination value to both the register file and the

input to the ALU. This keeps the pipeline full and eliminates the need for a special

compiler to sequence the instructions to eliminate the data dependency. The special

purpose compiler is the approach taken with the Stanford MIPS processor (Micropro

cessor without Interlocked Pipeline Stages). Note that this forwarding mechanism

works with destinations that specify the register file and not the special registers.

SOAR makes further attempts to reduce the number of bubbles in the pipeline by

including some hardware to control the FastShuffle line. On calls and jumps the

address of the next logical instruction is not same as the next physical instruction in

memory. When a call is executed (second stage of the pipeline), the next instruction

has already been fetched. But this is not the next instruction that should be executed.

Ordinarily the execution of this instruction would have to be suppressed and a bubble

would be formed. SOAR, however, uses the FastShuffle circuitry to check the incoming

instruction to see if it is a call or jump in the instruction fetch stage. If it is a jump it

outputs the target address in the very next cycle without waiting for the execution

stage. This eliminates the need for a delayed branch to keep the pipeline full. A simi

lar problem exists in the execution of the return instruction except that it is compli

cated by the fact that the target address is not known until after the completion of the



13

second cycle of execution. Here the FastShuffle mechanism cannot prevent the bubble.

The execution of the instruction in the first stage of the pipeline is suppressed by forc

ing a no-op into the pipeline.

2.5. Loads and Stores

No distinction is made between references to addresses on-chip or off-chip in the

Saved Window Space. Therefore, hardware is provided so that the 28 bit address can

be recognized as an on chip register. A typical load/store instruction execution is

shown in Figure 2.2. This is the usual execution, this consists of the instruction fetch

(Cycle 1), effective address calculation (Cycle 2), memory access (Cycle 3). and on-

chip register write (Cycle 4).

If the effective address references an on-chip register this sequence is not as sim

ple as described above. A check for on chip register reference must be made on each

load/store execution without slowing down the overall cycle time. This is done by

routing six bits from the ALU output (containing the window number of the effective

address) to the register decoding logic. If the reference is on chip (as determined by a

comparison of the SWP and effective address) the effective address is used to select the

on chip data and the RD_WR* line stays invalid for the duration of the memory access

cycle.

2.6. Register Window Control

The overlapping register window scheme of RISC II is preserved in SOAR but

there are some distinctions, as described in Section 3.8. SOAR has three hardware

pointers: the Current Window Pointer (CWP), Current Window Pointer-1 (CWP-1).

and the Saved Window Pointer (SWP). These three pointers aid in the register window

management system. Register windows that are written to main memory are saved in

an area of main memory pointed to by the SWP. The first window saved in this area

is saved at the highest address location, other windows are added at lower memory



f-iIF1r*lpciwtH i H

load f-p^-rrf-rTl i iRW|

f-pr*! y? rrn- • h
f-P4!"*! "loco

f-Pr^rrri ' 'RW1 „.
I I • STORE

ACCESS

STORE f'^'l"'"'""F^^

LOAD

ACCESS

Figure 2.2 Load/Store Execution Timing

14

o o o

address locations. With each window overflow, the SWP gets updated and indicates

the division between the saved register space in main memory and memory that is

currently in the register file. Bits 6-4 of the SWP contain the window number of the

next window to be transferred on-chip if a window underflow condition occurs.

The CWP is a pointer that points to the high registers in the window that is

currently active in the register file. CWTP-1 points to the low registers that are

currently active.



15

A window overflow occurs when a call instruction is executed and CWP-SWP=1,

a window underflow occurs when a return instruction is executed and SWP-CWP=1.

The diagram of SOAR's saved register space is shown in Figure 2.3. Also, there is a

more detailed description of the interaction of the CWP. SWP and the windows in

Appendix A.

2.7. Shadow Registers

A part of SOAR's architecture that is essential to the trapping mechanism is the

shadow registers. Two of these shadow registers are contained in the PSW special

register (shown in Figure 2.4) the other two are special registers: rl9 and rl8. These

registers. Shadow Opcode, Shadow Destination. Shadow A and Shadow B serve to save

the necessary information so that an instruction, aborted during a trap, can complete

after the trap has been serviced. These registers are loaded on each cycle provided

interrupts are enabled. When a trap occurs interrupts are automatically disabled this

captures the necessary information in the shadow registers.

This is a brief overview of the architecture of SOAR and is by no means complete.

For further information see [Samp84] and [Unga83].



High Memory

Low Memory

Register File

HIGHs

LOWs

NextWOF

fives

this

Figure 2.3 SOAR Saved Register Space

6

1

16

WPS

SJWP



| 00...0 1opcode (l<aftg>) | i | Int. Enable | Soft. Iat. | D (i<aig»
at is is • 7 • s

Figure 3 Format of the PSW Register

Figure 2.4 SOAR PSW Special Register

17



CHAPTER 3

3. Design Approach

At the time my work began in the Spring semester 1984 the SOAR processor

consisted of the set of modules designed in the winter quarter CS290 class of 1983.

These modules resulted from the first pass through the design of each the major com

ponent. The Input section. Register File, ALU and PC sections formed the datapath.

The source and destination registers were complete and so were the shadow and con

trol pipe (CPIPE) registers. The interlock logic was complete and the control PLA's had

been generated. What remained to be implemented was the remaining control circuitry

and the integration of all of the components. Compared to what had already had been

done this seemed like a modest task: certainly this could be done in a few short weeks

and the chip would be complete!

This was the attitude of many people involved with the project. What was not

anticipated were some of the setbacks that were encountered and the design flaws that

had to be corrected. Of all the modules built at the start of this project the only one

that remains intact is the six-transistor RAM cell that makes up the register file.

Everything else had to be modified, redesigned, or thrown out. This included the all

the PLA's, interlock logic, source and destination registers, Current Window Pointer,

Saved Window Pointer, ALU, Memory Address Latch and CPIPE. Even the original

pads had to be replaces because of area limitations. The components in SOAR now

bear little resemblance to those that were available when this work began. Add to this

this fact that the control circuitry was redesigned after it was laid out and simulated

it is not surprising that the chip was not fabricated until March 1985.

18



19

Rather than going into the details of every design iteration the approach taken to

implement the control circuitry and the major changes that were made in the existing

logic are explained here. Beyond that, a description of some of the important com

ponents in SOAR are included. The unique domino ALU. and the circuits that make up

some of the critical paths such as the register file decoder, the Saved Window Pointer

and program counter circuits are examined. The final CPIPE implementation is

described because of its hardwired opcodes that allow multiple cycle instructions, and

the process that generated the PLA's is also described here.

3.1. SOAR Implementation

From the appearance of the chip when the this work began it was obvious that

there would be area problems on the right side of the chip. The pitch of the bits in the

datapath were determined by the ALU. All cells had to match this cells pitch and. as

a result, the entire datapath appears sparse. This is most evident in the register file.

Had a different aspect ratio been chosen for the ALU there may not have been the same

area limitations and the method for implementation may have been different. The

floorplan of SOAR was critical and a poor one would prevent the chip fitting in the

available space. The floorplan had to provide for associated components to be near

each other and for simple interconnect routing. Fortunately these two features are

usually not competing; a dense, structured floorplan is usually the result of judicious

placement with high regard for the length of interconnect.

3.2. Floorplan

The floorplan was not determined at once but rather it evolved into its present

state (Figure 3.1). It is surprisingly similar to what was originally conceived except for

some rotating and mirroring or slight movement to allow for interconnect. Many

things were simple to place, others not so easy, some required a placement that had no

room for error. So even though the component was where it was supposed to be the



20

final placement was by no means trivial. The source and destination registers were

connected together as a group (SRCDST) and obviously had to be placed near the regis

ter file decoder. The exact placement and rotation was not as obvious and decisions of

this nature were postponed as long as possible. The address PLA's (apla. aplal, and

apla2) were also easy to place. These PLA's and the SRCDST made up one of the large

channels and their exact placement could be varied to achieve the highest channel den

sity. The placement of the shadow registers (shadow opcode and shadow destination)

was not as easy. The output of these registers gets written to the S-bus which runs

vertically through the datapath in polysilicon. The inputs are the bits from the

SRCDST or CPIPE register outputs. It was decided to place the shadow opcode and

shadow destination registers as close to the S-bus as possible. These lines would take

some time to drive and the SRCDST and CPIPE outputs would be long metal lines, so.

extending them a little more would not cause too much more delay.

The two largest PLA's, cplal and xcplal, make up the heart of the control logic.

The speed through these PLA's is critical. These PLA's had to be as close as possible

to the output of the CPIPE. Here some tradeoffs had to be made. In this area the final

floorplan does not match the original one. The placement of the PLA's is the same but

their orientation is different. Originally these two PLA's were placed such that the

outputs faced the CPIPE and the interconnect ran across the length of the CPIPE. This

design was laid out, the interconnect wired to the components, and it resulted in very

short CPIPE nets. Unfortunately, this layout had to be abandoned since it was too tall

to be placed above the datapath. Instead, the PLA's were rotated as they are now and

the layout had to be redone. This rotation also required a redefinition of the location

of the nets that entered the large channel containing the random logic.

The Trap logic was placed at the far right of the chip above the condition code

PLA since this location was the only large area that remained and only a few new nets



Q^-K P^j

SR^l OSTl

SRC2 0ST2 u« >SiC

o efodcr O «inw«.l

X

p

u

t

c

dei€CO

QO.+C ft 0,0! 5

CPlPEl

CP1PE2

PTI pP2

LeSiC P3

Qci-h. P<g>4K C^r>t

s

©

*>
e

s

A
L

U

L

T

c

h
e

5

8
I

E

IV

L

U

P
C

+

T

B

"TV^p

4-

Co*d

L

+

s
w

P

AoU r-g<^ Pa^

SRCl Source 1 Register
SRC2 Source 2 Register
DSTl Destination Register (current instruction)
DST2 Destination Register (previous instruction)
CWP Current Window Pointer
PI Instruction Decode PLA 1 (cplal)
P2 Instruction Decode PLA 2 (xcplal)
P3 Trap Condition PLA (tpla)
CPIPE1.2 Instruction Register
PC+TB Program Counter. Trap Base Register
MAL+SWP Memory Address Latch. Saved Window Pointer

Figure 3.1 SOAR Floorplan

had to be routed to this area.

21



22

With the placement of the major blocks completed the floorplan routing began

and followed the procedure outlined in Section 3.3. It was soon obvious that there

would be severe area limitations above the datapath where the CPIPE was placed. For

this reason the placement of the logic gates, PLA's and the inputs to the channel to get

the highest possible density was important. The channel router YACR2 [Reed85] was

rerun many times after simply altering the placement of 2 or 3 input nets to the chan

nel. Conversations with James Reed, who was working on the routing algorithm and

implementation, gave insight to the workings of YACR2 and allowed the channel to be

routed with the highest possible density. In fact, the interface of YACR2 to Hawk had

to be redesigned by Deirdre Ryan to squeeze out the space between the tracks in the

routed channel. Otherwise the chip would not have fit into the area available.

Above the datapath, in the vertical dimension, there is little usable silicon area.

The nets that runs horizontally below the CPIPE have no contacts in them and do not

cross each other, which was by no means a coincidence. The order was predetermined,

knowing where each net originated and terminated, so that this would be the case. The

new layout influenced the placement of the components and the entry points of nets in

the channel below. This work was necessary because even after all the organizational

work, redefinition of the channel for compactness, and designing smaller pads there

was still only a 100 micron margin between the chip layout and the hard limit of

MOSIS's fabrication capabilities.

33. Random Logic

Although most of the random logic in SOAR is implemented in PLA's many sig

nals must be gated with clock signals or lie in a critical path and cannot be placed in a

PLA. This random logic was implemented using a structured-custom approach to

speed up the design process and reduce the layout time.



23

Each of the control signals in the datapath and registers have a small amount of

random logic associated with them. Gating the signal on a clock phase or ANDing a

few signals together before the result sets up the control point is typical of this logic.

The logic requires two and three input NAND gates two and three input NOR gates

and inverters. The first approach taken to implementing the logic was to place a gate

near where the signal was needed, connect power and ground, and connect the signals.

It soon became clear that this was a very inefficient approach. Power and ground were

almost impossible to route without overlapping one another and signal input and out

puts quickly became unmanageable. In addition, the logic functions were constantly

changing during the layout and much of the work had to redone.

The solution to this was to use the automatic channel router YACR2 and define

channels with the random gates. The signals to the datapath need complimentary sig

nals for the pass gates. At each control point buffers were placed to generate the signal

and its compliment. These tall thin buffers made gaps that were of almost no use. By

designing the logic gates to fit into these gaps this area was was used and a channel

was defined. Whenever possible, logic gates were placed in these gaps so that they

could be routed together to satisfy the logic equations. Additional gates were placed

opposite the datapath when these gaps were full or the gap was too far from where the

signal was needed. This defined a channel that satisfied the logic function that allowed

easy power and ground routing and allowed the interconnection to be completed

automatically using YACR2.

With all the gates in place in the channel above the datapath there was still sub

stantial room left on top of the channel. This space was filled by placing PLAs and

one of the shadow registers along the top. This required designing new gates so that

the power and ground connections were easier. The PLA's that were placed in the

channel had critical inputs that originate from within the datapath. The byte



24

insert/extract PLA controls the byte insert/extractor directly and gets its inputs from

bits 30 and 31 of the A-bus. Critical inputs to the condition code PLA are the two

most significant bits of the A and B busses. The tag-compare and tpla PLAs use these

as inputs to check the operands for type consistency. These four PLA's were the best

candidates for use in the channel. The shadow opcode register writes to the S-bus and

could be placed directly over the S-bus on the top of the channel. The four PLA's and

the shadow register completely filled the remaining space left in the channel.

The setup time for this channel was substantial. Making sure that all the termi

nal names were correct and judicious placement of the input nets for highest density

was non-trivial. There is no question that if this logic were placed and routed once by

hand it would have been faster than the approach taken. There were however, many

benefits of taking this structured-custom approach to the layout. Power and ground

were simple to route, the empty spaces between the buffers were utilized, the layout of

the chip became highly structured and regular and the layout of this section was more

compact than if it were done by hand. More important than these reasons are that

YACR2 guarantees that the channel is routed correctly and the turn-around time for

updates in the logic was cut from days to minutes. The logic did, in fact, change

several times during the implementation which proved this approach definitely was the

correct method of design.

The structured-custom approach was first used on the large channel above the

datapath (see Figure 3.1). Its success allowed this technique to be used wherever pos

sible on the chip, there are a total of five areas that were laid out using YACR2. The

input section (far left of datapath) had lots of logic that filled the area completely.

This made a small channel that was laid out very quickly. The CPIPE and source and

destination register control signal logic layout was also implemented using this

structured-custom approach. The address PLA's and the more complex register for-



25

warding logic also use this technique. These channels, although less complex than the

datapath channel, still exhibited the advantages seen in the large channel implemen

tation. In fact these channels were much easier to layout because many bugs were

eliminated from the YACR2 interface to Hawk and the system of defining the channel

had been refined.

3.4. Domino ALU

The ALU is one of the most complex components in the datapath. The ALU was

designed by Mark Hofmann at the beginning of the project and has changed little since

it was first designed. The ALU was designed using Domino logic [Kram82]. This was

because the ALU outputs are only needed on Phase 3 and so the ALU has an entire

clock phase to process the operands. The ALU consists of the Byte Insert/Extractor

(BIE), the Complimenter and the ALU itself.

The BIE is a simple section that can take the low byte of the A-bus and insert it

into any of the other three bytes on the insert operation. An extract operation per

forms the reverse, byte 1.2, or 3 of the A-bus is extracted and placed in the low byte

position. The circuit is shown in Figure 3.2. The signal EX-INSpass from the control

PLA is ANDed with bits 0 and 1 from the B-bus which selects the byte to be operated

on. This control function was implemented in a PLA for simplicity. The benefits

gained by a hand layout were insignificant. The speed of this circuit is not critical but

it must be noted that bits 0 and 1 of the B bus run up through the datapath in polysil-

icon and are driven only by the inverter in the ALU input latch. These devices have

been made more robust but this still represents substantial loading.

The ALU needs both the true and complimented signal. Rather than running

both these signals through the BIE, they are complimented and buffered at the Compli

menter. The signals enter after going through the BIE which contains only n-channel

devices. This did not present a problem since the busses are precharged on either side



26

of the Complimenter on Phase 1. These devices only have to pass a logic 0. The func

tion of the complimenter is trivial. The Complimenter circuit does not use Domino

logic and is shown in Figure 3.3.

The ALU itself uses Domino logic and a carry by-pass circuit that accelerates the

carry propagation. The 4-bit carry by-pass achieves the greatest speed-up with the

worst case carry propagation. In SOAR the worst case is an LSB generated carry that

must propagate to the MSB in tagged mode. This is 30 bits of propagation, which

means that the carry propagates through 4 bits of the carry chain and through 6 nib

bles of the carry by-pass. This is the worst case because any other generated carry

would be closer to the MSB and would have a shorter distance to propagate. The

worst case propagate occurs in approximately 83ns [Hofn83]

Domino logic doesn't use full complimentary CMOS logic. The core devices

implement the logic function as a pull-down and a clocked PMOS transistor provide

the pre-charge pull-up. Since the ALU is only a single stage of logic, only n-channel

core devices are used. This simplifies the clocking scheme, prevents race conditions and

makes a more compact ALU. The output of the core devices are fed to static inverters.

These inverters are critical to the next stage in a full Domino circuit that contain n-

channel core devices in the following stage.

The ALU was extensively simulated and has been fabricated. It performs within

specification and it has a worst-case add time of about 120ns. The circuit is shown in

Figure 3.4. For a complete description of Domino and other CMOS logic types see

[Kram82] and [Gonc83]. This ALU is more completely documented in [Hofn83].

3-5. Program Counter

The program counter can be a very slow component in the datapath, the time for

the carry to ripple up the counter can be on the order of the ADD in the ALU. Unfor

tunately, the expense of a carry look ahead cannot be justified. The program counter



27

fcvj A*
«RJ*JAlui. n^

Figure 3.2 Byte Insert/Extract Circuit

5el AW

A Bw3

A U,

Figure 3.3 ALU Complementer Circuit



*—+'
A

B

I

*,

6„

-. ab

4>

t

A6>6

28

fto /oft avooR. 5^1*

;rHELP^o-*±-8 A<*&

-rHJ

AB

Figure 3.4 Domino ALU Circuit

in SOAR takes advantage of the fact that the contents are incremented by one and

never more. A carry can be generated in the LSB and other bits can only propagate the

carry. A very simple carry look-ahead scheme can be used to cut the time through this

circuit in half. A 16-input AND gate is used to generate the carry in for the upper 16

bits of the program counter. Only if the lower 16 bits are 1 will there be a carry. By

adding this one gate the propagation time is cut in half: diminishing returns are

quickly seen using this technique for four gates would be required to cut the delay in

half again. A schematic of the program counter is shown in Figure 3.5. This circuit

has been simulated and worst case Program Counter increment is about 90ns.

C ->;: £ H



AiujwPc tBh.Pc Dct.j,pc *•<•

^

TB

PST

Pcir

PC i
Pco

Figure 3.5 SOAR Program Counter

29

3-6. Saved Window Pointer

The Saved Window Pointer is an important component in the datapath and is

active during Phase 1. The SWP itself is simply a register that points to the place in

the Saved Window Space where the next window to be swapped out must go. This

c«>«/+



30

register gets compared with the address bus on loads and stores to see if the memory

location being accessed is on chip in the register file.

The test that is performed is SWP-ADD-1. If this value is zero the memory

access is on chip and the signal PTRtoREGJS. (pointer to register) becomes active. This

is a complex operation to perform. Fortunately, it exhibits some of the same properties

as the program counter. The subtraction is performed as it normally would but the

borrow for bit 18 (the midpoint of the SWP) is generated by ORing the lower bits of

the SWP together. This works because if these bits are zero there must be a borrow in

the upper bits. This gate cuts the delay through the circuit in half. This circuit has

beenanalyzed using Crystal [Oust83] and shows a delay of about 132ns.

3.7. PLA's

Much of the random logic for SOAR was implemented in Programmable Logic

Arrays (PLA's). There are thirteen PLA's used that make up most of the control cir

cuitry. Of the 13 PLA's. the outputs of the CPIPE are the inputs to six of them. These

PLA's determine, from the opcode, what the instruction is, whether it is legal or not.

and if there is a trap. They then set up the control points on the datapath accordingly.

The function of the others vary: three are used to decode the source and destination of

the instruction operands. Others determine the cause of a trap, the status of the condi

tion codes and check the tag bits. Also implemented in the CMOS SOAR are two

PLA's that are not found in the NMOS version. One is a 3-bit incrementer used for

the Current Window Pointer (see Section 2.6) the other is used to set up the control

signals for the byte inserter/extractor. PLA's were used because the logic in these

PLA's is simple and dense and little benefit can be realized using fully-static CMOS for

these functions.

Synthesis of PLA's is a simple procedure using the PLA generation tools available

at Berkeley. The logic information first must be extracted from the SLANG description



31

of SOAR. This is done by using a program called SPLAT (Slang to PLA Truth table).

The output of this program is a "C-like" format of logic expressions. The logic equa

tions are then mapped into an AND-OR PLA truth table using the program eqntott

(equations to truth table). The output of this program is a truth table satisfying the

input equations that can be manipulated by logic minimization programs.

At the start of this project pop was the only logic minimization program avail

able. Later in the project a new minimization tool was available. Espresso, [Rude85]

which was run on these truth tables and a further reduction in area was achieved.

Once the truth table is minimized the physical layout of the PLA can be gen

erated. This is conceptually simple because a 0 (1) in the AND plane means the true

(inverted) input is used in that product term. A "-" is a don't care input. In the OR

plane a 1 (0) means that the product term is used (not used) to generate the output.

Each of these functions as well as input and output buffers are represented as tiles

that are arranged according to the truth table by a program called tpla. A template,

a set of tiles that make up a PLA, is designed once for a particular technology and tpla

modifies the template with additional tiles to make up a PLA from any truth table

input.

There were two 3 micron CMOS PLA templates available for SOAR: p-CS3cis.tp

and p-CS3trans.tp [Mah84]. These templates are identical except that the cis version

has both input and outputs on the same side, the trans version has the input and out

puts on opposite sides.

The output of tpla is a complete layout of the PLA in the Caesar format. This

format is incompatible with the Hawk/Squid system and so a program that converts

from Caesar to Squid must be run on the output to make the data suitable for Hawk.

Espresso uses an algorithm that is independent of the order of the inputs on the PLA (it uses a minterm
reduction approach rather than attempt to rearrange the order of the mintcrms). Curiously this was not
found to be the case always. For ease of layout some of the inputs to the condition code PLA were tran
sposed. This resulted in a PLA that was reduced to 31 instead of 33 mintenas. Richard Rudell believes that



32

This conversion is simple but does not retain the hierarchy of the original Caesar file.

This was not a problem with the PLA's since they were non-hierarchical to begin with.

Converting larger files that contained calls to other files would be very cumbersome

and is not recommended at this time. A problem that caused some trouble was the

conversion of the terminal labels. In Caesar there is no notion of a terminal. The

labels in Caesar are converted to labels in Squid and since there is a label layer in Cae

sar this does not translate into a label on the same layer as the geometry in the Squid

file. This resulted in labels on the contact layer that were to be associated with

polysilicon input lines underneath and caused a problem during the simulation because

each label could not be associated with its corresponding geometry. These labels were

removed from the Squid files and replaced with Squid terminals using Hawk.

The original templates made for this technology were assumed to be correct.

SPICE [Vlad8l] was used to determine how fast the PLA's would run and to examine

the rise and fall times with different loading on the output. But what was not done

was to see if the logic function of the truth table was satisfied by the PLA layout. It

turned out that the templates were incorrect. However, this was not discovered until

SOAR was complete and the chip-level simulation phase had begun. The error was in

the AND plane. The AND-OR topology of the PLA is implemented as NOT-NOR-

NOR-NOT for speed. This means that the compliment of the input signal is used. The

templates did not include this first NOT function. Since the details of designing a tem

plate were unclear the PLA's were modified by hand using Hawk. Fortunately this

was not a major change since the solution was to flip the symmetric buffers on all the

input signals to the PLA's.

The CMOS PLA's do not contain full complimentary logic and dissipate static

power through PMOS pull-ups on each of the input lines. The largest PLA was simu

lated with a 2pf load on the output so the overall speed of the circuitry could be



33

estimated. The delay of 57ns is acceptable considering the conservative loading.

Results on the final layout showed that the actual loading is typically 0.5pf. The

SPICE results are included in Appendix B, The Crystal result (38ns) is not of any

interest for this circuit.

3.8. Register Window Mechanism

Part of the RISC I design that was retained in the SOAR architecture was the

register file and overlapping window scheme. SOAR's register windows are smaller

than RISC I's. Studies indicate that 95% of all Smalltalk contexts need no more than

eight registers [Blak83]. Based on this study the register window was reduced from

sixteen to eight in SOAR. The number of windows contained in the chip is eight to

allow a nesting depth of eight before the register file overflows.

The overlapping window scheme is a technique that speeds up procedure calls and

returns. There are 16 local registers to a window but eight are shared by adjacent

windows. As a result, eight new registers become available with every procedure call.

Before a procedure is called the arguments to the called procedure are held in the low

eight registers. When the call is executed the current window pointer (CWP) is incre

mented. This places the old low registers in the new window's high registers leaving it

with eight new registers. Also contained in each window are the eight global registers

and the eight special registers. This totals 32 registers that are contained in the win

dow, the window is shown in Table 2.1.

Eight sets of eight registers plus the eight global registers make up the register file

in SOAR. The special registers are scattered in throughout the datapath and are not

described in this section.

The 72 32-bit registers are made up of a simple six transistor RAM cell shown in

Figure 3.6. The pass gates that access the cell from the word line are not

is simply an anomaly of the heuristic approach of Espresso.



34

complimentary but consist of a single NMOS transistor to reduce the capacitance of the

word line and increase the overall speed. The operation of the circuit is obvious. The

performance of this not meaningful in itself and no detail analysis was performed on a

register alone.

The decoding for the register file is done in two stages, first a three-to-eight NOR

decoder and then two input NAND gates select the appropriate register. One of the

inputs to the NAND gate is the Current Window Pointer (CWP) or the CWP-1 to

select the either the low or high registers. The other input is the output of the three-

to-eight decoder. Bit 3 of the source and and destination registers selects either the

^orc| n \A/ccJ h

Figure 3.6 SOAR Register File Cell



35

CWP or CWP-1 and bits 0-2 select the register within the window. CWP and CWP-1

are 3 bits that are decoded and select the correct window.

Decoding for the global registers is handled separately. Bit 4 of the source and

destination registers select the global registers and bits 0-2 select the register within

the global set.

The layout of the decoder is highly structured due to its high degree of regular

ity. On top of the registers themselves are three banks of 72 two input NAND gates,

one for the sourcel source2 and destination (SRCl, SRC2, DST) addresses. On top of

these banks are three sets of two three to eight decoders. One of these three-to-eight

decoders decode the lower three bits of the source and destination and the other

decodes the three bits of the CWP. The global registers don't have a three-to-eight

decoder and are simply enabled by bit 4 of the source or destination. This scheme

fully decodes the 72 registers in the register file.

SOAR has incorporated an automatic nulling of registers a procedure returns.

This is achieved by enabling an entire window (specified by the destination) and nul

ling all registers in the window at once using the Zero Special Register. This feature is

added by a slight modification of the destination three-to-eight decoder to make it

activate all registers on the signal nilonreturn.

3.9. Opcode Latch design

The Opcode Latch (CPIPE) is a two stage latch the first (CPIPE1) is the input to

most of the PLA's and their outputs set up the control points in the datapath. The

next stage (CPIPE2) sets up the control associated with the last stage in the pipeline.

RISC I had no multiple cycle instructions so no mechanism was needed in its con

trol to handle them. SOAR, however, has multiple loads and stores and a efficient

method to handle them had to be added. This mechanism is simple and elegant, it

resembles the mechanism that forces a flush op-code into the CPIPE on a return. The



36

output of CPIPE1 gets loaded on the signal CPIPElstep_H. This signal goes high

depending on the op-code of the next instruction. If it is a normal instruction it is

asserted. If not. it will stay low and another signal will be asserted. On a loadm

(storem) instruction the CPEPEloadm ( CPIPEstorem ) signal gets asserted and forces

into the CPIPE the op-code corresponding to the next step in the multiple cycle

instruction. The op-code is 0010110XXX for loadm and 00010111XXX for storem.

The unspecified values are determined by the destination latch output. These values

start at 111 and get decremented to 000. This way they are automatically decre

mented and do not require a ROM for this small amount of microcode. This set up

constitutes a small state machine that handles the problem of multiple cycle instruc

tions very nicely (see Figure 3.7).

3.10. Pad Design

The original pads would have worked for SOAR but they used was too much sili

con area, they had only guard rings, and they did not have any input protection. Pads

could not be placed above the CPIPE and still the layout of the logic was very dense in

that section. Not only were the pads too large but they would require additional inter

connect to the internal circuitry that would have made the chip impossible to fabri

cate.

The output pads were redesigned with smaller pad area. Input protection was

added, the guard rings were redesigned to be more compact, and the drive transistors,

due to the layout of power and ground, were made twice as large as the old ones with

no increase in overall area.

The input pads were laid out to be compatible with the output pads. They did

not have the output drivers, but they did include the input protection and guard rings.

Two type of input pads were designed: inverting and non inverting. The inverting pads

include large inverters that drive the on chip load. The I/O pads required additional



Load

-?
RELET -c

4

i
T

Step

1
On

>-^>I-a4{>-o-|>—

' 4or&

(v-a. «m

opcoJc

c>pc sole,

Q—

a—

a-*

v^e<; +

Figure 3.7 SOAR Opcode Latch Circuit

37

circuitry that reduced the pad interconnect in half. The old I/O pads had a separate

connection for the input and output nets and a multiplexing circuit at the pad. This

required routing two nets to each I/O pad. which was impossible. There were two

alternative solutions to this problem. The final I/O pad circuitry is shown in Figure

3.8. The pass gate that isolates the pad from the input must be physically at the pad



38

because the input goes to more than one place on the chip. The multiplexing circuit

must be at the datapath so the interconnect can be reduced. The pad driver can be

placed either at the pad or the datapath. Placing it at the datapath would mean that

the drive current (to drive two STTL loads) would have to go through the three

micron metal net that ran to the pad, and through the input protection resistor.

Although the net could support this current density this seemed like a poor solution.

Placing the driver at the pad would eliminate this problem but would still have to

drive the output through the input protection resistor. The solution was to duplicate

the multiplexing function at the datapath and the pad so that the input protection

resistors appeared only in the input path and the drivers did not have to drive a long

metal net. This meant additional work and area and the output enable control line,

OE, was heavily loaded, but the pads were spaced far enough apart to accommodate

both the multiplexing and the tri-state circuitry for the I/O pads. The OE line could be

buffered to increase speed.



39

4
+s

0«,4-«.

A

tf
*r

°~ —O-CjHJ*

i
f-d

A

>r ^*r

*
rir^W^

O 4
P--1 Cfrcuif'

f o\

^ o^Hp^H. C;«c/,r

0%-fa, c?wt

Om*m 7n

OS

Figure 3.8 SOAR Pad Circuits



CHAPTER 4

4. Design Environment

4.1. Hawk/Squid

The SOAR microprocessor was laid out using the Hawk system [Kell84] run on a

Tektronix 4113 color graphics terminal. The data is contained in the Squid database.

[Kell84], which supports multiple views of a circuit in a hierarchical fashion. The

microprocessor was broken down into small components called cells. Typically a cell

would contain a register cell. NAND gate or a bit slice of the ALU. Each cell would be

laid out by hand and form a Squid cell's physical view. The cell corresponds to a

directory in the UNIX file structure and each view of that cell is stored as a file in that

directory. The convention used was that the physical view contained the physical

representation of the geometries that made up that cell. Other views might be a

schematic view showing the schematic of the cell or a symbolic view which is similar

to the physical view except that the detail of the structure is suppressed and only pro

tection frames and terminals are used to represent the connectivity information and

the size of the cell [Kell84].

The storage format of a Squid view is simple: each line represents a terminal and

net list information, a geometry, or a call or instance of another Squid circuit view. At

the time SOAR was designed, the format was stored as free text rather than as a

binary data representation. This feature proved very useful under many cir

cumstances in this project. For example, the symbolic view (generated by the framer)

was substituted for the physical view in many places where the details of the struc

ture were unnecessary. When the physical view was needed, the view (file) was edited

using a text editor and the symbolic view was replaced by the physical view. This was

40



41

much faster and more efficient that doing the same thing using Hawk. This was most

useful when editing a large views that contained many instances of other views as it

cut down greatly on read-in and redisplay time. This technique was taken to extreme

at some times where an empty view was defined that required no read-in or redisplay

time.

Another advantage of ASCII Squid database format is seen when the cell is being

checked for design rule violations (DRV's) in a large view. The Lyra layer (layer that

indicates DRV's in layout) geometries that indicate DRV's are three to five microns

wide. In a view that is thousands of microns long these geometries are invisible. By

searching the Squid file for geometries on the Lyra layer the location of the DRV can

be pinpointed exactly and found immediately on the graphics terminal.

The fact that the files are kept in an ASCII form is because of the nature of the

Berkeley research environment. Since Hawk/Squid is a research project itself, it is con

stantly under development to enhance or add features. With the files in ASCII they are

easier to maintain and track down bugs in Hawk. If Hawk reaches a steady state with

good reliability, binary files could be used to achieve the speed-ups that a text editor

provides. In fact, earlier versions of Squid did use a binary data structure that was

about 50 times faster than the present implementation.

The Hawk system has many features that aided in the design and layout of

SOAR. A basic but valuable feature is the multiple-window "desktop". By separating

the screen into different windows laying out long interconnect by hand is made much

simpler. One end can be magnified in one window and the other end in another win

dow. The resolution of the pointing device is increased and entire nets can be placed at

once. Different views can be put in each window and each window has a stack that

can contain additional views. This is very useful when editing a large number of cells

that are all contained in a larger cell. It was particularly useful when the final touches



42

were being made to the SOAR layout where many views had to fit together exactly and

each cell had to be changed slightly.

Along these lines another very useful feature is the subedit or edit-in-context

command. When trying to get things to fit together it is very useful to see the boun

daries of the other cells as they relate to the cell being edited. There is a problem with

this command though. When a cell undergoes a rotation or mirroring and is edited-

in-context the movements to not go through the same translation. That is, a horizon

tal movement for a cell that was placed sideways would move vertically. This bug

was observed early and a work-around was employed.

Hawk is not simply a CIF editor: it has, in addition to the graphics capabilities

mentioned, some advanced features that make it very useful in the design of large

digital systems such as SOAR. A simple but valuable tool is the arraymaker [Kell84].

This tool takes as an input a script that describes a linear array. The elements of the

array can be mirrored or rotated and each can be unique. The Squid view is automati

cally generated without having to place each cell by hand using Hawk. This tool was

used in every register in SOAR's datapath and the ALU. The register file was gen

erated by first generating a column array and then using this cell as the elements of

another array that made up the complete register file.

The programmer was also a useful tool in the design of SOAR. This tool

tailored Squid views to perform a specific function. The byte insert/extractor, ALU

complimenter and register file decoder banks all used this tool to change a common cell

to be slightly different from the others. This usually meant that a contact would be

placed at a particular location to customize the cell.

Additional tools were developed during the implementation of SOAR. These tool

were motivated partially by there usefulness in the layout of the chip. Because of the

tight area restrictions in the layout the placement of components was experimented



43

with many times. This required placing a cell routing it up and seeing what it looked

like. This often took hours of layout time and usually had to be redone. This drove

the development of the interactive routing toolbox by Deirdre Ryan [Ryan85].

This toolbox contains some programs that aid in the routing of cells in Hawk.

The tool that was used the most was pitchchange tool. This tool selects a set of nets

and extends them and sets a new pitch. Another tool performed "a similar function

and was called L-turn. A group of nets would be selected and would turn a corner

and reset the pitch. These tools proved invaluable while laying out SOAR. The place

ment of a cell was not left where it was because it had been completed and moving it

would be time consuming. It could be moved to the optimum position because its

interconnections could be re-implemented in a very short time. The interconnect was

generated as a cell itself and could be removed very easily.

These tools allowed for the optimum placement of components and made the

dense floorplan possible. Another tool, the cable command, allowed nets to be defined

at the beginning and end with terminals and an arbitrary path between them would be

routed automatically. This command would permute the nets to achieve proper con

ductivity and included an algorithm to achieve maximum density.

4.2. YACR2

One of the most valuable tool for the design of SOAR was the YACR2 automatic

channel router [Reed85]. The interface of YACR2 to the Hawk/Squid system was

implemented by Deirdre Ryan and Richard Rudell. The operation of the router is

straight forward. The channel is defined by sets of colinear terminals (additional ter

minals can be added at one end). The boundaries of the channel are pointed to after

invoking the channel router command through Hawk. Hawk searches the perimeter of

the region defined by the input points and makes up the input file for the YACR2 algo

rithm. YACR2 takes over and routes the channel and returns the file that describes



44

the solution. Hawk uses this file and translates it into the geometries that correspond

to the technology that is currently being used. This tool is technology independent

and can be changed my modifying the .cadre file that specifies the present technology.

This tool also provides useful information that is helpful when rough calculations are

made on the delay through the channel. Longest net in both polysilicon and metal,

signal name and the number of tracks in the channel are provided by YACR2. Also, if

there is too much room allocated to a channel the interface will say by how much the

channel can shrink. Likewise, if the channel cannot fit the YACR2 interface will tell

the user how much more room is needed.

Originally, the spacing between tracks in the Squid view that YACR2 created

were set by the worst-case situation (two contacts next to each other in adjacent

tracks). This added two microns per track in the CMOS technology. It turned out

that situation rarely occurred. The main channel in SOAR contained 52 tracks and 400

contacts and this condition occurred only twice. As a result, 100 microns of channel

width were completely wasted along the entire length of the channel. Under the tight

requirements of the chip such a circumstance was unacceptable. At my request, the

YACR2 algorithm and the Squid interface were modified to add the extra space to a

track only when necessary. This saved 100 microns by 4000 microns in area and pro

vided a little breathing room for the other components above the channel.

The benefits of these tools are numerous but they are not without flaws. At the

start, the pitch change command would only work when going from left to right and

would create net of infinite length and width when used in the other directions. The

L-turn command had similar flaws, the majority rule selection process was flakey at

first and the resultant nets would often be displayed on the wrong layer although they

were in fact correct. The pitchchange command's limit of 36 nets was exceeded and

caused Hawk to crash. All these problems were solved easily and were tolerable. The



45

most irritating bug was seen when terminals were being moved. One terminal could be

moved once without any problem. But. if the same terminal was moved again without

deselecting it first Hawk would crash. The select-by-rectangle command would occa

sionally miss a terminal within the selected region and that terminal would become

un-selectable. These bugs were very troublesome when defining the channel and

experimenting with different placements of components because the read-in time for

those files was long. Because of the close relationship to the CAD tool designer these

bugs were discovered and fixed quickly. In fact many of these "problems" may not be

considered bugs but simply limitations that were exceeded in this application. This

feedback is essential for the rapid development of useful CAD tools.

Hawk also provided interactive design rule checking (DRC) through lyra. A

region can be specified and lyra would check it. This was very convenient when the

cells were being designed but proved less useful when the routing began. The batch

DRC Squidlyra was used to check for DRV's on large Squid views and the violations

corrected at a later, time all at once.

The framer [Kell84] was used to generate the symbolic representations of the

circuits. This program would take the physical view and suppress the detail within the

boundaries and leave only a set of protection frames that would define the area that is

occupied by a particular layer. The symbolic view would be used as the view that was

placed in a higher level of the circuit. This would speed up the read in and display

time. The framer would retain all the terminal information within the view. This

turned out to be very cumbersome dragging all this information around due to the

slow graphics speed. The .cadre file was changed to remove much of the unwanted

information and only the edge terminals were retained in the symbolic views.



46

4.3. Data Representation and Conversion

Hawk uses the Squid database to represent the geometries of the layout. The

plotting program cifplot and the transistor extraction program mextra use the Caltech

Intermediate Format (CIF) as the input data representation. The PLA tools generate

cells in the Caesar format. All these formats must be interchangeable. The conversion

from Caesar to Squid, Caesar to CIF. CIF to Squid and Squid to CIF must be possible.

Caesar to Squid is done by a shell script called caesartosquid. This script invokes the

Caesar graphics editor and pipes commands to it to generate the CIF output. This CIF

file is then flattened using the flatcif command and then the program Squidtocif is run

using that file. This program is used only for PLA's and since they are already flat the

flatcif step is not essential. Other conversions are done in a similar fashion and are

straightforward. There were some problems with the data conversion process when

the entire chip had to be converted from Squid to CIF for the cifplot and mextra pro

grams. But they were overcome with the help of Peter Moore and Tom Laidig.



CHAPTER 5

5. Simulation

The verification and simulation of a circuit the size of SOAR is not an easy task.

The complexity of the system demands a large number of input test vectors and these

can be very long. The circuit simulation is only a small part of the verification process

in the system development. In this section the entire simulation process is described

starting from the architectural verification to the detail circuit simulation of critical

paths on the chip.

The architecture was defined around the Smalltalk programming language.

Included in its definition are features that are intended to increase performance of the

system. How can it be made certain that these features do what the architect thinks

they will do? As with all designs, the architecture must be simulated. The simulation

of an architecture begins with a complete description containing all the features and

functions. At Berkeley, all large complex digital circuits are described at a functional

level using SLANG [Scot84] (Simulation LANGuage). SLANG is a multilevel system

for logic specification and and simulation. It allows the architect to specify the func

tion of the circuit at an arbitrarily high (function unit) or low (transistor) level. For

example, the ALU can be described with just a few lines of code that define the inputs,

outputs and control signals. This is a very high level description. SLANG also has the

capability of describing low level system functions such as pass gates. This range of

functional descriptions makes SLANG a valuable high level simulator.

SLANG serves as a architecture simulator and from this description diagnostics

can be run to see if the architecture does what it was intended to do. This is a logic

simulation only and there is no notion of delay included in the model. The value of

47



48

SLANG is in its high level simulator. This description and the diagnostics run on it are

the basis for all further simulations. Smalltalk code is used to write the diagnostics

and this code is compiled to SOAR opcodes and control signals and is converted to an

input that is compatible with SLANG. This compiled code is also converted into the

esim format so that the same diagnostics that were run on the architectural descrip

tion make up the test vectors that test the circuit at the lowest level. This closes the

loop in the system verification process. By using the same diagnostics on both the

highest and lowest level descriptions system integrity is maintained.

This describes only the logic verification and no such process is defined for the

timing analysis. That is, SLANG has no timing information and allows a node to

switch instantaneously. There is no concept of physical proximity of nodes either.

This represents a flaw in the present Berkeley design system. The functions are

described in the highest level, SLANG, and then this description is translated (by

hand) to a circuit. From these circuits a layout is implemented without ever doing a

simulation on the transistor level description. This is an important step since only at

the transistor level can there be any consideration for the delay through a device. This

timing verification is postponed until after the layout is complete: essentially the tim

ing verification is the very last step in the process before the chip is fabricated. This

step should be performed before any layout begins and should be part of the architec

tural verification. If an architecture calls for a 360ns cycle, the architecture should

provide for that and not assume that it can be built to arbitrary specifications.

This is what happened in the SOAR project. The architecture was described in

SLANG and diagnostic programs were written to test it functionally. From here the

circuits were designed and the chip laid out. Once the layout was complete, the

transistor information was extracted and and the logic was verified using esim. Then

the timing analysis was performed and resulted in an estimated clock cycle that was



49

10 to 15 times what the architecture specified. This was not the result of poor circuit

design, but poor architecture. The interlock logic that controls the pipeline was

designed poorly: under some conditions the control PLAs had to be evaluated 2 or

three times in a single clock cycle. There was no way of knowing this under the

present design procedures. Once this problem was detected, the architecture had to be

redefined and the control circuitry had to be re-implemented. This error was detected

in the NMOS version of the chip because that version was farther along than the

CMOS version. If there was a way to estimate the timing of the system, even rough

estimates, this redesign and second time through the loop could be avoided.

This describes the system simulation of SOAR. But most of the actual simula

tion was done after the SLANG was defined and successfully running. Getting the

SLANG to run is quite a bit easier than getting the circuit to work. How is the simula

tion started? Where do you begin debugging such a large system? The diagnostics test

a working chip: They were not written to test a nonworking chip, they were not

intended as debugging aids. For this reason a short manageable diagnostic that tests

key features is essential. Once this short diagnostic program runs successfully it is rea

sonable to assume that most of the logic functions properly. After that it is a question

of running diagnostics that exercise some of the isolated, less important logic. The first

diagnostic run is called testupatch this set of vectors would be almost meaningless as a

SLANG diagnostic, all it does is reset the processor and loads the Current Window

Pointer, Program Counter, Trap Base, and Process Status Word. Then it provides an

illegal opcode and generates a trap and" returns. With this short diagnostic test vector

the ALU. CPIPE. CWP. PC. TB. MAL. SWP. SRCl. SRC2. DST the input and output

circuitry. PLA's and addressing can be verified. This represents a substantial amount

of SOAR's circuitry.



50

Debugging SOAR with this vector was quite difficult. The first thing to be

debugged was the CPIPE. Getting this to load was a complex and tedious task. To get

these latches to load the input circuitry had to be debugged. At the start there were

very many bugs, after one was found (that didn't take very long) the circuit had to be

updated converted from Squid to CIF and extracted (see Section 4.3 for a description

of this conversion process). What made this especially difficult was that the tri-state

pads' output enable line is generated by the control PLA's output. The input to these

PLA's is the CPIPE output. It took many iterations to correct these bugs and load the

CPIPE successfully. After this the next most painful operation to debug was the

addressing. This is because it is the most complex portion of the processor. The regis

ter forwarding logic and pipeline interlock logic must work for any address to be

unique. If the address is not unique all busses become undefined. These were long and

difficult problems to solve. Once they were solved, all the other problems were minor

and straightforward to solve, although there were many of them! These problems

were faster to fix because each was independent and so many bugs could be solved in

parallel for each extraction.

5.1. Performance

The Architects of SOAR planned for a cycle time of 360ns. An 80ns bus

precharge was assumed for Phase 1, a 130ns register read operation during Phase 2 and

a 90ns ALU operation during Phase 3. Each phase requires a 20ns underlap. This

totals 360ns, see Table 2.4. This cycle time was based on estimates of ALU speed, size

of busses and register cell drive capability. These estimates were very far off. What

was not accounted for was the complex decoding of the source and destination, which

lengthens Phase 1 and the pointer to register logic which lengthens Phase 3 consider

ably.



51

Once SOAR was debugged to the point where it performed most of its functions a

timing analysis was begun. The method of determining how fast a large system such as

SOAR will run is a complex task. The timing tool Crystal [Oust83] was used for this

analysis. This tool uses a simple model to calculate the delay through a circuit. Cry

stal knows nothing about the values of the nodes in the circuit. It can follow impossi

ble paths trying to find which path is the longest. Once Crystal has been run, the path

it believes to be the longest can be analyzed to determine if in fact it is a reasonable

path. Often this process requires many iterations. Analysis of all phases starts with

the setting up the pads as inputs and letting Crystal perform its analysis. In general,

the results will be in error but this first analysis provides a starting point for the cir

cuit setup phase that must then be performed. For the SOAR design, analyzing Phase

1 was the easiest. During Phase 1 no complex circuits are active. What Crystal found

first was a critical path of 1200ns that ended at the A-bus. At first, this seemed

totally unreasonable. Nothing ever reaches the busses on Phase 1: all the busses are

precharged on Phase 1. Further analysis of Crystal's output showed that, although the

path it found to the busses was impossible, there were, in fact, other legitimate paths

to the busses on Phase 1. It turned out that the logic to one of the drivers of the A

and B busses was changed to prevent a race condition (detected by esim) and the solu

tion to the race condition allowed the busses to lose charge on Phase 1. This was a

valid timing error that Crystal detected. Once this problem was fixed the critical

path was almost the same except that the path stopped before the busses. A detailed

examination of the path showed that it was an impossible path, which illustrates one

of the limitations of Crystal. The sign extender circuit has a multiplexing function

that allows either the raw data or the sign extended data to enter the datapath. The

signals that drive the multiplexor are compliments of each other, if one is on the other

must be off. Crystal doesn't know this: it knows almost nothing about the state of the

circuit, it only sees paths through it. The path it saw as the worst was zig-zagging



52

through the sign extender and up and down the input register. This was obviously an

invalid path. The solution to eliminate this path was to fix the node driving the mul

tiplexor to 1 which defined a legitimate path. It must be noted that care must be taken

when assigning values in Crystal because the user can possibly mask true critical

paths. The values that were fixed were such that the longest path remained open.

" With these nodes set the next run of Crystal produced legitimate paths. Unfor

tunately, the worst was one that was unanticipated. It ended in driving the output

enable line OE. the delay along this path was over 1000ns. The path is reasonable

since it originates at the CPIPE where the output is loaded on Phase 1, the signals pro

pagate through the control PLA's and the output drives the OE line. This line drives

all the pads and the multiplexor in the datapath (see Section 3.10). This path was

shortened by buffering it at shorter intervals.

The next longest path was the output of the decoders. There are 72 equivalent

paths, one for each register. The path is from the destination latch through the

decoders, and its delay time was 235ns. This is not really the

critical path because the destination is not used until Phase 3 for the register write so

it has plenty of time to set up. An identical path exists for the sourcel and source2

latches. This is the true critical path and Crystal shows it to be 230ns. SPICE was run

on this path and it determined the actual delay to be 360ns. The path is illustrated in

Figure 5.1 and Crystal's analysis and SPICE simulation results are included in Appen

dix B.

Phase 2 was a little more difficult to analyze. The problem in the sign extender

was also encountered in the byte insert/extractor but this time the fix was much fas

ter. After this was fixed the worst case path included the control PLA's: this was

impossible since they are evaluated on Phase 1. It turned out that the cause was the

refresh in the CPIPE, which is performed during Phase 2. Crystal doesn't know about



53

*—CH>4>-h

5CC1

olrccJ« 6. A

Rprt.^ 1

XA/..4 ft

Figure 5.1 Phase 1 Critical Path

refreshing and assumes new data gets loaded. All the refresh circuits had to be turned



54

off to eliminate this problem. The critical path for Phase 2 ends with valid data

applied to the ALU input. This data is normally applied from the register file but the

worst case occurs when the input to the latches is the output of the ALU from the exe

cution of the previous instruction. The register forwarding operation takes "the output

of the ALU. puts it on the D bus and then routes the data back to the ALU input

latches. Since the D bus is larger than the A or B^busses this is the critical path for

Phase 2, Crystal estimated the delay along this path to be 195ns, which agrees with

the SPICE analysis. The critical path is shown in Figure 5.2 and Crystal's analysis and

SPICE simulations are included in Appendix B.

Phase 3 was the most difficult to analyze. This is because of the complex domino

ALU that is evaluated on Phase 3 and because the program counter and SWP are

loaded on Phase 3. All of these circuits have carry chains that Crystal doesn't handle

very well. Once all the bugs were found a legitimate Phase 3 critical path was found.

The path was not exactly where it was assumed it would be originally. It did include

the ALU evaluate but it also included the program counter, memory address latch

(MAL) and the pointer to register logic. What was not anticipated was the condition

where the ALU output gets loaded in the program counter on both load and store

operations. This placed the PC, the MAL and SWP in the path. The carry chain of

the PC is not included because the next PC value is not needed until the next cycle.

Loading the three latches does not take long but when the SWP gets loaded the

PTRtoREG signal gets evaluated (see Section 3.6). Recall that generating this signal

requires determining SWP-ADD-1. The Crystal output and SPICE simulation are

included in Appendix B. This is not the critical path because the SWP has until the

next cycle to evaluate the comparison. Therefore the critical path for Phase 3 is the

ALU evaluate. The critical path is shown on Figure 5.3 and is 243ns by Crystal's esti

mation. SPICE was run on this path and it determined the actual delay to be 348ns.

These results are included in Appendix B.



55

CrfL*\

D-X+* XA

Figure 5.2 Phase 2 Critical Path

These results from Crystal compare favorably with the Crystal results for the

NMOS version of SOAR. These results are based on parameters derived from previous

MOSIS 3u CMOS processes. The parameters (listed in Appendix C) that Crystal uses

are only the resistance and capacitance per unit area for polysilicon. diffusion and

metal. The capacitance from run to run doesn't change drastically but the diffusion

i**Lfr

inpuf



56

resistance can vary tremendously and a conservative value was used. This along with

the conservative method Crystal uses for determining the critical path the simulation

results are very pessimistic. Table 5.1 shows a comparison of the SPICE results and

the Crystal results for some of the paths in SOAR.

Table 5.1 SPICE and Crvstal Comparison

Path SPICE Crystal

Phase 1 370ns 230ns

Phase 2 200ns 195ns

Phase 3 340ns 243ns

Underlap 80ns 60ns

PLA 57ns 38ns

The overall speed of SOAR can now be estimated. The cycle time consists of the

sum of the three phases plus the underlap between phases. This underlap is critical

between Phase 2 and 3. The register is being read on Phase 2 and written to in Phase

3. If the underlap is insufficient the word lines for the source could still be active and

the data written to the destination could corrupt the source register. To eliminate this

problem the underlap between Phase 2 and 3 must be long enough for the RFidle line

(active on not Phase 2 and not Phase 3) to discharge the word lines. The circuit is

shown in Figure 5.4. Crystal estimates the necessary delay to be 60ns but the SPICE

estimate is 80ns. A 20ns underlap is sufficient between Phase 1 and 3 and Phase 1 and

2. Using SPICE estimates, the total cycle time is 370 + 200+ 340 + 120 = 1030ns. Note

that these results are pessimistic.

One on the goals of SOAR was to build a Smalltalk system whose speed can com

pare with that of a Dorado, an ECL minicomputer. The original estimates of a 360ns



57

A£ ?.r

A 4:*. ^

Alu** D —1[

1
D^ Po

J_

H>-[>^

Figure 5.3 Phase 3 Critical Path



58

S>GCU OST
Sftca.

re^A A •^ e>

l=o *F.«Hc

C &vs

w©td*\

Figure 5.4 Phase 2 Phase 3 Underlap Requirements

cycle time would result in performance, based on aset of benchmarks, equal to that of

a Dorado. With the estimates of Crystal and SPICE greater than the original goal of

360ns and the belief that this estimates are very pessimistic it is reasonable to assume

that SOAR will execute Smalltalk as fast as a Dorado.



CHAPTER 6

6. Conclusions

The CMOS version of the SOAR microprocessor has been described. The architec

ture consists of a 32 bit tagged-data microprocessor that was designed to execute

Smalltalk-80 efficiently. The methods used to achieve this efficiency were described in

the architectural overview section. The tags and traps are the main support of for

Smalltalk. They provide a variety of interrupts and a flexible service mechanism that

allow for efficient memory management. The register file system serves to speed up

calls to subroutines and reduce the memory bandwidth normally seen in pure

load/store architectures. The RISC philosophy was maintained in SOAR and the

emphasis in this project was to reduce the clock cycle to its absolute minimum.

The method of chip design for CMOS SOAR was described. The Hawk/Squid sys

tem was used to lay out this chip and many of the advanced IC design features pro

vided by this CAD system were used. A structured-custom approach was used to

implement the random logic. Routing tool, developed by Deirdre Ryan, were used route

most of this logic. This method allowed for quick turn-around time and guaranteed

logic correctness in the routing. The performance figures suggest that this approach did

not adversely affect overall circuit performance.

The actual performance of this chip is unclear. Since the reliability of timing

analysis tools such as Crystal for the new CMOS technology is not known. The

models used for timing analysis were based on previous CMOS runs fabricated by

MOSIS. The SPICE parameters are for a worst case design and these parameters

degrade performance drastically. The actual parameters for the run that this chip goes

through will have a great bearing on the overall performance of the processor.

59



60

This processor represents only one aspect of the SOAR project. A board that

interfaces SOAR with a workstation has also been developed and the Berkeley

Smalltalk system will be run on this combination. The CMOS version of SOAR is

pin-for-pin compatible with the NMOS version. The speed of Smalltalk on SOAR is

estimated to be about that of Smalltalk running on a Dorado. This processor is an

application of an expermental programming environment on a RISC. The final results

results will not be verified until the working chips are tested but from all the indica

tions available and the findings in this paper it is reasonable to conclude that SOAR

will be as fast as any Smalltalk system available at this time.



APPENDIX A

Interaction of CWP and SWP

61



Appendix A - Interaction of CWP and SWP

The interaction of the register file. CWP and SWP is not difficult to grasp intuitively. Get.
ting aB oUhVwmbers to work out in detail, however, is awheel of aafferent magnitude. Th»
appendix will hopefully prevent others from having to reinvent this wheel.

Assume the CWP is initialed to 7, and the SWP is iniUalixed to some value, the last seven
bits ofwhich are tero (note below that only the last eight bits are dispayed: x is abinary digit
»d wTS o*er binary digit). Assume that we have aroot program PI with procedures P2,
» 3. •••

ICWP
?
7

6

5

4

3

2
1

6

7

0

1

2

3

4

ACTION
CWPI SWP

(after action) w7 w6 wS w4 w3 w2 wl wO

initialize
PI calls P2
P2 calls P3
P3 calls P4
P4 calls P5
IPS calls P6
P6 calls P7
P7 ealls P8

7

6

5

4

3

2

1

1

xOOO 0000
xOOO 0000
X000 0000
xOOO 0000
xOOO 0000
xOOO 0000

xOOO 0000

r/causro * *000 0000 , ... —
The overflow trap handler can use onry globals to spill the window,
decrement SWP. store w7(lH) into (will 0000)

' ~ will 0000 I 8L 2H 3H
will 0000 | TH TL 3H

1H
1H
1H

1H
1H
1H

1H
1H

1L
2H

2H
2H
2H
2H

2H
2H

P8 calls P9
decrement SWP. store w6 2H) into (wllO 0000)

7

P9 calls Pa I 6
decrement SWP, store w5

Pa returns to P9 7
P9 returns to P8 0
P8 returns to P7 1
P7 returns to P6 2
P6 returns to P5 3
P5 returns to P4 4
P4 returns to P3 4

wlOl 0000

wlOl 0000
wlOl 0000

wlOl 0000

wlOl 0000
wlOl 0000
wlOl 0000

nr«uro>Wr0 ^ wlOl 0000 „„,»
read (wlOl 000)(3H) into w5. increment SWP, increment CWP

I S IwllO 0000I--3H3L---
P3 returns toP2 I 5 |w110 0000 | - - 3H TL - - -
read (wllO 000M2H) into w6, increment SWP, increment CWP

Id IwlllOOOO j - 2H 2L
P2returnstoPl I 5 Iwlll 0000 | - 2H TL - - - -
read (will OOOHlH) into w7, increment SWP, increment CWP

| 7 1x000 0000 | 1H 1L - - - - -
Andwe are back to the original state. Of course, any more returns
after this point would result in a major system error. ,

2L
3H

3H

3H
3H

3H
3H

wllO 0000 I 9H 9L 3H
wllO 0000 I 9H TH TL
3H) into (wlOl 0000)

9H aH aL
9H 9L -
8L - -

3L

4H

4H

4H

4H

4H

4H

4H

4H
4H

4H
4H

4H
4H
4H
4H
4H
4H

41 - -

5H 5L -

5H 6H 6L

5H 6H 7H
5H 6H TH

7L
TL

5H 6H 7H
5H 6H 7H

SH 6H 7H
5H 6H 7H

5H 6H 7H
5H 6H 7H
5H 6H 7H
5H 6H 7H
5H 6H 6L
5H 5L -
4L - -

TL - -

8H
8H

8H
8H

8H

8H
8H

7L



APPENDIX B

SPICE and Crystal Output

63



May 13 18:53 1985 phi1.opleoout Pog« 1

t 05/66/85 • SPICE 20.6 3/15/83 ........21:40:23

6* 3U P WELL CMOS MODELS BK

INPUT LISTING TEMPERATURE - 27.600 DEC C
e......o............ ••.•••••••••••••••••••••• .......o....

.MODEL

+

+

+

.MODEL

+

+

+

.MODEL

+

+ '
•f

+

.MODEL

+

+

+

.MODEL
+

+

+

.MODEL

4

+

NOOES
NODES
NODES
NODES
NOOES
NOOES
NODES

NODES
NODES
NODES
NODES

R1 22

C1 23
R2 12
C2 13
R3 16
C3 17
R4 14

C4 15

N1 NMOSUEVEL-2 T0X-65N NSUB-15E15 VTO-1.1 XJ-0.35U LD-0.25U
N1 NM0S^i|11 2$Ei*%B-e.80 UO-526 UCRIT-3.97E4 UEXP-0.©8

UTRA-0.25 GAMMA-1 LAMBDA-0.02 C6B0-5.7E-10
CGD0-5.7E-10 CGS0-5.7E-10 CJ-6.0E-4 CJSW-5.64E-10

NNMOS(LE?E^!ETo!!-55n3Ns52-?Se15 ^0-6.93 XJ-0 45U LD-0
JS-1 24E-4 PB-0.80 U0-381 UCRIT-99E4 UEXP-0.001
UTRA-0 LAMBDA-0.025 CCBO-4.0E-1O TPC-1
CG0O-5.2E-1© CCS0-5.2E-10 CJ-3.2E-4 CJSW-9.©E-10
VMAX-5 5E4 NEFF-1.0E-2 RSH-25 DELTA-1.47 NFS-3.73E11)

N3 NMOS(LeOeI-2 T0X-55N NSUB-5E15 VTO-0.5 XJ-0.6U LD-0.4UN3 NMOS^|^L2JE^%g;08e uo-1053 UCRIT-3.97E4 UEXP-0.08

PI PMOS^O^tSx^N- SISbII^S VTO-1.1 W-..3SU LD-0 25U
JS-7.75E-5 PB-0.88 UO-210 UCRIT-4.14E4 "«?-«• 16
UTRA-0.25 GAMMA-©.6 LAMBDA-0.02 CGB0-5.7E-1©
CGD0-5.7E-1© CGS0-5.7E-10 CJ-4.1E-4 CJSH-3.85E-10

PPMOS(LEVEK"To!-5SN3N?uS:2eS7E14 VTO-0-844 XJ-0.0258U LO-0.512UP PMOS(L5^-25TOX »^N^»UOaiee UCRIT-18500 UEXP-0. 145
GAMMA«©.723 LAMBDA-© ©527 CGBO-4 0E-1O JP6--1
CGDO-4.0E-1O CGSO-4.0E-10 CJ-2.0E-4 CJSW-4.OE-10
VMAX-10E4 NEFF-.01 RSH-95 DELTA-2.19 NFS-1.62E12)

P3 PM0S(LEVEL-2 T0X-55N NSUB-.3E15 VTO-0.5 XJ-0.6U LD-0.4UFi KMoa^Lt £L75E_4 pB.e>88 U0-421 UCRIT-4.14E4 UEXP-0.16
UTRA-0.25 GAMMA-0.4 LAMBDA-0.02 CGBO-5.7E-10
CGOO-5.7E-10 CGSO-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
VMAX-5E4 NEFF-3 RSH-50)

23 23639
0 0.569PF
13 1793
0 0.126PF
17 1405
0 0.196PF

15 12893
0 0.8O4PF

4039

0. 179PF
1172
0.056PF

11 13393
0 0.782PF
1405
0. 164PF

19 16798
0 1.049PF
21 52265
0 2.477PF

24U

4-5 CORRESPOND TO ALUINA#30_H SEE CATE AT .
6-7 CORRESPOND TO *LUINA#30L (SEE GATE AT 3537.2121)
8-9 CORRESPOND TO COMPINA#30_H (SEE GATE AT 3510.2128)
10-11 CORRESPOND TO BUSA#30_H (SEE GATE AT 3209.2884)
12- J CORRESPOND TO IN#6 (SEE SOURCE AT «75.«34)
14-15 CORRESPOND TO BUSA#31 H (SEE GATE AT 3194.2884)
16-17 CORRESPOND TO C0MPINA|31 H (SEE GATE AT 3508 2218)
18-19 CORRESPOND TO PHI1_L#7 (SEE GATE AT 3505.2255)
ii-21 CORRESPOND TO PHI.H (SEE GATE AT 2854.2740
22-23 CORRESPOND TO PHI_L (SEE GATE AT 2859.2723)
24-25 CORRESPOND TO PHASE1 (SEE GATE AT 4138.3532)

R5

C5

4 5
5 0

R6 6 7
C6 7 0
R7 10

C7 11
R8 8 9

C8 9 0
R9 18
C9 19

R10 20

C10 21
Ml 1 7
M2 0 7
M3 0 9
M4 6 9

M5 11
M6 10

4 1 P L-3.0U W-11.OU
4 0 N L-3.0U W-8.0U
6 0 N L-3.0U W-8.0U
1 1 P L-3.0U W-11.©U

1 8 0 N L-3.0U W-4.0U
1 13 0 N L-3.0U W-4.0U



May 13 18:53 1985 phi1.gpicaout Page 2

M7 15 1
M8 17 1
M9 16 19
M10 0 21
M11 1

M12 1

12 0 N L-3.0U W-4.0U
14 © N L-3.0U W-4.0U
1 1 P L-3.0U W-4.0U
18 0 N L-3.0U W-27.0U

P L-3.0U W-59.0U
P L-2.8U W-58.9U

21 18 1
23 20 1

M13 0 23 20 0 N L-3.0U W-30.0U
U14 22 25 0 0 N
M15 22 25 1 1 P

L-3.0U W-27.0U
L-3.0U W-59.0U

' INITIAL CONDITIONS:
IC V( 000000

000000
000000
000000
000000
000000

-0.000000
-0.000000
0.©00000

0.900000
6)-S.000000
7)»5.000000

•0.000000
. •©.000000

8)-e.0O0OOO
9)-0.000000
18)-5.000000
19)»5.000000
20)-©.000000
21)*0.000000

. IC

. IC

. IC

. IC

.IC

.IC

. IC

. IC

. IC

.IC
IC

IC
IC

IC
IC
IC
IC

IC
IC

10)-(
11)-<

VDD 1 0 5.0

VIN 25 0 PULSE(0 5 ONS ©NS ONS)
.TRAN 5.00NS 1OO0NS
.PLOT TRAN V(5) (0.5)
•ENO

t.•••••••••......©5/06/85 •••••..

0. 3U P WELL CMOS MODELS BK
«•••• MOSFET MODEL PARAMETERS

©TYPE
©LEVEL
0VTO
OKP

OGAMMA
OPHI

0LAMBOA
OPB

OCGSO
OCGDO

OCGBO
0RSH

ocj
OCJSW
OJS
OTOX

0NSUB
©NFS

©TPG
©XJ

OLD

0UO

OUCRIT
0UEXP

OUTRA
OVMAX

0NEFF
ODELTA
1...«..«

N1

NMOS

2.000
1 .100

2.79d-05
1 .000

0.716
2.00d-02

0.800

5.70d-10
5.70d-10
5.7Od-10

30.000
6.0Od-©4
5.64d-10
1.24d-©4
6.5©d-08
1.50d+16
0. d+00

1 .000

3.50d-07
2.5©d-07
526.000

3.97d+04
0.080

0.250
5.00d+04

3.0©0
©.

N

NMOS
2.000

0.930

2.63d-05
0.834

0.695
2.5Od-02

0.800

5.2©d-1©
5.20d-1©
4.0Od-10

25.000
3.20d-©4
9.00d-10
1.24d-©4

5.0Od-08
1.©0d+16
3.73d+11

1 .000

4.50d-©7
2.40d-©7
381.000

9.90d+©5
0.801
0.

5.50d+©4
0.010

1 .470
'05/06/85

N3

NMOS
2.000
0.500

6.61d-0S
0.90©

0.660
2.0©d-©2

0.800

70d-10

70d-1©
7©d-10

10.000

00d-04
64d-10
24d-04

SOd-08
OOd+15

d+00

1 .000

6.00d-07
4.0Od-07
1053.000
3.97d+04

0.080
0.25©

5.0©d+©4
3.00©
e.

i

pi

PMOS
2.000

-1.10©

12d-©5

0.600

0.660

2.0©d-©2
0.880

5.70d-1©
5.7©d-1©
5.70d-10
100.000

4.1©d-04

3.85d-1©
7.75d-©5
6.50d-©8
5.00d+15
0. d+0©

1 .000
3.50d-07
2.50d-©7
210.000

4.14d+04

0. 160
0.25©

5.00d+04

3.000
0.

SPICE 2G.6 3/15/83

P

PMOS
2.000

-©.844
6.91d-06

6.723
0.514

5.27d-02
0.880

0©d-1©

0©d-10
00d-10
95.000

OOd-04

OOd-10

75d-05
OOd-08
97d+14

62d+12
-1 .000

58d-08

12d-©7

100.000
1.85d+04

0. 145
0.

1.0©d+05
0.010

2. 190

SPICE 2G.

P3

PMOS
2.000

-0.5©©

2.64d-05
0.400

0.514

2.0©d-©2
0.88©

5.7©d-1©

5.70d-1©
5.70d-10

50.00©

4.10d-04

3.85d-10
7.75d-04

5.5©d-©8
3.0©d+14
0. d+00

1 .00©

6.00d-©7
4.0©d-©7

421.00©
4.14d+04

0. 166

0.250
5.00d+©4

3.00©

0.

6 3/15/83

TEMPERATURE - 27



May 13 18:53 1985 phi1.spicoout Pogo 3

0. 3U P WELL CMOS MODELS BK
0.... INITIAL TRANSIENT SOLUTION TEMPERATURE 27

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
NODE VOLTAGE

( 1) 5.0000

( 10) -0.0000

( 17) 0.0000

( 25) 0.

NODE VOLTAGE

( 4) 0.0000

( 11) -0.0000

( 18) 5.000©

( 5) 0.0000

( 12) 0.0000

( 19) 5.0000

( 6) 5.000©

( 13) 0.0000

( 20) 0.0000

( 7) 5.0000

( 14) 0.0000

( 21) 0.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VDD -3.©O5d-09

VIN 0. d+00

TOTAL POWER DISSIPATION
>••• ...05/06/85 •«"

1.50d-©8 WATTS
SPICE 2G.6 3/15/83

©• 3U P WELL CMOS MODELS BK
0...* OPERATING POINT INFORMATION TEMPERATURE - 27

0

0.... MOSFETS

0

OMODEL

ID
VGS
VDS

VBS

Ml

P

3.84e-10

5.000
5.000

5.000

M2 M3 M4 M5 M6 M7
N N P N N N
1.25e-24 -2.97e-14 -2.59e-24 -1.62e-27 -1.62o-27 -1.62o-27

5.000 -5.00© -5.000 5.900 5.000 5.000
-0.000 -5.000 -0.000 -0.000 -0.00© -0.000
-o ©ee -s.eee ©. -0.000 -0.000 -0.000

M14 MIS
N P
2.©4o-12 4.48o-24

0. -5.000
5.000 -0.000
0. O.

0
OMODEL

ID

VGS
VDS

VBS
I......

M13
N

2.720-23

5.00©
-0.000

-©.ee©
•05/86/85 SPICE 2G.6 3/15/83

M8
p

.40e-26 -1
5.000

0.000

-0.000

0. 3U P WELL CMOS MODELS BK
0...« TRANSIENT ANALYSIS TEMPERATURE 27

TIME V(5)

8 d+00 9 674d-14 •

5 0O0d-09 -4 276d-06 *

1 eeod-os -1 327d-06 •

1 seod-os -4 418d-08 *

2 OOOd-08 2 965d-07 *

2 50©d-08 3 224d-07 •

3 oeod-os 1 91Sd-07 •

3 SOOd-08 3 547d-©7 •

d+ee 1.250d+00 2.50©d+00



*
.+

.
+

+
.+

.+
.

Ij
t

M
K

>
—

t
n

o
o

i
9

9
9

a
a

a

I
I

I
9

9
9

-
J
>

J
v
J

-
*

9
9

«
D

9
U

>
9

U
i

s
o

o
o

a
.

a
a

.
a

.

I
I

I
I

s
s
o

s

"
"
"
"
!-

"
"
"
I'

}
J
I-

"
"
W

U
W

U
U

U
M

M
M

N
M

M
N

N
M

N
N

M
N

M
N

M
M

M
M

IO
--

--
--

--
--

--
--

J
--

-J
-

<
0

0
9

0
0

«
4

o
t
n

s
i
u

i
9

S
O

S
a

.
a

.
a

.
a

.
I

I
I

I

S
O

S
«

9
G

9
«

0
S

S
O

S
O

S
O

O
9

9
O

S
O

O
e
O

S
S

I
I
I
S

Q
O

9
S

S
I
9

S
S

•
i

•
l

l
l

•
I

I
I

i
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

l
i

I
i

I
I

i
9

«
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
0

9
9

9
0

9
9

9
0

S
9

9
9

9
S

«
I
S

<
0

<
0

O
O

O
D

v
J
v
J
O

)O
>

U
K

J
t.

*
»

O
B

O
B

-s
l'

s
J
O

)
u

s
n

s
o

i
9

9
9

9
9

a
.

a
.

a
.

a
.

a
.

I
I

I
I

I
9

9
9

9
9

»
J

>
l-

s
i

««
J
v
l

9
V

S
U

I
9

U
9

9
9

9
9

9
a

a
.

a
.

a
.

a
a

.

I
I

I
I

I
I

«
J
-
J

>
j

>
4

>
l

>
j

Q
U

I
9

U
I
S

U
I
9

9
9

9
9

9
9

9
a

.
a

a
.

a
.

a
a

a
.

l
l
l
l
l
l
l

9
9

9
9

9
9

9
>

J
>

I
>

4
-«

J
«4

v
l

«
J

U
*

9
U

>
9

U
I
9

V
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

a
a

a
a

a
a

a
a

I
I

I
I

I
I

I
I

9
9

9
9

9
9

9
9

O
D

O
b

O
O

O
D

O
b

O
D

O
D

O
O

U
9

U
9

9
9

9
9

9
9

9
9

a
.

a
.

a
.

a
.

I
I

I
I

9
9

9
9

0
0

O
)

0
)

0
0

*
.*

+
-U

>
O

i*
.*

..
M

*
U

l*
..

*
*

.U
ro

-»
-«

>
<

J
>

W
>

0
»

K
J
tf

>
M

-0
>

1
1

—
0

»

a
>

-
»

a
a

.

9
9

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
0

'0
iO

«
O

I*
^
*

.C
lO

IC
IM

M
-»

>
4

0
<

fO
-«

—
O

tt
4

»
.*

.*
.>

*
*

.O
lM

N
-*

♦
*

U
O

>
9

U
lC

0
X

O
.|

tU
I>

i<
0

N
)I

O
»

U
I9

.f
rO

D
-»

a
o

»
J
O

D
»

4
-»

«
O

D
U

I>
J

a
B

9
K

>
->

O
H

O
«

JU
io

>
>

J
—

U
I<

D
<

O
9

9
(0

«
J
U

i»
o

a
B

a
>

b
ib

lv
l9

o
t-

*
o

>
9

•
I
•
•
•

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
9
9
9
9
9
9
9
9
9
9

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

-»
—

—
—

->
<

0
<

D
C

0
<

O
O

O
O

O
O

O
^v

j>
|-

sJ
-»

J
0

>
tJ

I
(O

IO
<

0
9

<
o

<
o

<
o

-*

a
.

a
.

a
.

a
.

+
+

+
+

9
9

9
9

9
9

9
9

9
<

D
1

0
(
0

9
-
*

<
0

K
»

0
)

O
i

0
0

0
0

>
l

-*
O

0
lr

i<
s
l>

M
>

-
•

a
.

a
a

.
a

.
a

.
a

.
a

.
+

+
+

+
+

+
+

9
9

9
9

9
9

9
9

9
9

9
9

9
9

O
T

-
•

*
O

)
G

B
fc

*
*

*
0

0
K

>
U

l
(0

(0
0

0

a
.

a
.

a
.

a
a

a
a

.
+

+
+

+
+

+
I

9
9

9
9

9
9

9
9

9
9

9
9

9
-*

9
O

0
3

O
lO

il
O

9
9

*
•

a
.
a

a
I

l
l

9
9

9
—

-
»

M

<
O

IO
IO

V
IO

tI
O

c
n

o
D

c
n

>
.

k>
—

a
.

a
.

a
.

a
a

.
a

.

I
I

I
I

I
I

©
©

o
<

s>
o

©

W
M

9
0

0
D

C
O

U
M

a
.
0

.
0

.
0

.
I

I
I

I
9

9
9

9
9

9
9

9

9
(
0

C
O

W
s
a

x
o

u
<

0
l»

C
O

<
0

a
o

-
a

o
.

I
I

I
I

9
9

9
9

M
I
O

O
I
S

U
(
*

o
>

*
-
o

o

a
.

a
.

a
.

a
.

a
l

I
I

I
I

9
9

9
9

9
"
J

-
a

"s
i

>
J

«
J

9
9

-
•

9
S

>
9

0
D

O
lK

)(
O

<
O

U
0

.
0

.
0

.
0

.
0

.
0

.
I

I
I

I
I

I
9

9
9

9
9

9
>

J
>

J
>

J
>

l
>

J
>

J



May 13 18:53 1985 phi1 .spiceout Page 5

4.300d-07
4.35©d-©7
4.4©0d-07

4.450d-07
4.50Od-07
4.558d-©7
4.60Od-©7
4.65©d-07
4.700d-07
4.750d-07
4.800d-07
4.850d-07

4.9©0d-07
4.950d-©7
5.©0Od-07
5.©50d-©7
.100d-07

.15Od-07
200d-07

.250d-07

.300d-07

350d-©7
.4©0d-07

.450d-07

,500d-©7
550d-©7

5.600d-07

5.650d-O7
5.70©d-©7
5.75©d-07
5.8©0d-07
5.85©d-©7
5.9©0d-07
5.950d-©7
6.000d-07
6.050d-07
6.100d-07
6.150d-07
6.200d-07
6.250d-O7
6.300d-©7
6.350d-©7

6.4©0d-07
6.450d-O7
6.5O0d-07
6.550d-©7
6.6©0d-07
6.650d-07
6.700d-©7

6.750d-©7
6.8©0d-©7

6.8S0d-©7
6.900d-©7
6.9S0d-©7
7.©©0d-©7
7.059d-©7
7.1©0d-©7
.150d-07
200d-07

250d-©7
300d-©7
3S0d-©7
.4©0d-©7

45©d-07
500d-O7

7.550d-©7
7.6©©d-©7

650d-07
.70©d-©7
750d-©7
800d-07
.850d-07
.9©Od-07

95©d-©7
8.000d-07
8.©5©d-©7
8.10©d-©7
8.150d-©7

s.oeod+oe
5.005d+00
5.0©4d+©0
5.002d+00
4.999d+0©
4.997d+00
4.997d+00
4.999d+00

s.oeod+eo
5.©02d+00
5.001d+00
5.000d+©0
s.eeod+eo
4.999d+00

4.999d+0©
s.oeod+oe
5.©00d+00

eood+oe
oeod+oo

eeod+oe

OOOd+00
oeod+ee
©00d+00

5.000d+00

s.eood+oe
5.000d+00
5.000d+00
5.000d+00

oeed+ee
oeod+ee
eeed+ee

oeod+ee

©dOd+ee
oeed+0©
oood+ee

5.00Od+00
5.000d+00

eood+ee

eoed+ee
900d+00
000d+00

000d+00

eood+oo
000d+00

©00d+00
©00d+00
000d+00

5.000d+00
5.000d+©0
5.000d+00
5.000d+00
5.©00d+00

©©©d+00
eood+oe
000d+00
000d+00

eeed+ee
.eoed+oo
000d+00

©dOd+00
000d+00
000d+©0

000d+00
000d+00

©00d+00
000d+00
000d+©0

000d+00

000d+00
000d+00

5.000d+00

5.0O0d+00
eeed+ee
000d+00
©00d+©0
000d+00
000d+00

000d+00

5.

5.

5.

5.
5.

5.
5.
5.

5.

5.

5.
5.

5.

5.

5.

5.
5.

5.



May 13 18:53 1985 ph i1.spiceout Page 6

8 -200d-07 5.000d+0©

8 .250d-07 5.0O0d+00

8 .300d-07 5.O00d+00

6 .350d-07 5.000d+00

6 .400d-07 5.000d+00

8 ,450d-O7 5.0O0d+0©

8 .500d-07 5.000d+00

8 .550d-©7 5.000d+00
8 .600d-07 5.000d+00

8 .650d-07 s.eood+ee

8 .700d-O7 5.000d+00

8 750d-©7 5.900d+O0

8 .8©0d-07 5.000d+00
8 850d-07 5.000d+00

8 900d-07 5.000d+00

8 950d-07 s.oeed+ee

9 O00d-07 5.000d+00

9 050d-07 5.000d+00

9 IOOd-07 5.000d+00

9 150d-07 5.000d+00

9 200d-07 5.000d+0O

9 250d-07 5.000d+00
9 300d-O7 5.0©0d+0©

9 350d-07 5.000d+00

9 400d-07 5.000d+00

9 450d-©7 5.000d+00

9 500d-07 5.000d+00

9. 550d-97 5.000d+00

9. 600d-07 5.000d+00

9. 650d-O7 5.000d+0©

9. 780d-©7 5.000d+00

9. 750d-07 5.000d+00

9. 800d-©7 5.000d+00

9. 850d-07 5.000d+00

9. gOOd-07 5.00©d+0©

9. gSOd-07 5.000d+00
1 .090d-O6 s.eood+oe

Y

0

JOB CONCLUDED
0 TOTAL JOB TIME 85.88



Moy 13 18:54 1985 phi2.spiceout Page 1

1.......05/10/85 •••••••. SPICE 2G.6 3/15/83 ••••••••2©:34:15c...

0. 3U P WELL CMOS MODELS BK

e«... INPUT LISTING TEMPERATURE - 27.000 DEG C

0.•••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••• ,

.MODEL N1 NM0S(LEVEL-2 TOX-65N NSUB-15E15 VTO-1.1 XJ-0.35U LD-0.25U
+ JS-1.24E-4 PB-0.80 UO-526 UCRIT-3-.97E4 UEXP-0.08
+ UTRA-0.25 GAMMA-1 LAMBDA-0.02 CG8O-S.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-1© CJ-6.0E-4 CJSW-5.64E-10
+ VMAX-5E4 NEFF-3 RSH-30)
.MOOEL N NM0S(LEVEL-2 T0X-50N NSUB-10E15 VTO-0.93 XJ-0.45U L0-9.24U
+ JS-1.24E-4 PB-0.8© UO-381 UCRIT-99E4 UEXP-0.©01
+ UTRA-0 LAMBDA-©.©25 CG8O-4.0E-10 TPG-1
+ CGDO-5.2E-10 CGS0-5.2E-1© CJ-3.2E-4 CJSW-9.0E-10
+ VMAX-5.5E4 NEFF-1.0E-2 RSH-25 OELTA-1.47 NFS-3.73E11)
.MODEL N3 NM0S(LEVEL-2 T0X-55N NSUB-5E15 VTO-0.5 XJ-0.6U LD-0.4U
+ JS-1.24E-4 PB-0.8© UO-1053 UCRIT-3.97E4 UEXP-0.©8
+ UTRA-0.25 GAMMA-0.9 LAMBDA-0.02 CGBO-5.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-10 CJ-6.0E-4 CJSW-5.64E-10
+ VMAX-5E4 NEFF-3 RSH-10)
.MODEL PI PMOS(LEVEL-2 T0X-65N NSUB-5E15 VTO—1.1 XJ-0.35U LD-0.25U
+ JS-7.75E-5 PB-0.88 UO-210 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-0.6 LAMBDA-0.02 CGBO-5.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSK-100)
.MODEL P PM0S(LEVEL-2 TOX-50N NSUB-2.97E14 VTO—0.844 XJ-0.O258U LD-0.512U
+ JS-7.75E-5 PB-0.88 UO-100 UCRIT-18500 UEXP-0.145
+ GAMMA-0.723 LAMBDA-©.0527 CGBO-4.0E-1© TPG—1
+ CGDO-4.0E-1© CGSO-4.0E-1© CJ-2.0E-4 CJSW-4.0E-1©
+ VMAX-10E4 NEFF-.01 RSH-95 DELTA-2.19 NFS-1.62E12)
.MODEL P3 PM0S(LEVEL-2 T0X-S5N NSUB-.3E15 VTO—0.5 XJ-0.6U LD-0.4U
+ JS-7.75E-4 PB-0.88 UO-421 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-©.4 LAMBDA-0.02 CGB0-5.7E-10
+ CGD0-5.7E-10 CGSO-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSH-50)

NODES 4-5 CORRESPOND TO AIN0 (SEE SOURCE AT 3276.1760)
NODES 6-7 CORRESPOND TO 73686 (SEE SOURCE AT 3276.2152)
NODES 8-9 CORRESPOND TO 69988 (SEE SOURCE AT 3276.2057)
NODES 10-11 CORRESPOND TO 69678 (SEE DRAIN AT 3276.2057)
NODES 12-13 CORRESPOND TO 6S696 (SEE SOURCE AT 3276.1940)
NODES 14-15 CORRESPOND TO 65319 (SEE SOURCE AT 3276.1918)
NODES 16-17 CORRESPOND TO 61120 (SEE SOURCE AT 3276.1823)
NODES 18-19 CORRESPOND TO 60716 (SEE DRAIN AT 3276.1823)
NODES 20-21 CORRESPOND TO 56520 (SEE SOURCE AT 3276.1706)
NOOES 22-23 CORRESPOND TO 56113 (SEE SOURCE AT 3276.1684)
NODES 24-25 CORRESPOND TO 51954 (SEE SOURCE AT 3276.1589)
NODES 26-27 CORRESPOND TO 51576 (SEE DRAIN AT 3276.1589)
NODES 28-29 CORRESPOND TO 47316 (SEE SOURCE AT 3276.1472)
NODES 30-31 CORRESPOND TO 46939 (SEE DRAIN AT 3276.1472)
NODES 32-33 CORRESPOND TO 42678 (SEE SOURCE AT 3276.1355)
NODES 34-35 CORRESPOND TO 42305 (SEE SOURCE AT 3276.1333)
NODES 36-37 CORRESPOND TO 35510 (SEE SOURCE AT 3276.1163)
NOOES 38-39 CORRESPOND TO 35137 (SEE DRAIN AT 3276.1163)
NODES 40-41 CORRESPOND TO 30910 (SEE SOURCE AT 3276.1046)
NODES 42-43 CORRESPOND TO 30543 (SEE DRAIN AT 3276.1046)
NODES 44-45 CORRESPOND TO 26349 (SEE SOURCE AT 3276.929)
NODES 46-47 CORRESPOND TO 25939 (SEE DRAIN AT 3276.929)
NODES 48-49 CORRESPOND TO 21742 (SEE SOURCE AT 3276,812)
NODES 50-51 CORRESPOND TO 21376 (SEE DRAIN AT 3276.812)
NODES 52-53 CORRESPOND TO 17178 (SEE SOURCE AT 3276.695)
NODES 54-55 CORRESPOND TO 16802 (SEE DRAIN AT 3276.695)
NODES 56-57 CORRESPOND TO 12720 (SEE SOURCE AT 3276.578)
NODES 58-59 CORRESPOND TO 12338 (SEE DRAIN AT 3276.578)
NODES 60-61 CORRESPOND TO 8382 (SEE SOURCE AT 3276.461)
NODES 62-63 CORRESPOND TO 7994 (SEE DRAIN AT 3276.461)
NODES 64-65 CORRESPOND TO 4102 (SEE SOURCE AT 3276.344)
NODES 66-67 CORRESPOND TO 3766 (SEE DRAIN AT 3276.344)
NODES 68-69 CORRESPOND TO BUSA#30_H (SEE GATE AT 3209.2884)
NODES 70-71 CORRESPOND TO IN#6 (SEE SOURCE AT 4575.2534)
NODES 72-73 CORRESPOND TO BUSA#31_H (SEE GATE AT 3194.2884)
NODES 74-75 CORRESPOND TO 74115 (SEE GATE AT 3186.2185)
NODES 76-77 CORRESPOND TO 74211 (SEE GATE AT 3145.2191)
NODES 78-79 CORRESPOND TO BUSD_H#31 (SEE GATE AT 3019.2186)



May 13 18:54 1985 phi 2.spiceout Page 2

• NODES 80-81 CORRESPOND TO BUFIN_H#27 (SEE GATE AT 3131.2255)
• NOOES 82-83 CORRESPOND TO BUSDT0INA_H#2 (SEE GATE AT 3135.2256)
• NOOES 84-85 CORRESPOND TO 76982 (SEE DRAIN AT 3154.2237)
c NODES 86-87 CORRESPOND TO PHI2_H{4 (SEE GATE AT 3171.2652)
• NODES 88-89 CORRESPOND TO PHI2_L#2 (SEE GATE AT 3166.2669)
• NODES 90-91 CORRESPOND TO PHI2 (SEE GATE AT 4260.3550)

C1 89 © 0.36SPF

C2 71 © 0.1O4PF

C3 29 © O.058PF
C4 75 © B.054PF
C5 73 0 0.753PF

C6 41 0 0.058PF

C7 21 0 0.058PF

C8 69 0 0.737PF
C9 53 0 0.058PF

C10 61 0 0.058PF

C11 33 0 0.058PF

C12 83 0 8.059PF
C13 45 0 0.058PF

C14 25 0 O.058PF

C15 81 0 O.704PF

C16 37 0 9.076PF

C17 13 0 0.058PF

C18 9 9 i9.058PF

C19 5 9 1.322PF

C20 65 0 0.058PF

C21 57 0 0.058PF

C22 77 0 8.078PF

C23 17 0 0.058PF

C24 49 0 0.058PF

C25 87 0 3.006PF

Ml I9 69 ISON L-•3.0U W<-4.0U

M2 7 73 1 1 P L-3.0U W-8.0U

M3 !9 69 7 1 P L-•3.0U W<-8.0U
M4 1 1 0 !9 1 P L-3.0U W«-8.8U

M5 13 i0 1111» L-3.0U W-8.0U

M6 15 i9 13 1 1? L-3.0U W-8.0U
M7 17 i0 15 1 I» L-3.0U W-8.0U

M8 19 •9 17 1 I' L-3.0U W-8.0U

M9 :21 i9 19 1 I9 L-3.0U W-8.0U
M10 23 0 21 1 P L-3.0U W-8.OU

M1 1 25 0 23 1 P L-3.0U W-8.0U

M12 27 0 25 1 P L-3.0U W-8.eu

M13 29 0 27 1 P L-3.0U W-8.OU

M14 31 0 29 1 P L-3.OU W-8.0U

M15 33 0 31 1 P L-3.0U W-8.OU

M16 35 0 33 1 P L-3.©U W-8.0U

M17 37 0 35 1 P L-3.0U W-8.OU

M18 39 0 37 1 P L-3.0U W-8.OU
M19 41 0 39 1 P L-3.8U W-8.0U

M20 43 0 41 1 P L-3.0U W-8.0U

M21 45 0 43 1 P L-3.0U W-8.0U

M22 47 0 45 1 P L-3.0U W-8.OU

M23 49 0 47 1 P L-3.0U W-8.OU

M24 51 0 49 1 P L-3.0U W-8.©U

M25 53 0 51 1 P L-3.0U w-8.eu

M26 55 0 53 1 P L-3.0U w-8.eu

M27 57 0 55 1 P L-3.0U w-8.eu

M28 59 0 57 1 P L-3.0U w-8.eu

M29 61 0 59 1 P L-3.0U w-8.eu

M3© 63 0 61 1 P L-3.0U w-8.eu

M31 65 0 63 1 P L-3.0U w-8.eu

M32 67 0 65 1 P L-3.0U w-8.eu

M33 5 I3 67 1 P L.-3.0U W-8.0U
M34 69 1 71 0 N L-3.0U w-4.eu

M35 73 1 71 0 N L-3.0U W-4.OU

M36 73 75 1 1 P L-3.0U W-23.0U

M37 73 75 0 0 N L-3.0U W-11.0U

M38 e ;77 75 0 N L-3.0U W-11.OU

M39 1 77 75 1 P L-3.0U w-ii.eu

M40 1 81 77 0 N L-3.0U w-4.eu

M41 1 83 81 1 P L-3.0U W-59.0U

M42 © 83 81 0 N L-3.0U W-27.0U

M43 85 1 83 0 N L-3.0U W-8.OU

M44 0 87 85 0 N L-3.0U w-8.eu

M45 1 87 83 1 P L-3.0U w-8.eu

M46 1 89 87 1 P L-2.8U W-58.9U



May 13 18:54 1985 ph12.spiceout Page 3

M47 © 89 87 0 N L-3.0U W-30.©U
M48 89 91 0 0 N L-3.0U W-27.0U
M49 89 91 1 1 P L-3.0U W-59.0U

• INITIAL CONDITIONS:
.IC

.IC

.IC

.IC

.IC

.IC

.IC

.IC

.IC

IC V

IC V

IC V

IC V

IC V

29)-5.000000
71)-©.000000
891-5.000000
351-5.000000
111-5.000000
411-5.000000
731-0.000000

591-5.000000
751-5.000000

IC V(27)-5.000000
.IC V(7)-5.000000
.IC V(15)-5.000000
.IC V(211-5.00000©
.IC V(47)-5.800000
.IC V(391-5.000000
.IC V(53)-5.000000
.IC V(691-0.000000
.IC V(331-5.000000
.IC V(611-5.000000
.IC V(671-5.000000
.IC V(831-5.800000
.IC V(311-5.000000
.IC V(191-5.000000
.IC V(85)-5.000000
.IC V(251-S.000000
.IC V(45)-5.000000
.IC V(5)-5.000000
.IC V(37)-5.000000
.IC V(131-5.00©©©©
.IC V(631-5.000000
.IC V(81)-0.000000
.IC V(9)-5.000000
.IC V(57)-S.00009©
.IC V(511-5.000000
.IC V(651-5.00080©
.IC V(171-5.©00000
.IC V(77)-0.00000©

[491-5.000000
551-5.000000

43)-S.000000
23)*5.000000
871-0.0008©©

.WIDTH OUT-80

VDD 19 5.©
VIN 91 © PULSE(© 5 ©NS ONS ONS)
.TRAN 2.00NS 4O0NS

.PLOT TRAN V(5) (0.5)

.END
I.......05/10/85 * * SPICE 2G.6

0. 3U P WELL CMOS MODELS BK

0*. •• MOSFET MODEL PARAMETERS

3/15/83 i20:34:15<

TEMPERATURE - 27.000 DEG C

N1 N N3 PI P P3

OTYPE NMOS NMOS NMOS PMOS PMOS PMOS

OLEVEL 2.000 2.000 2.000 2000 2. ©00 2.000

OVTO 1 . 100 0.930 0.50© -1.100 -0.844 -0.500

OKP 2 .79d-05 2 .63d-05 6 .61d-05 1 .12d-05 6 .91d-©6 2 .64d-05

eGAMMA 1 .000 0.834 0.900 0.600 0.723 0.400

©PHI 0.716 0.695 0.660 0.666 0.514 0.514

©LAMBDA 2 .OOd-02 2 .SOd-02 2 .00d-02 2 .OOd-02 5 .27d-©2 2 .OOd-02

©PB 0.800 0.800 0.800 0.880 0.88© 0.880

©CGSO 5 .70d-1© 5..20d-1© 5. 70d-1O 5 .79d-1© 4 .©Od-10 5 .70d-10

OCGDO 5..70d-1© 5. 20d-10 5. 70d-10 5 .7©d-1© 4..©dd-1© 5 .70d-10

0CGBO 5 .70d-1© 4, 00d-10 5. 70d-10 5 .7©d-1© 4 00d-10 5 .70d-10

ORSH 30.000 25.00© ie.ee© 100.00© 95.000 50.000



Moy 13 18:54 1985 phi2.spiceout Page 4

OCJ e.OOd-04 3.20d-04 6.00d-04 4.10d-04 2.00d-04 4. IOd-04

ecjsw 5.64d--10 9.0Od-10 5.64d-1© 3.85d-10 4.0Od-10 3. 85d-10

8JS 1 .24d--04 1.24d-04 1.24d-04 7.75d-05 7.75d-05 7. 75t1-04

0TOX 6.50d--08 5.©0d-08 5.50d-08 6.50d-08 5.00d-08 5. 50d-08

0NSUB 1.50d+16 1.O0d+16 5.0Od+15 5.00d+15 2.97d+14 3. ©Od+14

©NFS 0. d+00 3.73d+11 0. d+00 0. d+00 1.62d+12 0. d+00
0TPG 1.000 1 .000 1. 000 1 .000 -1. 000 1 000

exj 3.5©d--07 4.50d-07 6.0Od-07 3.50d-07 2.58d-08 6. 00e -07

OLD 2.5©d--07 2.40d-07 4.00d-07 2.5©d-07 5.12d-07 4. 00c -07

0UO 526.000 381 .000 1053. 000 218. 000 100. 000 421 .00©

0UCRIT 3.97d+04 9.9Od+05 3.97d+04 4.14d+04 1.85d+04 4. 14d+04

ouexp 0.08© 0. 001 0. 08© ©. 160 0. 145 0. 160
0UTRA 0.250 0. 0. 2S0 e. 250 0. 0. 250

0VMAX 5.00d+04 5.5Od+04 5.0Od+04 S.0ed+04 1.0Od+05 5. OOd+04

0NEFF 3.000 0. 010 3. 000 3. 000 0. 010 3. ee©

0DELTA

0* 3U P

0. 1 .470 0.

SPICE 2G.

BK

6

e. 2. 190

34:
e.

WELL CMOS MODELS -

0. ... INITIAL TRANSIENT SOLUTION TEMPERATURE « 27.000 DEC C

NODE VOLTAGE NODE VOLTAGE MODE VOLTAGE NODE VOLTAGE

( O 5.0000 ( 5) 5.0000 ( 7) 5.0000 ( 9) 5.0000

( ID 5.0000 ( 13) 5.0000 ( 15) 5.0000 ( 17) 5.0000

( 19) 5.0000 ( 21) 5.0000 ( 23) 5.0000 ( 25) 5.0000

( 27) 5.0000 ( 29) 5.0000 ( 31) 5.0000 ( 33) 5.0000

( 35) 5.0000 ( 37) 5.0000 ( 39) 5.0000 ( 41) 5.0000

( 43) 5.0000 ( 45) 5.000© ( 47) 5.0000 ( 49) 5.000©

( 51) 5.0000 ( 53) 5.0000 ( 55) 5.0000 ( 57) 5.0000

( 59) 5.0000 ( 61) 5.0000 ( 63) 5.0000 ( 65) 5.0000

( 67) 5.0000 ( 69) -0.0000 ( 71) 0.0000 ( 73) ©.©ee©

( 75) 5.0000 ( 77) 0.0000 ( 81) 0.0000 ( 83) 5.0000

( 85) 5.0000 ( 87) 0.0000 ( 89) 5.0000 ( 91) 0.

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VDD -5.523d-©9

VIN 0. d+00

TOTAL POWER DISSIPATION 2.76d-08 WATTS
>•..©5/10/85 ........ SPICE 2G.6 3/15/83

0» 3U P WELL CMOS MODELS BK

0«... OPERATING POINT INFORMATION

0«

0

0.... MOSFETS

TEMPERATURE

•20:34:15-

27.000 DEG C



May 13 18:54 1985 phi 2.spiceout Poge 5

0 M1 M2 M3 M4 MS M6 M7

OMODEL N p p P P p p

10 -1 .33e-14 2 .34o-26 2 .12e-26 2 .09o-26 2 .090-26 2 .090-26 2 .09e-26

VGS -s.eee -5.000 -5.000 -5.000 -5.000 -5.000 -5.000

VDS -5.ee© 0.000 -0.000 -0.000 0.000 0. 0.000

VBS -5.000 0. -e.eee 0. 0.000 0. 0.

0 M8 M9 M10 M11 M12 M13 M14

OMODEL P p p P P P p

ID 2 .08e-26 2 .08e-26 2 .080-26 2 .080-26 2 .080-26 2 .08e-26 2 .08e-26

VGS -5.000 -5.000 -5.909 -5.000 -5.000 -5.000 -5.000

VDS -o.ee© 0. 9. ©. 0. 0. 0.

VBS -©.ee© ©. 0. 0. 0. 0. 0.

0 M15 M16 M17 M18 M19 M20 M21

OMODEL P P P P P P p

ID 2 .08e-26 2 .08e-26 2 .08o-26 2 .08o-26 2 .08e-26 2 080-26 2 08o-26

VGS -5.00© -5.000 -5.000 -5.000 -5.000 -5.000 -5.0©0

VDS 8. 0. ©. 0. 0. ©. 0.

VBS 0. 0. e. ©. 0. 0. 0.

0 M22 M23 M24 M25 M26 M27 M28

OMODEL P P P P P P p

ID 2 .©8o-26 2 OSo-26 2 08o-26 2 08o-26 2 08e-26 2 080-26 2 08e-26

VGS -5.ee© -5.000 -5.000 -5.000 -5.000 -5.00© -5.000

VDS 0. 0. 0. 0. 0. 0. 0.

VBS 0. 0. 0. 0. 0. 0. 0.

0 M29 M30 M31 M32 M33 M34 M35

OMODEL P P P P P N N

ID 2 08e-26 2 080-26 2 08e-26 2 06o-26 -2 64e-24 -1 310-27 3 23e-22

VGS -5.000 -5.000 -5.000 -5.00© -5.00© 5.0©© 5.000

VDS 0. 0. 0. 0. -0.000 -0.000 0.000

VBS 0. 0. 0. ©. 0. -0.00© -0.000

0 M36 M37 M38 M39 M40 M41 M42

OMODEL P N N P N P N

ID -8 36e-1© 3 21e-22 -4 22o-14 3 690-26 1 95e-12 2 18e-09 2 IBe-23

VGS -0.000 5.000 -5.000 -5.©00 0.000 5.000 5.000

VOS -5.000 e.oee -5.00© 0.000 5.00© 5.000 -0.000

VBS 0. 0. -5.©00 0.000 -©.000 s.eee -0.000

0 M43 M44 M45 M46 M47 M48 M49

©MODEL N N P P N N P

ID 1 93o-12 -2. 95o-14 -5 490-27 2 480-09 2. 72o-23 2. ©4e-12 4. 480-24

VGS ©.©ee -s.eee -5.000 5.000 5.000 e. -5.000

VDS -©.see -5.000 0.800 5.000 -0.000 5.00© -0.000

VBS -s.eee -5.000 0.000

2G.6

5.000

3/15/83 •
-e.eee

34:
e.

is**.*.

0.

0. 3U P WELL CMOS MODELS BK

0.... TRANSIENT ANALYSIS

0...

TIME V(5)

0.

©eod+ee0 d+00 5
2 O00d-O9 5 0©0d+0©
4 ©eOd-09 5 0©0d+©0

6 eeod-09 5 00Od+00
8 OOOd-09 5 O0Od+©0

1 .OOOd-08 5 OOOd+00

1 200d-98 5 eood+e©
1 40©d-08 5 eood+e©

1 60©d-©8 5 oe©d+o©

1 80©d-©8 5 000d+0©

d+ee 1 .250d+00

TEMPERATURE - 27.000 DEG C

2.50Od+O© 3.75©d+0© 5.©00d+00



Moy 13 18:54 1985 ph12.spiceout Page 6

2.O00d-08
2.200d-08
2.400d-08
2.600d-98

800d-08
eeOd-08
20©d-08
400d-08
600d-08
800d-08
000d-08
20Od-08
400d-88

4.60Od-O8
4.8O0d-08
5.0©0d-08
5.2©0d-08
5.400d-08
5.6O0d-O8
5.800d-08
6.000d-08
6.200d-O8
6.40Od-08
6.600d-08
6.800d-08
7.000d-08
7.200d-08
7.400d-O8
7.600d-08
7.80Od-08
8.000d-08
8.2O0d-08
8.400d-08
8.60Od-08
8.8©0d-08
9.000d-O8
9.20Od-08
9.40Od-08
9.600d-O8
9.80Od-08
1.000d-07

1.020d-07
1.040d-07

1.060d-07

1.O80d-O7
10Od-07

120d-07
140d-O7

160d-07
180d-07

20©d-©7

220d-07
1.240d-07
1.260d-07

1.280d-07
1.300d-07

1.320d-07
1.34©d-97
1.369d-97
1.380d-©7

1.400d-07
1.420d-©7

1.440d-07
1.460d-07
1.480d-07

1.5©0d-07
1.520d-©7
1.540d-©7
1.560d-07

1.580d-07
1.600d-07

620d-©7
64©d-©7
66©d-©7
680d-07

700d-07
720d-©7
74©d-©7

5
5,

5.
5.
5.
5.

5.
5.

5.

5.
5.

4.
4.

4.

4.

4.

4.

4

4,

4.

4,

4.

eeod+ee
eeod+eo
eeod+oe
oeed+oe
.eeod+eo
,000d+0O
oeod+ee

©oid+ee

.001d+00

001d+00
oeid+ee

999d+0©
997d+00

991d+00
985d+00
973d+O0
961d+00

944d+0O
924d+00
904d+00

878d+00
849d+0©

4.821d+00

4.793d+00
4.758d+00
4.721d+00
4.684d+00
4.647d+00

4.605d+00
4.562d+0O

4.518d+00
4.475d+00

4.427d+00
4.379d+O0
4.330d+00
4.281d+00
4.229d+00
4.176d+00

4.123d+00 .

4.071d+00 .
4.015d+00 .
3.959d+0O .
3.9©3d+00 .
3.846d+©0 .
3.788d+0© .
3.729d+00 .
3.670d+OO .
3.611d+00 .
3.551d+00 .
3.489d+00 .
3.428d+00 .
3.367d+0O .
3.304d+0© .
3.241d+00 .
3.178d+0© .
3.115d+©0 .
3.050d+00 .
2.985d+00 .
2.92©d+0© .
2.855d+0O .

789d+00 .
722d+00 .
656d+00 .
589d+00 .
521d+00 .

453d+00 .
385d+00 .
317d+00 .
247d+00 .

177d+00 .
107d+00 .

©37d+00 .
966d+00 .

894d+0© .
822d+O0 .
750d+00 .
677d+0O .
6O3d+00 .



U
U

U
b

U
U

C
l
l
l
U

U
U

U
U

b
U

U
N

M
M

M
M

M
M

N
M

M
M

M
N

M
M

N
M

M
M

M
M

M
M

M
N

M
M

M
M

M
M

M
M

M
K

I
M

M
M

M
M

M
M

M
^

U
K

)
M

N
N

N
^
''

''
9

O
9

9
O

I
B

I
O

t
t
l
D

0
n

a
C

D
n

a
<

4
^
v
l
>

l
>

I
O

I
«

I
O

I
O

O
I
O

i
U

(
I
I
U

i
U

i
|
>

»
f

4
>

l
>

O
i
l
l
i
W

U
<

i
i
N

K
I
I
O

M
M

^
-
'-

'^
'O

O
S

S
9

«
a

i
O

I
D

0
O

D
O

O
O

O
^
^

e
a

«
«

M
o

o
g

a
»

M
e
i
i
9

0
i
>

N
O

(
p

n
»

M
e
n

a
i
»

K
)
O

C
)
o

i
»

M
O

o
g

o
i
>

N
e
(
D

o
i
f
M

O
O

B
a

^
N

S
O

)
<

i
i
f
N

e
a

o
)
f
K

)
O

B
O

)
«

M
o

a
n

f
N

e
o

«
i
A

N
e
o

D
a

»
N

e
(
B

a
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
a

a
a

a
a

a
a

.
a

a
a

a
a

o
a

a
o

.
a

o
o

.
a

.
a

.
o

.
a

a
a

a
a

.
a

a
a

o
a

.
o

o
a

.
a

a
a

a
a

a
o

.
a

a
o

a
a

o
o

o
o

o
.
a

.
o

.
a

.
a

.
a

.
a

.
a

.
a

.
a

.
o

.
a

a
o

.
a

a
o

.
a

o
.
a

.
a

o
o

.
o

.
o

.
o

.
a

.
I

l
l

I
I

l
I

I
I

I
I

l
I

I
I

l
I

l
l

l
l

l
I

l
l

l
I

I
l

I
l

l
I

I
I

l
I

I
I

I
I

I
I

I
I

I
l

I
I

I
I

I
I

l
l

l
l

l
l

l
l

l
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9

in
u

<
u

ii
n

in
u

>
c
i<

u
>

o
>

0
)
0

>
0

)
o

>
o

>
o

>
0

)
o

>
(
n

c
n

<
7

>
c
n

o
>

^
i^

i'
N

iv
i-

N
i^

'v
io

o
o

o
o

o
0

3
a

o
u

>
u

>
io

.
>

K
>

M
K

>
K

>
K

>
O

lO
lC

>
<

O
<

4
<

.4
>

C
n

U
IU

>
O

>
O

)^
O

9
O

3
(0

.

o
>

o
i
>

i
>

i
B

a
i
o

«
s
o

''
N

O
i
u

^
u

i
n

<
»

>
i
a

»
9

^
N

f
w

g
i
i
B

e
M

f
o

>
«

)
^
»

^
s
e
^
'N

N
U

^
o

i
v
a

^
i
D

S
N

u
n

i
s
e
N

(
R

a
M

u
i
o

f
0

u
o

u
i
-
>

^
>

e
e
-
'M

i
i
i
u

^
u

i
N

M
N

o
t
'
«

'
«

i
M

N
u

a
v
i
N

O
D

U
M

O
o

g
^
u

i
a

a
>

i
a

N
g

i
e
>

b
i
U

K
)
b

i
'
i
B

O
i
v
i
'
<

i
i
9

«
'
S

u
o

o
t
t
O

0
^
a

u
«

)
^
K

)
4

>
o

s
'
U

Q
N

o
i
o

^
u

i
U

'
M

M
'
i
s
v
N

e
a

0
^
^
s
l
U

I
<

n
>

I
I
B

8
a

U
b

l
M

S
>

i
^
W

>
i
O

O
O

O
N

O
I
S

M
S

a
a

>
J
I
O

S
^
^
-
>

I
B

»
U

I
I
0

8
^
>

J
f
i
M

»
U

8
U

O
>

I
M

O
I
^
^
^
>

i
»

a
M

O
)
^
M

N
U

4
k
l
O

a
O

I
A

U
>

K
)
M

a
.
c
k
o

.
a

.
o

.
a

.
o

o
.
o

o
o

o
o

o
a

.
o

a
.
a

.
a

.
o

.
Q

.
Q

.
Q

.
Q

.
a

.
a

.
o

a
.
o

o
.
a

a
.
o

.
o

o
o

a
.
o

o
o

o
o

c
x
o

o
o

a
.
o

o
a

.
o

o
.
a

.
a

.
Q

.
o

.
a

.
o

.
a

.
o

.
o

.
0

0
.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+

+
+

+
+

+
+

+
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

0
9

9
9

9
9

9
9

9
9

9
9

9
9

0
9

9
0

0
0

0
0

0
0

0
0

0
0

0
N

N
M

N
M

N
M

K
)
K

I
K

)
M

I
O

N
M

K
)
M

M
K

I
M

N
K

)
N

M
N

K
)
N

M
M

N
K

)
K

I
I
O

K
)
K

)
M

M
M

'
^
^
^
'
'
-
>

'
"
"
"
^
"
^
"
^
'
^
"
^
^
^
^
^
^
"
0

9
g

9
9

9
9

9



May 13 18:54 1985 phi2.spiceout Page 8

3 .320d-07 5.585d-02 .*

3 .34©d-©7 5.542d-02 .*

3 .36©d-©7 5.50©d-©2 ..

3 .38©d-07 5.458d-©2 .•
3 .400d-©7 5.417d-02 .*
3 .420d-07 5.378d-02 .*

3 .44©d-07 5.338d-02 .*
3 .460d-O7 5.299d-02 .*

3 48©d-©7 5.261d-02 ..

3 50©d-©7 5.224d-02 .*

3 52©d-07 5.187d-©2 .«
3 540d-07 5.149d-02 .*
3 560d-07 5.114d-02 .«
3 58©d-07 5.078d-02 .*
3 60©d-07 5.043d-02 .*
3 620d-07 5.007d-02 .«
3 640d-07 4.973d-02 .»
3 660d-07 4.939d-02 .*
3 68©d-07 4.905d-O2 .*

3 7©0d-07 4.870d-©2 .•

3 720d-07 4.838d-02 .*
3 74Od-07 4.8O6d-02 .*
3 760d-07 4.774d-©2 ..
3 780d-07 4.742d-©2 .*
3 eoed-07 4.711d-02 .«
3 82Od-07 4.681d-02 .*
3 840d-07 4.651d-02 .*

3 860d-07 4.62©d-02 .*
3 88©d-©7 4.591d-02 .*
3 900d-07 4.562d-©2 .*
3 92Od-07 4.533d-©2 .»
3 94©d-07 4.5©4d-02 .•

3 96Od-07 4.476d-02 .•
3. 98Od-07 4.448d-©2 *
4. OOOd-07 4.42©d-©2 •

Y

0

JOB CONCLUDED
0 TOTAL JOB TIME 274.62



May 13 18:55 1985 phi3.spiceout Page 1

1.......05/16/85 ........ SPICE 2G.6 3/15/83 ••••••••28:34:28..«..

0. 3U P WELL CMOS MODELS BK

0.... INPUT LISTING TEMPERATURE - 27.000 DEG C

0. •••••••••••••••••••••••••••••••••••••••••••••••

.MODEL N1 NM0S(LEVEL-2 TOX-65N NSUB-15E15 VTO-1.1 XJ-0.35U LD-0.25U
+ JS-1.24E-4 PB-0.8© U0-S26 UCRIT-3.97E4 UEXP-0.©8
+ UTRA-0.25 GAMMA-1 LAMBDA-0.02 CGBO-5.7E-10
+ CGD0-5.7E-1© CGSO-5.7E-10 CJ-6.0E-4 CJSW-5.64E-10
+ VMAX-5E4 NEFF-3 RSH-30)
.MODEL N NM0S(LEVEL-2 TOX-50N NSUB-10E15 VTO-0.93 XJ-0.45U LD-0.24U

+ JS-1.24E-4 PB-0.80 UO-381 UCRIT-99E4 UEXP-0.001
+ UTRA-0 LAMBOA-0.025 CGBO-4.0E-1O TPG-1
+ CGDO-5.2E-10 CGSO-5.2E-10 CJ-3.2E-4 CJSW-9.0E-1©
+ VMAX-5.5E4 NEFF-1.0E-2 RSH-25 DELTA-1.47 NFS-3.73E11)
.MODEL N3 NM0S(LEVEL-2 T0X-55N NSUB-5E15 VTO-0.5 XJ-0.6U LD-0.4U
+ JS-1.24E-4 PB-0.80 UO-1053 UCRIT-3.97E4 UEXP-0.08
+ UTRA-0.25 GAMMA-0.9 LAMBDA-0.02 CGBO-5.7E-10
+ CGD0-5.7E-1© CGSO-5.7E-10 CJ-6.0E-4 CJSW-5.64E-10
+ VMAX-5E4 NEFF-3 RSH-10)
.MODEL PI PM0S(LEVEL-2 TOX-65N NSUB-5E15 VTO—1.1 XJ-0.35U LO-0.25U
+ JS-7.75E-5 PB-0.88 UO-210 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-©.6 LAMBDA-©.©2 CGBO-5.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-10 CJ-4.1£-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSH-10©)
.MODEL P PM0S(LEVEL-2 T0X-50N NSUB-2.97E14 VTO—0.844 XJ-0.0258U LD-0.512U
+ JS-7.75E-5 PB-0.88 UO-100 UCRIT-18500 UEXP-0.145
+ GAMMA-0.723 LAMBDA-©.0527 CGBO-4.0E-1© TPG—1
+ CGDO-4.0E-10 CGSO-4.0E-1© CJ-2.0E-4 CJSW-4.0E-10

+ VMAX-10E4 NEFF-.01 RSH-95 DELTA-2.19 NFS-1.62E12)
.MODEL P3 PM0S(LEVEL-2 T0X-55N NSUB-.3E15 VTO—0.5 XJ-0.6U LD-0.4U

+ JS-7.75E-4 PB-0.88 UO-421 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-0.4 LAMBDA-0.02 CGBO-5.7E-10
+ CGD0-5.7E-1© CGSO-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSH-50)

NODES 4-5 CORRESPOND TO 100072 (SEE DRAIN AT 4492.3422)
NODES 6-7 CORRESPOND TO 98266 (SEE GATE AT 4490.3410)
NODES 8-9 CORRESPOND TO 98884 (SEE GATE AT 4489.3322)
NODES 10-11 CORRESPOND TO 98304 (SEE GATE AT 4657.3323)
NODES 12-13 CORRESPOND TO 98634 (SEE GATE AT 4665.3315)
NODES 14-15 CORRESPOND TO 99764 (SEE GATE AT 4700.3549)
NODES 16-17 CORRESPOND TO 0UT#77 (SEE GATE AT 4490.3752)
NODES 18-19 CORRESPOND TO 104688 (SEE DRAIN AT 4507.3752)
NODES 20-21 CORRESPOND TO INB#2 (SEE GATE AT 4507.3752)
NODES 22-23 CORRESPOND TO 87074 (SEE GATE AT 4441.3049)
NODES 24-25 CORRESPOND TO 91691 (SEE GATE AT 4443.2973)
NODES 26-27 CORRESPOND TO 85756 (SEE GATE AT 4570.2971)
NODES 28-29 CORRESPOND TO 0UT#61 (SEE GATE AT 4570.2707)
NODES 30-31 CORRESPOND TO INf6 (SEE SOURCE AT 4575.2534)
NODES 32-33 CORRESPOND TO BUSA#30_H (SEE GATE AT 3209.2884)
NODES 34-35 CORRESPOND TO 72620 (SEE GATE AT 3186.2119)
NODES 36-37 CORRESPOND TO 72601 (SEE GATE AT 3147.2119)
NODES 38-39 CORRESPOND TO BUSA30 (SEE GATE AT 3557.2548)
NODES 40-41 CORRESPOND TO 71960 (SEE GATE AT 1671.2132)
NODES 42-43 CORRESPOND TO RWBUSA.Hf104 (SEE GATE AT 1684,2211)
NODES 44-45 CORRESPOND TO 76328 (SEE GATE AT 1677.2243)
NODES 46-47 CORRESPOND TO 80179 (SEE SOURCE AT 1672.2331)
NODES 48-49 CORRESPOND TO DSTDEC_L#32 (SEE SOURCE AT 1672.2292)
NODES 50-51 CORRESPOND TO RFWRITE (SEE GATE AT 834.2360)
NODES 52-S3 CORRESPOND TO 0UT#32 (SEE GATE AT 829.2363)
NODES 54-55 CORRESPOND TO 81217 (SEE DRAIN AT 774.2398)
NODES 56-57 CORRESPOND TO PHASES (SEE GATE AT 4122.3489)

CI 55 0 0.006PF

R1 30 31 1793
C2 31 0 0.124PF

R2 36 37 774
C3 37 0 0.098PF

R3 50 51 41045

C4 51 0 2.331PF

CS 47 0 0.004PF
R4 40 41 601
C6 41 0 0.081PF



May 13 18:55 1985 phi3.spiceout Page 2

R5 32 33 13393
C7 33 0 0.774PF
R6 14 15 5266
C8 15 0 0.353PF
R7 44 45 1825
C9 45 0 0.065PF
R8 24 25 702
C10 25 0 0.121PF
R9 22 23 2119
C11 23 0 0.295PF
R10 28 29 1341
C12 29 0 0.049PF
R11 20 21 6865
C13 21 0 0.253PF
R12 34 35 1279
C14 35 0 0.063PF
R13 52 53 1829
C15 53 0 O.066PF
R14 42 43 20869
C16 43 0 0.563PF
R15 6 7 1276
C17 7 0 0.090PF
R16 38 39 11877
C18 39 0 1.634PF
C19 19 0 0.006PF
R17 10 11 1755
C20 11 0 0.071PF
R18 4 5 3108
C21 5 0 0.140PF

R19 26 27 6516
C22 27 0 0.233PF
R2© 8 9 1260
C23 9 © 0.159PF
R21 48 49 1241
C24 49 0 0.074PF

R22 16 17 1117
C25 17 0 0.051PF
R23 12 13 2347
C26 13 0 0.074PF

M1 4 7 1 1 P L-3.0U W-24.0U
M2 0 7 4 0 N L-3.0U W-15.0U
M3 © 9 6 © N L-3.0U W-4.OU
M4 6 0 1 1 P L-6.0U W-4.0U
M5 8 0 1 IP L-6.0U W-4.0U
M6 8 11 0 0 N L-3.0U W-4.0U
M7 1© 13 © 0 N L-3.0U W-12.0U
M8 10 13 1 1 P L-2.7U W-22.0U
M9 1 15 12 1 P L-3.0U W-24.0U
M1© 12 15 0 0 N L-3.0U W-12.0U
Ml 1 14 17 0 0 N L-3.0U W-8.OU
Ml2 14 17 1 1 P L-3.0U W-8.0U
Ml3 16 21 1 1 P L-3.0U W-8.0U
Ml4 19 21 0 0 N L-3.0U W-8.0U
M15 16 1 19 0 N L-3.0U W-8.OU
M16 0 23 20 0 N L-3.0U W-15.0U
Ml7 1 23 20 1 P L-3.0U W-24.0U
Ml 8 22 0 1 IP L-6.0U W-4.0U
M19 0 25 22 0 N L-3.OU W-4.0U
M20 0 27 24 0 N L-3.OU W-4.OU
M21 24 0 1 1 P L-6.0U W-4.0U
M22 1 29 26 1 P L-3.0U W-24.0U
M23 26 29 0 0 N L-3.0U W-12.0U
M24 31 0 28 1 P L-3.0U W-8.OU
M25 33 0 30 1 P L-3.OU W-8.0U
M26 32 35 0 0 N L-3.OU W-11.0U
M27 32 35 1 1 P L-3.OU W-23.0U
M28 1 37 34 1 P L-3.0U W-11.0U
M29 0 37 34 0 N L-3.0U W-11.0U
M3© 39 0 36 1 P L-3.0U W-4.©U
M31 © 1 4© 0 N L-3.0U W-15.0U
M32 41 43 38 0 N L-3.©U W-7.0U
M33 1 45 42 1 P L-3.0U W-68.0U
M34 0 45 42 © N L-3.0U W-31.0U
M35 © 1 47 © N L-3.0U W-7.0U
M36 47 1 48 0 N L-3.0U W-7.0U
M37 49 51 44 0 N L-3.0U W-4.OU
M38 1 S3 59 1 P L-3.0U W-59.0U
M39 9 53 50 0 N L-3.OU W-27.0U



May 13 18:55 1985 ph!3.spieeout Page 3

M40 55 1 0 0 N L-3.0U W-8.0U
M41 52 57 55 0 N L-3.0U W-8.0U
M42 1 57 52 1 P L-3.0U W-8.0U

* INITIAL CONDITIONS:
.IC V(55)-0.000000
.IC V(30)-5.000000
.IC V(311-5.000000
.IC V(36l-5.000000
.IC V(37)-5.000000
.IC V(501-0.000000
.IC V(511-0.000000
.IC V(471-0.000000
.IC V(4Ol-0.000000
.IC V(411-0.000000
.IC V(32)-5.000000
.IC V(331-5.000000
.IC V(14)-5.000000
.IC V(151-5.000000
.IC V(44)-5.000000
.IC V(45)-5.000000
.IC V(241«5.000000
.IC V(2Sl-5.000000
.IC V(22)-0.000000
.IC V(23l-0.000000
.IC V(281-5.000000
.IC V(291-5.000000
.IC V(201-5.000000
.IC V(211-5.000000
.IC V(34)«0.00000©
.IC V(35)-0.000000
.IC V(521-5.000000
.IC V(S31-5.000000
.IC V(42)-0.000000
.IC V(43)-0.000000
.IC V(6)-5.000000
.IC V(7)-5.0O00©8
.IC V(38)-5.000000
.IC V(391-5.000000
.IC V(19)-0.000000
.IC V(1©)-5.000000
.IC V(11)-5.000000
.IC V(4)-0.000000
.IC V(5)-0.000000
.IC V(26)-0.©00000
.IC V(27)-0.000000
.ic v(8)-e.©eeooo
.IC V(9)-0.000000
.IC V(48)-0.000000
.IC V(49)-0.000000
.ic v(i6i-e.oeeeee
.ic v(i7i«e.oooeoe
.ic v(i2)-e.oooeoe
.ic v(i3)-e.oeoeoo

VOD 1 0 5.0
VIN 57 0 PULSE(© 5 ©NS ©NS ©NS)
.WIDTH OUT-80

.TRAN 2.©ONS 400NS

.PLOT TRAN V(5) (0.5)

.END
1.......05/10/85 ........ SPICE 2G.6 3/15/83 ••••••••28:34:28-

0. 3U P WELL CMOS MODELS BK

©•••• MOSFET MODEL PARAMETERS TEMPERATURE - 27.000 DEC C

©•

N1 N N3 P1 P P3

©TYPE NMOS NMOS NMOS PMOS PMOS PMOS

©LEVEL 2.000 2. ©00 2.800 2. ©00 2.00© 2.000

©VTO 1 . 100 0.93© 0.500 -1 .10© -0.844 -0.50©

9KP 2.79d-05 2.63d-©5 6.61d-05 1.12d-©5 6.91d-©6 2.64d-©5

OGAMMA i .ee© 0.834 0.900 0.600 0.723 0.40©



May 13 18:55 1985 phi3.spiceout Pago 4

OPHI e. 716 ©. 695 0. 660 0. 660 0. 514 0. 514

©LAMBDA 2.00d--02 2.59d-02 2.00d-02 2.00d-02 5.27d-©2 2.00c -02

OPB 0. 900 0. 800 0. 800 0. 880 0. 880 ©. 880

OCGSO 5.70d--10 5.20d-10 5.70d-10 5.7©d-10 4.00d-10 5.70« -10

OCGDO 5.7©d--10 5.2©d-10 5.70d-10 5.7©d-10 4.00d-10 5.78<3 -10

0CGBO 5.70d--10 4.0Od-10 5.70d-10 5.79d-10 4.00d-10 5.7©d-1©

ORSH 30. J©0 25. 000 10. 000 100. 000 95. 000 5©. ©00

0CJ 6.09d--04 3.20d-04 e.eod-04 4.10d-04 2.00d-04 4. 10(5 -04

OCJSW 5.64d--10 9.00d-10 5.64d-10 3.85d-10 4.00d-10 3.85d-10

OJS 1 .24d--04 1 .24d-04 1 .24d-04 7.75d-©5 7.75d-05 7.75d-04

OTOX 6.50d--08 5.00d-08 5.5©d-98 6.50d-08 5.80d-08 5.50d-08

ONSUB 1.5©d+16 1.00d+16 5.00d+15 5.00d+15 2.97d+14 3.0©d+14

©NFS 0. d+00 3.73d+11 e. d+ee 0. d+00 1.62d+12 0. d+00

OTPG 1 .()00 1 .000 1. 900 1 .00© -1. 000 1 .ee©

OXJ 3.50d--07 4.50d-07 e.eod-07 3.50d-©7 2.58d-08 6.00d-©7

OLO 2.50d--07 2.40d-07 4.00d-07 2.5©d-©7 5.12d-07 4.0©d-©7

euo 526.000 381 .000 1053. 000 210. 000 100. 000 421 .©ee

OUCRIT 3.97d+04 9.9©d+©5 3.97d+04 4.14d+04 1.85d+04 4. 14d+©4

ouexp 0.080 ©. 001 0. 080 0. 160 0. 145 0. 160

OUTRA 0.250 ©. 0. 250 0. 250 0. 0. 250

0VMAX 5.0Od+04 5.50d+04 5.00d+O4 5.00d+04 1.©0d+©5 5.0©d+©4

ONEFF 3.000 0. 010 3. 000 3. ©ee e. 010 3. eee

ODELTA

0. 3U P

0. 1 .470 0.
6

0. 2. 190 ©.

WELL CMOS MODELS -

3r 1

9K

0/1 3/

0.... INITIAL TRANSIENT SOLUTION TEMPERATURE - 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 5.0000 ( 4) 0 .0000 [ 5) 0.0000 ( 6) 5.0000

( 7) 5.0000 ( 8) 0 .000© 9) 0.000© ( 10) 5.0000

( 11) 5.0000 ( 12) 0 .©ee© 13) 0.0000 ( 14) 5.0000

( 15) 5.0000 ( 16) 0 0000 17) 0.0000 ( 19) 0.0000

( 20) 5.0000 ( 21) 5 0000 22) 0.0000 ( 23) 0.0000

( 24) 5.0000 ( 25) 5 0000 26) 0.0000 ( 27) 0.0000

( 28) 5.000© ( 29) 5 0000 3©) 5.0000 ( 31) 5.00©0

( 32) 5.0000 ( 33) 5 000© 34) 0.0000 ( 35) 0.000©

( 36) 5.0000 ( 37) 5 0000 38) 5.0000 ( 39) 5.0000

( 40) 0.0000 ( 41) 0 0000 42) 0.0000 ( 43) 0.000©

( 44) 5.0000 ( 45) 5 0000 47) 0.0000 ( 48) 0.0000

( 49) 0.0000 ( 50) 0 0000 51) 0.0000 ( 52) 5.0000

( 53) 5.0000 ( 55) 0 0000 57) 0.

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VDD -6.500d-©5

VIN ©. d+00

TOTAL POWER DISSIPATION 3.25d-04 WATTS
.•••©5/1©/85 •• SPICE 2G.6 3/15/83

©. 3U P WELL CMOS MODELS BK

•2©:34:28<



May 13 18:55 1985 phi3.spiceout Page 5

0«... OPERATING POINT INFORMATION

0.••••••.•.•••••••.•••....•.•.....•••.

0

©•••• MOSFETS

TEMPERATURE 27.000 DEC C

0 M1 M2 M3 M4 M5 M6 M7
OMOOEL P N N P P N N

ID -8.73e-10 5 .060-24 -1 .33o-14 -2.680-24 -3 .25o-05 5 .520-09 1 .98e-12
VGS -0.000 5.000 -5.000 -5.000 -5.000 5.000 0.00©
VDS -5.000 -0.000 -5.000 -0.000 -5.000 0.09© 5.800
VBS 0. -0.000 -5.000 0. 0. ©. 0.

0 M8 M9 M10 M1 1 M12 M13 M14

OMODEL P P N N P P N

ID -9.800-25 8 .710-10 3 .35o-22 1.960-12 -2 .650-24 -2 .74e-1© 6 .63o-27
VGS -5.000 5.000 5.000 0.000 -5.00© -©.ee© 5.00©
VDS -0.000 5.000 e.eee s.eee -©.©00 -5.ee© 0.000
VBS 0. 5.000 e. e. 0. e. 0.

0 M15 M16 M17 M18 M19 M2© M21
OMODEL N N P p N N P
10 1.07o-22 -5 89e-14 6 96e-25 -3.250-05 -5 S2e-©9 -1 .33e-14 -2 .680-24
VGS 5.000 -5.000 -5.000 -5.000 5.000 -5.000 -5.00©
VOS 0.000 -5.00© 0.000 -s.eee -0.00© -5.000 -©.©00
VBS -0.000 -5.000 0.000 0. -0.000 -5.00© 0.

0 M22 M23 M24 M25 M26 M27 M28
OMOOEL P N P p N P P

ID 8.710-10 3 35e-22 2 15e-26 2.13e-26 1 98e-12 -1 94o-24 3 84c-10
VGS 5.000 5.000 -5.000 -5.000 0.000 -5.000 5.00©
VDS 5.000 0.000 0.000 -0.000 5.000 -0.00© 5.00©

VBS S.000 0. 0.000 -0.000 0. e. 5.000

0 M29 M30 M31 M32 M33 M34 M35

OMODEL N P N N P N N

ID 1 .66e-24 8. 16e-28 -2 51e-25 -2.560-14 2. 52e-09 2 85o-23 -1 77o-26

VGS 5.000 -5.000 5.000 -5.000 5.000 5.000 5.000

VDS -0.000 -0.000 -©.ee© -5.000 5.000 -©.ee© -©.©0©

VBS -0.000 -0.00© -0.000 -5.000 5.000 -©.©0© -©.©00

0 M36 M37 M38 M39 M40 M41 M42

OMOOEL N N P N N N P

ID -1.690-26 -1 .33o-14 2. 18o-09 2.18e-23 -2. 300-26 1 .96o-12 6. 010-28

VGS 5.000 -5.©a© 5.000 5.000 5.000 -0.000 -5.00©

VDS -0.000 -s.eee 5.000 -0.000 0.000 5.000 0.000

VBS -0.000 -5.000 5.000

2G.6

-0.000

3/15/83 •
0.

34:

-0.©0© 0.000

0. 3U P WELL CMOS MOOELS BK

0.... TRANSIENT ANALYSIS

0<

TIME

0. d+00 2
2.000d-09 2

4.O0Od-09 2.
6.000d-09 -4,

8.0O0d-O9 -2,
1.OOOd-08 -2.
1.20Od-O8 -1.

1.4O0d-08 -1,

V(5)

e.

823d-13

©27d-©5

655d-06
659d-©6

78©d-06

056d-©6
605d-06

083d-06

d+00 1.250d+O0

TEMPERATURE - 27.000 DEG C

2.5Odd+©0 3.750d+8© 5.0©©d+ee



May 13 18:55 1985 phi 3.spiceout Page 6

1 6O0d-08 - i.066d-07 *

1 800d-08 -4.644d-07 *
2 oeod-os - I.O43d-07 •

2 20©d-08 - l.719d-08 •

2 400d-O8 l.629d-07 *

2 .6O0d-08 4.211d-07 .
2 8©Od-08 B.793d-07 •

3 OOOd-08 7.235d-07 .
3 2O0d-08 7.640d-07 .
3 4©0d-06 8.046d-©7 •
3 6©0d-08 8.451d-07 *
3 800d-08 >.567d-07 *

4 000d-08 I.O69d-06 *

4 .200d-08 l.182d-06 *
4 .400d-08 l.279d-06 «

4 .600d-08 l.250d-06 *

4 .800d-08 l.221d-06 •

5 .OOOd-08 1.192d-06 •

5 .200d-08 l.174d-06 •

5 400d-08 l.244d-06 *

5 .600d-08 l.315d-06 *
5 .BOOd-08 l.385d-©6 *

6 .oeod-os l.442d-06 *

6 .200d-08 l.395d-©6 *

6 .400d-08 1.349d-©6 •

6 .680d-O8 1.302d-06 *

6 .80Od-08 1.267d-06 *
7 .OOOd-08 1.326d-06 *

7 .200d-08 1.385d-06 *

7 .400d-©8 l.444d-06 *

7 .600d-©8 l.484d-©6 •

7 .8OOd-08 l.432d-06 •

8 .eeed-08 l.381d-06 *

8 .2OOd-08 l.329d-06 *

8 .400d-08 1.296d-06 *

8 .600d-08 1.349d-06 *

8 .80©d-08 l.403d-06 *

9 .OOOd-08 l.456d-06 .

9 .2O0d-O8 1.491d-06 *

9 400d-08 l.441d-06 *

9 6O0d-08 l.390d-©6 •

9 800d-08 l.340d-06 *

1 OOOd-07 l.308d-06 *
1 02Od-07 l.361d-06 •

1 04Od-07 l.413d-06 *

1 06Od-07 l.466d-06 *

1 080d-07 l.481d-©6 *
1 IOOd-07 l.414d-06 *

1 12Od-07 l.346d-06 *
1 140d-07 l.395d-06 •
1 160d-07 l.409d-06 •

1 18Od-07 l.394d-06 *
1 200d-O7 I.395d-06 *
1 220d-07 l.4O0d-06 •

1 240d-07 l.403d-06 *

1 260d-07 I.403d-O6 •

1 280d-O7 .404d-06 •
1 30Od-07 .4O5d-06 *

1 320d-07 .407d-06 *
1 340d-©7 .408d-06 •

1 36©d-07 .410d-06 *

1 380d-07 .412d-©6 *
1 400d-07 .41©d-96 *

1 42©d-07 .408d-06 *

1 440d-07 1 .4O6d-06 *
1 460d-07 1 •412d-©6 •
1 480d-07 .465d-06 •

1 SOOd-07 1 .460d-06 •

1 520d-O7 1 .423d-06 •

1 54Od-07 1 .4O7d-06 •

1 566d-07 1 .4O5d-06 •

1 580d-07 1 .403d-06 •
1 600d-07 1 .401d-06 •

1 620d-07 1 .400d-06 *

1 640d-07 1 .400d-06 •
1 66©d-07 1 .399d-06 *
1 .68©d-07 1 .399d-06 *
1 .700d-07 1 .4©0d-06 .



May 13 18:55 1985 phi3.spiceout Page 7

1 .720d-07 1 .402d-06 .

1 •740d-07 1 .403d-06 .

1 .760d-O7 1 .4©5d-06 *
1 .780d-07 1 .406d-06 .

1 .80©d-©7 1 .495d-©6 •

1 .82©d-07 1 .405d-06 •

1 .84©d-©7 1 .405d-O6 *

1 .860d-07 1 .405d-06 •

1 .88©d-07 1 .406d-©6 .

1 .9©0d-07 1 .407d-06 .

1 •920d-07 1 .4©8d-06 *

1 .940d-07 1 .4©8d-©6 .

1 .960d-O7 1 .4©9d-06 .

1 .980d-07 1 .409d-©6 •

2 .O00d-O7 1 .409d-O6 •

2 .020d-07 1 .410d-06 •

2 .049d-97 1 .410d-©6 *

2 •960d-07 1 .410d-06 .

2 .980d-07 1 .411d-©6 *

2 .ieOd-07 1 .411d-©6 •

2 .12©d-©7 1 .410d-06 *

2 .14©d-07 1 .410d-©6 *

2 .16©d-07 1 .410d-06 *

2 .180d-07 1 .4©9d-06 •

2 .2©0d-07 1 .409d-©6 *

2 .220d-07 1 .408d-©6 *

2 ,240d-07 1 .408d-06 .

2 .260d-07 1 .407d-06 *

2 .280d-07 1 .407d-©6 *

2 .30Od-O7 1 .4©7d-©6 •

2 .320d-07 1 .4©7d-©6 *

2 .340d-07 1 .407d-©6 .

2 .360d-©7 1 .407d-06 •

2 .38©d-©7 1 .407d-06 *

2 .400d-07 1 .4©7d-©6 *

2 .42©d-©7 1 .406d-©6 *

2 440d-07 1 .405d-©6 •

2 460d-©7 1 .405d-©6 •

2 480d-07 1 .4©4d-©6 *

2 5©0d-©7 1 .4©3d-©6 *

2 520d-©7 1 402d-06 *

2 540d-©7 1 4©1d-©6 *

2 560d-©7 1 40©d-06 •

2 580d-07 1 403d-©6 *

2 600d-07 1 405d-©6 •

2 62©d-©7 1 4©8d-©6 •

2 64©d-©7 1 411d-06 •

2 66©d-©7 1 412d-66 •

2 680d-07 1 411d-66 •

2 700d-©7 1 411d-06 *

2 720d-©7 1 411d-©6 *

2 740d-©7 1 421d-©6 *

2 760d-©7 1 432d-©6 *

2 780d-©7 1 443d-06 *

2 8©©d-97 1 496d-06 *

2 829d-97 1 583d-©6 •

2. 840d-97 1 598d-©6 .

2. 86©d-©7 1 534d-©6 •

2. 880d-07 1 446d-©6 *

2. gOOd-07 1 392d-©6 •

2. 92©d-©7 1 373d-06 •

2. 940d-07 1 355d-©6 •

2. 96©d-©7 1 336d-06 *

2. 980d-©7 1 332d-©6 .

3. 000d-07 1 .344d-66 *

3. 020d-07 1 .3S6d-66 *

3. 040d-07 1 .368d-©6 *

3. ©6©d-©7 1 .378d-©6 •

3. OSOd-07 1 .385d-©6 *

3. 100d-07 1 .392d-©6 *

3. 120d-07 1 .400d-06 .

3. 140d-07 1 .4©8d-©6 *

3. 160d-07 1 .516d-06 *

3. 180d-07 2. 171d-©6 •

3. 200d-07 2. 089d-05 *
3. 220d-©7 7. 077d-05 •
3. 24©d-©7 6. 215d-©5 *
3. 26©d-©7 •-2. 9©8d-©4 *



May 13 18:55 1985 phi3.spiceout Page 8

3 .28Od-07 -1.372d-03 .
3 .300d-07 -3.239d-03 .

3 .320d-07 -5.911d-03 .
3 ,34Od-07 -8.115d-03 .
3 .360d-07 -3.379d-03 .
3 .380d-07 2.593d-02 o
3 .400d-07 1.747d-01 .
3 .420d-07 9.841d-01 .
3 .440d-07 2.226d+O0 .
3 .460d-07 3.934d+0O .

3 .480d-O7 4.728d+00 .
3 500d-07 4.957d+00 .

3 520d-07 4.992d+00 .
3 540d-07 4.998d+O0 .
3 560d-07 4.999d+00 .
3 580d-07 4.999d+00 .

3 6©0d-07 S.OOOd+OO .
3 620d-©7 5.©00d+00 .
3 64©d-07 4.999d+00 .

3 660d-07 5.OO0d+OO .
3 680d-O7 5.O00d+©0 .
3 700d-07 5.000d+0© .
3 720d-07 5.000d+00 .

3 740d-07 5.00Od+Oe .

3 760d-07 5.©0Od+O0 .
3 780d-07 s.eeod+eo .
3. 800d-07 5.0©0d+00 .
3. 820d-07 5.00Od+O0 .
3. 840d-07 5.©O0d+00 .

3. 86Od-07 5.0O0d+00 .
3. 880d-07 s.oeod+eo .
3. 9O0d-O7 5.©O0d+OO .
3. 920d-©7 s.eeod+eo .
3. 940d-©7 5.eeod+eo .
3. 960d-©7 5.O0Od+0O .
3. 98©d-©7 s.ooed+oe .
4. OOOd-07 5.000d+00 .

Y

0

JOB CONCLUDED
0 TOTAL JOB TIME 317.85



APPENDIX C

SPICE Parameters

86



May 13 18:56 1985 model Page 1

• 3u p wo II cibos models ——- bk
.MODEL N1 NMOS(LEVEL-2 TOX-65N NSUB-15E15 VTO-1.1 XJ-0.35U LD-0.25U
+ JS-1.24E-4 PB-0.88 UO-526 UCRIT-3.97E4 UEXP-0.08
+ UTRA-0.25 GAMMA-1 LAMBDA-0.02 CGBO-5.7E-10
+ CG0O-5.7E-1O CGSO-5.7E-10 CJ-6.0E-4 CJSW-5.64E-10
+ VMAX-5E4 NEFF-3 RSH-30)
.MODEL n NMOS(LEVEL-2 TOX-50N NSUB-10E15 VTO-0.93 XJ-0.45U LD-0.24U
+ JS-1.24E-4 PB-0.80 UO-381 UCRIT-99E4 UEXP-0.001
+ UTRA-0 LAMBDA-0.025 CGBO-4.8E-10 TPG-1
+ CGDO-5.2E-10 CGSO-5.2E-10 CJ-3.2E-4 CJSW-9.0E-10
+ VMAX-5.5E4 NEFF-1.6E-2 RSH-25 DELTA-1.47 NFS-3.73E11)
.MODEL N3 NM0S(LEVEL-2 TOX-55N NSUB-5E15 VTO-0.5 XJ-0.6U LD-0.4U
+ JS-1.24E-4 PB-0.88 UO-1053 UCRIT-3.97E4 UEXP-0.08
+ UTRA-0.25 GAMMA-0.9 LAMBDA-0.02 CGBO-5.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-10 CJ-6.0E-4 CJSW-5.64E-1©
+ VMAX-5E4 NEFF-3 RSH-10)
.MODEL PI PMOS(LEVEL-2 TOX-65N NSUB-SE15 VTO—1.1 XJ-0.35U LD-0.25U
+ JS-7.75E-5 PB-0.88 UO-210 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-0.6 LAMBDA-0.02 CGBO-5.7E-10
+ CGDO-5.7E-10 CGSO-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSH-100)
.MODEL p PMOS(LEVEL-2 TOX-50N NSUB-2.97E14 VTO—0.844 XJ-0.O258U LD-0.512U
+ JS-7.75E-5 PB-0.88 UO-100 UCRIT-185©© UEXP-0.145
+ GAMMA-0.723 LAMBDA-©. 0527 CGBO-4.0E-1O TPG—1
+ CGDO-4.0E-10 CGSO-4.0E-10 CJ-2.0E-4 CJSW-4.0E-10
+ VMAX-10E4 NEFF-.01 RSH-95 DELTA-2.19 NFS-1.62E12)
.MODEL P3 PMOS(LEVEL-2 TOX-55N NSUB-.3E15 VTO—0.5 XJ-0.6U LD-0.4U
+ JS-7.75E-4 PB-0.88 UO-421 UCRIT-4.14E4 UEXP-0.16
+ UTRA-0.25 GAMMA-©.4 LAMBDA-0.02 CGBO-5.7E-10
+ CGDO-5.7E-10 CGS0-5.7E-10 CJ-4.1E-4 CJSW-3.85E-10
+ VMAX-5E4 NEFF-3 RSH-50)



REFERENCES

[Blak83] J. Blakken. "Register Window for SOAR" Proceedings of CS290R. Smalltalk on a
RISC - Architectural Investigations. Computer Science Division, Univ. of Cal..
Berkeley. April. 1983.

[Vlad8l] A.Vladimirescu. K.Zhang. A.R.Newton. D.O.Pederson, A.Sangiovanni-Vincentelli
"SPICE Version 2G Users Guide" Department of Electrical Engineering and
Computer Sciences Univ. of Cal.. Berkeley CA. Aug 10.1981.

[DAmb83]B. D'Ambrosio "Smalltalk-80 Language Measurements - Dynamic use of Com
piled Methods" Proceedings of CS290R. Smalltalk on a RICS - Architectural
Investigations. Computer Science Division. Univ. of Cal. Berkeley. EECS. April.
1983.

[Deu8l] L.P. Deutsch. "Measurement of the Dorado Smalltalk-80 Systems". Berkeley
Computer Systems Seminar. Fall 1981.

[Deu83] L.P. Deutsch. "The Dorado Smalltalk-80 Implementation: Hardware
Architecture's Impact on a Software Architecture". Addison Wesley. Sept 1983.

[DeS84] L.P. Deutsch and A.M Sniffman, "Efficient Implementations of the Smalltalk-80
System". Proceedings of the 11th Annual ACM SIGACT News-SIGPLAN notices
Symposium on Principles of Programming Languages. Salt Lake City. Utah. Jan.
1984.

[Fitz8l] D. Fitzpatrick. J. Foderaro. M. Ketevenis. H. Lardman. D. Patterson. J. Peek. Z.
Peshkess. C. Sequin. R. Sherburne. K. VanDyke. "VLSI Implementations of a
Reduced Instruction Set Computer" VLSI Systems and Computations. Carnegie
Mellon Univ. Conf.. Computer Science Press, pp.327-336 Oct 1981.

[Gonc83] N. Gonclaves. H.J. DeMann "NORA: A Race Free Dynamic CMOS Structure
Technique for Pipelined Logic Structures." IEEE Journal of Solid State Circuits
Vol SC-9. No. 5. pp. 272-285.

[Hofm83] M. Hofmann. "Aspects of Design and Layout of a CMOS ALU for SOAR". CAD
Group Internal Memorandum. Dec. 1983.

[Kell84] Keller. K.. "An Electric Circuit CAD Framework." Dept. of Electrical Engineer
ing and Computer Sciences. University of California. Berkeley, June, 1984,
Memo No. UCB/ERL M84/54.

[Kram82] R.H. Krambeck, CM. Lee. H.S. Law. "High Speed Compact Circuits with
CMOS." IEEE Journal of Solid State Circuits Vol. SC-17 No.3. pp. 118-126.

[Mah84] G. Mah. "PANDA: A PLA Generator for Multiply-Folded PLAs", Proc. IEEE
Int'l Conf on CAD. Santa Clara. CA. Nov 1984 pp. 122,124

[Oust83] J. Ousterhout. "Using Crystal for Timing Analysis" in "Berkeley VLSI Design
Tools More Works by the Original Artists" Computer Science Division, EECS
University of California. Berkeley. CA Sept. 1983.



[Patt8l] D. Patterson. C. Sequin "RISC I A Reduced Instruction Set Computer" Proc. of
the 8th. Annual Symposium on Computer Architecture. ACM SIGARCH 9.3 pp
443-457 May 1981.

[Patt83] Patterson. David. "Proceedings of CS290R. Smalltalk on a RISC - Architectural
Investigations". Computer Science Division. Univ. of Cal.. Berkeley. April. 1983.

[Patt83b] Patterson. David. "Second SOAR" Internal Memorandum Computer Science
Division. EECS. Univ. of California. Berkeley. Feb. 1983.

[Patt84] Patterson. David. "Reduced Instruction Set Computers" Communications of the
ACM Dec. 1984. pp.8-21.

[Reed85] Reed. James. "YACR2. Yet Another Channel Router 2" MS Report. Univ. of Cal..
Berkeley. Dept. of EECS. May 1985.

[Rude85] R. Rudell. "ESPRESSO-IIC Users Manual". CAD group manual. Univ. of Cal..
Berkeley. Dept. of EECS. May 1985.

[Ryan85] D. Ryan "An Interactive Routing toolbox" MS Report. Univ. of Cal. Berkeley.
Dept of EECS MS Report. May 1985.

[Samp84] D. Samples. M. Kline. D. Foley "SOAR Architecture" Univ. of Cal. Berkeley.
EECS Internal Memorandum Sept. 1983.

[Unga83] D. Ungar.,R. Blau. P. Foley. D. Samples. D. Patterson. "Architecture of SOAR
Smalltalk on a RISC" Proceedings of the 11th Annual Symposium on Computer
Architecture. Anarbor MI. June 1984.


	Copyright noticE 1985
	ERL-85-48

