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Abstract

We consider a MIMO nonlinear feedback system. 1S(P,C) which is assumed

to be S-stable. The plant P is subjected to an arbitrary additive (resp. muitipli-

cative) perturbation LP (resp. M). We prove necessary and sufficient conditions

for the S-stability of the perturbed system. As a special case, "we obtain a gen

eralization of our earlier result (on linear time-invariant systems) to linear

time-varying systems.
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I. Introduction

One of the main purposes of feedback is to reduce the sensitivity of the

closed-loop system to changes in the plant, and it is very important to deter

mine whether a feedback system remains stable after being subjected to

changes in the plant. There is an abundant literature on this subject with vari

ous restrictions imposed on the nature of i) the plant: linear lumped [Des. 1],

[ 1st. 1], [Fra. 1] [Doy. l]; linear distributed [Chen l], [Chen 2]; nonlinear and

time-varying [Zam. l], [San. 1]), ii) the perturbation: a) stable perturbation:

([Jst 1], [Fra. 1], [Cru. l] [Pos. l], [Zam. 2]) -all giving only sufficient condi

tions; b) a class of possibly unstable linear perturbations [Doy. l], [Chen l] with

necessary and sufficient conditions (n.a.s.c); c) linear fractional possibly

unstable perturbations [Chen 2] withn.a.s.c.

In an earlier paper [Bha. 1], we considered MIMO linear ti7ne-dnvariant sys

tems (lumped or distributed, discrete- or continuous-time) and a simple alge

braic proof of a n.a.s.c. for stability of 1S{P,C), (Fig. 1, solid lines only), whenP

is subjected to an additive perturbation LP which is proper but not necessary

stable. In this paper, we extend this result to MIMO nonlinear systems (Theorem

1, Sec. 3) and when we specialize this result to the linear case, (Sec. 4, Cor. 1),

we obtain a generalization of the result of [Bha. l] which applies to time-varying

systems as welL We state and give a simple algebraic proof of a necessary and

sufficient condition for S-stability (see Sec. II for Defn. ) of the feedback system

1S(PtC) under arbitrary additive (resp. multiplicative) perturbations LP, (resp.

M)% (i.e., LP, (resp. M), is not required to be S-stable).
n* ** *v

In Section III we formalize the following intuitive argument: (the nominal

system 1S(P,C) is assumed S-stable) a) the addition ofLP to 1S(P,C) (as shown

by the dotted lines in Fig. 1) creates a new loop; b) the "gain seen by LP,"
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through XS{P,C) is equal to —Q , c) since the nominal system 1S(P,C) is 5-

stable, £ is S-stable, V u2^.\2\ d) view the new loop as 1S(LP,Q ) (Fig. 2):

"clearly" S(P,LP,C) is S-stable <=> V 1*2^1^, ^(AP,^ ) is S-stable.

A. Definitions and Notations

U.tc. means under these conditions. Let (L,|H|) be a normed space of "time

functions": T -* V where T is the time set (typically 1R+ or IN ). V is a normed

space typically IR, IR71, Cn, • • • ) and |H| is the chosen norm in L. Let Lg be the

corresponding extended space (see e.g., [Des. 2]).

A function <p:IR+ -»IR+ is said to belong to cZass KiB. <p is (p continuous and

increasing, tp is said to belong to class K^ iff (p€.K and <p(0) = 0. If cpi and

(Pz^-Kq, then ^1 + ^2 and a.*-* <Pi(<Pz(a))€-Ko- A nonlinear causal map

Hil? -»C9 is said to be S-stable iff 3 tp €K s.t. V z elj1, V TeT.

H&llr < v(||«||r) •

His said to b incrementally S-stable (incr. testable) in* (i) H is S-stable,

(ii)3?€Ai s.t. Vi.i'eCWreT,

\\Hz-Hx\\T * 5(||x-ar'Hr)

Let jS, 7, and 7 be constants: if <p(x) = jS+TS, then S-stability reduces to

finite-gain stability [Saf. l], [Des. 2]; if £(z) =72:, then incr. S-stability reduces

to finite-gain incr. stability. It can be shown that if the nonlinear causal maps

H and H are S-stable, (inc. S-stable), then H +H and H ° H are S-stable,
~1 ~2 ~1 ~2 ~1 ~2

(incr. S-stable, resp.). (For simplicity, in what follows we drop the symbol " °"
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denoting the composition of the maps.)

A feedback system is said to be well-posed iff the relation from the exo

genous inputs into each subsystem' variable (i.e., subsystem input and subsys

tem output) is a well-defined nonlinear causal map between the corresponding

extended spaces. More precisely, the system 1S(P,C) of Fig. 1, where

P'.Lp ->l£°, C:l£°-*!£* are causal maps, is said to be well-posed iff

H:(ui,u2) H (ei,e 2.2/1,1/2) is well-defined and causal. Note that lS(P,C) is

well-posed implies that* (I+PQ*1 and (I+CP)"1 are well-defined and causal. We

say that a well-posed nonlinear feedback system is S-stable (incr. S-stabie) iff

the map from the exogenous inputs to any subsystem variable is S-stable (incr.

S-stable, resp.).

m. Statement and Proof of the Theorems

We will need the following assumptions:

Al. P:Lfc* -*I^B and C:I^9 -^I*1 are nonlinear causal maps between the

appropriate extended spaces and the nominal system

1S(P,C) is well posed. /1)

A2.

^(F.Q is S-stable. (2)

A2\ 1S(P,C) is S-stable and * : (ultu2) h- ylt defined by ^SiP.C), is incr. S-

stable

•By subsystem we mean any block of the block diagram of the feedback sys
tem.

*The meaning of (/+PC)-1 deserves clarification: the map C is composed
with P then the identity is added, and the resulting map is inverted. Although

IS*

this formula has the same form as the linear case, it has a completely different
interpretation.
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A3. The additive perturbation LP: L^ -+ I* ° is a nonlinear causal map subject

only to the restriction that the perturbed system

S(P,LP,C) be well-posed. (3)

Remark 1: P, C, and LP are nonlinear, causal maps subject only to (l), (2),

and (3). None, some or all of these three maps may be unstable.

Remark 2: The nominal S-stable system 1S(P,C) with ult u2 as inputs and ylt

y2 as outputs, defines the S-stable maps ^ il^9 X1^* -» I^1 s.t.

Vi =J fai/u2) := Qttg(ui) and %=^ x^ •* ^ S-L V2 =*gfa1,1*2) ==

Theorem 1: Let assumptions Al, A2 and A3 hold. U.t.c,

(i) S(P,LP,C) is S-stable <=> V u2el^\ lS{LP.Q ) is S-stabie.

(ii) If, instead of A2, the stronger assumption A2' holds and we let Q denote

the partial map u1 -* ^ (ult0), then,

S(P,LP,Qis S-stable <=5> a5(P,^ )is S-stable .

Proof of (i): (=>) Consider the system S(P,LP,C) (see Fig. 1), and write its

equations in terms of the outputs y^, y2, and y$

Vi = £^1-2/3-1/2) (4)

y2 = P(tu2+y1) (5)
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yz = LP(u<i+y1) (6)

If, in Fig. 1, we delete the dotted part of the figure, we are left with lS(P,C)

driven by ulf u2 with outputs y\, y2:1S(P,C) is described by

Vl =£Cui-2/2) (7)

y2 = Piu2+y{) (8)

By assumption, 1S(P,C) is S-stable, hence

yi=*.(v-lfu2) (9)

where for i = 1,2, ^ is a causal S-stable map on 1^' Xl^1. Using (9) in (4) and

(5) we obtain a new equivalent representation for S(P,LP,C):

Vl =^,(^1-^/3.^2) := Qu (^i~V3) (10)

1/2 =J2tel-V3/*2) (11)

y3 = AP(U3+yi) (12)

Note that (10) and (12) involve only the outputs 2/1 and 2/3 and that (10) and (12)

describe the system 1S(LP,Q ) shownin Fig. 2. Now we obtain, successively:

S(P,LP,C) is S-stable hence the map (uj.Ug/i^) »-* (yi,y2,yz) is S-stabie which

implies that the map (u1(u2,u3) 1-* (2/1,1/3) defined by (10) and (12) is S-stable,

which, in turn, is equivalent to V u2 e Lg *. 1S(LP, Q ) is S-stabie.



(<=) Assume that, Vu2eV. 1S{LP,Q ) is S-stable. Then. I) by the last

equivalence, (10) and (12) specify, for the system S(P,LP,C), an S-stable map

from (ii1.U2.U3) to (2/1,2/3); II) since ^(P.C) is S-stable by assumption, the

function ^ in (11) is S-stable; III) consequently, the three equations (10)-(12)
~2

define an S-stable map from (14i.U2.U3) to (2/1,2/2»2/3)1 equivalently S(P,LP,C)

is S-stable.

Proof of (ii): (=>) By the theorem, S(P,LP,C) is S-stable, hence V u2eC

^(AP,^ ) is S-stable. In particular, for u2 = 0 we have that the system

^(AP,^ ) is S-stable.

(<=) By assumption 1S(LP,Q ) is S-stabie.

We show that because (ulru2) -* ^(ultu2)=:Q (uj) is incr. S-stabie, then

VuofeLT1. S(LP,Q ) is S-stabie. Then, by theorem 1, (i), S(P,LP,C) is S-
(V A*Tig «# o» l>»

stable.

Consider ^(AP, £ )
<v /vttg

2/1 = Qu (^1-1/3) (13)

2/3 = AP(^3+1/l) (14)

We can rewrite Q (uj—2/3) as follows
*VfUg

Q„ (^1-1/3) = $ (^1-1/3) + vi = y! + £1

71- » 71/where the last equalities define y1 and uj, resp. Now V (u1,u2)e:L30 XL3i
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and V T, we have:

lli/illr * II«„ (^i-Vs) - 9 ("i-VsJIIr = II* (^1-1/3^2) -* O*i-V3.o)llr«*«*g WQ ««1 ~1

^ pflkdlr)

Since 3€/T0 C K, for the system 1S(LP,Q), the map (uj.U2.U3) h* 2/1 is S-

stable. (13) and (14) ean be rewritten as:

y\ = Q fai-vs) (is)

2/3 = AP(u3+Vi+v5) (16)

The systems (13)-(14) and (15)-(16) are equivalent. Since ^(AP,^ ) is S-stable

and since (uj.U2.U3) h> yt is S-stable we conclude that V u2€L^t lS(LP>Qu )

is S-stabie hence S{P,LP,C) is S-stable, by Theorem 1, (i).

a

We replace assumption A3 by:

A3'. The multiplicative perturation if = L, * -> I* ° is a nonlinear causal map
fst

subject only to the restriction that the perturbed system S{P,M,C) (see
fsf (W «v

Fig. 3) be well-posed. Recall that y2 = ^ {ux,u2) := H (ux) (see Remark

2). We now state:

Theorem 2: Let assumptions Al, A2 and A3* hold. U.t.c. S{P,M,Q is S-stabie
tSt fst fSI

V u2€lZ\ 1S(M,H ) ( see Fig. 2, caption ) is S-stable.
ISt /xtig
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Proof: From Fig. 3, we write just as in Theorem 1,

2/i = *(ul-yz,u2) (17)
~i

2/2 = *Su\~-y*u*l -: H„. (ul"1/3) (18)fst2 ~<*g * *

2/3 = M(uz+y2) (19)

Then, observe that (18) and (19) define 1S(M,H ) and follow the proof of
rst ivUj

Theorem 1, replacing APby M, Q by H and S(P.AP,Q by §{P,M,C).
rst est i-wlig «vttg rst rst est rst fst rst

IV. The linear Case

Suppose that, in addition to assumption Al, A2, and A3 above, P, C, and AP

are linear. (Note that we say linear, not linear and time-invariant; thus

P: lJ1* -> 1^ ° is a linear map (not necessarily represented by a transfer fane-
rst

Hon), etc. ..). Consequently, S-stability and incr. S-stability are equivalent to

finite-gain stability. By linearity, ^ is linear and an easy calculation shows that

- ^(^1^2) = Q ui~Q Pu-z (20)
ISt tStQ fSIQ tS,

where Q and Q P are finite-gain stable (by A2) linear maps. Thus the second
fstQ rstQ rst

part of Theorem 1 applies and we have: the linear system S(P,LP,C} is finite-

gain stable <=> the linear system lS(LP,Q ) is finite-gain stable. Now for the

closed loop system 1S(LP,Q ) we have:
rst rstQ

2/! = Q {I-MQ )uj - Q Muz (21)



o r

2/3 = MQ uj + Muz (22)
rst rsiQ rst » '

where if = AP(/+£ AP)"1. Since £ is finite-gain stable, (21), (22) show that
rst rst rst 'vO A' ls,Q

1S{LP,Q ) is finite-gain stable if and only if M := LP(I+Q AP)'1 is finite-gain
»v rsrQ rst est est isiq rst

stable. We state this as:

Corollary 1: Let P, C, AP satisfy Al, A2, and A3 and let them be linear (but not
rst rst rst

est •

necessarily time-invariant). U.t.c, S(P,LP,C) is finite-gain stable ^^ the
est rst est

linear map AP(/+ QLP)~l is finite-gain stable.

Note: Similar considerations apply to the case for multiplicative perturba

tions.
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Figure Captions

Fig. 1. The figure shows the system S(P,LP,C) with inputs ult u2 u3 and, 2/1.
rst rst rst

2/2, 2/3* If the dotted part of the diagram is removed, we are left with

*S(P,C) whose inputs are u,, U2 and outputs 2/i« 2/2-
est est

Fig. 2. 15(AP, £ ): obtained from Fig. 1. The "gain seen by AP' going through
est rstllQ est

1S(P,C) is -Q .To obtain lS(M,H ) replace AP by M and Q by
rst «v <vttg «* mUj <v <v istZLq

H .
~Ug

Fig. 3. The figure shows the multiplicatively perturbed system 5 (P,M, C) with

inputs ult u2. u3 and outputs 2/1, 2/2 and 2/3-
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