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ABSTRACT

Accurate electrical simulation is critical to the design of high-performance integrated

circuits. Logic simulators can verify function and give first-order timing information.

Switch-level simulators are more effeciive at dealing with charge-sharing than standard

logic simulators, but cannot provide accurate timing information or discover DC problems.
Delay estimation techniques and cell-level simulation can be useful in constrained design
methods, but must be tuned for each application, and circuit simulation must still be used

to generate the cell models. None of these methods has the guaranteed accuracy that many
circuit designers desire, and none can provide detailed waveform information.

Detailed electrical-level simulation can predict circuit performance if devices and

parasitics are modeled accurately. However, the computational requirements of
conventional circuit simulators make it impractical to simulate-current large circuits.

In this dissertation, the implementation of Iterated Timing Analysis (ITA). a
relaxation-based technique for accurate circuit simulation, on a special-purpose

multiprocessor is presented. The ITA method is an SOR-Newton. relaxation-based method
which uses event-driven analysis and selective trace to exploit the temporal sparsity of the



electrical network. Because event-driven selective trace techniques are employed, this

algorithm lends itself to implementation on a data-driven computer. Initial results

indicate that data-driven multiprocessors, working with a conventional host, can provide

performance improvement for electrical circuit simulation limited only by the size and

structure of the circuit under analysis. This particular class of machines also seems well-

suited to other network-graph-based, event-driven algorithms, such as fault simulation

and many non-electrical problems.
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CHAPTER 1

INTRODUCTION

Advances in integrated circuit fabrication technology have made possible dramatic

increases in circuit density. However the ability of designers to reason about the behavior

of complex systems has remained fairly constant over time. As a result, tools which aid

in the management of design complexity have become increasingly important. While

structured design and hierarchy aid in dealing with complexity, the lag between a func

tional circuit and a circuit that meets its performance objectives is increasing. Simple

delay estimation techniques and cell-level circuit simulation can be used for first-order

performance estimation in constrained design methods. Unfortunately, these approaches

do not predict circuit performance accurately for state-of-the-art circuit designs. For this

reason, circuit simulators, originally designed to simulate circuits containing under 100

transistors, are often used today to simulate circuits containing many thousands of

transistors.

One of the most common analyses performed by circuit simulators and the most

expensive in terms of computer time is nonlinear, time-domain transient analysis. By per

forming this analysis, precise electrical waveform information can be obtained if the device

models and parasitics of the circuit are characterized accurately. Because of the need to

verify the performance of larger circuits, many users have successfully simulated circuits

containing thousands of transistors despite the cost. For example, a 700 MOSFET circuit,

analyzed for 4us of simulated time with an average 2ns time step, takes approximately 4

CPU hourson aVAX 11/780 VMS computer with floating-point accelerator hardware using the

SPICE2 program [l]. It has been estimated asingle transient analysis of a 450.000 device

microprocessor using SPICE2 would require 6 months on an IBM 370/168 [2]. Clearly.



such run-times are not practical.

Gate-level logic simulators (e.g. [3.4] ) and switch-level simulators [5] can verify

circuit function and provide first-order timing information more than three orders of mag

nitude faster than a detailed circuit simulator. However, to verify circuit performance for

critical paths, memory design, and analog circuit blocks, and to detect dc circuit problems

such as noise margin errors or incorrect logic thresholds, it is often essential to perform

accurate electrical simulation. In some companies the simulation of circuits containing

many thousands of devices is performed routinely and at great expense. In recent years,

considerable effort has been focussed on techniques for improving the speed of time-

domain electrical analysis while maintaining acceptable waveform accuracy.

A number of approaches have been used to improve the performance of conventional

circuit simulators for the analysis of large circuits. The time required to evaluate complex

device model equations has been reduced using table-lookup models [6. 7]. Techniques

based on special-purpose microcode have been investigated for reducing the time required

to solve sparse linear systems arising from the linearization of the circuit equations [8]

Node tearing techniques have also been used to exploit circuit regularity by bypassing the

solution of subcircuits whose state is not changing [9] and [10].

These techniques, and others, have also been used to exploit the vector processing

capabilities of high performance computers such as the CRAY-l [ll] and FPS-164 [12]. These

special-purpose computers have additional hardware designed to exploit the parallelism

and pipelining that is available in the programs they execute. Unfortunately, circuit simu

lation programs are not well suited to these computers. In particular, the sparsity of the

circuit matrix and its irregular structure cause the data gather-scatter time to dominate

overall program execution time [13]. That is. simply fetching the data stored in memory

and writing it back out again after it has been processed becomes the bottleneck. In all

cases, the overall speed improvement of the simulation has been at most an order of mag-



nitude. for practical circuits.

Recently, a new class of algorithms has been applied to the electrical IC simulation

problem. New simulators using these methods provide guaranteed accuracy [l] —as accu

rate or more accurate waveforms than standard circuit simulators with up to two orders

ofmagnitude speed improvement for large loosely-coupled circuits [14. 15]. These simula

tors have been used for the analysis of both digital and analog MOS ICs. They use relaxa

tion methods for the solution of the set of ordinary differential equations, (odes) which

describe the circuit under analysis, rather than the direct, sparse-matrix methods on which

standard circuit simulators are based. While these new algorithms provide substantial

speed improvements on conventional computers, they can provide much greater speedups

on special-purpose hardware that is designed to exploit the particular features of these

algorithms [16].

In this dissertation, the use of the Iterated Timing Analysis [14.15] (ITA) on a

special-purpose multiprocessor is presented. The ITA method is an SOR-Newton.

relaxation-based method which uses event-driven analysis and selective trace to exploit

the temporal sparsity of the electrical network. Because event-driven selective trace tech

niques are employed, this algorithm lends itself to implementation on a data-driven com

puter. Initial results indicate that data-driven multiprocessors, working with a conven

tional host, can provide performance improvement for electrical circuit simulation limited

only by the size and structure of the circuit under analysis. This particular class of

machines is also well-suited to other network-graph-based, event-driven algorithms,

including fault simulation, layout compaction, layout-rule checking, and the IC tape-out

process for fabrication. Many non-electrical problems also fit this model.

During the course of this research, two different approaches to concurrent circuit

simulation have been explored through experimental implementations. The ITA/DF pro

gram is written in the SISAL data-flow language and executes on the Manchester data-flow



Machine. ITA/DF divides the computation into very small units, called grains, each on the

order of a single arithmetic operation. This fine division results in extremely high mul

tiprocessor efficiencies, on the order of 90-95% on 13 processors when simulating a single

inverter. However, the fine grain of the computation requires very large amounts of com

munication and synchronization, and is therefore currently only suitable for execution on

very tightly coupled multiprocessors or on multiprocessors based on data-flow concepts

[17]. The second program. MSPLICE. implements the distributed iterated timing analysis

algorithm (DITA) to perform large-signal time^domain transient analysis of large digital

circuits. MSPLICE can simulate a variety of ideal multiprocessors when executing on a

conventional uniprocessor as well as execute in true multiprocessor mode on multiproces

sors such as the BBN Butterfly [18]. The MSPLICE program is written in the C program

ming language and is based on macro-dataflow concepts, where the grains of the data-

driven computation are on the order of the size of amodel evaluation or equation-solution,

rather than an arithmetic operation as in conventional data-flow. On a 10 processor

Butterfly, program MSPLICE has achieved an efficiency of over 70% when simulating a 704

transistor industrial circuit.

During this research, both functional simulation and ideal multiprocessor models have

been used extensively to explore the effect of architectural alternatives on system perfor

mance.

Chapter 2 of this dissertation is a description of existing simulation accelerators and

of the application of array processors and advanced algorithms to the circuit simulation

problem. Chapter 3 is a review of multiprocessor architecture and programming. In

Chapter 4 the state-of-the art in interconnection networks and considerations for their

design are described. Chapter 5 reports the performance of multiprocessor-based circuit

simulation on various ideal machines, and how the effects of centralization on simulator

performance lead to the details of the DITA algorithm. Chapter 6 is an introduction to the



test-bed multiprocessor used for the evaluation of MSPLICE - the BBN Butterfly - and the

Butterfly floating-point accelerator. In Chapter 7 the structure the MSPLICE program and

its performance as a function of the number of processors is described. Chapter 8 contains

conclusions and directions for future research.



CHAPTER 2

SIMULATION

2.1. The Integrated Circuit Design Cycle

Integrated circuit design is a process which involves making complex tradeoffs between

different design options at many different levels of abstraction. Because these tradeoffs

interact, the process is usually an iterative one of hypothesis and test, where decisions at

one level of abstraction affect choices at several others. One view of the IC design cycle is

shown in Figure 2.1. Because of the expense of accurate electrical simulation of large cir

cuits, designers have turned to higher levels of simulation. However the abstractions used

in higher-level simulation are only valid for constrained design styles. The degree to

which these constraints impact circuit performance depends on the problem being solved.

Another important restriction with this approach is that it may not be possible to deter

mine when an abstraction fails and when the abstract model does not reflect the imple

mentation. Because of the lack of adequate simulator performance, designers have also

turned to static analysis tools. In some cases this has resulted in circuits which work

functionally, but not at the desired speed. Where performance is important, as it is in

most cases, this is only a marginally better result than a non-functioning design. The

result of this approach is that the lag from a functioning part to parts that function at

acceptable speed over a required range of temperature and process variations is increasing.

2.2. Hypothesis and Test

For the method of hypothesis-and-test to work effectively, it is necessary that the

tests be interactive or nearly so: on the order of seconds to a small number of minutes.
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Figure 2.1 - The IC design cycle

For software-based simulation on conventional uniprocessors, this speed is only available

for very small blocks or at the logic or functional levels of abstraction. The result is that

circuit designers depend largely on experience and "rules of thumb" for their initial param

eter choices and use circuit simulation as a verification tool, more to check existing designs

than as an aid in exploration. Thus theirability to explore design space is severely limited.

By closing the hypothesis-and-test loop, high-performance circuit simulation makes both

manual and automatic optimization more effective, since it greatly increases the number of

alternatives that a designer or optimization program can explore.



2.3. Levels of Simulation

Regardless of what tools are used, hierarchial design is critically important for

effective management of complexity. Consider the design of a very large digiul design

such as a multiple-processor computer system, shown in Figure 2.2. The multiprocessor

consists of a number of processor-memory-elements (PME's). connected by an intercon

nection network. The interconnection network consists of a number of network elements

and connections between the elements. Each PME consists of a processor, a local memory

sub-system, and interfaces between the processor, the local memory, and the interconnec

tion network. The first step in the design of such a system is to evaluate the effect of

instruction sets and interconnection networks on the performance of representative algo-

INTERCONNECTION

NETWORK

PME PME

PME PME

PME PME

Figure 2.2 - A Multiprocessor System
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rithms. A first-order understanding of the effect of these choices on system performance

can be obtained by using a behavioral-level simulation system such as GPSS [19] ADLIB

[20] or FTL2 [21]. The model of the system used at this point is purely algorithmic: no

choices as to system structure need be made, and the relative performance of the different

processes may not even be known. A behavioral-level simulation of a system aids a

designer in reasoning about critical resources, such as register files, busses, and data-paths.

The next step in the design cycle is to examine alternative structures for the system at the

large-block digital level. All levels below the functional level are considered to be struc

tural or schematic views [2] and can be represented by a schematic diagram. At this level

of abstraction, a Register-Transfer Level (RTL) simulator can be of help. Sucha simulator

allows the designer to examine the performance of different building-block configurations

under simulated input or test vectors. If the building blocks used in the RTL simulation

represent cells from a standard library this may be the lowest level of abstraction the

designer encounters. However, if any of the blocks must themselves be designed out of

lower-level components, the design parameters associated with them must be viewed as

approximate estimates or goals, and the job of the designer at the next lower level of

abstraction is to makecircuit design tradeoffs to best implement the block. The goal of the

logic design phase is to implement the building-blocks as efficiently as possible. Of course,

the choices made in the architectural phase are influenced by the structures the logic can

implement. At the logic level, the choices are between design styles with different power

and area requirements. If the primitives used are simple standard cells, this is the final

stage of the design cycle. However, in a full custom design, the designer must implement

the block functions out of more primitive elements. Here the tradeoffs become more com

plex, and aspects of the fabrication process and its parasitics must be taken into account

for high-performance design.

If there are clear Figures of Merit for the pieces of a design, then the design choice can

be analyzed in terms of those characteristics and its quality can quickly be determined.
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High-Performance simulation is important because it allows the quality of a proposed

implementation to be determined quickly and compared to other choices. The speed of a

simulation facility effects directly the number of alternative designs a designer or program

can evaluate.

2.4. Special-Purpose Hardware for simulation

Although simulation is a powerful took for analyzing design tradeoffs, it requires

large amounts ofcomputer time to simulate large blocks orsmall blocks at high degrees of

accuracy. It is always possible to decrease the time necessary to simulate a circuit by the

use of a higher level of simulation, in many cases, however, the higher level simulation

will not capture the information which isof interest. For this reason, there is great deal of

interest in hardware solutions to the simulation problem. These simulation accelerators

can perform simulations at much greater speed than software based simulators. However,

there is a tradeoff between cost, accuracy, degree of specialization, and performance. The

tradeoff are similar those made in software simulators. [22], but the benefits and penalties

of specialization are in general far greater than in software because of the comparative

difficulty of designing and modifying hardware. Because of this difficulty, almost all work

in special-purpose hardware forsimulation has been limited to logic level simulation.

2.4.1. The Yorktown Simulation Engine

The first logic simulation machine to be reported in the open literature was the York-

town Simulation Engine, or YSE [23]. IBM has also reported an earlier effort, the LSM

[24], which contributed many ideas to YSE project, and a follow-on version, the EVE [25].

A YSE can be configured with from 1 to 256 logic processors. A block diagram of the YSE

is shown in Figure 2.3 [23].

Each logic processor can simulate up to 8192 gates at 80ns each, or 12.5 million gate-

evaluations/second. Thus, a 256 processor system would be able to simulate 2 million
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gates at over 2 billion gate-evaluations/second. To put this in perspective, consider that a

good software logic simulator runs at 1000-2000 gate-evaluations/second [15] on a VAX-

11/780 Unix system. In this case, the YSE is over 1.000.000 times faster than a software

simulator but is limitied to this one function.

Every module in a YSE is driven from a central 80ns clock, and the logic processors

are connected together by 256x256x3 bit cross-bar switch. The YSE provides three state

logic simulation and all paths, including the switch, have parity. Each logic processor

sists of three parts: a 8k X 128 bit instruction memory, a 8k X 2 bit data memory, and

logic evaluation unit. Ablock diagram of aYSE processor is shown in Figure 2.4 [26].

Each instruction specifies a single four-input, single output logic function, where the

inputs and output may be modified by a mapping function, called a GDM. Note that a sin

gle output may feed any number of inputs, and that the output isnamed implicitly by the

instruction number. Each processor starts at location 0 and goes through its entire

con-

a
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instruction memory in sequence. There are no branches, conditionals, orother flow control

operations.

The YSE can operate in two modes. The first mode, unit-delay, simulates an entire

machine for a single cycle, allowing storage. The second mode, rank-order simulation,

simulates an entire block of logic between two registers in a single operation. In rank-order

simulation, it is necessary to order the logic instructions on all processors such that the

results are produced long enough before they are used so that all inputs will be available

to evaluate a logic function. In unit-delay mode, gates may be evaluated in any order, as

long as all gates in a block are evaluated before the next simulation cycle. The YSE can

also perform RTL-level simulation through the use of virtual logic. In this mode. Boolean

expressions are compiled from an RTL level simulation language into a network of four
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input functions unlimited fanout functions. In experiments at IBM. the use of virtual

logic resulted in an average 4-to-l reduction in gate count and simulation time [27] com

pared to the standard logic-level simulation. Aswitch-level [5] MOS simulator has been

also implemented on the YSE. However, the lack of conditional execution of YSE instruc

tion has limited the efficiency of this level of simulation. A sequential fault simulator has

been implemented on the YSE as well.

2.4.2. The Zycad Logic Evaluator

The Zycad LogicEvaluator7^ or ZLE. shown in Figure 2.5. is an event-driven logic

simulation machine manufactured by Zycad Corporation. To simulate a logic network on

the ZLE the network must be described as a collections of two types of elements: memory

CONTROL
PROCESSOR

LOGIC
PROCESSOR

LOGIC
PROCESSOR

LOGIC
PROCESSOR

LOGIC _
PROCESSOR

logic; „
PROCESSOR

PROCESSOR

Figure 2.5 - The Zycad Logic Evaluator
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elements such as ROM. RAM and PLA's. and logic elements: three input arbitrary function

gates. The simulation is a based on a three strength, three level model so that MOS can be

simulated more accurately than on a machine such as the YSE which was designed to

simulate bipolar logic, where problems such as charge sharing do not occur. ZLE's consist

of a central control processor and from one to sixteen evaluation processors. The central

processor is responsible for maintaining the central simulation clock, simulating memories

and PLA's. and providing I/O. The evaluation processors are responsible for evaluating the

three input logic gates. The central controller and all logic processors communicate over a

central 31.25 MByte/second simulation bus. Each simulation processor can hold a max

imum of 100.000 logic elements, for a total of 1.6M elements in the 16 processor system.

The ZLE is rated at a maximum of 11.4M gates/processor/second. However, published

results show a speed of 1.2M gates/second for a 5000 gate circuit. Although the ZLE can

deal more accurately with charge-sharing than the YSE. the simplifying assumptions in

logic or switch level simulators prevent them from accurately simulating dynamic circuits

and dealing accurately with charge-redistribution and noise margins. As dynamic CMOS

design styles become more prevalent, this problem may become more important [28].

2.4.3. The Daisy Megalogician

The Daisy Megalogican™ [29] is an engineering workstation consisting of a Intel

286/287 based microcomputer and a hardware accelerator for event-driven logic accelera

tion. Ablock diagram of the DML is shown in Figure 2.6 [30].

In the DML the simulation problem is partitioned into three separate tasks: queue-

management, state-processing, and evaluation. Each task executes on a separate AM2901

bit-slice machine, and the three processors are connected in a data-flow pipeline ring: The

processing cycle is as follows: The queue-manager processor dequeues the fanout-list of a

node from the time queue and issues a gate-evaluation request to the state processor for

every gate the node fans into. The state processor collects the values of the nets which
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fanin to the gate and passes the gate type, the value's of the gate's inputs, and the fanout

list of the gate to the evaluation processor. The evaluation processor evaluates the gate

and passes the result and fanout list to the queue manager, where the process begins all

over again. User access to the Megalogician is through the Daisy simulation language

(DSL), which provides three strength, four value simulation and logic elements which

range from simple gates to fairly complex functions described by Boolean equations. The

DML has a capacity of 64K gates, and is rated at 100.000 gates evaluations/second by

Daisy (100X faster than their software running on the 286). but there are no published

benchmark results to date. From the above description, it is clear that the architecture of

the DML is distributed by function. While this approach leads to a clean partitioning of

the problem, it has the disadvantage that its performance is limited by the slowest portion

of the pipeline. One proposed way to increase the system performance of a ring architec

ture such as DML is to make several copies of the entire ring structure and connect the
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rings by gateways which distribute the operations between the rings as described in [31].

2.4.4. The Valid RealFast

The Valid Logic Systems RealFast™. shown in Figure 2.7 [30]. is similar to the

DML. The major differences are that it uses two processors, one for event scheduling and

one for evaluation, rather than the three in the DML. The RealFast uses 32 bit data-paths

rather than the 16 bit paths in the DML. and has a 250NS cycle time, as opposed to the

DML's 500NS cycle. In addition. RealFast is packaged as a network server rather than a
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Figure 2.7 - The Valid RealFast
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workstation. Maximum capacity of the RealFast is given as 1M elements, which translates

into approximately 2.5M gates. The result of wider data paths and higher clock speed lead

Valid to rate it at a maximum speed of 500.000 events/second as opposed to the DML's

100.000. However, there are no independent published benchmarks at this time.

2.5. Tradeoffs between general and special hardware

Although the YSE and ZLE can perform logic simulation at high speed, they are very

inflexible. The YSE. for example, can only be programmed by creating a network of logic

gates which when evaluated will give the desired results. While this method bears some

resemblance to the data-flow model of computation [17]. it represents a very restricted

subset of the model, which does not even provide conditionals! The DML. and RealFast

may be more flexible, since they are based on bit-slice technology, but this flexibility is not

currently available at the user level.

2.6. Circuit Simulation

The YSE. ZLE. Megalogican. and RealFast can improve greatly the speed of logic

simulation. However, for high performance design, logic simulation is not accurate

enough, and true circuit simulation, which these machines cannot provide, must be used.

Only circuit simulation can provide guarantee accuracy for arbitrary circuit designs.

Standard circuit simulation programs programs such as SPICE2 [32], ASTAP [33], or

ASPEC [34] solve the first-order non-linear ordinary differential equations which describe

the behavior of circuits using stiffly-stable integration methods, damped Newton-Raphson

iteration, and LU factorization. These techniques are only limited in their accuracy by the

accuracy of the device models, the detail with which the parasitics of the interconnect are

extracted [35] and the precision of the floating-point arithmetic of the computer used to

perform the simulation. Aflow diagram for a "second generation" circuit simulation pro

gram such as SPICE2 is given in Figure 2.8.
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At each time-point, energy storage devices such as capacitors and inductors are

integrated using implicit stiffly-stable integration formulae such as the trapezoidal or

variable-order gear methods, the resultant non-linear algebraic equations are linearized

using damped Newton-Raphson iteration, and the resultant linear system of equations is

solved by using Gaussian Elimination or LU factorization. Although this technique is reli

able and accurate, it requires very large amounts of floating point calculation. The need

for greater circuit simulation performance has led researchers to explore the use of vector-

oriented supercomputers such as the CRAY-1 [ll] and Cyber 205 [36] and attached array

processors such as the FPS-164 [12] which have been successful in other floating-point

intensive areas. These machines achieve their performance through a combination of

high-performance circuit technology and highly pipelined architecture. Although these

machines achieve sizable performance increases over superminicomputers when executing

standard circuit simulation programs [13] it is necessary to tailor the algorithms in these

programs to the structure of these machines to access more than a small portion of their

potential performance. To achieve high performance, these machines require that the data

is broken into pairs of vectors - streams of data-elements - and that these vectors have a

minimum of data dependencies between them. Table 2.1 shows the amount of time spent

in the various functions of the SPICE2 program when simulating a a small circuit [6].

Clearly, at that level, the majority of the time isspent in device model evaluation and cal

culation of local-truncation error. The growth of these two components of the simulation

execution time as a function of circuit size is shown in Figure 2.9. As the size (number of

devices) in the circuit grows, the model evaluation time grows linearly with the number of

devices, that is it grows as N. However, the linear-equation time grows as N12 to N15.

Thus, on very large circuits it is expected that the time spent in equation solution would

outweigh that spent in model-evaluation. However, the time spent in equation solution

can be reduced by the use of machine-code generation (CODEGEN). Cohen [8] and Vladi-

meriscu [37] have shown that through the use of CODEGEN. the linear equation time can



Function

Model evaluation
Truncation-error Estimation

Integration of Capacitor Currents
Linear Equation Solution
I/O & other

Table 2.1 - SPICE2 Profile
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be kept down to a small portion of the total simulation time for circuits up to 1000 nodes.

In logic simulation. I/O can take up a considerable amount of the simulation time. How

ever, in circuit simulation. I/O time tends to be negligible compared to simulation time

because to the greater complexity of circuit node processing.
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2.6.1. Model Evaluation

For moderate sized circuits, or when machine-code solution of the linear systems is

used, model evaluation can consume a considerable part of the total simulator execution

time. In a program like SPICE2. there are three phases to the model evaluation process.

First, the model parameters and terminal voltages must be gathered from the parameter-

block and matrix. Second the model must be evaluated under the given parameters and

terminal voltages. Finally, the currents and conductances must be scattered out into the

circuit matrix. To execute model-evaluation on a vector machine efficiently, the model-

evaluation problem must be re-cast into a vector form. For example, in the CLASSIE pro

gram [37], as each class of sub-circuit is solved, all corresponding transistors in the sub-

circuit instances are evaluated by using vectorized gather and scatter operations. However,

because there are multiple paths through the model-evaluation function, and it may not be

possible to evaluate the region of operation of the model until the model has been at least

partially evaluated, models are evaluated for all operating conditions and the value from

the correct region of operation for each model is chosen after all models have been

evaluated. The result is that the time gained by vectorizing the core of model evaluation is

mostly lost due to the extra work involved in evaluating the device for all regions of

operation. Using these techniques it has been possible to improve the performance of vec

tor machines for the circuit simulation problem, but the maximum speedup achieved has

been less than an order of magnitude (usually a factor of 3 or 4) for practical circuits.

2.7. Linear Equation Solution

Conventional circuit simulation programs such as SPICE2 must solve a sparse set of

linear equations at each instant of simulated time during non-linear time-domain transient

analysis. Many other engineering problems, such as finite-element analysis and semicon

ductor device simulation, also require the solution of sparse linear systems.
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Although vector machines can be perform operations on dense matrices with great

efficiency, the time necessary to gather sparse-matrix elements into a vector and then

scatter the result of a computation back into the matrix limit can quickly dominate the

timespent in the pipe. As mentioned above, to achieve the greatest performance on a vec

tor machine, it is necessary to provide the pipelines with long streams of data on which

identical operations can be performed. While the operations for performing Gaussian elim

ination or LU factorization [38] on dense or banded [39] matrices can be written this way.

It is much more difficult to efficiently utilize vector hardware when solving the sparse

linear systems [13] which occur in circuit simulation. One way to achieve performance

gains from vectorization of equation solution is by re-ordering the equations into bordered

block diagonal (BBD) or bordered block lower triangle (BBLT) form [10. 37. 40] shown in

Figure 2.10 and Figure 2.11 respectively. In a BBDF-based program, each of the cells in

the circuit is described by its own matrix, and the connections between the subcircuits is

given by entries in the bottom row and rightmost column. While this approach can be

useful for circuits made up of repeated cells, the regularity of the blocks along the diago

nal and the size of the borders can strongly affect the degree of speedup possible using this

technique. It is also not effective for small circuits where there is little repeated structure.

2.7.1. Special-Purpose Microcode

In some cases, cost/performance is as important as absolute performance. For this

reason. Cohen [8] has explored the use of special microcode and single-precision arithmetic

in the circuit simulation program SPUDS (Simulation Program on a pi-programmable data

system). The SPUDS program accelerates the processes of LU factorization, forward elimi

nation and back substitution through the use of special purpose microcode. By adding

only four special operations to the instruction set of a general purpose minicomputer, pro

gram SPUDS speeds up the sparse matrix operations by a factor of 20. Because of the

expense of extended precision arithmetic, program SPUDS uses an error matrix and per-
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Figure 2.11 - Bordered Block Lower Triangular Matrix

formsdelta iterations to allow high accuracy when using 32 bit arithmetic. However, even

though the sparse-matrix operations are accelerated by a large factor, the total perfor

mance of program SPUDS on the HP-1000F computer is slightly less than that of SPICE2

onaVAX-11/780.

2.7.2. Blossom

In the Blossom project [41], the gather-scatter problem is reduced by using a parti

tioning algorithm to re-order the sparse matrix into a form where the non-zero elements

are grouped in blocks. This form is called a block sparse matrix. Blossim then performs

block LU factorization on the matrix using an array of submatrix processors. Blossim con

trols the error in the solution process by using neighbor pivoting within each submatrix

combined with partial pivoting of the entire matrix with submatrices as the pivot
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elements. Although it is possible that such an array could be coupled with model evalua

tion units and used for circuit simulation, it is currently oriented towards the solution of

general large sparse linear systems.

2.8. Kieckhafer Sparse Matrix Array Processor

Another approach to the sparse matrix problem has been reported in [42]. Here, the

gather-scatter problem is reduced by using a an associative memory to match all of the

elements with the same column number together. Linearization of the device models in

this system is achieved by the use of a arrayof processors with local interconnect.

2.9. Advanced Circuit Simulation Algorithms

All of the efforts mentioned above have focused on speeding up the direct methods

used in classic circuit simulation programs. However, while such techniques can achieve

higher performance than the same algorithms on conventional machines, algorithmic

improvements can yield far greater speedup. For example, only a few of the elements in a

large digital circuit switch at any given time. Both accurate circuit and approximate circuit

simulators called timing simulators have been developed which exploit this fact to achieve

performance enhancement. The MOTIS1 program [43] developed at Bell Labs, was a tim

ing simulator which used table-lookup MOS models and approximated the solution of the

linear equations with asingle Gauss-Jacobi iteration. Programs RELAX1[44] and RELAX2

[45] use waveform relaxation [l] techniques to decompose a circuit into subcircuits. and

allow each subcircuit to choose its own time-steps. Programs SPLICE1 [14] and SPLICE2

[15] use iterated timing analysis (ITA) [14] to accurately solve the circuit equations.

The starting point for a description of ITA is the electrical circuit equation formula

tion. Under the assumptions [l] given below:

1. All resistive elements, including active devices such as
MOSFETS. are characterized by constitutive equations where
voltages are the controlling variables and currents are the
controlled variables.



2. All energystorageelements are two-terminal,
possibly nonlinear, voltage-controlled capacitors.

3. All independent voltage sources have one terminal connected
to ground or can be transformed into independent current
sources with the use of the Norton transformation.
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the nodal network equations, where there are N equations in N unknown node voltages.

N+l nodes in the circuit, and node N +1 is the reference node, or ground, can be written:

C(v.u h> - -f(v.u ) (2.1)

W0J = V.

where v (t ) is the vector of node voltages at time t. v (t J is the vector of time derivatives

of v {t ).u(t ) is the input vector at time t. C(• ) represents the nodal capacitance matrix.

/ . and:

f(v(t ),u(t ))-[f i(v(t ),u(t )), ••• ,fN(v(t ),u(t ))]r

where fi(v(t ),u(t )) is the sum of the currents charging the capacitors connected to

node i. The differential equations are converted to a set of nonlinear, algebraic difference

equations using a stiffly-stable integration formula to give:

«(*) - 0 (2-2>
where xN is the vector of node voltages at time r„ . lt and an iterative relaxation method

(Gauss-Jacobi or Gauss-Seidel) is then used to solve them. However, unlike classical tim

ing analysis [43] where a single relaxation iteration is used per time-point, in the ITA

approach the relaxation process is continued to convergence at a time-point and the exact

solution of the system is obtained.

Only one Newton-Raphson iteration is used to approximate the solution of each nodal

equation per relaxation iteration and the evaluation of the equations is event-driven to

exploit latency. This technique, known as selective trace, traces the path of the signals

through theactive portions of the circuit, eliminating the need to process inactive elements.
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The following algorithm, written in "Pidgin C [46] illustrates the principle steps

involved in ITA analysis, using a Gauss-Seidel iteration, for use on a conventional com

puter. At each time at which one or more nodes are scheduled to be processed, two event

lists. Ek(tn ) and Ek+1(tn ) are used to separate the nodes to be processed in successive

iterations, k and k + 1. of the Gauss-Seidel-Newton process.

Gauss-Seidel-Newton Iteration:

put all nodes that are connected to independent sources
in event list Ek (0 ):

while (tn< TSTOP ) {

k -0;
while ( event list Ek (tn )\s not empty ) {

foreach (i inEk (t„ )) {

k - 1 * 8« •
gi(vk )

Wherev^-M*1. ••• . v,* -1. vf+1, • ••v,vF

if ( Iv* *l - v* I ^€: i.e. convergence is achieved ) {

use LTE to determine the next time. ts.
for processing node i'.

add node i to event list Ek (ts ):

}
else {

add node t to event list Ek+i(tn ):

add the fanout nodes of node i to event list Ek (t„ )
if they are not already on Ek (tn h

}
}

Ekitn )<*Ek+i(tn ):Ek+i(tn j» empty:
k =* +1:

}

}

where tn is the present time for processing and t„ , i is the next time in the time queue at
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which an event was scheduled. In this way. the "time-step" is handled independently for

each node. The foreach construct requires that the block be executed for each member of

the set in a specified order.

This simplified algorithm does not illustrate how such issues as time-step reduction

and local truncation-error estimation are handled. These and other important details of

the algorithm are described elsewhere [15]. While a nodal formulation was used to

describe the approach, a modified nodal formulation [38] can also be derived.

The use of independent time-steps for different subcircuits and the ability to exploit

temporal sparsity are the major factors responsible for the speedups which can be achieved

using these techniques on a uniprocessor. However, while the speedups provided relaxa

tion techniques can be large for loosely-coupled circuits [l], for tightly coupled circuits or

circuits with many parasitic elements present the slower convergence rate of relaxation

methods as compared to direct methods may result in longer execution times than conven

tional circuit simulators [47]. In these cases, it can be advantageous to solve tightly cou

pled blocks by direct methods and apply relaxation between the tightly coupled blocks.

The decoupled nature of relaxation methods results in less of a need for communication

and synchronization than is required for parallel implementation of direct methods [48].

This makes them more suitable for multiprocessor implementation, as described in later

chapters of this dissertation.



CHAPTER 3

MULTIPROCESSOR ARCHITECTURE

3.1. Introduction

Multiprocessors are denned in [49] as computer systems with more than one control unit

and more than one execution unit. For the purpose of this dissertation, a more narrow

definition will be used. A multiprocessor will be defined as a system consisting of

processor-memory elements, connected by an interconnection network. The purpose of

this chapter is to review previous work in computer architecture with emphasis on its

application to circuit simulation.

3.2. Array and Vector Processors

The most common examples of multiple execution unit machines are array and vector

processors. These machines have asingle central control unit and multiple execution units.

and are also known as single instruction/multiple data (SIMD) parallel processors.

3.2.1. The ILLIAC IV

The ILLIAC-IV [50] was the first array processor. It was designed to have four qua

drants each quadrant consisting of an 8 x 8 array of processing elements, sharing a single

control unit and connected by a network consisting of connections from each execution

unit to both its nearest neighbors and its neighbors y/W away. Only a single quadrant of

the ILLIAC was built. The ILLIAC-IV. although an interesting machine, suffered from

both architectural limitations and severe reliability problems. The interconnection net

work required many cycles to be spent permuting the data for each cycle spent in program

execution. Thus, only a small fraction of the machine's possible performance was

31
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available for all but the most fortuitous structured problems. The reliability problems in

ILLIAC IV were partially due to the use of new and untested technology. In addition, the

machine was not designed with ease of repair asa design goal. The result was a mean time

between failures (MTBF) of 10 minutes and a mean time to repair (MTTR) of 6 hours

[51]!

3.2.2. ThelCL-DAP

The DAP [52] is a modern SIMD machine which consists of a 64x64 array of single

bit processing elements (PE's) connected by a nearest-neighbor network. In addition, each

PE is connected to a bus for its row and its column, under the direction of a central con

troller. The DAP is mapped into the CPU's address space and viewed by the CPU as smart

memory rather than being connected by a channel or a co-processor interface, thus opera

tions can be performed with very low latency. Each processing element contains an ALU.

three registers. Register A is called the activity register, and is used for data-dependent

operations, register Q is a one-bit accumulator, and register C is a carry register used for

multiple-bit arithmetic. The ALU can perform any arithmetic or logical operation between

two bits, one coming from an internal register or one of the four neighbors or the row bus.

and the other coming from an internal register. The result of an operation can be stored

into a local 4K by 1 memory, or fed back into the ALU.

3.2.3. The Goodyear MPP

The MPP [53] is a large-scale SIMD machine designed mainly for image processing

applications. The architecture of the MPP is designed to allow machines to be constructed

with up to 213 single-bit processing elements, connected by a nearest-neighbor network.

The processing elements are packaged eight to a chip. Early experience of the MPP on

image processing applications has been promising. On problems such as fast Fourier

transforms of large binary images the MPP can achieve very high efficiencies. Single bit
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machines offer great promise for image processing applications and problems such as Lee-

Moore routing [54] and bit-map based design rule checking [55], but because their architec

ture is not well suited to floating-point computations they do not at this time appear suit

able for applications such as circuit simulation.

33. Vector processors

Most digital systems can be viewed as finite state machines. In such systems, the

minimum clock cycle is determined by the longest path from a primary input or the out

put of a register through a path of combinational logic plus the set-up time of the register

it feeds into, viz: C » SRC* +LOGICrnfl +OREGT. In pipelining, long paths of combi-
pa p« wup

national logic are broken up into shorter sections connected by registers. After this is

done, the clock cycle need only be long enough for the longest remaining path:

Csmauer = SRCr +PLOGICT?d +OREGTsaup. However, the cost of this approach is an

increase in the time necessary to generate the first result. Almost all modern computers

use pipelining to speedup the processing of instructions. For example, it is common to

pipeline the fetch-decode-execute cycle. Vector processors are computers which use pipe

lined ALUs, adders, multipliers, or other functional units to decrease the length of the

critical paths in these modules. They then make it possible for users to take advantage of

the pipelined structure of the functional units by providing operations on vectors of data.

The Cray-1 [ll] is perhaps the most well known of such machines, but the first commer

cial machine available with this feature was the CDC STAR-100 [56] and there are now

many machines which provide this facility.

33.1. The Cray-1

In the Cray-1. it is possible for the compiler or assembly-language programmer to

request operations between vectors of data-items. In this way. the pipelining is made

explicit, and accessible at the user level. The Cray-1 is also one of the world's fastest

scalar processors, with a basic clock cycle of 9.5ns for the current model. The original
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Cray-IM. introduced in 1975. had a clock cycleof 12.5ns. An architectural diagramof the

Cray-1 is given in Figure 3.1 [ll]. The Cray-1 CPU consists of 13 functional units and

five sets of registers. The functional units are partitioned into three categories.

33.1.1. Address Functional Units The address functional units operate on 24 bit

integers, which can be either data-items or main memory addresses. Both a address add

unit, with an execution time of 2 clock cycles, and a address multiply unit, with an execu

tion time of 6 clock cycles, are provided. The address functional units can operate on

either the 8 primary-address (A) registers or the 64 address-save (B) registers.

VCCTQI tfCISTMS

rUNCTIOMU. UNITS

tasnucTtoa wm«$

Figure 3.1 - The Cray-1
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33.1.2. Scalar Functional Units The Cray-1 has 4 scalar functional units. The scalar

add unit requires 3 clock cycles to produce a result. The scalar shift unit requires 2 for a

single word shift and 3 for a double word shift. The scalar logical unit requires 1 clock

cycle. And the population-count / leading zero count unit requires 3 cycles. All scalar

functional units operate off of the 8 64 bit scalar (S) registers, and the 64 64 bit scalar-

save (T) registers.

33.13. Vector Functional Units The Cray-1 has 3 vector functional units The vector

add unit requires 3 cycles for its first result. The vector shift unit requires 4 units for its

first result. And the vector logical unit requires 2 cycles for its first result. The vector

functional units all work off of the 8 64 Word vector (V) registers. The vector multiply

and reciprocal units share circuitry with their scalar equivalents.

33.1.4. Floating-Point Functional Units The Cray-1 has 3 floating-point functional

units. The floating-point add unit requires 6 cycles to produce its first result. The

floating-point multiply unit requires 7 cycles to produce its first result. The floating-point

reciprocal unit requires 14 cycles to produce its first result. The floating-point functional

units work off both the S and V registers. Chaining is also provided between the func

tional units.

33.1.5. Cray-1 Performance If the floating-point add. multiply, and reciprocal-

approximation The original (12.5ns) Cray-1 was rated at a maximum performance of 240

MFLOPS. In actual practice the performance seen is much lower, and averages around

20-30 MFLOPS.

33.2. TheCyber-205

The Cyber-205 [36] is also vector processor. However, the tradeoffs made in its

design were very different than those in the Cray-1 The Cyber-205 has a memory to

memory vector architecture, as opposed to the register to register architecture of the
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Cray-1. The advantage of the approach used in the Cyber-205 is that vectors of any

length may be operated on without regard to register size. However, there are many pipe

line delays involved in accessing the global memory. For this reason, the crossover point

between scalar and vector mode in the 205 is much higher than that in the Cray-1. Thus,

the Cray-1 tends to perform better on programs with shorter vectors and the Cyber on

machines with longer ones. The Cyber is also a more complicated machine. It used micro-

coded as opposed to hard-logic control, and supports both 32 and 64 bit arithmetic. The

205 has a more complicated architecture than the Cray-1 and the more dense logic is used

to implement it. It has a slower clock cycle than the Cray. 20ns vs. 12.5ns in the Cray-1

and 9.5ns in the Cray-lS.

333. TheFPS-164

The FPS-164 [12] is an attached processor which connects to a host by way of a

high-speed channel. The FPS-164 is designed to offload computationally intensive tasks

from the host and execute the at high speeds, without having to support a complicated

operating system and a large number of programming languages. The FPS-164 has a single

adder and a single multiplier, each of which is pipelined and able of accepting a new set of

operands every 167ns with a 2 stage adder and a three stage multiplier three. The prob

lems with this architecture are that it can only achieve its maximum 6 MFLOPS add and 6

MFLOPS multiply rate on long vectors. Because it requires long vectors for maximum

efficiency and has no hardware to aid in solving the gather-scatter problem, the perfor

mance of the FPS-164 on circuit simulation [57] is limited to approximately 5 times the

performance of a VAX-11/780

3.4. Data-FIow and Reduction Models

Data-Flow [17] is a model of computation characterized by two basic ideas. First,

that the execution of an instruction should be determined by when the operands of the
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instruction are available, rather than by a separate program counter. Second, that there

should be no logical central memory but that data should flow over specific paths from

where it is produced to where it is used. Since many instructions may have their operands

available at any point in time, data-flow is a naturally concurrent model of computation.

Data-flow computation are described by a directed graph where the vertices represent

functions and the edges represent data-paths. These schemas are similar in function to

petri-nets [5&] used to model computer systems. The computation is performed by the

flow of tokens which represent data-values through the graph. The actions of each vertex

are specified through a set of firing rules which specify what action should be taken when

tokens appear on the input edge(s) of a vertex. Data-flow principles may be applied in a

wide range of areas. For example, almost all modern optimizing compilers perform some

degree of data-flow analysis to determine information ranging from when operations can

be performed outside of loops (code hoisting) to which values should be assigned to which

registers (graph coloring) [59]. There are many modifications of the basic data-flow princi

ples which have been developed in an attempt to develop computer architectures based on

data-flow principles as their most basic level of operation.

3.4.1. Safe Data-flow

In safe data-flow [17], the firing rule for all vertices specifies that when all input

edges incident to a vertex have tokens on them, and all output edges are empty, the vertex

fires consuming all its input tokens and producing tokens on its outputs. It is possible to

show that under these firing rules the graphs are deadlock-free [17] under all patterns of

inputs.

3.4.2. The Colored Token Model

Safe data-flow has several limitations. First, it cannot handle recursion without the

ability to generate graphs at execution time. Second, because all inputs must be available
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before any processing begins concurrency can be severely limited. Third, concurrency is

also limited by the need to pre-allocate subgraphs for all computations, even though sharp

dependencies may not be known at compile time [60]. One extension of the data-flow

model, called the colored-token model [61]. removes these limitations by coloring the tokens

with function-id. iteration count, and index numbers. This technique allows sub-graphs

to beexecuted in a reentrant fashion, much in the same way that a stack based calling con

vention allows reentrant execution of subroutines in a uniprocessor. The colored token

model has been implemented on an experimental data-flow machine [31] at the University

of Manchester.

3.43. The Manchester Data-flow Machine

Ablock diagram of the Manchester data-flow machine is showing in Figure 3.2. The

heart of the machine is the matching store. The matching store is responsible for pairing

up tokens with the same color fields. When a token enters the matching store its color

field is examined. If another token with the same color is found the tokens are combined

together into an executable package If there is no other token with the same color in the

store, the token is removed from the ring and made to wait until a matching token is

found. Upon exiting the matching store, executable tokens flow into the execution unit.

The execution unit consists of a number of bit-slice based processing elements Executable

packages are passed to execution units for processing or wait until an execution unit is

available. The result of the execution of a package is one or more output tokens. If the

tokens represent output requests they are removed from the processing ring and sent to

the host. Otherwise, they are sent to the matching store and the process continues. The

only concurrency in a single-ring Manchester machine is provided by the multiple func

tional units. However, it is possible to connect multiple rings together through a switch,

and a perfect shuffle network has been proposed for this purpose.
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Figure 3.2 - The Manchester data-flow machine
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3.5. Data-flow Languages

Although data-flow diagrams can be constructed by hand [62] the process is tedious

and time-consuming. An alternate way of producing these graphs is through the use of a

higher level language and suitable compiler techniques. Full data-flow analysis of arbi

trary programs is an extremely difficult problem. However, if certain language features

such as goto statements and global variables are eliminated, the complexity of the analysis

can be reduced to a manageable level. The data-flow analysis process can be further

reduced in complexity by the use of even more restricted languages. Functional languages
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[63] and Single Assignment languages allow identifiers to name values rather than storage

locations by prohibiting re-assignment to a variable. Thus statements such as "I • 1+ 1:"

are not allowed. This rule allows dau-flow analysis to be performed independently for

each module in a program by a direct symbolic execution. Several single-assignment

languages have been proposed. [64. 65]. Several of these languages support the concept of

streams of data. The stream data-type differs from standard data-flow types in that it is

permissible to begin processing the first element of the stream even if the rest of the

stream is not yet available. The SISAL language (Streams and Iteration in a Single-

Assignment Language) [65]. provides arrays, records, streams and a powerful iteration

construct which reduces the difficult in programming in a data-flow language. One advan

tage of data-flow languages and machines is that the concurrency need not be made explicit

by the programmer. All partitioning of the program is provided automatically by the

compiler and synchronization is performed as necessary by the hardware. However, such

compilers should not be viewed as a panacea: for maximum performance it is still neces

sary for the programmer to choose an algorithm with high inherent concurrency, and to

avoid adding unnecessary data-dependencies through poor implementation techniques.

3.5.1. Programming in Functional Languages

In functional programming languages, every language construct returns a value.

Identifiers in data-flow languages represent names for values, rather than storage locations.

That is. the notation ":-" represents equivalence rather than assignment. The oldest func

tional programming language is pure lisp [63]. Such languages have classically used recur

sion in place of iteration because of the difficulty of performing iteration without special

constructs or the ability to use assignment. To reduce this problem, the SISAL language

sisal provides a construct which may be used to implement many common kinds of itera

tion without having to resort to auxiliary index variables. For example, to form the sum

of the elements of an array A. the SISAL construction in Figure 3.3 could be used.



SumOfA :-
FOR

tINa

RETURNS
VALUE OF SUM t:

END FOR;

Figure 33 - Sum of Elements in Array
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3.6. Implementation of ITA in SISAL

To determine the utility of a data-flow machine for circuit simulation, the ITA algo

rithm has been implemented in the ITA/DF program which is written in SISAL and exe

cutes on the Manchester data-flow machine. At the time that ITA/DF was written. SISAL

had only minimal I/O capability. To eliminate the need to implement an input processor

for ITA/DF. a preliminary version of the MSPLICE program was used to read the circuit

description and generate the SISAL data-structures which represented the circuit models,

devices and connectivity. These data-structures were then concatenated with the rest of

the ITA/DF program and the result was compiled into an executable module. The program

source for ITA/DF is included as Appendix A of this report.

At the time this work was performed, it was not practical to access the Manchester

data-flow machine remotely For this reason, as part of this research a general data-flow

graph interpreter has been developed which simulates the actions of a colored-token data

flow machine. ITA/DF was debugged by using this interpreter and then with the help of

the Computer Architecture Advanced Development Group of Digital Equipment Corpora

tion. ITA/DF was sent to the Manchester data-flow machine at Manchester England and

executed.
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3.7. Implementation Issues

The implementation of ITA/DF exposed several interesting limitations in conven

tional dau-flow or functional languages such as SISAL. The central loop of an ITA pro

gram with selective-trace is:

1. Take the next node off the time-queue;
2. Update the valueof the node by using the companion models

of its fanin elements and a single Newton step:
3. Check for convergence and schedule the node and its fanout nodes

appropriately;

The algorithm given above is serial. However, if step 1 is changed to dequeue all nodes

which have new dau on their fanin nodes, a concurrent algorithm results:

1. Dequeueall nodes which are active at this iteration:
For all active nodes:

2. Update the value of the node by using the companion models
of its fanin elements and a single Newton step;

3. Check for convergence and schedule the node and its fanout nodes
appropriately;

The key problems with implementing this algorithm in data-flow language involve

scheduling of nodes to be evaluated and efficient management of network state. Normally,

scheduling is through a package of procedures which modify a central time-queue data-

structure which is kept as local state inside the package. In data-flow languages, it is not

permissible for a procedure to mainuin state between executions. Thus, any "global"

data-structure must be passed by value from the main program to any routines which use

it. and those routines must return a new copy of the data-structure as part of their result.

While advanced storage management techniques may be used to reduce the amount of

physical copying that actually takes place, the result is that the time-queue must be re

generated by the inner loop of the simulator. This is true for the stream which represents

the voltages on the nodes of the circuit as well.

To reduce this problem, the SISAL language provides a construct called REPLACE

which allows a single element of an array to be replaced with a new value, the REPLACE
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operation ukes three arguments: an array, an index, and a value, and returns an array

which is the same as the original array except that array[ index ] is replaced by value. A

natural extension of this operation might be called MULTIPLE_REPLACE. The

MULTIPLE_REPLACE operation would take an array and several {index, value} pairs as

arguments, and return a new array with those element replaced. However, no such opera

tion is currently implemented in the SISAL language and it would be difficult to add to it.

The reason is that SISAL requires that all compuutions in be deterministic, and it is

would be very difficult to determine at compile-time that a given index would never occur

more than once in the same MULTIPLEJIEPLACE operation. A general solution would be

to allow the programmer to enter into a contract with the compiler that such a conflict

would never occur, or that if it did the non-deterministic results would be accepuble. In

the ITA/DF program, the lack of a MULIPLE-REPLACE facility results in a sequential

network update phase at the end of every Gauss-Jacobi iteration.

3.8. Results

The ITA/DF program was executed on the Manchester dau-flow machine with a sin

gle NMOS inverter as a test circuit. As shown in Table 3.3. the results were extremely

good in terms of both speedup and efficiency. One of the problems encountered in the pro

gram was that the degree of concurrency available when executing the program was so

high, that when larger circuits were simulated, the number of active tokens was larger

than the matching store could hold. Because of implemenution errors in the matching

store design, it was not possible to gracefully recover from matching store overflow and

the program could not be executed on circuits larger than a single inverter.

3.9. Conclusions

The experimental implementation of ITA/DF has demonstrated that a significant

amount of concurrency is available at the fine-grain level of a relaxation-based electrical

circuit simulator. However, along with fine-grain concurrency comes the need for large



Processors Time Speedup Efficiency

1 53.1785 1.00 100.00%

2 26.5768 2.00 100.00%

3 17.7563 2.99 99.83%

4 13.3590 3.98 99.52%

5 10.7361 4.95 99.06%

6 9.0003 5.91 98.48%

7 7.7703 6.84 97.77%

8 6.8602 7.75 96.90%

9 6.1702 8.62 95.76%

10 5.6354 9.44 94.36%

11 5.2123 10.20 92.75%

12 4.8689 10.92 91.02%

13 4.5844 11.60 89.23%

Table 3.1 - ITA/DF Performance
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amounts of communication and frequent synchronization. Because of the amount of com

munication and synchronization required, at this time, it is not clear that very large mul

tiprocessors can be built based on fine-grain data-flow principles. Because of this, a new

distributed circuit simulation algorithm Distributed Iterated Timing Analysis (DITA) has

been developed. The DITA algorithm uses dau-flow principles at the equation level,

requires much less communication than ITA/DF. and is more suiuble for use with loosely

coupled multiprocessors.



CHAPTER 4

INTERCONNECTION NETWORKS

4.1. Introduction

In a multiprocessor system such as the ones described above, each processor in the system

can reference its own local memory, buffer, or cache in the same way as a uniprocessor.

However, to reference memory on other processors, or send messages to other processors, it

must use the interconnection network. The network is a shared resource and unless the

proper design decisions are made it can limit the performance of the system.. An intercon

nection network is a structure which can implement one or more connections at any point

in time. A connection is defined as a mapping one or members of a set of inputs and one or

more members of a set of outputs. In general, a connection of more than one member of

the input set onto a single member of the output set is considered illegal. Aconnection of

a single member of the input set to more than one member of the output set is named a

broadcast. If the inputs and output sets are identical, and each member of the input set is

mapped onto one and only one of the output set. then the connection set represents a per

mutation. A network capable of performing all permuutions and broadcasts is called a

general connection network [66] or GCN.

4.2. Evaluation criteria and performance metrics

The major logical characteristics of an interconnection network are its control

category, blocking, bandwidth, latency, set-up time, switch-count, and switch complexity.

45
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43. Network control categories

Methods for network control may be broken down into three categories [49] Synchro

nous (Centralized), re-arrangeable. and Asynchronous (or distributed). A synchronous

network is one where there is a central network controller which sets the switches in the

network. A re-arrangeable network [67] Is one where a new connection may be added to

the network by rearranging the settings of some of the switches in the network, leaving

existing connection unchanged. Synchronous networks are used in SIMD machines, where

single or multi-dimensional arrays of dau are used in a lock-step fashion. Re-arrangeable

networks are normally used as circuit switches where the connections are changed infre

quently compared to the basic cycle time of the network. These networks are popular in

telephony, where a connection may be mainuined for many millions of bit-times.

4.4. Blocking

Networks which can perform any connection in a set of connections are called non-

blocking under that set of connections. The only single-suge network which is non-

blocking under the general connection is the fully-connected graph or crossbar [49] The

Clos and Benes networks [67] are multi-suge networks which are re-arrangeable and

non-blocking under the general connection. Although the ability to be able to perform

general connections is useful for some algorithms such as matrix multiply on a SIMD

machine [50] these networks require large numbers of switches and links. Networks

which cannot perform a given connection are said to be blocking under that permutation.

Because some permuutions are more important than others in SIMD machines, there has

been a large amount of research into networks which provide small sets of very useful

permutations and into parallel algorithms which can take advantage of such networks [68]

and their properties.
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4.5. Latency

The minimum latency of a network may be defined as the time needed for a

minimum length message entered into one port of a network to exit the network at its des

tination port. In the case of a synchronous network, the latency is normally calculated as

the clock period tc times the number of stages ns. However, a more accurate approxima

tion would be to include time necessary to calculate the setting of the switches in the the

network, which for some networks may be very long [69]. In an asynchronous packet-

switched network, the average latency of the network isa function of load of the network,

which may be defined as either the percentage of non-empty packets in the network, or the

percentage of input ports which have requests in the network, and of the destination pat

terns of the requests. Under a given statistical pattern of destination addresses (usually a

uniform distribution model) as in [6S] and a given load, the latency of an asynchronous

network is defined as the average time necessary for a message to travel from input to out

put. Although asynchronous network delay may be calculated by such techniques as Mar

kov analysis [60] accurate closed form analysis is difficult and behavioral simulation tech

niques [21] are more commonly used.

4.6. Bandwidth

The bandwidth of an interconnection network is usually defined as the rate at which

information can enter one port of the network and leave through another port. The max

imum bandwidth of a synchronous network is given by -—Xn, which is the bandwidth of

the network when sending messages of length nm » ns. There maximum bandwidth of

an asynchronous network is a function of the load on the network and the particular pat

tern of requests, and is usually determined by simulation.
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4.7. Connection Topology

There are many different interconnection networks. A result of this research is the

realization that the "best" network is highly application dependent. However, it is

interesting to examine the major choices to determine where they sit in the design space.

4.7.1. Busses

The bus interconnection is show in Figure 4.1. For a synchronous bus with AT

processor-memory elements. A address bits. D data bits and a clock rate of C total

bandwidth is DxC bits/second, the minimum latency is -^ the maximum latency is NxC

and average maximum latency is —=— if round-robin prioritycollision resolution is used.

TOOESSOR PROCESSOR PROCESSOR

MEMORY MEMORY MEMORY

Figure 4.1 - The Bus Network
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4.7.1.1. Cached Busses One way to reduce the load on the network in a shared-bus sys

tem is to use Dual Associator or snooping caches on the processors [70]. Figure 4.2 shows

the architecture of such a system. Each PME or other device interfaced to the bus has a

cache with two identical look-up ubles. In the Goodman Write-Once scheme. [70] each

cache has an associator for references made by the processor and a second one for refer

ences which occur on the bus. All data starts in main memory and all cache Ugs are ini

tially invalid, when a read reference is first made to physical location L by a processor X.

the location is read and the contents are entered into the cache of processor X. From that

point on. any reads directed by processor X to location L will cause its value to be

returned from cache and no traffic will be generated on the bus. If at any point, any other

processor Y attempts to read physical location L then the value of the location, which is

unchanged from its initial value, is entered into that processors cache as well and that pro

cessor has read access as well. If processor X writes into physical location L which is in

PROC. PROC. PROC. PROC.

CRCHE CRCHE CRCHE CACHE

MEMORY MEMORY MEMORY MEMORY

Figure 4.2 A Cached Bus Multiprocessor System
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its cache, the value is written into the cache and also into main memory. If any other pro

cessors have location L in their cache, their cache entry for L is marked invalid At this

point, if any other processor Z references physical location L for read, the current value

of location L is written out onto the bus by processor X 's cache and a line is raised on the

bus saying that processor Z may not cache location L. This is a steady-state condition.

However, if at any point processor X's chooses to flush location L. it writes the current

value its entry for physical location L into main memory physical location L. From this

point on. if any processor references physical location L for read, the memory will

respond with the current value of physical memory location L. The decrease in bus traffic

that results from the use of caches is a function of the address reference patterns of the

elements connected to the bus and a strong function of references to shared writable

memory.

Electrical effects must also be considered. For any kind of interconnection structure,

the maximum signal rate for a single link an inverse function of the length of the link.

This limits the physical size of any network, but effects busses most strongly. In addition,

every element which is connected to the bus increases the busses capacitance and in the

case of bipolar logic, decreases the resisUnce to ground as well. In most current systems,

loading effects are the dominant factor limiting bus performance.

4.7.2. Ring networks

A ring connection is shown in Figure 4.3 [67]. Here, there is an active element called

a repeater at each sution. Signals are passed from repeater to repeater, and rather than

having to drive the whole length of the interconnection network as in the case of the bus.

the repeater element need onlydrive thesegment of the communications from itself to the

next repeater. Thus, large rings may be run at greater clock rates than large busses. For

example, the CDC Advanced Flexible Processor (AFP) uses an 800MB ring to connect its

functional units.
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PME

PME

Figure 43 - A Ring Network

The bandwidth of a ring can easily be made very high, however, the latency is in

general longer than that of a bus. The maximum bandwidth of a ring is given by CxD.

The minimum latency occurs in the unusual case of each sution on the ring sending a mes

sage whose destination is the next sution on the ring. In this case, the latency experienced

by any message is -i-. Amore accurate model of the performance of the ring can be given

by simulation.

4.7.3. The Crossbar Connection

The crossbar network, shown in figure 4.4 [67], has the highest maximum perfor

mance of any of the networks described here, but also has the highest cost. Maximum

bandwidth for the crossbar is NxD. Minimum latency is 1. Maximum latency in the

absence of conflict at the memories is also 1 but conflict may occurat the memory modules

as well, reducing the performance advantage of the crossbar over the more economical net-



works.

PME

PME

PME

PME

PME

Figure 4.4 - A Crossbar Network
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4.7.4. Nearest-neighbor networks

The two most popular nearest neighbor networks are the square and hexagonal arrays

[67] shown in Figure 4.5 and Figure 4.6. These networks have very high maximum

bandwidth, but marginal normal performance. The reason for this is the long latency

necessary to reach a remote processor. In a square nearest-neighbor matrix of N proces-

__ V2W*
sors. there are ViV processors on a side. The maximum latency will therefore be —^—.



1 |
PME PME PME

PME PME PME

PME PME PME

Figure 4.5 Square Nearest-Neighbor Network
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Figure 4.6 Hexagonal Network

with the average latency 1/2 that much.

4.7.5. Boolean N Cube

The Boolean-n-cube [71] is a network whose structure is an N dimensional cube. In a

Boolean-n-cube with N = 2" nodes each node has n +1 ports. One port is connected to a

processor, a memory, or a PME. and the n other ports are connected to {

Mi-t • ' **o . hk^i' " *o . •** , M*-i ' " ' *o I Another way of looking at this is to

realize that the mapping from sources to destinations in an interconnection network imple

ments a code. In the Boolean-n-cube. every processor is connected to every processor

which is at a Hamming distance of one away. A Boolean-n-cube of order 3 is shown in

Figure 4.7. The Boolean-n-cube performs better under high load than the shuffle-exchange

network, but has lower performance under low loads. The Boolean-n-cube is a topology

which allows a packet to be moved from source to destination by going through the n-

space which separates them. At each step, the packet can be moved a unit distance in any
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Figure 4.7 The Boolean-N-Cube

of the n directions. However, this requires that each node in the network have n ports.

Therefore a 256 port network, this requires 8 ports/node. However, if the 256 port sys

tem was to be extended to 1000 ports, it would require that the switches have 10

ports/node, and new switches would be needed. In many cases, these characteristics may

be unacceptable. If such a network was to be implemented in VLSI, then the number of

pins/port is an important characteristic.
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4.7.6. The Perfect Shuffle Connection

An Omega network [68] is shown in Figure 4.8. The pattern of connection between

the suges of the network is called the perfect shuffle [60], connection. Perfect shuffle based

networks have many of the advanuges of the Boolean-n-cube, with the added characteris

tic that they only requires a fixed number of ports/node. The perfect shuffle connection on

N nodes is given by the set of perfect shuffle permutations of each node. The perfect

shuffle of a address / is given by the one bit left rotate of that address, i.e.

S(h-ih-2 *' "l*o )~ h-2h-i ' "**o**-i- The shuffle connection is normally used as part of

e o e e

DCBOX

1 1

e 8

EXBOX

1 1i__ J—

cxbox

Figure 4.8 Omega network of order 8
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a shuffle-exchange network. Here, the output of each shuffle suge feeds a set of exchange

boxes (2x2 crosspoints). The exchange function of an address is given by the set {

M*-i **•*o . »* **-i *' ' »"o ) In other words- the exchange box allows the lowest bit of

the address to be passed through either negated or unchanged. The shuffle-exchange com

bination can therefore be thought of as a network which takes a collection of inputs

(points in n-space) and transforms each to a a set of points which is equal to the result of

shifting the address one bit left with the lowest bit becoming a don't care. Thus it can be

seen that while the n-cube is a network which allows a packet go any direction in n-space

at any point in its travels, each suge of shuffle-exchange allows changing one bit of the

packets position in n-space. The perfect shuffle may be viewed as an indirect Boolean-n-

cube. By re-arranging the switches in the interior stages of a multiple-suge shuffle-

exchange network, it is possible to create a network which does not shift the address of

the packet each time, but where each stage is responsible for either "passing" or "comple

menting" one of the bits of the address.

4.7.6.1. The single-stage recirculating shuffle network

The shuffle connection may also be used in a configuration where a single stage is used

several times in order to move a packet from its source to destination address. The

single-suge shuffle is show in Figure 4.9. This network is similar to the n-cube in that the

processor-memory elements are connected directly to a single level of switches. Both the

Boolean-n-cube (BNC) and the single-stage recirculating shuffle (SSRS) can be thought of

as directed graphs where the vertices of the graph represent processors and the edges of the

graph represent communications ports.

4.8. Summary

The interconnection networks described above are only a sampling of the major archi

tectures. For circuit simulation and other related applications where a large number of

processors may be used, the major requirement of the network is that it have an 0 log(N)
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Figure 4.9 Single-Stage Shuffle of order 8
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asymptotic latency with the number of number of ports N. and that it supports multiple

active paths.

In practice the performance of such a network today is a much stronger function of

the node complexity and the engineering of the network (circuit technology, implementa

tion details, and electrical tradeoffs) than its purely architectural aspects. For example,

the BBN butterfly [18] uses a base-4 perfect shuffle interconnection network. Therefore.
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the time to send a message should be log4(W ) where N is the number of ports. The remote

memory reference time for a 16 processor Butterfly is 4ms. Yet because of the width of

the dau-paths and the use of pipelining, the delay for a 128 node network is only 4.25ms.

rather than the 32ms that the asymptotic model would imply.



CHAPTER 5

MULTIPROCESSOR-BASED ITERATED TIMING ANALYSIS

5.1. Introduction

To achieve maximum speedup of an application on a multiprocessor, it is necessary to first

determine where the time is being spent in the program. The algorithms used in the com-

puutionally intensive portions of the program can then be replaced with distributed algo

rithms.

5.2. Profile of an ITA Implementation

A profile of the MSPLICE relaxation-based circuit simulator simulating a 704 transis

tor digital filter circuit [6] while executing on a uniprocessor is shown in Table 5.1.

Note that the top three functions - model evaluation, linear equation solution, and

queue management require 94.1% of the toul time. With larger circuits run for larger

amounts of simulated time, these functions may be expected to account for an even larger

amount of the total time. These three functions form the core of an ITA based simulator.

Function Time

Model evaluation 65.2%

Non-Linear Equation Solution 16.8%

Queue management 12.1%

Timing sources 0.2%

Memory management 0.21%

User interaction 1.03%

System I/O 4.14%

User I/O & other 0.32%

Table 5.1: MSPLICE Uniprocessor Profile
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53. Processor node Architecture

As seen above, in order to achieve high performance it is necessary to provide support

'for queue manipulation, model evaluation, and convergence checking, and local truncation

error (LTE) or iteration-count [32] time-step control. Queue manipulation may be

accelerated through the use of special-purpose hardware such as bit-slice processors.

Evaluation of analytic models requires large amounts of floating-point operations, and can

be accomplished at high speed only if enough functional units and dau-paths are pro

vided. For example, an MOS model which accurately considers short-channel effects, such

a the Level-2 model in the SPICE2 program, can require over 100 floating point operations

to accurately calculate drain current and its derivatives [72] and can Uke 6ms to execute

on a VAX-11/780 class machine. Companion model evaluation time can also be reduced

through the use of uble models [6. 7]. The remaining tasks, evaluation of single linear

equations and checking convergence, can be also performed at high speeds if enough func

tional units and dau-paths are available along with a control unit capable of taking

advanUge of them.

5.4. Model Evaluation

The concurrency available in model evaluation depends on the technique used to

solve the linear equations as well. In the case of Gauss-Jabobi iteration, the voltages at the

terminals of the circuit element are given by the solution to the circuit at the previous

iteration. For Gauss-Seidel. the voltages from the current iteration are used whenever pos

sible. It ispossible to evaluate any model whose inputs are available for the current itera

tion in parallel.

53. Equation solution

The equation solution in MSPLICE is data-driven as well. When all the circuit ele

ments that the equation depends on have been evaluated and their small-signal equivalents
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returned, the equation itself may be solved. The solution to the equations is performed in

a manner similar to data-flow [17] except that the grain of the compuution. the smallest

schedulable amount of work, is larger [73]. In distributed ITA (MSPLICE). the macro-

dataflow elements are implemented as processes.

5.6. The Scheduler

The third most time-consuming element of the ITA process is the scheduling of equa

tions to be solved. The scheduler serves two purposes. The first is to mainuin the correct

partial order of model evaluation and equation solution, the second is to control the pro

gress of the simulation clock which specifies the virtual time in the simulation run. To

bound the speedup possible in a multiprocessor implemenution of MSPLICE. it is useful to

examine the performance of MSPLICE on a set of ideal multiprocessors through simulation.

The results from these ideal models can serve to bound the speedup possible on real

machines.

5.7. The Ideal Gauss-Seidel Machine

Consider an ideal Gauss-Seidel machine. Such a machine consists of an infinitely fast

central controller, which schedules equations optimally inzero time, an infinitely fast ICN

which transmits information between equation processors in zero time, and N equation pro

cessors which can each solve an equation in a single unit of time. Note that only the

machine is optimal. For any given set of equations the order in which the equations are

solved may not be optimal. The results of simulating this machine solving an example cir

cuit are given in Table 5.2. The ideal Gauss-Seidel machine performs optimal global

assignment of nets to processors, in zero time, and has a zero delay, infinite bandwidth

network. Because it performs scheduling in zero time it gives bounds on the performance

that can be expected for simulation of the example circuit.



Processors Speedup Efficiency

1 1.00 1.00

2 1.97 0.98

3 2.92 0.97

4 3.81 0.95

5 4.80 0.96

6 5.65 0.94

7 6.51 0.93

8 7.32 0.92

9 8.08 0.90

10 8.86 0.89

11 9.56 0.87

12 10.26 0.85

13 10.93 0.84

14 11.65 0.83

15 12.28 0.82

16 12.95 0.81

32 20.46 0.64

64 28.47 0.44

128 34.18 0.27
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Table 5.2: Ideal Gauss-Seidel Machine

Note that even an ideal multiprocessor cannot achieve 100% efficiency on this circuit-

algorithm combination. The reason for this is that this circuit is not large enough to keep

all processors busy at all times. As the nodes in the circuit converge, the system goes

through a phase where there are less active nodes than there are processors. This effect is

illustrated in Figure 5.1 which shows the activity of the test circuit for a portion of the

simulation interval. At 64 processors, a maximum 44% efficiency is possible for this exam

ple. However, if the simulation machine is multiprogrammed to simulate several circuits

concurrently the idle time can be subsuntially reduced.

The ideal model presented above is accurate only if the equation solution time is very

long relative to the time necessary to enqueue and dequeue equation events in the central

event queue, and if the network bandwidth is very high and latency is very low as well.

A more accurate performance estimate can be obtained if the network time is still set to

zero, but a finite time is charged for queue manipulation. For example, if the time neces

sary to enqueue and dequeue an equation is as large as the equation solution time itself, a
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maximum speedup of 2.0 is possible, no matter how many equation processors are used.

In Tables 5.3 and 5.4. the performance of machines where the times necessary to enqueue

an equation are 1% and 10% of the time necessary to solve the equation are shown. As can

be seen from the tables, the serial time required by the central queue can limit speedup

greatly. For this reason, functional partitioning, where there is one processor for queue

manipulation, one for model evaluation, one for fanout updating and so on. appears to

provide only limited speedup for relaxation-based circuit simulation.

5.8. Distributed Scheduler Methods

An alternate approach is to use dau-partitioning. where there are several identical

processors which perform the entire simulation process for a subset of the dau. In the

distributed scheduler methods, the tasks of equation solution and queue management are

combined into N simulation processes each one of which is essentially the same as the ITA

Processors Speedup Efficiency

1 1.00 1.00

2 1.95 0.97

3 2.86 0.95

4 3.71 0.93

5 4.63 0.93

6 5.40 0.90

7 6.17 0.88

8 6.89 0.86

9 7.55 0.84

10 8.22 0.82

11 8.81 0.80

12 9.40 0.78

13 9.95 0.77

14 10.54 0.75

15 11.05 0.74

16 11.58 0.72

32 17.16 0.54

64 22.38 0.35

128 25.73 0.20

Table 5.3: Gauss-Seidel Machine With 1% Queue Cost



Processors Speedup Efficiency

1 1.00 1.00

2 1.81 0.90

3 2.48 0.83

4 3.04 0.76

5 3.57 0.71

6 3.97 0.66

7 4.34 0.62

8 4.65 0.58

9 4.92 0.55

10 5.17 0.52

11 5.38 0.49

12 5.57 0.46

13 5.74 0.44

14 5.92 0.42

15 6.06 0.40

16 6.21 0.39

32 7.39 0.23

64 8.14 0.13

128 8.51 0.07

65

Table 5.4: Gauss-Seidel Machine With 10% Serial Time

process described earlier. However, this creates the need to keep all of the schedulers in

loose synchronization. The schedulers must be synchronized because it is necessary to

determine the final value of a node at time Tn before beginning to determine its value for

time rn+1. It is not enough to know that a node has converged; if the inputs to the ele

ments that effect the value of the node change, the node may be re-scheduled and possibly

converge to a different value. It is only safe to go on when all the nodes which can

indirectly effect the value of the node have themselves converged. A conservative

approach to this problem is to require that all the nodes in the circuit have converged at

T„. before going on to process any of them at the next time point. In the single scheduler

method, this is guaranteed by the time ordering of the events in the single time-queue;

events for T„ are always put into the queue before events for Tn+i. In the distributed

schedule method, this is achieved by the use of a convergence-counter which keeps track of

the number of unconverged nodes in the system. Each time a node is scheduled for the

first time at a time-point, the counter is incremented and each time a node converges it is
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decremented. When the counter reaches zero all nodes in the circuit have converged at Tn.

and simulation processes may begin processing nodes active at time Tn +i. The algorithm is

given below [16]:

foreach ( node i in M scheduled at f„ ) {

/*STEF(1):*/

foreach ( fanin element at i )
obuin its fanin node voltages, vf,

) **i, K - k orfc+ 1:

/* STEP (2): */

foreach (fanin element at i )
compute its contributions to nodal equation;

obuin v* *l using a single Newton-Raphson step
as described in Section 2:

if ( convergence is achieved ) {

if ( vf * v/1'l ) {

schedule i at tn . j;

}

decrement ConvergenceCounter:
}
else {

schedule i again at tn ;

forall ( fanout nodes of i ) {

if ( fanout node was not previously scheduled at t„ ) {
increment ConvergenceCounter:

}
send message to their PME to

schedule fanout node at tn ;

}

}

}

Fanin elements of node i are circuit elements (transistors, capacitors, voltage sources, logic

gates, etc.) which are used to determine the new voltage at i. as illustrated in Figure 5.1.

On average, there are ^r^ fanin elements per node. To process each fanin element, it is

necessary to obtain its controlling node, or fanin node, voltages, vf. Assume there are. on
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average. Nfin fanin node voluges that must be obuined per node iteration. Fanout nodes

of i are defined as nodes with at least one fanin element connected to node i. There are an

•average of Nfon fanout nodes per node. Of course, voltage supplies, clocks, and the

ground node are not considered fanout nodes since they do not represent independent node

voltages.

Because of the expense of MOS model evaluation, and the high performance of the

interconnection network, access to the counter is not expected to be a problem even though

it is a shared resource. The counter is a serial resource, and as such its effect on the simu

lation time can be modeled as was the ideal Gauss-Seidel machine. Here, however, the

only serial time is that time necessary to increment or decrement the counter, rather than

the time necessary to update a event queue, and can therefore be expected to be on the

order of 0.1% or less of the time necessary to evaluate an equation and its models. The

effect of this on a circuit of this size is negligible, as shown in Table 5.5.

Processors Speedup Efficiency

1 1.00 1.00

2 1.97 0.98

3 2.91 0.97

4 3.80 0.95

5 4.78 0.96

6 5.62 0.94

7 6.47 0.92

8 7.28 0.91

9 8.03 0.89

10 8.79 0.88

11 9.48 0.86

12 10.16 0.85

13 10.82 0.83

14 11.53 0.82

15 12.15 0.81

16 12.80 0.80

64 27.71 0.43

128 33.08 0.26

Table 53: Gauss-Seidel Machine with 0.1% Serial Time
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For very large circuits, however, any serialization should be avoided. To reduce seri

alization further, it is also possible to distribute counter management as well and create a

system where there is a local counter for each of the N processes. Cm - ijv). which keeps

track of the number of unconverged nodes on that process, and a global counter NI which

gives the number of non-idle processes. The following method may be used; Every time a

process Pschedules a node to be evaluated by a process Q. P sets a lock variable. LQ which

is kept on process Q. Process P then performs an atomic increment on process Q's conver

gence counter. CQ which returns the previous value of CQ. If CQ was previously zero,

process Patomically increments NI. the global number of active processes. Process P then

clears LQ . regardless of the previous value of CQ. Every time a node converges on process

Q. process Q checks to see if LQ is set and waits for it to clear if it is. Process Q then

decrements its local convergence counter, and if the new value of the counter is zero, pro

cess Q atomically decrements NI. the count of active processes. If the count of active

processes reaches zero, the process then sends a message to all other processes, telling them

to begin processing nodes for the next time point.

At the start of a time-point Tn . NI is set equal to the number of processes in the

system, and C, for every process is set equal to the number of nodes which are currently

scheduled to be evaluated by that process. If NI is greater than one. then more than one

process is active and any action taken by a single process cannot change it to zero. If NI is

equal to one then there can be only one process. P. which has one or more unconverged

nodes, and C; for all other processes must be zero. If the convergence counter for P is

greater than one. then it cannot go to zero in a single step. If the convergence counter for P

is equal to one. then it must have one and only one active node. If the single node it is

processing converges, and if its value has changed significantly since the last time it con

verged, the process will first schedule the fanout nodes of that node, which will cause the

local counter of the process that the fanout node(s) belong to to be incremented and will

cause the global counter to become greater than one if any of the fanout nodes belong to
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other processes. The process P will then decrement its local counter, and decrement the

global counter if the local counter has become zero. Thus, the only way the global counter

can become zero is if the last active node in the circuit at time Tn converges to a value

insignificantly different from the last value it converged to: that is. when all nodes in the

circuit have converged at time Tn .

5.9. Remote Memory Reference Models

Three levels of memory reference time modeling have been considered during this

research. The level one model specifies that all accesses to memory require one unit of

time regardless whether the reference is to local or remote memory. The level two model

specifies that references to local memory are requires one unit of time and accesses to

remote memory require Trem units. The level three model considers the effects intercon

nection network delay and memory access conflicts on remote memory access to determine

the exact memory reference time under the reference load provided by the application pro

gram. The level one model, although simple, is not accurate enough to allow any insight

to be gained into the performance of a distributed algorithm. The level-three model,

although very accurate, is very time consuming to simulate and may not provide subsun-

tially more accurate results than the simpler models depending on the characteristics of

the interconnection network being used. The level-two model is a good compromise for a

central interconnection network and memories which are dual ported to appear local to one

processor and remote to all others such as the BBN Butterfly [18] or for machines based on

a shared bus and distributed caches such as the Sequent Balance 8000 [28]. The following

is a simple analytic model of the performance of the MSPLICE algorithm using the level-

two reference model, the values of the controlling node voltages Vf will require a local

memory reference per node if the node resides on the same processor-memory element

(PME) as node i. otherwise it will require remote memory references. In the worst case,

all fanin element nodes will reside on remote PMEs and all memory references will require
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trm units of time. Assuming only one remote memory reference can be active at any time

for a particular PME. the average time uken for Step (1). r i. can be approximated by:

tl-NFIN'rem (5-l}
Step (2) does not require the processor to wait for a remote answer and hence the

time taken in Step (2) depends only on the performance of the PME. not the interconnec

tion network (ICN). The time required to solve a single nodal equation is proportional to

the number of fanin elements, since each one must be processed for the Newton-Raphson

step. In fact, the processing of each transistor. teval. dominates the PME time, with a small

amount of time. tovhd, for checking convergence, updating local memory, etc. The time

required for Step (2) can be written:

12 » hvhd +NFIEttval (5-2)
For MOS or Bipolar circuits, where each transistor has three controlling terminal vol

tages. —IS -2. If supply voltages and ground are considered as special-case nodes and
Nfie

do not require remote reference, analysis of a number of large MOS circuits indicates that

0.5 < ^f7A' <2. Typically —— is less than 1.2 for NMOS circuits and is less than 1.5
NFIE NF1E

Nfjfj
for CMOS circuits. For the example circuit -— is 1.16.

Nfie

5.10. The Unit Delay Model

The performance of the distributed scheduler algorithm can be predicted and

bounded in a similar manner to the central scheduler method. The unit delay model simu

lates processors that have their own schedulers, and are connected by a non-ideal network.

The network has a unit delay, and nodes are statically assigned to processors. Data on the

unit delay model is given in Table 5.5.



Processors Speedup Efficiency

1 1.00 1.00

2 1.94 0.97

3 2.81 0.94

4 3.71 0.93

5 4.53 0.91

6 5.44 0.91

7 6.15 0.88

8 6.78 0.85

9 7.45 0.83

10 8.14 0.81

11 8.82 0.80

12 9.35 0.78

13 9.84 0.76

14 10.36 0.74

15 10.88 0.73

16 11.64 0.73

32 17.70 0.55

64 25.07 0.39

128 32.33 0.25
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Table 53: Distributed Scheduler Model

The performance of the distributed scheduler model is less than that of the ideal

Gauss-Seidel machine, but much better than the central scheduler model. The MSPLICE

algorithm and MSPLICE program implement the distributed scheduler model.

5.11. Assigning Subcircuits To Processors

There are several, possibly conflicting, goals for an algorithm to assign subcircuits to

processors. A good assignment algorithm should

1. Minimize remote references.
2. Result in uniform network loading.
3. Result in uniform processor loading.

An assignment algorithm may be employed statistically, when the circuit is first read in. it

may be applied dynamically every time a subcircuit is scheduled, or it may be applied

semi-statically. i.e. at every n time-steps, where n may range from 1 to the number of

time steps in the simulation. In general, the choice of assignment algorithm is a strong
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function of the properties of the underlying interconnection network and the cost of sub-

circuit evaluation. Forexample, in a multiprocessor with more processors than active sub-

circuits and an interconnection network where the time to make a remote memory refer

ence is a strong function of the network addresses of the processors such as a Boolean-n-

Cube [71]. an algorithm based on a static tracing the flow of signals through the circuit

would likely be appropriate. For a multiprocessor with a fast shared bus and a small

number of processors, simulating small circuits, an algorithm which keeps track of the

load of the processors and dynamically schedules subcircuits onto the least loaded proces

sor would be a good starting point. In the case of the BBN Butterfly, where the network

has a uniform delay for all references to remote memory and the delay is small compared

to the time required to evaluate even a single-node subcircuit. a sutic random assignment

algorithm has been found to result in performance as good as that of a dynamic optimal

assignment, within the accuracy of the performance-measurement tools available, without

the overhead of dynamic assignment.



CHAPTER 6

THE TEST-BED MULTIPROCESSOR

6.1. Introduction

In this chapter, the BBN Butterfly [18] which has been used as the test-bed for the imple

mentation of DITA in MSPLICE is described. The BBN Butterfly is a multiprocessor sys

tem consisting of from 1 to 128 processor memory elements (PME's) connected by a high

speed interconnection network. The processor memory elements consist of a MC68000.

256KB to 1MB of local memory, and a microcoded processor-node-controller (PNC),

described below. The interconnection network is a base-4 Omega network [68] which pro

vides bandwidth which increases almost linearly with system size, yet with only a loga

rithmic increase in latency. The Butterfly operating system. Chrysalis. [74] provides facili

ties for user processes to share memory and provides facilities to prevent more than one

process from accessing critical sections of such shared resources at the same time. Without

such facilities it is possible that multiple users to update a critical section of a shared

resource at the same time.

6.2. Mutual Exclusion

Consider the example of a counter, shared by two processes A and B. Each process

reading the counter into a register, modifys it. and stores it back into memory. Apossible

scenario is that process A reads the counter into a register, process Bthe counter it into a

register process A modifies its copy, process Bmodifies its copy, process Astores its copy

and process Bstores its copy. In this case, the changes made by process A would be lost.

One way to prevent this problem is to provide facilities for providing mutual exclusion [15]

73
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to shared resources using locks or semaphores Each process then becomes:

Set( lock ):
register = counter:
register = register + value:
counter « register;
Reset( lock );

When a process tries to set a lock which is already set. it is forced to wait until the lock is

reset by the process using it. Another technique to solve the problem of the shared

counter is to provide atomic operations. An atomic operation performs a read-modify-

write operation on a global variable so that no other process can access the variable while

it is being changed. The Butterfly provides hardware support for both of these facilities

and Chrysalis provides software access to them. Butterfly processors provide an expand

able system with from 0.5 to 64 MIPS of integer processing performance with good

abstractions for shared resources and a effective mechanism for managing the global name

space.

63. System Name Space

The issue of naming is extremely important in a distributed system. In the Butterfly,

all shared resources are treated as objects [76. 77] and all are described by 32-bit global

identifiers called object handles. Access to shared memory is provided by allowing

memory objects to be mapped into a process's address space. Once this mapping is accom

plished, access to remote memory is identical to access to local memory as far as the user

process is concerned. The memory on the processor nodes is the only memory in the sys

tem. Thus, all memory is local to some processor and remote to all others. Access to

memory on other processor nodes is provided by the processor node controllers on the

local and remote nodes and actual communication takes place through the interconnection

network. The user-level view of the system is that there is a global name space and that

all objects are available when needed. To access shared memory, the processor asks the

system to allocate a block of memory on one of the processor nodes. If the memory is on
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another node, then a message is sent via the switch to the other processor, requesting that

the memory be allocated. In either case, an entry is made in the memory management

ubles of the processor, and the base and limit of the segment are set. Although the sys

tem provides segment-based virtual memory, segments may not be dynamically stored and

reloaded from disk. There are two views of the memory provided by the system. The

form of a physical address is shown in Figure 6.2. Here the address consists of a 8 bit

processor number, a two bit subspace number, and a 22 bit subspace offset. The subspaces

are divided as shown in Table 6.3.

The virtual address format is shown in Figure 6.4. Virtual addresses consist of an 8

bit segment number and a 16 bit segment offset. Thus, the largest virtual segment is 64K

31 24 22

PROCESSOR

NODE NUMBER

SUBSPACE

NUMBER
SU2SPGCE offset

Figure 6.2: Physical Address Format

Subspace zero contains:
1. A primitive debug monitor.
2. The segment attribute registers.
3. The 68000 interrupt vectors.
4. The interrupt handling routines.
5. The operating system kernel.
6. PNC control registers.

Subspace one conuins:
1. The I/O control registers.

Subspace two contains:
1. The local memory.

Subspace three contains:
1. All references to other processor nodes.

Table 63: Butterfly Subspaces
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bytes long. However, it is possible to view adjacent segments as being parts of a larger

segment and therefore provide segments larger than 64K bytes. Virtual addresses are con

verted to physical addresses by the MMU and the The virtual address space of each pro

cess is described by its Address Space Attribute Register (ASAR). The format of an ASAR

is shown in Figure 6.4. The upper two bits of the ASAR are the kernel and inhibit bits.

The next two bits are the subspace number. Following those is a four bit size code which

specifies how many segments are in the processes address space. Segments are allocated

using a variant of the Buddy system [78] and therefore the number of segments in a pro

cess must be a power of two. The final field of the ASAR is a pointer to the base of the

array of Segment Attribute Registers (SAR's) for the process. Each SAR contains the base,

limit, and protection information for a memory segment. The processor node number is in

ADDRESS SPACE ATTRIBUTE REGISTER

Kernel-

t i n i i i i i n i » i irwo

S S
SAR

Pointer

Inhibit

Size Code

0 8

2 16

4 32

6 64

8 128

A 256

Figure 6.4: ASAR Format



77

the upper bits, followed by the size of the segment and the page offset, subspace number,

and the lower order bits of the physical address. The format of a SAR is shown in Figure

6.5.

SEGMENT ATTRIBUTE REGISTER

r-r-n-i M M l" M M I [ i I I | M 1 | 1 M [ I

Processor

Node Number

Access Code —

0 R r_x

2 R_Xr_x

4 RWXrwx

6 RW_rw_

8 R r

A RW

C *

E RW-r

Segment Size

0

1

2

3

4

5

0

1

2

3

4

6

6 8

7 12

8 16

9 24

A 32

B 48

C 64

D 96

E 128

F 256

Page
Offset

T Bits 19:16
of the Physical

Address

Subspace

0 Subspace Zero

4 I/O

8 Local Memory

C Remote Memory

Figure 63: SAR Format
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6 A The Processor Node

Butterfly multiprocessor systems can be configured with from 1 to 128 processor-

memory elements (PMEs). Each element consists of a 68000. a 16 bit wide AM2901 pro

cessor node controller with 64 bit horizonul microcode (PNC), a custom memory manage

ment unit, from 0.25 to 1MB of local memory, and special finite-state machines to inter

face to the high-speed interconnection network. In addition, up to four I/O processors can

be connected to each Butterfly processor node. A block diagram of the processor node is

shown in Figure 6.6.

6.4.1. The MC68000

The MC68000 is a microprocessor with 16 bit data-paths, a 16 bit ALU. and 32 bit

registers. The key advantages of the 68000 over many other 16 bit microprocessors its 16

MByte linear address space and its symmetrical instruction and register set. These proper-

ssaaa PNC

FLOATING

POINT

COPROCESSOR

CPUfl

CPuD

HAD

D

Hu

mmu MEMORY
SWITCH

INTERFACE

Figure 6.6: Butterfly Processor Node
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ties allow the 68000 to run large programs efficiently. More information on the 68000 is

available in [79] and related documents. In the Butterfly, the 68000 is extended by func

tions which execute in the AM2901-based processor node controller. All user code exe

cutes on the 68000. but system primitives are implemented in microcode on the PNC. All

memory references by the 68000 go through the MMU and are translated to network wide

physical addresses.

6.4.2. The Processor Node Controller

The processor node controller, or PNC. is a microcoded machine with 16 bit dau-path

and 64 bit wide microcode. A block diagram of the PNC is given in Figure 6.7. The PNC

and MMU are responsible for translation of all memory addresses which emanate from the

20 BRANCH CONOITIONS

MICRO
PROGRAM

SEQUENCER

C

33 FUNCTION REQUEST
CONTROL LINES ]

MICRO INTERRUPT
SERVICE ROUTINE

AOOHE5S
0ENEHATOR

10 |

<KiW -BIT
REAOONLY
CONTROL

STOM5
MtYOHV

rW\

19

it

'2!

c CONTROL STORE AOORCSS BUS

T*

CONTROL LINES TO OTHER
PROCESSOR NOOE RESOURCES

1f.8lT 2901
ARITHMETIC/

LOGIC UNIT

r
DATA BUS

Figure 6.7: The Processor Node Controller
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MC68000. All references to normal memory are passed through the memory management

unit and converted from a system wide virtual address to a physical address on one of the

processor nodes.

6.4.3. The Switch Interface

The interconnection network in the Butterfly Multiprocessor is a base-4 Omega net

work, with 4-bit wide communications paths between the switches. Because the Omega is

a blocking network, the processor-node-controllers execute a protocol where an attempt is

made to send a message through the switch, and if the attempt fails, the request is re-tried

after a pseudo-random amount of time. The interface to the switch is provided by two

special-purpose finite-sute-machines. Diagram of the transmitter and receiver switch

interfaces are shown in Figure 6.8 and Figure6.9 respectively.

6.5. The Butterfly Operating System

The Chrysalis operating system [74] is a collection of subroutines which allow user

processes to manage local and shared resources. The features of this operating system

include object management, primitives for constructing message systems, and support for

atomic operations, all of which are described in more detail below.

6.5.1. Object Management

All resources in the Butterfly are considered to beobjects. These objects are identified

by a 32 bit quantity called an object handle. The object handle specifies the processor the

object resides on and the offset of the control block which identifies it in the F8 segment

on that processor. The format of an object handle is shown in Figure 6.10. The simplest

kind of object is a segment of memory. Memory objects are special in that they can be

placed directly into the address space of a process in such a way that no translation need

be done before the object is used. This process of entering a memory object into a process's

address space is called mapping in that object. When a memory object is mapped in. the
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system creates a new SAR to describe the segment, and then enters the new SAR in the

process's array of SARs. From that point on. no matter where the segment is in the global

address space of the machine, it can be referenced transparently just by the 68000
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accessing that portion of its address space. This ability to access remote memory in a

manner totally transparent to the local 68000 contributes greatly to the performance of

the machine in tightly-coupled applications.

6.5.2. Messages

In addition to the need for communication and mutual exclusion between processes, it

is useful to be able to provide a signal to a processor that new information is available for

it to look at. rather than having it busy wait reading a location in shared memory and

waiting for it to change. Messages [75] are a technique for transferring both information

and control at the same time without using shared memory explicitly. A classical

message-based system is defined by the primitives given in Figure 6.11. In such a system,

it is possible for a process to wait for a message to be sent it by another process without

having to explicitly spin on a variable in shared memory. In fact, it is possible to imple

ment shared memory with messages and messages with shared memory [80]. It is possible

to define many variations on the simple two operation set given above. For example, it is

possible in most message-based systems to wait on more than one mailbox at the same

time. i.e.

srcNum = WaitMessageM( srcl. src2.... srcN. destBufferPointer ):

therefore allowing the process to wait for any of several events to occur. Rather than

implementing messages, however. Chrysalis, the Butterfly operating system, implements a

set of lower level primitives which allows users to define their own message system.

SendMessage( receiver, SrcbufferPointer );
WaitMessage( source, destBufferPointer );

Figure 6.11: Message Primitives
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6.5.3. Events

An event is a synchronization mechanism which can be used to implement message-

based systems. This technique has been used in the OS/360 and the MOS operating system

[74] and has been proposed for a variety of others. Events are created by a process (which

is then called a server process) and given to other processes (often called client processes).

When a client process wishes some service from a server process, it posts the event with

some information that the server may use: for example, it may post the object handle of a

buffer containing information that the client wishes to send to theserver. Aserver process

may have any number ofevents outstanding which have not been posted, and may or may

not decide to service an event once it is posted. However, in most cases, it is not permissi

ble for an event to be posted more than once without being reset, even though several

clients may have the ability to post it. Events are objects, as are all shared resources in

Chrysalis. Each has a global name, called an event-handle, which is valid across all pro

cessors.

6.5.4. Dual Queues

A dual-queue is a synchronization mechanism for event based systems. A dual-queue

may at any time hold data orevent-handles, but not both. When a server process tries to

dequeue a data-item from a dual-queue, it also passes an event-handle as one of the argu

ments in the call to dequeue. If there are data-items in the queue, the dequeue proceeds

normally. If. however, the queue is empty, or there are event handles in the queue, the

event handle passed to dequeue isentered into the dual-queue. When a client process tries

to enqueue a data-item into a dual-queue, the enqueue function checks to see if there are

event-handles or data-items in the queue. If there are data-items, the enqueue proceeds

normally. If however, there are one or more event-handles, then the first event handle is

removed from the queue, and the event is posted with the dau that was to be enqueued.

The result is that it is possible for servers to have request queues which are known by
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client processes and for servers to wait until a data-item is entered into the queue by a

client process and then wake-up and process the data-item. Because events and dual-

queue are implemented in microcode on the processor node controllers, these mechanisms

are extremely fast. In fact, enqueue and dequeue operations execute in 10-15 fxs on the

current Butterfly.

6.5.5. Special addresses

Segment F8 of the virtual address space of each process is mapped into physical

memory starting at location zero. Because segment F8 is always mapped in starting at

zero, virtual addresses in that range can be converted to physical addresses by simply

deleting the upper bits of the address, and it is not necessary to go through the MMU.

Thus, addresses in segment F8 can be referenced in one less cycle than addresses in other

segments. Atomic operation, which allow a constant to be added to or subtracted from a

shared location without locking and without the mutual-exclusion problems described

above, are provided by referencing special locations.

6.6. The Floating-Point accelerator

The Berkeley Butterfly floating-point accelerator was designed and implemented by

Doreen Y. Cheng [81] and the Author. Although the MC68000 has integer performance

approaching that of a super-minicomputer, its floating-point performance is very poor

because it lacks floating-point support and such operations must be implemented in

software rather than a combination of microcode and hardware. [8l] contains information

on the performance of a variety of software floating-point packages which are available for

the MC68000. In general, there is a tradeoff between speed and accuracy in these packages.

For example, the software package which implements IEEE standard floating point arith

metic is an average of 2.5 limes slower than the Motorola FFP fast floating-point package.

However, the accuracy and quality of rounding of the IEEE package is significantly better
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than the faster but less accurate FPP routines. In either case, software floating point

operations take considerable time. For example, the IEEE routines take approximately

100/xs to perform a floating-point add or multiply. This is approximately 100 times

slower than the integer performance of the MC68000. The result at the system level is

that if floating-point operations account for 10% of all operations, the system performance

on floating-point intensive applications is reduced to only 10% of its performance on pure

integer problems. To eliminate this bottleneck, the Butterfly floating-point accelerator was

designed to implement efficiently both scalar arithmetic functions as well as the more

complex operations specific to circuit simulation, such as MOS model evaluation, submatrix

solution, convergence checking, and automatic time-step selection.

The lack of a co-processor interface on the 68000 makes it difficult to pass operands

between it and the FPP. For example, the simplest method to pass data between them

would be to write the operands into two special locations in memory and read the result

from a third one. The problem with this approach is that the data transfers take a sub

stantial amount of time. For example, on the MC68000 a good lower bound on the execu

tion time of an instruction can be estimated by assuming that operations are always bus-

limited. A move instruction must specify both the source and the destination address.

Assume that the operands are in registers and that the result is to be returned to a register.

An instruction to move the first operand to the first magic location would consist of three

16 bit words: one for the basic instruction and two for the 32 bit destination address.

Such an instruction would take 5 basic operation times to execute. Three for the instruc

tion and two to write the data. The same amount of time would be required to move the

second operand, and the same for reading the result, for a total of 15 basic instruction

times. In the MC68000 every 16 bit operation requires four clock cycles, so that with an

8MHZ clock and no wait states, the time required for such a basic operation is 500ns.

Thus the minimum amount of time necessary to store the operands and return the result

would be 7.5/us. If the operands and result were in main memory, rather than registers.



87

the total time required would increase to 13.5fis. Any time required for the operation on

the board must be added to these times. The calling sequences defined below are designed

to decrease the time necessary to perform these operations. However, even as they are.

they still compare quite favorably with the time necessary for current co-processor chips

on processors which support such interfaces. For example, the NS16081 requires 7.4/xs for

a floating-point addition when both operands are in the floating-point unit's registers and

the result is returned to a FPA register. The Intel 80287. co-processor for the iAPX-286

requires 14 fis for the same operation.



CHAPTER 7

THE MSPLICE Program

7.1. Introduction

The MSPLICE program implements the DITA algorithm described above. MSPLICE uses a

single central counter, multiple schedulers, and distributed model-evaluation and conver

gence checking. The MSPLICE program has been designed to be compatible with the input

and output formats of the SPLICE program. Thus SPLICE input and output processors,

such as BLT [82] and SPLOT [14] may be used in conjunction with MSPLICE. In addition.

MSPLICE can also accept files in sim [83] format. A diagram of the MSPLICE program and

its input and output processors is shown in Figure 7.1.

7.2. The MSPLICE Program

The overall program flow of the MSPLICE program is shown in Figure 7.2 [16]: Here.

T represents the current value of simulated time in units of Minimum Resolvable Time

(MRT). and the forall construct means execute the block on all members of the set in any

order and. therefore, they may be executed concurrently.

73. Scheduling Algorithms

The major loop of the program is to take the next event off of the time-queue, process

the event, and schedule zero or more new events. The actions of taking an event off of the

event-queue, and of entering new events onto it. are performed by the scheduler routines.

Thus, it is desirable that these routines be as efficient as possible. The simplest type of

scheduler is a linked list of events sorted by the virtual time of the event's occurrence.

For efficiency reasons, time is usually represented as an integer number of basic units of
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Figure 7.1 - The MSPLICE System



ITACcntralLockLoopO {
while( GlobalMoreToGoFLag is TRUE) {

WaitMessageC DoneAtTQueue, processorNumber, flag ;;

if( flag is TRUE ) {
increment remainingProcessors;

>
else{

decrement remainingProcessors;

>

if( (remainingProcessoTS is0) and (GlobalRemainingNets is0) ) {
if( GlobalFutureActivityFlag is FALSE) {

GlobalMoTeToGoFlag = FALSE;
)

else{

/•
• All processors must be blocked after having finished
• all the vork they had at this time.
• Tell them that us nowsafe togo onto thenext time
• point.
•/

GlobalFutureActivityFlag = FALSE;

forall( processor in processors ) {
q =processorControlQueue( processor );
SendMessage( q. TRUE );

)

}

ITAWorkerProcessorLoopO {
while( GlobalMoreToGo is TRUE ) {

forall( evaluationRequest in elementEvaluationRequestQueue ; \
ITAProcessElementEvaluationRequest( evaluationRequest );

}

foralK evaluationReply in elementEvaluationReplyQueue ) {
ITAProcessElementEvaluattonReply( evaluationReply ;:

}

foralK net in netEvaluationRequestQueue ) {
ITAPTOcessNetEvaluationRequesti net );

}

if ( all queues areempty ) {

/•
• vaitfor the global counter go to zero ortoget more mput
* requests at this time.
V

SendMessage( DoneAtTQueue. MyProcessorNumber, TRUE );

wait( all queues ) {

if( more input requests at this time ) {
SendMessage( DoneAtTQueue, MyProcessorNumber. FALSE );
continue;

I
else{
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}

T = T + 1;
swap evaluation queues for T and T+l;
schedule any input sources at T-rl;

}

ITAProcessElementEvaluationRequest( evaluationRequest ) {
net = evaluationRequest- >net;
element » evaluationRequest- >element;
Norton = ITACompanionModelC net,element);
q » elementEvaluationReplyQueue( homejjrocessoK net) )
reply- >net = net;
reply- >Norton = Norton;
sendMessage( q, reply );

ITAPTocessE3exnentEvaluatlonReply( evaluationReply) {
net « evaluationReply- >net;
faninNorton = evaluationReply- >Norton;
net- >Norton » net- Norton + faninNorton;
net->remainingFanins » net->remainingFanins -1;

if( net- >remainingFanins is 0 ) {
ITACheckConvergence( net);

}

ITAPTOcessNetEvaluationRequest( net) {
foralK fanin_element in net) {

q =elementjvaluationjaueue(home_processor(fanin_cleinent));
request- >net » net;
request- >element = fanin_element;
sendMessage( q, request );

>
}

/•
• Check convergence, schedule selfand fanouts. and keep GlobalRemainingNets
• (the global count ofthe number ofnets under evaluation) consistent.

ITACheckConvergence( net ) {
if( net has converged at this time ) {

if( net has not previously converged at this time point ) {
if( change from the previous time point is significant) {

schedule the net at T-l;
if( T+l queue has just become non-empty ) {

GlobalFutureActivityFlag = TRUE;
)
schedule the net's fanouts at this time point;
increment GlobalRemainingNets by Nfanouts-1;

else {
re-schedule the net at this time;

>
decrement GlobalRemainingNets;

Figure 7.2 - MSPLICE Program Flow
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time. The unit, called minimum resolvable time or MRT. represents the smallest time inter

val over which a meaningful event can occur in the circuit being simulated. If the events

to be scheduled were uniformly distributed in time, then the time complexity of adding a

new event to the queue would be -^ for a list of N events. However, the distribution of

event-times is usually quite skewed, with many events scheduled at the next step in simu

lated time, and far fewer events scheduled in the distant future. There are several ways

to take advantage of this fact. The SPLICE1 program [14] optimizes access to events which

occur within 200 units of the current time by using a combination of two arrays of

pointers and a linked list. The disadvantage of this approach is that it requires that when

the event-list for the current time is finished slots in the pointer arrays must be examined

sequentially until a non-empty one is found. However, since in practice most events are

scheduled at either the current time or one unit of MRT in the future, [6] empty slots are

rarely encountered. The MSPLICE program currently uses a single global time-step. Thus,

when an electrical node which is not directly driven by an input or a timing source

(clock) is scheduled, it can only be scheduled at the current time or one unit of MRT in

the future. To take advantage of this. MSPLICE uses a scheduler with two queues, one for

the current time and one for the time one unit of MRT in the future. Primary inputs

treated as a special case, and are scheduled at every point in time during the simulation

interval. The MSPLICE program uses the Gauss-Seidel-Newton algorithm described ear

lier, but can also be run using a less constrained variation of the algorithm known as

weakly chaotic relaxation [84]. In this case, a PME can continue to solve a node for itera

tions k +1X +2. • • • k +Fm. where Fm is the maximum number of iterations a node can

move ahead before it must wait for updates of the values of its fanin node voltages. For

Gauss-Seidel-Newton. Fm = 1.
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7.4. Primary Inputs

The data-structure for a primary input consists of an entry for the current delta-v. a

state counter, a remaining-time counter and a state-transition table. Every time the pri

mary input model is called, the remaining-time counter is decremented. When the

remaining-time counter reaches zero, the state of the timing-source is changed to next

state, the current delta-v value is set to the delta-v value for the new state, and the

remaining-time counter is set to the duration of the new state. The advantage of this

approach is that it allows events to be entered and removed from the queue extremely

quickly. The disadvantage is that it requires that primary inputs be processed even when

they are latent. However, because most circuits have many more internal nodes than pri

mary inputs, the advantages strongly outweigh the disadvantages. For example, in a

medium-size industrial circuit, a digital filter circuit having 704 transistors and 345 nodes,

there are only four clocks and external inputs. The time spent processing timing sources

and external inputs for this circuit was less than 0.2% of the total simulation time. As

circuits become larger, the ratio of the number of internal to external nodes should become

even larger. However, no matter how fast a scheduler is. it is always possible to add

enough evaluation units so that it becomes the limiting factor in simulator performance.

To eliminate this problem, the MSPLICE program uses a separate scheduler on each proces

sor. However, as mentioned earlier, these schedulers must be kept in loose synchroniza

tion. To maintain numerical consistency in the DITA approach, it is necessary to insure

that all nodes that can affect a given node at timeT have converged at T before processing

the node for T+l. One way to do this is to keep track of the number of unconverged

nodes (equations) in the system and prevent any nodes from being processed at T+l until

all have converged at T.
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7.5. The convergence counter

MSPLICE implements the most straight forward form of this algorithm, by main

taining a central count of the number of unconverged nodes (equations) in the system.

The counter is a resource shared by all processes. However, because it need only be incre

mented or decremented and checked against zero, access can be made to it quite quickly.

The convergence counter is kept in a piece of shared memory, and can be incremented

and decremented by messages to a process which is responsible for maintaining it. The

advantage of the shared memory approach is speed. However, it is essential that either the

increment and decrement are available as atomic operations or that the counter be locked

and unlocked whenever it is necessary to access it.

In the Butterfly version of MSPLICE. it is possible to use either approach. Normally,

there is a watcher process which is responsible for maintaining the convergence counter.

Whenever a simulation process wishes to increment or decrement the counter, it sends a

message to the watcher process by enqueueing the value is wishes to add to the counter

onto a dual-queue which contains an event handle owned by the watcher process. This

causes the watcher process to wake up and modify the convergence counter accordingly.

Note that while the counter is being modified by the watcher process, any requests which

come in will simply be queued up waiting for the watcher to dequeue them. The

MSPLICE program can also be configured to run without a watcher process. In that ver

sion, the code from the watcher process is run whenever a process increments or decre

ments the convergence counter. Normally, this would require that the convergence

counter be locked before being accessed. However, the Butterfly multiprocessor allows this

process to be avoided by providing atomic increment and decrement operations.

7.6. Model evaluation

In the MSPLICE program, model evaluation is distributed on a per-node basis.

Whenever a node is solved, the processor solving it is responsible for evaluating the model
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for each of its fanin elements. This approach results in high performance and high

efficiency for solving large circuits on large numbers of processors. For very small circuits,

it may be more desirable to have each transistor, rather than each net. be processed in

parallel.

7.7. Program Performance

The performance of MSPLICE on the digital-filter circuit is shown in Table 7.1. In

all cases, as the number of processors were increased the program execution time decreased.

Note that for 9 processors, the speedup and efficiency of MSPLICE on the Butterfly was

90% of the theoretical maximum, given by the unit delay model.

Currently, as a result of the low floating-point performance of the prototype

machine, model-evaluation and convergence checking are the rate-determining steps of the

Butterfly MSPLICE implementation. However, a new floating-point accelerator/model-

evaluation-unit is under construction which should considerably improve the ability of

the machine to perform these tasks [81]. As mentioned above, queue management is

implemented in microcode and is quite fast.

Processors Speedup Efficiency

1 1.00 1.00

2 1.83 0.92

3 2.28 0.76

4 3.40 0.85

5 4.09 0.82

6 4.55 0.76

7 5.33 0.76

8 5.98 0.75

9 6.77 0.75

10 7.04 0.70

Table 7.1 - Digital Filter Speedup
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7.8. Communications Requirements and Scaling

It is possible to calculate the communications requirements of the algorithm and the
load that would be seen by the network as the performance of the individual nodes is

increased. If distributed counter management and random assignment of sub-circuits to

processor nodes are used, it can be assumed that aprocessor will have an equal probability
of accessing any other processor's memory, and auniform reference model can be used for
ICN load. Given that several fanin elements must be evaluated to determine the value of a

node, and that convergence checking can performed locally, an upper bound on the traffic

which can be generated is given by assuming that all nodes are performing model evalua
tion at all times. If an MOS model evaluation evaluation could be performed every lOus .

then every port of the network would see a reference every 8.33 fis for NMOS circuits
and 6.7 fis for CMOS. Thus, a 16 processor system would require a network capable of
servicing a request every 416 to 520 ns. which is well within the limits of current fast
busses. However, for a 256 processor system, a request would be seen every 26.2 to 32.5
ns. It is currently difficult to make busses which run at such speeds and are aphysically
large enough for a 256 processor system. One alternative network is the single stage
perfect-shuffle [85] If such anetwork was built to have a100 ns cycle, it would see aload
of 1.2 - 1.5 %at each port. At such low loads, such networks experience very few colli

sions, and their delay can be expected to be in the range of log(N). where Nis the number

of ports in the network, so aremote reference on such asystem could be expected to take
=s 800/15. less than 10% of the model evaluation time.

If the basic steps of scheduling, model-evaluation, and convergence checking can be

performed at a lOfis rate, and 50% efficiency can be achieved for a25.000 node circuit
(=70.000 MOSFETS). then through acombination of algorithms and architecture a total
system performance equivalent to aconventional computer running SPICE2 at almost 4
GFLOPS can be achieved. The result is that the analysis of a 70.000 MOSFET circuit on
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this machine would take about the same time as the analysis of a 20 transistor circuit on a

VAX-11/780.



CHAPTER 8

CONCLUSIONS

An approach to provide very high speed circuit simulation, based on relaxation techniques,

special-purpose hardware, and effective use of multiprocessors has been described. Investi

gations of models of parallel computation, multiprocessor computer architecture architec

ture and interconnection networks has led to a proposed architecture for a circuit simula

tion machine. Circuit simulation has been implemented on both small grain (data-flow)

and large grain (process based) multiprocessor systems. The data-flow model of computa

tion and functional programming languages have been explored in the context of circuit

simulation. The program ITA/DF. a test implementation of the ITA circuit simulation

algorithm has been developed in SISAL (Streams and Iteration in a Single Assignment

Language), and tested on an experimental data-flow computer, the Manchester dau-flow

machine, and high speedup was observed for up to 13 processors when simulating a small

circuit. Based on these results, a new distributed circuit simulation algorithm - Distri

buted Iterated Timing Analysis (DITA). has been developed. DITA which allows subcir

cuits to be solved by independent processors while providing a consistent global solution

to the circuit as a whole. The DITA algorithm has been implemented in the program

MSPLICE and executed on an experimental process-based multiprocessor, the Bolt Beranek

and Neumann (BBN) Butterfly system. A floating-point co-processor for the Butterfly sys

tem has been developed, and an architecture for a special processor for evaluation of MOS

models has been proposed. Initial results are promising, with greater than 70% efficiency

on a 10 processor system when simulating a large industrial circuit.

There are many possible directions for future research. They fall into several

categories:

98
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1. Improvements to the Algorithms in MSPLICE.
2. Special Purpose hardware.
3. Higher Multiprocessor Efficiency.

First, there are many areas in which the MSPLICE program can be enhanced to increase

performance and robustness. Automatic partitioning, either static or dynamic, of the cir

cuit into subcircuits should be added to improve the program's performance when simulat

ing circuits with tightly coupled nodes. Variable time-step control should be added to

MSPLICE to free the user from time-step selection and increase robustness. The program

should be made more interactive to allow results to be viewed as the simulation progresses

and to allow the user to change the circuit parameters and topology interactively. Second,

experience with the Butterfly floating-point accelerator will lead to a better understanding

of what is needed in special-purpose hardware for circuit simulation. Finally, changes in

the algorithms to eliminate the need for all nodes to converge at time T before any go on

to time 7 +1 will allow greater multiprocessor efficiency.
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APPENDIX A

Source Listing of Program ITA/DF

This appendix contains the source listing of Program ITA/DF. To obtain this

program contact Deborah Dunster at the following address:

EECS Industrial Liason Program

437 Cory Kail

University of California

Berkeley. CA 94720
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APPENDIX B

Source Listing of Program MSPLICE

This appendix contains the source listing of Program MSPLICE. To obtain

this program contact Deborah Dunster at the following address:

EECS Industrial Liason Program

437 Cory Kail

University of California

Berkeley, CA 94720
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