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Time-of-flight He+ Beam Potential Diagnostic in Tandem
Mirrors

B. T. Archer and M. A. Lieberman

The feasibility of a modulated He+ beam as an electrostatic potential
diagnostic in tandem mirrors is investigated. The modulated beam is in
jected axially along the central magnetic field line of the machine. Collisions
of plasma electrons with beam ions produce 4686A optical photons that are
observed using standard optical techniques. The beam time-of-flight between
two nearby axial locations is determined by measuring the modulation phase
shift of the photon signal between the two locations and the electrostatic
potential is determined directly from the time-of-flight. The limitations im
posed by incomplete beam penetration, photon counting statistics, and beam
dispersion are examined. We obtain estimates for the uncertainty in the po
tential measurement at various locations on TMX-U and MFTF-B.

I. Introduction,

The present technique for measuring electrostatic potentials in tandem mir
rors consists of a singly charged ion heavy ion (~200 amu) beam injected
transverse to the magnetic field, and detectors which measure the charge
states and energies of exiting ions[l]. The injected beam arcs through the
plasma in a Larmor orbit with some chance of ionization as it moves along
this path. From the energies and exit locations of the doubly charged beam
ions, the potential inside the plasma can be inferred. This technique has
been used successfully on TMX-U, but nevertheless suffers from several diffi
culties. One problem is that in magnetic field geometries which do not have
cylindrical symmetry (e. g. quadrupole end plugs), the trajectories become
very complicated, and it is doubtful whether the data can be correctly un
folded in these cases. The technique also suffers from an unfavorable scaling
law. In order for the beam to penetrate the plasma and exit to reach the
detectors, it can be shown that the beam energy scales as the square of the
magnetic field times the chamber radius (E oc J?2a2). For a machine like
MFTF-B, one finds that ion beams of several MeV are required. To ob
tain adequate signal, beam currents of several mA must be provided. This
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combination of energy and current presents a formidable technical barrier.
Several measurement techniques have been studied which circumvent the

problems of the heavy ion beam probe. An electron beam time-of-flight ex
periment, for example, was performed on the Multiple Mirror Experiment
(MMX)[2]. A potential barrier in a single mirror cell was produced by short
pulse ECRH heating. The formation and decay of a —40 V barrier was ob
served on 5 //sec timescales. A disadvantage of this technique, however, was
that a current probe was physically inserted into the plasma to intercept
the beam. Some methods for remotely detecting the electron beam are de
scribed in Ref. [2], but large background noise signals are present in those
methods. The present report extends the time-of-flight concept to a He+
beam measurement for which the background noise signal can be reduced
to very low levels. The technique is indicated schematically in Figure 1. A
density-modulated He+ beam is injected axially along the central axial field
line of a tandem mirror machine. Since the source density is modulated, the
number of beam ions in the detection volume is modulated.

ND(t) = Nave + Npeak sin(ut + <l>) (1)

Optical photons produced by collisions with plasma electrons allow us to
monitor the phase of the modulated beam. We relate the beam phase to the
electrostatic potential as follows:

^=r^)^=wvfr[-v^",/2^ (2)
where w is the modulation frequency, and the beam velocity v(z) varies with
z due to variations in the electrostatic potential. Here the potential V(z) is
referenced to that of the He-discharge in the ion source. Differentiating (2)
with respect to z, and solving for the potential we have

V(z) =-^.mzT2 (3)
In this report we address various mechanisms which might destroy the beam
and/or its information content, and we assess the sensitivity of the measure
ment.



II. Beam penetration — atomic processes.

There are a number of atomic processes which contribute to loss of beam.
First we consider electron-impact ionization of beam ions.

He+ + e~ — He++ + 2e"

The cross section for this process has been measured by Peart et al. [3],
and these results are reproduced in Fig. 2. At high energies the cross section
scales like l/E, as expected from the classical Thomson formula. We use this
scaling to obtain approximate analytical estimates for the beam penetration.
We calculate the number of excitations per second:

n < av >= I a(v)vf(v) d3v

Taking a(v) = f3/v2 and using a Maxwellian distribution we have

n<av >= n@U^f exP (-Emin/eTe)
where 2?m,n = 54eV, the ionization energy for He+. We estimate from Ref. [3]
that /? ~ 10.5 cm4/sec2. For TMX-U we assume a 10 keV beam with 500 eV
electrons at 5 x 1012 cm-3 to estimate that

n<av >= 4 x 104 sec""1

and the penetration distance (e-folding distance)

A = — -18 m.
n < av >

This value is to be compared with an overall length for TMX-U of ~20 m.
The potential variations of interest (in the end plug) take place over a dis
tance of ~5 m. For MFTF-B we take a 60 keV beam with 6 keV electrons

at 1013 cm"3 to estimate A —65m, which is to be compared with an overall
machine length of ~40 m, and an end-plug length of ~10 m. The situation
is more favorable in MFTF-B because of the higher electron temperatures
and because higher beam energy is assumed in order to cross the 50 keV
ion-confining potential.



In MFTF-B, however, charge transfer with H+ can become important
since there is a class of very hot ions expected in the center cell.

He+ + H+ — H e++ + •• •

The reaction products include neutral hydrogen or H+ and an electron. The
total cross-section for this process has been measured[4], and these results
are reproduced in Fig. 3. The cross-section peaks at 50 keV, which happens
to be the ion temperature in the center cell. For a worst case estimate we
take a delta-function ion distribution at 50 keV energy and 1013 cm""3 density
to obtain A — 27 m.

In a fully ionized plasma we conclude that in both machines we expect
complete penetration of the beam through the end plugs, but only partial
penetration of the entire device.

The capture of electrons from neutral hydrogen may also be an important
process:

He+ + H — He + H+

This cross section is very difficult to measure (it requires a crossed beam
experiment), and a literature search has failed to turn up any data. We
expect the process to be the most significant beam interaction with neutrals,
however, since the process is energetically favorable, and because the pro
duction of Franck-Condon neutrals in the halo plasma creates some H atoms
energetic enough to penetrate into the plasma core. If we assume that the
neutrals are cold, and that the cross section for the process is 20nal we have

A- '
20n7rag

Requiring a penetration distance of 10 m, we obtain a density limit of ~
1012 cm"3 neutrals, which we expect to be much larger than the actual neutral
density in the case of MFTF-B.

III. Beam penetration — plasma processes.

Dynamical friction exerted by the plasma on the beam ions slows the beam,
and this effect cannot be distinguished from beam slowing due to an increase



in the plasma potential. For a Maxwellian distribution of field particles a

where

l\ = ma/2kT (5)

The change in velocity per unit time for a particle of mass M, charge q,
and velocity t/& is given by [5] (SI units)

<A«g) =-ADl2a (l +—) Gft,*) (6)

where G(x) is the Chandrasekhar function

G(x) =*(x);f{X\ (7)
<t>(x) is the error function

<t>{x) =-r]Q exP (-y2) dv (8)
and A/? is the diffusion constant

_g292,nttlnA rqx
Ad " 2*elM* ' ™

We consider a 10 keV He+ beam in a 500 eV plasma at 5 x 1012 cm"3. Over
a distance of 20 m we find the energy loss due to protons to be

AJE7 a M(Ai>|j)A* = 9.6 eV (10)

while that due to electrons is even smaller (^ 1.5eV). The scaling is as
follows:

AE a naG(lav)/Ta (11)

Note that worst case occurs for laVf, = 1, since Gmax = G(l) ^ .214. We
conclude that dynamical friction is not a major difficulty.

A second plasma effect which could affect beam penetration is beam-
plasma instabilities. These instabilities could convert beam particle energy



into wave energy in the plasma, or they could destroy the modulation coher
ence of the beam. We note at the outset of this analysis that the use of He+
assures that the cyclotron frequency (eB/mc) of the beam ions is different
from either plasma electrons or ions. Also the plasma frequency (47rne2/ft4)
of the beam will be much less than that of either the electrons or the ions

in the plasma. Briggs[6] has studied the problem of electron beam instabil
ities in great detail, and here we adapt those results to the He+ beam. Let
us first consider the case of longitudinal waves in an infinite unmagnetized
homogeneous plasma with cold ions and warm electrons. The longitudinal
dielectric function for the plasma is given by

K\\ =x ~ 2 ~ "U / t—r~T2 (12)

Now since the beam is weak (Dpi, is small), we expect the dispersion relation
to be significantly modified only in the resonance region (u = kvb. ). Taking
a flat distribution for fe we obtain the dispersion relation

w2- w2
1=^T+ 2 ZV2' (13u;2 u2 — k2V>pe

This dispersion relation is plotted in Fig. (4). For reasonable parameters
v&. <: Vpe and v& >Vre\Jm/M (or equivalently, £?6eom >2Te), so that
the u> = kv\y curve does not cross the dispersion curves for the unperturbed
plasma and there is no reactive-medium instability.

We must look at the imaginary part of the Landau integral in order
to find the growth rate. The flat distribution function does not exhibit
Landau damping, so we must use a more sophisticated model for the electron
distribution function. We may approximate the Landau integral for the
Maxwellian case in which Vre » «&,.

7 2 r /.fa)do. „ _j4_ r _ jw /j^ni
"J (w-kv,f~ k*V$tV 3\2\kVTJ\ {1V

The dispersion relation in this case is given by

*» =7-ih? (15)(u - kvb)



where K\\ is the longitudinal dielectric constant in the absence of the beam.
Expanding about the point u = kvt, we have

Neglecting the last term on the right we have

I (16)

2 / 2(£fc\2 _ g2 U tUpe Qy\
*V/«y - («/*) +(v„/VTe)2 [l - jfi fa/Vr.)]

By differentiating with respect to u we find that the maximum growth rate
occurs at the frequency

u, =^ (18)

For a lOkV, 1A beam of He+ in a 500 eV plasma, with a beam radius of 3.5
cm we find have ojpb = 3.2 x 107 rad/sec and the maximum growth rate is
given by

lm{Sk)= .82m"1

This growth rate is substantial. However, Re(fc) at the frequency given by
(18) corresponds approximately to the Debye wavenumber, and it is not clear
that this growth rate is meaningful. Furthermore, if we examine the growth
rate at the beam modulation frequency (~ 5 MHz), we find

Re(Jfe) = .45m"1 lm(6k) = .008 m"1,

which implies a fairly small growth rate.
Further studies of beam-plasma effects will be undertaken which more

closely model the real physical situation. The effects of finite beam transverse
dimension and finite beam temperature will, for example, be studied.

IV. Excitation process.

Collisions of plasma electrons with beam ions produce n = 4 excited states
of He+, which emit a 4686A optical photon upon relaxing to the n = 3



level. We are interested in the processes of excitation, subsequent mixing of
/ states, and photon emission to the n = 3 level.

First we consider the electron-impact excitation process.

He+(ls) -he" - He+(4l) + e"

The cross sections for optically-allowed transitions (A/ = 1) scale as \ogE/E
at energies much greater than threshold (51 eV), whereas electric dipole-
forbidden cross sections scale as 1/E. We have calculated all four cross
sections in the Born approximation (Fig. 5). These results are in exact
agreement with the Born approximation results given by Felden[7] for the
Is —• 4a and la —• 4p transitions. Here we have extended the calculation to
include Is —• 4d and Is —> 4/ cross sections. A more accurate approximation
has been used to study the Is —• 4s transition in Ref. [8], and those results
are included for comparison. Near the peak, the values predicted by the
Born approximation are typically twice the actual cross sections. Because of
this over-estimation, the cross sections used in our uncertainty estimates are
scaled as follows:

° = <TBorn [.5 + .3107 \n{E/ ET)\ E < SET

where ET is the ionization threshold (51 eV). These two expressions give
identical results at 5Et-

Now we consider the /-mixing processes which may mix /-states prior to
radiative recombination.

He+(4l) -he" - He+(4l') + e"
He+{41) + H+ -> He+(4l') + H+

If the plasma density is very high, collisions of protons and electrons with
the excited state will induce /-mixing of the excited state, and a statistical
distribution of states will evolve. Thus the population of each / state is
weighted by (2/+ 1), regardless of its individual excitation cross section. In a
very tenuous plasma, however, the radiative lifetime becomes short compared
to the mixing lifetime, and the different / states do not mix. Olson has
calculated the cross sections for these process using a Monte Carlo classical
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Density (cm 3) Mixing

< 5 x 1012 None

5 x 1012 - 5 x 1014 4s —• 4p

5 x 1014 - 5 x 1015 Complicated (rraa ~ rmts)
> 5 x 1015 Complete mixing

Table 1: Density criteria for /-mixing of 4/ states of He+.

trajectory method[9], and these results are duplicated in Fig. 6. The scaling
for these cross sections is that am{xv ^constant. Comparing rrcui with rmtx we
may infer the approximate results of Table 1. For typical TMX-U densities
there is no mixing, and for projected MFTF-B densities the 4s state will be
collisionally converted to the 4p state before radiative decay.

Finally, we examine the photon emission process.

He+{41) He+{Sl') + hv(m6A)

The branching ratios of Table 2 were calculated using transition rates
given in [10]. These branching ratios are multiplied by the excitation rates
n {av} to obtain the production rate for 4686A emission. The photon pro
duction rate for a single He+ ion is then given by

7 = X^ Bin (a(la —• 4l)v) sec l (19)

Due to /-mixing, B0 -• Bx for n £ 5 x 1012 cm"3. The total measured
count rate is obtained by multiplying (19) by the number of beam ions in
the detection volume, the solid angle subtended by the detection optics, and
the detector efficiency.

7 = L——nY] Bin (a(la-+4l)v) sec 1
evi, 4ir i

(20)

where L is the length of the detection volume, Q is the detector solid angle,
and r\ is the detector efficiency.



Initial state

4s

4p

4d

4f

Total transition rate

(108 sec)
.69

13.0

4.38

2.19

Branching ratio (%)
to n = 3 level

42

4.1

26

100

Table 2: Branching ratios for relaxation of 4/ states in He+ to the n = 3
level.

V. Uncertainty in the measurement.

Photon counting statistics place a fundamental limitation on the sensitivity
of a phase measurement. We address the problem of extracting phase in
formation from a digitally-recorded photon signal. Suppose the true signal
consists of

Sj = SA0 + Spo sin {utd + <fo) (21)

photons/subinterval j. If the noise signal is 2*y, then we observe a total signal

Pj = Si + F,

We now seek to minimize the error

j

c=E [sa +Sp sin (w*y +<t>) - Pj]

(22)

(23)

by setting de/dS* = de/dSp = de/d<j> = 0. This procedure results in the
set of equations

Sa=j E [Pj - SP sin Ltj +?)]
j=i

Sj>= 4 E Fy sin (utj +?) (24)
y=i v '

E Picos(wtJ+^) =0
i=i
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The uncertainty in the mean phase <j> can be found by inserting (21) and (22)
into the last of Eqs. (24) to obtain

J _ j _
^2 SP sin {utj +<j>0) cos (utj +<t>) +£ Fj cos (utj +</>) =0. (25)
J*=l 3=1

Now we assume that <j> is close to </>o

? = <£o + A<£; A<£ < 2tt, (26)

5,4 « 5yio> and Sp « 5po» so that (25) becomes

SPA*(J/2) =2 *f}cos (wty +0) . (27)

The noise is proportional to the square root of the number of counts

Ff' =uf)sJSA +SPsai(wti +^) (28)
(k)where k is an ensemble designator over whichwe will average. Uj represents

the Gaussian-distributed random variables such that

iEv$k) =o *»d rE^ff =%• (»)
fc k K k

Substituting (28) into (27) we find

2Sj(A*)2 =ig. (30)
Now we use JSa —-Wr> the total number of photons collected, to arrive at
the rms uncertainty in the phase measurement:

Note that Sa > Sp> and that equality gives the most favorable uncertainty
estimate. This result implies that a greater fractional beam modulation
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improves the measurement. Also the uncertainty improves as the number of
photons collected increases, which is as expected.

Several sources of background count rate (Sa) may be readily identified:
• He leakage from superconducting magnets (in MFTF-B)
• Neutrals ejected from He+ source
• Incomplete beam modulation
• Beam dispersion due to finite beam temperature
• Impurity radiation (e. g. N in at 4640A)
• Bremsstrahlung

The beam dispersion effect will be addressed in greater detail later in this
report. Other sources of noise could be evaluated empirically.

We now seek a relationship between the uncertainty in the phase mear
surement and the uncertainty in the electrostatic potential.

In order to use (3) to obtain the potential we estimate </>' from the phase
at two axial locations

</>' =^Z±. (32)
where L is the axial separation. We note that <j>' has the mean

7 =hzA (33)
and the rms deviation

A*' =^*M (34)
From (3) we see that V has the mean

2e(?)V—Z&* (35)

and the rms deviation

AV™, =-^3 A0'rm. (36)
e

Inserting (34) and (35) into (36) we obtain

AV_ =±.&3/2^ (37)
wVM L
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VI. Loss of coherence due to finite beam tem

perature.

Finite beam temperature gives rise to a loss of coherence as the beam prop
agates down the machine. The parallel temperature (2]|) gives rise to dis
persion of the density oscillations as faster beam ions outrun slower ones.
The perpendicular temperature (T±) gives rise to a similar effect as particles
with higher magnetic moment see a larger mirroring force than those with
smaller magnetic moment.

These finite beam temperature effects are included in the numerical model
described in Section VII.. In the present section we present an analytical
calculation for the beam dispersion in the mirror geometry of Fig. 7. First
we note that the effective parallel temperature of the beam is reduced by the
acceleration process in the ion source.

£„ =e(r„+n) = !Mt|llo (38)

Solving for vp and taking Tj| <: Vj, we have

V\\Q ^ Vb
2Vt

(39)

The spread in velocity is given by

At>||0 m
2Vh

jeTteff

M
(40)

where

Teff 2Vb

The term in brackets corresponds to an effective reduction in the parallel
temperature due to source acceleration.

Now taking the mirroring force as

F = -/zV||£ (41)
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we obtain an expression for the longitudinal dispersion:

Au||o
Az =

Vb
{h + lii + h) +

vJqBi (lM , V
2vlB0\2 +ll|

2^ 1/2

(42)

The first three terms are due to the finite parallel temperature, and the last
two are due to the mirroring force. The mirroring force is the dominant
source of dispersion for 2jj ~ 2j_ and B\ » B0. The beam dispersion effect
on the measurement is small as long as the spread Az is much smaller than
a modulation wavelength. Taking the parameters

Zo = 5 m /ji/ = 2m Ii=2m

£0 = .015T Bi = 2T

V6 = 10keV 2]|=3eV Tj^leV

we find that Az ~ 1.0 cm. The observation wavelength is typically ~5 cm.
Both this analytical result and the simulation results of Section VII. as

sume conservation of the magnetic moment, an assumption which is valid
provided that

(43)

or

1 du ,

(44)

where Lb is the scale length of magnetic field variations. This condition is
satisfied everywhere but near the end wall, where the magnetic fields become
very small, and the corresponding gyrofrequency becomes small. To study
this region requires a different approximation; future studies will consider
the question of beam dispersion under the paraxial ray approximation.

VII. Potential uncertainty for TMX-U and
MFTF-B.

A computer model has been developed which predicts the uncertainties for
this measurement for typical TMX-U and MFTF-B configurations. The
model takes the following input parameters:
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• Beam characteristics

— Energy

— Beam current vs. time

—Temperature (Tj_ and T||)

• Machine configuration

— Axial potential profile

— Axial magnetic field profile

— Electron distribution functions

• Observation parameters

— Quantum efficiency of detector (n)

— Desired spatial and temporal resolution

— Solid angle of detector

The following effects are taken into account in the calculation:

• Loss of beam due to electron impact ionization

• Beam dispersion

• Excitation process

• Counting statistics

The code first calculates the number of beam ions in the detection volume

vs. time. To compute this quantity, the unaccelerated distribution function
is assumed to be of the form

f(t) =a(t) exp {-Mt;f/2eT|| - Mv2j2eT±) . (45)

The normalization a(t) is fixed by a knowledge of the time variation of the
source current:

I(t) =eAj V||/(i) v±dvLdv\\ (46)
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where A is the area of the beam. The number of beam ions leaving the source
with parallel velocity v\\ ± Av||/2 and perpendicular velocity vj_ ± Avj_/2 is
given by

*(*; W||, v±) = U||/(t) dzv = V||/(i)Av|| v±Avx

=v±n-^Y~eXp {~MvV2eTW ~Mv2j2eT±) Av,,Av±'
The particles in this differential element of velocity space enter and exit the
detection volumes at times which we will denote as *i and t2i respectively.
Their contribution to the number of particles in the detection volume is given
by

N(t; vhvx) =/" '' s(t';vhv±)dt'. (48)
Jt—t2

Finally, we integrate this expression over velocity space to obtain the number,
of beam ions in the detection volume vs. time:

ND[t) =^T^lh dV±Jo **V±V*
exp {-Mvp2eT\\ - Mvl/2eTL} J'"2 dt' 1(f).

The delay times ti and t2 depend on v± and U|| through the expression

t» = f -fr, (50)

where

«j (*) = jj[E-<*B(z) - «•(*)].
The value of E is set by the expression

E = ±M(v2 + v2±) + eV^ + e$(z = 0),

where Vocc is the beam acceleration potential.
Finally, the value of Nd obtained from (49) is reduced by the fraction

/w =«xpj-yo__d,|

16
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where a is the cross section for electron impact ionization. The photon
production is then computed using (20), and converted to an uncertainty in
phase using (31). Finally, (37) is used to predict the uncertainty in potential.
Fig. 8 gives the parameters used to obtain the uncertainty estimates of Fig. 9
for TMX-U, and Fig. 10 gives the MFTF-B parameters used to obtain the
results given in Fig. 11. The uncertainty estimates appear quite favorable
for both of these machines.

VIII. Conclusions.

A technique for measuring electrostatic potential variations in tandem mir
rors has been proposed, and various difficultieswhich the measurement would
face have been addressed. It appears that none of these difficulties preclude
the success of the measurement. We have obtained uncertainty estimates
which appear quite favorable for both the TMX-U and MFTF-B tandem
mirror experiments. At this time three major questions remain to be stud
ied. First, the beam-plasma instability problem requires further theoretical
analysis. Second, the effects of magnetic field errors and non-adiabaticity
of the beam ion trajectories must be studied. Finally, the beam technology
assumed in this report is not highly developed, as few experiments require
a high frequency, density-modulated ion beam. An experiment is planned
on the Multiple Mirror Experiment at U. C. Berkeley which will address the
feasibility of producing such a beam. Also the difficulites posed by magnetic
field errors and beam-plasma instabilities will be investigated.
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Figure 4: Dispersion relation for unmagnetized plasma with cold ions and
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Initial

states

Initial

states

4s

4p
4d

4f

He+(U) + e~ -> He+(4l') + e

E(e~) = 2keV

4s

4.6(-6)
<3.0(-8)
<3.0(-8)

Final states

4p 4d
1.5(-5)

6.1(-6)
<3.0(-8)

3.0(-8)
8.8(-6)

4.6(-6)

4f

<3.0(-8)
<3.0(-8)
6.0(-6)

He+(4l) + H+ - He+(4lf) + #+

£(#+)= 50keV

Final states

farad

6.9(7)
1.3(9)
4.4(8)
2.2(8)

4s 4p 4d 4f farad

4s - l.l(-5) 8.4(-7) 7.4(-8) 6.9(7)
4p 3.5(-6) - 6.7(-6) 2.4(-7) 1.3(9)
4d 1.3(-7) 3.8(-6) - 4.6(-6) 4.4(8)
4f 1.4(-8) 8.8(-8) 3.4(-6) - 2.'2(8)

Figure 6: Collisional /-mixing of He+ n = 4 states. The tables give values for
(av) in cm3/sec at the indicated energies (after Olson). Rates are obtained
by multiplying by density. The last column gives the radiative rate in sec"1.
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Figure 7: Mirror geometry for analytical beam dispersion estimate.
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(cm-*)

a.sx/d3-

T"- = 500 eV

H » H

5" 6 7
2(m)

> "ZC^

Beam characteristics:

50% modulation T± = 3eV Ty = 10 eV
Euam = 10keV / = 6.6 MHz Ipeak = 1A

Observation parameters:

0 = .002 n = .2 Tot>e = 1 ms

Mixing: NONE

Figure 8: Conditions for TMX-U uncertainty calculations of Fig. 9.
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1.5 2.0

AVr- - '2^V UNCERTAINTY TN POtheaittal

OBS^^VATXO/vi WrtfDOV

2.5 3«0 3.5 4.0

flxLal Position (m)

4.5 5.0

Figure 9: End plug potential of TMX-U. Uncertainty estimates for the po
tential (in volts) as measured by the He+ beam time-of-flight diagnostic are
indicated at various points of the profile.
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wo13 1

E- 35"0 keV
FLAT Ers-rfcLfcorio*/

^A,XWELLi^ft/

4YJD,2-4-

W

Beam characteristics:

50% modulation

£<*«*, = 60 keV

Observation parameters:

0 = .0002

Mixing: B0 —» Bi

8

t.= 5"okeV
FLAT prSTfcXfcOTIoM

/*

Tj. = 3eV 3]| = 10eV
/ = 4.2MHz JpeaJk = 2A

»7 = .2 rove = 5 ms

io ^M

>ZC*)

Figure 10: Conditions for MFTF-B uncertainty calculations of Fig. 11.
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UNCEJeTWtt/TY IN POTENTIAL

BEANv PENE.VM"TXOiv/ FRACTION

0.0 2.5 5.0 7.5 10.0 12.5

Rxlal Position (m)

15.0 17.5

Figure 11: End plug potential of MFTF-B. Uncertainty estimates for the
potential (in volts) are indicated at various points of the profile.
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