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Abstract

This paper proposes algorithms for Qinimizing a continuocusly
differentiable function £(x): RW -+ R subject to the constraint
that x does not lie in specified bounded subsets of nfl. Such problems
arise in a variety of applications such as tolerance design of
electronic circuits and obstacle avoidance in the selection of
trajectories for robot arms. Such constraints have the form
Y (x) égmin{qj(x)lj €7} < 0. The function | is not continuocusly
differentiable. Algorithms based on the use of generalised gradients
have'considerable disadvantages because of the local concavity of Y
at points where the set {jlgj(x) = P(x)} has more than one element.
Algorithms which avoid these disadvantages are presented and their

convergence established.
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1. INTRODUCTION

We consider optimization problems of the form:
win{£(x) [x € Ry 3 €1 g7(x) <0, j € J} (1)

where £: R" - R is continuously differentiable (the cost function) ’
Rj’ for each j in I, is a subset of R" (an exclusion region) and
gj, for each j in J, is continuously differentiable (gj (x) 5 0 is

a conventional constraint). For each j in I, Rj is defined by:

Rj A{xe r" |lbj (x) > 0}. (2)

An example of Rj is the set {x € R" xll, < 1}

(i.e. wj(x) =1 - “x”w); in this case the constraint « ¢ Rj is
equivalent to the constraint wj(x) 5 0 where wj (x) 4 min{1 - X,
1+ xili =1,...,n}. We assume that, in general, \bj: R + R is

defined by:

W10 4 min{e3 % |k € ,} (3)

where the functions qu’k: R® - R, jE€J, k € Ij' are assumed

to be continuously differentiable.

Suppose, for each j in J, that II:j = {1,2,...sj}. Then the exclusion

contraint x ¢ Rj is equivalent to the constraint
!bj (x) <0 (4)
and this in turn is equivalent to the constraint

631 (x) < 0) or (432 (x) L0) or....

jrsj )
«e. 0or (0 (x) < 0) (5)

Note the appearance of "or" in (5) compared with the "and" associated

with max functions in constraints; the "or" arises from the fact that Y
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is defined to be a min function.

The optimization problem can be re-expressed as:

-min{£f(x) |[x € X} (6)
where
x4 {xer" [¥(x) <0, j€1:g7(x) < 0, § € I}, (7

The constraint x € nzj (equivalently constraint (5)) has not been
extensively studied in the literature; an exception is [1]. Such
constraints arise in robotics where each Rj specifies an obstacle
to be avoided. They also arise in a sub-problem when outer approxi-
mation algorithms are employed (for example to solve problems with
infinite dimensional constraints [2]); the sub-problem has the

form of problem (6), with X specified by (7), where the sets R JEI are

5
neighbourhoods of infeasible points previously generated by the main
algorithm. A similar problem arises implicitly in the tolerancing
problem [2]; in this case a subproblem of the form

min miﬂ{¢k(x)} arises, whiéﬁ causes aifficﬁlfies-similar to those
arising in problem (1).

The essential feature of the difficulty is the local non-convexity of the
level seéts of the functions wj(x) at points where the active constraints set
I;(x) Ak € Ij|¢j’k(x) = ¢J(x)} contains more than one element.

This is illustrated in Fig. 1(a). The Clarke generalised gradient [6] is shown
in Fig. 1(b); a descent direction, computed using the generalised gradient,
will lie in the shaded region. Clearly many permissible search directions
are excluded, because a search direction generated using the generalised
gradient is a descent direction for each of the active constraints

(¢j'1 and ¢j’2 in the example of Fig. 1) whereas what is required is

a descent direction for any of the active constraints (because

Wix) = min{¢j'k(x)lk €1} - min{e3 ¥ (x) |k € 1,0}, a direction h

k |
which is a descent direction for ¢3'k(x), where k is any element -

.

of Ié(x), is also a descent direction for wj(x)).



2. PRELIMINARIES

Since a conventional constraint may be regarded as a (degenerate)

exclusion constraint, our optimization problem may be restated as:
P: min{£(x) [y (x) < 0} (7)

where P: R' + R is defined by

¥(x) A max {!Pj (%)} (8)
j€I
and
W A min (03%0) (9)
kE€X, :
J
i.e.
V(%) = max min {¢?"%(x)7]. ' ' (10)
JET keI,

If wj is a conventional constraint, the cardinality of Ij is unity.
As shown in the Appendix, (10) may be rearranged as:
= =k Ij .
Y(x) = min max (A"’ (x)} (11)
k j €
€K j J”k
where, for each k in K and j in J;{ there exists a j' in I and k' in

Ij such that

A3y = 3"k (x) (12)

i.e. (12) is merely a (standard) re-arrangement of (10). The cardinality

n

of K many be high. For each k in K, let nk: R + R be defined by

n* (x) A max {3y .

) ' (13)
:;€Jk

For any real valued function ¢ let ¢(x) denote max{0,d(x)}. Then
. + :



¥ = min {"*0}, ¥, = minln“e0 ), (14)
KEX KER

and our optimization problem acquires the form

p: min{£(x) |min (")} < O}. (15)
k€K

The special feature of the problem arises from the appearance of

the min operator in place of the normal max operator in the con-

straint specification.

The functions n*: R” + R, obtained by maximimizing a finite
number of continuously differentiable functions, are not themselves
continuously differentiable; however there exist algorithms

for minimizing such functions (5].

We propose to solve (15) using an exact penalty function. For

each ¢ > 0 let Yc: JRn + IR be defined by:

Y (x) A £(x) + c¥(x) = £(x) + ¢ min {nk(x) } (16)
c = + kEK +

We will show later that, under mild assumptions, for c sufficiently large the

constrained optimization problem (15) is equivalent to the unconstrained

problem:
P : min{y (x)|x € R"}. (17)
C c

For each k in K, let Yck : BT » IR be defined by:

Y ) A £+ enfix (182)
c = +

so that
Y_(x) = min {y ¥ (x)} < (18b)
c c :

k€K



The functions Yck : R® - R are continuous.
Then problem (17) may be expressed as

PC: min n{ min {Yck (x) }} (19)
x€ER kEK ‘

i.e. as the minimization of the minimum of a finite number of

functions.

For each k in K let ﬁk: R” x R” + R be defined by

A, ) 4 max (%300 + 753 won). (20)
jGJk
Similarly let ?ck (x, h) be defined by:

TG m) A£G + £ (0h + ont(x, ). (21)

Thus §ck (x, h) is a first order approximation to Yck (x + h) in a

sense made precise in Proposition 2. For each k in K let

hck : R® R be defined by:
hck (x) A arg min{(1/2) Hh”2 + ?Ck (x, h} (22)
and Sck: R" - R by:
850 A7 &, n ) -y (23)
c =T c c

Since h — ‘?ck {x, h) is convex, h‘:k is well defined. Clearly
Ock (x) is non-positive for all x. It is shown in the Appendix
that Gck (x) = 0 is a necessary condition of optimality for the

problem:
pck= min{y (0 [x € R"}. (24)

Indeed, if ec" (x) < O0,then hck (x) is-a descent direction for Yck (x) .



For all € > O let the €-active set Ka(x) be defined by:

K (x) A {k € Klnk(x) < U(x) + e}, (25)
Note that
Ky = k €[00 = v} . (26)

Let ec: mn + IR be defined by

. k
8_(x) A mln{ec (x) |k € Ko () }. (27)

Clearly ec(x) < 0 for all x in r" , all ¢ > 0. We shall show that

Gc(x) = 0 is a necessary condition of optimality for Pc.

Proposition 1

(a) For all ¢ >.-0, if x is a-local solution to Pc (Pck) then

k
ec(x) =0 (Bc (x) = 0).

(b) The functions eck ’ hck: R ~ R . k € K, are continuous.
Proof
(a) That Gck (x} = 0 is a necessary condition of optimality for

Pck is proven in the Appendix.

Suppose that x is optimal for P_ but that ec(x) < 0. From

the definition of Oc there exists a k € Ky (x) such that

6: (x) < 0. Hence x is not locally optimal for Pck so that

there exists an x'arbitrarily near x such that Y:(x') <Y:(x) . Since
‘Yc(x') < Yck (x) and Yo (x) = Yj (x) (since k is inKo(x)) it follows that
Yc(x')‘ < Yc(x) + i.e. x' is not locally optimal for Pc’ a contradiction.

Hence Sc(x) = 0.



k

(b) That the functions 6:‘, hc + k € K, are continuous is proven

in the Appendix. o

Comment: Note that we do not claim that ec is continuous. Since

the set Ko(x) can suddenly decrease, Bc (x) can -suddenly increase.

3. Algorithms for Pc

We present in this section two algorithms for solving Pc; the first
is a simple extension of an algorithm due to Tits [1] for
the case when the functions Y:, k €K, are differentiable. The second

is a further extension to improve efficiency.
Algorithm !

Data: c >0, so>0,a€(0, 1}, B € (0, 1).xO€1Rn.
Step 0: Set i = 0.

Step 1: (Determination of search direction)
For all k in K. (xi) compute Séc(xi) and the corresponding

search direction h;c(xi) solving (22 ) so that

k _ 2k k k
Sc (xi) =Y. (xi, hC (xi)) Yo (x).
Step 2: (Determination of step length)
For all k in KE (xi) compute X;‘(xi), the largest

0
Ain s iy {1, 8, 82,...} satisfying the Armijo conditicn

k k k
Yo (%, + A" (x))) - Yo (%) < - AaB (%) .

Step 3: (Determination of next x)

" Determine kc(xi), that k in KE (xi) which minimizes

0
k k k
Yo (xi + Ac (xi)hc (xi)).



-9 -

kc(xi) kc(xi)
Set x, =x, + A (x,)h (x.).
i+l i c i'c¢ i
Set i =i + 1. Go to Step 1. o

Theorem 1

Any accumulation point x* of an infinite sequence {xi} generated

by Algorithm 1 satisfies ec(x*) = 0.

Proof

1f can be shown (see the proof ~f Theorem 2 for a similar result)
that if 9:(x) < 0 (for any x in R®, any k in K) then there exist a

€ > 0 and a § > 0 such that

k, k k, , k, , k, ,..k, .,
Yo (B (")) = Y (x') < -8, A(x") A x" o+ Ao (x")
for all x' in BS(X) Q;{y‘ily#x‘lg.ﬁ}. This establishes the hypothesis
employed by Tits [1]:; hence it is easily shown that any accumulation

point x* of an infinite sequence generated by the algorithm satisfies

ek(x*) = 0 for all k in K.(x*), i.e. 8 (x*) = 0. a
c 0 c
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Computational expense arises in Algorithm 1 in two ways, firstly

the computation of B:c (xi) for all k in K, (xi) (this can be
0

reduced by reducing eo) and, secondly, the computation of Ack (xi) for

all k in K. (xi). The second algorithm reduces the latter computation
0

by employing a single Armijo type computation rather than one for each

element of Ke (xi). In order to specify the algorithm we introduce
0
the function Y. R® x R® + R defined by:

;c(x, h) A min {?ck (x, h)}. . (29)
keK_ (x)
0
Because Yck (x) > Yc(x) + € for all k not in KE (x) it follows that
~ 0
Y. is a first order approximation to Yo in the sense that

[Yo G+ Ab) = ¥ (AR | = o(A).

To specify the second algcrithm we need to introduce the following

definition. In step 3 of Algorithn{ 2, hc(x, A) denotes (with
- kU . ~k k
some abuse of notation) Mh _  (x) where kO isany k in arg min {v = (x, th (x))} .
= kK _ (x)
€5

The term hc(x, A) replaces the term \h in more conventional algorithms.
In the algorithm to be proposed b.ot:h the step length (A) and the
search direction (hc(x, A)) change as A varies. In conventional
algorithms :che search direction does not vary. It follows from this

definition that

~ . ~k
Yc(x, hc(x, A)) = min {yc

k€K€0(x)

{(independently of the ko employed in constructing hc(x, A .

(x, xhc“ (x) }.
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A typical plot of ?c(x, hc(x, A)) as A varies from O to 1
is shown in Fig. 2. Note that the function is the minimum of

a set of convex functions and is neither convex nor concave.
Algorithm 2

>0; BEO, 1); x. € R".

Data: c>0; ¢ 0

0

Step 0: Set i = 0.

Step 1: (Determination of search direction)
. k
For all k in K (xi) compute Gc (xi)

0 .
and the corresponding search direction

h‘(x.).
c'Ti

Step 2: (Determination of step length)
Compute Ac(xi), the largest
A in S such that:

(yg (e +h (%5, A)) =y (x,)1<(1/2) by (x g h (% AN =y (x0T

Step 3: Set Xigp =% * hc(xi, kc(xi)).

Set i = i+l.

Go to step 1. s ]
To analyse this algorithm we require the following result:

Proposition 2

For all x in nfl, all n > 0, there exists a § > 0 such that
In®(x* + n) - %', | <l nl

for all x' in BG(X)’ all h in BG(O) and all k in K.



Proof: See Appendix. =}
We can now state our main result.
Theorem 2

Suppose Algorithm 2 generates an infinite sequence {xi}.

Then any accumulation point x* of {xi} satisfies Gc(x*) = 0.
Proof

Suppose xi L. x* where I is some subsequence of {0,1,2,...}
and that, contrary to what is to be proven, Bc(x*) < 0. By

construction, there exists a k* in Ko(x*) such that

0 K" (x%) = 8_(x%)
c X = c X »

Since K_' (x) A {k E'Kgnk(x) < Y(x) + €.} and h;‘ is continuous for all
c EY hY

0

0 . N
k in K, (see Prop. Al) there exists an 21 > 0 and a compact subset H of R
such that:

k* £ K. (x)
o
Kg (x) < KE {(x*)
0 0 X X
¥ (x) = min Yc (x) = min Y o (x) (30)
kEK _ (%) kEK _ (x*)
€ €
0 0
and
h (x, \) €H (31)
(o4

for all x in BE (x*) and all A in [0, 1]. Hence
1

Y (x, h_(x, M) < ¥ ix, A" x0)
c (o4 - Cc

< Y x) + 265 (x) (32)
- C C
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for all X in [0, 1) and all x in B, (x*). Let LAmax{||n|l |n € 8}.
1

From Proposition 2 (with n = -6;‘

*
of 6;‘ , there exists an 62 in (0, €1/2] such that

*
(x*) /8L) and the continuity

v+ o) - ?c" (x, A | < -(A/s)ec"* (x*) (33)

eck* (x) & [(3/2)ec"* (x*), (3/4)8 " (x0))

X + Ah £ B_ (x¥*)
s1

for all x in BE (x*), all h in H, all k in X and all X in [O, XI]
2
where A, is the largest A in S satisfying HAInH_i Ez'fox'all h € H.

It follows (see Appendix) from (29), (30) and (33) that

3\ s k*
(% + Mh) =¥ (x, )\h)'l < -O/B8 0 (x%)

for all x in B8 (x*), all h in H and all A in [O, AI].
2

Hence
h_(x,A)) < ¥ _(x, h_(x,0)) = (A/8)8 %" (x%)
Yc(x + C(x’ < YC X, c X, c
. \ K+
SV x, M) - A(3/16)8° (%) (34)

for all x in Be (x*) and all X in [O, kll. From (32)
2

A5 (0 < |9 (x, h_x, V) -
-C X chl Cx' Y

ck* (x) |

< IYc(x, hc(x, A) - Yc(x)l
k*
+ IYC(x) - Y, (x) | (35)

k*
for all x in BE (x*), all A in [O, All. Since Yo (x*) = Yc(x*),
1
we can choose an 63 in {0, €,] such that
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k* _ k* .
lyg0) = vo 0] < -3k /328 (x*)

IA

k* A
A8 (x) < 8/ Y (x, h(x, X)) = ¥ (0] (36)

for all x in B_ (x*). From (34) and (36)
3

(Y]

Yo(x + h (%, A)) =y (%) <(11/14) [y _(x,h_(x, X)) =y_(x)]

for all x in BE (x*) . Hence the Armijo step length Kc(x) is not
3

less than Al for all x in BE {x*).
3

Using the above bounds:

k
c

k*

) ~k* *
Yo (x +hc(x,)\1))-Yc(x) <Y (x,klh (%)) =Y (x)

k* . k*
~ /8 (x4 + I{c(x) -Y, (0]
< (TA/8-1,/12)8 %% (x%)
- 1/ 1 c

for all x in BE (x*). Since the Armijo step length is not less than
3

Al it follows that

k*
YC(AC(X)) =Y (x) £ (19/24)>\16C (x*)

for all x in BE (x*), where
3

A (x) & x +h_(x, A_(x)

is the successor point to x generated by the algorithm. The

desired result follows from a standard algorithm modell4]. a
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4. CHOICE OF THE PENALTY PARAMETER

We have presented in Section 3 two algorithms for solving Pc‘
An algorithm for solving P requires the addition of a rule for adaptively
adjusting c. Our rule will be based on the algorithm model in
(4] and requires a test function x — tc(X)f If the test tc(x)‘g 0
is satisfied the penalty parameter c is left unaltered; otherwise c
is increased. Before proposing the test function we establish a few

properties of P and Pc' The first result is obvious.

Proposition 3

Suppose ; is a local minimizer for Pc and is feasible for P. Then

A .
X is a local minimizer for P. (]

Before proceeding it is helpful to define a few terms. For all

k in K let
k - =K,J I 4
Io 0 A{y €3, [0 0 =0t}

denote the active constraint set for the constraint nk(x).s Q;
k
note that J;c(x) is empty if nk(x) < 0. For all k in K let on
and ank(-)+ denote the Clarke generalised gradient [6] of, respectively,

nk and nk(.)+. These satisfy:

ank(x) = co{Vﬁk'j(x), j € J;((x)}

and

n*x), = colo: W I, 5 €050} if 10 = 0

0 if nk(x) < 0.

We can express the condition of optimality (Gic(x) = 0) for problem

P;(: min Y;( in terms of generalised gradients.
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Proposition 4

Suppose x is such that nk(x) < 0 and ¢ > 0. Then

(1) ei(x) = 0

if and only if

(ii) 0 € VE(x) + cank(x)+.
Proof

Suppose nk(x) = 0. 1If follows from the definition of ec" that

Sck (x) = 0 if and only if
-k ,3 . k
<V£(x) ,h> + ¢ max{0; <¥n" "7 (x),h>, § € J5 ()} >0
for all h in R". This, in turn, is easily seen to be egquivalent to

<Vi(x), h> + c.max{<€, h>|E € Bnk(x)+} >0
or

max{<g, h>|£ € Vet + en*(x) } > 0 (38)
. n
for all h in R .

Suppose then that E‘ck (x) = 0 but that 0 does not lie in the convex
set VE(x) + cank(x) + let g denote the closest point in this set to the
origin. Then h = -g satisfies <h, &> < 0 for all § in VE(x) + cank(x)+,

contradicting (38).

If, on the other hand, 0 lies in the convex set VEf(x) + cank (x)+

then (38) is true so that eck (x) = 0.

The case when nk(x) < 0 is trivial; both Ock (x) = 0 and

0 € VE(x) + cank(x)+ if and only if Vi(x) = O. o
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Proposition 5

(a) Suppose that x is feasible for P and for some ¢ > O satisfies

Sc(x) = 0. Then:
(1) if Y(x) = 0, 0 € co{VE(x), an°(x)} for all k in Ko (x)

(39)
(ii) 1if Y(x) < 0, VEf(x) = 0,

(b) If X is a local minimizer for P, then ; satisfies (39).
Proof

(@) since B_(X) = 0 it follows that 8 (X) = 0 for all k in K, (%).

From Proposition 4, 0 € VE(%) + cank(}?)+ for all k in KO(;). Hence

there exist non negative multipliers uj such that VE(x) + 2cujVﬁk'j(x) = 0,
the summation being ove; the set Jé‘(ﬁ);'dividing by 1 + cZuj yie;ds

(if Y(x) = O)
0 € co{VE(R), Bnk(ﬁ)} for all k in KO(;)

Clearly ch(ﬁ) is empty if Y(x) < O so that in this case VE(X) = O.

(b) If X is a local minimizer of P, it is also a local minimizer

for Pk for all k in KO(Q) . The result follows from (6]. a

We introduce next a constraint qualification assumed to

hold in the sequel.

Constraint Qualification

For all x such that Y(x) > 0, for all k in Ko(x)

0g 3 (0 = colvi*Im), 3 €35} o
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The constraint qualification ensures that Y(x) can be reduced at all non-

feasible x and thus ensures the existence of finite penalties.

Proposition 6

Suppose X is a local minimiser for P so that x is feasible for P and
satisfies (39). Then there exists a ¢ > 0 such that ec(ﬁ) = 0 for

all ¢ > &.
Prootf

Suppose Y(X) = 0. It follows from (39) and the constraint qualification

k,j

that there exist non-negative multipliers p satisfying

VE@R) + ) wkedoaked gy = ve) + ) w3 /) vk I (&)
JETS (%) JETE (R)

for all k in Ko(ﬁ), ¢ > 0. There exists a ¢ > 0 such that

(Xk’j/c)li 1

I ofoat i@ e cnf@
3€3% (R) *

for all ¢ > &, all k in K (R).

Hence:
n K, A
0 € {VE(R) + can (X)) +}

for all k in KO(Q), all c > &. 1It follows from Proposition 4 that, for

k

all ¢ > ¢, 6. (%)

0 if k € Ko(ﬁ). Hence Gc(ﬁ) = 0 for all ¢ > &.

The case Y(X) < 0 is trivial. o



We can now define the test function; for all c > 0,

£_: R" + R is defined by:
tc(x) é Gc(x) + w(x)+/c ; (40)

The properties required by the test function are specified in our

next result.

Proposition 7

(i) 1If for some c > O ec(x) = 0 and tc(x) < 0, then x

satisfies (39) and ¥(x) < 0 (i.e. x is a stationary point for P).

(ii) For all ¢ > 0, if xi -+ x* as i -+ © and tc(xi) < 0 for

all i, then t_(x*) < O.

(iii) For all % there exist positive ¢ and € such that tc (x} <0

for all ¢ > ¢ and all x in Bé(ﬁ) . a

The proof of this result is deferred to the appendix.

The algorithm for solving P can be presented. 1In the
algorithm {cj} is an infinite sequence of positive numbers

tending monotonically to infinity.
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Algorithm 3

Data: E:o>0; o,B€(0,1); {c }, an infinite sequence such that co>0

and c, A was j+ o %y € R .

Step 0: Set i = 0.

Step 1: 1If tc (xi) > 0, set zj =X, and choose j* so that
J

Cy« is the lowest c in {cj} satisfying tcg(xi)‘i 0.
Set j = j*.

Step 2: If © (xi) = 0 stop. Else compute X, using Steps 1-3

c i+l
J

of Algorithm 1 or 2. Set i=i+1 and go to Step 1. a

Theorem 3

(i) - Ifthe sequence {zj} is finite then either the sequence {xil is finite
with its last element X, satisfying W(xk) = 0 and (39) or
it is infinite and any accumulation point X satisfies

&(X) = 0 and (39).
(ii) 1If {zj} is infinite then it has no accumulation points.

Proof

This result follows from Theorem 2, Proposition 7 and Theorem
4 of [4], if we note that hypothesis (ii) in this result (the
continuity of tc for all ¢ > 0) is merely used to establish

hypothesis (ii) in Proposition 7 above.

Corollary

If the sequence {xi} is bounded, then {zj} is finite. D
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5. CONCLUSION

Exclusion constraints have the unusual feature that the set
of feasible search directions is not necqssarilyvconvex. Thus
algorithms based on the use of generalised gradients may jam
at points which are not local minima of the constrained objective
function. Two algorithms which avoid this problem are presented.
These algorithms effectively explore a set of possible search
directions (rather than one). As pointed out in [1] the
cardinality of K is very high if the cardinality of I is high.
Hence it is desirable that the number of exclusion regions is not

too high.
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APPENDIX

Proof of Proposition 7

(i) Suppose that ¢ > 0, ec(x) =0 and t_(x) < 0. Hence from (40),
if follows that w(x)+ = 0 (so that Y(x) < 0). Since ex(x) = 0 it follows

from part (a) of Proposition 5 that (39) holds.

(ii) Suppose that ¢ > O, X, + x* as i + ® and tc(xi)'ﬁ 0 for all i.

From (40)
Yix,) /e < -8 (x)) (A1)

for all i. There exists a neighbourhood N of x* in which Ko(x) c Ko(x*).

Let T: IRn - IR be defined by:
T(x) 4 min{e’c‘(x) |k €k (x® ). (a2)

Clearly T is continuous, T(x) < Gc(x) for all x in N and TW(x*) =

ec(x*). Hence, for all i sufficiently large, it follows from (Al) that
Wix,) /e € -8 (x) < -T(x)),

so that
Y(x*) /o & -T(x*) = —ec(x*).

Hence

t (x*) < 0.
c —

(iii)
() Suppose W(Q) < 0. There exists an € > 0 such that \P(x)+ = 0 for all

%x in Bg(i). Hence tc(x)_i 0 for all ¢ > 0, and all x in Be(ﬁ).

(B) Suppose Y(X) > 0. By virtue of the constraint qualification

0¢ co{Vﬁk’j(ﬁ), j € Jg(ﬁ)} for all k in KO(Q). Also there exists a
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A

L > 0 such that Ko(x) c KO(;) for 211l x in B_. (X). ince nk(x) =
1

-k, 5 ) N
max (N 'J(K)Ij € Jk} there exists an 52 € (0, €1] such that

M
(R}

min{f 30 « < I, n> | g€ Jg(ﬁ)}

Zmax{ﬁk’j(x) « <9 3 (x), B> | 5 7 I N3 N (A3)

o w

for all x in B_ (X), all h in H A B,

(0) and all k in Ko(ﬁ).
2 2

For all k, let ﬂk: R + R be defined by:

™ (%) A min mag (<773 (x) 0> (ad)
heg &3, ()

k . . . - . = .
Clearly T is continuous and, by virtue of the constraint qualification,

satisfies

for some 3 > 0 and allk in KO(Q). Zence, there exists an 33 € (9, 62] such

that
P -
T (%) < -8 (a3)

for all x in B, (%) and all k in Ko(ﬁ).

3
= i . ak
from the definition of vc:
2 1

6%(x) < min{(1/2) ] n!

+§§(x,h)-(1/:)§§h;<x)fiz - T
h€E -

. i Tk s
Using the definition of Yc we obtain

K e s s
8 (x) < min max{(1/2)l|n Hz +cnx'3(x)-cﬂk(x)$+<7f(x)+cvnk'3(x),h>,
h€d’ ’

< & .
3F 3,

s H 2 : - . A} -~ vy, T
(172) il hyj -cﬂ{(x)‘+<v:(x),n>: - (1/4),§n2(x)';2 ns )

. r
. . X k
The second term in the braces accounts for the case when N (x,h) =
-

max{ﬂk(x,h),O} = J. 3ecause of inegquality (A3), I in (a6) can be
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kK A A
replaced by Jo(x) if x € B€ (X). Let hk(x) denote the minimizing h in
, 3
(A4) so that (by (A4) and (a5)):

<V 3 (%), n¥ x> < =8 (A7)

for all x € B_ (X), all k in J5(x) .
3 0
Let b denote an upper bound for <Vf(x),h> as x ranges over B, (%)
3
and h ranges over H. Substituting ahk(x) for h and Jg(x) for

Jk in (A6) yields:

ek(x)‘i min max{(1/2)€§a2 + b0 - cad;
ae(0,1]

2

(1/2)a§a + ba - cnk(x)+} (A8)

for all x in B_ (x) and all k in xo(?c). Since Gc(x) = min{e’c‘(x) fx €K0(x)},
3 .
since K,(x) < Ko(ﬁ) for all x in Be (%) and since nX(x) = Y(x) of
3

k £ Ko(x) it follows

0 (x) < min max{(1/2)€2a2 + ba - cad; (1/2)52&2 + b - cP(k) }
c - 2 2 +
Q€[0,1]
(A9)
for all x in B_ (é). Hence for all x in B_ (X):
! €3
. 2.2
t.(0 < min  max{(1/2)€50° - (8 - b + V(x) /c;
Q€(0,1] :
(1/2)€20% + ba + Y(x) ./ bix) )}
2 b.¢ /€ - c(x +
(A10)

Since tc(x) = Bc(x) < 0 if Y(x) < 0 we confine attention to those x

such that YP(x)

w(x)+ > 0. The first term in (A10) is negative if

a(cS - b

aeg/m < V), /e

i.e., if

c§ - b - aeg/z >0 (a11)
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and

2
@ > ¥(x) /lc(ed - b - ae,/2)]
Since & € [0, 1], inegqualities (All) and (A12) hold if

c > (b + 83/2)/5

Q
A\

2 e W(x)

where

2e) A 1/[c(ed - b - £2/2))
The second term in (A10) is negative if

afb + ae2/2] < Y00, lc - 1/c]

and

Clearly (Al6) holds if
. 2
¥ [e - 1/cl/[b + a€2/2]
which, in turn, is implied by

@< Yix) ule)
where

ale) A le - 1/e1/[b + €2/2)

(since @ € [0, 1]). Clearly ¢ can be chosen so that c > (b + 52/2)/6,

¢ > 1 and 2(c) < u(c) for all ¢ > ¢ yielding t (x) < 0 for all

X in BE (Q) and all ¢ > c which is the desired result.
3

(a12)

(A13)

(Al14)

(a15)

(a16)

(A17)

(A18)

(a19)



- 97 -

Proposition Al

. <. ' k .
(i) Suppose x is a local minimizer for Pc with ¢ > 0. Then elé(x)
- X k k .
(ii) The functions Gc ’ hc are continuous.

Proof

(1) Suppose ack(x) < 0. Hence there exists a h in H such that
?2(:{, h) - Yc(x) = -d ¢ 0. If follows from Proposition 2
and the differentiability of £ that there exists a § > 0
such that: I‘.fck (x + &h) = \?ck (x, ah)! < ad/2 for all ¢
in [0, 81. Because of convexity *?ck {x, ah) - Yc(x) < -ad

k

for all ¢ in (0, 1]. Hence ‘{;(- (x + ah) =Y

< -ad/2 for

all o in [0, 8], contradicting local optimality.

(ii) We first prove that hck is continuous. Let &: R" - R be

defined by
» . l I2 Ak n
£(x) A min{(1/2) {}n}| +Y_ (x,h) lh € R" }.

Suppose that x, * X as 1 -~ © and let

h; A arg min{ (1/2) {| hi{z + \?ck(xi,h) lh € "}

for all i (i.e. h, éhk {(x.)). Clearly
i='¢ i
k

- ~ k
;(xi) <Y (xi, 0) = Yo (xi)

for all i and

0.
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(1/2) | nl|? + \?ck (x, h) » @ as [|h]||+ =

uniformly for all x in a compact set. Hence the infinite sequence

{||hi|]} is bounded.

Now
Cwr - Al ~k ~
Lim £(x) < 1im (/2 [ 817 + v (x;, m)}

£(X)

where h é{h;‘(ﬁ), so that £ is u.s.c.

Suppose that lim E(xi) < E(X). sSince:

12

. ~ . : Ak
lim E(x;) = lim {(1/2)l|hi] * Y. (xi, hi)}

tm (/2 n 1%+ $5 &, ap)
it follows that

Lim {(1/2) || n |2 + Y5 &, n) < £®)

_— i c S |

But this contradicts the optimality of h. Hence

lim £(xi) Z_i(ﬁ), i.e.
lim E(xi) < E(X) < lim E(xi)
and therefore lim E(xi) = £(X), i.e. £ is continuous.

Since {hi} is bounded, hi LN h* along some subsequence K.
But this implies that h* is a minimizer for the problem
min{(1/2)||h|i2 + ?c(Q,h)}. But the minimizer is unique, so h*==g. Since
{hi} is bounded and has a unique accumulation point it follows that
hi *~ﬁ, i.e. hz is continuous. Since hz is continuous it follows

. k . .
easily that ec is continuous. o
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Proposition A2

Imax{A;B} - max{C,D}| S_max{lA-Cl,lB-D|}.

Proof
Let @ A max{a,B}, 8 A max{c,p},
oA fo- 8
= max{a - 8, B - a}

a - 8 = max{a - 8, B - 8} S.max{A-C, B8-D}

3 - o =maxic - o, D - a} < max{c-a, z-B}
Hence
¢ < max{a-c, B-D, c-a, D-B}

max{|a-c{ , |B-D|}.

Proposition A3

If lai—bilf_é for all i in I
then
| min a; - min bil <6
i€ex i€z
Proof

Let aémin a,,
i€x

8 A min b,

i€x
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and suppose aj =00, b =8,

Then:

w
[
Q
1
jos}
'
)
In
o
1
[
In
O

-

Finally, since the result is well known in the literature

on digital logic, we illustrate the assertion that

max min {¢J'k(x)} < 0 can be replaced by min max {ﬁk'J(x)} < 0.

; . o
J€I kGIj k€K JET,

Consider the simple case

max min {¢j'k(x)} < 0.
j€{1,2} ke{1,2}

This is clearly eguivalent to the following

[¢1'1(x) <C ecr ¢1'2(x) < 0]

(x) <0 or ¢2'2(x) < 0]

This in turn is equivalent to:
' 10 < 0 ana 9% 1) < 0)

or (6! ) <0 and $° %) < 0]

1,2

or 16" %(x) <0 and ¢°"%(x) < 0]
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or [¢1'2(x) < 0 and d>2'2(x) < 0)
which is equivalent to

min max {r-]k’j(x)} <0
xe{1,2,3,4} j€{1,2}

where ﬁl'l - ¢1,l’ ﬁl,z - ¢2,1’ ﬁ2,1

-3,1 1,2 = 2
Rl g2, 7302 2 g%

=¢ lﬁ

The result is easily generalised.
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Captions for Figures

(a) Exclusion Constraint

{b) Generalized Gradient

Step Length Determination
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