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Abstract

ALGORITHMS FOR OPTIMIZATION PROBLEMS

WITH EXCLUSION CONSTRAINTS 1

2 3
D Q Mayne and E Polak

This paper proposes algorithms for minimizing a continuously

differentiable function f(x) : R -»• 3R subject to the constraint

that x does not lie in specified bounded subsets of 3Rn . Such problems

arise in a variety of applications such as tolerance design of

electronic circuits and obstacle avoidance in the selection of

trajectories for robot arms. Such constraints have the form

ij>(x) A min{g3(x) |j 6j} £ 0. The function \\) is not continuously

differentiable. Algorithms based on the use of generalised gradients

have considerable disadvantages because of the local concavity of !p

at points where the set (j|gD(x) = tp(x) } has more than one element.

Algorithms which avoid these disadvantages are presented and their

convergence established.
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1. INTRODUCTION

We consider optimization problems of the form:

min{f(x)|x I R ,j€ I; gj (x) < 0, j €J> (1)

where f: m + » is continuously differentiable (the cost function.)

Rj, for each j in I, is a subset of ]Rn (an exclusion region) and

g.., for each j in J, is continuously differentiable (g3 (x) £ 0 is

a conventional constraint) . For each j in I, R. is defined by:

Rj A{x €Rn |i/;j(x) >0}. (2)

An example of R is the set {x £ Rn IWL < i>
(i.e. if; (x) = 1- llxH^); in this case the constraint a I R. is

equivalent to the constraint i[P (x) < 0 where ^ (x) A min{l - x

1 + x^Ji = l,...,n}. We assume that, in general, i^: TRn •+• JR is

defined by:

^j(x) Amin{c()j'k(x) |k €I.} (3)

where the functions <PJ'*: 3Rn + R,j€J, k€I., are assumed

to be continuously differentiable.

Suppose, for each j inJ, that I. = {l,2,...s.}. Then the exclusion

contraint x £ R. is equivalent to the constraint

tyi(x) < 0

and this in turn is equivalent to the constraint

(6j/1(x) < 0) or (<j>j'2(x) < 0) or ....
j/si

... or (<J> J(x) < 0)

(4)

(5)

Note the appearance of "or" in (5) compared with the "and" associated

with max functions in constraints; the "or" arises from the fact that if/j
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is defined to be a min function.

The optimization problem can be re-expressed as:

.min{f(x)|x € x} (6)

where

X A {x€Rn ^j(x) £0, j€l;gj(x) £0, j€J>. (7)

The constraint x £ TR (equivalently constraint (5)) has not been

extensively studied in the literature; an exception is [1], Such

constraints arise in robotics where each R. specifies an obstacle

to be avoided. They also arise in a sub-problem when outer approxi

mation algorithms are employed (for example to solve problems with

infinite dimensional constraints [2]); the sub-problem has the

form of problem (6) , with X specified by (7) , where the sets R., j 6 I are

neighbourhoods of infeasiblfc points previously generated by the main

algorithm. A similar problem arises implicitly in the tolerancing

problem [2]; in this case a subproblem of the form

k "...
min min{<$> (x) } arises, which causes difficulties similar to those
x k

arising in problem (1).

The essential feature of the difficulty is the local non-convexity of the

level sets of the functions ijr (x) at points where the active constraints set

I.(x) A {k € I. |<J>3' (x) = ^(x)} contains more than one element.

This is illustrated in Fig. 1(a) . The Clarke generalised gradient [6] is shown

in Fig. Kb); a descent direction, computed using the generalised gradient,

will lie in the shaded region. Clearly many permissible search directions

are excluded, because a search direction generated using the generalised

gradient is a descent direction for each of the active constraints

(<f> ' and <j> ' in the example of Fig. 1) whereas what is required is

a descent direction for any of the active constraints (because

ipj(x) = min{<j>j'k(x) |k €I}=min{<f>j /k(x) |k € l!(x)}, a direction h
k 3 k ., D

T kwhich is a descent direction for <J> ' (x) , where k is any element

of i! (x) , is also a descent direction for i\)3 (x)) .
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2. PRELIMINARIES

Since a conventional constraint may be regarded as a (degenerate)

exclusion constraint, our optimization problem may be restated as:

P: min{f(x)|^(x) £ 0} (7)

where i|>: 3Rn •> ]R is defined by

ty(x) A max {tyJ (x) } (8)
j€l

and

tj>j(x) A min (<pj,k(x)} (9)
k€l.

3

i.e.

iJKx) = max min C^'k(x)}. ' (10) '
j€l k€l.

3

If ijr is a conventional constraint, the cardinality of I. is unity.

As shown in the Appendix, (10) may be rearranged as:

ty(x) = min max In (x)} (11)
k€K j€J

k

where, for each k in K and j in J" there exists a j' in I and k• in

I. such that

nk/j(x) = <J>j''k'(x) (12)

i.e. (12) is merely a (standard) re-arrangement of (10). The cardinality

of K many be high. For each k in K, let r|k: Rn -*• 3R be defined by

nk(x) A max {f[k'j(x)} . .
*H

(13)

For any real valued function $ let (|>(x) denote max(0,<j>(x) }. Then
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k kip(x) = min (n (x)} ,i{;(x) + = min(n (x)+>, (14)
k€K k€K

and our optimization problem acquires the form

P: min{f(x)|min {n (x)} £0}. (15)
k€K

The special feature of the problem arises from the appearance of

the min operator in place of the normal max operator in the con

straint specification.

k n
The functions r| : ]R -»• ]R , obtained by maximimizing a finite

number of continuously differentiable functions, are not themselves

continuously differentiable; however there exist algorithms

for minimizing such functions [5] .

We propose to solve (15) using an exact penalty function. For

each c > 0 let y : TR + 1 be defined by:
c

Y.(x) A f(x) + ciJj(x) = f(x) + c min (nk(x) } (16)
kfx.

We will show later that, under mild assumptions, for c sufficiently large the

constrained optimization problem (15) is equivalent to the unconstrained

problem:

P : min{y (x) |x € 3Rn }. (17)
c c '

k n
For each k in K, let y : 3R -*• ]R be defined by:

c

Yc (x) Af(x) +cnk(x)+ (18a)

so that

Y (x) = min {y (x) } . (18b)
C k€K C
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The functions y : 3R •»• ]R are continuous,
c

Then problem (17) may be expressed as

P : mint min (y (x)}} (19)
xGRn k€K C

i.e. as the minimization of the minimum of a finite number of

functions.

For each k in K let fj : ln x Hn + 3R be defined bv

nk(x, h) A max {fjk/j(x) + n"k'j(x)h}. (20)
j€Jk

Similarly let y (x, h) be defined by:
c

Y, (x, h) A f(x) +f (x)h + cr|k(x, h) . (21)

^ k v
Thus Y_ (x, h) is a first order approximation to y (x + h) in a

c c

sense made precise in Proposition 2. For each k in K let

h : ]R +E be defined by:

h (x) A arg min{(l/2) ||h|r + Y (x, h)} (22)
c c

and 9 : TR + i bv:
c J

0 (x) i^k(x, h (x)) -Yk(x) (23)
c c c c

^ k k
Since h i—+ Y (x, h) is convex, h is well defined. Clearly

9c (x) is non-positive for all x. It is shown in the Appendix

that 9 (x) = 0 is a necessary condition of optimality for the

problem:

P : min(Y (x) |x G JRn }. (24)

k k v
Indeed, if 9 (x) < 0,then h (x) is a descent direction for y (x).

c c c
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For all e 21 ° let the £-active set K (x) be defined by:

K£(x) A{k €K|nk(x) £i|>(x) +e}. (25)

Note that

K_(x) = (k 6 K|nk(x) = i|/(x)} . (26)

L®t 9 : 3Rn •* 1R be defined by
c

8c(x) Amin(9k (x) |k € KQ(x)}. (27)

Clearly 9c(x) £ 0 for all x in 3Rn ,all c> 0. We shall show that

9 (x) = 0 is a necessary condition of optimality for P .

Proposition 1

k
(a) For all c >0, if x is a local solution to P (p ) then

c c

9 (x) =0 (9k (x) = 0) .
c c

k k n
(b) The functions 9 ,h : 1R -*- ]R , k € K, are continuous.

c c

Proof

(a) That 8 (x) = 0 is a necessary condition of optimality for

P is proven in the Appendix.

Suppose that x is optimal for P but that 9 (x) < 0. From
c c

the definition of 9 there exists a k € K^(x) such that
c 0

k k
0 (x) < 0. Hence x is not locally optimal for P so that

k k
there exists an x'arbitrarily near x such that Y (x1) <Y (x). Since

c c

k k
Y (x') < y (x) and Y (x) = Y (x) (since k is inKn(x)) it follows that
c — c c c u

Yc(x') < Yc(x), i.e. x' is not locally optimal for P ,acontradiction.

Hence 9 (x) = 0.
c
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(b) That the functions 9c ,h ,k f. K, are continuous is proven

in the Appendix. •

Comment: Note that we do not claim that 9 is continuous. Since

the set KQ(x) can suddenly decrease, 0 (x) can suddenly increase.

3. Algorithms for P
c

We present in this section two algorithms for solving P ; the first
c

is a simple extension of an algorithm due to Tits [1] for

the case when the functions YQ, k€K, are differentiable. The second

is a further extension to improve efficiency.

Algorithm 1

Data: c> 0.. zQ > 0, a £ (0, 1) ,6€ (0, 1) ,xQ G ]Rn

Step 0": Set i = 0.

Step 1; (Determination* of search direction)

For all k in K£ (x^ compute 8 (x.) and the corresponding

search direction hc (x^ solving (22 ) so that

e=k(V -Yc* <x±, h* (*±» -Yck(x).

Step 2: (Determination of step length)

For all k in K (x ) compute Xk (x.), the largest
0 c i

A in S A 11, 8, B,—} satisfying the Armijo condition

Yck (x +Xhk (x )) - Yk (x.) <- Xa9k (x.) .
w j- ci ci— ci

Step 3: (Determination of next x)

Determine k^xj, that k in K (x.) which minimizes

Yck(x. +Ack(x.)hck(x.,).
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k (x.) k (x.)
c i. C X

Set X. , = x, + A <xJhr (xi) •
1+1 i c i c i

Set i = i + 1. Go to Step 1.

Theorem 1

Any accumulation point x* of an infinite sequence {x±} generated

by Algorithm 1 satisfies 8c(x*) = 0.

Proof

If can be shown (see the proof of Theorem 2 for a similar result)

that if 9k(x) < 0 (for any x in IRn , any k in K) then there exist a
c

z > 0 and a 6 > 0 such that

Yk(Ak(x')) -yNx') £-<$, Ak(x') Ax' +Xc (x')hc<x')

for all x' in S-(x) A (y || y'-x|| < &>. This establishes the hypothesis

employed by Tits [1]; hence it is easily shown that any accumulation

point x* of an infinite sequence generated by the algorithm satisfies

9k(x*) =0 for all k in KQ(x*), i.e. ^(x*) =0. °
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Computational expense arises in Algorithm 1 in two ways, firstly

the computation of 9 (x.) for all k in K (x.) (this can be

°reduced by reducing en) and, secondly, the computation of A (x.) for
u c i

all k in K (x.). The second algorithm reduces the latter computation
e0 x

by employing a single Armijo type computation rather than one for each

element of K (x.). In order to specify the algorithm we introduce
8

the function y : TEL x Hn -»• m defined by:

c..., .., s _„ Ly U, ti)t. • (29)Yr(x, h) A min {y *(x, h)}.
k€K (x)

£0

Because y (x) > Y„(x) + zn for all k not in K (x) it follows that

Yc is a first order approximation to y in the sense that

!Yc(x + Xh) -Yc(x,Xh)i -o(X).

To specify the second algorithm we need to introduce the following

definition. In step 3 of Algorithm 2, h (x, X) denotes (with
-1,0 ck n ^ k k

some abuse of notation) Ah (x) where k is any k in arg rain (y (x, Xh (x)) }
c —*" kOC (x) C

£0
The term hc(x, X) replaces the term Xh in more conventional algorithms.

In the algorithm to be proposed both the step length (X) and the

search direction (h^ir., X)) change as X varies. In conventional

algorithms che search direction does not vary. It follows from this

definition that

Y.(x, h (x, X)) = min {yk(x, Xhk(x) }.
C k€K (x) C c

£0

(independently of the k employed in constructing h (x, X)).
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A typical plot of Y„(x, h (x, X)) as X varies from 0 to 1
c c

is shown in Fig. 2. Note that the function is the minimum of

a set of convex functions and is neither convex nor concave.

Algorithm 2

Data: c> 0; ZQ > 0; 8€ (0, 1) ;xQ f. Hn

Step 0: Set i = 0.

Step 1: (Determination of search direction)

For all k in K_ (x.) compute 9 (x.)£Q i p c i
and the corresponding search direction

hk(x.).
c i

Step 2: (Determination of step length)

Compute X (x.), the largest
c 1 '

X in S such that:

[Y_(x +h (x.,X))-y (x )]<(1/2)[Y (x.,h (x.,X))-Y (x.)] #
cici ci— cici c i •

Step 3: Set x = x, + h (x., X (x.)).
1 1+1 1 C 1 C 1

Set i = i+1.

Go to step 1. c

To analyse this algorithm we require the following result:

Proposition 2

For all x in TR , all n > 0, there exists a 5 > 0 such that

|nk(x- + h) - nk(x', h) I< nil h

for all x' in B^(x), all h in B,(0) and all k in K.
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Proof: See Appendix. d

We can now state our main result.

Theorem 2

Suppose Algorithm 2 generates an infinite sequence {x.}.

Then any accumulation point x* of {x.} satisfies 9 (x*) = 0.

Proof

Suppose x. —• x* where I is some subsequence of {0,1,2, }

and that, contrary to what is to be proven, 9 (x*) < 0. By

construction, there exists a k* in K (x*) such that

9k* (x*) = 9 (x*) .
c c

Since K„" (x) A {k € K-n (x) < ij/(x) + e.} and h is continuous for all
cn = — 0 c
0 n

k in K, (see Prop. Al) there exists an z. > 0 and a compact subset H of 3R

such that:

k* € K (x)

£0
* (x) <= K (x*)

° ° kY (x) = min Y (x) = min Yk (x) (30)
k€K (x) kGc (x*) c

0 £0
and

h (x, X) € H (31)
c

for all x in B (x*) and all X in [0, 1] . Hence
1

9 (x, h (x, X)) < Yk*(x, Xhk*(x))
c c —. c c

£ Yk*(x) + X9k*(x) (32)
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for all X in [0, 1] and all x in B (x*) . Let LAmax(||h
£1

h € h}.

From Proposition 2 (with n= -6 k* (x*)/8L) and the continuity
k*of 9c , there exists an z2 in (0, E./2] such that

|yr (x +Xh) -9k(x, Ah) |<-(A/8)9k* (x*) (33)

6k* (x) <?. [(3/2)9k* (x*), (3/4) 9k* (x*)]
c c c

x + Ah f. B (x*)

1

for all x in B (x*) , all h in H, all k in .K and all A in [0, A,]
fc2 x

where X, is the largest X in S satisfying ||X n|| £ Z2 for all h f. H.

It follows (see Appendix) from (29), (30) and (33) that

|Y„(x + Xh) -Y„(x, Xh) |< -(X/8)9k* (x*)
c c — c

for all x in B (x*), ail h in H and all X in [0, X ].
£2 l

Hence

Y (x + h (x,A)) < Y (x, h (x,A)) -(X/8)9k* (x*)
c c — c c c

£Yc(x, hc(x, X)) -X(3/16)9ck* (x) (34)

for all x in B (x*) and all X in [0, A.J. From (32)
£2 1

-A9ck* (x) £ |yc(x, hc(x, A) -Yck* (x) |

£ Iyc(x, hc(x, A) - yc(x)|

+|Yc(x) -Yck* (x)| (35)

for all x in B (x*), all X in [0, X ]. Since Yk* (x*) = Y (x*),
&•. i c c

we can choose an e. in (0, £«,] such that
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|Yc(x) -Yck* (x) |£-<3A /32)6k* (x*)

< -(X1/8)9k* (x)
— 1 c

so that, from (35),

"Xl8Ck* (x) - <8/7>l"?c(x, hc(x, Xx)) -Yc(x)| (36)

for all x in B_ (x*). From (34) and (36)
""3

Yc(x + hc(x, Ax)) -Yc(x) £(U/14)[Yc(x,hc(x, \J -Yc(x)]

for all x in B (x*). Hence the Armijo step length A (x) is not
£3 c

less than A. for all x in B (x*) .

£3

Using the above bounds:

Y^x+h (x,A.))-Y (x) <Yk*x,A.hk* (x)) -Yk* (x) •
v» C i C — C 1 c c

-(X/3)9 k* (x*) + |y (x) -Yk* (x) |
1 c c c

£ (7X/8-X /12)9k* (x*)
1 * c

for all x in 3 (x*). Since the Armijo steo length is not less than
£3

X it follows that

Y (A (x)) -Y^(x) < (19/24)X.9k* (x*)
c c c —• i c

for all x in B (x*), where

£3

A (x) A x + h (x, X (x))
c = c c

is the successor point to x generated by the algorithm. The

desired result follows from a standard algorithm model[4] . q



- 15 -

4. CHOICE OF THE PENALTY PARAMETER

We have presented in Section 3 two algorithms for solving P .
c

An algorithm for solving P requires the addition of a rule for adaptively

adjusting c. Our rule will be based on the algorithm model in

[4] and requires a test function x t—»> t (x) . If the test t (x) < 0
c c —

is satisfied the penalty parameter c is left unaltered; otherwise c

is increased. Before proposing the test function we establish a few

properties of P and P . The first result is obvious.
c

Proposition 3

/\

Suppose x is a local minimizer for P and is feasible for P. Then
c

/\

x is a local minimizer for P. D

Before proceeding it is helpful to define a few terms. For all

k in K let

Jk (x) A {j <i Jjnk'j(x) = nk(x) J

k
denote the active constraint set for the constraint n (x) £ 0;

k k knote that JQ (x) is empty if n (x) < 0. For all k in K let 3r|

and dr\ (*)+ denote the Clarke generalised gradient [6] of, respectively,

k kn and n (♦)+- These satisfy:

3nk(x) =co{Vnk'j(x), j€JQk (x)}
and

ank(x) = co(o; vnk'j(X), j € jk(x)> if nk(x) = o

= o if nk(x) < o.
kIT

We can express the condition of optimality (9 (x) = 0) for problem

k k
P : min Y in terms of generalised gradients.
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Proposition 4

Suppose x is such that r| (x) £ 0 and c > 0. Then

(i) 9k(x) = 0
c

if and only if

(ii) 0eVf(x) +c3nk(x)+.

Proof

k k
Suppose n (x) = 0. If follows from the definition of 9 that

c

9 (x) = 0 if and only if

<Vf(x),h> +cmax{0; <vfjk'j (x) ,h>, j€Jk (x) } >_ 0

for all h in 3R . This, in turn, is easily seen to be equivalent to

<Vf (x) ,h> +cmax{<£*, h>|£ €3r|k(x)+} .> 0
or

max{<^, h>|£ €Vf(x) +c3r|k(x) }>_ 0 (38)

for all h in B .

Suppose then that 9 (x) = 0 but that 0 does not lie in the convex
c

set Vf(x) + c3n (x) ; let g denote the closest point in this set to the

v

origin. Then h = -g satisfies <h, £> < 0 for all £ in Vf(x) + c3f| (x) ,

contradicting (38).

v

If, on the other hand, 0 lies in the convex set Vf(x) + c3n (x)

then (38) is true so that 9 (x) = 0.
c

k k
The case when n (x) < 0 is trivial; both 9 (x) = 0 and

c

0€Vf(x) +c3nk(x)+ if and only if Vf(x) =0. o
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Proposition 5

(a) Suppose that x is feasible for P and for some c > 0 satisfies

9 (x) =0. Then:
c

(i) if ty(x) =0, 0€co{Vf(x), 3nk(x)} for all kin KQ(x) ]

(ii) if i|>(x) < 0, Vf(x) = 0.

(b) If x is a local minimizer for P, then x satisfies (39) .

(39)

Proof

(a) Since 9 (x) = 0 it follows that 9k (x) =0 for all k in K.(x).
C C • \J

]. A ^

From Proposition 4, 0 € Vf(x) + c3n (x)+ for all k in K (x). Hence

there exist non negative multipliers u3 such that Vf(x) + Ech^VtV /3(x) = 0,

k .a
i oeing over tne set a

(if i|;(x) = 0)

0€co{Vf(x), 3nk(x)} for all kin KQ(x)

k a.
Clearly J (x) is empty if i|;(x) < 0 so that in this case Vf (x) = 0.

(b) If x is a local minimizer of P, it is also a local minimizer

k
for P for all k in KQ(x) . The result follows from [6] . Q

We introduce next a constraint qualification assumed to

hold in the sequel.

Constraint Qualification

k ithe summation being over the set JQ (x);' dividing by 1 + c£uJ yields

For all x such that ty(x) >^ 0, for all k in KQ(x)

0€3nk (x) =co{Vnk' j(x) ,j€JQk (x)}.
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The constraint qualification ensures that ty(x) can be reduced at all non-

feasible x and thus ensures the existence of finite penalties.

Proposition 6

/\

Suppose x is a local minimiser for P so that x is feasible for P and

satisfies (39) . Then there exists a c > 0 such that 9 (x) = 0 for
c

all c > c.

Proof

Suppose ip(x) = 0. It follows from (39) and the constraint qualification

k 1
that there exist non-negative multipliers u satisfying

Vf(x) + I Uk'jVfik'j(£) =Vf (x) + I (uk/j/c)cVnk'j(x)
j€Jj(x) j€Jk(x)

= 0

for all k in KQ(x), c > 0. There exists a c > 0 such that

L (Ak,j/c) £ 1
j€Jj(x)

so that:

L (Ak'j/c)cVnk'j(x) € c3nk(x)
j€J^(x) +

for all c >l c, all k in K (x) .

Hence:

0 € {Vf(x) + c3nk(x) }

for all k in KQ(x), all c >^ c. It follows from Proposition 4 that, for

all c> c, 9k(x) =0 if kGKn(x). Hence 9 (x) =0 for all c >c.
— c u c —

The case i|;(x) < 0 is trivial. d
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We can now define the test function; for all c > 0,

t : 1R -*• 3R is defined by:

t (x) A 9 (x) + \\>{x) /c . (40)

The properties required by the test function are specified in our

next result.

Proposition 7

(i) If for some c > 0 9 (x) = 0 and t (x) < 0, then x
c c —

satisfies (39) and ty{x) < 0 (i.e. x is a stationary point for P)

(ii) For all c > 0, if x. * x* as i + « and t (x.) < 0 for
i c i —

all i, then t (x*) < 0.
c —

(iii) For all x there exist positive c and £ such that t (x) £ 0

for all c _> c and all x in B~(x). a

The proof of this result is deferred to the appendix.

The algorithm for solving P can be presented. In the

algorithm (c.} is an infinite sequence of positive numbers

tending monotonically to infinity.
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Algorithm 3

Data: E_>0; a,8 £(0,1); {c.}, an infinite sequence such that cQ >0
and c.f °° as j+ °°; xQ € 1R .

Step 0: Set i = 0.

Steo 1: If t (x.) > 0, set z. = x. and choose j* so that
' c. i Di

c* is the lowest c in {c.} satisfying t .(x.) < 0.
i* 1 c. i —
J J 3

Set j = j*.

Step 2: If 9C (x.) =0 stop. Else compute x. . using Steps 1-3
j

of Algorithm 1 or 2. Set i=i+l and go to Step 1.

Theorem 3

(i) • If the sequence (z .} is finite then either the sequence (x }. is finite

with its last element x, satisfying *P(x. ) = 0 and (39) or

it is infinite and any accumulation point x satisfies

4>(x) = 0 and (39) .

(ii) If {z.} is infinite then it has no accumulation points.

Proof

This result follows from Theorem 2, Proposition 7 and Theorem

4 of [4], if we note that hypothesis (ii) in this result (the

continuity of t for all c > 0) is merely used to establish

hypothesis (ii) in Proposition 7 above.

Corollary

If the sequence {x.} is bounded, then {z.} is finite. a
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5. CONCLUSION

Exclusion constraints have the unusual feature that the set

of feasible search directions is not necessarily convex. Thus

algorithms based on the use of generalised gradients may jam

at points which are not local minima of the constrained objective

function. Two algorithms which avoid this problem are presented.

These algorithms effectively explore a set of possible search

directions (rather than one). As pointed out in [1] the

cardinality of K is very high if the cardinality of I is high.

Hence it is desirable that the number of exclusion regions is not

too high.
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APPENDIX

Proof of Proposition 7

(i) Suppose that c > 0, 9 (x) = 0 and t (x) < 0. Hence from (40),
c c "—

if follows that ^(x)+ = 0 (so that ijJ(x) £ 0) . Since 9 (x) = 0 it follows

from part (a) of Proposition 5 that (39) holds.

(ii) Suppose that c>0, x.+x*asi+» and t (x.) < 0 for all i.
i c i —

From (40)

^(xi>+/° 1 -8c(xi) (A1)

for all i. There exists a neighbourhood N of x* in which Kn(x) c Kn(x*) .

Let TT: ]R -»• 1R be defined by:

tt(x) A min(9 (x) Ik € Kn(x*)}. (A2)
c u

Clearly tt is continuous, tt{x) < 9 (x) for all x in N and tt(x*) =
— c

9 (x*). Hence, for all i sufficiently large, it follows from (Al) that

i|/(x.) /c < -9 (x.) < -tt(x.) ,
i + — c 1 — i

so that

Hence

'4>(x*)/c < -tt(x*) = -9 (x*)
+ — c

t (x*) < 0.
c —

(iii)

(a) Suppose t|Mx) < 0. There exists an Z > 0 such that ty(x) + = 0 for all

x in B/N(x) . Hence t (x) < 0 for all c > 0, and all x in B~(x) .
£ c — e

(13) Suppose ty(x) >_ 0. By virtue of the constraint qualification

0t co{vnk'j(x)/ J€Jk(x)} for all kin KQ(x). Also there exists a
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£t >0 such that KQ(x) <= KQ(x) for all x in B. (x). Since nk(x) =
r-k jmax in /J(x) |j € Jk> there exists an £2 € (0, £ I such that

min{rjk'j(x) + <7nk'j(x), h> |j€ Jk(x)}
3 "0

>max{nk'j(x) +<Vnk'j(x)f h> |j£J ^ Jk(x) } (A3)

for all x in Br (x), all h in H A B„ (0) and all k in K.(x).

For all k, let tt : ]Rn -*• h be defined by:

* (x) 4 min max (<vfy '^(x),h>>
h£H j£jj(x)

(A4)

Clearly it is continuous and, by virtue of the constraint qualification,

satisfies

TTk(x) < -20

for some 0 > 0 and allk in K«(x). Hence, there exists an £, £ (0, e_] such

that

T*(X) < -0

for all x in B. (x) and all k in Kn(x)
fc3 • °

From the definition of 9' :
c

9*<x) < min((l/2) ij h!|2+Yk(x,h)-(l/2) !l hk(x) !'2 -Yk(x)}.
° h€H ° c '• c

(A5)

~k
Using the definition of Y we obtain

c

9*<x) < min max((l/2) l|h I! +cn*'3 (x) -cnk(x) +<7f (x)+cvnk/:5 (x) ,h>,
~~ h€H +

(1/2) j! hi!2-c1k(x) ^<7f(X) ,h>; - (1/2) '! hk(x) !|2 fee >
" c

The second term in the braces accounts for the case when n' (x,h) =
+

'Ak -.
max in (x,h),0/ = 0. 3ecause of inequality (Aj) , j. in (A6) can be
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replaced by J (x) if x € B (x). Let h*(x) denote the minimizing h in
3

(A4) so that (by (A4) and (A5)):

<Vnk/j(x), hk(x)> £ -6

for all x € B (x), all k in Jk(x).
fc3 °

Let b denote an upper bound for <Vf(x),h> as x ranges over B (x)
£3

k k <*and h ranges over H. Substituting ah (x) for h and Jq(x) for

J, in (A6) yields:

k 2 0
9 (x) £ min max( (1/2) eja + ba - ca6 ;

<*€[0,1]

(l/2)£2a2 +ba -cnk(x)+} (A8)

for all xin B£ (x) and all kin KQ(x). Since 9c(x) =min{9k(x) |k £KQ(x) },
since KQ(x) c KQ(x) for all x in B£ (x) and since nk(x) =^(x) of

k f KQ(x) it follows

0 0 0 09 (x) £ min max{(l/2)£ o. + ba - ca6; (i/2)£^a + ba - c^(k) }
a€[0,l] l 2 +

(A9)

(A7)

for all x in B„ (x). Hence for all x in B (x):

^ £3

0 0t (x) £ min max((l/2)e9a - (c6 - b)a + ^(x) /c,-
ct€(0,l] +

(l/2)£2a2 +ba +ip(x)+/c -c^(x)+}

(AlO)

Since t (x) = QQ(x) £ 0 if ij>(x) £ 0 we confine attention to those x

such that <p(x) = ^(x)+ > 0. The first term in (AlO) is negative if

a(c6 -b-ae2/2) £ i|Mx)+/c

i.e., if

c6 -b -ae2/2 >0 (All)
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and

a >_ ii>(x)+/[c(c<S -b-ae2/2)] (A12)

Since a € [0, 1], inequalities (All) and (A12) hold if

c > (b + £2/2)/<S (A13)

and

a _> Jl(c)ty(x) + (A14)

where

fc(c) A l/[c(c6 -b - e2/2)] (A15)

The second term in (AlO) is negative if

a(b +ae2/2] £^(x) +[c - 1/c] (A16)
and

c > 1 (A17)

Clearly (A16) holds if

ct £ ¥(x)+[c - l/c]/[b +ae2/2]

which, in turn, is implied by

a £ ip(X)+ u(c) (A18)

wnere

u(c) 4 [c - l/c]/[b + £2/2] (A19)
2'

2(since a £ [0, 1]). Clearly c can be chosen so that c > (b + £_/2)/6,

c > 1 and Z{c) < u(c) for all c >_ c yielding t (x) £ 0 for all
As As

x in B (x) and all c > c which is the desired result. a
£3
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Proposition Al

k k
(i) Suppose x is a local minimizer for P with c > 0. Then 9 (x) = 0.

k k
(ii) The functions 9 , h are continuous.

c c

Proof

(i) Suppose 9 (x) < 0. Hence there exists a h in H such that

Yk(x, h) - Y (x) = -d < 0. If follows from Proposition 2
c c

and the differentiability of f that there exists a 5 > 0

such that: |yk (x +ah) -Yk (x, ah) |£ ad/2 for all a
*• kin [0, 5]. Because of convexity Yc (x, ah) - Yc(x) £ -ad

for all a in (0, 1] . Hence y •(x + ah) -y £ -a d/2 for
c c

all a in [0, <$] , contradicting local optimality.

k n
(ii) We first Drove that h is continuous. Let £: 3R -*• 1R be

c

defined by

5(x) Amin{(l/2) !|h||2 +yk (x,h) |h G lRn }.

Suppose that x. -*- x as i -*• °° and let

h. A arc min{ (1/2) j| h|| + Y (x.,h) |h € lRn }
i = " " c i

for all i (i.e. h. A hk(x.)). Clearly
l = c i

r , " K , as* k /t,(x ) < y^ (x., 0) = Y„ (x.)
1 — C 1 C 1

for all i and
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(1/2) i| h||2 +Yk (x, h) -*»as ||h|| - «

uniformly for all x in a compact set. Hence the infinite sequence

{|| h. || } is bounded.

Now

Tim £(x )<Tim" {(1/2) || h||2 +yk (x., h) }
i —• c i

= £(x)

where h A h ' (x), so that £ is u.s.c.
— c

Suppose that lim £(x.) < £(x). Since:

lim£(xi) =lim (d/2) || hi||2 +Yck(x.,hi)}

= lim {(1/2) || h. ||2 +Yk (x, h.)}
i c i

it follows that

lim {(l/2)||hi||2 +Yck (x, h±)} <C(x)

But this contradicts the optimality of h. Hence

lim £(x.) >^ £(x) , i.e.

IimC(xi) £$(x) <lim g(x.)

and therefore lim £(Xi) = £(x) , i.e. £ is continuous.

Since {lO is bounded, h. —* h* along some subsequence K.

But this implies that h* is a minimizer forthe problem

min{(l/2) ||h|| +Yc(x,h)}. But the minimizer is unique, so h*=h. Since

ihi> is bounded and has a unique accumulation point it follows that
A. J^ ,

hi -*-h, i.e. hc is continuous. Since hc is continuous it follows

easily that 8 is continuous. a
c
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Proposition A2

|max{A,B} - max{c,D}| £ max{|a-C|,|b-D|}

Proof

Let a 4 max{A,B}, 3 A max{c,D},

<j> 4 |a - 3| '

= max{a -3, 3 - a}

a - 3 = max{A - 3, B - 3} £ max{A-C, B-D>

3 - a = maxic - a, d - a} £ max{c-A, 1,-b}

Hence

0 £ max{A-C, B-D, C-A, D-B>

= max{|A-CJ ,|b-d|}.

Proposition A3

If |a. - b.| < 6 for all i in I
1 i i' —

then

Proof

,min a. - min b. < 0
1 3. —

i€l i€l

Let a A min a.,
161 x

3 A min b.
"i€l x
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and suppose a. = a, b, = 3,

Then:

and

a-3=a-b, <a. - b, < 5
k — k k —

3-a = 3-a. <b. -a. < o
3-D 3 -

Hence ia - 81 < 5.

Finally, since the result is well known in the literature

on digital logic, we illustrate the assertion that

max min {(p-5, (x) }£ 0 can be replaced by min max {r\ 'mx)} £ 0
j€l k€l.' k€K j^Jk

Consider the simple case

max min {$j/k(x)} £ 0.
j€{l,2} k€(l,2}

This is clearly equivalent to the following

[(i)1'1^) < C cr <j)1/2(x) < 01

and Ci)2,1(x) <0 or <j>2/2(x) < 0]

This in turn is equivalent to:

[^^(x) < 0 and (j)2'1(x) < 0]

or i^l'l(x) < 0 and $2/2(x) < 0]

or [<J>1,2(x) < 0 and <j>2,2(x) < 0]
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or [cj>1,2(x) £ 0 and <j>2'2(x) £ 0]-

which is equivalent to

min max {fik/j(x)} £0
k€{l,2,3,4} j€(l,2}

where

n3'1 =*1'2. n3'2 - *2'2, n4'1 =*l'\ n4'2 =*2'2-
The result is easily generalised.
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Captions for Figures

Fig 1: (a) Exclusion Constraint

(b) Generalized Gradient

Fig 2: Step Length Determination



V<J>j,1(x*)
• x*

j.2
♦J(x»0 VV0*'(x«)

3<|JJ (x*)

(a; to;

Fic,.i

Yc(x,hc (x,X))

FLcj. 2


	Copyright noticE 1985
	ERL-85-33

