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ABSTRACT This paper describes the dynamics of the simplest physical

system known to date whose chaotic dynamics and rich bifurcation phenomena

have been observed not only in the laboratory, but also reconfirmed by ex

tensive computer simulation of its associated mathematical model: a 3rd-order

autonomous ordinary differential equation. The physical system is a 5-element

electrical circuit whose only nonlinearity is a nonlinear resistor character

ized by a 3-segment piecewise-linear voltage-current characteristic.

Despite the simplicity of the circuit, however, it is imbued with an ex

tremely rich variety of bifurcation phenomena. By changing the capacitance

values, many phenomena, including Hopf bifurcation, period-doubing cascades,

Rbssler's spiral-type and screw-type attractors [4], periodic windows,

"double-scroll" attractor [1], boundary crisis [5], Shilnikov-type phenomenon

[6] etc. have been observed experimentally and confirmed by computer simulation,

Other atrractors and periodic windows have also been observed by varying

the conductance values..

In addition, RSssler's spiral-type and screw-type attractors have been

observed from the same circuit where the nonlinear resistor has only one

break point, i.e., it is described by a 2-segment piecewise-linear v-i

characteristic. This means that extremely complicated non-periodic (chaotic)

waveforms can arise in the simplest third order uncoupled electrical circuit

in which all elements except one (a resistor) are linear and passive, and in

which the constitutive relation of the nonlinear resistor is made of the

simplest conceivable nonlinearity; namely, 2 straight-line segments.
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I. INTRODUCTION

This paper reports a great variety of one-parameter bifurcation

phenomena observed from the electrical circuit reported in [1],

The circuit is extremely simple : it is third order, autonomous and has

t
no coupling elements . Its only nonlinear element is a 3-segraent piecewise-

tt
linear resistor. Even though the circuit is simple, very rich bifurcation

phenomena have been observed. In Section II, bifurcation phenomena observed

experimentally by varying the capacitance values are shown. In Section III,

we confirm our experimental observations with digital computer simulations.

Moreover, our simulation analysis reveals that the observed phenomena exhibit

Hopf bifurcation, cascades of period doubling, Rbssler's spiral-type and

screw-type attractors [4], periodic windows, "double-scroll" attractor [1],

boundary crisis [5], and a Shilnikov-type phenomenon [6],

In addition, Rossler's spiral-type and screw-type attractors have also

been observed from the same circuit but with the constitutive relation of the

nonlinear resistor further simplified to have only one break point, i.e.,

it is described by a continuous 2-segment piecewise-linear function. The

chaotic attractor associated with this even simpler circuit is confirmed

experimentally as well as numerically. These observations show that the ex

tremely complicated non-periodic (chaotic) waveforms can arise "in the simplest

third-order uncoupled circuit in which all elements except one (a resistor)

are linear and passive, and in which the nonlinear resistor is almost linear :

its incremental resistance assumes only two values.

We emphasize in this paper that our circuit is a physical system, and

not an analog computer. The simplicity of our circuit, allows us to

t Such a circuit is called reciprocal [2], [3]. Physically, this means
that the constitutive relations of the circuit elements are potential
functions.

tt Piecewise-linearity simplifies the realization of the circuit (Fig.2)
in a significant manner. It also helps greatly in visualizing the
structure of the attractor [1].
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build it easily and hence carefully controlled laboratory experiments can be

carried out in a very simple manner. Extensive numerical simulations are

used not only to validate the following differential equations used to model

,our physical circuit, but also to determine the bifurcation parameter values

with much greater resolution than is possible by measurements.

Let us first recall the circuit reported in [1], Figure 1(a) gives

the circuitry while Fig. 1(b) shows the constitutive relation; i.e., the

v-i characteristic, of the nonlinear resistor . The dynamics is described by

dv
Ci

dt

dv.

G(v_ - v )c - g(v )
^2 t-»i v^i

'2 = G(VC1 " yC2> + *L
dt

dt
= - V.

where the function g(.) is given by Fig. 1(b) and

1/C! = 9, 1/C2 = 1, 1/L = 7, G = 0.7

m0 = -0.5, mj = -0.8, B 1.

(1.1)

(1.2)

In Section II and Section III, the capacitance Ci is chosen as the

bifurcation parameter while the other parameters are held fixed as in (1.2).

In Section IV, the conductance G is chosen as the bifurcation parameter.

II. THE CAPACITANCE BIFURCATIONS

In order to observe the Cj bifurcations, we set up the circuit of

Fig. 2(a) which realizes the circuit of Fig. 1 (with appropriate scaling).

The subcircuit inside the broken-line box N realizes the function g(0 of

Fig. 1(b). Figure 2(b) shows the measured v-i characteristic. Starting

t The symbol for the nonlinear resistor is a standard one among the circuit
theory community.
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with 6130 pF we slowly adjusted the value of C! and reduced it to 5400 pF.

Figure 3 shows several of the observed attractors projected onto the

(i., v )-plane, in the order of decreasing Cj. For large values of Ci,

we observed nothing but a point, i.e., all the trajectories settled down to

a stable equilibrium. After decreasing C\ by an appropriate amount, we

observed that a periodic attractor (stable limit cycle) was born (Fig. 3(a)).

Then period doubling was initiated (Fig. 3(b), (c)). Figure 3(c) is blown

up in Fig. 3(d), where the period-4 nature is easier to see. Further period

doubling was difficult to observe. (Recall that the sequence of parameter

values at which further period doubling occurs converges to a limit very

rapidly [7].) In Fig. 3(e), the attractor does not appear to be periodic any

more. It seems to have the structure of a R<5ssler's spiral-type attractor [4].

In Section III, we will confirm this observation with digital simulation.

+

Upon further decreasing Cj, we observed the periodic window of Fig. 3(f).

After this, the attractor again became non-periodic (Fig. 3(g)). In Section

III, we will explain, via digital simulation, that this appears to be a RBssler's

screw-type attractor [4], Now recall that the dynamics (1.1) is symmetric

with respect to the origin. Therefore, in Fig. 3(a) - (g), there should be a

"twin" attractor located symmetrically with respect to the origin. Indeed, by

switching on and off the power supply for the operational amplifier (thereby

changing the initial conditions) we have observed both attractors. Further

decrease of Ci gave birth to an interesting new phenomenon. The attractor

suddenly doubled its size and became symmetric itself with two "holes"

(Fig. 3(h)). The two independent attractors seemed to have collided with

each other and emerged as a single attractor. This is the "double-scroll"

t A periodic window is understood to be a brief interval in the bifurcation
parameter where the solution is a periodic attractor but becomes chaotic
outside of the interval [8]. Even though this has been used for
1-dimensional maps [8], it applies equally well for flows in a natural
manner.
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attractor carefully analyzed and described in great detail in [1].

After this, the two holes became smaller and smaller, and the intensity

of the trajectory near the holes became notably high (Fig. 3(i)).

This means that the trajectory spends more time near the holes than in the

other parts of attractor. In Section III we will explain, via simulation,

that this trajectory is in the verge of evolving into a Shilnikov-type

phenomenon [6]. Here a Shilnikov-type phenomenon is to be interpreted as

the existence of a pair of heteroclinic trajectories which, in turn, implies

the existence of infinitely many saddle-type periodic orbits in every

neighborhood of the heteroclinic trajectory (see Section III). Next, we

have observed the periodic window of Fig. 3 (j) after which we saw again

chaotic attractors similar to those in Fig. 3 (h) and (i). As we further

decreased C^ however, the attractor suddenly disappeared. We will show,

in Section III, that this corresponds to a boundary crisis [5], i.e., an

attractor suddenly disappears when it touches an unstable periodic orbit.

Although we have observed periodic windows which are more bizarre

than Fig. 3(f) and (j), we omit them to conserve space.

Figure 4(a), (b) and (c) show the time waveforms of v_ (t), v_ (t) and
cl c2

i,(t), respectively corresponding to Fig. 3(h). Note that the waveform

of v (t) is unbiased, (i.e., no dc component) since the v„ -component of the
u2 . ^2

equilibra of (1.1) is always zero, (see Section III).

The usage of the word "chaotic attractor" is of course not rigorous in

this paper as well as in other papers in the sense that a mathematical proof

tof its existence is not given. However; we have given a physical evidence

by designing and building a physical circuit whose equation of motion is

t It has been often argued that "chaotic attractors" observed by digital
simulation are of questionable validity because of local truncation and
round off errors.
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4-

modelled by (1.1) . We cannot overemphasize, that the circuit of Fig. 2 is

not an analog computer in the sense that its building blocks are not

tt
integrators. They are ordinary circuit elements; namely, resistors,

inductors and capacitors. Both current and voltage of each circuit element

play a crucial role in the dynamics of the circuit. On the contrary, the

variables in a typical analog computer are merely node voltages of the

capacitor-integrator building-block modules where the circuit current is

completely irrelevant in the circuit's dynamic operation. Hence it would be

misleading to confuse our circuit as an analog computer. Indeed, any

abstraction or generalization of the term "analog computer" on our circuit

would imply that all physical circuits, or for that matter all physical

systems, are analog computers, which is absurd.

We close this section by giving several circuit theoretic explanations

of the chaotic behavior of our circuit in Fig. 1 (a). First note that the par

allel connection (tank circuit) of C2 and L constitutes one basic oscillatory

mechanism in the (v , i )-plane, whereas the conductance G provides the inter-

actions between the (C2, L)- oscillatory component and the "active" [2]

resistor g(*) together with Ci. This active resistor is of course responsible

for the circuit's chaotic behavior. If this resistor were locally passive

[2], it is well known that the circuit would be quite tame : all solutions

would approach a globally asymptotically stable equilibrium [9]. Since

t Of course, due to component tolerances, the physical circuit in Fig. 2 is
not exactly modelled by (1.1). However, the fact that this circuit
exhibits an almost identical attractor on an oscilloscope shows that
(1.1) is indeed a robust model.

tt
There is a tendency for readers outside of electronic circuit theory to
associate an operational amplifier with an electronic analog computer.
The operational amplifier in the circuit N of Fig. 2(a) is used for an
entirely different purpose: to realize the constitutive relation
(Fig. 1(b)) of the nonlinear resistor. In fact, one could eliminate the
operational amplifier and realize N by an integrated circuit (made of
bipolar transistors and diodes) encapsulated in a standard package just
like any other garden variety IC components.

- 5 -



g(«) is always locally active [2], i.e., v (t) i_(t) < 0 (except at the
R R

origin) it keeps supplying power to the external circuit. The attracting

nature of the chaotic trajectories comes from the power dissipation in the

passive element G, thereby restraining its growth. The power balance,

however, is rather delicate, and varies continuously with time, but never

repeating itself periodically except for parameter values which resulted in

a periodic oscillation.
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III. NUMERICAL CONFIRMATION

In this section, we will confirm, via digital simulation, the bifurcation

phenomena observed from the physical circuit in the previous section.

First consider the equilibria of (1.1) :

G(vc2 - v - *<v =°

G(VC1 - V + *L =°

v = 0 .
c2

Therefore, for fixed values of G, m0 and 04 given by (1. 2), there are

three equilibria :

E+ ! VC, =k' VC2=0« 1L ="Gk

9 = VC, "VC2 "h - °

f = VC! =" k' VC2 " °' h~ Gk

where k and - k are the positive and negative solutions of

G v + g(v ) = 0 .
cl Cj

One can show that for any Ci >0, the origin is unstable (see the APPENDIX)

The other two equilibria change their stability type as Ci varies.

A. Hopf Bifurcation

Using the Routh formula (see the APPENDIX), one can show that for

1/Ci < \ (-3.5 +/(3.5)2+280 )26.8
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+
P and P are stable. At

1/Ci = \ (-3.5 +/(3.5)2+280 )

a pair of eigen values crosses the imaginary axis and a Hopf bifurcation

occurs [6], [10], thereby signifying the birth of a periodic orbit.

Hopf bifurcation here, however, should be interpreted in its generalized

sense, because the right hand side of (1.1) is only continuous but not a

C1* function . Figure 5 shows two distinct periodic attractors (stable

limit cycles) at

1/Cx = 8.0.

Compare this with Fig. 3(a) and recall that the periodic attractors occur in

pairs because of the symmetry of (1.1).

B. Period Doubling

As we increase 1/Cj slightly beyond 8.0, a period-doubling bifurcation

is initiated. Figure 6. shows the period-2 attractors at (compare with

Fig. 3(b))

1/Ci = 8.2

while Fig. 7 (compare with Fig. 3(c),(d)) shows two period-4 attractors at

1/Ci = 8.44.

Any further period doubling was difficult to observe.

C. Rossler's Spiral-type Attractor

At

1/Cj = 8.5

the attractor in Fig. 8 no longer appears to be periodic (compare with

t The same phenomena, however, can be observed by approximating the
right hand side of (1.1) by a C00 function.
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Fig. 3(e)). It has the structure of a Rbssler's spiral-type attractor [4].

If one chooses an initial condition on the attractor, then the trajectory

starts rotating outwards in a counterclockwise direction around the hole,

thereby receding further and further away from the center of the hole,

i.e., the point where P or P is located. After a certain random time

+
interval, however, the trajectory returns to a point closer to P or P and

then repeats a similar process.

As was explained earlier, the symmetry of (1.1) implies that there is

another spiral-type attractor located symmetrically with respect to the

origin. The symmetry, in turn, stems from the symmetry of the function

g(«) in Fig. 1(b). This observation suggests that one attractor should

still be present even if one replaces the 3-segment function of Fig. 1(b)

with the 2-segment function in Fig. 9. This conjecture is confirmed in

Fig. 10, where the spiral-type attractor is observed with a piecewise-linear

resistor having only one break point. This has been confirmed experimentally

also. Note that the circuit has no coupling elements. Sparrow [11] and

Rossler et. al. [12] had also observed non-periodic attractors from

piecewise-linear systems with only one break point. Their systems, however,

do not appear to be realizable by circuits without coupling elements, and

are therefore more complicated from a circuit theory point of view.

As we continue tuning the bifuration parameter Ci, we observed that

the spiral-type attractor persists up to

1/Ci < 8.575.

D. Periodic Window

At

1/Cx = 8.575

a periodic window of Fig. 11 has been observed (compare with Fig. 3(f)).

After this, a spiral-type attractor is observed again.
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E. RSssler's Screw-type Attractor

As we increase 1/Cj further the above spiral-type attractor eventually

deforms into a RSssler's screw-type attractor [4] where the trajectory

sometimes makes more than one rotations before completing its descent.

Figure 12 shows this attractor at

1/C! = 8.8066.

Of course, there is another screw-type attractor located symmetrically with

respect to the origin. We have omitted the other attractor to avoid the

trajectories of the two attractors from entangling each other, which they

don't (at this parameter value) in the 3-dimensional state space.

Observe that Fig. 3(g) appears to be a screw-type attractor. In Fig.3(g),

however, it is not easy to detect the "screw" structure of this attractor

because the associated trajectory does not make more than one rotations

before completing its descent very often.

F. Double-Scroll Attractor

As we increase 1/Cj further, the attractor abruptly enlarges itself

and creates two holes located symmetrically with respect to the origin.

The two attractors of Fig. 12 have collided with each other as was described

in Section II. It then evolves quickly into Fig. 13 (compare with Fig. 3(h))

which corresponds to the parameter value

1/Cx = 9.0 .

This is the "double-scroll" attractor described in [1], where it is shown

that two sheet-like objects are curled up together many times. If one chooses

an initial condition near the "upper hole", then the trajectory starts rotating

outwards in a counterclockwise direction around the hole. After a certain

random interval, the trajectory sometimes returns to a point closer to the

upper hole. At some other times, however, it starts descending with respect

to the v -axis in a spiral path and "lands" at a point near the "lower hole".
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It then starts rotating outwards in a counterclockwise direction around the

lower hole. As expected (due to symmetry), the behavior after this descent

is similar to the spiral excursion around the upper hole.

This attractor appears to persist over the parameter interval

8.81 < 1/d < 10.05.

However, at the parameter value

1/Ci = 10.05

the periodic window of Fig. 14 is observed (compare with Fig. 3 (j)). After

this, several other strange-looking windows (not shown) have been seen.

G. Shilnikov-type Phenomenon

Another interesting phenomenon is observed at the parameter value

1/Ci * 9.78

where a trajectory with an initial condition on the unstable manifold

w (P ) of P~ flows into the stable manifold WS(P+) of P+. Since (1.1) is

symmetric with respect to the origin, a trajectory starting from the un

stable manifold W (P ) of P would eventually flow into the stable manifold
S — — 4-

W (P ) of P also. This is shown in Fig. 15 (compare with Fig. 3(i)) .

Hence there would be a pair of heteroclinic orbits between P+ and p".

The eigen values at P" consist of a complex conjugate pair

a ± ja> o.l7 ± j 2.13

in the right half plane, and a real number

Y * - 2.30

in the left half plane. Since

a < | Y I

we can invoke Shilnikov's theorem [6] to conjecture that there are infinitely

t Of course, numerical error prevents any computer from showing this
phenomenon exactly. One can observe, however, that the trajectory almost
hits P and spends an extremely long period of time near P .
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many saddle-type periodic orbits in every neighborhood of these heteroclinic
t

orbits.

H. Boundary Crisis

Figure 16 shows the attractor at

1/Ci = 10.5.

Suddenly, however, at

1/Ci « 10.75

the attractor disappears: equation (1.1) diverges with any initial condition!

This disappearing act provokes the interesting question as to how the

attractor dies. A careful analysis suggests that this phenomenon is related

to the simultaneous presence of a saddle-type closed orbit encircling the

attractor. To see this, let us go back to the parameter value 1/Ci = 8.0.

With this value, a saddle-type closed orbit has been found outside the

periodic attractors. It is shown by the broken closed curve in Fig. 17.

Since this orbit is not attracting, one cannot observe it on an oscilloscope.

Nor can one observe it with a digital computer by integrating backward in

time since it is saddle-type. Newton iteration and "Shooting Method"

were used to find it. As we increase 1/Ci, the saddle-type periodic

orbit shrinks gradually as shown in Figs. 18-22. At 1/Ci = 10.5, the

attractor is located very close to the saddle-type periodic orbit (Fig. 23).

With a slight increase in 1/Ci beyond 10.5, the attractor appears to

collide with the saddle type periodic orbit. This collision provides a

natural mechanism leading to the attractor's death. Note that if the

attractor stays away from the saddle-type closed orbit, there would be

no way for the trajectory in the attractor to escape. Figure 24 shows the

situation at 1/Cj=9.0. The square in the upper left-hand corner is the

Poincare section v„ = 0 and the arrows indicate the stable and unstable
C2

t Shilnikov's theorem assumes a homoclinic orbit. His result, however, can
be extended to apply to our present situation.
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eigin spaces of the Poincare map. This picture is looked at from an angle

different from that of the other figures in order to show the relative

positions of various sets. Now if the attractor collides with the saddle-

type closed orbit, then it would provide an exit path for the trajectory to

escape into the outer space. This is what happens at 1/Ci ~ 10.75.

After this, no attractor can be detected. The attractor seems to be

"quenched" upon colliding with the saddle-type closed orbit.

The distinct phenomenon observed at 1/Ci ~ j.o.75 clearly corresponds

to the boundary crisis [5] defined for 1-dimensional maps, i.e., an

attractor suddenly disappears when it touches an unstable periodic point.

This observation raises another interesting question: Does the saddle-type

closed orbit also die when it collides with the attractor? The answer

is negative. It survives even after the attractor's death. Figure 25

shows the saddle-type closed orbit at

1/Cx = 13.0.

Although this orbit appears to be pinched at the center, it really is a

simple (i.e., non-intersecting) closed curve in the 3-dimensional state

space.

The saddle-type closed orbit keeps shrinking in size while its period

gets longer and longer as one increases 1/Ci. So far we have observed

that the saddle-type closed orbit persists for parameter values up to

1/Ci =13.0. It would be interesting to determine whether this saddle-type

closed orbit would eventually bifurcate into some other object at some

larger value of 1/d or, whether it would survive for all values of 1/Ci.

To carry out this analysis, however, would not be easy because there would

be other saddle-type periodic orbits (those which "grew" out of the chaotic

attractor) coexisting very close to the one we have been tracking as we

increase 1/Ci. Although we have observed such coexistence phenomena, we will

not elaborate further on it since it is outside the scope of this paper.
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I. Summary

Table 1 summerizes the sequence of bifurcations described above where the

types of the eigen values at the three equilibria are also given. (Recall

that the nonlinearity in (1.1) is a 3-segment piecewise-linear function and

that each linear region can have at most one equilibrium. Hence the dynamics

is strongly influenced by the eigen values at the equilibria.) Each

equilibrium has a pair of complex conjugate eigen values 0 ± ju) and a real

eigen value y.

The above observations naturally suggest one method for quenching chaos:

If one increases the value of Ci by a sufficiently large amount, then the

circuit would not be chaotic. If, on the other hand, one decreases the

value of Ci, then the circuit tends to diverge with any initial condition.

If the function g(») is eventually passive , e.g. Fig. 26, small values of

Ci would cause the trajectories to converge to a large stable limit cycle as

described in [1], In fact, the eventual saturation of the operational

amplifier for large output voltages naturally gives rise to eventual passivity.

It saturates, however, in a region far beyond the region where the chaotic

attractors are located.

We have found that one parameter bifurcations of C2 and L are qualitative

ly similar to those of Cj. Chaos can also be quenched by either increasing or

decreasing the value of C2 or L.

t A resistor characteristic iR=g(vR) is said to be eventually passive [2] if
VR8^V >° f°r 'VrI sufficiently large, i.e., it eventually dissipates
power.
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IV THE CONDUCTANCE BIFURCATIONS

In this section we fix Cj, C2, L, m0 and mj as in (1.2) and vary G.

To conserve space, we will give only numerical observations in this section

even though the G bifurcation phenomena have also been experimentally

observed from the circuit of Fig. 2.

Recall that m0= -0.5, mj« -0.8 and observe that for

|m0| < G < Imj]

there are three equilibria (0, P and P ). If, however,

0 < G < |m0|

or if

|mi| < G

then the origin is the only equilibrium. We will exclude the cases G=0 and

G = |mi|, since the former is trivial and the latter gives rise to infinitely

many equilibria. This stems from the fact that g(#) is piecewise-linear.

It is not, however, an essential restriction to our analysis here.

Table 2 together with Fig. 27 - Fig. 43 shows the sequence of con

ductance bifurcation phenomena.

For 0 < G < 0.5 = |m0|, the origin is the only equilibrium and it is

unstable: no attractor is observed. For 0.5 < G < 0.606, P and P" are sinks,

while 0 is unstable. Here, our computer simulation shows all trajectories

approach either P or p",

At G z 0.607 Hopf bifurcation occurs and a stable periodic orbit is

born around P and P (Fig. 27). Here and after, only one of the symmetric

pair will be shown. Period doubling cascade, then, takes place (Fig. 28 -

Fig. 29). At G ^ 0.65, a spiral-type attractor is seen.(Fig. 30). At G : 0.68

the two attractors collide with each other as in the previous sections and

a double-scroll attractor is observed (Fig. 31).

The double-scroll attractor persists up to G ~ 0.7497 but at G: 0.7498

a periodic window of Fig. 32 is seen. Since this periodic attractor is
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asymmetric whereas (1.1) is symmetric with respect to the origin, another

periodic attractor located symmetrically with respect to the origin must

also be present. At G * 0.75 a "period-2" version of the preceding orbit

is seen (Fig. 33). From the computer graphics terminal, this period-2

orbit looks like a string which winds around twice before returning to any

starting point. At G * 0.751, the orbit no longer appears to be periodic

but keep winding around ("infinitely") many times, forming a thin

"ribbon-like" attractor (Fig. 34). Since this is asymmetric with respect to

the origin, another "ribbon" exists simultaneously. At G « 0.753 an object

similar to Fig. 32 is obtained (Fig. 35). For 0.7535 < G < 0.766, a periodic

window is again observed (Fig. 36). For 0.766 < G < 0.7694 a double-scroll

attractor reappears (Fig. 37).

At G v 0.7694 the double-scroll attractor splits into two parts and a

pair of "split ribbons" is observed as shown in Fig. 38 (only one ribbon is

shown). At G : 0.77 another periodic attractor is observed (Fig. 39).

At G * 0.773 a spiral-type attractor reappears (Fig. 40).

Beyond G w 0.784, a reverse period doubling (i.e., period halving)

cascade takes place (Fig. 41 - Fig. 43).

It is interesting to observe that for 0.8 < G < 0.817 the origin is a

sink. At G - 0.817 the complex conjugate pair of eigen values associated

with the origin crosses the imaginary axis beyond which (1.1) diverges with

any initial condition except the origin.
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Table 1

Summary of Ci Bifurcation Phenomena

1/Ci
Eigen Values

complex : a ± jw
real : y

Description of Dynamics Figure

0

+

P~

0 < 1/Ci<6.8

a < 0

Y > 0

a<0, y<0
+

P are sinks

6.8 a=0, y<0 Hopf at P~

6.8 < 1/Ci<8.2

a > 0

Y < 0

+

periodic around P 5

8.2 period 2 6

8.44 period 4 7

8.5 spiral-type 8

8.575 periodic window 11

8.8066 screw-type 12

8.8K 1/Ci<10.05 double-scroll 13

10.05 periodic window 14

9.78 Shilnikov-type 15

10.75. crisis (16)f

10.75< 1/Ci diverges from any
initial condition

t Figure 16 is obtained at 1/d =10.5 which does not yet give rise to a
crisis. It is close to it, however.
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Table 2

Summary of G Bifurcation Phenomena

G

Eigen Values
complex : a ± jto
real : y

Description of Dynamics Figure

0
+

P"

0< G £ 0.5

0 < 0

Y > 0

diverges from any

initial condition /
0.5<G <0.606 a<0, y<0

+

P are sinks

0.606 a=0, y<0
+

Hopf at P

0.606<G<0.64

a > 0

Y < 0

periodic around P~ 27

0.64 period 2 28

0.645 period 4 29

0.65 spiral-type 30

0.68<G<0.7498 double-scroll 31

0.7498 periodic 32

0.75 period 2 33

0.751 "ribbon" 34

0.753 period 2 35

0.753<G<0.766 periodic 36

0.766<G<0.7694 double-scroll 37

0.7694 "ribbon" 38

0.77 periodic 39

0.773 spiral-type 40

0.784 period 4 41

0.785 period 2 42

0.795£G<0.8 periodic 43

0.8<G<0.817 a<0, y<0 0 is a sink

0.817 a=0, y<0 Hopf at 0

0.817<G a>0, y<0 diverges from any
initial condition
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APPENDIX

The characteristic equation at an equilibrium is given by

f(X). A X3 + ax X2 + a2 X + a3

where

(A.l)

a! - (G + Dg)/Ci + G/C2

a2 = (G Dg/Ci + 1/L)/C2 (A.2)

a3 = (G + Dg)/(C1C2L)

and Dg denotes the derivative of g(») Recall that the Routh array [13] is

given by

1 a?

*1 a3

a2-a3/ai

33

and that an equilibrium is stable if and only if

ai» a2, a3, a2-a3/ai > 0 . (A.4)

At the origin Dg= - 0.8 and G=0.7 so that

a3 < 0

+
for all Ci, hence the origin is always unstable. At P and P , however,

Dg= -0.5 and (A.4) can be satisfied depending on the value of 1/Cj.

With the values of C2, L, ra0, mi, B , G fixed as in (1.2), one can explicitly

compute the value of l/Cj for which P and P loose their stability.

Note that a\, a2 and a3 of (A.2) and a2-a3/aiare given by

ai = (0.7-0.5)/Ci + 0.7

a2 = (-0.7 x 0.5)/Ci + 7

a3 = 7(0.7-0.5)/Ci

1.4/Ci
32 - a3/ai = 7-0.35/Ci -

0.7 + 0.2/Ci

For small 1/Ci, (A.4) is satisfied. It can easily be checked that as

one increases 1/Ci, the first inequality violated is the last one. Therefore,
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one looks for a positive real solution to

aia2 - a3 = 0 (A.5)

which is

1/Ci =y (- 3.5 + • (3.5)z4280 ) A 1/Cj*.

In order to see that (A.5) is equivalent to the fact that O =0, i.e.,

that there is a pair of pure imaginary eigen values, observe that

f(A) = (X-y) (X-(a + ju)) (X-(a - jui))

and (A.l) imply

ai = - (2 O + y)

a2 = a2 + w2 + 2ay

a3 = - Y (a1 + w2).

Since

ai a2 - a3 = -2 a ((a + y)2 + w2)

one sees that (A.5) is equivalent to

a = 0

i,e., there is a pair of pure imaginary eigen values. Now recall that for

1/Ci < 1/Ci* (A.4) holds. On the other hand, one can show that for

1/Cj = 1/Cj* + 6, and 6 >0 small, we have

ai, a2, a3 >0, but a2 - a3/ai <0

i.e., the first column of the Routh array changes the sign of its components

twice. Therefore, with 1/^ = llC\* +6, 6 > 0 small, there are two

unstable eigenvalues.
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FIGURE CAPTIONS

Fig. 1 Simple uncoupled circuit with chaotic attractors. (a) Circuitry,

(b) Nonlinear resistor v-i characteristic.

Fig. 2 Physical realization of the circuit in Fig. 1. (a) Circuitry

which realizes (1.1) with appropriate scaling. Subcircuit in the broken-

line box N realizes g (•) of Fig. 1(b). (b) Measured function g(«).

Horizontal scale : 2V/division. Vertical scale : 2mA/division.

Fig. 3 Attractors observed with the circuit of Fig. 2 projected onto

the (iL» vc )-plane. Horizontal scale (except (d)) : 2mA/division.

Vertical scale (except (d)) : 2V/division. In (a) - (g) only one of two

attractors is shown, (a) Periodic orbit shortly after Hopf

bifurcation, (b) Period-2 orbit, (c) Period-4 orbit, (d) Blown

up version of (c). Horizontal scale : ImA/division. Vertical scale :

1 V/division. (e) Rossler's spiral-type attractor. (f) Periodic window,

(g) Trajectory near Rossler's screw-type attractor. (h) "Double-Scroll"

attractor. (i). Trajectory near a Shilnikov-type phenomenon, (j) Periodic

window.

Fig. 4 Waveforms of state variables corresponding to Fig. 3(h).

(a) v Horizontal scale : 0.5 msec/division. Vertical scale : 2V/division.

(b) v Horizontal scale : 0.5 msec/division. Vertical scale : 2V/division.
1^2*

(c) i^. Horizontal scale : 0.5 msec/division. Vertical scale: 5mA/division.

Fig. 5 Pair of periodic orbits projected onto the (ir, v„ )-plane at
L Ci

i 1/Cx = 8.0. Here and after, the length of each arrow along each axis is 2.0.

Fig. 6 Pair of period-2 orbits at 1/Ci=8.2.

Fig. 7 Pair of period-4 orbits at 1/^=8.44.

Fig. 8 Pair of RBssler's spiral-type attractor at 1/Ci= 8.5.

Fig. 9 Modified resistor characteristic with a single break point.

Fig. 10 Spiral-type attractor obtained with the nonlinear resistor

characteristic of Fig. 9 (1/C^ 8.5).
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Fig. 11 Periodic window at 1/^=8.575.

Fig. 12 Rossler's screw-type attractor at 1/C^ 8.8066. To avoid

confusion, another screw-type attractor located symmetrically with

respect to the origin is omitted.

Fig. 13 "Double-Scroll" attractor at l/C^.O.

Fig. 14 Periodic window at 1/Ci=10.05.

Fig. 15 Shilnikov-type phenomenon observed at 1/Ci=9.78.

Fig. 16 Attractor at 1/Ci=10.5.

Fig. 17 Periodic orbits of Fig. 5 together with the saddle-type periodic

orbit (1/Ci=8.0). Length of the arrow along each axis is still 2.0 even

though the scale of the figure is different from that of Fig. 5.

Fig. 18 Period-2 orbits of Fig. 6 together with the saddle-type periodic

orbit (1/C!=8.2).

Fig. 19 Period-4 orbits of Fig. 7 together with the saddle-type periodic

orbit (1/C!=8.44).

Fig. 20 Spiral-type attractors of Fig. 8 together with the saddle-type

periodic orbit (1/Ci=8.5).

Fig. 21 Screw-type attractor of Fig. 12 together with the saddle-type

periodic orbit (1/Ci » 8.8066).

Fig. 22 Double-Scroll attractor of Fig. 13 together with the saddle-type

periodic orbit (l/Ci=9.0).

Fig. 23 Attractor observed shortly before the boundary crisis (1/Ci=10.5).

It is about to collide with the saddle-type periodic orbit.

periodic orbit.

Fig. 24 Cross section v =0 for the Poincare map of the saddle-type
c2

periodic orbit together with the stable and unstable eigen directions

(l/Ci-9.0).

Fig. 25 Saddle-type periodic orbit survives even after the death of the

attractor (1/^=13.0).
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Fig. 26 Eventually passive resistor characteristic.

Fig. 27 One of two periodic orbits observed at G = 0.63.

Fig. 28 Period-2 orbit at G=0.64.

Fig. 29 Period-4 orbit at G=0.645.

Fig. 30 Spiral-type attractor at G=0.65.

Fig. 31 Double-scroll attractor at G=0.68.

Fig. 32 Asymmetric periodic window at G=0.7498. Another periodic

attractor located symmetrically with respect to origin is also present

Fig. 33 Period-2 version of Fig 32 at G=0.75.

Fig. 34 Ribbon-like attractor at G=0.751. Another attractor located

symmetrically with respect to the origin is also present.

Fig. 35 Period-2 window at G=0.753.

Fig. 36 Periodic window at G=0.7535.

Fig. 37 Double-Scroll attractor at G=0.766.

Fig. 38 Ribbon-like attractor at G=0.7694. Another attractor located

symmetrically with respect to origin is also present.

Fig. 39 Periodic window at G=0.77.

Fig. 40 Spiral attractor at G=0.773.

Fig. 41 Period-4 attractor at G=0.784.

Fig. 42 Period-2 attractor at G=0.791.

Fig. 43 Periodic attractor at G=0.795.
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