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1. INTRODUCTION

This paper considers the concurrency control problem in database management sys

tems as a problem of controlling a dynamical system. Its purpose is to propose a state

space model for the dynamical system consisting of concurrent actions by multiple users

on one database, and to study how to control this system. The concurrency control prob

lem consists in the task of scheduling these users, the action of each user on the database

being described by a transaction. It is widely accepted that the appropriate criterion for

concurrency control is serializability. Roughly speaking, this means that the same effect is

produced on the database as if the transactions had executed in some serial order. Serial

izability is the control objective we adopt.

Despite the extensive work done thus far on concurrency control (see. e.g., [1-8.11]).

this problem had never been formulated in the framework of dynamical systems. This

was the motivation for our work and in this paper we formulate a model that is used to

characterize what can and what cannot be achieved by existing concurrency control tech

niques, and to suggest ways of improving these techniques. In particular, the well-known

Two-Phase Locking Protocol introduced in [l]. and the recently proposed Declare-Before-

Unlock Protocol [8] are analyzed in detail. The model shows how the two features: declare

and must-precede graph of [8] are useful in improving the performance of the widely used

two-phase locking protocol.

In our framework, concurrency control is a problem of supervisory control for a

discrete event dynamical system. In this sense, our model fits into the framework of [10].

although, as we emphasize in section 3 and appendix A. the main issue in our control prob

lem is one of partial state information rather than one of controllability.

This paper is organized as follows. In section 2. we introduce some terminology and

make precise the notion of serializability. The model we propose is described in section 3.

Section 4 gives some background we need about control by locking, probably the most

popular concurrency control technique. In section 5, we compare various graphs that are



estimates of the state of the system and are used with control by locking. Their properties

are characterized in terms of our model. Sections 6 and 7 are devoted to a detailed

analysis of control by locking. With the help of our model, we study the properties and

limitations of some important locking protocols. Finally, section 8 contains a discussion of

our results, and in the appendices, we comment on the interpretation of the model in

terms of supervisory control, present a new protocol, and discuss the issue of decentralized

control when the database is distributed.

2. PRELIMINARIES

2.1 - Definitions and terminology

We begin with a simple representation of the concurrent actions by multiple users on

one database. Suppose that ajb .c.... denote atomic units of data that we call objects. A

transaction is a description of the actions of one user on the database. It consists of a

finite sequence of actions, each action (say. read or write) touching a single object. The

transactions are assumed to map a consistent state of the database to a new consistent one.

i.e. they are all individually correct. We denote a transaction Tt by

Ti =Tt (o i)t,- (o2) •**Tj (oBi) where T; (oj) means that the j -th action of Tt is on object Oj.

We will also use the notation (i. j .oj) when we want j to appear explicitly (see section

3). For now. we do not distinguish between actions of different types, e.g.. reading and

writing. Nor do we assume that the objects for the same transaction are distinct. Exten

sion to read and write actions is discussed in section 8.

The fact that many transactions are being executed simultaneously results in an

interleaving of their actions, this interleaving respecting the ordering within each of them.

A complete execution, denoted Ec. of a (finite) set of transactions is an interleaved

sequence of all the actions from the transactions. An execution , denoted J?, is a prefix1 of

a complete execution. Hence, the set of all executions contains the set of all complete

1 Prefix means that 0,1 or more actions areremoved, starting from the end (right, in our notation).



executions. An execution is said to be serial if there is no interleaving between the actions

from the transactions.

Two executions E\ and E2 (of the same transactions) are said to be equivalent if for

every object o. the subsequence of E i touching o is the same as the corresponding subse

quence from E2 [1]. An execution is said to beserializable [1-7] if it is equivalent to some

serial execution.

Example 2.1: Let Tx and T2 be two transactions:

7*i = Ti(a )Ti(b ). T2 = T2(.b )t2(c\

Then examples of an execution and a complete execution are:

E2 = T!(a)T2(M

E\-2 = Ti(a )t2(* )t2(c )rx{b ).

Here. E2 is serial and E\-2 is serializable because it is equivalent to the serial execution

T2TX. To see this, observe that the subsequences touching the individual objects in E\-2

are

a :Ti(a) b :t2(5)tj(6) c :t2(c).

and so are identical to those for T2T\. D

2.2 - Serializability

We now wish to give an equivalent characterization of the notion of serializability

which we will use in the sequel. Consider an execution E. When there exist some object

b and actions (i. k. ok) and (j,m,om) in E with ok - om = b. the tuple

(0*.k ), (y. m), b ) is called a conflicting pair due to object 6 between the k -th action of

Tj and the m-th action of Tj. In this case, we say that transaction Ti precedes Ti in E if

(i .k ,ok) comes before (y. m, om ) in E. It is well known that an execution E is serializ

able if and only if precedes in E is a partial ordering, i.e. if and only if all conflicting pairs

in E are consistently ordered [l]. (By consistent we mean that the partial order is transi

tive and asymmetric.)



We can depict the situation by a precedence graph PG(2T) as follows. Let the nodes

of PGCZT ) represent the transactions. For a given execution E add a directed arc from Tj to

Tj in PG(£) if there is some object b such that, in £, 7j acts on b immediately before T}

does so. Then the execution E is serializable if and only if PG(£) is cycle free. For future

reference, we restate this result in the form of a theorem.

Theorem 2.1 [l]: An execution is serializable iff2 its precedence graph has no cycles. •

Example 2.2 : The two transactions of Example 2.1 have only one conflicting pair:

((7*i. 2). (r2.1). b). Hence, any execution of them is serializable since the PG of it is

either

7*i-*7*2 or T2-*Tx

the first one corresponding to all executions equivalent to the serial execution TXT2. the

second one to those equivalent to T2T\. Q

The dynamics of this problem correspond to the generation of an execution from the

actions of all concurrent transactions. The concurrency control problem consists in ensur

ing that any complete execution of a set of transactions is always serializable. In particu

lar, incomplete executions have to be serializable. Non-serializable executions are not

acceptable because they result in possible violations of the consistency of the database; the

lost-update problem and the inconsistent retrieval problem [2] are examples of such

undesirable situations. Observe that in general the set of objects touched by each transac

tion is not known beforehand.

This notion of serializability is often referred to as conflict-serializability (CSR) in

the literature. When one distinguishes between read and write actions, the definition of

CSR is in similar terms, but this time assuming that read - read pairs are non-conflicting

(i.e. at least one of the two actions in a conflicting pair must be a write). In this case how

ever, more general definitions of serializability are possible if one is only interested in com-

2 If and only if.



paring the initial and final states of the database. Examples are state-serializability (SSR)

[6] and view-serializability (VSR) [7], to use the terminology of [7]. The case of SSR was

studied in detail in [6] where it is shown that, in contrast to CSR where only a graph has

to be tested for acyclicity. testing whether an execution is SSR is an NP-complete problem.

The same is true for VSR [7]. On the other hand, as argued in [7]. it is not clear if the

extra concurrency allowed by these more general definitions is really desirable in practice.

In this paper, we consider only CSR. In any case. CSR. VSR and SSR are all equivalent

when one does not distinguish between read and write actions.

3. STATE MODEL FOR CONCURRENCY CONTROL

3.1 - Model formulation

In this section, we describe the model we propose for concurrency control. Consider

the dynamical system where N transactions are being executed concurrently. From an exe

cution, one can tell whether or not this execution is serializable by looking at its current

PG (from Theorem 2.1). But one cannot tell whether or not this execution can be com

pleted to a serializable one unless one knowns for each transaction the objects that remain

to be acted on. We want to define a state for this system that will contain all required

information about current and eventual (i.e. for any completion of the execution) serializa

bility. Therefore, the state needs to have more information than what is contained in the

PG of section 2.2. This justifies the following construction for the state space model of

this system.

Let £ be the set of all actions from the N transactions 7*i to TN. The elements of Z

are inputs to the system. They have the form of a triple o~ = (i. k, ok ) meaning that the

k -th action of transaction 7*,- is on object ok. Let CP denote the set of all conflicting pairs

among the elements of Z. We now define four sets of finite strings w of elements of Z.

No repetitions of any element of Z are allowed in a string w.

Zf := { w : w is an execution )3
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:= { w : w is a serializable execution }

:— { w :w is a prefix of a complete serializable execution }

Zese :— { w :w is a complete serializable execution }.

(By execution it is understood an execution of Tx to TN. as defined in section 2.1.) Clearly,

these sets are strictly nested in general. The first three contain the empty string denoted

w = 1.

The state of the system, denoted q, is represented as a graph composed of N nodes

and of three types of (labeled) arcs: (i) dashed, not directed: (ii) dashed, directed: (iii)

solid, directed. A state q is also called a state graph. abbreviated SG. It is constructed

from an initial state and a state transition function that we now define.

Let the initial state, denoted q0.bea graph with N nodes representing the N transac

tions and one undirected dashed arc for each conflicting pair in CP. Recall that the ele

ments of CP are of the form (ii.k).(j.m).b). The arc is drawn between nodes i and j

and has for label this whole tuple.

Given an input action o* € Z and a state q. the state transition function, denoted

<f>e(o~. q). is as follows. In response to <r= (i ,k.ok), identify all arcs attached to node i

whose labels contain a (i.e. all conflicting pairs in which o~ is involved). If there are no

such arcs, set <j>e (o*. q) = q. Otherwise, determine which of the following situations pre

vail for each of these arcs and do as indicated:

(i) the arc is dashed and not directed (meaning the other action in this conflicting pair

has not occurred yet): in this case, direct the arc out of node i:

(ii) the arc is dashed and directed into node i (meaning the other action has

occurred): in this case, replace the dashed arc by a solid one in the same direction:

(iii) in all other cases. <j>t is undefined.

The state space, denoted &. is defined to be the set of all such state graphs (SG)

which are generated by all possible executions of the N transactions, starting from the ini-

3 :=stands for "defined equal to."



tial state q$. More precisely, define the transition function 4> on Ze in the following recur

sive way:

(i) <KD := q0

(ii) for any w* 6 Ze and cr € Z such that w := w'cr € Ze.

<Kw):=0e(o-.<Kw')).

(Observe that the assumptions in (ii) guarantee that 4>t in the above equation is always

defined.)

Then the state space is just the range of <E>:

Qe = {q : there existsw 6Ze such that q = *(w )}.

and we similarly define Qse. Q^ and j2»e by replacing Ze in the above definition by Z«.

Zgy and Ze, .respectively. & contains all state graphs that will ever be reached by the N

transactions.

Remark 3.1 : When we will talk about nesting of state subsets, the same will be true for

their corresponding inverse images under *~1. which are sets of executions. D

The state transition function is hence the partial function <f>e :Z X (2e "*Qe

corresponding to the above description. It is a partial function because <f>e (c.q) is defined

only when there exists w 6 0>~Kq ) such that w <r € Ze. It is now clear that given an

input action from Z. the current SG and 0e completely and uniquely determine the new

SG.

Non-conflicting actions are not considered in this model because they have no effect

on serializability and achievable concurrency. Without loss of generality, we can ignore

them since they do not induce a transition of the state.

Observe that the mapping, under 4>. of the various sets of executions into the

corresponding sets of states, is not injective. Recall the definition of equivalence in section

2.1. Then the following result is clear.

Lemma 3.1 : Two executions have the same state graph iff they are equivalent.
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Proof: First observe that two equivalent executions are composed of the same actions. So

in their state graphs the sets of directed dashed arcs and of solid arcs will be respectively

identical. If the actions on each object appear in the same order in these executions, then

the arcs in their SG's will have identical directions. Conversely, identical state graphs

imply same sets of actions, and identical directions imply that conflicting actions occur in

the same order and so the subsequences touching each object are the same. D

Therefore, as far as serializability is concerned, there is no loss of generality in

assuming, de facto, a one-to-one relation between an execution and its corresponding state

graph, since this graph contains all necessary information for this purpose. However,

when analyzing a specific execution in terms of some concurrency control method (as we

do in sections 6 and 7). one has to consider the whole state trajectory of this execution.

For an execution E = e i • • • en where the ex 's are individual actions, this trajectory is

defined to be 7Vay(2T) := {q0. • • - jqn} where qi+1 = <f>e(ei+1. #).

Lemma 3.2 : Traj(jE) completely and uniquely determines E.

Proof: From the definition of <f>e ft is clear that given qx and g,+i. both in j2e • there is a

unique o* € Z such that <f>e(.<r. ?,) = qi+i. (Look at the labels on the arcs that became

directed or solid to identify the appropriate action <r.) Therefore, the entire trajectory

determines a unique execution which has to be E (otherwise it would not be the trajectory

of£). D

Our state space model can be viewed in the terminology of automata theory [9] as a

deterministic automaton or generator [10]:

G =(<2e.Z.&.?o.<2n).

where Qm can be taken as Qcsc» the set of acceptable final states which correspond to the

complete serializable executions. (Observe that in our model the states q € Qc are them

selves graphs. Also, our generator G is accessible by construction.) The sets Ze, ZSf, Z^

and Zw are languages . and in particular Ze is the language generated by the uncontrolled

generator G. We comment further on this relation with [10] in appendix A.



Example 3.1: Consider the two transactions

Tj = Txia )ti(6 ) T3 = t3(£> )t3(c )

and the complete execution

£1-3 = Tx(a)t3(6 )r3(a )r1(6).

£f_3 has two conflicting pairs: ((Tlf 1). (7*3. 2). a) and ((rlt 2). (r3. l). 6). 7Vay(£f_3)

is drawn in Figure 3.1. D

3.2 - Characterization of the state space

The nesting of the various subsets of the state space defined above is represented in

Figure 3.2. For convenience, we denote Ge-»e ~ Qe ~~ Qse and Qse-ae :=s Q*e "~ Qss •

We now make the following observations.

1- The SG represents the current status of the ordering of all the conflicting pairs in CP.

whereas the solid arcs represent the ordering of those pairs for which the two actions have

occurred, corresponding to the PG of section 2.2 (up to transitive closure of this one

because it only draws arcs from the last user of an object to the current one: see Lemma

5.4).

2- The method of construction of the SG shows that a "dashed" or a "mixed" cycle will

always result in a "solid" cycle, no matter how the execution is completed. (A solid cycle

is only composed of solid arcs, a mixed cycle has at least one dashed arc and one solid arc.

and a dashed cycle has only dashed arcs.)

3- The partial ordering of the conflicting pairs can remain consistent if and only if the

current SG has no cycles, although the violation of serializability only occurs when there

is a solid cycle. This is because the violation effectively happens only when all the actions

involved in this cycle have occured. Hence, mixed and dashed cycles anticipate an una

voidable violation of serializability. even tough the execution can be serializable up to now

(if there are no solid cycles).

These observations lead to the following results.
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Ifflnma 33 : The state space & has the following characterization:

(i) q 6 (2cie iff £ is cycle free:

(ii) q € Qse^cse iff a has one or more cycles, each of these cycles containing at least

one dashed arc. equivalently. iff q has at least one dashed or mixed cycle but no solid

cycles:

(iii) q GQese iff q has one or more solid cycles.

Proof: (i) Complete serializable executions and their prefixes correspond to cycle free

states.

(ii) Those executions which are serializable but which cannot be completed to serializable

ones correspond to the states in j2se-cw ancI so t^iese states must have cycles, although

none of them can be solid.

(iii) Finally, non-serializable executions correspond to states with solid cycles as observed

above. D

Corollary 3.4:

(i) The state cannot jump from Qs? directly into &-*«•

(ii) A state q € J2,e-s« can never return to fis? and will inevitably go to Qe-se upon

completion of the execution.

Proof: Follows from the above observations. D

Example 3.2 : In Figure 3.1. q0 and q i are in QSit but the presence of dashed and mixed

cycles in q2 and ?3. respectively, indicates that these states are in fi,e-5F • ue-tnat although

the corresponding (incomplete) executions are serializable. they cannot be completed to a

serializable one. In fact. q4 € Qe-se shows that 2sf_3 of Example 3.1 is not serializable. D

The situation when the state jumps out of Q^ will be called deadlock. This term

means that in order to obtain a complete serializable execution, it is necessary to back-up

(or undo) the current execution (partially, i.e. until the state returns to Q^ ). This is in

analogy with the usual meaning of deadlock in control by locking [2]. We are concerned
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with deadlock detection only: we will not consider the problem of deadlock resolution.

Each time it will be detected, we will assume some deadlock resolution procedure is

invoked after which the execution is resumed.

33 - The concurrency control problem

We have in mind the situation where a controller acts on the system described by G

by accepting or rejecting inputs. Its decisions are based on a division .of the state space into

a "legal" region and an "illegal" one. All transitions inside the legal region are accepted,

whereas transitions from the legal part to the illegal one are always disabled (i.e. the input

is rejected). Given a controller, executions which are accepted by it are termed achievable

and their corresponding states (through <t>) are said to be reachable.

The control objective for our dynamical system is to obtain only complete serializable

executions. To have more concurrency means to allow for more elements of Z^. max

imum concurrency meaning to allow for all of Zae. We stress the fact that all complete

serializable executions are assumed to be good per se (i.e. none are less desirable). There

fore, wanting to allow for all of them is a reasonable objective because more concurrency

implies less waiting on the part of the transactions.

Our model is not only useful to characterize the status of an execution concerning

serializability (by using Lemma 3.3), but it also provides for a measure of concurrency via

the state space and its subsets as we now show.

Lemma 33 : E € Z^ iff Traj(JS) CQ^ .

Proof: (only if) If E € Zgy. all its prefixes are also in Z-. Hence, the SG's of these

prefixes are in fise •and since they constituteTraj(E). this trajectory remains inside j2s?•

(if) Consider the states qx in 7ray(£), i = 1. • • •n. By definition of £5? • the inverse

image *rl(tfi) is some set S(t) CZ^. But on the other hand. Traj(E) uniquely deter

mines E (Lemma 3.2). This means E is the only execution such that its i -th prefix is in

S(i ) for alH = 1. • • •n. In particular.E € Sin). Hence.E € Z^. D
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Corollary 3.6 \EC € Z„e iff Traj(£c) CQ^.

Proof: Follows from Lemma 3.5 and the fact that the only complete executions in Z^ are

those in tcst. by definition of these two sets. D

Lemma 3.7 : Given a controller for G. an element of T.at is not achievable iff one or more

states in j2s? are not reachable.

Proof: (if) Suppose the state q is not reachable by the controller. Clearly, this controller

does not achieve any of the trajectories that go through q. and by definition of J2s?• there

has to be at least one such trajectory (any q € j2«e ^ ttie image under $ of some prefix of

an element of X„e ).

(only if) By way of contradiction, suppose that all states in Qse are reachable but that

some element Ec of Z^ is not achievable. Recall that the controller acts by disabling

transitions out of a "legal" subset of the state space. Hence, all reachable states are neces

sarily "legal." But all states in Traj(Ee) are reachable. Therefore it is not possible that

each state in a trajectory be individually reachable (hence legal) but that the execution be

not achievable (because the controller always accepts transitions inside the legal region).

We have a contradiction. D

The above result justifies the fact that the portion of Q^ that a controller can reach

is an aprropriate measure of the concurrency it can achieve. Of course, the "ideal" legal

region is Q^. A controller that reaches Qs? exactly solves optimally (in terms of serial

izability requirements and achievable concurrency) the concurrency control problem. We

say "ideally" because, for this to be possible, the controller must know q0 beforehand. i.e.

it must have complete state information. This is because this objective requires that all

state transitions out of fise ** detected. Lack of knowledge of some (dashed) arcs can

result in cycles in the SG that are not detected by the controller.

In general, qo is unknown to the controller since it contains information about future

actions. By looking at a current execution, the controller can only identify the elements of
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CP for which the two actions have already occured. so that the best it can do is to deter

mine if q € Qa or if q € fie-*e (by using Theorem 2.1). To determine membership inside

Q„ requires more information. Therefore, the concurrency control problem is one of con

trol with partial state information.

However, a necessary requirement is that the state remains within (2^ at all times,

because an execution has to be serializable. even if incomplete. Hence, given the informa

tion available to the controller, our control objectives are:

(i) to bring the set of reachable states by the controlled system as close as possible to

Qcse-

(ii) to detect deadlock occurence as soon as possible, and guarantee detection before

the state jumps into &-*« (recall Corollary 3.4).

Remark 3.2 : As formulated, our model considers the dynamics of the problem for a fixed

set of N transactions. In the case where transactions leave upon completion and are

replaced by new ones, the state space model will be time-varying. By this we mean that

Z. (2e and its subsets, and the state q will "jump" to new values each time there is a

change among the N transactions. However, the basic properties of the model (nesting of

states and executions subsets, characterization of state space, admissible states, etc.) will

be unchanged so that the analysis and results in this paper still apply to this more general

case. D

4. CONTROL BY LOCKING

Locking provides an effective means for concurrency control when a locking protocol

is specified (see [1-8]). In this section, we introduce the necessary background about the

method of control by locking and see how it fits in our model.

4.1 - Locking actions and constraints

There are two basic locking actions: "lock" and "unlock." A new one. called "declare."

was introduced in [8]. These are the only three types we will consider in this paper.
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Locking actions are added to a transaction to produce an augmented transaction, and any

interleaving of augmented transactions is termed an augmented execution. We represent

locking actions in an augmented transaction T{ by the symbols d{ Q>). lx (Jb ). Ui (*>) to

denote Tt declares, locks and unlocks object b. respectively.

An augmented transaction T has to satisfy the following locking constraints: (i)

every object used by T is declared before it is first locked, (ii) every object is locked before

it is used, and (iii) to every lock there is a corresponding unlock before the end of the

transaction. Each upgrading voids the previous state of lock.

An augmented execution E is called a locking execution if it satisfies the following

locking constraints: (i) every transaction in E is augmented correctly, (ii) locks are

exclusive, i.e. there is never more than one lock on an object at any given time. Locking

executions are the only augmented executions we are interested in.

Observe that a declare must precede a lock, but not necessarily immediately. Upon

being promoted to a lock, it becomes void. So when we say "all transactions currently

holding a declare on a." we mean all transactions that have declared but not yet locked

object a. In contrast to locks, "declares" do not conflict with each other, neither do they

conflict with "lock." This means that any number of transactions can simultaneously hold

"declare" on the same object, even if it is locked by another transaction.

Remark 4.1 : In this paper, we consider both control with two types of locking actions

(when only "lock" and "unlock" are used) and with three types of locking actions (when

"declare" is also employed), the former being a special case of the latter where "declare"

actions are deleted. D

4.2 - Locking executions

It is not hard to see that every element of Ze has a corresponding locking execution.

The following augmentation procedure (based on one in [8]) gives a way of obtaining a

locking execution from a given execution.
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Standard augmentation procedure

Let E be an execution: E = eie2 • • • en where the et 's are actions. We begin by aug

menting «i in E with the addition of locking actions to produce E\. Then, we augment e2

in Ei to produce E2. and so forth. At the beginning of the k-th step, we have ek in the

form of rTia ) where T is a transaction and a is an object. In Ek-\. one of the following

situations prevails.

(a) At the time of ek , T holds the lock on a : in this case, we set Ek = Ek _i.

(b) At the time of ek, a is unlocked: in this case, we replace ek - Tt-Cg) in Ek-i by

dT (a )Zr (a )tt- (a ) to produce £* .

(c) At the time of ek . some transaction S ^T holds the lock on a : in this case, we replace

ek = Tr (a ) in 2?* _i by «5 (a )dT (a )Jr(a )rr (a ) to produce2?t.

After step n. we remove all redundant "declares" in En (retaining only the first

declare on each object for each transaction) to get E^. Finally, if E is not a complete exe

cution, we set El = En. whereas if it is complete, we add all needed unlocks at the end of

En to getEl. El is called the standard locking execution corresponding to E. D

Example 4.1: Consider the three transactions:

7*1 = ri(a )t lib ) T4 = r4ib ) Ts = rsia )r5(a ).

Here is an example of the construction of the standard locking execution for the following

complete (serializable) execution:

£f_4-s = ^i(a yrs(a )rsia )r4(&)ti(6 ).

At each step, we obtain the following sequences:

Ei = d i(a )/ i(a )rxia )t5(a >rs(a )t4(£ )t x(6 )

E2 m diia )Zi(a )ri(a )u i(a Xf5(a )/5(a >s(* W* W* )ti(6 )

£3 = E2 (7*5 Aay t/ic lock on a)

E4 = d & )l ,(a )Ti(a )«i(a )</5(c )lsia )r5(a )r5(a )<f 4(*)U* >4ib )rxib)

Es = d xia )l i(a )rxia )w j(a )dsia )Z5(a )r5(a )r5(a )

d 4ib)l 4ib )t4Q> h 4ib)d xib )l xib )r lib )

Es = E5 (becauseno redundant declares in £5).
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Finally, adding the missing unlocks (this is only necessary becauseisi-4-5 is complete) we

get the locking execution:

EUs = dx(a)lxiayrxia)uiia)dsiaysia>rs(ayrsia)

d4ib)l4ib)T4ib)u4ib)liib)Tiib}us(a}uxib\ D

43 - Locking protocols

The usefulness of locking actions comes when they are used as a means for con

currency control via a locking protocol, abbreviated LP. A LP for the augmentation of an

execution is described by two sets of constraints:

category (1): constraints on the augmented execution itself, and

category (2): constraints on each transaction (as a whole) present in this execution.

Category (1) always contains the condition that the augmented execution be a locking

execution, plus some other constraints on the state estimate corresponding to it. In

category. (2) are regrouped conditions which concern a transaction in its entirety: the con

straints may not only apply to the actions from this transaction that are in the (incom

plete) execution, but might also involve future actions by it (e.g.. the two-phase and

declare-before-unlock conditions discussed in sections 6 and 7). Some LP's will be

analyzed in detail in sections 6 and 7. For now. we wish to introduce more terminology.

Let LPx denote any locking protocol. An LPx —execution is an augmented execution

such that itself and the transactions present in it satify the requirements of protocol LPx.

An execution is said to be LPx —augmentable if there exists an augmentation of that execu

tion that is an LPx-execution. The "language" of protocol LPx is the set of executions that

it can achieve:

ZjjBg := [E € Ze : E is LPx—augmentable}

and the set of states reachable by this protocol is QLPx. the image under the mapping <& of

its language:

Qlpx '•— \q *there exists E € ZiA. such that q = QiE)).
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A state in Qlpx is termed LPx —reachable.

Lemma4.1: An execution E is LPx-augmentable iffTraj iE) C&Lfe •

Proof: As in Lemma 3.5. Just replace Zgj and Q^ in that proof by Lzj* and Qlpx>

respectively. D

5. GRAPH REPRESENTATIONS OF CONCURRENT AUGMENTED TRANSACTIONS

In this section, we define and compare three different directed graphs for the

representation of a set of concurrent augmented transactions that is being executed accord

ing to some locking protocol. These graphs are in effect state estimates, i.e. sub-graphs of

the SG, and they are constructed from the incoming locking actions of a locking execution.

(All augmented executions considered in this section are assumed to be locking executions.)

The locking protocols we study in sections 6 and 7 use these graphs for control (via con

straints of category (l)). (Some results in this section have appeared in [8]. They are

repeated here for the sake of completeness.)

5.1 - Definitions of graphs

In the following graphs, to each transaction will correspond a node. Arcs are added

according to the specifications given below. They are labeled by the objects that give rise

to them.

Note: When an object is not locked, most recent lock-owner will mean the last transaction

that held a lock on that object, if there is any.

Precedence graph (PG)

This graph was defined in section 2. In terms of locking actions, this graph can be

redefined as follows:

when transaction T locks object a. draw arc 5 -*T where S is the last lock-owner

of a. (In such a case, we say HT reads a from S.w)

Must-precede graph (MPG)
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For this graph, arcs are added in the following way:

(a) when transaction T declares object a. draw arc P -*T where P is the most recent

lock-owner of a;

(b) when transaction T locks object a. draw arc T -♦ F for each F that is currently

holding a declare on a.

Concerning the PG, MPG and SG, we have the following terminology. If there is an

arc from S to T, then S is called an immediate predecessor of T and T an immediate fol

lower of S. If there is a path from S to T. then S is called a predecessor of T and T a fol

lower of S.

Wait-for graph (WPG)

This graph is constructed as follows:

(a) when T requests a lock on a (hence T has already declared a ) and a is currently

locked by S, draw arc S -*T ("7* is waiting for 5"):

(b) update the graph at each new lock or unlock.

5.2 - Inclusion results

Our objective is to compare the above graphs and the SG. We will assume for the

updating of the SG that an action input occurs simultaneously with the obtention of the

corresponding "lock" for this action. (There is no loss of generality in doing so. even if a

transaction acts more than once on an object.)

Lemma 5.1: The MPG is a sub-graph of the SG.

Proof: According to the method of construction of the MPG, an arc 5 -*r with label a is

added only if one of the two following cases occurs.

(i) T declares a for which S is the most recent lock-owner. This means there exist

integers k and m such that ((7*. k ). (5. m ), a ) £ CP and the action input (S.m.a) has

occured before. Hence, there is already a directed dashed arc 5 —• T in the SG.

(ii) S locks a and T holds declare on a. Again, there exist integers k and m such that
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iiT. k ). iS. m). a ) € CP. but the action input iT. *. a ) has not already occured. Hence,

the arc 5 -»7 is added to the MPG at the same time as a corresponding dashed one

becomes directed in the SG. D

Corollary 5.2 : A cycle in the MPG is anticipated by or occurs at the same time as a simi

lar dashed or mixed cycle in the SG.

Proof: Follows from the proof of Lemma 5.1. Observe that the cycle cannot be solid in

the SG when it occurs in the MPG. D

Lemma S3 [8]: The PG is a sub-graph of the MPG.

Proof: There is an arc from S to T in the PG only if there exists some object c such that

T reads c from S. Necessarily, the locking execution must look like:

lsic) • • -usic) - - -lric)

with no other transaction locking c between S and T. Because of the locking constraints.

dT (c ) occurs before It (c ). If dT (c ) occurs after lsic). then the arc S -*T is added to the

MPG at dTic); if dTic) occurs before lsic), then the arc S -*T is added to the MPG at

lsic). This proves the result. •

Lemma 5*4:

(i) The PG is a sub-graph of the solid arcs in the SG.

(ii) There is a cycle in the PG iff there is a solid cycle in the SG.

Proof: ii) Suppose an arc labeled a is added from S to T in the PG. This means there

exist integers k and m such that iiT.k). iS.m).a) 6 CP and now iT.k.a) is the

second action in this pair to occur. Hence, the directed dashed arc from S to 7*

corresponding to this pair becomes solid in the SG.

(ii) Observe that there might be more solid arcs in the SG than what appears in the PG

(recall observation 1. section 3.2), but the extra ones can be obtained by transitivity from

those in the PG. Therefore, the PG contains enough information for the detection of solid

cycles in the SG. Q
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Lemma S3 [8]: The WFG is a sub-graph of the MPG.

Proof: If we have the arc S -*T labeled a in the WFG. i.e. T is waiting for S to get the

lock on a. then necessarily the same arc was added before to the MPG. either when:

i) T declared a which was already locked by S. or

ii) S locked a for which T was holding declare at the time. D

Corollary SJS [8] : Cycles in the PG and in the WFG are always anticipated by similar

cycles in the MPG.

Proof: Follows from the proofs of Lemmas 5.3 and 5.5. D

Example 5.1: Recall the transactions of Example 3.1. Consider the execution

E3 = Txia)r3ib)T3ia)

and a locking execution of it (not the standard one)

Ez-t = dxia)dxib)lxia)rxia)d3ib)lzib)r2ib)uxia)d3ia)l3ia)T3ia).

The SG of E3 is q3 in Figure3.1. The PGand MPG of £3_z are drawn in Figure5.1. D

53 - Serializability results

We want to use the results of section 3.2 and 5.2 to determine the interpretation of

cycles in the WFG. PG and MPG. Unless otherwise mentioned, the theorems in this sub

section are valid for any locking execution of some given execution E € Ze. The state is

just *(£). and the WFG. PG and MPG are constructed from a locking execution of E.

Theorem 5.7 : A cycle in the WFG implies that the state has previously jumped out of

j2se • However, a cycle free WFG does not imply that the state is in Qse.

Proof: The first statement follows from Corollaries 5.6 and 5.2. and Lemma 3.3. For the

second statement, observe that the WFG is only concerned with waiting: for instance, any

sequence of inputs constituting a standard locking execution (section 4.2) keeps the WFG

cycle free. But every element of Ze has such an augmentation. D

Theorem 5.8 : The PG is cycle free iff the state is in Qie.
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Proof: Follows from Lemmas 5.4 and 3.3. D

This result shows that the PG cannot detect transitions out of (2s?» DUt onlv those

out of j2se •

Theorem 5.9:

(i) If the MPG is cycle free, then the state is in Q„.

(ii) If the state is in Qsg. then the MPG is cycle free.

(iii) To any state q in J2*« corresponds a locking execution whose MPG is cycle free.

Proof: ii) Follows from Corollary 5.2 and Lemma 3.3. or observe that if the MPG has no

cycles, then the PG has no cycles, and so the result is true by Theorem 5.8.

(ii) Follows from Lemma 3.3 and Theorem 5.1.

(iii) Take any element in VKq ) and augment it by using the standard augmentation pro

cedure of section 4.2. The PG of this locking execution is cycle free because it is serializ

able. But since in this standard augmentation all "declares" immediately precede

corresponding "locks." one can see that: (i) arcs in the MPG of a standard locking execu

tion are only added at "declares." and (ii) if such an arc causes a cycle, the same cycle

appears immediately after in the PG when the corresponding lock is requested. Hence, the

MPG of this locking execution is also cycle free. D

In view of Lemma 3.3. the objective is to detect all cycles appearing in the SG, since it

has to remain cycle free in order to get a complete serializable execution. But Theorems 5.7

to 5.9 show that:

- the WFG is of no help unless we impose some other conditions (see Lemma 6.3 (ii)):

- the PG detects cycles only when they become solid in the SG: dashed and mixed cycles

cannot be detected:

- the MPG is as good as the PG and furthermore it has the possibility to detect dashed and

mixed cycles provided "declares" occur early enough in the locking execution. (For

instance, compare the PG and MPG in Example 5.1.) This means that in contrast to the PG.

states in Q„^^ can potentially be delected by cycles in the MPG. This important
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observation is the basis for the LP's discussed in section 7 and is one the justifications for

using the declare locking action.

We conclude this section with a result about complete locking executions.

Theorem 5.10 : Let q - Q(EC ) for some complete execution Ec € Ze. Then q € gcre iff

the PG is cycle free iff the MPG is cycle free iff q is cycle free.

Proof: Once the execution is complete, all arcs in the SG are solid, and so the three graphs

differ only by arcs that can be obtained by transitivity. Hence, the complete execution Ec

is serializable if and only if the graphs have no cycles. D

6. ANALYSIS OF LOCKING PROTOCOLS - PART I

In this section, we consider control with two types of locking actions.

6.1 - Basic locking protocol

We have found useful to present as a basic locking protocol, abbreviated LPO. a

requirement that is common to all LP's in order to outline its effect precisely.

Protocol LPO

(1) : The augmented execution must be a locking execution.

(2) : A transaction cannot acquire a new lock on an object after it has unlocked it. D

The second requirement means that a transaction can only request one lock per

object. Its effect on concurrency is as follows.

Theorem 6.1:

(Ofe CfiiPoCfl,.4

iii)Q„ € Gipo and Gzpo <£ &e.

Proof: We first make the following observation. In the SG. an arc has a label of the form

iii ,k).ij,m).b). The effect of condition (2) of LPO is to force all arcs with same object

label (i.e. b part in the tuple) between two given nodes to have the same direction. This

4 In sections 6 and 7, unless otherwise mentioned, all inclusions are strict in general.
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direction is determined when the lock on this object is first obtained by one of these two

transactions.

(i) In a cycle free state q € Q^, no two arcs between two nodes can have opposite direc

tions. Hence, all these states are LPO-reachable. Of course, not all states in & satisfy the

requirement of condition (2).

(ii) Clearly, there are many states in Q„ that don't satisfy the above condition: e.g. con

sider a dashed cycle between two nodes. This shows the first non-inclusion.

On the other hand, that all arcs between two given nodes have same direction is no

guarantee that solid cycles will not appear. This proves the second non-inclusion. D

Example 6.1 : The non-inclusions of (ii) above are also true for the sets of executions. i.e.

Z„ C 2.jj>o and Zjj>0 t Zw* (see remark 3.1). Here are examples for the executions

indicated in Figure 6,1. Recall

Tx = rxia )rxib ) T3 = r3ib )r3ia ) Ts = rsia )r$ia ).

£f_5 = rsia)rxia)Tsia)Txib) £ Zw (Theorem 2.1). and also £f_5 (S Z^o because Ts

violates condition (2) of LPO.

E(X„5) = T5(<z )rxia ) is serializable but again Ts violates (2) of LPO.

j?f'_3 = rxia)r3ib)Txib)T3ia) is LPO-augmentable (e.g. take Exli given by the standard

augmentation procedure of section 4.2 and delete "declares") but is not serializable (by

Theorem 2.1). D

Observe that protocol LPO is not an acceptable concurrency control method since it

does not guarantee that the state remains inside Qse. Due to the second part of Theorem

6.1. we define Zse0 := Z« fl^iPo and Z,^^ := I*o - Eg.. Similarly for Qse0 and

QstO-cse'

When condition (2) of LPO is in force, we group all arcs between two nodes which

have same object label into a single one since one arc carries all information we need for

our purposes. This induces a concatenation of some states in Qe and eliminates other

states in it, yielding Qlpo- Also, the arcs of the SG need only have an object label now.
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However, this means we cannot completely reconstruct E from TrajiE) whenE has more

than one action on an object because we only know when the first such action occurs

(which is when the arc becomes directed), and an upper bound for the time when the last

one occurs (which is when this object is used by another transaction, i.e. when the arc

becomes solid). Nevertheless this undeterminacy is of no consequence for our analysis of

concurrency. This is because if a concatenated state is reachable, all original ones before

concatenation are reachable too. Hence. Lemma 4.1 is still true.

Remark 6.1 : Example 6.1 brings to the attention the fact that, in a practical situation, a

transaction might not know if it can unlock an object because it does not know yet if it

will need it later in the future. This in fact applies to all requirements of category (2) in

the LP's we will consider. Clearly, no model can account for such situations. Hence, we

stress that the proper interpretation to the concept of LPx-augmentability is that, given an

execution, there exists an augmentation of it that is an LPx-execution. In some sense, this

is "optimistic" for states in fi«e DUt "pessimistic" for states out of QSi. O

6.2 - Two-Phase Locking

We now wish to analyze the well-known Two—Phase Locking Protocol [l], abbrevi

ated LP-20. in our framework.

Protocol LP-20

(1) : The augmented execution must be a locking execution.

(1*) : The WFG must remain cycle free.

(20 condition ) : A transaction has to acquire all needed locks before it can unlock

any object. D

(Observe that the 20 condition implies condition (2) of LPO.)

Lemma 6.2 : Consider an execution and any locking execution of it.

(i) The 20 condition guarantees that no solid arc is preceded by a dashed arc in the

SG.
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(ii) When the 20 condition is in force, all dashed cycles in the SG eventually appear

in the WFG.

Proof: (i) By way of contradiction, suppose a solid arc is preceded by a (directed or not)

dashed arc in the SG. and call T the transaction node where these arcs are attached. The

solid arc out of T means that T has unlocked some object. But the dashed arc attached to

T means that T has not yet locked the object labeling this arc. This contradicts the 20

condition.

(ii) Consider a dashed cycle in the SG. This means that only one of the two actions of

each respective conflicting pair has occured yet. But each transaction involved in this cycle

will eventually request a lock for the object labeling the arc going into it. Since all tran

sactions observe the 20 condition, all these requests will be placed before any lock is

released by any of these transactions. Therefore, none of these requests can ever be

granted and the same cycle eventually appears in the WFG. D

Theorem 63:

(OfizP-2* C{2s«0-

Proof: ii) Lemma 6.2 (i) guarantees that no solid or dashed cycles will ever appear in the

SG. and so by Lemma 3.3 and the fact LP-20 is more restrictive than LPO. the state

remains within Qseo. The inclusion is strict because Q„q surely contains states where a

solid arc follows a dashed one. whereas Qu-2<t> does not.

(ii) Clearly. Qsn contains many states where a solid arc follows a dashed one.

(Examples are given below.) D

The interpretation of the above results is that the 20 condition is so strong that the

controller need only keep the WFG as state estimate. The state remains all the time

within Qse (in fact Qseo)> and transitions out of Q^ (i.e. deadlocks) are eventually

detected by cycles in the WFG (from Lemma 6.2 (ii)). The price to pay for using such a

simple controller is that only a fraction of Q^ is now reachable, meaning that
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concurrency is considerably less than what is admissible.

Example 6.2 : (i) Recall the transactions in Example 3.1. The execution

E3 = Txia )r3ib )r3ia ). whose SG is q3 in Figure 3.1. is in Zw0 because it is serializable and

the following is an LPO-execution if it:

&3-LP0 = 11(« fr l(« )«l(« )* 3(* W* )* 3(<* >»*3(« )•

But q3 t Q'lp-24 (from Lemma 6.2 (0). and so E3 t Zu-2$ by an application of

Lemma 4.1.

(ii) Recall the complete (serializable) execution of Example 4.1.

£!_4-s = rxia )r5(a )rsia )r4ib )rxib ).

Figure 6.2 shows TrajQji_4_5 ). qs cycle free shows the execution is serializable. But

q2 = q3 and q4 are not LP-20-reachable, so £1-4-5 is not LP-20-augmentable. D

7. ANALYSIS OF LOCKING PROTOCOLS - PART H

7.1 - Protocols based on graphs

In the spirit of section 6.1. we now present and study two protocols, not for their

practical interest, but because that will help in understanding the Declare-Before-Unlock

protocol that we. discuss in the next sub-section. Protocol LP-PG is for control with two

types of locking actions, and protocol LP-MPG is for the case when "declare" is also

employed.

Protocols LP-PG and LP-MPG

(1) and (2) : As in protocol LPO.

(1*) : The PG (MPG respectively) must remain cycle free. D

Theorem 7.1: Glp-k? = Qlp-mps - j2«o-

Proof: ii) Qlp-pg ~ Qseo- From Theorem 5.8 and the fact that LPO is contained in LP-PG,

we have that Qlp-pg = Qlpo f\Qse ='Qs*0'

(ii) Qlp-mpg = Qseo- As in (i). but this time using Theorem 5.9. •
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Condition (1*) means that locking inputs "lock" (and "declare" for LP-MPG) are

rejected by the controller if they cause a cycle to appear in the PG (MPG). In the case of

LP-PG, it means the state is already in (2,eo-Se and so there ^ deadlock (recall Lemmas

5.4, 3.3 and Corollary 3.4).

In the case of LP-MPG, the situation is different and two cases have to be considered.

First, suppose a request by T for "declare" on object a is the cause of the cycle detected in

the MPG. The proof of Lemma 5.1 shows that a similar cycle is already present in the SG.

Hence, the state jumped out of Cgy before and we have deadlock. Intuitively, this

"declare" is coming too late. The transition out of Q^ occurred when the first conflicting

action in this pair was accepted (because of insufficient information then).

Second, suppose that a request by T for "lock" on a is the cause of the cycle. This

time, as mentioned in the proof of Lemma 5.1. a similar cycle appears simultaneously in

the SG. Provided there are no other (dashed or mixed) cycles in the SG. this means the

state would jump out of (2s? if the lock were granted. So there is no deadlock and the

strategy is not to grant the lock and ask T to wait until its predecessors are done with

object a. Refer to [8] for a detailed treatment of this issue. (If there are other cycles in

the SG. they will eventually appear in the MPG (at a "declare" request) and this will

result in deadlock.)

These remarks show that although in the worst case LP-MPG does no better than

LP-PG in terms of reachable states, it has the potential to do better in the sense that cycles

caused by lock requests do not correspond to deadlock but can be resolved by waiting. This

capability for improved performance is execution dependent and is a function of how early

"declare" locking actions are placed. For instance, standard locking executions never cause

such cycles because "declare" always immediately precedes"lock" and so only arcs of type

(a) in the definition of the MPG are ever drawn. Hence, more stringent requirements than

merely "declare before corresponding lock" are a necessity for reducing the set of reachable

states. This is of crucial importance to understand the usefulness of the "declare" locking
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action. Such ways to improve LP-MPG are discussed in the next sub-section and in appen

dix B.

7.2 - Declare-Before-Unlock protocol

. The Declare-Before-Unlock protocol (denoted LP-DBU here) is proposed in [8] as a

protocol.that achieves all complete serializable executions and permits early detection of

deadlocks. It is a stronger version of protocol LP-MPG where a condition of category (2)

is added, namely the DBU condition.

Protocol LP-DBU

(1). (2) and (1') : As in protocol LP-MPG.

iDBU condition ) : A transaction must declare all objects it needs before it can unlock

any object. D

More details about LP-DBU can be found in [8]. Here, our objective is to identify

Qlp-dbu •

Lemma 7.2 : The DBU condition guarantees that all cycles in the SG that are not in the

MPG (called undetected cycles) must contain at least two consecutive dashed arcs.

Proof: First observe that all solid arcs in the SG necessarily appear in the MPG (Lemmas

5.3 and 5.4). and so all undetected cycles must have at least one dashed arc. The

undetected arcs are due to "declare" actions that have not been placed yet. By way of con

tradiction, suppose there is an undetected cycle in the SG with some dashed arcs, but no

two consecutive. At least one of these arcs is not present in the MPG. Consider Figure 7.1

and suppose S -+T is such an arc. T has unlocked object b (because the corresponding arc

is solid) but has not declared object a yet (because of the arc S -»T is not in the MPG).

This means T has violated the DBU condition. D

Theorem 13 : fe CQLP-DBU <ZQse0.

Proof: By an application of Lemma 7.2 and previous results about LPO. The first inclusion

follows by observing that all cycle free SG's are reachable by LP-DBU since they do not
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violate any of its constraints. The second one is due to the fact that: (i) no states out of

Qxeo are reachable since LP-DBU is more restrictive than LP-MPG. and (ii) states in Qse0

with mixed cycles that do not contain at least two consecutive dashed arcs are not reach

able by LP-DBU. D

Corollary 73 : j2jj>-2* CQlp-dbu-

Proof: This inclusion follows from the results in Lemmas 6.2 and 7.2. D

Example 7.1 : Consider Figure 7.2. The following are examples of executions identified in

this figure.

- £1-4-5 : see Example 6.2 (ii).

- For E2. recall Tx and T3 of Example 3.1 and observe that

E2 = rxia )T3ib )

whose SG is q2 in Figure 3.1. will result in a cycle in the WFG, i.e. deadlock.

- E3 : see Examples 5.1. 6.2 (i) and Figures 3.1. 5.1.

- For E4. consider the three transactions:

T6 = t6(c )t6(6 ) T7 = T-jia yr-jib )t7(c ) Ts = rsia )

and the execution

E4 = T7(a )r8ia )t6(c )rnib ).

Traj iE4) is given in Figure 7.3. It shows that E4 is not LP-20-augmentable. but is LP-

DBU-augmentable. D

As mentioned when protocol LP-MPG was presented, deadlock occurence is a func

tion of how early declare actions are placed in a locking execution. If a transaction knows

beforehand all objects it needs, the Prior Declaration Protocol of [8] guarantees deadlock

never occur. In this protocol, the DBU condition is replaced by a DBL condition: "each

transaction has to declare all objects before its first lock." In this case, the MPG

corresponds exactly to the SG. and the set of reachable states is exactly Gc??- (As men

tioned in section 3.3. optimal performance is possible when complete state information is
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available.) The problem is that the DBL condition can rarely be met in practice.

Appropriate conditions are those that delay unlocking or locking until more or all

declares are placed. An example is the DBU condition which is simple and easy to imple

ment. A disadvantage of LP-DBU however is that more states in G«o-5e are reachable

than with LP-20. Our investigations to specify a protocol that reaches all of Q^ but

about the same portion of fiseo-c« as LP-20, i.e. a protocol that achieves maximum con

currency but about the same number of deadlock states as LP-20. have led to the No-

Declaring-Phase Protocol presented in appendix B.

8. CONCLUSION

In this paper, we have presented a state space model for the study of concurrency

control in database management systems. We have shown that this problem is in effect

one of control with partial state information. This means that there does not exist a con

trol method that will achieve maximum concurrency without avoiding roll-back of one or

more transactions at some point in the execution.

We have applied our model to the analysis of some locking protocols. In our view,

when the degree of concurrency achievable by two-phase locking is insufficient for some

application, the Declare-Before-Unlock protocol of [8] is a good alternative because it per

mits to achieve maximum concurrency and has relatively simple conditions. At the core of

this protocol is the locking action "declare." We have showed how this action performs the

task of prediction and permits the construction of a better state estimate, the must-precede

graph.

All results in this paper are generalizable to the case where one distinguishes between

read and write actions and where different grades of locks are used (e.g. read and write

locks), provided one uses as correctness criterion conflict-serializability. This is because

our analysis is based on conflicting pairs of actions. In this case, these pairs will also

depend on the action types (see section 2.2) and they will determine a compatibility
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matrix [2] of the corresponding locks. However, the model and its properties remain the

same: only the construction of the initial state q0 is affected. (See [8] for the modifications

to the MPG and to LP-DBU.)

The problem of concurrency control is intrinsically more complicated when the data

base is distributed at different sites [2. 3.11]. Specific results about the complexity of this

problem in a given framework for distributed databases are presented in [11]. In our

model, we made no restrictions concerning the physical location" of the objects. We

assumed that the actions in all the transactions and executions were totally ordered,

although our framework could be generalized to partially ordered transactions and execu

tions (as considered in [ll] for instance). However, we analyzed only the case of a unique

central controller for the system of transactions. In appendix C, we discuss the issue of

decentralized control when the database is distributed and propose a method for aggregat

ing the state and state estimates at each site.

Finally, we mention that our model can be used to analyze other concurrency control

techniques than locking, in particular timestamp-based techniques [2]. The idea is to

determine what effects these techniques have on the state graph, in a way similar to what

is done in sections 6 and 7.



32

APPENDIX A - Relation to Supervisory Control of Discrete Event Processes

A.1 - Controlled generator model

In the terminology of [10], our control problem is (ideally) to constructa controller

or supervisor for the generator G = iQt. Z. 0e. q<>. &» ). such that the language generated

by the controlled generator is Zgj only. The supervisor can be viewed as another genera

tor S = iX. Z. i.x0. Xm) with state space X. state transition function g. initial state x0.

and same set of inputs Z (Xm need not be specified for now). The controlled generator,

denoted 5/ G. corresponds to the situation where S and G are coupled in the following

sense: (i) the state transitions of S are forced by that of G. and (ii) the state transitions of

G are constrained by a feedback control map depending on the state of S: this feedback

map acts on G by enabling or disabling state transitions.

Roughly speaking, the theory in [10] says that if q0 is known beforehand, then there

exists a supervisor that will attain the ideal control objective. This is because the language

Zgj is controllable (as defined there). But in our case the emphasis is on a different issue:

partial state information. There are no controllability constraints on the languages we are

interested in because we assume any incoming action can be accepted or rejected. However,

the information available to our supervisor is incomplete. Typically, x € X is a partial

version of the state of the system q. The design task is hence two-fold: (i) construct a

good state estimate to be used by the supervisor, and (ii) define the feedback map S -+G

so that the serializability requirements are satisfied.

A.2 - Incorporation of locking to the generator

It is convenient to view locking as a partially decentralized control strategy for our

sytem, each transaction being responsible for its own locking actions and for the con

straints that concern it alone (including the constraints of category (2). section 4.3). In

other words, we augment the set of inputs Z to include the locking actions and consider

the problem of scheduling concurrent augmented transactions. Specifically.



33

Z':=Z U( UfLi [Jail <*)«*: ouse* IvT, \djio). Ijio). Ujio)) )

is the new set of inputs. The new generator is Gl —(&• Zz. 4>l'Qo> Qm) where

0/ : Z' X (2* -»fie is only defined for "action" inputs (i.e. inputs in Z):

0e (o~. 9 ) whenever <r € Z and 0e (c, g ) is defined ;
P«w. °) —undefined otherwise.

The supervisor is now of the form 5Z = (X. Zz. £. x0» Xm). where we can assume

without loss of generality that the transition function £ is only defined for "locking"

inputs. This is because, as a consequence of the locking constraints of section 4.1. the

information carried by the locking inputs of a locking execution contains that carried by

the action inputs in it.

The action of the LP's we study in sections 6 and 7 can be interpreted as follows.

1- Conditions of category (l) involving the state x of the supervisor (typically, cycle free

conditions onx) define the feedback map from S' to Gl. For instance, all inputs causing a

cycle in x are rejected and the transitions they would have caused in Gl are disabled.

2- Conditions of category (2) on the augmentation of a transaction correspond to restrict

ing the set of strings of elements of Z' that can constitute inputs. In some cases (such as

(2) of LPO in section 6.1 and the 20 condition of section 6.2) this also restricts the set of

strings of Z that can constitute inputs (i.e. the non-augmented inputs to which the con

trolled Gl responds). For instance. Lemma 6.2 gives a description of states that are no

more reachable when 20 is in force. All executions whose trajectories go through these

states are then eliminated as possible input strings.

In other cases, conditions of category (2) (such as the DBU condition of section 7.2)

do not directly restrict the possible non-augmented inputs but instead enable the supervi

sor to construct a better state estimate x. therefore making the feedback map more com

plete. (This is the role of the "declare" locking action.)
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APPENDIX B - No-Declaring-Phase Protocol

When one wants to reduce the incidence of deadlock with respect to LP-DBU but still

achieve maximum concurrency, one has to find conditions ensuring that less mixed and

dashed cycles in the SG will go undetected in the MPG. Recalling Lemma 6.2. we see that

the 20 condition ensures no mixed cycles can be reached. However, since the effect of this

condition is on "sequences of arcs" rather than on "cycles." it also considerably reduces the

portion of £«? that is reachable. Our objective here is to specify conditions that do not

impair concurrency but that guarantee all mixed cycles (and maybe some dashed ones too)

in the SG will be detected in the MPG.

For this purpose, it is necessary to distinguish between solid and dashed arcs in the

MPG as well. Therefore, let all arcs added to the MPG in its definition in section 5.1 be

dashed, and add the following part to its construction:

(c) when transaction T locks object a. replace all dashed arcs into T with label a by

solid arcs in the same direction.

This way. the arcs in the MPG have same type as they have in' the SG.

Next, we need to introduce more terminology. S is called a predecessor through c of

T. and T a follower through c of 5. if in the path from S to T in the MPG. one of the

arcs has c as label. S is called a solid predecessor of T, and T a solid follower of S. if

the path from S to T in the MPG contains at least one solid arc. A transaction is said to

be in the declaring phase if it has not declared all its objects yet. An object is said to be

in state dsf if one or more of the transactions that hold declare on it have a solid fol

lower in the MPG. We now state the No-Declaring-Phase protocol, abbreviated LP-NDP.

Protocol LP-NDP

(1) (2) and (1') : As in protocol LP-MPG.

(3) : No lock on object a is granted to transaction T if one of the two following con

ditions is satisfied:

(i) T has a predecessor through a in the MPG that is still in the declaring phase.
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or

(ii) T or a predecessor of it in the MPG is in the declaring phase and a is in

state dsf. D

Lemma B.1 : Condition (3) of LP-NDP guarantees that all mixed cycles and all dashed

cycles preceding a solid arc in the SG are detected in the MPG.

Proof: (Outline) Condition (3-i) implies that when an arc becomes solid in the MPG, all

the transactions in all the paths to the left of this arc in the MPG have declared all their

objects. Hence, as far as these transactions are concerned, the MPG has complete informa

tion and it will detect all cycles going through these nodes in the SG.

Condition (3-ii) is to prevent the addition of new predecessors to the left of a solid

arc when one of these predecessors is still in the declaring phase. This guarantees that

when new predecessors are added to the left of a solid arc in the SG. they are also added in

the MPG. and all the information about them is known because they have finished declar

ing. The two conditions together imply the result. D

Theorem B.2 : Q^ CQzj>-nDp <z{q € Qse0 :q is cycle free or has dashed cycles only }.

Proof: Clearly, all cycle free SG's are reachable by LP-NDP since they do not violate any

of the conditions of this protocol. (The transactions need only have declared for condition

(3) of LP-NDP to be satisfied, and "declares" are non-conflicting actions.) The second

inclusion is a consequence of Lemma B.1 and Theorem 7.1, because now condition (3)

guarantees that all dashed cycles preceding a solid arc and all mixed cycles are detected in

the MPG. •

Corollary B3: Qip-2* CQlp-ndp

Proof: By observing that the 20 condition implies that condition (3) of LP-NDP is always

satisfied. O

Observe however that the deadlock states that are reachable by LP-NDP but not by

LP-20 are not a cause of concern since the extra arcs they contain (typically dashed arcs
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followed by solid arcs preceding or not connected to a dashed cycle) are not involved in

the cycles causing deadlock. Also observe that the DBU condition implies that the

immediate predecessor through a of T never causes condition (3-i) to be satisfied when T

requests the lock on a. (The same is true for all immediate solid predecessors of a tran

saction, since by DBU they have declared all their objects.) This is why in this case

undetected mixed cyclesalways contain at least two consecutive dashed arcs (Lemma 7.2).

Protocol LP-NDP is of theoretical interest because of the above results. However, its

practical usefulness is limited because it is difficult to implement.

APPENDIX C - Decentralized Concurrency Control for Distributed Databases

Consider the situation where the database is distributed at many sites and it is

desired that the control be decentralized (in the sense of local controllers at each site

instead of a central one). Suppose also that it is required that the properties of the "global

system" concerning serializability and concurrency (as developed in section 3) be

preserved, i.e. that the local controllers do as good as a central controller would do.

Clearly, one way to achieve this objective is to maintain a copy of the complete SG (or its

estimate used for control) at each site. Here, we present a way of aggregating locally the

SG (or the MPG) that permits to achieve the same performance as a central controller

without the need to have all the information about the global system at each site. (This

corresponds to the idea of model aggregation in decentralized control theory, seee.g. [12].)

We want each site to have all necessary information about the status of serializabil

ity (in the global system) of the transactions acting at this site. For this purpose, we

assume each transaction knows beforehand if it needs objects:

(i) from only one site, in which case it informs the given site and it is said to be a

local transaction;

or (ii) from more than one site, in which case it informs all the sites that it is a

common transaction.
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Each local graph (be it a SG or a MPG) has a node for each local transaction at this

site (termed a local node), and a node for each common transaction in the global system

(termed a common node). Consider the initial global SG. and do a transitive closure of the

arcs between the common nodes (it is not necessary to put a label on the new arcs). Then

each initial local SG is the restriction of this modified initial global SG to the common

nodes and the given local nodes, and to the arcs attached to them.

We now treat the updating of the local SG's and MPG's simultaneously. Upon the

arrival of an incoming action (locking action for the MPG) on an object at a given site,

update the local graph following the same rules as before (i.e. as in sections 3.1 and 5.1).

Moreover, if the newly added directed arcs create a path (solid path) between two com

mon nodes in this local graph, inform all the other sites to put a directed arc (directed

solid arc) between these nodes in their graphs. (This arc could for instancehave for label

the site number where the path is created.)

This means that each site has complete information about the current partial ordering

of its local transactions and all the common transactions. Hence, we can show that: a

(dashed, mixed or solid) cycle occurs in the global SG (MPG) iff a similar cycle occurs in

some local SG (MPG). (The proof is straightforward but is omitted for the sake of brev

ity.)

Clearly, the level of aggregation that is possible will be function of the proportion of

local transactions, but the above procedure gives the maximum aggregation that is possible

under the constraints that there is no loss in performance and that the decisions are made

locally.
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