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Abstract

Direct time domain computation of Maxwell's differential equations will soon

become a practical technique because of the availability of super-computers.

This paper presents the principle methods used in time domain computations

and the supporting theories. The Point-Matched finite element method is chosen

as the main feature of this presentation, which includes the discretization of

equations, conforming mesh generation, dielectric and metallic interfaces,

numerical stability and simulation of radiation conditions. Numerical results of

scattering of Gaussian pulses are presented in time sequences.
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1. Introduction

The art of computation in electromagnetic wave scattering and radiation

has a recent history of two decades. Traditionally, wave scattering computa

tions are done in frequency domain, and it is now a mature technology lending

its application to many branches of electromagnetic discipline. Time domain

computation on the other hand is still a novelty, which has been reported [l]-[4]

but not been taken seriously by the electromagnetic community. This situation

may soon change, because the new generation of computers, with the vast

memory capacities, can be most effectively applied if the algorithm makes use

of the memory in a simple sequential order. Time domain computations of

Maxwell's equations in differential form appear to use that type of algorithm.

Furthermore, it is much easier to get frequency domain results from time

domain datas, than the other way around, hence it is often more economical to

get frequency domain results via time domain if many frequencies are involved.

Although time domain computation will not replace frequency domain computa

tion in most applications, it will definitely break new grounds in inhomogeneous

media and non-linear computations. In the area of scattering by large arbitrary

shaped three dimensional targets, the time domain computation will definitely

be a strong contender to the more established frequency domain methods.

Time domain computation using finite difference equations was first

presented by Yee [l] in 2-dimensions and later applied to 3-dimensions by Kunz

and Lee [2] and Taflove and Brodwin [4]. The improvement to conforming

meshes was done by Cangellaris et al. [5], and extension to lossy environment by

Lin and Mei [6],

The purpose of this paper is to present the principal techniques used in

time domain computations and the supporting theories so that an uninitiated

reader may quickly learn to apply the methods. We have chosen the Point

's-



t 8

matched Time Domain Finite Element Method as the principal feature of this

paper because it appears to be more general than the finite difference methods,

and because the important issue of conforming mesh was not properly

addressed in finite difference methods.

Included in this paper are topics on discretization of Maxwell's equations,

conforming mesh generation, dielectric and metal interfaces, numerical stabil

ity and simulation of radiation conditions. Each of these topics becomes more

and more complex as the space dimension of the problem increases. Hence, for

pedagogical reasons, we have organized this paper in increasing order of space

dimensions. Illustrative results are presented in one and two space dimensions

only, because at the time of writing, a general 3-dimensional code is still being

implemented. And, also a three dimensional problem is sufficiently complex

that a separate treatise is in order.

The main theme of this paper is the unfoldment of the space and time his

tory of an electromagnetic event. Indeed, this idea of predicting the future by

studying the past and current event is as old as Confucius, who said

"From the knowledge of one corner, he (a good student)

finds those of the other three,

By studying the past, he (a good teacher)

*

predicts the future"

2.1. Basics

The phenomena of electromagnetic radiation and scattering are completely

known if the associated wave equations can be solved. The goal of this section is

to present the basic framework of the point-matched time domain finite-

element method as an efficient technique of solving such equations. For tutorial

Paraphrased from Analecta of Confucius.
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purpose, we start our discussion with a simple one-dimensional problem.

Maxwell's equations, reduced to one space dimension may be represented

by a first order linear hyperbolic system,

E* 0

dt
ft,

Mo

1

*o

0

_a__
dz

E,

(2.1)

.H»<

where the subscripts x and y designate the components along x and y direc

tions, respectively, of the vector fields. Upon substitution of the dependent vari

ables, (2.1) can be replaced by a second order differential equation,

dz' Mo£0 dt'
= 0

The velocity of propagation is c =

(2.2)

VMo^O

Equations (2.1) and (2.2) are hyperbolic differential equations, which must

satisfy specific initial and boundary conditions for unique solutions [7]. The ini

tial and boundary conditions for the one-space-dimensional equations of (2.1),

depicted in Fig. 2.1, can be summarized as follows:

(1) The source in D must be known for all £>0.

(2) The initial state at t =0, must be known everywhere in D, i.e., Ex(z ,0) and

Hy (z ,0) are given.

(3) The boundary conditions at B are specified at all times, i.e., ^(O,*) or

#2,(0,0 on the left, and Ex(L,t) or Hy{L,t) on the right boundary.

Numerical solutions of Eq. (2.1) or (2.2) start with the discretization of D

into finite subsegments. For the convenience of enforcing the initial conditions

at t = 0, it is often preferable to solve Eq. (2.1) rather than (2.2), even though

two dependent variables are involved in (2.1). The coupling ofEx andHy in (2.1)

suggests a space discretization scheme as shown in Fig. 2.2 where the nodes of
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E^ and Hyi are offset by one half step, and a similar discretization in time,

where 25L are computed at temporal nodes t —nA£ and Hy at t —(n + —)Lt

where n = 1,2 For convenience the fields at the nodes are denoted by E]1

and Hi ^for Ex[(i-i)Az ,nLt] and ^[(i-^Az, (n + 7p)A£] respectively.

With this discretization scheme, commonly known as the Leap-Frog method, the

finite-difference representation of (2.1) becomes,

A£ en Az
(2-3)

714- .4- 71 —yi-
cj «_£/ <& . jpn jpn
•"i «t _ 1 &i+l &i

A£ Mo Az

It is apparent from (2.3) that .EJ1 may be obtained from earlier electric and mag-

n + i-
netic fields, and similarly for Hi . Assuming the system to be relaxed for

t<0, Eq. (2.3) can be computed sequentially with n = 1,2, • • • , with the equa

tions for E and H applied alternatively.

Equations (2.3) can be easily applied, even on a microcomputer. Figure

2.3a shows a Gaussian pulse launched from the left boundary and reflected back

at the right boundary where the electric field is enforced to be zero for all time

(perfectly conducting wall). On the other hand, the effect of a dielectric inter

face normal to the plane wave incidence is depicted in Fig. 2.3b: the reflection

and transmission of the incident pulse due to the relative permitivity contrast

(er = 4) is well demonstrated. The final example (Fig. 2.3c) illustrates the simu

lation of wave propagation in a semi-infinite region extending to the positive z

direction. In this case, the boundary value E(L,t) must be extrapolated from

the interior solution:



S8S

E{L,t) =E(L-Az,t-^ (2.4)
c

The above technique effectively creates a reflection-less boundary (radiation or

absorbing boundary) owing to the fact that we know the general solution for a

right propagating wave:

f+(z,t)=f{t-f) (2.5)

Simple as it is, there are two issues in the computation of (2.1) which must

Az
be mentioned here, namely, the ratio "tt"^ c must be enforced everywhere,

and for infinite or semi-infinite region D , an artificial boundary at a finite dis

tance must simulate an outgoing wave. The first condition affects the stability of

solutions, and the second condition causes unwanted reflection or instability at

the fictitious boundary. Those conditions are easily satisfied in this one-

dimensional problem, but they are subjects of great concern in higher dimen

sions.

2.2. Pomt-Hatching Finite-Element Method

Point-matching finite-element method [5] applied to Eq. (2.1) will also result

in those of (2.3). Indeed, in one space dimension, the difference between the two

methods is only in the approach rather than the resulting equations. We shall

use the one-dimensional problem to introduce the technique as a vehicle to

higher dimensional finite-element methods.

In finite element the fields are not only defined at the nodes, but are also

defined in the space between nodes. The space between two adjacent nodes is

called an element. The elements for Ex and Hy, which are offset as before,

shown in Fig. 2.2, form two complementary sets of nodal points. All elements

sharing a common node form a support for a trial or basis function. The trial
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function is called interpolative if its value is unity at the common node and zero

at all other nodes. The simplest interpolative functions are linear functions. In

one space dimension the linear interpolative basis functions are shown in Fig.

2.4. In two space dimensions, linear interpolative functions are applicable for

triangular elements; bilinar interpolative functions may be used for rectangular

elements [8]. Using the basis functions <p*(z) and ^(z) for Ex and Hy (Fig.

2.5) respectively, we may represent the fields in product solutions,

i=l

Substitution of (2.6) into (2.1) results in

i=l

1 V di/i{z) H (t\

where

<Pi(z) =

1>i(z) =

dt dz

dHyjjt) _ ! M dvAz)

1 •

0,

1 -

0,

dt Mo i=l dz

Zi-z

AZ ' 2i-l ^ 2 ^ Zi+1

otherwise

Z'i -z

Az ' z'i-i ^ z * z'i+i
otherwise

(2.6)

(2.7)

where z$ and z$ are offset by ——.

If (2.7) are equated at each nodal point and the "Leap-Frog" finite-

difference method [9] is applied for the temporal variable t, we obtain the equa-

-7-
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tions for point-matching finite-element method which are identical to equations

71+i-
for E^ and Hyi 2 in (2.3). Equations (2.7) are more general than (2.3)in that

the equality of the approximate representations can be defined in terms of

weighting functions, i.e., both sides are multiplied by a weighting function CJj(z)

and the products are integrated in region D. The resulting equations will have

the form,

[ *E Prj = pffjp%] (2.8)

[Hy

where Kg , Kfy, K# and Kg are matrices, ExHy are vectors of the nodal values

of E^Hyi- In general the Kg and Kfe matrices are diagonal only when the

weighting functions are Dirac delta functions, i.e., point-matching. Hence no

matrix inversion is required prior to the integration of (2.8).

The above described Leap-Frog scheme is not the only possible time

discretization method. In fact, the restriction on the time increment size

AzA£^ can be removed using implicit integration schemes [10] such as "tra

pezoidal rule":

E?+1-E? i H?+1 + H? - 22P31 - #/Li
A£ eQ 2Az

H?+1 - H? i Eptf + E&! - E?+1 - E?
At jj,q 2Az

or "Backward difference scheme":

E?+1-E? i Hf^-H^
At e0 Az

H?+1-H? _ i ffifi1 - E?*1
At fj,0 Az

(2.9)

(2.10)
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This latter algorithm is especially popular among circuit analysts [11]. The price

we have to pay for a better solution stability is that the future values •EJ1*1 and

H?*1 are now linearly coupled. However the matrix inversioncan be avoided by

taking advantage of the contraction mapping property of the above equations.

3.1. finite-Difference and Finite-Element Methods.

As the dimensions of the problem increase, the differences between finite-

difference and finite-element methods become more apparent. The finite-

element mesh that is used over the computational domain consists of elements

that conform to the contour of the body allowing the simulation of geometries

with curved boundaries. Finite-difference methods on the other hand are res

tricted to a rectangular grid which approximates a curved boundary with

discretely stepped surfaces.

Let us consider for example the problem of scattering by an infinite con

ducting cylinder. Without loss of generality we shall consider the case of an

incident plane wave pulse with the electric field vector in the direction of the

axis of the cylinder. The direction of incidence is k as shown in Fig. 3.1. The

Maxwell's equations to be solved are:

dHx _ i dEz
dt m Qy

dHy
dt

_ 1 dE,
fj, dx

dEz _ 1
e

\dHy a#x]
dt dx dy

(3.1a)

(3.1b)

(3.1c)

In order to solve the above system of equations, the time domain finite

difference method [l], [12]-[15] uses a stepped approximation of the circular

boundary as shown in Fig. 3.2. In the same figure is also shown enlarged the
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right rectangular mesh used for the space discretization of the electric and

magnetic fields. The components of the electric and magnetic fields are discre-

tized in time in equal intervals At, with the temporal nodes of H between those

of E. For example, Ezl(i+ |~,j +|-) represents Ez\(i+ j^h,(j+ ^h,nAt\

71+1 1 1 Ifor n =0,1,2,..., and Hx T(i+-g-,j) represents Hx(i+ ph,jh;(n+ -g)At\ ,

where h is the space increment for the lattice h = Ax =Ay. Thus E is com

puted only at i = 0,At ,2At, and H is computed only at t = -—At,

1 1(1+ "5")A£, (2+ tj-}A£, • • • . This lattice scheme in space and time plus the

incident fields and boundary conditions result in a time marching algorithm.

Since the tangential component of the electric field is zero on the scatterer, the

scattered electric field is known as a function of time on the surface of the body.

Therefore we can update the scattered fields on the grid by using the following

finite difference approximations of (3.1)

n+£/. 1 -\ TTn-ir-/. 1 -\*(*+£-j) =Hx Hz +f.j)H

A* «?(*+ g-J+ j> -^n(*+ jf'J'-j)fjbh

(3.2a)

H:%j)=Hrhij)+%. «?(i+f.J +f)- £?(*- jpjf +J") 0.2b)

E?+\i+ ±-J+i-) =ERi +i-,j+ I-)

A*

eh

71+ i-. 1 . 71+ «y-, 1 N
(3.2c)

<^|-j+i)^Vf-j)

-10-
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The way the algorithm works is now apparent. Knowledge of the magnetic

field at t = (n+ -^)At on the nodes surrounding the one where the electric field

is computed together with the value of the electric field at t = 71 At permits the

.computation of the electric field at t = (n + l)At. We see therefore that we can

solve the transient problem using very simple arithmetic operations avoiding

matrix inversion. But the TDFD has the disadvantage that, since the computa

tional meshes are rectangular in shape, they do not conform to scatterers with

smoothly curved surfaces. To overcome this problem one apparently has to use

finite elements.

A finite element mesh for the 2-D conducting cylinder is shown in Fig. 3.3.

One can see that the surface of the body is no longer approximated by the

discretely stepped surfaces that appear in the finite difference formulation. Our

task is to introduce a discretization of the Maxwell's equations in space and

time, in such a way that the simple algorithm of the TDFD scheme is preserved.

As in Section 2.2, we assume that E and H can be written in the general

functional forms:

ff^.0s2 nt?)Ei(t) (3.3)

H(r,0=S %-(r)Hj(t) (3.4)

In contrast with the TDFD method this scheme positions all the components of

the electric field on the same node. Similarly, for the magnetic field. On the

other hand the interpolation functions <Pi(r) and ipj(r) allow us to describe any

desirable variation of the fields within the elements while the TDFD method

allows only a linear one. An example of (pi(r) in two dimensions is presented in

Pig. 3.4a. It is centered on the i node and has four quadrilateral elements as

support. It is obvious that the field within an element is represented as a linear

-11-
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combination of the interpolation functions associated with its nodes as illus

trated in Fig. 3.4b. This point will become important when we convert the sum

mations (3.3) and (3.4) into other summations over the nodes of each element in

order to express the internal field values. Although our formulation will be in

terms of cartesian coordinates we must realize that sometimes it is preferable

to use cylindrical or spherical coordinates. Our discretized Maxwell's equations

will have sufficiently general forms such that a conversion to another coordinate

system will be straightforward. We assume that the medium is isotropic.

Maxwell's equations are then written as:

Vx£= -A*§- (3.5)

VxH =aE +e^- (3.6)
dt

For the sake of simplicity we shall neglect the conduction current. It is an easy

task to reinsert the above term in the appropriate equation. The dielectric per

mittivity and the magnetic permeability of the medium are allowed to be con

tinuous functions of position as well as functions of the electric and the mag

netic field, respectively, in the non-linear case. Substitution of the general func

tional forms (3.3) and (3.4) into (3.5) and (3.6) yields:

N dJI(t) 1 ME *j(f) ^rL= - 7T E vft(f)x5(o (3.7)

u dEAt) 1 NE n(r) ^iL= JL s v^(f)x^-(0 (3.8)

Since (pi's and ij/j's are known functions of position, the only unknowns in the

above equations are the nodal values of the electric and magnetic field Ei(t)

and Hj(t), where:

-12-
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Ei(t) = \0,0,Eiz(t)lT i = 1,2,. ..tM (3.9)

^(0 = Wjz(t),Hjy(t),0iT j = l,2,...,tf (3.10)

In order to obtain the weak forms of Maxwell's equations we enforce the above

equatons (3.7) and (3.8) on each nodal point. Since <fi(r) and i^j(f) are defined

to be

<Pi(r) =
1, r = Ti 1, r = rj

k 0, on other nodes, rj\ / I 0, on other nodes

we obtain

dHAt) 1 M^±= ~~h- E Vft(f,)x5(0. J =1.2 N (3.12)
r*\ j / i> ~ 1

^T^-= -7TT- E Wjin^Hjit), i =l,2,...,tf (3.13)
at e(ri) y=1

where for simplicity the notations

VpifrOI,^ =V<Pi(rj) (3.14a)

^fr)lr =rt = V^(n) (3.14b)

have been used.

Since (pi's and ^y's have finite support in space it is clear that only a few

terms in the summation's will contribute. For example, if electric and magnetic

nodes coincide, we see from Fig. 3.4a that only nine magnetic nodes will contri

bute to the computation of an electric node.

Although the use of a single mesh seems attractive it turns out that for the

simplicity of the computation it is preferable to distribute the electric and mag

netic nodes in such a way that they are mutually interspaced. An example of

such a layout in two-dimensional space is presented in Fig.3.5. The electric and

-13-
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magnetic fields are defined on two complementary grids such that the nodes of

the former are positioned inside the elements of the latter. It is now obvious

from Figs. 3.4 and 3.5 that only the interpolation functions associated with the

nodes 1, 2, 3 and 4 in Fig. 3.5 will contribute to the summation in (3.12) for the

point fj . In general if the element has K nodes, equations (3.12) and (3.13)

become

dEAt) 1 K

dt tfTj) i =i

dEj(t) = i
dt

K

sin) i = i
i = 1,2 M

(3.15)

(3.16)

where it is understood that the summation on the right-hand side is carried out

over the element enclosing the //—field node fj for (3.15) or the E— field node

Tt for (3.16).

Expanding equations (3.15) and (3.16) into component form, we get

dHjx(t) =
dt

1 K1 E
Vfrj) 1=1

dcpi

dy
Eb(t). 3 = 1.2.....JV

r =r*

a^t
dx r =fj

^«(0. 7 = 1,2,...,N

dfite(Q , 1
dt

K a^t

dx r = Ti
Hly(t) - dfi

dy r = r<
#*(*)

i = 1.2,...tJf

(3.17a)

(3.17b)

(3.17c)

It is apparent that the convenient leap-frog scheme that was used in the

TDFD method can also be implemented here for the time integration of the

above system of equations. The finite element formulation succeeds in main

taining the simplicity of the TDFD method while being able to simulate any

desirable geometry.

-14r
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3.2. Two-Bimensional Elements

Before being able to conclude the solution of the 2-D problem of the last

section we must discuss the choice of the interpolation functions <Pi(f) and

itj(f) together with the type of the elements and the different ways ofgenerat

ing the finite element mesh.

The choice of the type of element and the type of the interpolation function

associated with it, is the key to every finite element modeling. It is well known

that in order to guarantee convergence of our approximate solution to the

correct one, the interpolation functions are required to satisfy the following con

ditions [16]:

1. At element interfaces the field variable and any of its partial derivatives up

to one order less than the highest-order derivative appearing in the govern

ing equations must be continuous (compatibility requirement).

2. All the field variables and all their derivatives of order not higher than the

highest order of derivative appearing in the governing equations can be

approximated as closely as required and in particular can take up any con

stant value when the size of any element tends to zero (completeness

requirement).

Although the safest approach is to choose functions and formulate elements

that satisfy these requirements we must mention that completeness alone is

sufficient to prove convergence of the finite element methods, i.e., compatibility

may be violated without resulting in divergent solutions [17]. As a matter of fact

this was also found to be true in our method. Indeed, in the early development

of the method we used a complete second order polynomial to represent a field

component within a 2-D element with six nodes [18],

Pi(x,y) = ai(0+ai>ia:+a£i2T/+aii3xy+ai>4Z2+ai>5T/2 (3.18)

-15-
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where the. subscript i denotes the ith element. The six coefficients

OijU = 0,1,2,...,5) were obtained from the six equations,

*i (**.%) = Pi^k>Vk) k = 1,2,...,6 (3.19)

where Fi was any one of the field components at the six nodes (xkyk) of the ith

element. It is obvious that the above interpolation function satisfies the com

pleteness requirement but violates the compatibility one. Nevertheless this

method showed convergence and very satisfactory results were produced.

We proceed next to a discussion of the two dimensional elements we are

going to use and the interpolation functions associated with them.

A very attractive element is the four node quadrilateral. There exists two

possible interpolation schemes for this, element. The first one is the iso

parametric quadrilateral developed by Ergatoudis et al. [19]. This is the one we

are going to examine in detail. The second one uses rational functions for the

interpolation over the element. A detailed discussion of this type of element can

be found in [20].

Isoparametric Quadrilateral Elements

Natural Coordinates. Consider the quadrilateral of Fig. 3.6 and the coor

dinates 77—£ to be associated with it. These coordinates are in general curvi

linear and will be so determined as to give

7) = - 1 on side (12)

7} = + 1 on side (34)

£ = + 1 on side (23)

f = —1 on side (41)

Assume that the relationship between the Cartesian coordinates x,y and the

new coordinates 77 and £ can be written in a general form

-16-



x - §iXx + §2X3 + $3x3 + $4a;4 = l$\T[Xl

y = ^i^i + $22/2 + *Vs + $4V4 = WT{Yi

where

m =

*1
x2

x3 ; m =
2/3

x4 V*.

LbS

(3.20)

and [$lT = i$i,$2»$3>$4i are some functions of77 and f . Once [$j is specified,

given the nodal coordinates [X\ and \Y] one can find the map (x,y) for any

point (t7,£). Moreover, the sides of each element are defined as both x and y

coordinates are given parametrically in terms of £ or 77. We realize that (3.20)

define a mapping from (f—77) to (x—y) as shown in Fig. 3.7.

It is important to notice that since adjacent elements have to fit each

other, their sides have to be uniquely determined by the common points.

Hence, along the sides of the quadrilateral the coordinates x and y will be

defined parametrically in terms of either £ or 77 as linear functions. In order to

specify f$j first notice that from (3.20) one requires:

$i = 1 at node i i - 1,2,3,4

and

$i = 0 at node j ** i.

Then one can write by inspection:

*i =J<i-f)d-f?)

$3 =J<l+f)(l+T>)

*4 =£<!-*)(!+»»)
or generally

-17-
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*i = j(l+^z)(l+^i) (3.21)

where d and 77^ take their nodal values.

Once the functions $$ are found one has to define the variation of the field

components over the element in terms of their nodal values. The isoparametric

elements use as interpolation functions exactly the same functions $$ . There

fore in terms of the natural coordinates f and 77 one writes:

Plt.Ti) = WTlKil rn = 1,2,3,4 (3.22)

where F1 is the i component of one of the fields and [F^] represents the

nodal values of this component.

Since by construction the $'s have a linear variation along the sides of the

element, the continuity of the field components is ensured and hence the com

patibility requirement is satisfied. One can easily show that the completeness

requirement is also satisfied [19].

Once the interpolation functions have been constructed, their partial

derivatives with respect to x and y must be computed. Since the mapping

(3.20) with $i's given by(3.21) is non-linear its inversion is not possible, there

fore we have to work in terms of the natural coordinates £ and 77. Differentiating

$i(%fV) with respect to £ and 77 we get

as* dx dy^ a** 'd$i'
a* d£ d£ dx

= [J]
dx

dt>i dx dy d$i dfy

.V
577 577 . dy . dy .

where [J] is the Jacobian of the transformation. Solving for

-18-
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dx

(3.23)

and
dy
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dx
d$i

>

= [J]"1 aia$i

. 577

bb'd

(3.24)

Next, the derivatives dF1 / dx , ai7*/ dy are easily computed from (3.22)

Later in this section we shall see that an automatic mesh generation with qua

drilaterals is easily implemented. One drawback of the isoparametric elements

is the degeneration when one of the internal angles approaches 7T as depicted in

Fig. 3.8. For a^7T , the inverse of the Jacobian [J] no longer exists and the map

ping becomes non-unique. Therefore, one has to ensure that none of the ele

ments is distorted close to degeneration in the mesh generation process.

Mesh generation

Our next step is to present the different ways of generating the finite ele

ment mesh. An extensive presentation of various techniques for the mesh gen

eration can be found in [21]. Here, we only intend to present two easy to apply

grid generation techniques.

(a) Mapping.

Consider the two dimensional geometry shown in Fig. 3.9a. The cross sec

tion of the conducting body is described mathematically by a single-valued func

tion

r =/,(•*) , (3.26)

and the artificial boundary where the mesh terminates, by the single-valued
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function:

r =fb W (3.27)

where (r,i3) are the polar coordinates of a point on the x—y plane. Consider

now the transformation:

fbW-fsW (3.2S)
<p =V i?e[0,27T]

It is apparent that under the above transformation the body contour Tj and

the boundary Tg are mapped to the constant lines 2=0 and z = 1 respectively.

The line T? = 0 is transformed to the right and left sides of the transformed

plane. Now, the generation of the mesh becomes obvious. First, a rectangular

mesh is created on the transformed plane for the electric and magnetic nodes.

Then, the inverse transformation

>=/s(^+2(/bW-/s(^))
, * = 9

is used for an automatic generation of the electric and magnetic mesh on the

physical plane.

(b) Averaging

Consider the geometry shown in Fig. 3.10a and the rectangular grid shown

in Fig. 3.10b. Readjust the points on the rectangle S-± so that it deforms into the

body contour Y\. Then the point Q^ has as coordinates those of the point Qi.

We do the same with the rectangle S2 so that it deforms into the boundary T%.

Because this rearrangement of the boundary points destroys the topology of the

grid, an averaging procedure over the coordinates of the nodes of the grid is

applied. The averaging procedure allows them to rearrange themselves in rela

tion to those nodes which have been displaced on the contours Tj and T^ For
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example, for the point P of the rectangular mesh (see Fig. 3.10b) vre have:

•j

xP ~ -t(xqZ + xPl + xP2 + xF3) (3.30a)

yp = j(yQ3 +yp\ +2/P2 +vps) (3.30b)

This averaging procedure is applied repeatedly until elements with satisfactory

similarity in size result. Once the grid for the electric field has been con

structed,'the formation of a grid for the magnetic field is straightforward. For

example, one can choose the magnetic nodes to be positioned at the centers of

gravity of the resulting quadrilaterals.

The simplicity of the method is obvious. Sometimes, though, concave qua

drilaterals might appear after the mesh generation. To avoid them, one some

times has to specify the maps of additional points of the rectangular grid before

the averaging procedure is applied.

The mesh shown in Fig. (3.3) has been generated using this method. The

extension of the method to three dimensions is straightforward. A rigorous

mathematical formulation of the method can be found in [21].

3.3. The Method of Conforming Boundary Elements

One of the great advantage of the finite difference method is the regularity

of the nodal coordinates, since the index numbers of each node contain the

nodal coordinates. The conforming element grid requires the storage of coordi

nates of all the nodes, which is very demaning on memory, expecially for three-

dimensional problems. The method of conforming boundary elements to be

presented relaxes the large memory requirement by limiting the irregularly

shaped elements to the boundary of the scatterer only. In addition to reducing

the memory need, the method also has control of the size of the smallest ele

ment, while the other conforming methods leave that to chances, which for
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stability reasons may sometimes limit the time increment to unrealistically

small values.

Let us consider once again the conducting cylinder problem of 3.1. The

cylinder is positioned on a rectangular mesh as shown in Fig. 3.11. the points of

intersection of the cylindrical contour with the mesh will be nodes of null elec

tric field if the mesh is chosen to be that of the electric nodes. Then it is obvi

ous that one can use these nodes on the body contour together with some of the

neighboring electric nodes on the regular mesh to form the boundary elements

for the computation of the magnetic field. For example, the element (abE^Ei)

can be used for the computation of the magnetic field at node H\t the element

(bcE5E$) for the node ii/2. the element {klE^zEz^) f°r the node of #14 etc. It is

apparent that the boundary element method uses the uniform rectangular mesh

everywhere in the computational domain except at the vicinity of the body con

tour. There, only a few variety of quadrilateral elemerics are needed for us to

conform to the scatterer geometry. Since it is only ncessary to store the coor

dinates of the boundary element nodes, the storage requirement is substantially

reduced.

There are some restrictions regarding the size of the boundary element.

For reasons of stability, the elements as those in Fig. 3.12 must be avoided. Our

experience is that dealing with smooth geometries, the most frequently encoun

tered boundary elements that can be used without affecting the stability of the

numerical solution are the ones shown in Fig. 3.13. It should also be noticed

that there are some electric and magnetic nodes in the vicinity of the body con

tour which need special treatment. Consider for example the element

(fhEi^Eg) in Fig. 3.11. This element is used for the computation of the mag

netic field at the node Hy. Notice though that there is no appropriate boundary

element for the computation of the magnetic field at node Hq. Since the mag-
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netic field at this node is needed for the future computation of the electric field

at node E\z we have to use some other way to compute it. A simple way is to

extrapolate the value from the neighboring magnetic nodes. In the same ele

ment we notice that the electric nodes Eq and En are not enclosed by a mag

netic element, therefore again one uses interpolation to compute their values

from the values of the neighboring electric nodes.

The last thing about the boundary element method and its application for

2-D problems is some modifications that must be done when the incident plane

wave pulse has the magnetic field vector parallel to the axis of the cylinder.

The Maxwell's equations are now:

(3.31a)
dHz _ 1 dEy 6EX
dt dx dy

dEx _ i aft
dt e dy

dEy _ 1 dHz
dt £ dx

(3.31b)

(3.31c)

On the conducting surface we know that the tangential component of the elec

tric field is zero. Therefore,

nxEsc = -nx^ (3.32)

But, the electric field has both normal and tangential components and

(3.32) alone is not enough for the specification of the scattered electric field on

the body surface. The boundary condition of (3.32) may be supplemented with

the continuity equation on the body surface:

Vl+ff-=° (3.33)

where
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1 = nxHtotal

p = n Dtotxd

Substituting J andp in (3.33), we get

a Jptotal
V0-(nxff«) = -en- ^

dt

*0 9

(3.34a)

(3.34b)

(3.35)

where Vq is the surface divergence, requiring derivatives along the surface of the

body only. (3.32) and (3.35) constitute a system of equations for the computa

tion of the two components of the electric field on the scatterer. Once the scat

tered electric field is known on the body surface one can compute the magnetic

and electric field everywhere on the mesh following the same procedure as in

3.1.

Let us see now how equations (3.32) and (3.35) can be used in the irregular

boundary elements. Consider the geometry of Fig. 3.14. We want to update the

electric field at point E. Let n and T be the unity normal and tangential vectors

at E, respectively,

(3.36a)n -r^x^TLyy

T= -^rhyX+r^y (3.36b)

Since the surface divergence requires derivatives along the surface only, one

finds that

VQ-{nXh J-Tly — Tig

and hence, equation (3.35) gives,

qtjtotal qtjtotal
riy —zz ^x — = ~e

dy

dx dy
Tls

dE:total

dt

On the other hand, equation (3.32) becomes,
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Qgtotal'
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tl, ^-rij,E? = rty E?-nx E™ (3.39)

It is now apparent that eqs. (3.38) and (3.39) constitute a system for the compu

tation of E*c(t0 + At), E^itQ + At) from their previous values E*c(tQ), E^^q),

the knowledge of the incident field at that point and the spatial derivatives of

the magnetic field computed at t = tQ + -^At.

In order to compute these spatial derivatives of the scattered magnetic

field in the boundary element method we introduce the nodes S^S^S^, • • •

which are the points of intersection of the scatterer with the magnetic mesh.

Their values can be computed using extrapolation. For example the magnetic

field at S% and S\ can be found by extrapolating its values at Hz and H\ respec

tively. Then, it is a simple matter to find the spatial derivatives dH/dx,

dH/ dy at E, using the interpolation function over the element (SiHiHgSz).

Let us now summarize the key points in the boundary element method.

Arbitrarily deformed quadrilaterals are used merely in the vicinity of the body

surface and it is only for these quadrilaterals that one has to store the coordi

nates of their nodes. One also has to store those magnetic nodes which are com

puted by extrapolation and those electric nodes where interpolation must be

used in order to update their values. Finally, if one solves the case with the

magnetic field parallel to the z —axis the normal derivatives on the surface of

the body at the points where the contour intersects the electric mesh must be

known, as well as the points where the magnetic mesh intersects the body con

tour.

3.4. Numerical Considerations

(i) Stability and Convergence

Discrete approximations to partial differential equations are useful only if

they are convergent and stable. It is well known that the problem of
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convergence consists of finding the conditions under which the difference

between the theoretical solutions of the differential and the discretized equa

tions at a fixed point (x,t), tend to zero uniformly, as the net is refined in such a

way that h,At^>0 and 77^,71 ->oo t (i= 1,2,3), with 7nih(=xi) and nAt(=t)

remaining fixed. On the other hand, the problem of stability consists of finding a

condition under which the difference between the theoretical and numerical

solutions of the discretized equation, remains bounded as n tends to infinity.

Lax and Richtmyer have shown [22] that if a linear difference equation is con

sistent with a properly posed linear initial-value problem, then stability is the

necessary and sufficient condition for convergence. The hyperbolic system

-fl ^r-= VxE (3.40a)
dt

* 4r-= Vx# (3.40b)
dt

for t e [0,oo) with initial conditions

E(f,0) = Ftf); H(f,0) = F2(f) (3.41)

on a domain without boundaries is a properly posed intial-value problem called

Cauchy problem. Since the leap-frog scheme introduced in Section 3.1 is a con

sistent difference approximation to the above Cauchy problem, we only need to

examine the condition under which stability is ensured. There are several ways

of analyzing the stabilty of a hyperbolic system on a regular square grid [23].

Wilson [24] has shown that the leap-frog scheme is stable if

c(At)^h (3.42)

where c is the velocity of propagation. It is interesting to notice that this stabil

ity criterion is independent of the number of dimensions if the computational

grid is uniform, that is, the mesh increment h is the same along any dimension.

This is an advantage over the TDFD scheme where the stability condition

-26-



Z.U'J

depends on the number of dimensions n as

c(At)<^=- (3.43)

It is not an easy task to derive a stability criterion for a grid with irregular ele

ments. Nevertheless one can use the theory by Courant, Friedricks and Lewy

[25] to show that (3.42) can be used as the stability condition for the leap-frog

scheme on a partially irregular grid as long as each of its irregular elements is

large enough to contain a regular element of the grid. (See Fig. 3.13)

An added complication is the presence of the absorbing boundary, which

necessitates a selection of additional numerical boundary conditions which are

not present in the original problem. Unless great care is taken, these boundary

conditions can lead to instabilities in the numerical calculation. For the case of

hyperbolic systems, the stability question is solved in principle by the theory of

Gustafsson, Kreiss and Sundstrbm [26]. Application of this theory, however, is

difficult because of its complexity and abstractness. Nevertheless, a simple phy

sical interpretation of the main result of this theory was given recently in terms

of group velocity [27]. It is well known that group velocity is a concept associ

ated with energy propagation under dispersive conditions. Its significance to

numerical stability results from the fact that finite difference models, even of

nondispersive equations, are necessarily dispersive. As an example, consider

the problem

for x e (-oo,oo), t e [0,°o) and the initial condition

u(x,0) =/(x) (3.45)

The solution of course is a ieftwad translation of speed c, that is,

u(x,t) = / (x +ct). In the frequency domain one looks for wave solutions of the
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form:

u(x,t) = e-i(«*-**> (3.46)

where f is the wavenumber. Then from (34.5) one has

w = -c f (3.47)

which is the dispersion relation for (3.44). Let us now approximate (3.44) with

the finite difference equation

Whi " U?-i] (3.48)rrn+i = im-i + c AL'

on a uniform grid with space step h, where

U? &u(ih,nAt), -oo<i<oo,n>0

Substitution of (3.46) into (3.48) gives

sin oAt = —c-r-sin £h (3.49)

We know that energy associated with wave number %will propagate at a group

velocity given by

do , v°9 =-Jf (3.50)

Then (3.47) gives the group velocity cg = —c for equation (3.44), while (3.49)

gives the group velocity

cos(f/0 . ,
Cff Ccos(cjAO (3-51)

We see that the difference approximation (3.48) is dispersive , that is, energy

associated with different wavenumbers or frequencies will travel at different

group velocities, although the starting equation (3.44) is non—dispersive.

Based on this, one can state the main result in the theory of Gustafsson,

Kreiss and Sundstrbm as following [27]. An initial boundary value problem
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model is stable if and only if

(i) the stability condition of (3.42) is satisfied everywhere inside the mesh

boundary.

(ii) the model (including boundary conditions) admits no plane wave solutions

that grow from each time step to the next by a constant factor z with

|z|>land

(iii) the model (including boundary conditions) admits no wave solutions with

group velocities which support active radiation from the artificial boundary

to the interior of the domain of computation.

An absorbing boundary condition model based on this theory is presented in

Section 5.

(ii) Exciting pulse and space sampling.

The usefulness of computing in time domain is that in principle a single

computation with an arbitrary exciting pulse can provide the response charac

teristics of the target for all frequencies. In practice though, one has to deal

with the "noise" introduced by the numerical processing which affects the high

frequency information. This effect could be minimized if the exciting pulse had

the widest possible bandwidth. Such a pulse would approach the dela function

and numerically one does it by using a Gaussian pulse g{t) given by (see Fig.

3.15).

g(t) = e-tZ/TZ (3.52)

whose spectrum G(f ) is

G(f) = e-^f2TZ (3.53)

Notice that at / = i/2T, G(f )«0.1 and if we define the effective bandwidth on

this basis, we conclude that the duration of the pulse determines its effective
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maximum frequency, / mfly = 1/ 2 7\

On the other hand, we saw that because of the dispersive characteristics of

the finite difference approximation, an initial signal that is not monochromatic

will change form as it propagates. Following the procedure in (i) one can show

that the dispersion relation for Maxwell's equations in one dimensional space is:

sinc -g— - [c -~)"smr ^- (3.54)

For a well resolved wave one has f h w 0 and coAt » 0 and from (3.54)

That is, if we can keep coAt small enough, the dispersive effects of the finite

difference approximation are minimized.

A sufficient choice would be

<M. <JL_=> 27T f-A* < 5-=> cAt <•^r
2 12 A 6 12

Hence, for the minimum wavelength in the spectrum of the exciting pulse the

relation

*min> 12(cA*)

must hold. Or, because of the stability limit c At <h one can consider the rela

tion

Amin > 12/1 (3.56)

as a sufficient condition for minimizing the dispersive effects. Since for the

Gaussian pulse (3.52) the effective minimum wavelength is Xmin = 2c T, it is

apparent that if one chooses T such that

2c T > 12/i (3.57)

the pulse will propagate down the grid without significant distortion. Numerical
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experimentation showed that for a one-dimensional grid, the condition in (3.57)

was too conservative. Actually, a Gaussian pulse as short at 5/i was found to

propagate down the grid without distortion. As the dimensions of the problem

increase though, another type of error occurs in the numerical approximation of

hyperbolic equations. That is, the velocity of propagation of numerical

sinusoidal solutions in addition to being dependent upon frequency, is also

dependent upon direction of propagation. This numerical anisotropy depends on

the space discretization [28]. A polar diagram of the normalized phase velocity

c*/c as a function of wavelength X and direction of propagation a for the

discretization scheme (3.17), is shown in Fig. 3.16. It is apparent that for

wavelengths longer than 8/i, the anisotropy is almost negligible. Hence, for two

dimensional problems, the condition in (3.57) can be relaxed to the following

one,

2cT>8h (3.59)

We must also mention that (3.59) must be applied for the lowest velocity c

in the domain of computation. The exciting pulse should also start and end

smoothly enought to avoid spurious oscillations. These oscillations are familiar

in finite-difference computations; see [28] for illustrations.

Finally, the ratio of body size to the effective spatial width of the pulse is

also important. We know that the scattering characteristics of a structure can

be described in terms of its poles in the complex frequency domain. The

number of these poles is determined by the effective maximum frequency,

/max- °f the exciting pulse, which, as we discussed earlier, is determined by the

spatial width of the pulse. On the other hand, the locations of the poles in the

complex plane scale directly with the size of the body. Hence, for accurate

informaiton on the nature of the target, one should increase /m^, that is,

decrease the pulse width. This, then, results in using' smaller width for the
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spatial and temporal samples, which of course increases the storage require

ments and the computational time. That is, there is a tradeoff between accurate

high-frequency information and cost of computation.

3.5. Dielectric Interfaces

At the interface between two media with different dielectric constants, the

field components or their derivatives are discontinuous. Therefore the interpo

lation functions over elements that include the interface must be modified to

include the appropriate discontinuity. Because the construction of such an

interpolation function is rather complicated, an easier technique will be

presented here.

Consider the following set of Maxwell's equations,

(3.60a)

(3.60b)

dt c dz (3600)

Figure 3.17 shows an electric element which includes the dielectric interface.

Equations (3.60a) must be used in order to update the magnetic field at the H

node. The dielectric interface is approximated by a straight line. Consider the

coordinate system (£,77) centered at H with axes £ and 77 parallel and normal to

the dielectric interface, respectively. In this coordinate system, equation

(3.60a) is written:

OH. _ 1 dEy dEx
dt yuo dx

>

dy

0EX _ 1 dH,
dt s dy

SEy _ 1 6Ha

dHz dEv dEj
dt fjQ [ 3f dTj

dE
Notice now that the derivative *} can be approximated as
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where C and .4 are the points of intersection of the f axis with the upper and

lower sides of the element. Of course, the electric field at these points must be

found by extrapolation from the neighboring nodes on the same side since

discontinuity of the electric field along the interface does not allow interpola

tion.

On the other hand E$ is continuous along the interface and also its deriva

tive is continuous permitting us to write:

^L* *&»-*& (3.63)
drj 2d v '

Using (3.63) and (3.62) in (3.61) the magnetic field at if is then updated.

Consider now the other two equations (3.60b) and (3.60c) which must be

solved over the magnetic element shown in Figure 3.18 in order to update the

electric field at the E—node. In the coordinate system (£,77) these equations

becomes:

a u

(3.64a)

dt s d%

Notice then that E^ is easily updated by approximating the derivative dHz/ dt-

by

dH, „, H,(C)-H,(A)
~W~ 2d (365)
Since both points A and C belong in the same medium, no discontinuities are

involved in this computation. Of course, if the electric node coincides with the

dielectric interface, it becomes a double-valued node and one must be careful to

dEf 1 dH,
dt £ dr\

dEv 1 BH„
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keep that in mind when updating the magnetic field on either side of the inter

face the next time step.

Finally we have to deal with equation (3.64a). Notice that although Hz is

continuous along the interface, its derivate along the direction normal to the

1 dHx
interface has a discontinuity such that the product — — is a continuous fun-

£ 07]

tion along 77. The variation of Hz with 77 is shown in Fig. 3.19a.

If for a moment we assume that dielectric material £\ was covering the

whole space, then the values of Hz at points D and B would be HZ(D) and

H£(B), where the index / is being used to distinguish the fictitious value from

the true value HZ(B). Then we would write:

'-It* *• H-^s^
and the value of the magnetic field at the interface would be:

d-770HZ(I) = HZ(D) + (Hi(B) - HZ(D))
2d

(3.66b)

(see Fig. 3.19b). Using the same reasoning, but assuming now that the whole

space is covered with dielectric material £2 , the value of Hz at D will now be

the fictitious one and we could write:

8Et „ 1 Hf(D)-H,(B)
dt £2 2d

and

d-770HZ(I) = Hi(D) + (Hz(B)-Hi(D))
2d

(3.67a)

(3.67b)

(See Fig. 3.19c.) Since E$ and Hz are continuous at the interface, the right

hand sides of equations (3.66a), (3.67a) and (3.66b), (3.67b) are equal and hence

we can write:
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Hz(D) + (Hi(B)-Hz(D)) d~Vo
2d

= Hi(D) + (Hz(B)

-Him d-7}o
2d

(3.68a)

MHZ{D)-H{{B)) = MHi(D)-Hz(B)) (3.68b)

From the above equations one can solve for one of the fictitious points H£(B) or

Hl{D), the choice depending on the position of the electric node and then sub

stitute in (3.66a) or (3.67a) respectively in order to get a semi-discrete expres

sion for the time derivative of E$. For example, for the case of Fig. 3.18, solving

tor Hi(B) we find:

Hi(B)=Hz(D)
1-

£2

£2

±T+HZ(B)

£i

£2
<!+#)

1 +K
£2

(3.69)

where

1 -
Vo

K =

1 +
Vo

(3.70)

Of course, the values HZ(B) and HZ(D) are found by interpolation on the two

sides of the magnetic element.

Although the above technique was presented for the case of an electromag

netic field with the magnetic field polarized along z, its modification for the case

of the electromagnetic wave with the electric field polarized along z is straight

forward.

To summarize, the above technique provides a simple computational pro

cedure for treating dielectric interfaces. The only additional information

needed is the inclination cp of the line approximating the interface inside the
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boundary element with respect to the x—axis, as well as the x coordinate z«, of

the point where this line intersects the x —axis of the local coordinate system

centered at the center of gravity of the element. (See Fig. 3.18).

3.6. Numerical Example.

As with all finite-element methods, an important part of the numerical com

putation is related to the generation of the computational mesh with its special

boundary elements and the rest of the necessary information regarding the

characteristics of the geometry of the scatterer. For this purpose, a very gen

eral code has been written for the mesh generation in two dimensions. This

code can handle arbitrary cross sections and is written in such a way that with a

few modifications, it can treat more general problems like many bodies scatter

ing, electromagnetic coupling, etc. Once the information regarding the specific

geometry has been generated, the second part of the computer program solves

the discretized time dependent Maxwell's equations for the evaluation of the

electric and magnetic fields everywhere on the compuational mesh.

Due to restrictions of space and since results for the scattering by conduct

ing cylinders using this technique have already been presented in [18], we chose

as the numerical example the focussing effect of a cylindrical type Maxwell's

fish-eye lens, Fig. 3.20. The relative dielectric permitivity of the lens,

= 4
R [l + (r/a)2]2

varies nonlinearly with radius from four at the origin to one at r = a. According

to ray theory, a line source at the focus would result in plane waves emerging

from the plane surface of the lens [39].

In the sequence of Fig. 3.21 we see how a plane wave is focussed upon enter

ing the lens. The incident pulse was the Gaussian pulse of Fig. 3.15 with the

parameter T chosen so that the width of the pulse is about the radius of the
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lens. The little arrows represent the Poynting vector at each point showing the

intensity of the wave and visualizing its propagation.

4. Extension to Three-Dimensions

The discussions of the previous sections are for computations in one and

two dimensions. Basically, the theories and techniques can all be extended to

three-dimensional problems, although the effort to implement the method will

increase drastically due to the additional dimension. For example, the program

that produces the results in Section 3 is well automated so that only scatterer

geometry is required for the input and the boundary elements are constructed

without any further instruction from the user. To program such user friendly

input will involve much more effort because of the additional dimension. Com

putations of three dimensional problems in time domain have been attempted

by Kunz and Lee [3] and Taflove and Brodwin [4], but their programs are not

automated, even though their mesh configurations are simple grids without con

forming elements.

Bodies of revolution is a class of three dimensional scatterers, which can be

solved with much less memory. By expanding the incident waves into azimuthal

modes, one can solve each mode separately as a two dimensional problem.

Since the motivation of the time domain finite element method is to make use of

the tremendous memory capacities available in a supercomputer to solve arbi

trary three dimensional problems, we shall not discuss the particulars regarding

bodies of revolutions even though such are problems readily solvable directly

with the techniques discussed earlier.

The conforming boundary elements used in three dimensions are hex

ahedrons, such as shown in Fig. 4.1. Isoparametric elements can still be used in

this case, where the interpolation in natural coordinater is tri-linear,

-37-



8T'c

tf(6i?.?)= 2 Li(S.7i.t)Ui (4.1)

and the mapping is defined as

6

x = 2 A(?,??.t>*i (4.2a)

B

y = 2 A(£.*?.?)•% (4.2b)
i=l

B

2=2 £i(?.*?.f)'*i (4.2c)
i=l

where

A = j(l + ffi)(l +Wi)(l +«i). *= 1.2,. ...8 (4.3)

It is noted that one of the surfaces of a conforming boundary element may not

be a plane, nevertheless equations (4.2) can still provide us with a parametric

representation of a second order surface that approximates the geometry of

interest.

Although the basic idea on radiation conditions may also be extended to 3-D

cases, care must be taken on the longitudinal components, which may not be

negligibly small compared to the transverse component on surfaces close to the

scatterer. Further discussion on this point will be included in Section 5.

Another important issue in 3-D computation using a super computer is memory

management, which can greatly effect the speed of the computation. A general

program of 3-D time domain computation using point-matched finite element

method is still in progress. We hope to discuss the details in a future treatise.

5. Radiation Boundary Condition

As we have discussed in Section 2.1, the uniqueness of Maxwell's equation

requires the knowledge of the tangential components of E or H on the boundary
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for all time t">0. For a scattering problem, the boundary condition at inanity is

known as Sommerfeld's radiation condition [29], where the fields are limited to

those of outward travelling wave type. In the numerical simulation of a scatter

ing problem, the radiation conditions are approximated at a finite surface which

encloses the scatterer. The surface needs to be large enough for good approxi

mation and close to the scatterer to reduce the numerical solution domain.

Later we will see that a rule of thumb for relative dimensions between the

scatterer and the radiation boundary can be given such that reasonable approxi

mations are obtained.

Numerically, the radiation boundary condition may be considered as a

necessary part of the algorithm to terminate the computation at a finite boun

dary. An example of such a treatment in a one-dimensional case has been

presented in Sec. 2.1 where the field at the terminating boundary is computed

from values inside the numerical solution domain using the condition of an out

going wave. The differential equations cannot be used to compute the fields on

the terminating boundary since it would require the field values outside of the

latter. In two and three dimensional problems, the approximations of radiation

conditions are more difficult, because the condition of outgoing wave requires

the apriori knowledge of the direction of wave propagation. There is a large

amount of literature devoted to this subject [30]-[36]. The most intuitive and

computationally simple method is to use lossy material layers surrounding the

radiating source. Unfortunately, for effective suppression of reflections, the loss

must be increased very gradually, i.e., the absorbing layer may extend beyond

several wavelength of the lower spectrum frequency content of the pulse which

results in wastefully large computation space. A simple extrapolation of the

boundary fields from nodal values adjacent to the latter almost always results in

instability [37]. An exact termination method using Huygen's principle [36] is

guaranteed to work, but is expensive both in storage and computation, since
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both the electric and magnetic fields are required on the surface adjacent to the

boundary and the Green's dyads needs to be computed in the subsequent sur

face integrals.

An ideal terminating method is one which can effectively suppress

reflections and also involves only local (in space and in time) operations con

sistent with the simple algorithm of the finite difference or finite-element

method. Engquist and Majda [33] have introduced pseudo-differential operators,

or equivalent parabolic approximations to the hyperbolic equation, to separate

incoming and outgoing waves on the boundary. However, some stability prob

lems occur when it is applied in cartesian coordinates. Bayliss and Turkel's

boundary conditions [35] are based on the global field expansion for outgoing

waves of Friedlander [38], which is a time domain equivalent of Sommerfeld's

expansion in frequency domain [29]. Friedlander has shown that the expansion,

u{t,r,V,y) = 2 7 (5,1)

is a solution of scalar wave equation if /1 is a regular function of 1? and (p on a

spherical surface that encloses all the sources and fi's are unique for any out

going wave from the latter. Bayliss and Turkel propose a family of differential

operators, Bm, which anihilates the first m terms in (5.1),

(5.2)

^TTt-l (5.3)

Application of the differential operators Bm is equivalent to enforcing the field

continuity with first m terms of the expansion (Fig. 5.1). For many practical

modelings, where the radiation field dominates near the boundary, B\ is

sufficient to suppress reflections. In such cases, the field near the radiation
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boundary behaves like

u(t,r,»,<?)* £ (5-+)
r

Hence we can extrapolate the boundary value from the knowledge of the interior

field by

u(*fr6>.?) =^u(t-^p-^,9) (5.5)

In the actual implementation of the method, it is convenient to choose the inte-

rior point Tq such that the time retardation is equal to the time incre

ment At (Fig. 5.2). Then the boundary value can be directly updated from the

interior field value at the previous time step,

/ \ rb—c-At
^(*n+i.r6/<W = u(tn,rb-c-At,'&,<p) (5.6)

6

In two-dimensional cases, the radial attenuation factor must be modified in (5.6)

and we must use,

Vn—c •At
— ^ (in ,Tb -c A* ,<p) (5.7)

rb

The above boundary conditions (5.6) and (5.7) satisfy the stability criteria of

Gustafsson, Kreiss and Sundstrbm [26] and in fact give rise to well-behaving

solutions.

Bayliss and Turkel's boundary conditions for scalar wave equation apply

directly to the components of solution of Maxwell's equations provided that they

satisfy the corresponding scalar wave equation, i.e., those components behave

like potentials. As a matter of fact in the two-dimensional case, the problem can

be conveniently decomposed into transversal electric to z (Ez=0) and transver

sal magnetic to z (Hz=0), and the field extrapolation (5.7) can be applied to Hz
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and Ez, respectively. Hence we will terminate the numerical solution domain

with the magnetic field nodes (Hz) on the boundary in the former, and with the

electric field nodes (Ez) in the latter case. In fact, our numerical example for

Maxwell's lense in Section 3.6 was computed making use of (5.7) which was

applied to Ez.

For arbitrary three-dimensional problems, it is well known that rET and

rHT behave like potentials in spherical coordinates [39]. Therefore we can apply

(5.6) and obtain,

*\2

itn+hrb.Q,?) =
rb—cAt

rb Hr
(tn,rb-C'At^,(p) (5.8)

In principle, other components on the boundary must be computed from Er and

HT. Unfortunately, the relationships expressing E#,Ey,H^ and H^ in terms of

ET and HT are not simple, and hence not suitable for direct numerical imple

mentation. However, it can be shown that for large r, the i9 and (p components

asymptotically admit solutions which behave like (5.4) and we can therefore

make direct use of the field extrapolation (5.6).

The main advantage of Bayliss and Turkel's method rely on the fact that it

is geometry independent, i.e., the field extrapolation (5.6) or (5.7) can be

applied to any convenient form of radiation boundary provided that the coordi

nate point (rb —c At,t?,^) is located inside the computational domain D.

Up to this point, we have not yet specified two important pieces of informa

tion needed to successfully apply the above technique; namely the choice of an

appropriate origin and the relative dimension of the computational domain with

respect to the source or the scatterer. It is obvious that the performance of the

method depends heavily on an apparently arbitrary choice of those two parame

ters. As a general rule, the following guidance must be observed;
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(i) The distance from the source or the scatterer to the radiation boundary

must be large so that only the radiation field dominates in the neighbor

hood of the latter. Otherwise, higher order terms in expansion (5.1)

become non-negligible.

(ii) The origin must be located near the center of the source or the scatterer.

Sometimes, such a choice is not obvious and it is necessary to adjust the

location in order to minimize the reflection.

(iii) For the equivalent point source at the origin to be able to approximately

represent the actual outgoing waves, the minimum distance across the

computational space must be at least twice the maximum dimension of the

structure of interest (Fig. 5.3).

The main drawback of Bayliss and Turkel's 1st condition B1 arises from the

assumption that the radiation field propagates along the radial line from the ori

gin. It is understandable that such an approximation is asymptotic in the radial

distance and there is a limit in shrinking the size of the computational domain

without sacrificing the solution accuracy. The underlying idea of an alternative

method, namely the "Poynting Vector" method, is to predict the direction of

field propagation from the interior fields using;

S = EXH (5.9)

In general, the Poynting vector B represents the flow of the energy density in

every point of space and its direction coincides in an average sense with that of

the propagation of the wave front. As a matter of fact, a distributed source

often creates a wave front which moves in the direction of Poynting vector S

(Fig. 5.4). However this is not always true and the following example demon

strates an exception. Consider two line-sources each radiating independently.

The total Poynting vector at point P is the sum of individual Poynting vectors

and the interaction energy densities (Fig. 5.5),

-43-

63



rod

5 = (Ex +E2)x{H1 +H2) =^jx/ij +E2xH2 +^xtfj +Ex xi72 ^
= 5j + ^2+^21 + ^12

If E*i and E*2 have the same polarity, E points somewhere in between the vector

5*1 and 5*2i indicating the average direction of propagation. However if one

changes E1 to —E\ and Hi to —H\t Si remains the same, but the total vector

B' now points towards a wrong direction outside the region 1 . Also in some

cases Ei = - Eg at certain time and points, which result in S = 0, making the

extrapolation impossible. Hence the Poynting vector method finds its full poten

tial in the solution which does not contain rapid inversion of the field such as

multiple reflections between two conducting surfaces. It is particularly useful

for modeling reflector antennas or dielectric lenses possessing strong focussing

effects. However, there still remains the choice of an appropriate origin which,

if not correctly set, will dramatically offset the advantage of the method.

So far, we were concerned with the radiation condition in non-dissipative

medium. If the medium is lossy, the field extrapolation (5.6) or (5.7) must be

modified accordingly; due to the dispersion effect of the loss, the correct field

extrapolation requires a convolution integral. However, it can be shown that this

dispersion effect is negligible for most practical cases, and only an additional

attenuation factor takes care of the medium loss [6].

At last, it is important to mention that all the boundary extrapolation tech

niques presented above will affect the stability criteria of (3.42) which was

derived without a consideration of radiation boundary condition. In particular,

our computational experience indicates that the field extrapolation (5.6) or (5.7)

requires the time step At to be reduced to:

At <; (0.7~0.8)x^- (5.11)
c

for stability.
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Epilogue

Starting from the very simple concept of space-time computation of a one

dimensional wave equation, we have presented the basic techniques and fehe

associated theories of time domain numerical methods. The relations between

discretization, computational procedures and stability have been discussed.

Methods of initialization and termination of the computations and numerical

treatments of dielectric interfaces have been presented. The method of "con

forming boundary elements" and the "Poynting vector method" of simulating

radiation conditions are recently developed by the authors. These techniques

are quite esential in saving storage space and computing costs, which are espe

cially important when the method is applied to large scale compuations. We

have used Gaussian primary fields rather than the often used step sinusoids in

the illustrative results, because time sequence of the Gaussian results are more

graphically presentable, and the CW results can reality be obtained from their

FFT's.

The one dimensional wave equation with dielectric interface has been suc

cessfully programmed by undergraduate students at the University of Califronia

for an IBM PC, and the results are displayed on CRT as they are computed.

Indeed, time domain electromagnetics is a very effective method in providing

physical insight to fields and waves, as well as a powerful computational tech

nique for engineering applications.
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Figure Captions

Fig. 2.1 One-dimensional hyperbolic problem.

Fig. 2.2 Discretization of solution domain D.

Fig. 2.3a Plane wave reflection from perfectly conducting wall.

Fig. 2.3b Plane wave reflection and transmission at dielectric interface.

Fig. 2.3c Plane wave propagation through radiation boundary.

Fig. 2.4 Piece-wise linear approximation using tent functions.

Fig. 2.5 Tent function as a basis.

Fig. 3.1 Ez case scattering by an infinite circular cylinder.

Fig. 3.2 Time-domain finite-difference mesh for circular cylinder.

Fig. 3.3 Finite-element representation of circular cylinder.

Fig. 3.4 Two-dimensional interpolation: (a) basis function <pi(f); (b) field

representation within a quadrilateral element.

Fig. 3.5 Two complementary grids for electric and magnetic fields.

Fig. 3.6 Arbitrary quadrilateral.

Fig. 3.7 The unit square on £—7) plane is mapped through {$] to a quadrila

teral on the x-y plane.

Fig. 3.8 An almost degenerate quadrilateral.

Fig. 3.9 Grid generation by mapping.

Fig. 3.10 Grid generation using an averaging procedure.

Fig. 3.11 The intersections of a rectangular grid with the body contour

create boundary elements.

Fig. 3.12 Inappropriate boundary elements.

-60-



Fig. 3.13 Appropriate boundary elements.

Fig. 3.14 Computation of the normal component of the electric field on the
scatterer surface.

Fig. 3.15 Gaussian pulse: g(t)=e"f2/7'2

Fig. 3.16 Polar diagram of C*/C

Fig. 3.17 Computation of the magnetic field.inside an electric element that
contains the dielectric interface.

Fig. 3.18 Computation of the electric field inside amagnetic element that
contains the dielectric interface.

Fig. 3.19 Discontinuity in normal derivative of Ez.
Fig. 3.20 Maxwell's "Fish-Eye" lens.

Fig. 3.21 Wave focusing by afish-eye lens.

Fig. 4.1 General hexahedron element.

^g- 5.1 Illustration of Bayliss and TnrW*r* *>**',-*.•yubs ana iurkel s radiation boundary condition.

Fig. 5.2 Field extrapolation according to Bh
Fig. 5.3 Ratio befcween the sizes Qf modeied ob.ect ^ ^ computat.onai

Fig. 5.4

Fig. 5.5

domain.

Global Poynting vector 5 as aresult of superposition of fields pro-
duced by a distributed source.

Poynting vector resulting from asuperposition of fields due to two
line sources.
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