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Convergence and Finite-Time Behavior of Simulated Annealing

Debasis Mitra1, Fabio Romeo2 and Alberto Sangiovanni-Vincentelli2

Abstract

Simulated Annealing is a randomized algorithm which has been proposed for finding globally

optimum least-cost configurations in large NP-complete problems with cost functions which may

have many local minima. A theoretical analysis of Simulated Annealing based on its precise model,

a time-inhomogeneous Markov chain, is presented. An annealing schedule is given for which the

Markov chain is strongly ergodic and the algorithm converges to a global optimum. The finite-time

behavior of Simulated Annealing is also analyzed and a bound obtained on the departure of the

probability distribution of the state at finite time from the optimum. This bound gives an estimate

of the rate of convergence and insights into the conditions on the annealing schedule which gives

optimum performance.

1 AT&T Bell Laboratories, Murray Hill, NJ 07974

2 Department of EECS, University of California, Berkeley, CA. 94720



1. Introduction

Many combinatorial optimization problems belong to a class of problems which are difficult to

solve, i.e., the class of NP-complete problems [GAR79]. For these problems, there is no known

algorithm whose worst-case complexity is bounded by a polynomial in the size of the input.

Heuristic algorithms are used to solve NP<omplete problems approximately, Le. to find "good"

solutions which are "close" to the optimum. These algorithms explore a discrete space of admissible

configurations, iS, in a deterministic fashion. Often the search terminates at a local minimum due

to the fact that heuristic algorithms are "greedy". To avoid this behavior, a class of randomized

algorithms (e.g. [SCH80D have been devised which generate the next configuration randomly, and

which can "climb hills", i.e., moves that generate configurations of higher cost than the present one

are accepted.

Simulated annealing as proposed by Kirkpatrick et al. [KIR83], allows "hill climbing" moves but

these moves are accepted according to a certain criterion which takes the cost into consideration in a

manner unlike other randomized algorithms. The controlling mechanism is based on the observation

that combinatorial optimization problems with a large configuration space exhibit properties similar

to physical processeswith many degrees of freedom.

In particular, bringing a fluid into a low energy state such as growing a crystal, has been

considered in [KIR83] to be similar to the process of finding anoptimum solution of a combinatorial

optimization problem. Annealing is a well-known process to grow crystals. It consists of melting

the fluid and then lowering the temperature slowly until the crystal is formed. The rate of decrease

of temperature has to be very low around the freezing temperature. The Metropolis Monte Carlo

method [MET53, BIN78] can be used to simulate the annealing process. It has been proposed as

an effective method for finding global minima of combinatorialoptimization problems.

In applications to combinatorial optimization, this method starts from an arbitrary configuration

and, given that the simulation is at configuration 1 at time m,m —0, 1, 2,..., a new configuration

j is randomly generated from an admissible set N(i) and a check is made to determine whether the
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cost of the new configuration satisfies an acceptance criterion based on the temperature, a

controlling parameter, at time m, Tm. If the cost decreases, the simulation accepts the move.

Otherwise, a random number uniformly distributed over [0,1] is picked and compared with

e <?v -c -^ wjlcrc c(.) jg the CQSi function on configurations. If the random number is

smaller, the simulation accepts the move, otherwise it discards the move. In any case, time is

incremented. Note that the higher the temperature is, the more likely it is that a "hill climbing"

move is accepted. The initial temperature, the number of moves generated at eachtemperature and

the rate of decrease of temperature are all important parameters that affect the speed of the

algorithm and the quality of the final configuration.

Experimental results [KIR82, VEC83, SEC84, JOH84] show that Simulated Annealing

produces very good results when compared to other techniques for the solution of combinatorial

optimization problems such as those arising from the layout of integrated circuits, at the expense,

however, of large computation time (a 1,500 standard cell placement problem can take as much as

24 hours of a VAX 11/780 [SEC83]). This has emphasized the need for a better theoretical

understanding of Simulated Annealing.

Early analyses using time-homogeneous Markov chains [SEN80], [ISA76] were based on certain

(unrealistic) assumptions on the number of iterations taken at each temperature. It was shown

[LUN83], [ROM84] that Simulated Annealing, and even generalizations of it called "Probabilistic

Hill-Climbing algorithms" [ROM84] give asymptotically the optimum solution with probability 1.

The analysis in this paper is based on time-inhomogeneous Markov chains. We prove that for an

arbitrary but bounded cost function, for annealing schedules of the form

T" * logCm+mo+O* " "WA~* (U)

where m0 is any parameter satisfying 1 < m0 < <», the Markov is strongly ergodic if

7 > r I,

where r is the radius of the graph underlying the chain and £ is a Lipschitz-like constant of the



-4

cost function. Strong ergodicity implies that, for any starting probability vector, the state

probability vector converges component-wise to a constant vector e*. Furthermore, we show that e*

is the optimum vector, i.e., the vector in which all elements are zero except those with the indices of

the global least-cost configurations. Our other main result is on finite-time behavior and rate of

convergence. We give a bound on the departure of the state vector from the optimum vectorafter a

finite number of iterations. This bound indicates how the annealing schedule must be balanced

between contrary requirements for optimum performance. A simple Corollary to this result states

that for large number of iterations k, the Lj-norm of the difference of the state vector from the

optimum vector is Oll/k™**^), where a and b respectively increase and decrease with

increasing y.

We also obtain a set of results on distributions which we call quasi-stationary. These constructs

are the equilibrium distributions of time-homogeneous Markov chains obtained from Simulated

Annealing by holding the temperature fixed at various values. The dependence of the quasi-

stationary distributions on temperature is shown to have a number of desirable properties. These

properties are essential for our analysis of the time-inhomogeneous Markov chains obtained from

annealing schedules given in (1.1). In addition, they are of independent interest since they hold for

annealing schedules considerably more general than (1.1). This may be important in the future if,

as we expect, it becomes possible to design schedules matched to special properties of the cost

function.

In an important work Geman and Geman [GEM831 have proved in the context of Markov fields,

used to model image-processing models, that Simulated Annealing converges to the least-cost

configurations for a particular annealing schedule. Our results are stronger in the following

respects: (i) there is no result in [GEM83] on finite-time behavior and rate of convergence, results

which are most useful to obtain a practical annealing schedule; (ii) our conditions on the annealing

schedule are substantially weaker; (iii) the proof of convergence is simpler since it makes use of

powerful, known results in the theory of time-inhomogeneous Markov chains; (iv) the graph

underlying the Markov chain is arbitrary and well-matched to combinatorial optimization, and there
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is no suggestion of the need of structural constraints such as those that exist in image processing.

The paper is organized as follows. In Section 2, the structure of Simulated Annealing and the

Markov chain model are briefly recalled. In Section 3, the quasi-stationary probabilities of the

Markov chain are introduced and their properties established. In Section 4, the basic results of the

theory of time-inhomogeneous Markov chain useful to us are recalled. In Section 5, the annealing

schedule that guarantees convergence of Simulated Annealing to the optimum vector is presented

and the basic convergence theorem proven. In Section 6, the finite-time behavior of the Markov

chain and the rate of convergence of Simulated Annealing are investigated. In Section 7, some

concluding remarks and future research directions are offered.
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2. Preliminaries

In this section, we describe the basic structure of the Simulated Annealing algorithm and we

introduce a Markov chain model for it.

Simulated Annealing Algorithm Structure (/o* T0>

[
f* Given an initial state j0 and an initial valuefor the parameter T. Tq.*/

x - y0;
m -0;
while("stopping criterion" is not satisfied)

whileC'inner loop criterion" is not satisfied)

j —generate OC)
if(accept(c(/),c(Ar),rm)

rm+1 - update (rm)
m — m + 1

}
}

The "inner loop criterion" determines how many steps are taken by the algorithm at a given

temperature. In the analysis here we have emphasized the case in which only one step is taken at

each temperature, i.e. when the inner loop is eliminated. However, as we observe later, it is easy to

extend the results to the case of more than one step at each temperature.

In the algorithm structure three functions play a fundamental role: accept, generate and update.

While several accept functions can be used [ROM84], in this paper we restrict our attention to the

one proposed in [KIR83].

accept(c(j),c(i),T)

/•

returns 1 if the cost
variation passes a test.
T is the controlparameter.
*/

AcM -c(/) -c(/);

y - min[l,cxp(-j^-)];
r - random (0,1);
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/•

random is a function which returns a pseudo
random number uniformly distributed on the
interval [0, lj.
*/

if (r < y)
retumiXh

ebe

returniO);
)

The generate function selects a new configuration. In Simulated Annealing, a new configuration

is generated randomly from a set of possible configurations. To completely specify this function, a

set of configurations accessible from a given configuration and the probability of generating one of

these has to be given.

The update function, also called the annealing schedule or cooling schedule, produces a new

value for the temperature. This function is most important to determine the convergence properties

of the algorithm. We focus on update functions which return monotonically decreasing values of 7\

i.e. Vm > 0, Tm+l < Tm and lim Tm —0. The function is completely specified when the

explicit dependency of T on m is given. This paper is devoted to the study of update functions that

guarantee convergence of the algorithm to the optimum vector.

It is easy to see that Simulated Annealing can be represented by a Markov chain, whose

connectivity is fully specified by the generate function and whose transition probabilities are

determined by the accept and by the generate functions.

The underlying directed graph is determined as follows. There is a bijective correspondence

between the elements of S, the set of all the possible configurations of the optimization problem,

and the nodes of the graph. Given two different elements, say i and j, of 5, there is an arc from I

to j if j can be generated starting from I. The two nodes are said to be neighbors. We define

N(i) to be the set of all the neighbors of /. We assume that i i N(i). In several applications of

the Simulated Annealing algorithm, the probability of generating a particular neighboring

configuration starting from i is simply given by l/|iV(i)| where \N(i)\ is the cardinality ofN(i).
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However, in certain applications such as placement of integrated circuits [SEC84], it is important to

generate certain neighbors with higher probability. For this reason, we assume that the probability

of generating j from / is given by

g(ij)/g(i) (2.1)

where giij) gives the "weights" for each of the neighbors of i and gii) is a normalizing function

to ensure that

1_

JGNU)
-7JT S *0\y)-l
g\l) ***in\

The one-step transition probabilities of the Markov chain arerepresented as weights on the edges

of the directed graph G defined above and are determined by the product of the probability of

generating a given configuration and the probability of accepting it

p„(rt -.
0 if; l N(i) andj s* i

g(i)

and

P„(D-1- J Py(r) (2.3)
J€NU)

We assume that G is connected. Since the transition probabilities vary during the evolution of

the algorithm (they depend on D, Eqs. (2.2) and (2.3) define a time-inhomogeneous Markov chain

with state space S.
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3. Quasi-Stationary Probability Distributions and Their Properties

We have shown that a mathematical model for Simulated Annealing is a time-inhomogeneous

Markov chain. However, if the temperature is frozen at a particular value T, then we obtain a

time-homogeneous Markov chain. To prove the convergence of Simulated Annealing, it is important

to study this Markov chain. In particular, we show here that this chain has a stationary probability

distribution, which we call the quasi'Stationary probability distribution of the time-inhomogeneous

Markov chain. In addition, we show that the stationary probability distributions have a limit when

T goes to zero, i.e. when m goes to infinity, and that this limit is the optimum vector e*.

3.1 The Quasi-Stationary Probabilities.

For i € S define

TiiT)&G(T)~ ai)

where G(T) is a scaling factor such that ||x (T) 11 - 1 where

lhr(r)||A 2 *i<«.
/-l

and s - |S|.

The role of G(T) is similar to that of the partition function in statistical mechanics and

stochastic networks.

We now show that x(7) is the stationary probability distribution for the time-homogeneous

Markov chain. For this to be true we need to assume that the function giij) is symmetric, i.e.,

giij) - *(/,/>, Vi\ j € S. (3.2)

This is a mild restriction which is easy to satisfy in implementations of Simulated Annealing.

Proposition 3.1. If (3.2) holds, then {rtiT)} defined by (3.1), satisfies

*(DP(D - t(D, m - 0,1,... (3.3)

where P(7) is the one-step transition probability matrix of the Markov chain defined in (2.2) and
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(2.3).

Proof. By (3.1), (2.2), and (3.2), we have that for every i and j neighbors in S, and also for

*'(7° . iML >0)-cG)>/r . P;/(r)
*jiT) gij) VtJiT)

Note that this is true regardless of the sign of [cij) —c(f)}.

Hence, detailed balance holds

x, (DP,, iT) - Tj(DP,,(D. GL4)

Eqn. (3.4) obviously holds also for those I and j that are not neighbors in S under the prca

topology since then each side is 0. By adding, with respect to i, both sides of (3.4) and recafing

(2.3), (3.3) is obtained.

D

3.2 Asymptotic Quasi-Stationary Probabilities.

The results in this section and Sections 3.3-3.4. hold for any update function in which

Tm > Tm+l, Vm > 0, (3Sa)

lim Tm - 0. Gib)

It should be emphasized that here and in Sections 3.3-3.4 we are investigating the dependence of

x(rm) on Tm where [Tm] behaves as in (3.5), and that x(rm) is a construct and not me

distribution obtained from Simulated Annealing.

It is possible to show the following result.

Proposition 3.2. If the update function satisfies (3.5.b), then the quasi'Stationary probabitiy

vector x iTm) defined in (3.1) converges, as m -* », to the optimal vector e*
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gii)/gi*) i €5*
0 US

where S* is the setof indices of global least-cost configurations, i.e.

S* &[ieS\cii)<cij)VjSS}

and

gi*)& s g(j).
JGS*

(3.6)

The proof of this proposition is straightforward and hence omitted here. A proof for a more

generalclass of algorithms, Probabilistic Hill-Climbing algorithms, can be found in [ROM84].

Note that this result can be interpreted as the convergence of the algorithm to the optimum

vector provided that an infinite number of iterations are taken at each value of m, so that the

equilibrium distribution is reached.

33 Monotonidty of the Quasi-Stationary Probabilities

The convergence of the quasi-stationary distributions to e* displays remarkable monotonicity

properties. This property is insightful and also an essential element of the analysis of the asymptotic

and finite-time behavior of Simulated Annealing.

We will need to identify the "weighted meancost" to be denoted by C and defined thus

C4 2gij)cij)/2gij). (3.7)

Proposition 33.

(0 For each/ € 5*,

x,(rw+1)-r,(rj >0 Vm >0.

(ii) For each / I S*t there exists an unique integer m,,0 < mt < <», such that
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'/(^m+i) - x,(7j > 0 0 < m < m,-l

< 0 m > m,.

Proof. Consider x as a continuous function of the parameter 7 and differentiate x,(D in (3.1)

with respect to 7.

g ii)T2

•,2(D
d

dT
tiT) --2 f(/)fc(/)-cO)}«-fc^-WWr

J€5

S gO)fcO*)-cO*)}e{c(/)-^),/r (3.8)
jx(j)<cU)

S *(/)fc(/)-cft)}*-fcW-tfW^

The sign properties of -pr x, (D will be deduced from the relative magnitudes of the two

bracketed terms in the right hand side.

If configuration / is least-cost, i.e. i € S*. then the first term is null and -r-X/(D < 0 for
dT '

T > 0. Statement (0 then follows from (3.5).

The terms if not null are respectively monotonically decreasing and monotonically increasing

with increasing 7\ and the value of the right hand side of (3.8) evaluated at 7 - 0 is positive.

Hence the right hand side either has a finite valued zero or not depending on the sign of its value

evaluated at T - ». We conclude that if cii) is not least-cost and cii) < C then an unique

zero exists at 7*,, say, where 0 < ft < », and also that

ddT-tiT) > 0, o<r< r„

- 0, T - f„
< 0, f, < T < oo.

(3.9)

Thus for cii) < C, the weighted mean cost, we may use (3.5) to identify m, in statement GO with

the smallest integer such that 7. < 7,.
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dT-iiT)>0, 0<7<

and m, » 0 in statement (ii).

An immediate corollary to Proposition 3.3 is the existence of m, m < °°, such that for all

i t S*.

*/(r«+i) " */(rw) < 0, Vm > m. (3.10)

In fact

m-maxm,. (3.11)
its*

3.4 Uniform Monotonidty of the Quasi-Stationary Probabilities

The analysis in Section 6 on finite time behavior requires knowledge of m which marks the onset

of monotonic decrease of quasi-stationary probabilities of all but the least cost configurations. We

show here how it may be identified. This is done by considering 7,, for I i S* and cii) < C, as

functions of the cost associated to each state [c ij)}.

Proposition 3.4. For all i such that i $ S* and cii) < C, 7, are monotonic, strictly

increasing with increasing cii).

Proof. A little algebra shows that for any pair (ii,/2) where /, € 5 and i2 € S and

cii{) -cii2) -€> 0

*«,) dT T2 g(i2) gUi) dT OW

For the case of interest here c(f2) < cG'j) < C, so that from the definition of T,,, see (3.9),

"3^ x/»^/P ™0- Now if (3.12) is evaluated at 7,,, then the second term on the right hand side

is zero, while the first term is positive. Again noting (3.9) it follows that 7,2 < 7,(.
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Note that configurations withcommon cost have common values of 7, andm,.

To calculate m it is helpful to identify the least-cost and the next-to-least cost of all the

configurations. Let

c(*)£mincO') (3.13)
jes

and

6&[mmcij)}-ci*)t (3.14)
j is*

so that c(*) and fe+c(*)} are respectively the least-cost and the next-to-least cost Note that 6 is

an important global characteristic of the cost function.

The monotonicity property in Proposition 3.4 allows (3.11) to be sharpened: m —mr where f is

any configuration with next-to-least cost.

Setting (3.8) equal to zero for I - f, let 7 be the unique positive solution of the following

equation

M*) " S f(/)fc(/)-cW-«e"fcw-eWI/r - 0, (3.15)
j'x<j)>6+ce)

where gi*) is given in Proposition 3.2. Then m is the smallest integer such that 7- < 7.

We conclude this section by a summary. The quasi-stationary probability distribution converges

with decreasing temperature G.e. increasing time) to the optimum vector. The quasi-stationary

probabilities of least-cost configurations monotonically increase with decreasing temperature. For

configurations with costs not less than the weighted mean cost, the opposite is true. Each

configuration / with cost between least-cost and weighted mean cost hasVn associated "critical

temperature'* 7,; while the temperature is greater than 7,, the configuration's quasi-stationary

probability increases with decreasing temperature, and for temperatures less than 7, the opposite is

true. Furthermore, the critical temperature is an increasing function of cost. All of the above
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properties hold for any update function satisfying (3.5).
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4. Tlme-Inhomogeneous Marko? Chains

In this section a number of well known properties of time-inhomogeneous Markov chains are

presented. These results will be used in Section 5 to prove the convergence properties of the

Simulated Annealing algorithm and to determine the influence of the annealing schedule on the rate

of convergence to the optimal solution of the combinatorial optimization problem.

All theorems and propositions are given without proof. The interested reader can find these

proofs in [IOS80], [ISA76], [SEN80].

4.1 Notation.

For the sake of notational simplicity, from now on all vectors, matrices and functions depending

on 7m will be denoted as depending on m. Let P(m,m) be the identity matrix, and

P(m,#i+m) & n PCifi+f), m > 0, n > 1
/-o

be the /z-step transition matrix. Furthermore let

pirn) £ lr,(m), r2(m),..., wsim)\

denote the state probability vector after m transition of the Markov chain, so that

wim+n) -r(m)P(m,m+n).

We also let

wim.n) -r(0)P(m,/i).

4.2 Basic Results from the Theory of Time-Inbomogeneoos Markov Chains.

We need the following definition

Definition 4.1. A time-inhomogeneous Markov chain is weakly ergodic if for all m,

111X1 „^UP„ vll^Ow.a) - w2im,n)\\ - 0 (4.1)
it—» r'(0),r2(0)

where wl (0) and r2(0) are two arbitrary initial state probability vectors and '
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F1(m,/i)-F1(0)P(w,«)

r2(m,n)-F2(0)P(m,/i).

Note that weak ergodicity does not imply the existence of limits of vectors wlim,n) and

w2im,n) but only a tendency towards equality of the rows of Pim9n). Thus weak ergodicity

implies only a "loss of memory" of the initial conditions, but not convergence.

The investigation of conditions under which weak ergodicity holds is aided by the introduction of

the following coefiicient of ergodicity.*

Definition 4.2. Given a stochastic matrix P, its coefficient of ergodicity rx is

rt(P) - —max 2 |P*-P/*I - 1- min 2 min(P/Jfc,P^). (4.2)
z t'i *-i 'J *-i

With the above definition of the coefficient of ergodicity the following result can be proved

[SEN80], [ISA761.

Theorem 4.1. The time-inhomogeneous Markov chain is weakly ergodic if and only if there is a

strictly increasing sequence of positive integers {&,}, / - 0,1,... such that

2ll-r,CP(MH.,)>]--. (4.3)
/-o

Strong ergodicity is defined as follows.

Definition 4.3. The time-inhomogeneous Markov chain is strongly ergodic if there exists a vector

* Weare following [SEN801; [ISA76], following [DOB561, call (1 -t,) the ergodic coefficient
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<J» llqll - 1and q, > 0, i € 5, such that for all m

lim sup \\wim$n) - q || - 0 (4.4)
«—oo J ((J)

Strong ergodicity is obtained only with convergence in addition to loss of memory. Note that

since the Markov chain is finite, the convergence in norm used to define weak and strong ergodicity

is equivalent to coordinate-wise convergence.

We will need the following result due to Madsen and Isaacson [MAD73], [ISA76].

Theorem 4.2. If for every m there exists a x(m) such that x(m) —x(m)P(m),

||x(m)|| - land

2 l|x(m)-x(m +l)|| < co,
m-0

and the time-inhomogeneous Markov chain is weakly ergodic, then it is also strongly ergodic.

Moreover if

e* — lim vim),

then for all m,

lim sup
t-»oo r(0)
lim sup ||r(m,/t) —e*|| —0.
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5. Strong Ergodidry of Simulated Annealing.

To establish weak ergodicity we use Theorem 4.1. In particular, we first determine a bound on

the coefficient of ergodicity and then we determine the update function such that (4.3) is satisfied.

Next we show that weak ergodicity together with the existence of x(7m), as defined in (3.1), are

sufficient conditions to ensure strong ergodicity.

5.1 Radius of G and Lipschitz Constant

We need a few definitions related to the structure of the graph underlying the Markov chain and

to the slope of the cost function.

Let Sm be the set of all the points that are local maxima for the cost function, i.e.,

Sm 4 {/ € S \cij) < cii) Vy € Nii)}.

Let

r& min max diij) (5.1)
iOS-Sj j€S

m

be the radius of the graph, where diij) is the distance of j from I measured by the length

(number of edges) of the minimum length path from I toJ in G. Let f, the index of a node where

the minimum in (5.1) is attained, be the center of the graph.

We will show that at any time the radius r represent an upper bound on the number of

transitions of the Markov chain that are required for the probability transition matrix to have all the

elements in at least one column, namely the one indexed by t, to be different from zero. Note that

the radius is well defined since we assumed G is connected and, because of the symmetry of giij),

it is also strongly connected.

A Lipschitz-like constant bounding the local slope of the cost function is given by

£-max max |c(/) - c(/) |. (5.2)
i*S JGNU)

Finally we define a lower bound on the generation function
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w £ min min g '{ . (5.3)
itSjtNQ) g(j)

An important assumption is that w > 0.

5.2 Coefficient of Ergodicity.

If i and j are neighbors in G, i.e. j € Nii)t then from (2.2), (5.2) and (5.3),

P^Ow) > we~L/Tm, m- 0,1,... (5.4)

Now the diagonal elements P„(m), I € OS —«Sm), may bequite small initially, but these terms

are monotonic, increasing with increasing m. This is because the probabilities of transition from

node i to neighboring nodes with lower cost are constant with respect to m, while the probabilities

of transition to neighboring nodes with higher cost are monotonically decreasing with increasing m.

Hence thereexists some k^ kQ < », such that for all / € S —Sm

P„(m) > we~L/Tm, m > ik0-Dr, (5.5)

since the left hand side monotonically increases and the right hand side monotonically decreases

with increasing m.

We can use (5.1) and (5.5) to bound P,f im —r,m) for every i € S and m > k<f

Ptf(m-r,m) > "fl {we"L/r'} (5.6)
n—m — r

> wf e~'I/r-'.

Hence the coefficient of ergodicity rx defined in (4.2) satisfies

r,(P(A:r-r,Jkr)) < 1- min {minOP^ P^)} (5.7)

<1- wr exp{- -^H, k > *0. (5.8)
7fa—1

From now on, for convenience we shall abbreviate Ti(P(n,m)) toTi(n,m).
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53 Weak Ergodicity.

By Theorem 4.1 and (5.8), we have that the Markov chain associated with Simulated Annealing

is weakly ergodic if

S «xp{- ^-) - - (5.9)

Note that up to now, we have only assumed that the sequence of parameter [Tm] is

monotonically decreasing and lim 7m —0; in particular, the dependency of Tm on m has not

been specified. We give now an update function which insures that the Markov chain is weakly

ergodic.

Theorem 5.1. The Markov chain associated with Simulated Annealing with the following update

function

T« " »„„/ 7 xir « - <U. 2,... (5.10)
log(m+m0+l)

where m0 is any parameter satisfying 1 < m0 < °°, is weakly ergodic if

y>rL. (5.11)

Proof. Replacing Tm in (5.8) with the formula given in (5.10) we obtain

rjikr-rtkr) < 1- ——£-—-, k > k0 (5.12u0
(k+m<Jrr

where

M£ rL/y, (5.12.b)

and

aA-^. (5.12.C)

It is obvious that, for any /
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2(l-T,(*r-r,*r)}-co

if 11 < 1. Using Theorem 4.1, the proposition is proved.

It is clear that weak ergodicity is preserved even if the annealing schedule in (5.10) is modified

to keep the temperature unchanged at various, finitely manytime steps.

5.4 Strong Ergodicity.

In Section 3 we have shown that there exists for every m, m > 0, a vector x(m) of quasi-

stationary probabilities that has unit norm, satisfies (3.3) and. as shown in Proposition 3.2,

converges to the optimum vector e* defined in (3.6).

Hence, to prove the strong ergodicity of the Markov chain associated with Simulated Annealing

using Theorem 4.2, we only have to prove the following proposition. Interestingly the proposition

holds more generally than for the update function in (5.10).

Proposition 5.1. For update functions satisfying (3.5) the corresponding quasi-stationary

probabilities are such that

2 l|x(m +l)-x(m)|| <2(m +l) < co, (5.13)
m—0

where m is given in (3.10) and (3.11).

Proof. From statement (i) of Proposition 3.3, and (3.10), for m > m,

||x(m+l)-x(m)||-2 Mro +l)-x,(m)}- 2 {*/(m +l)-x,(m)}. (5.14)
<€S US*

Since

we have

2 */(m) + 2 */Cw) - 1, V m > 0,
its* as*
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l|x(m+l)-x(ro)||-2{x*(m +l)-x*(m)}, m>m (5.15)

where

x*(m) £ 2 */0w), m > 0. (5.16)

By (5.15), we have

2 l|x(m +l)-x(m)|| <2. (5.17)

In view of (5.17) the proposition is proven.

Using Theorem 4.2 andTheorem 5.1, we can prove the fundamental result of this section.

Theorem 5.2. The time-inhomogeneous Markov chain associated with Simulated Annealing is

strongly ergodic if it is weakly ergodic, and the annealing schedule satisfies (3.5). In this case, for

all m

lim sup ||r(m,/t) - e*|| - 0. (5.18)

In particular, the annealing schedule in (5.10) with y > rL gives a strongly ergodic Markov chain

for which (5.18) holds.
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6. Finite-Time Behavior and Rate of Convergence.

We obtain an estimate of the departure of the state of the Markov chain at finite time m from

the optimum vector e*. The results in Theorem 6.2 below give important insights at the factors

affecting the rate of convergence and their implications in the design of optimum annealing

schedules.

6.1 Components of Finite-Time Behavior.

The following decomposition is basic:

wim) - e* - (r(m)-x(0)P(0,w)} + (x(0)P(0,m)-x(m)} + {x(m)-e*} (6.1)

Observe that the sum of the first two terms in braces in the right hand side measures the departure

at time m of the state distribution from the quasi-stationary distribution. We have chosen to

decompose this quantity further so that the first term measures the extent to which at time m the

Markov chain has lost memory of the difference between w(0) and x (0).

From (6.1) we obtain

\\wim) -e*|| < \\wim) -x(0)P(0,m)|| + ||x(0)P(0,w) -x(m)|| (6.2)

+ ||x(m)-e*||.

In the next subsections, each of the three terms in the right hand side are bounded independently.

6.1.1 Bound for the First Term of (6\2).

To determine a bound for the first term in the right hand side of (6.2), we need the following

fundamental result due to Dobrushin ([DOB56], [ISA76], [SEN80D.

Theorem 6.1. If P is any stochastic matrix and §t is any row vector with

Smi-o,

then

HmPII < IImIIt,(p).
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In view of Theorem 6.1 for the first term of the right hand side of (6.2),

||r(*r) - x(0)P(0,*r)|| - ||{f(0) - x(0)}P(0,*r)||

<||*(0)-x(0)||t1(0,At).

(6.3)

To complete the bound of the first term of (6.2) we need to bound rx(Oykr). To this end the

following proposition is necessary.

Proposition 6.1. If y > rL and the annealing schedule (5.10) is applied so that rx satisfies

(5.12.a), then

TiUr—rtkr) <

rxilr —r,kr) <

&o+mo/r
k+nto/r

l+mo/r

k+mfjf

, for / < kn < k

, for kQ < / < k

(6.4ji)

(6.4.b)

where a is defined by (5.12.c), r by (5.1), and kQ is such that (5.5) holds and m0 is the parameter

that controls the initial value of the temperature.

Proof. Let Q and R be two stochastic matrices, then [ISA76]

r^QR) <r1«J)rl(R).

By the above property, we have from (5.12.a), for kQ < / < k
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k

Tj (//•-#•,£/•) - JJ TXimr-r,mr)
m-l

< ni'-, ' j
m-/ (m+mtfrr

k

,-/ Oit+W(/r)M

^ w-/ (m+wo/r)

^ '/+mo/rla
fc+Wo/r

A similar bound can be derived for / < k0 < k.

The bound in (6.4) on the coefficient of ergodicity is fundamental to the finite-time analysis of

Simulated Annealing. Substituting the above bound in (6.3) yields

\\ n \ ^»/n , mi ^ ll"(0)-x(0)||ao+mo//')flIIf Or) - x(0)P(0,*r)|| < ° , V k > k0. (6.5)
\k+ntQ/r)

6.1.2 Bound for the Second Term of (6\2).

Let

nim) £ x(0)P(0,m) - x(m), m - 0,1,... (6.6)

Note that ft (0) - 0 and that [ft (i)} satisfy the recursion

M(m+r)-/i(m)P(m,m+r)+ 2 {*On+j-l)-x(m+5)}P(m+*,«+/•). (6.7)

The recursion is solved to give

where,

k

uikr) - 2 €C/r)PC//\ Jfcr), (6.8.a)
/-l
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e(/r) £ j {x(/r-*)-x(/r-.y +l)}P(/r-.j +l,/r). (6.8.D)
i-i

Applying Theorem 6.1 twice toobtain bounds for \\eUr)?ilrtkr)\\ and ||c(/r)|| from (6.8.a) and

(6.8.b) respectively, we obtain

\\liikr)\\ < 2 rjOr.Jkr) 2 Il*0r+1-*) -*0r-*)||, * > 1. (6.9)
/-l *-i

Now making use of (5.15) and (6.4) we obtain

HuflWH
k+nio/r

2

a I. r
2 S lk(/r+l-5)-x(/r-5)||
/-i*-i

2 0 +1+— )l W*ilr) -x*(/r-r)}
ik+m<Jr)a /./o+1

for* > /0 A max{m/rf*0-2}. Now writing x*0i) for {l-x*0i)}, withx* as in (5.16), we

have

(6.10)

2 (/ + l++mo/r)fl {x*(//•) -x*(/r-r)} (6.11)
/-/o+l

< 2 K/ +l+mo/r})fl - il+mo/r)"} T*ilr-r) + (/0+l+mo/r)a x*(/<>r)
/-/o+l

/-/o+I (/+«o//,)M

where, in the last step we have used the relation a < 1.

On substituting (6.11) in (6.10) we obtain, for k > /0

HuflWH < !»_ + 2a * x*(/r-r)

a+mo/r)a a+mo/r)fl /-£+i (Z+mo/r) l-a •
(6.12.a)

where
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/o r

Z>M £ (A:0+mo/r)a 2 2 ll*Ur +l-*)-*ar-*)|| (6.12.b)
/-l5-1

+ 2(/0+l+mo/r)ax*(/or).

To proceed further it is necessary to estimate (x* (m)} and this is undertaken in the following

proposition.

Proposition 6.2.

»*(m)-l-x*(m)-i-|hr(m)-e*||« 2 *W*A(<>. *-0.1-. (6.13)
2 y*s« On+m0+l) v'

where {6 0*)} is given by

bij)*{cij)-ci*)}/y, j €5,

c(*), see (3.13), is the minimum ofthe cost function and gi*)t see Proposition 3.2, is

*(*)£ 2*0'>.

Proof. By the definition of x im) given in (3.1) and that of x* im) given in (5.16) we have

1-'*M-l-,?s. Gin,)
z *(/)/*(*)

j^On+mo+l)*^ g(/)/g(»)
1+ T *</)/*<*) "* yft. (m+Mj+l)*^ "

Observe that the bound given in (6.13) is asymptotically (i.e. as m —• °°) tight.

We can now say that

**Qr-r) < 2 „ .?f),w ' - »A~ fcl4*>
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where

M^smp., jes.

By substituting (6.14.a) in (6.12a) and then bounding the resulting expression we obtain

IUGWIK
D* , y 2ayij)

(k+m<Jr)a jti* «-*</>

Ea-b(j)

ik+m<Jr)bW (*+/»<,/»'

(6.14.b)

(6.15)

where

E A(/0-l+mo/r).

This bound in (6.15) has been obtained for a ?* bij), j £ 5*; if this is not true, then for the

terms corresponding to values of j for which a ** bij), a related expression is obtained by a

slightly different bounding procedure.

6.1.3 Bound for the Third Term of (6\2).

This bound comes directly from Proposition 6.2.

6.2 Final Results

Combining the results given in 6.1.1-6.1.3 we obtain the following final theorem.

Theorem 6.2. For every k > /0, the following relation holds

where

IK*r)-••!!<
Gfc+mo/r)'

+ « 2fli?(7)
its* «-*(/>

j £l~b(j)

ik+mtjtfW " ik+mJrY

+ 2
Mil

its* ik+mo/r)^'

0 - />„ + \\viO) - x(0)||(*0 + m<Jr)a.

Also, a, {&(/)} and foO*)} are given in (5.12.c), (6.13) and (6.14.b) respectively.

(6.16)
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Equation (6.16) can be further simplified if we observe that the dominant termof

1

is given by

•. jis*t

(it+mo/r)*'

where

b A min bij) - —•
JtS* v 7*

and 6, which has been defined in (3.14), is the difference between next-to-least cost and least-cost.

A simple corollary to Theorem 6.2 is

Proposition 63, The Simulated Annealing algorithm with the annealing schedule given by

(5.10) has the following estimate for its rate of convergence

\\pikr) - e*|| - Oil/k***1**)) (617)

63 Discussion.

We can see from (6.17) that the bound on the asymptotic rate of convergence is limited by

mmia.b). Both a and b depend on 5 and L derived from the cost function, w and r from the

connectivity properties of the graph underlying the Markov chain and on y from the annealing

schedule. Note that with all other parameters and time held fixed, higher y corresponds to higher

temperature and thus, in this sense, to slower cooling. Now 7 has to satisfy a condition that gives

weak ergodicity, i.e. 7 > 7^ wherein by our analysis 7^ —r£, but otherwise it is a free

parameter. It is therefore of some interest to investigate the value of 7 which maximizes



31

min (a, b).

Recall the definition of a in (5.12.c) and that b £ 6/y. Hence aiy) and biy) are respectively

increasing and decreasing with increasing 7, and it is easy to see that there exists an unique 7 such

thataiy) —b(7). Furthermore, the problem

max {min(a,6)}
rrt>twt

has the solution

7-max(7HT,7).

The above procedure for optimizing the algorithm is often feasible since for many combhotorial

optimization problems, graph partitioning problems in particular, estimates of r, L and i are

available.

The above discussion has been on the effect of 7 (from the annealing schedule) on the bond on

the rate of convergence at finite, but large time. For behavior at smaller time, the more detailed

relation (6.16) has to be considered. Observe that in the right hand side of this equation, the only

factors which depend on the time kr are \/(k +mo/r)tf and l/ik +m0/r)*^), j I S*. TOrmay

glean qualitative information on the dependence of the rateof convergence on 7 by investiga&flg the

dependence of a and [b ij)) on 7. Now, smaller 7 gives larger b(j) for each j and, as ateady

noted, smaller a. Hence, reducing 7 has the effect of reducing the third term and increasBg the

first term in the right hand side of (6.16). The dependence of the middle term is more hsolved

since it has features of both other terms reflected in it. Roughly, it is small only when both tie first

and third terms are small, i.e. in the mid-range of 7.

With the benefit of analysis we can even go back to (6.2) and deduce qualitatively the effect of 7

on each of the three terms there. The first term measures how effectively the difference between

9(0) and x (0) is forgotten at step m of the algorithm. The bound in (6.5) corroborate our

intuitive understanding that this rate of memory loss is aided by having higher 7, i.e. £gher

temperatures and slower cooling. The third term, for which we have the most explicit information
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(see Proposition 6.2) depends on the rate at which the quasi-stationary distribution approaches its

asymptotic value, the optimum distribution. This term benefits from small 7. The middle term

benefits from a matching of the two rates. The point in the analysis where this is most explicitly

manifest is in (6.12.a). The two rates are matched and the term minimized in the mid-range of 7.

In all, the above discussion illuminates the balancing of opposite mechanisms that an optimal

annealing schedule must reflect.

The analysis can be brought to bear on an important question*: to what extent does Simulated

Annealing exploit the connectivity of the configurations in a particular case. The comparison is

therefore between a given partially-connected graph and a construct in which the connectivity is

artificially increased. A first observation is that the artificial increase of connectivity leads to a

deteriorating component in performance, insofar as the departure of thequasi-stationary distribution

at a particular temperature from theoptimum distribution (see third term in (6.3)) is greater. This

is easily seen by tracing the effect of increased connectivity on gij)/gi*), j i 5*, in Proposition

6.2. On the other hand, the effect on the coefficient of ergodicity and, in particular, on the

parameter a in the bound for it given in Proposition 6.1, depends on the particulars of the case

being considered. To see this observe that the parameter a depends on w, r and L and typically

the first two decrease while the last increases with the increase of connectivity in theconstruct

* We areindebted to H. S. Witsenbausea for posing it
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7. Concluding Remarks

We have proven a number of results on the behavior of Simulated Annealing. In particular, we

have introduced an annealing schedule which guarantees that the individual state probabilities

converge either to a positive value or to zero depending upon whether the configuration

corresponding to the state is globally least-cost or not. Also we have analyzed finite-time behavior

in terms of a decomposition of the distance of the state probability vector from the optimum. Each

of the three terms of the decomposition reflects an important component of the behavior of the

algorithm. Each term has an independent bound and this allows the trade-offs in the design of the

algorithm to be quantified.

We give below a selection of three directions in which the present analysis may be extended:

1. An analysis more closely attached to the evolution with time of mean cost rather than the

distance of the state distribution from the optimal.

2. An analysis of schedules in which temperature is lowered at a faster rate than that allowed

here by (1.1).

3. The exploitation of special properties of the cost function to design matched annealing

schedules with a provable improvement in performance.
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