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1. Introduction

The method of averaging is concerned with differential equations of the form

* = «/(',*) (11)

and relates the properties of solutions of system (1.1) with solutions of the autonomous "aver

aged" system

*.»•» */.„(*«.) (1.2)

/„(*)» lim i J f(t,x)dt (1.3)
r-»oo i "t

for sufficiently small values of the parameter e. The method was proposed originairy by Kryloff-

Bogoliuboff- Mitropolskii [l], reformulated by Hale [2,3], developed subsequently by Sethna [4,5]

and stated in a geometric form in Arnold [6], Guckenheimer and Holmes [7]. These results consti

tute a generalization of classical singular perturbation techniques such as those in Hoppensteadt

|8) and are an extremely important tool for the state space analysis of systems with multiple time

scales. These results have been used extensively in mathematical physics. From our viewpoint, as

control theorists, we feel that the technique bears the promise of evolving into a "frequency

domain" technique for the state-space trajectory analysisof some classes of nonlinear systems— to

be distinguished from the Volterra approach for input-output functional expansions for non-linear

systems. This theme will be developed in later work.

The current paper has two sets of contributions:

(A) We develop new theorems for averaging. With the exception of [4,5], all the aforemen

tioned references make the assumption of almost periodicity for the right hand side of (1.2). We

relax this assumption in Section 2 of this paper. Our theorems are rather different in hypothesis

•Reward •opported by NASA nader gnat NAG 2-24S, the IBM Corporation ander a Faculty Development
Award aad the Semicoadactor Research Corporatioa. We woald like to thaak B. Riedle ft P. Kokotovic, K. A»>
trom, S. Boyd, E. Bai aad H. Piag for aeveral rateable discaaiou.
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and rather simpler than those of [4,5] in this regard. Another important contribution of Section 2

is to relate the stability of the averaged system (1.2) to the stability of the unaveraged system

(1.1), using a converse theorem of Lyapunov. As such, these theorems are a considerable extension

of the local stability theorems of Hale.

In Section 4, we extend all of these results to two-time scale state space systems and the

results are generalizations in the sense mentioned above of those of Hale and Sethna.

(B) Our development of these theorems on averaging was heavily motivated by recent litera

ture on the application of averaging techniques to adaptive control—notably the work of Krause,

et al [9], Riedle and Kokotovic [10], Astrom [11]. Averaging methods have been more prevalent

in the stochastic adaptive control literature, eg. Ljung [12] and the first attempts to apply averag

ing were made heuristically in [9], and increasingly rigorously in [11] and [10]. * The primary

focus of the efforts in [9-11] is to use averaging to explain instability mechanisms in adaptive con

trol arising from unmodelled dynamics, a phenomenon popularized by Rohrs et al [13]. In this

paper, we content ourselves with applying our results on averaging theory along with techniques

of generalized harmonic analysis introduced in Boyd-Sastry [14]. We study convergence rates of

adaptive identification schemes and linearized adaptive control schemes without unmodelled

dynamics and in the presence of persistent excitation. Estimates of convergence rates are of

interest in the determination of optimal input signals for identification. In earlier work ( Bodson-

Sastry [15] ), we also showed how persistent excitation guarantees a margin of robustness to

unmodelled dynamics and established connections between the rate of convergence of the adap

tive schemes and their robustness margins. A more detailed study of instability theorems for

averaging and their application to understanding the mechanism of slow drift instability pointed

out by Riedle-Kokotovic [16] will be presented in forthcoming work.

The results of Section 3 on the application of averaging theory to obtaining estimates of the

convergence rates for adaptive identifiers are to our knowledge new , while those of Section 5 on

convergence rates for adaptive control schemes in the relative degree 1 case are a small generali

zation of the results of [10] with a somewhat different focus.

•After this manascript was written, newand related work of Koaat aad Anderson (17) was commanicated to as
for system (1.1) with / [t,x) linear in X, bat with weaker conditions in the limit in(1.3).
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2. Basle Averaging Theory

In this section, we consider differential equations of the form:

X= €/(<,*,€) *(0)=*0 (2.1)

where *€#", f>0, 0<c<c0, and / is piecewise continuous with respect to time. We will con

centrate our attention on the behavior of the solutions in some closed ball Bk of radius h, cen

tered at the origin.

For small t, the variation of x with time is slow, as compared to the rate of time variation

of /. Such systems can be conveniently studied using the method of averaging (see e.g. [1], [3],

[6], [7]). The theory relies on the assumption of the existence of the mean value of f{t,x,0)

defined by the limit:

i *+r/.,(*) = lim ± / f(r,x,0)dr (2.2)

assuming that the limit exists uniformly in t and x. This is formulated more precisely in the fol

lowing definition:

Definition 2.1 Mean Value of a Function, Convergence Function

The function f(t,x,0) is said to have mean value /OT(x) if there exists a continuous function

t(T): i?+-*#+, strictly decreasing, such that 7(r)-*0 as T-*oo, and:

\\±Jf{T,x,0)dT-f„(x)\\<1(T) (2.3)

for all *,r>0, x£Bh.

The function l{T) will be called the convergence function.

Note that the function f(t,x,0) has mean value fav(x) if and only if the function:

d(t,x) = f(t,x,0)-fav(x) (2.4)

has zero mean value.

The following definition ([20], p 7) will alsobe useful:

Definition 2.2 Class K Function

A function a{e):R+-+R+ belongs to class K ( a[e)£K ), if it is continuous, strictly increasing,

and a(0)=0.

It is common, in the literature on averaging, to assume that the function /(* ,x,e) is periodic

in t, or almost periodic in t. Then, the existence of the mean value is guaranteed, without
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further assumption ([3], theorem 6, p 344). We do not make the assumption of (almost) periodi

city, but consider instead the assumption of the existence of the mean value as the starting point

of our analysis.

Note that if the function d(ttx) is periodic in t, and is bounded, then the integral of the

function d(t,x) is also a bounded function of time. This is equivalent to saying that there exists

a convergence function 7(T)=a/r (i.e. of the order of l/T) such that (2.3) is satisfied. On the

other hand, if the function d(t,x) is bounded, but is only required to be almost periodic, then the

integral of the function d[t,x) need not be a bounded function of time, even if its mean value is

zero ([3], p 346). The function i{T) is bounded (by the same bound as d(t,x)), and converges to

zero as T-+oo, but the convergence function need not be bounded by a/T as r-*oo (it may be

of order l/VT for example). In general, a zero mean function need not have a bounded integral,

although the converse is true. In this paper, we do not make the distinction between the periodic,

and the almost periodic case, but we do distinguish the bounded integral case from the general

case, and indicate the importance of the function 7(7) in the subsequent development.

Assuming the existence of the mean value for the original system (2.1), the averaged system

is defined to be:

xav = efm[xav) xfl»(0)=x0 (25)

Note that the averaged system is autonomous and, for T fixed and e varying, the solutions over

intervals [0, Tjt\ are identical, modulo a simple time scaling by e.

We address the following two questions:

(i) the closeness of the response of the original and averaged systems,

(ii) the relationships between the stability properties of the two systems.

To compare the solutions of the original and of the averaged system, it is convenient to

transform the original system in such a way that it becomes a perturbed version of the averaged

system. An important lemma that leads to this result is attributed to Bogoliuboff and Mitropol-

skii ([1], p 450, and [3], lemma 4, p 346). We statea generalized version of this lemma.

Lemma 2.1 Approximate Integral of a Zero Mean Function

Ifs d{t,x):R+X.Bk-*R* is a bounded function, piecewise continuous with respect to f, and has

zero mean value with convergence function l{T),

Then: There exists {(e) € J?, and a function wt{t,x):R+XBh-*Rn such that:

\Uwt(t,x)\\<i(e) (2.6)

\\?^-d{t,x)\\<M (2.7)
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for all t>0, z£Bk. Moreover, u;,(0,x)=*0, for all x€Bh. •

If, moreover! t{T)=a/TT for some o>0, r6(0,1],

Thens The function £(c)can be chosen to be 2aer.

The proof of Lemma 2.1 is provided in the appendix. The construction of the function

wt{t,x) is identical to that in [2.1], but the proof of (2.6), (2.7) is different, and leads to the rela

tionship between the convergence function i( T) and the function ((c).

The main point of Lemma 2.1 is that, although the exact integral of d(ttx) may be an

unbounded function of time, there exists a bounded function wt(t,x), whose first partial deriva

tive with respect to t is arbitrarily close to d(ttx). Although the bound on w((t,x) may increase

as e-*0, it increases slower than 1/c, as indicated by (2.6).

It is necessary to obtain a function wt(t,x), as in Lemma 2.1, that has some additional

smoothness properties. A useful lemma is given by Hale in [3] (lemma 5, p 349). For the priceof

additional assumptions on the function d(ttx), the following lemma leads to stronger conclusions

that are useful in the sequel. -

Lemma 2.2 Smooth Approximate Integral of a Zero Mean Function

If: d(t,z):R+xBh-*Rn is piecewise continuous with respect to t, has bounded and continuous

first partial derivatives with respect to x, and i(f,0)=0 for all <>0. Moreover, d(t,x) has zero

mean value, with convergence function t(T)||x||, and —^—^ has zero mean value, with conver
ts

gence function *t{T),

Then: There exists £(e)6K, and a function w((t,x):R+XBk-*RH, such that:

IK(M)ll<«e)||*|| (2.8)

\\^fl^d(ttx)\\<^)\\x\\ (2.9)
dwAt.x)U'—^UZM (2io)

for all t>0, xeBh. Moreover, wt(0,x)=0, for all x£Bk.

If, moreover: 7(r)=o/T' for some a>0, r€(0,l],

Then: the function ((c) can be chosen to be 2a cr.

The proof of Lemma 2.2 is provided in the appendix. The difference from Lemma 2.1 is in

the condition on the partial derivative of wt(t,x) with respect to 2 in (2.10), and the dependence

on ||*|| in (2.8), (2.9). These results will be necessary to derive the following theorems.
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Note that if the original system is linear, i.e.:

x***A(t)x x(0)=x0 (2.11)

for some A(t):R+-+Rnxu, then the main assumption of Lemma 2.2 is that there exists Aav such

that A{t)-Atv has zero mean value.

The following assumptions will hence forth be in effect.

(Al) z=0 is an equilibrium point of system (2.1), i.e. /(*,0,0)=0 for all <>0. f(t,x,t) is

Lipschitz in x, i.e.:

||/(l.*i,e)-/(l,*»e)|| £!i||*r-*«ll (212)

for all J>0, xltx£Bk, t<to

(A2) f(t,x,e) is Lipschitz in c, linearly in z, i.e.:

||/(M,ei)-/(M,*2)|| < 'dMI h-*2| (2.13)

for all t>0, xEBk, ex.es^ to

(A3) /av(0)=0, and /w(z) is Lipschitz in z, i.e.:

Il/.»(*i)-/..(*dll < UI*V*dl (2.14)

for all xlt xjEBk.

(A4) the function d(t ,x)—f (t ,x,0)-fav{x) satisfies the conditionsof Lemma 2.2.

Lemma 2.3 Perturbation Formulation of Averaging

If: The systems (2.1), and (2.5) satisfy assumptions (A1)-(A4),

Then: There exist functions wt(t,x) and ((c), as in Lemma 2.2, and a transformation of the form:

z = z + ew({t,z) (2.15)

under which system (2.1) becomes:

i = */«,(*)+ <•(*,*.<) «(0)=z0 (2.16)

where p{t,z,t) satisfies:

\\p{'.'.m<m\'\\ (2.")

for some 0(c)€ #, «i>0, and for all c<Cj. Further, 0(e) is of the order of e+ ((c).
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Comments

The proof of Lemma 2.8 is provided in the appendix. A similar lemmacan be found in [3]

(lemma 3.2, p 192). Inequality (2.17) is a Lipschitz type of condition on p(t,z,e), which is not

found in [3], and results from the stronger conclusions of Lemma 2.2.

Lemma 2.8 is fundamental to the theory of averaging presented hereafter. It separates the

error in the approximation of the original system by the averaged system {x-xa9) into two com

ponents: x-z and z-xm. The first component results from a pointwise (in time) transformation of

variable. This component is guaranteed to be small by inequality (2.8). For e sufficiently small

(e<ex), the transformation z-+x is invertible, and as e-*0, it tends to the identity transformation.

The second component is due to the perturbation term p(t,z,t). Inequality (2.17) guarantees that

this perturbation is small as c-»0.

At this point, we can relate the convergence of the function i(T) to the order of the two

components of the error x-xm in the approximation of the original system by the averaged sys

tem. The relationship between the functionsrj{T) and ((e) was indicated in Lemma 2.1. Lemma

2.8 relates the function £(c) to the error due to the averaging. If d(t,x) has a bounded integral

(i.e. i(T)~l/T), then both x-z and p(t,z,e) are of the order of c with respect to the main term

fav{z). In general, these terms go to zero as c-+0, but possibly more slowly than linearly ( as v/c

for example). The proof of Lemma 2.1 provides a direct relationship between the order of the

convergence to the mean value, and the order of the error terms.

We now focus attention on the approximation of the original system by the averaged sys

tem. Consider first the following assumption:

(A5) z0 is sufficiently small so that, for fixed T, and some h'<h, xav(t)£Bk' for all f€[0,r/c]

(this is possible, from (A3)).

Theorem 2.4 Basle Averaging Theorem

If: The original system (2.1), and the averaged system (2.5) satisfy assumptions (A1)>(A5),

Then: There exists 0(c) as in Lemma 2.8 such that, given 7>0:

\\*ith*aV(t)\\<*(e)h (2.18)

for some bT, er>0, and for all f€[0,T/c], c<cr.

Proofs From Lemma 2.2 and Lemma 2.8, we have that:

ll*-*ll<«OIMI^WII*ll (219)

for c<£]. On the other hand, we have that:
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±(z-x„)= €if„(*)-faA*»))+ tp(ttz,t) z(0)-*aw(0)=0 (2.20)

for all i€[0,r/e], zav€#*', A' <h. We will now show that, on this time interval, and for as long

as x,z£Bk, the errors {z-x„) and (x-x„) can be made arbitrarily small by reducing c

Integrating (2.19):

IM«)-U0ll < <'.J ||*(r)-z4V(r)||«'r+ 60(c)/||z(r)||rfr (2.21)
o o

Using the Generalized Bctlman-Gronwall Lemma (see appendix):

MHwPM <«*(0/lkWII«""(M^< *(«)» l-^1!

:=0(c)sr (2.22)

Combining these results:

IM<Kv(0ll < IWM0II+ IWK.MII

<tf(0IM0ll+ (i+M)IW<)-U0ll

<0(c)(A+(l+0(c1))flr)

:=0(c)ar (2.23)

By assumption, ||zav(f)||<A' <h. Let er (with 0<cr<c1) such that 0(cr)5r<A-^1. It follows,

from a simple contradiction argument, that the estimate in (2.23) is valid for all f€[0,T/e], when

ever C<£ jp.

Comments

Theorem 2.4 establishes that the trajectories of the original and the averaged system are

arbitrarily close on intervals [0,7/e], as c is reduced. The error is of the order of 0(e), and the

order is related to the order of convergence of l{T). If d(t,x) has a bounded integral (i.e.

7(T)~l/r), then the error is of the order of c.

It is important to remember that, although the intervals [0,T/t] are unbounded, Theorem

2.4 does not state that:

ll*(<HU0ll<M* (224)

for all f>0, and some b. Consequently, Theorem 2.4 does not allow us to relate the stability of

the original and of the averaged system. This relationship is investigated in Theorem 2.5, after a

preliminary definition.
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Definitlon 2.3 Exponential Stability, Rate of Convergence

The equilibrium point z=0 of a differential equation is said to be exponentially stable, with rate of

convergence a (a>0), if:

\\*(t)\\<m\WM<'*"'> (225)

for all t>t0>0, x(t0)£Bko, and some m>l.

We assume that h0<h/m, so that all trajectories are guaranteed to remain in Bk.

Theorem 2.5 Exponential Stability Theorem

If: The original and averaged systems satisfy assumptions (A1)-(A5), the function fav{x) has con

tinuous and bounded first order partial derivatives in z, and x=0 is an exponentially stable

equilibrium point of the averaged system,

Then: There exists c2>0 such that the equilibrium point z=0 of the original system is exponen

tially stable for all e<e2.

Proof: The proof relies on a converse theorem of Lyapunov for exponentially stable systems (see

for example [20], p 273). Under the hypotheses, there exists a function v(xav):R*-*R+, and

strictly positive constants a^a^a^a^ such that, for all zatf€£&0:

«i\M\*<*(*„)< *2\\*a»\\2 (2.26)

*(*«)IM£-*«iIM* (2-27)

\\^-\\<^\M\ (2.28)

The derivative in (2.27) is to be taken along the trajectories of the averaged system (2.5). The

function v is now used to study the stability of the perturbed system (2.16). Considering v(z),

inequalities (2.26) and (2.28) are still verified, with z replacing xav. The derivative of v(z) along

the trajectories of (2.16) is given by:

«K*)l(2.ie)= *MIm+ (fj)(€»(«,*.e)) (2.29)
and, using previous inequalities (including those from Lemma 2.8):

»(*)ki»> < -««»IMIS+ c«4iK0ll«ll*

for all e<ei. Let c'2 be such that as-0(cl2)a4>O, and define c2=min(c1,c/2)- Denote:

^^gfe- (-I)
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Consequently, (2.30) implies that:

*(*)< "WoK2"*"'"'0* (2.32)

and:

IMOII <-y/^ll*('.)ll ^<)<M0) (2-33)
Since a(e)>0 for all £<e2> system (2.15) is exponentially stable. Using (L16), it follows that:

ll'CM <%$l/fll'CIII ^0<'"'0, (2«)
for all <><o^°» c<€2> and *(*o) sufficiently small that all signals remain in Bk. In conclusion,

the original system is exponentially stable, with rate of convergence (at least) ca(e).

Comments

1) Theorem 2.5 is a local exponential stability result. The original system will be globally

exponentially stable, if the averaged system is globally exponentially stable, and provided

that all assumptions are valid globally.

2) The proofof Theorem 2.5 gives a useful bound on the rate of convergence of the original sys-

c aitern. As e tends to zero, ea(e) tends to ——, which is the bound on the rate of convergence
2 ft2

of the averaged system that one would obtain using (2.26)-(2.27). In other words, the proof

provides a bound on the rate of convergence, and this bound gets arbitrarily close to the

corresponding bound for the averaged system, provided that e is sufficiently small. This is a

useful conclusion because it is in general very difficult to obtain a guaranteed rate of conver

gence for the original, nonautonomous system. The proof assumes the existence of a

Lyapunov function satisfying (2.26)-(2.28), but does not depend on the specific function

chosen. Since the averaged system is autonomous, such a function is usually easier to find

than for the original system, and any such function will provide a bound on the rate of con

vergence of the original system for c sufficiently small.

3) The conclusion of Theorem 2.5 is quite different from the conclusion of Theorem 2.4. Since

both z and x„ go to zero exponentially with t, the error x-xa9 also goes to zero exponen

tially with t. Yet, Theorem 2.5 does not relate the bound on the error to c. It is possible,

however, to combine Theorem 2.4 and Theorem 2.5 to obtain a uniform approximation

result, with an estimate similar to (2.24).
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3. Averaging Theory Applied to Adaptive Identifier!

Brief Review of a Simple Adaptive Identifier

We consider an unknown plant, described by a single-input single-output, exponentially

stable transfer function:

d9(s)

where dp(s) is a monic polynomial of degree n (n is assumed to be known), and np(s) is a polyno

mial of degree less than or equal to n. The coefficients of the polynomials are unknown, and are

to be obtained from the identifier.

The identifier considered here is an adaptive observer/identifier (see e.g. [21], [22]), and its

structure is shown in Fig. 3.1. The filter blocks Fj and F2 generate smoothed derivatives of the

input r, and of the output yp of the plant. Each of these blocks has a transfer function:

(sI-\)-lb =
det(*/-A)

€ Rn(s) (3.2)

s*'1

where A€/?"x", 6€#", and det(?/-A) is a Hurwitz polynomial. The outputs of the filters are

respectively v^\ t»(2)6/?*. The signal y0 is obtained through the adaptive gains c(i), d(t)£Rn,

mdcn+l{t)eR:

yo=seTv(D+ dTv&)+ Cj|+ir (3.3)

and it may be verified that there exists a unique choice of the adaptive gains, denoted c', d',

and cn*+1 such that the transfer function from the input r to the output y0 is identical to the

plant transfer function p(s). Wedefine the parameter vector 0£R2n+1:

0T^(cT,dTtcn+l) (3.4)

and the signal vector w€R2n+1:

wT*={v<»TM2)T,r) (3.5)

so that:

y0=*6Tw (3.6)

In the sequel, we will neglect the effect of the initial conditions of the plant, and of the filter

blocks Flt F3. The results can be modified to take them into account, without any fundamental

differences in the conclusions. We simply assume that the dynamics of the observers ( determined

by the eigenvalues of A ) are faster than those of the identifier. The output of the plant is then
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given by an equation similar to that of the identifier:

y,*=*6$Tw (3.7)

where 9* is the vector of "true" parameters corresponding to p(s). Defining the parameter error:

4>=$-e$ (3.8)

the output error cj = yp-yo i* given by:

ei=4Tw (3.9)

It can be shown ([21], [22]) that, with the following adaptation law:

4»-retw (3.10)

where re/?"x">0, the following propositions are true:

(i) if r is bounded, then lim c1(/)=0

(ii) if, moreover, w is persistently exciting, that is, if there exist constants alf a^ 6>0, such

that:

t+s

<*il< f wwTdtKaJ forall*>0 (3.11)

then the parameter error also tends to zero, i.e.:

lim<H0= 0 (3.12)
l-»00

and the convergence is exponential.

Application of the Averaging Theory

To apply the averaging theory developed in section 2, we will study the case when r=e/,

i.e. when the update law (3.10) is given by:

^EB-fCjit; (3.13)

or, using eq. (3.9):

0= -cu;tyr^ (3.14)

Eq. (3.14) leads us to the following definition:

Definition 3.1 (Statlonarlty, Autoeovarlanee)t A signal u:R+-*R* is said to be stationary if

the following limit exists uniformly in s:

i'+rRu(r) := Um-L / u(t)uT(t+r)dT eRnxn (3.15)
T-*0 1 f

in which instance, the limit Ru(r) is called the autocovariance of u.
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It may be verified that the autocovariance matrix of a stationary signal w is a positive

semidefinite function Rv(r), and that w is persistently exciting if and only if the autocovariance

at 0 is positive definite [14]. Also, Rv(r) can be written as the inverse Fourier transform of a

positive spectral measure Sv(di>):

JU')= J'•"*.(<*«') (3.W)
-00

Further, if the input r is also stationary, Sv(du) can be computed, using the fact that the

transfer function from r to w is given by:

,(»):=

so that:

(rf-A)"1*
{sI-AYlbp{s)

1 J
€/?2"+1(*) P-17)

Sv(dv)~ q(ji>)q'Vv)sr(di,) (3.18)

Using eqns. (3.16) and (3.17), we can conclude that:

-00

This in turn is assured [14] if the support of st(dv) is greater than or equal to 2n+1 points (the

dimension of w = the number of unknown parameters = 2n+ 1).

With these definitions, the averaged system corresponding to (3.14) is simply:

kv=-tRv(0)4>aV (3.20)

This system is particularly easy to study, since it is linear, and when w is persistently exciting,

Rv(0) is a positive definite matrix.

A natural Lyapunov function for (3.14) is:

V(4>aV) =\\\U\2 (3.21)
and:

-«X.*(iM0))||*Jp < -V(K) < -€WU0))||*J|2 (3.22)

where X^ and X^ are respectively the minimum and maximum eigenvalues of R9(0). Thus,

the rate of exponential convergence of the averaged system is at least eX^A^O)), and at most

cXjonfAvfO)). By the comments after theorem 2.5, we can conclude that the rate of convergence

of the unaveraged system for e small enough is close to the interval [cX^/^fO)), €Xnmx(i?%3(0))].
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Eq. (3.19) gives an interpretation of Rv(0) in the frequency domain, and also a mean of

computing an estimate of the rate of convergence of the adaptive algorithm, given the spectral

content of the reference input. If the input r is periodic or almost periodic, the integral in (3.19)

may be replaced by a summation. Since the transfer function q[s) depends on the unknown plant

being identified, the use of the averaged equation to determine the rate of convergence is more

conceptual than practical. If, however, bounds on parameter values are available, then some

bounds on i?*(0) and on the corresponding rates of convergence can be deduced. These in turn

can be used to determine the spectral content of the reference input that will optimize the rate of

convergence of the identifier, given the physical constraints on r. Such a procedure is very remin

iscent of the procedure indicated in [23] (chapter 6) for the design of input signals in

identification. The autocovariance matrix defined here is similar to the average information matrix

defined in [23] (p 134). Our interpretation is, however, in terms of rates of parameter convergence

of the averaged system rather than in terms of parameter covariance.

To illustrate the conclusions of this section, we consider the following example:

2*+2
MO

*+3
(3.23)

The filter is chosen to be det(*J-A) = (a+ 5). The "true" values of the parameters ch dlt c2 are

-1.6, 0.4, and 2. Denote the parameter error as

Since the number of unknown parameters is 3, parameter convergence will occur when the sup

port of sT(du) is greater than or equal to 3 points. For the simulations, we considered an input of

the form a0+ *isin(u/<)- By virtue of (3.18) and (3.19), (3.20) now becomes

^Otfl

4>av2 = -C

4>avi

o£+

«o +

25a,

2(25+0^)
25(3+w2)a?

25a?

2(25+ w2)

2_ 25(3+ofy?
3a° (9+ ^(25+ a/2)

2_ 2 28(3+ftrjqf £ 50(1+ u/^aj
3fl° + (9+ w2)(25+ a/2) 9fl° +(9+ w2)(25+ w2)

2 2

3 ° (9+w2)(25+w2)
5(15+7u/2)a12

$av2

k^«»S ,

tf|+

lfl2+
3 ° (9+1^(25+ w2)

25 ai

2(25+ w2)
5(15+7w2)af

(3.24)

With ao=2, o2 = 2 and u/ = 4, the eigenvalues of the averaged system (3.24) are computed to be

-0.28c, -0.64c and -15.39c. Figs 3.2 and 3.3 show the plots of the parameter errors of Ci and dx

for both the original and averaged systems with three different adaptation gains e=0.1,0.5,1. Fig

3.4 is a plot cf the Lyapunov function of (3.21) for both systems using a log scale. It illustrates
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the closeness of the rate of convergence of the two systems.
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4. Averaging of Two-Time Scale Syitems

Systems of the form (2.1) studied in section 2 are to be thought of as one time scale systems

in that the entire state variable x is varying slowly in comparison with the rate of time variation

of the right hand side of the differential equation. In this section, we will study averaging for the

case when only some of the state variables are slowly varying.

Consider, for example, the system:

x = €f{t,x,y) *(0)=*0 (4.1)

y = Ay+eg{t,x,y) v(0)=y0 (4.2)

where x£Rn is called the slow state, y£Rm is called the fast state, and f ,g are piecewise con

tinuous functions of time.

The goal of averaging will be to approximate the evolution of the slow state. The system

(4.1), (4.2) is not the most general two-time scale system. In fact, it is easily seen to be decoupled

and linear at e = 0 . The study of this special form is motivated by several applications. We will

also study another special form later in this section. It is easy to see, from the proofs of this sec

tion and those of section 2, that / and g may be allowed to depend smoothly on c as in (A2).

The averaged system for the slow state is:

xav*=cfav(z„) *flV(0) = x0 (4.3)

where fw is defined by the limit:

i e+r/„,(*)= tim-i. / f(T,x,0)dr (4.4)
r-*oo i a

assuming that the limit exists uniformly in f and x.

The following assumptions will be in effect for (4.1), (4.2):

(Bl) x—0, y=0 is an equilibrium point of system (4.1), (4.2), i.e. /(f,0,0)=0 and ?(i,0,0)=0

for all f >0. Both / and g are Lipschitz in x and y, i.e.:

\\f(t,Xi,Vi)-f(t,z*V2)\\ < /i||x1-r2||+ /2||Vi-y2|| (4.5)

ll*(Mi.ird-#(M»f*)ll < '8ll*i-*dl+ Mlli-fall (46)

for all *>0, xltx2eBk, yx,v2£Bk.

(B2) /av(0)= 0, and fn is Lipschitz in x, i.e.:

||/w(»i)-/.v(x2)||</a»||xi-x2|| (4.7)

for all Xi,x^EBk.
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(B3) the function d(t,x)=f(t,x,0)-/M(x) satisfies the conditions of Lemma 2.2

(B4) AeR M*m is Hurwitz.

(B5) xQ is sufficiently small that, for T fixed, and some h'<h, xm{t)£Bkt for all te[0,T/e\

(this is possible, from (B2)). We will also assume that y<y€£*', the corresponding closed

ball in/?*.

Theorem 4.1 Basle Averaging Theorem for Two-Time Scale System

If: The original system (4.1), (4.2), and the averaged system (4.3), satisfy assumptions (Bl)-(B5),

Thens There exists 1>{e)6K such that, given f>0:

ll*(0-*-(OII£*W*r (48)

for 6ome bTi er>0, and for all i€[0,r/e], e<cr, and y0 sufficiently small. Further, f{e) is of the

order of c+ £(c) (as defined in Lemma 2.2).

Proof: We first apply Lemma 2.2, and obtain a result similar to Lemma 2.8. Consider the

transformation of variable:

* = * + evj((t,z) (4.9)

with t<t\. This transformation leads to:

+ if(t,z+ewf,0)-f{t,z,0))

+{f{t,z+€woy)-fit,z+€wo0))\ (4.10)

or:

z = efav{z)+ epl{t,z,€)+ cp2(<,z,y,c) *(0)=x0 (4.11)

where:

llPi(M'€)" - t^j(*(€)'m+ *c)+ *c)/i) IWI :== ««)*»h*ii <412)
and:

IMM.».«)II <T^cTf'2l|y|1 :=3 *2l|y|1 (413)
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We now estimate the error x-x„t following a proof similar to the proof of Theorem2A.

First, we have that:

l«-*ll£«MM (4.M)

Then, the error z-xm can be estimated from:

^(*-*««) ==«(/.,,(*)-/«(*..))+ePl(ttz,€)+€P2(t,z,y,e) z{0)-xn{0)=0 (4.15)
for all t£\0,T/e], xav(t)eBk>, h' <h. As in the proof of Theorem 2.4, we will show that, on this

interval, and for as long as x,z£Bkt the errors z-x„, and x-x„ can be made arbitrarily small by

reducing e.

Integrating (4.15):

0 0

t

+ tktjWvWr (4.16)
o

Further, y(t) can be calculated from (4.2):

t

y(0= «*W eS^Mw)** (4.17)
o

Since A is Hurwitz, we have that:

||eAt||<roe-x' (4.18)

for some m,X>0, and:

llffCNI < "• llftll «A' + «• J«-X(MCIW')II + UlfMII)" (4.19)

or:

l|ex'»(()ll<m|l»oll+ em/a/ex1|i(r)||rfr+ em/J||ex'i,(r)||ir (4.20)
0 0

Applying the Generalized Bellman-Gronwall Lemma:

\\euy(t)\\ < m||y0|| •"** +/em/8ex'|I*(r)||eCfl,'*-f),fr (4.21)
o

Define X(e)=X-em/4, and cs (0<c8<e1) so that X(e)>0 for c<ea. It follows that:

||y(OII<mh e-W + em/aA/X(e) (4.22)

Using this estimate in (4.16), and using the Generalized Bellman-Gronwall Lemma again:
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Imkoh l„ rnkJ^h) Iel« T

:o0(c)ar (4.23)

As in Theorem 2.4, it follows that, for some bT:

\\x(thxn(t)\\<rp(e)bT (4.24)

By assumption, ||j«»(0II^*'<*- L«* er (0<*r^€s) TOcn fcnat 0(er)6r<*-A'. Further, let y0,
and cr sufficiently small that, by (4.22), y(t)6Bk, for all <€[0,T/c]. It follows, from a simple

contradiction argument, that the estimate in (4.24) is valid for all <6[0,T/c], whenever e<cr.

Theorem 4.2 Exponential Stability Theorem for Two-Time Scale Systems

If: The original system (4.1), (4.2), and the averaged system (4.3) satisfy assumptions (Bl)-(B4),

the function fav{x) has continuous and bounded first partial derivatives in xt and 2=0 is an

exponentially stable equilibrium point of the averaged system,

Then: There exists e4>0 such that the equilibrium point x—0 of the original system is exponen

tially stable for all e<c4.

Prooft Since *8W=0 is an exponentially stable equilibrium point of the averaged system, there

exists a function v(x„) satisfying (2.26)-(2.28). On the other hand, since A is Hurwitz, there exist

matrices P,Q>0, such that ATP+ PA=-Q. Denote by P\,p2,q\,q2 the minimum and maximum

eigenvalues of the P and Q matrices. We now study the stability of the system (4.11), (4.2), and

consider the following Lyapunov function:

vJLg,$)**v(*)+ —9TPl (4.25)
Pi

so that:

«'i(IMI2+ HWns »i(*.»)<<MII*li2+ IMI8) (4-26)

where a71==min(a1,—piy The derivative of Vi along the trajectories of (4.11), (4.2) can be
Pz

estimated, using the previous results:

">i(*.y)<-«»»IMIs+<M(<HMIJ

+ <***JMIII»ll-r«.ll!r||s
Pi
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+ 4£/8adMH|y||+2e/4a2||y||2 (4.27)

for €<cx (so that, in particular, ||z||<2||z||). Note that since ab<(a3+ b2)/2 for all a,66/?, we

have:

'IMIIMI^I^W+^IMI2) >28)
so that:

Pa

:=-2€aJa(e)||z||s-,(t)||»||1' (4.29)

1 Ofj
Note that, with this definition, a(e)-»—-— as e-»0.

2 0(2

Let €4(0<e4<€1) be sufficiently small that a(e)>0, f(c)>0, and 2ea2a(c)<g(c) whenever e<u-

Consequently:

vi(^.y) < -2ca(e)v1(«>y) (4.30)

and:

vi{z,y) < vMhUM) a"***"* (4.31)

As in Theorem 2.5, this implies the exponential convergence of the original system, with rate of

convergence ca(e). Also, for x(t0), y(t0) sufficiently small, all signals are guaranteed to remain in

Bk, so that all assumptions are applicable.

Comments

The comments of Theorem 2.5 apply similarly to Theorem 4-2. In particular, the proof

gives a useful bound on the rate of convergence of the original system, and this bound again tends

to the bound on the rate of convergence of the averaged system.

Mixed Time Scales

We now discuss a more general class of two-time scale systems, arising in adaptive control:

x = €/'(«,z,y') (4.32)

y' = Ay1 + h(ttx)+ ey'(*,*,y') (4.33)
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We will show that system (4.32)-(4.33) can be transformed into the system described in the previ

ous section. In this case, x is a slow variable, but y' has both a fast, and a slow component.

The averaged system corresponding to (4.32), (4.33) is obtained as follows. Define the func

tion:

t

v[t,x)~ Je^->ft(r,z)rfr (4.34)
o

and assume that the following limit exists uniformly in t and x:

l'+r/„(*)= Urn -L / f'(T,x,v(T,*))dT (4.35)

Intuitively, v(t,x) represents the steady-state value of the variable y with x frozen and e=0 in

(4.33).*

To show that the averaged system of (4.35) is the right one, we transform the system (4.32),

(4.33) to the form (4.1), (4.2), using the transformation:

y = y'-•/(«,*) (4.36)

From (4.34), v(t,x) satisfies:

^v(t,x)=Av(t,x)+h(t,x) v(t,0)=0 (4.37)

Differentiating (4.36), we have that:

V~Ay+ c(-^^l/'(<,*,y+ v{t,x))+ f'(«.».f+»(«,*))) (4.38)
so that system (4.32), (4.33), is of the form (4.1), (4.2), with:

f(t,*,v)~ f'(t,x,y+ v(t,x)) (4.39)

9(t,x,y)=-?2&£- /'(<,*,y+ v{t,x))+ g'(ttx,y+ v(t,x)) (4.40)

The averaged system is obtained by averaging the right-hand side of (4.39) with y=0, so that the

definitions (4.4), and (4.35) agree.

To apply Theorem 4.1, and Theorem 4-2, we require that assumptions (B1)-(B5) be satisfied.

In particular, we assume similar Lipschitz conditions on /', g1, and the following assumption on

MM):

(B6) h{t,0)=0 for all t >0, and:

•This choice of tnaafornuttoo iu pointed oat to u by B. Riedle & P. Kokotovic.
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||i^i||<* (4.41)
for all i>0, xeBk.

This new assumption implies that t?(l,0)=0, and:

||^£l||<*' (4.42)
for all* >0, x€Bk.

This condition is sufficient to guarantee Lipschitz conditions for the system (4.1), (4.2),

given Lipschitz conditions for the system (4.32), (4.33). The theory developed earlier in this sec

tion can therefore be directly applied to systems of the form (4.32), (4.33). The key to the

preceding transformation is the fact that the new state variable y is truly a fast variable, so that

the two time scales have been separated.
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5. Two-Time Scale Averaging Applied to Model Reference Adaptive Controller

To apply the theory of Section 4 to model reference adaptive controllers ( our results here

are a small extension of those of Riedle, Kokotovic [11] ), we review the model reference adaptive

system of Narendra, Valavani [18] for the relative degree 1 case ( our notation is however con

sistent with Sastry [19]). Consider a plant with transfer function

iw-^Trf-Mtf-^r1*, (51)
where n9, df are relatively prime monic polynomials of degree n-1, n respectively and kp is a

scalar ( the representation (5.1) is assumed minimal ). The following are assumed to be known

about the plant transfer function:

(CI) The degrees ofthe polynomials &pi np are known.

(C2) The sign of kp is known (say kp > 0 ).

(C3) The plant transfer function is assumed to be minimum phase.

The objective is to build a compensator so that the plant output asymptotically matches

that of a stable reference model m (*) with input r(t), output ym(t) and transfer function

* / \ i. "»M
<U«)

where km>Q and nm, dm are monic polynomials of degree n-1, n respectively ( not necessarily

relatively prime but both Hurwitz ). If we denote the input and output of the plant u(t) and

yp(t) respectively, theobjective may bestated as: find u(t) so that yp(t)-ym(t)-*0 as t -♦oo. By

using suitable prefiltering of the reference signal if necessary, we may assume that the model

m (a) is strictly positive real.

The scheme is shown in Figure 5.1. The dynamical compensator blocks Ft and F2 ( remin

iscent of those in Section 3 ) are identical one input, n-1 output systems, each with transfer func

tion [sI-AY1b ; A € R*~lxn~l, b 6 R*'1 where A is chosen so that its eigenvalues are the

zeros of rim. The pair A, b is assumed controllable and, for ease of book-keeping (in the algorithm

proof alone ), we assume that they are in controllable form so that

(el-AT1
"»(«)

s-*

The parameters c£R*~l in the precompensator block serve to tune the closed loop plant zeros;

d€R*~\ d0eR in the feedback compensator assign the closed loop plant poles. The parameter
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c0 adjusts the overall gain of the closed loop plant. Thus, the vector of 2n adjustable parameters

denoted 6 is

eT = \e0,cT,d0,dT\

with the signal vector w € R2n defined by

«,r»[r,v<l>r,y,,»<2>r]

The input to the plant is seen to be

u =* $T w

and the state equations of the plant loop are given by

(2)U

f *r 0 0 ) f
0 A 0

bcTp 0 A yv

b

i 0

$Tw (5.2)

It may be verified that there is a unique constant 0*6 A2" such that, when $=*$', the transfer

function of the plant plus controller equals m(s). It can also be shown [18] that when r is

bounded and the parameter update law is given by

i =-rc!u;=-r(y,-ym)tff (5.3)

with re#2"x2*, a positive definite matrix, all signals in the loop, i.e. u,vtv^\v^2\yptym are
bounded. In addition, lim eAt) = 0 so that asymptotically yM) approaches yw(0- The proof of

*-»00

this fact used the following procedure: represent the model (in non-minimal form ) as the plant

loop with $ set equal to 0*. The state .equations for the model loop are given by

xn ) \Ap+bpdlcJ bpctT bpd,T
bdicj A+bc'T bd0T

(2)I v, bcj

( xm 1

b

0

Co r (5.4)

The 3n-2 X 3n-2 matrix in (5.4) is henceforth referred to as A, and the 3n-2 vector in (5.4) as b.

Then, subtracting (5.4) from (5.2) with

e' - i*;,.o>r,«.<s)ri-i».',«.<,,r.»ia>ri

we have that

e *** A e + b jT w (5.5)

and

*i :=V,-y» = Kr,0,0] e=:cre (5.6)

where 0, the parameter error := 6-6'. Note from (5.4) that cT(sI-A)~lbc£ is equal to the model
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transfer function and that Co=k,fkm is the ratio of the high frequency gain ( positive,by

assumption ). Now the update law (5.3) is

i=*is=*-rw(t)cTe

To apply averaging, we consider slow adaptation, i.e. r=»t/ resulting in

c=*A e + b wT$

and

4>=a-tw c* e

(5.7)

(5.5)

(5.8)

Equations (5.5) and (5.8) are superficially of the form (4.32), (4.33) with h(t,4>):= bwT(t)(p and

f'(^,^,e) —-w(t)ce. Difficulty, however, arises from the fact that w(t) in (5.5), (5.8) is not

independently and exogenously specified, but in fact depends on e. To show this dependence

explicitly, we set

an exogenously defined 3n-2 dimensional vector that can be obtained either from r(t) alone or as

linear combinations of the state variables of (5.4), and rewrite

w = wM+Qe (5.9)

where

Q

0 0 0)

0/0

cj 0 0
10 o /

Using (5.9), the equations (5.3) and (5.8) are

e=Ae+ fvj** beTQT<p

<t>=-ewm cT e-iQ e cT e

(5.10)

(5.11)

With the exception of the last terms (quadratic in e and <f> ), equations (5.10), (5.11) are linear

time varying equations describing the linearized adaptive control system, around the equilibrium

e=0, 0 = 0. In this section, we apply averaging to the linearized equations (5.10), (5.11)

corresponding to small e and 0. Averaging of the full non-linear equations (5.10), (5.11) is more

subtle and is not considered here. We consider

e=A"c+ b w£f

^=-(tB, c e

(5.12)

(5.13)

Since r is bounded and A is stable (its eigenvalues are the union of the zeros of dm, np and the
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eigenvalues of A ), wm is bounded. Hence it is easy to see that the equations (5.12), (5.13) are of

the form of (4.33), (4.32) with the functions /' and h satisfying the conditions of Section 4.

To establish the averaging results, we assume that r is stationary. This implies, as has been

shown in Boyd and Sastry [14], that wu is stationary. Its spectral measure is related to that of r

by

S9m(dv)=n{ji,)n'(jv)st(dv)

with

»(*):.
mp-\sl -XYlb

m

m{sI-AYlb

an exponentially stable transfer function.

The function v(i,4) of Section 4 for the systems (5.12), (5.13) is

o

and the averaged / is given by

«+r t

/.„(*)=-lim ± J wn(t)cT\JeA^bw;(T)dr\dt <f>
r-»eo I . a

(5.14)

(5.15)

Since wu is stationary, the limit in (5.15) may be shown to exist, as follows. Define a filtered ver

sion of wm to be

wmf(t)^JcTeMt-r)SWm{r)df (5.16)

Since cT[sI-A)~lb =—7n(») is stable so that it follows that wnf(t) is also stationary. The
c0

quantity inside the square brackets in (5.15) is

•+r

Umir/ wnit)w;f(t)dt^RVmVmJ(0) (5.17)

i.e. the cross correlation between wm and wnf evaluated at 0. Consequently, we may use (5.14)

and (5.16) to obtain a formula for RVmV.(0) as

' «0 -oo
(5.18)

and the averaged system is a linear time-invariant system
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i„=*-£Rvm9Mj{0)<p„ (5.19)

Since m(0) is strictly positive real, the matrix R*>mvmf{Q) >8 a positive definite matrix. Unlike the

matrix Rv(0) of Section 3, Rvmvmf(ty need not be symmetric, and its eigenvalues need not be real.

However, the real parts are guaranteed to be positive. When the reference input r is almost

periodic, i.e.

'(0~E'*«'V

asimple formula for Rvmvm/W " S»ven by

c0 t
(5.20)

As an illustration of the preceding results, we consider the following example of a first order plant

with an unknown pole and an unknown gain :

P(*)
«+ a.

The adaptive process is to adjust the feedforward gain c0 and the feedback gain d0 so as to make

the closed loop transfer function match the model transfer function

m[s)
*+ a.

To guarantee persistency of excitation, we use a sinusoidal input signal of the form

r(t) = a sin(ut)

Thus, equations (5.5), (5.7) become

* =-««« + M^if+ ton)

fa as -€ C f

4>2 «• -c c y*

where

^1.™ Cq-Cq , ^ «• rfo - ^0

Consequently, the averaged system defined in (5.19) now is

18 18(9-0^)
^o»l €0**> (9+w2) (S+"2)2

4 *w 18 162
ll(9+T^ (9+w2)2

^«ti |
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using equation (5.18). With aw*=3, *m*=3, a,«l, *p«=2 , a«=3, u;=2, the two eigenvalues of

the averaged system are computed to be -3.10c and -0.43c, both real negative. Fig 5.2, 5.3 show

the plots of the parameter errors of c0 and d0 for the original and averaged system, with three

different adaptation gains. Fig. 4 corresponds to a higher frequency input signal «=4 such that

the eigenvalues of the matrix Rvmvm/(0) are complex (-0.49±0.30t)e , and explains the oscillatory

behavior of the original and averaged systems.

Using the results of Boyd-Sastry [14], it is easy to verify the following facts

(i) RVm%>ml{0) is singular unless Rv{0)>0, i.e. w(t) is persistently exciting. Thus persistent

excitation of w is a necessary condition for stability of (5.19).

(ii) If m(s) is strictly positive real and w(t) is persistently exciting, then RVmV (0) is

Hurwitz. Hence m(s) being strictly positive real is a sufficient condition for stability of

(5.19), given that w(t)is persistently exciting.

It is intuitive that if w is persistently exciting and m (s) is close in some sense to being

strictly positive real that Rv «m.(0) will be Hurwitz (in particular, this is the case if Rem (jv)

fails to be positive at frequencies where n (jv) is small enough. ). More specific results in this con

text are in [11,17].
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6. Concluding Remarks

We have presented in this paper new stability theorems for averaging analysis of one and

two time scale systems . We have applied these techniques to obtain bounds on the rates of con

vergence of adaptive identifiers and controllers of relative degree 1.

We feel that the techniques presented here can be extended to obtain instability theorems

for averaging. Such theorems could be used to study the mechanism of slow drift instability in

adaptive schemes in the presence of unmodelled dynamics, in a framework resembling that of [10].

Also, our analysis of the use of averaging in the study of adaptive control required that the

scheme be linearized in a certain sense made precise in Section 5. In order to relax this require

ment, averaging techniques for a wider class of two-time scale systems than that discussed in Sec

tion 4 will be needed.
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APPENDDC

Proof of Lemma 2.1

Define:

t

wt(t,x) = Jd(r,x)e-<^dT (LI)
o

and:

w&t,x)*=*Sd(T,x)dT (L2)
o

From the assumptions:

IM<+ <o,*Wo»*)ll <7(0-< (L3)

for all t,t0>0, x&Bk. Integrating (LI) by parts:

t

*«(*,*)= w<At,x)-tf e^^w^T^dr (L4)

Using the fact that:

e

tJe^>w(tt,x)dT=w(Jit,x)-wdt,x)e'<t (L5)
o

(L4) can be rewritten as:

t

wt(t,x)= w^t^e^-r €je-«t-'Hwdt,x)-w(JiT,x))dT (L6)
0

and, using (L3):

t

IK(M)|| < 7(0< e"*1 + c/ e^>(<-rb(<-r)rfr (L7)
o

Consequently,

||«M'.*)II<.«P7( -7-)«' **+7-A"fV^" <L8)
r>o c o €

Since, for some 0, \\d(t,x)\\<0, we also have that i{t)<0. Note that, for all t'>0, t' e-*<c~l,
and t'c-'Kt', so that:

||eV|(l,x)||< »Pa[t(-7-'I',"|,1+ f^f^'^l«'e|o,v7il * 1 *'>v7l « 1

+ /7(-7-)yle",'^+/'r(~)^e-'rf/ (L9)
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This, in turn, implies that

.-VT\\™<{t,x)\\ </?>/7+ T("^)«_1+ Ay+ 7(-^)(l+v^)e-

:-«€) (L10)

Clearly &t)€K. From (LI), it follows that:

dwt{t,x)
-d(t,x) = -€wt(t,x) (Lll)

0«

so that both (2.6) and (2.7) are satisfied.

If 7(T)=a/rr, then the right-hand side of (L8) can be computed explicitly:

sup alr(t,)l-'c'* = at'(l-r)l-fc"l<at, (L12)

and, with T denoting the standard gamma function:

J«c,(7')1-,e^rf/ = acT(2-r)<a€, (L13)
o

Defining £(c)=2acr, the second part of the lemma is verified.

Proof of Lemma 2.2

Define wt(t,x) as in Lemma 2.1. Consequently,

Since —^ ' ' is zero mean, and is bounded, Lemma 2.1 can be applied to —* ' ', and inequal-
ox ox

ity (2.6) of Lemma 2.1 becomes inequality (2.10) of Lemma 2.2. Note that since —\ ' ' is
ax

bounded, and tf(f,0)=0 for all t>0, d(t,x) is Lipschitz. Since d(t,x) is zero mean, with conver

gence function 7(T)||z||, the proof of Lemma 2.1 can be extended, with an additional factor ||x||.

This leads directly to (2.8) and (2.9) (although the function ((c) may be different from that

obtained with —1 »these functions can be replaced by a single ((c)).
ox

Proof of Lemma 2.3

The proof proceeds in two steps.

Step It for c sufficiently small, and for t fixed, the transformation (2.15) is a homeomorphism.
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Appry Lemma 2.2, and let et such that ((c!)< 1. Given z£Bk, the corresponding x such that:

x*=z-€wt(t,z) (L15)

may not belong to Bk. Similarly, given x£Bk, the solution z of (L15) may not exist in Bk. How

ever, for any x,z satisfying (L15), inequality (2.8) implies that:

MW)lkll<lkll<(l+«0)lkll (L16)

Define:

AM«)=min(MM(e)))T^) (L17)
and note that h'(e)-*h as c-*0.

We now show that:

- for all zEBhr, there exists a unique x£Bk such that (L15) is satisfied,

- for all xGBkt, there exists a unique z&Bk such that (LIS) is satisfied.

In both cases, ||z-z||<((e)A.

The first part follows directly from (L16), (L17). The fact that ||z-*||<((c)A also follows

from (L16), and implies that, if a solution z exists to (L15), it must lie in the closed ball U of

radius £{e)h around x. It can be checked, using (2.10), that the mapping Fs{z)=x-ewl{t,z) is a

contraction mapping in U, provided that ((c)<l. Consequently, F has a unique fixed point z in

V. This solution is also a solution of (L15), and since it is unique in U, it is also unique in Bh

(and actually in Rn). For x£Bh, but outside Bkt, there is no guarantee that a solution z exists in

Bh, but if it exists, it is again unique in Bk. Consequently, the map defined by (L15) is well-

defined. From the smoothness of wc(t,z) with respect to z, it follows that the map is a homeomor-

phism.

Step 2: the transformation of variable leads to the differential equation (2.16)

Applying (L15) to the system (2.1):

dw dw.(/+ €-5^)i =c/„(*)+ e(f(t,z,0}-fm(z}~^-)

+ c(/(«,x+eu;t,c)-/(<,«,c))

+ €(f(t,Z,€)-f(t,Z,0))

:=c/.v(s)+ep'(M,z,c) (L18)

where, using the assumptions, and the results of Lemma 2.2:
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||p'('.*.0tl<«0IMI+ «W»dMI+ 411*11 ("»)

For e<clf (2.10) implies that (/+c-~-) has a bounded inverse for all <>0, z€Bk. Conse-
^~ oz

quently, z satisfies the differential equation:

i=(/+C^| (<M*)+ €•'(!.*,€))

= c/av(*)+c;>(l,*,c) z(0)~x0 (L20)

where:

,(<,2,6)=(/+£^.) (>'('.<.<)-c^-/.,(*)] (L21)
and:

||P(«.«.€)|| <̂ J—(((C)+ ((C)/1+ Cf2+ ((c)/8W )\\Z\\

:=*(<)IMI (L22)

for all <>0, €<ex, z6Bk.

Generalised Bellman-Gronwall Lemma (cf. [7], p 169)

If: x(t), a(t), u(t) are positive functions satisfying:

t

x(t)<Jo(T)x(T)dT+u(t) (L23)
0

for all te\0,T], and u(t) is differentiable,

Then:

/a(<r)rf<r * /a(<7)ij
*(0<«(0)c° +Ju{r)e' dr (L24)

o

forallf€[0,r].



Fig 3.1 Block diagram of adaptive identifier.
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Fig 5.1 Block diagram of model reference adaptive control system
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