

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC GENERATION OF SIGNAL

PROCESSING INTEGRATED CIRCUITS

by

Stephen P. Pope

Memorandum No. UCB/ERL M85/11

22 February 1985

AUTOMATIC GENERATION OF SIGNAL

PROCESSING INTEGRATED CIRCUITS

by

Stephen P. Pope

Memorandum No. UCB/ERL M85/11

22 February 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automatic Generation of Signal Processing Integrated Circuits

Ph.D. Stephen P. Pope E.E.C.S.

Chairman of Committee

A system for the automated design of signal processing integrated circuits is

described in this thesis. The system is based on a library of circuit cells, and a

software package which can configure the cells into complete integrated circuits.

The architecture of the cell library is optimized for low and medium bandwidth

digital signal processing applications. Circuits designed with the system use a

multiprocessor architecture.

Input to the system is a design file written in a specialized programming

language. Software emulation from the design file is used to verify performance.

A two-pass silicon compiler is used to translate the design file into a mask-level

description of an integrated circuit.

A major goal of the project is to make the system usable by those with little

or no formal training in integrated circuits. A second goal is to reduce the time

and cost associated with performing an integrated circuit design, while still pro

ducing designs which are reasonably efficient in their use of the technology. .

Development of the system was guided by basic research on appropriate archi

tectures and circuit constructs for signal processors. As part of this research an

integrated circuit was designed which performs speech analysis and synthesis

This vocoder circuit is intended for use in low-bit-rate digital speech transmission

systems.

Dedication

This thesis is dedicated to my wife. Kathleen.

11

Acknowledgements

The list of those who influenced this research is quite long, and it is only pos

sible to mention a few individuals here. Among the contributors to the LPC

Vocoder design. Ron Fellman. Thomas Glad and Bjorn Solberg played major roles.

Jan Rabaey and Peter Reutz made large contributions to the silicon compiler work.

1 would also like to extend my thanks to Prof. Richard Newton and his students,

without whose work on CAD tools little of this research would have been possi

ble.

Most of all 1 would like to thank Prof. Robert Brodersen for his extensive sup

port and management of this project.

Table of Contents

1. Signal Processor Design 1

1.1 Dedicated Signal Processors 1

1.2 Processing of Sampled Signals 3

1.3 Architectural Alternatives for Digital Signal Processing 6

1.4 Design Methods for Digital Integrated Circuits 9

2. A Single-Chip LPC Vocoder

2.1 Introduction

2.2 Processor Architecture

2.3 Processor Implementation

2.4 Adaptive Lattice Analyzer

2.4.1 Lattice LPC Algorithm

2.4.2. Lattice Analyzer Implementation

2.5 Pitch Tracker

2.5.1 Pitch Tracker Algorithm

2.5.2 Pitch Tracker Implementation

2.6 Speech synthesizer

2.7 The Voeoder IC

2.8 Conclusions

3. The Macrocell Approach to Signal Processor Design

3.1 Introduction

3.2 Processor Architecture

3.3 Control Sequencer

3.4 Address Arithmetic Unit

3.5 Processor Data Path .

12

12

16

21

24

24

30

31

31

37

41

45

49

51

51

54

58

63

67

Ill

3.5.1 Data Path Organization

*3.5.2 Arithmetic Unit

3.5.3 Multiply and Divide Operations

3.5.4 Data Memory

3.6 Finite State Machine

3.7 Input-Output and Communications

3.7.1 Off-Chip I/O

3.7.2 lnterprocessor Communication

3.7.3 Host Interface

3.8 Cell Library

3.8.1 Characteristics of Library Cells

3.8.2 Technology Parameters for Macrocells

4. Software Package for Macrocell Design System

4.1 Design File and Front-End Software

4.1.1 The Design File

4.1.2 The Emulator SI04

4.1.3 Silicon Compiler First Pass

4.2 Intermediate File and Macrocell Assembly

4.3 Placement and Interconnect

4.3.1 Outline of Placement and Routing Strategy

4.3.2 Processor Floorplan

4.3.3 Technology Specification

4.3.4 Channel Router

4.4 Software Package Summary

5. Case Histories and Conclusions

67

70

72

76

77

SO

SO

S4

S6

92

92

94

97

97

97

105

106

108

109

110

114

115

121

123

IV

5.1 Digital Audio Equalizer

5.2 LPC Vocoder

5.3 Decision Feedback Equalizer

5.4 300-Baud Modem

5.5 Conclusions

Appendices

A. LPC Vocoder Documentation

B. NMOSCell Library Documentation

C. Design File Description

D. Design File Examples

E. Companion Tape

References

123

128

131

134

137

139

139

153

227

255

268

269

V

Chapter 1 — Digital Signal Processors

1.1 Dedicated Signal Processors

The ability to design complex, large-scale integrated (LSI) circuits has not kept

up with the technological advances that allow such devices to be fabricated. This

situation has led to an increasing use of computer automation in integrated circuit

design, and a decreasing emphasis on minimization of circuit area. This disserta

tion is concerned with design methods specifically intended for digital signal pro

cessing applications. The goal of such methods is the ability to implement

economically important circuit functions with reasonable circuit density, while

keeping the design time short.

Despite numerous predictions over the past decade that digital signal proces>>-

ing LSI circuits would soon have a huge impact on large segments of the industry,

such an effect has not yet materialized. To better understand why this is so. it is

necessary to consider how signal processing functions differ from other applica

tions.

A signal is a representation of a time-varying physical quantity. Common

examples of signals are sounds, vibrations, and electromagnetic waves. A signal

processor is a device or system which conditions, analyzes, synthesizes, or other

wise modifies or creates signals.

Signal processors may be subdivided into general purpose signal processors and

dedicated signal processors. A general-purpose signal processor is one that may.

through reconfiguration or reprogramming. perform a variety of fundamentally

different algorithms. This dissertation is concerned with dedicated signal proces

sors — ones that perform a single algorithm. There might be a few variables or

parameters that may be modified, but such a system, once created, is pretty much

devoted to a single task. Also, the systems studied here are those which work

with sampled and digitized (quantized) signals. Digital signal processors such as

these have a number of advantages over their analog counterparts: reproducibility,

control over dynamic range and other performance aspects, and the ability to be

programmed to perform complex tasks.

From an abstract point of view, virtually any computation would satisfy the

above definition of signal processing. After all. the inputs and outputs of any

computing system can be viewed as time sequences. From a practical point of

view, signal processors are distinguished by the following two properties:

(1) Because signals result from ongoing, real-world physical processes, certain

types of processing tend to recur in different signal-processing situations. Filter

ing, modulation, correlation and convolution are all classical signal processing

functions.

(2) The signals involved are processed in real time. This means that the rate of

processing is sufficient to keep up with incoming and outgoing signals. Thus pro

cessing could proceed indefinitely without loss of continuity.

Central to the research described here is the utilization of integrated circuit

(IC) technology in the implementation of signal processing systems. There are

two aspects in which the use of this technology is significant. First is the poten

tial for dramatic cost savings that arises when custom integrated circuits are

designed into a system. Second is the fact that conventional design methods and

system architectures are no longer suitable as the level of integration becomes

very high.

The remaining sections of this chapter cover background material regarding

digiul signal processing systems, their architectures, and techniques for their

implementation using IC technology.

Chapter 2 discusses the design of an integrated circuit which implements a

low-bil-rate speech analysis/synthesis system. This LPC Vocoder integrated cir

cuit represents a fairly complex and sophisticated signal processing system which

uses a variety of processing techniques in its implementation. The LPC Vocoder

IC was designed in a full custom fashion —the goal of the project was to create as

efficient a vocoder implementation as possible, without solving the more general

problem of implementing other, similar applications. The vocoder IC was fabri

cated and tested, with test results presented in Chapter 2.

Chapters 3. 4 and 5 represent a broadening of scope of the research. The

premise is that similar implementation techniques can be applied to different sig

nal processing applications with good results. To take advantage of this general

ity, a design system was created which allows the rapid generation of digital signal

ICs. The ICs produced with this system are assembled from the cell library

described in Chapter 3. Chapter 4 describes a software package which automates

much of the design process. In Chapter 5 the results of this approach are

presented.

1.2 Processing of Sampled Signals

Signal processing algorithms are often presented by means of a signal flow

diagram. Fig 1.1 is a signal flow diagram for a second-order filter section. Note

that the primitive operations involved are multiplication, addition, and delays. All

linear filters, however complex, are composed of these same operations.

The filter section may be implemented by repeatedly executing the following

sequence of operations. The period of repetition isone sample interval. The quan

tities A and B represent the state (memory) of the filter, while X is a temporary

variable. ":-" is the assignment operator.

X := input + kA + gB

output := B

B^A

A^X

In order for this abstract program to operate properly, the timing of the system

must be such that each time the program is repeated the values "input" and "out
put" refer to new input and output samples respectively. The four-instruction
program is executed from top to bottom without branching, and repeats each sam

ple.

9

<*>-

input
y£yJL-J^]^ •output

I (x> 1

Fig.l.l Flow diagram for a second-order filter

The example above is very simple: however, it suggests that all linear digital

filters (and possibly other signal processing functions as well) may be imple

mented with by a processor with the following properties:

(1) A simple instruction set

(2) A program which is executed once per sample

(3) A lack of branches in the program flow

The research described in this dissertation demonstrates that this simple model

serves as a basis for the design of reasonably powerful signal processors.

It should be noted that some system functions do not conform to the above

model. Consider the Fast Fourier Transform [l]. for example. In this case a block

of input data (say 128 samples) is processed as a unit, resulting in an algorithm

that is difficult to express by a program that repeats at the sample rate. Thus pro

perty (2) above would preclude efficient implementation of a Fast Fourier

Transformer using the the approach described above.

Many signal processing algorithms make use of a frame. A frame is an inter

val many samples in length. The concept of a frame is significant because many

interesting attributes of a signal, such as second moments and spectral characteris

tics, vary much less rapidly than the signal waveform itself. This being the case,

it is possible to represent the desired attribute as being constant over an interval

of considerably greater duration than the sample interval. This sort of data

reduction is known as signal analysis and is widely used. The inverse operation,

wherein a sampled-data signal is created from lower bandwidth data, is termed

signal synthesis.

A typical signal processing system might consist of a front-end in which

sample-rate processing is performed, an intermediate level in which frame-rate

processing is performed, and additional levels in which processing occurs at

increasingly slower data rates. For those levels with a sufficiently slow data rate,

conventional computer hardware may be programmed to economically perform

the operations required. Other levels may require special-purpose hardware to

meet performance goals.

The cell library of Chapter 3 allows a frame rate to be defined and used for the

purpose of off-chip I/O. Semi-custom chips designed using the cell library can

then serve as special-purpose front-end processors. I/O processing differs qualita

tively from the other sorts of processing in a typical system, justifying separate

hardware. Also motivating this focus is the perception that the I/O processing is

often the major obstacle to a successful hardware realization.

13 Architectural Alternatives for Digital Signal Processing

Early digital signal processors were assembled from small- and medium-scale

integrated circuits. Since this approach led to rather bulky systems, a considerable

degree of specialization is evident in these early designs. Typical examples would

be special purpose Fast Fourier Transform (FFT) machines [2], and a computer

hard-wired to perform a speech pitch detection algorithm [3]. A considerable

emphasis was often placed on fast array multipliers. In fact, much of the research

on multiplier implementations was done by those pursuing signal processing

applications [4]. Because of the throughput requirements and real-time con

straints, pipeline architectures were popular as well.

As the 1980's approached, single-chip digital signal processors started to

become available. A few of these were dedicated circuits intended for special

applications. An early example would be a speech synthesis chip developed by

Texas Instruments for use in a toy known as the "Speak-and-Spell" [5]. Of more

interest to signal processing researchers was the availability of general purpose,

programmable DSP chips such as those of N.E.C. [6], Bell Laboratories [7], and

Texas Instruments [8]. Architecturally, these circuits all followed a standard for

mula. The instruction set resembles that of a conventional microprocessor.

Hardware organization is also conventional, with some pipelining added and a

parallel multiplier attached.

Despite heavy promotion, these general purpose processors have failed thus far

to achieve widespread use. One probable reason for this is that the general-

purpose architecture is seldom a good match for any given application. Such a cir

cuit offers a fixed combination of resources (program memory, data memory,

arithmetic capacity) which can not be tailored to suit the designer's needs. The

inclusion of a large parallel multiplier results in an expensive part in each case.

Although there is a definite need for multiply-accumulate operations in a typical

signal processor, it is difficult to make efficient use of the parallel multiplier when

programming the circuit to perform a complex system function.

Because of the problems described above, a number of researchers have worked

on the problem of designing semi-custom digital signal processing ICs [9-11]. The

goal of this work is to combine the cost-effectiveness of a full custom design (such

as the vocoder chip of Chapter 2) with the short design times possible using gen

eral purpose hardware. The underlying assumption of such work is that similar

applications can be efficiently implemented using different configurations of the

same hardware.

Semi-custom design approaches have a target architecture to which individual

designs must conform. There are several types of target architectures which have

been proposed. Three general categories may be identified: (1) processors built

around a parallel array multiplier: (2) bit serial processors: and (3) bit-parallel

processors without parallel array multipliers.

The parallel multiplier approach is often regarded as the best signal processing

solution. This is only partially true. Parallel multipliers by necessity must be

constructed with a fixed precision, e.g. a 16 by 16 multiplier. They are therefore

best suited for algorithms which make heavy use of multiplies, all of which

require about the same precision. Unfortunately, precision requirements in signal

processing algorithms vary considerably. Many multiplies require only a low pre

cision coefficient, such as a power of two. The parallel multiplier is in these cases

underutilized. Also, there is the architectural problem of getting data to and from

the parallel multiplier without bottlenecks occurring. The cost, in terms of busses

and registers, is high. In summary, a parallel multiplier is a high cost, high

throughput hardware item that fails to see good utilization in actual practice.

The second option, bit serial designs [12]. are the opposite end of the architec

tural spectrum. In an effort to maximally utilize the logic elements of the circuit,

bit-level pipelining is used. High clock rales are needed to reap the full advantage

of this approach, creating a particularly difficult low-level design problem. An

advantage is that bit-serial functional units can becombined in a modular fashion,

a plus if the target system is a dedicated processor. One drawback of this

approach is that a number of low level functions (such as division) are not com

patible with the LSB-first bit-serial format. Due to the hard-wired nature of the

systems, control and decision-making functions are not easily implemented. Also,

a system-wide wordlength is generally established for all data, in an effort to

avoid intractable timing problems. This is a disadvantage, since all data must be

represented by words of the same precision.

The third option, bit-parallel processors without parallel multipliers, is the one

used for the designs described in this dissertation. An arithmetic unit which can

complement, shift and accumulate bit-parallel data is used. This unit may be

microprogrammed to multiply signal data by either bit-serial or signed-digit

coefficients. (Signed-digit representation provides a low-cost method for fixed

coefficient multiplies, as discussed in Section 3.5.) Because the arithmetic element

is relatively compact, several such processing units may be included on a single IC.

Thus the advantage of modularity exhibited by the bit-serial approach is retained

here. This results in a better match between algorithm and hardware organization

than is possible in designs using large parallel multipliers.

The bit-parallel processors are microprogrammed, resulting in a versatility

lacking in hard-wired approaches. Although fully hard-wired architectures might

be more efficient in the abstract, programmability is a virtual necessity in a com

plex system. Control, decision-making and input-output functions are all more

readily implemented in a programmable environment.

1.4 Design Methods for Digital Integrated Circuits

Numerous approaches, systems and methodologies have been proposed or are in

use for integrated circuit design. One reason for this is that, viewed in. the

abstract, integrated circuit design is a large process with ahigh level of complexity

and many degrees of freedom. Many methodologies seek to constrain the design

problem, to make it less complex while still achieving performance goals.
IC designs are ultimately specified at the geometric level on a number of mask

layers. In a full-custom design, the designer has complete control over these low-
level geometries. Standard cell and gate-array design methods involve specifying
the design at a logical level, and creating the mask geometries from a predefined
set of primitive elements. Thus standard-cell and gate-array approaches constrain

the design problem to make it more tractable.

As a general rule, the more constrained the design problem is made, the more

easily adesign may be produced. However, this design can not be optimized to the

10

same extent as a full custom design.

Many IC design systems are intended to fill a certain market need. For exam

ple, a standard-cell system might be intended to produce circuits which are

replacements for systems designed from a standard logic family (for example, the

74-series TTL family). Such systems have the severe drawback that the designer

is using logic designs and architectures appropriate for one technology (TTL-MSI)

while producing a circuit in a different technology (MOS-LSI).

In addition to the degree of customization, a distinction may be drawn between

graphical and procedural methods of specifying IC layouts. In the graphical

approach, the designer specifies the mask geometries directly, usually with the aid

of a computerized graphics editor. In the procedural approach, the specification is

at a higher, functional level: software is used to translate the higher-level

specification to the mask level.

The LPC vocoder circuit described in Chapter 2 was designed with purely

graphical methods. This approach resulted in a high degree of customization, and

many opportunities to optimize the design. Since no procedural methods were

employed, the design time was high, and the overall approach would not have

been suitable for applications with much greater complexity. Architecturally,

however, the methods used in the vocoder IC are applicable to even larger, more

complex designs. This conclusion is the motivation for the macrocell-based design

system described in Chapters 3. 4 and 5.

The term macrocell has been assigned various meanings in the past. It is now

generally agreed that a macrocell is a large block of circuitry containing perhaps

several thousand transistors. The approach used in assembling the macorcells is

to tile (array) smaller rectangular cells in two dimensions. The tiling process is

sufficiently flexible that the macrocells can be customized for specific tasks.

One premise of the macrocell technique is that a target application range has

11

been identified. This dissertation is concerned solely with digital signal proces

sors. Typical applications would be speech processing, telecommunications and

digital audio. However, the macrocell approach may be applied to any group of

applications. The more narrow the application range, the more the macrocell-

based designs will resemble full-custom designs in terms of architectural

efficiency.

Since MOS processes evolve rather rapidly, a desirable property of an IC design

system is that it can be applied to a number of different processes. Macrocell

based systems can be designed such that only the underlying cell library is

technology-dependent.

In summary, the macrocell approach has the following advantages:

(1) Large blocks of circuitry are generated by procedural methods.

(2) The underlying cell library is designed by graphical methods.

(3) Architectures can resemble those of full-custom designs.

(4) The design system may be ported to different technologies.

12

Chapter 2 - A Single-Chip LPC Vocoder

XI. Introduction

A number of applications benefit from the fact that, with sufficient processing,

speech may be analyzed, encoded at a low data rate, and then resynthesized. For
example, the available bandwidth of a telephone line or microwave channel may

be better utilized if data compression methods are employed. In "voice mail net

works, where spoken messages are stored electronically and subsequently for

warded to their destination, data reduction reduces the storage cost.

In many applications, digital encoding of speech is needed to allow the use of

encryption algorithms (for security) or error-correction techniques (to compensate

for a noisy channel). Often, the available bandwidth is that of a voice-grade ana

log channel —a few kilohertz. In situations such as these, it is necessary to digi

tally encode speech at a low enough data rate that the digital data may be

transmitted in the available bandwidth.

Low-bit-rate coding systems, where the transmission rate is 2400 bits/second

or lower, cannot attempt to reproduce the speech waveform itself. Instead, a set

of slowly-varying parameters is extracted from the speech. Synthetic speech may

be generated from these parameters. Avocoder is a system of this sort based on a

model for speech synthesis similar to that shown in Fig.2.1.

This model, roughly analogous to the human vocal tract, consists of an excita

tion source driving a time-varying filter. The excitation source is described by

three parameters: voicing, pitch, and amplitude. The voicing parameter represents

a binary decision between a voiced, vowel-like sound and an unvoiced sibilant.

The pitch represents the fundamental period of a voiced sound.

The excitation signal presented to the filter has a flat overall spectrum. The

13

PITCH VOICING AMPLITUDE SPECTRUM

-*g> •
TIME-VARYING

FILTER J\K^d~

SPEECH
IN

RECEIVE

DATA

Fig.2.1 Vocoder speech model

96000
bits/sec

av— a/d zzn

3*Z

VOCODER

CHIP

2^

5*>
HOST

MICROPROCESSOR

Fig.2.2 Target system for the vocoder I.C.

r?=flo/A HI))))solErCH

L
2400 bits/sec

-^ XMIT DATA

FROM

A/0 *"

SYNTHESIS

PARAMETERS!

LPF

PRE-EMPHASIS

ANALYSIS

FILTER

SYNTHESIZER

ANO

DE-EMPHASS

-TO
D/A

PROCESSOR NO I (16BIT)

PITCH

TRACKER
♦ PITCH

PROCESSOR NO 3 (16 BIT)

CORRELATOR

1 SPECTRAL
i ANALYSIS

"•PARAMETERS

PROCESSOR NO 2 (26 BIT)

Fig.2.3 Multiprocessor organization

14

15

filter is programmed to impart the desired time-varying spectral shape to the sig

nal. Since a representation of this spectrum is part of the parameter set. vocoders

must perform some form of spectral analysis as part of their processing. Accurate

preservation of the spectral shape of the speech signal is important in maintaining

intelligibility.

Because of the importance of spectral representation, vocoders are often

classified according to the spectral analysis methods used. Channel vocoders use

either filter-bank or transform techniques to represent the energy in different

parts of the spectrum. This report describes an LPC vocoder circuit using linear

predictive coding (LPC) to represent the spectrum.

Fig.2.2 shows how the vocoder circuit would be used in a typical application.

Digitized speech (from an A/D converter) is used as input to the device. The

input speech is analyzed and the resulting parameters are transferred oft"-chip to a

host microcomputer. The host formats the data for transmission (typically at

2400 bits/second). Simultaneously, an incoming data stream is transferred to the

vocoder circuit, where it is used to generate a synthetic speech signal. The vocoder

thus operates in full-duplex mode, allowing two-way low-bit-rate speech

transmission.

To handle the complexity needed for a complete LPC vocoder algorithm, a

monolithic multiprocessor approach was used. Three processors are included on

the single I.C. Each processor performs a specific part of the vocoder algorithm, as

shown in Fig.2.3.

Processor No. 1 performs most of the linear filtering of the speech signals that

is required. Included are lattice filters for both spectral analysis and synthesis:

pre-emphasis and de-emphasis networks: and a low-pass-filter whose output is

used for speech pitch detection.

Processor No. 2 computes correlation values from signals in the analysis lattice

16

filter. These correlation values are used for spectral estimation as described in

Section 2.4.

Processor No. 3 extracts pitch and voicing information from the input speech.

The algorithm is partitioned so that each processor is fairly self-contained.

Communication among the processors is performed over a small number of bit-

serial data lines. This avoids the need for large parallel busses between proces

sors. The use of multiple, dedicated processors and bit-serial communication con

tributes to the area efficiency of the circuit.

2.2 Processor Architecture

Vocoder algorithms require a fairly diverse set of operations in their realization.

Because of this a microprogrammed approach was used in the vocoder IC. Each

processor contains a read/write memory and a simple arithmetic unit which,

under control of a microsequencer. is programmed to perform the operations

required. Among the operations used are multiply-accumulate, division, absolute

value (rectification), and comparison. These operations may be combined to create

complex functions such as filtering, correlation, and pitch extraction.

Multiply-accumulate operations are a common feature of signal processing algo

rithms. Examples are the programmable lattice filters used in both the spectral

analysis and speech synthesis portions of the vocoder. The multiply-accumulate

operations are implemented by programming the arithmetic unit shown in Fig.2.4.

This involves multiplying signal data which is internal to the processor's read-

write memory by externally available coefficients. The sample delays are imple

mented by providing the appropriate address sequence to the memory.

Data in the read-write memory and the arithmetic unit are represented as

parallel two's complement words. The word length is optimized for each of the

Data

Memory

Memory
Output
Register

Complementer
(+,-,or II)

Shift Register
(load.ASR)

Memory
Jnput
Register

Lr LOAD
/ACC.

BUS
"T—

Ir(ZERO)
a:

(ZERO)

Adder

Accumulator

T

Fig.2.4 Arithmetic unit block diagram

to

I/O

Ports

17

18

three processors. Processor No.l. used for linear filtering of the speech signal, has

a 16-bit word.

The arithmetic unit contains three pipeline registers (MOR. SR. and ACC) and a

transparent latch (MIR). Pipelining allows concurrent memory access,

invert/shift, and accumulate operations, resulting in good throughput for a rela

tively compact circuit. Operation is best understood by the action of microin

structions on the contents of these registers.

The memory output register (MOR) is loaded each cycle with the result of a

memory access. The accessed data is available the following cycle. There are no

control options.

The shift register (SR) may be either loaded or shifted right arithmetically.

When loading the shift register, the MOR is used as input, and may be optionally

complemented. Options include true, complement, or absolute-value data: and

complementing by the sign bit of an externally available coefficient bit. The fol

lowing symbolic microinstructions describe these actions:

sr := sr/2

sr := mor

sr := -mor

sr := Imorl

sr := mor.coef

A number of different options are available as input for the accumulator. The B-

inputs of the adder may be set equal to zero. ACC. or MOR. The A-inputs may be

set equal to zero. SR. or the contents of SR gated with a bit from an external

coefficient. These options are described by the following microinstructions:

19

ace := 0

ace := mor

ace := ace

ace := sr

ace := sr + mor

ace :=»= sr + ace

ace := coef*sr

ace := coef*sr + mor

ace := coef*sr + ace

The memory input register (MIR) is a transparent latch which has as input either

ACC or an external signal from the I/O bus. (The external signal may be bit-

serial data originating from one of the other two processors on the chip which has

been converted to bit-parallel form.) The MIR may be loaded or held under pro

gram control. When loaded, the new data is available the same cycle. Loading is

indicated by the "load enable" microinstruction:

load_en

The purpose of the MIR is to hold temporarily a value which needs to be stored in

the read/write memory. By holding such a value until the next free memory

cycle, memory access conflicts are avoided.

Microinstructions are also used to address and control the read/write memory.

All told, a horizontal control word of approximately 24 bits is used for control

ling each processor.

20

In much of the processing needed for the vocoder algorithm, the most prevalent

operations are multiply-accumulates by a variable coefficient. To allow this, the

coefficient is made available in a bit-serial, sign-magnitude.MSB-first format. The

multiply is performed by first complementing the data with the sign bit of the

coefficient, then accumulating a sequence of right-shifted partial products which

are gated with the magnitude bits of the coefficient.

The following microcode fragment performs a multiply-accumulate. The

coefficient is eight bits. The data is first read into MOR. then microinstructions are

executed as shown below. Because of the pipelining, microinstructions controlling

SR and ACC are given on the same line and occuron the same cycle.

sr := mor.coef ace := ace

sr := sr/2 ace := sr*coef + ace

sr := sr/2 ace :« sr*coef + ace

sr := sr/2 ace := sr*coef + ace

sr := sr/2 ace := sr*coef + ace

sr := sr/2 ace := sr*coef + ace

sr := sr/2 ace := sr*coef + ace

ace :«= sr*coef + ace

load_en

At the end of this sequence. MIR contains the result of the multiply added to the

prior contents of ACC. The "single-accumulator" architecture allows the same

accumulator register to be used for summing partial products and accumulating

the results of a series of multiplies. This parallel-serial approach to multiplica

tion results in a low-cost implementation of the multiplies required for the lattice

filters used in the vocoder.

21

The adder element of the arithmetic unit employs saturation logic, which limits

the result of an addition to the maximum positive or negative value upon positive

or negative overflow respectively. Among other advantages, this rules out the

possibility of large-amplitude limit cycles in recursive filters.

The processor arithmetic unit described above is based on a single accumulator,

performing multiply/ accumulate operations by a microprogrammed, "shift and

add" method. The small circuit area occupied by this arithmetic unit is a key

feature allowing multiple processors and high throughput in the vocoder IC.

23 Processor Implementation

In order to easily implement processor arithmetic units with different word

lengths, a bit-slice organization for the arithmetic unit was used. Due to the fact

that the arithmetic unit bit-slice is replicated many times in the three processors

that comprise the vocoder circuit, considerable effort was spent making this ele

ment compact and high-performance. The schematic for a single bit-slice is shown

in Fig.2.5. (This schematic is slightly simplified: part of the memory interface,

and the adder saturation logic, are not shown.)

Each bit-slice contains 65 transistors and occupies an area of about 100 sq.

mils. This small size makes possible the inclusion of multiple processors in the

vocoder I.C. By way of contrast, a single 16 x 16 array multiplier (often thought

of as an essential element of a digital signal processor) would exceed in area all

three of the arithmetic units on the vocoder circuit.

TO
3-T<
RAM

LATCH
DATA IN

IN "—

(TO NEXT SLICE)

*
ouTTirt>aIrLpE>liC

SHIFT

INVERT LOAD

I/O

^Z

=o

x'4

, ADDER INPUT
% CONTROL

(FROM PREVIOUS SLICE)

Fig. 2.5 Arithmetic unit bit-slice schematic

Fig.2.6 Adder schematic

22

XMIT

yOV
* *

OUT

23

Because of the bit-slice organization, the adder circuit used in the arithmetic

unit is a ripple-carry design. Separate circuits were designed for the odd-

numbered and even-numbered bit slices, as shown in Fig.2.6. Layout and circuit

design were carefully optimized to minimize nodal capacitances along the carry

chain. Since carry outputs are used in the sum generation logic, each carry output

feeds a minimum-size inverter which isolates this logic from unnecessarily loading

the carry chain.

The use of separate odd and even adder circuits, alternating between positive

and negative logic, provides a single level of gate delay for each bit in the carry

chain. Add times under 200 nsec. for 26 bits were typically measured. The per

formance of the adder is well-matched to other critical paths in the vocoder cir

cuit, such as RAM and ROM access times, and does not by itself limit the compu-

lation rate.

The processor data memory uses the three transistor cell, chosen because of its

relative insensitivity to process parameters and supply voltage variation. As is

the case with word lengths, the number of words in the data memory of each pro

cessor is chosen to match that processor's function. The data memory is laid out

on a more narrow pitch than the arithmetic unit bit-slice, with the memory bit-

lines routed to the bit-slice array.

Additional flexibility is provided by allowing some of the memory locations to

be programmed with read-only constants. This is needed in the implementation

of the pitch tracker algorithm discussed in Section 2.5. In this algorithm, it is

necessary to compare signals to constant thresholds. Note that the approach of

directly including constants in the data path makes inclusion of a gateway

between control and data paths unnecessary.

Each processor contains a small amount of control circuitry along one edge of

the bit-slice array. This circuitry buifers the control signals that the

24

microsequencer sends to the processor, and allows external coefficients to be multi

plexed into the control path as discussed in Section 2.2. Circuitry is also included

that allows for long division operations in a manner similar to the parallel-serial

multiply operations discussed above.

2.4 Adaptive Lattice Analyzer

2.4.1 Lattice LPC Algorithm

Preservation of spectral information is essential to any speech coding technique.

One approach to spectral analysis models the speech samples as a random process

whose second-order statistics are stationary over short time intervals. This leads

to the LPC (linear predictive coding) method [13], so named because it involves

predicting the value of an incoming sample as a linear combination of previous

samples. The number of previous samples used in the linear combination is

referred to as the order of the analysis. For speech coding, a tenth-order LPC

analysis is often used [14].

The spectral information that results from an LPC analysis can be represented

in one of several equivalent forms: predictor coefficients, normalized autocorrela

tion values, log area ratios, and reflection coefficients [15]. Each of these forms

may be translated into any of the others, so each is a possible choice as part of the

parameter set for a vocoder. The reflection coefficients (also known as partial

correlation values) have the following practical advantages:

(1) The spectrum is relatively insensitive to quantization errors of the reflection

coefficients.

(2) The reflection coefficients may be computed by an adaptive filter structure

25

known as the adaptive lattice analyzer, described below.

(3) The reflection coefficients may be used to program an all-pole filter

(described in Section 2.6) which is used for resynthesizing vocoded speech.

A typical speech coding format is the 2400 bit/second LPC-10 format, which

transmits a set of ten reflection coefficients every 22.5 milliseconds [16]. Thus it is

convenient to use an LPC analysis method that yields these reflection coefficients

directly, rather than first computing one of the other equivalent LPC parameter

sets and converting to reflection coefficients.

The adaptive lattice analyzer contains two parts: an all-zero programmable lat

tice filler (Fig.2.7) and a correlator (Fig.2.8). The lattice filter contains ten identi

cal stages, each of which has two inputs i4,-_i and 5,_i^ These inputs are fed to

the correlator, which computes k, as the normalized cross-correlation of A-,-v and

B,-x. For stationary input signals. Ai-i and B,-i have the same energy

EA?-X = EB,U

(where E is the expected value operator). Burg [17] first proposed using the aver

age of these two energies for computing the normalized cross correlation

' = EA,U + EB,U

The k, are limited to values between -1 and +1. The vocoder IC computes the k,

to a precision of eight bits. This exceeds the precision requirements for commonly

used 2400 bit/second transmission formats.

26

The outputs of the correlator are the*, 's. which are then used to program the
lattice Alter. Each k, is recomputed every sample interval, allowing the lattice
analyzer to adapt continuously to the changing statistics of the input signal.

The correlation (Fig.2.8) uses asingle pole low-pass filter to approximate the
expected value operator. Kang [IS] claims asmall performance improvement if a
two-pole filter is used here.

The output Al0 of the tenth-order lattice analyzer is known as the residual,
and can be thought of as the input signal filtered so as to remove most of the
correlation between samples. In the frequency domain, this means the residual
will have aspectrum that is close to flat. The spectral information that has been

removed is contained in the kt.

This effect is illustrated in Fig.2.9. These photographs were obtained by apply
ing aperiodic input signal to the input of the vocoder IC. lattice analyzer, and
monitoring the signal A, at different stages in the filter. These signals appear on
the data bus of Processor No. 1and were strobed into aD/A converter to obtain
the data. The input signal to the lattice analyzer has aperiodicity of 200 Hz. and
exhibits astrong resonance at about 1kHz. This resonance is apparent from the
ringing in the time response. As the signal travels through the lattice this reso
nance becomes less pronounced. The residual output of the final stage resembles
an impulse train, which has aflat overall spectral shape. The fine structure of the
spectrum is preserved in the residual. In this illustration, the spectral fine struc
ture is characterized by aconcentration of spectral energy at harmonics of the 200
Hz fundamental. Although this fine structure is not extracted by the lattice
analyzer, in an LPC vocoder some of this information is extracted by performing a
pitch analysis (described in Section 2.5).

In the vocoder IC. the lattice analyzer is preceded by apre-emphasis filler with

the transfer function l-£*-. The pre-emphasis serves to improve the

SPEECH INPUT Ao + i

(AFTER-PRE EMPHASIS)

2"
Bo ♦>

• • •

Fig.2.7 Analysis lattice filter

A... + B

63/64

Fig. 2.8 Correlator

27

A9 +/~vRESlDUAL

+ — Kj

(a) Input

(b) Second stage output

(c) Fourth stage output

(d) Tenth stage output (residual)

Fig.2.9 Signals at different points in lattice analyzer

28

D-
A+ B , A -B Squaring

Y o uunver ici Circuit

Spee
I/C

ch «
)

j

• <' »

Arithmetic Unit

Proc. Na 1

Arithmetic Unit

Proc. No. 2

k's
FIFO

k's

<

1

i

t >

Data

Memory

Data

Memory

Fig.2.10 Configuration of Processors 1 and 2

29

30

distribution of the reflection coefficients.

2.4.2 Lattice Analyzer Implementation

Implementation of the lattice analyzer was the dominant issue when studying

appropriate architectures for the vocoder IC. The lattice filter itself requires

variable-coefficient multiplies, while the correlator requires a squaring operation,

fixed-coefficient multiplies, and a two-quadrant division (two-quadrant because

the denominator is always positive). Both lattice filler and correlator require

single-sample delay operators. The processor structure described in Section 2.2 is

characterized by a single-accumulator arithmetic unit and an addressible data

memory. This processor may be programmed to perform the multiply-

accumulate. divide, and delay operations required. Combined with a look-up

table that approximates the squaring operator, this processor becomes a suitable

architecture for the lattice analyzer.

The computation for the lattice filter is divided between two processors.

Fig.2.10 shows the data path organization for these two processors. Processor No.

1 implements the pre-emphasis filter and the ten lattice filter stages. Processor

No. 1 also implements the ten-stage all-pole lattice synthesis filter described in

section 2.6. The microcode for a single stage of each ten-stage filter is contained in

a subprogram, which is iterated ten times per sample interval to implement the

two filters. The subroutine also computes the values A,-\+B,-i and A,^ —£,_j.

which are inputs to the squaring look-up table. These two values are transmitted

over bit-serial lines to the squaring circuit, which is physically located adjacent to

Processor No. 2. Processor No. 1 has a 16 bit wordlength.

The input to the squaring circuit is truncated to 12 bits unsigned, and the 20

most significant bits of the squared output are preserved. This output is used as

31

input to Processor No. 2. which has a 26 bit wordlength. A longer wordlength is

required for Processor No. 2 since squaring a signal doubles its dynamic range.

Processor No. 2 is programmmed with the two single-pole estimation filters

and the divide operation. These operations form a subroutine which is iterated ten

times per sample interval, computing the ten reflection coefficients kj. The k,

appear as a bit-serial output signal resulting from the long division operation.

This bit-serial signal is routed back to Processor No. 1.

The adaptive lattice analyzer requires half the resources of Processor No. 1 and

all of Processor No. 2. This amounts to half of the resources of the three-

processor vocoder IC being devoted to the important task of spectral analysis.

2^ Pitch Tracker

2.5.1 Pitch Tracker Algorithm

In addition to the spectra) analysis described in the section above, the speech

input of the vocoder must be analyzed for excitation parameters. Referring to the

parameter set shown in Fig.2.1. the pitch period and voiced/unvoiced decision are

both provided by implementing a pitch tracking algorithm developed by B. Gold

[19]. With only minor changes, the algorithm used is referred to in [19] as the

"second modification" of the original Gold Pitch Tracker.

In contrast with the algorithms for lattice analysis and synthesiser, the pitch

tracker requires a variety of non-linear and decision-making operations. These

include peak detection. Boolean arithmetic, comparing signals to constant thres

holds, incrementing and resetting counters, and selecting the maximum among a

set of signals.

This algorithm is shown diagramatically in Fig.2.11. The input speech is first

SPEECH_
INPUT

2-POLE
LPF

PEAK/
VALLEY

DETECTOR

PITCH DETECTOR

PITCH DETECTOR

HPITCH DETECTOR

- L» PITCH DETECTOR -1

1—• PITCH DETECTOR —'

Fig.2.11 Gold Pitch Tracker algorithm

Fig.2.12 Six signals formed after peak-valley detection

SCORING
ALGO
RITHM

32

, PITCH
ESTIMATE

(a) Input

(b) Threshold

(c) Pitch Period Counter

Fig.2.13 Signals from one of the six pitch detectors

33

34

low-pass filtered to a bandwidth of a few hundred Hertz. The fundamental pitch

frequency is assumed to lie within this band. However, harmonics of the funda

mental may also pass through the low-pass filter. The intent of the algorithm is

to reject these harmonics and extract the fundamental period. The 2-pole linear

low-pass filter is implemented by a short section of microcode in Processor No. 1.

The resulting signal is then sent over a bit-serial line to Processor No. 3. which

performs the remainder of the Gold algorithm.

First, peaks and valleys in the low-pass filtered speech are detected. Values

for the amplitudes of the most recent peak and previous valley are maintained.

Six new signals are formed, each being a different combinations of the current

input sample (CS). the amplitudes of the previous peak CLP), and the amplitude

of the previous valley (LP). With proper interpretation, these six signals

correspond lo the six quantities indicated in Fig.2.12:

signal computed as examined at

CS input peaks

(CS-LV)/2 input peaks

(CS-LP)/2 input peaks

-CS input valleys

(LP-CS)/2 input valleys

(LV-CSV2 input valleys

interpreted as

magnitude of peaks

difference in magnitude

between peaks and the

preceding valleys

difference in magnitude

between adjacent peaks

magnitude of valleys

difference in magnitude

between valleys and the

preceding peaks

difference in magnitude

between adjacent valleys

35

(The values of these signals are ignored except at input peaks and valleys as

shown above.)

The six signals are sent to six identical pitch detectors. These pitch detectors

each form a estimate of the time interval (period) between major peaks in their

inputs. A basic premise of the Gold algorithm is that of parallel processing: each

individual pitch detector forms a pitch period estimate which is not in itself reli

able. However, by combining the six estimate a reliable pitch estimate is obtained.

36

Each pitch detector functions by timing the interval between major peaks in its

signal. To accomplish this, a means of rejecting minor, insignificant peaks is

required. The decision as to whether the input is at a major input peak is based

on three criteria:

(1) The peak detector input must be at a peak or valley as given in the above

table.

(2) After a major peak is detected, a blanking interval of three milliseconds (24

samples) duration is entered during which all peaks are rejected.

(3) Following the blanking interval, an exponentially-decaying threshold signal

is computed. This threshold is initialized with the amplitude of the previously-

detected peak, and decays with a time constant of five milliseconds. Minor peaks

which fail to exceed this threshold are ignored.

Fig.2.13 illustrates the function of one of the six pitch detectors. These photo

graphs were obtained by strobing various signals appearing on the data bus of

Processor No.3. into a D/A converter. The top photo (a) is the input to the pitch

detector. In this example there is a strong second harmonic which the pitch detec

tor succeeds in rejecting. Photo (b) shows the threshold signal, with the blanking

interval and exponential decay in evidence. The sawtooth waveform of the bot

tom photo (c) is the value of the pitch period counter. This counter is sampled

prior to being reset to give a pitch period estimate.

In this way six estimates of the pilch are obtained. Each estimate is regarded

as a candidate for possibly being the actual pitch period. A scoring algorithm i.«

used to select one of the six as the best estimate. Each candidate is given a score

37

ranging from one to eighteen by performing a "window comparison" between the

candidate and each of the following eighteen values:

The six current pitch estimates (i.e.. the candidates themselves);

The previous pitch estimates from each of the six detectors:

The sum of the current and previous estimates for each detecior.

(The rationale for including the sum of consecutive estimates from a pitch detec

tor is that a pitch detector often locks on to the second harmonic rather than the

fundamental. In this case the sum of two consecutive estimates is the period of

the fundamental.)

If none of the estimates has a score greater than a fixed threshold the input

speech is determined to be unvoiced and no pitch estimate is outputted.

2.5.2 Pitch Tracker Implementation

The pitch tracker microprogram is organized into a main program followed by

six iterations of a subprogram. The entire microprogram repeats each sample

interval, each input sample. The main program performs the peak/valley detec

tion and part of the scoring algorithm. The subprogram implements the pitch

detectors and most of the scoring computation.

The main program performs the following functions:

(1) Maintains the variables LP and LV (last peak and valley)

(2) Forms the six pitch detector input signals

(3) Decides if one of the six pitch estimates (the "current candidate") has the

highest score so far. The current candidate may change from sample to sample.

Arithmetic

Unit

I
Data

Memory

SIGN BIT

OF ACC

WRITE
ENABLE

FSM c

Fig.2.14 Processor No. 3 with FSM attached

^

J)

38

CONTROL

WORD

39

(4) Every six samples, makes a pitch/voicing decision and transmits either the

winning pitch estimate, or zero if unvoiced.

Each subprogram iteration performs the following functions for one of the six

pitch detectors:

(1) Implements the pitch detector by maintaining the threshold level, the pitch

period counter, and values for the current and previous pitch estimate.

(2) Adds the pitch detector's contribution to the score of the current candi

date.

By computing the score for one candidate each sample, the pitch trackermakes

a new pitch determination every six samples. Note that decimation is involved

here. One could compute all six scores every sample interval, selecting a new

value for the pitch estimate each time. However, a vocoder system does not

require pitch estimates this frequently. Thus one can reduce the computational

requirements by decimating to a lower sample rate for the scoring computation.

Implementing the algorithm above using the arithmetic processor that has been

described requires additional hardware to support the decision-making and condi

tional operations required. This is in conirasl to the spectral analysis and syn

thesis parts of the vocoder algorithm, which involve little or no conditional logic.

To support the need for decision-making capability, two hardware feaiures were

included in Processor No. 3: a small finite-state machine (FSM). and a special con

ditional write operation. Fig.2.14 shows how this FSM is attached to the data and

control paths for Processor No. 3.

The FSM is customized to perform the exact logical operations thai are needed

in ihe pitch detection algorithm. The FSM has three bits of state:

40

CC Condition Code

SLP The slope of the input signal

LSLP The value of SLP for the previous sample

The CC (condition code) bit must be true for a conditional write (WC) instruction

to effect a write cycle.

The inputs to the FSM are control signals from the microsequencer and the sign

bit of the accumulator. (In the following. SIGN is true if the accumulator is

non-negative.) These seven microinstructions were used to modify the state of the

FSM:

instruction action

SET CC := SIGN

AND- CC := CC and (not SIGN)

SSL LSLP := SLP; SLP := SIGN

SIP CC := LSLP and (not SLP)

SIV CC := SLP and (not LSLP)

SPV even subroutine iterations: functions as SIP

odd subroutine iterations: functions as SIV

VPE "valid pitch estimate" (true every six samples)

The FSM instructions are executed concurrently with the data path instructions

(described in section 2.2.) for Processor No. 3.

The SET and AND- instructions allow comparisons to be made. The SSL

instruction is executed once per sample, after loading CS-LS into the accumulator.

This sets the boolean variables SLP and LSLP to indicate the slope of the input

41

signal the slope of the input at the current and previous sample instant respec

tively. SLP and LSLP can then be decoded to indicate whether the input is at a

peak or valley. This allows implementation of the SIP. SIV and SPV instructions

for the FSM.

The conditional write instruction assigns the MIR to a variable in data memory

only if CC is set true. The following example shows how this is used to maintain

the variable LP. which holds the amplitude of the most recent input peak. The

following sequence of instructions maintains the value of LP.

RCS

acc:=mor SIP load_en

WCLP

read current sample from data memory

MIR = current sample

CC is true only if at a peak

store current sample in LP only if at peak

In summary, the use of a FSM and a conditional wriie instruction replaces the

role of logical instructions and conditional branches in a conventional computer

architecture. The FSM attached to Processor No. 3 is quite small (only eighteen

product terms), but can perform the logical operations needed for the Gold pitch

tracker algorithm.

2.6 Speech Synthesizer

The speech synthesizer function of the vocoder IC is performed using a system

resembling the vocoder model for speech production. Fig.2.1. The excitation

source has amplitude and pitch/voicing parameters as inputs, with its output

driving a synthesis filter. The filter is programmed with a set of ten reflection

coefficients.

0

-20

-40

dB

-60

-80

-100

42

MEASURED RESPONSE COMPUTER SIMULATION

Fig.2.16 Predicted and measured response of synthesis filter

43

EXCITATION ♦—♦OUTPUT

(N.C.) • • •

Fig.2.15 Lattice synthesis filter

pitch period

A _ A_

-A
A

-A
time

Fig.2.17 Voiced excitation waveform

44

Compared to the spectral and pitch/voicing analysis, the speech synthesis func

tions of the vocoder IC require relatively little hardware. About half of the

resources of Processor No. 1 are devoted to implementing the lattice synthesis

filter. Fig.2.15.. and a de-emphasis network with the following response:

1-4*-

In addition, a small amount of specially-designed circuitry serves as the excitation

source. Alternatively, an external excitation source may be used, allowing appli

cation of the vocoder IC in a base-band or voice excited vocoder [20].

The predicted and measured response of the lattice synthesis filter when pro

grammed with a fixed set of reflection coefficients is shown in Fig.2.16. The

reflection coefficients used were:

kx =0.391

*2 = -0.586

*3 = 0.703

(all other k's are zero)

The measured response exhibits a rolloff due to anti-alias filtering in the test

fixture. Taking this into account, the agreement between the predicted and meas

ured responses is very close.

A number of different waveforms can be used for the unvoiced and voiced exci

tation waveforms. The voiced waveform used in the vocoder IC consists of a unit

impulse train (whose period is the pitch period) convolved with the function

shown in Fig.2.17. This function imparts a high-pass response to the otherwise

45

flat spectrum of the impulse train.

Each sample of the unvoiced excitation waveform has a magnitude of A/4, but

with a sign which is the output of a pseudo/random generator. This results in a

white (but not Gaussian) unvoiced excitation.

The unvoiced waveform has no D.C. component (i.e., average value of zero).

The reason for using a high-pass waveform for the voiced excitation is to avoid an

audible D.C. level shift on voiced/unvoiced transitions.

2.7 The Vocoder IC

Fig.2.1 & shows a complete analysis/synthesis sequence as performed by the

vocoder IC. The input to the analyzer is shown in (a). This is a speech fragment

of approximately 45 milliseconds in length. The residual output of the vocoder

ICs lattice analyzer is shown in (b). The corresponding excitation signal (from a

computer simulation) is shown in (c). The ICs lattice synthesizer, when excited

by this signal and programmed with the reflection coefficients computed by the

lattice analyzer, produced the synthetic speech signal shown in (d). Total length

of the fragment is 44 milliseconds, divided into four frames of 11 milliseconds

each. One set of pitch, voicing, energy, and reflection coefficient values was

transmitted each frame.

Fig.2.19 shows a die photograph of the IC, with major functional blocks

labeled. The three processors, the control sequencer, and parameter storage buffers

consume most of the area.

The individual processor data paths consist of a bit-slice arithmetic unit

attached to a data memory. The pitch of the data memory is narrower than that

of the arithmetic unit: thus in Fig.2.19 the processor data paths are L-shaped.

Groups of wires connecting the data memories to iheir arithmetic units are visible

46

(a)speech input

(b) residual

Fig.2.18 Analysis-synthesis sequence

47

(c) excitation

(d) synthetic speech output

48

Fig.2.19 Die photograph of vocoder IC

49

in the photograph. Besides these, most wires in the vocoder circuit connect control

sequencer outputs to the various processing elements.

The control sequencer contains two read-only memories (ROM's) and two pro

gram counters. Timing and control signals for all circuits are generated here. The

two ROM's contain a total of 6 kbit of microcode.

In addition to the major blocks which are labeled in Fig.2.19. the following

smaller circuits are identified by number:

(1) excitation source for synthesizer

(2) address indexing unit for Processor No. 1

(3) FIFO buffer for reflection coefficients

(4) look-up table for squaring operator

(5) address indexing unit for Processor No. 3

(6) FSM for Processor No. 3

The circuit is fabricated in a 4u NMOS process, containing 23.000 transistors on

a 0.265" x 0.225" die. The circuit requires a two-phase. 2.88 MHz clock and dissi

pates 600 mW.

2.8 Conclusions

The design of any integrated circuit involves decisions on a number of issues.

The LPC vocoder IC presented an interesting design problem due to the high

50

computation rate, the real-time constraint, and the fact that the algorithm as well

as the architecture could be adapted to suit the technology. Held in balance by

this design were performance, area efficiency and magnitude of design effort.

Quite a bit of efficiency was gained by recognizing that adaptive algorithms for

spectral and pitch analysis were well suited to a fully integrated approach. These

algorithms avoid the large amount of storage required by "block" algorithms,

which typically require buffering a large number of input samples. Also, the fact

that most of the algorithms used consisted of repetitions of identical stages (i.e..

lattice filter stages or pitch detector channels) reduces the complexity of the con

trol sequencer.

The most important aspect of a design such as this is ihe data path architec

ture. The single-accumulator architecture used in the three arithmetic units

resulted in a compact and effective circuit. By operating three of these arithmetic

units in parallel high computational throughput is obtained. It should be noted

that a parallel array multiplier circuit would occupy more circuit area than all

three arithmelic units combined. This suggests that array multipliers, which are

often found in signal processing ICs. are not always the best architectural choice.

51

Chapter 3 - The Macrocell Approach to Digital Signal Processor Design

3.1 Introduction

Custom circuit design and production has never accounted for more than a

small fraction of the IC industry. The vast majority of the digital integrated cir

cuits designed and manufactured are high-volume parts such as memories,

microprocessors, and standard logic families. Industrial production facilities are

geared towards the manufacture of these high-volume components. Market condi

tions tend to favor the production of high volume components, with little incen

tive for the design and manufacture of more specialized circuits.

Still there are reasons to believe that dedicated signal processing I.C.'s will

eventually play a more important role. One is the huge potential market

represented by the telecommunications industry. Another is the slow but steady

progress being made in the field of computer-aided design (CAD) of integrated cir

cuits.

Several competing approaches exist for custom and semi-custom integrated cir

cuit design. Gate arrays and standard-cell designs allow a short design cycle, but

a premium is paid in terms of efficiency. The approach taken here is the use of

large, parameterized blocks of circuitry called macrocells. These macrocells differ

from standard-cells in that they are large (ranging from several hundred to

several thousand transistors). Also, standard-cell designs consist of regular rows

of cells separated by wiring channels. Macrocells are assembled from a cell

library by forming a two-dimensional array of cells. This leads to macrocells

which are themselves very dense. A major consideration in macrocell-based

designs is the proper placement and interconnection of these large blocks.

Of primary importance is the ability to configure the macrocells for a

EMULATOR

DATA
FILES

DESIGN
FILE

COMPILER
PASS I

INTERMEDIATE
FILE

COMPILER
PASS 2

Fig.3.1 Macrocell design system software

52

53

particular application, resulting in a more efficient design. A number of parame

ters and options may be specified for the macrocells described here. These include

data path widths: programming and sizing of control memory, data memory and

programmed logic arrays (PLA's); and configuration of the interprocessor com

munication network. Thus a macrocell is not a fixed block of circuitry, but a class

of circuit blocks configured according to explicit rules from the underlying cell

library.

Design systems based on standard cells or gate arrays involve considerable

supporting software for simulation and layout generation. A similar approach is

taken here. The software system consists of an emulator and a two-pass silicon

compiler. The emulator and compiler accept as input a design file, which is a text

file prepared by the designer. This software system is diagrammed in Fig.3.1.

The design file has a very readable format. Each IC contains several processors

operating concurrently. The designer specifies hardware parameters and symbolic

microinstructions for each processor. Local constants and variables are declared.

Interprocessor and off-chip communications are specified by declaring global vari

ables which are external to the individual processors.

The emulator allows verification of circuit performance prior to fabrication. A

full set of debugging commands is available, such as tracing, breakpoints, single-

step, and setting or displaying variables. A non-interactive mode allows long

simulation runs to be performed.

The first pass of the compiler extracts hardware parameters from the design

file. Symbolic microcode is assembled into binary. The resulting hardware

description is input to the second pass, which accesses the cell library and assem

bles the macrocells. Placement and interconnect routines follow. The system is

intended to generate automatically a mask-level description of the I.C.

The term silicon compiler has been generously applied to specialized IC design

54

systems which generate circuit layouts automatically [21]. In fact, any layout-

generating software which does not fit into some other category (graphics editor,

router, etc.) is likely to be called a silicon compiler. The system described here

satisfies this definition.

A major goal in the design of the software package was process independence.

Integrated circuit fabrication processes evolve rapidly. Also, it is dificult for a

designer who does not control a captive fabrication facility to ensure continued

availability of a given process. For these reasons, a macrocell design system

should function for any fabrication process that might become available. This

goal was achieved by introducing a small number of parameters which character

ize the process for the purposes of the software package. The software may then

be used with any process by redesigning the cell library in the new process.

By limiting the focus of the design system to a family of signal processing

functions, efficient and specialized architectures may be employed. The range of

applications includes: speech processing (vocoders, sub-band and waveform

coders, speech recognition), telecommunications (modems, line equalizers, echo

cancellers), and digital audio (mixing, equalization, reverberation and other

effects). It is estimated that several dozen commercially valuable dedicated ICs

will be designed with this system.

The remainder of this chapter discusses the architecture and hardware organi

zation used in the macrocell system. Chapter 4 describes the design file and the

software system. In Chapter 5. example designs using the macrocell system are

presented. Details of the cell library and design file format are presented in

Appendices B and C respectively. Design file examples are given in Appendix D.

3.2 Processor Architecture

55

The LPC Vocoder circuit described in chapter 2 is essentially the prototype

architecture for the macrocell based designs considered here. This architecture is

characterized by the following:

(1) Multiple processors on a single IC.

(2) A bit-parallel, single accumulator processor architecture.

(3) Microprogramming of dedicated signal processing functions.

(4) Use of a finite state machine for decision-making.

(5) Bit-serial communications among the processors.

Study of algorithms within the target range indicated that the same general archi

tecture, with suitable parameterization, can perform the algorithms efficiently.

For convenience, discussion of the architecture is divided into several sections.

This section is an overview of the individual processor architecture. Sections 3.3

through 3.6 describe components df the processor in greater detail. Section 3.7

describes the multiprocessor and I/O aspects.

Each processor is organized into the following macrocells:

PC (program counter)

ROM (microcode read-only memory)

SPC (subprogram counter —optional)

AAU (address arithmetic unit —optional)

FSM(finite state machine —optional)

AUIO (arithmetic unit with I/O circuits)

RAM (processor data memory)

A fully configured processor is diagrammed in Fig.3.2.

I/O

1 RESET

AUIO <-)
M * 1

i I
u

w I
ROM

PC

FSM
>i

<
">J

t

H

RAM AAU r >

M

Fig.3.2 Macrocells forming a fully configured processor

56

57

The processor executes its microprogram (stored in ROM) once per sample

interval. The microprogram consist of a "main program", optionally followed by

a fixed number of "subprogram" iterations. The SPC macrocell is included only if

the subprogram is used. Except for this iteration pattern, there are no branches

(conditional or unconditional) in the program execution. The PC. ROM and

optional SPC macrocells are collectively known as the control sequencer and are

described in Section 3.3.

The output of the control sequencer is a sequence of control words. The con

trol word can be subdivided into a number of fields. One of these is the address

offset field. It is this field that is used as input to the AAU macrocell. The AAU

modifies the address offset to produce the effective address for the processor data

memory (RAM macrocell). In some simple cases, no modification is required and

the AAU macrocell is not included. In these cases the address offset field of the

control word serves directly as the effective address. The AAU macrocell is

described in Section 3.4.

Viewed together, the ROM. PC. SPC and AAU present a stream of horizontal

control and address words to the AUIO. RAM. and (optional) FSM macrocells.

The AUIO macrocell consists of an arithmetic unit and an I/O interface. The

arithmetic unit together with the RAM (data memory) macrocell form the signal

data path. This is where all operations on signals are performed. This data path

may be microcoded to perform fixed coefficient multiplies, variable coefficient mul

tiplies, add, subtract and accumulate opreations. division, and comparisons. In

addition, the data memory allows delay operations, introduction of constants and

table-lookup. The arithmetic unit and data memory are described in Section 3.5.

The final component of the processor assembly is the optional finite-state

machine (FSM). This is where logical operations, conditional operations and

decision-making are performed. The FSM accepts Boolean inputs from two

58

sources: a comparison in the arithmetic unit: and tests on index registers internal

to the AAU. The FSM operates on these inputs and its own internal state. FSM

opeations are controlled by a field of the control word. Outputs from the FSM are

used for two purposes: to control write cycles in the RAM macrocell: and to ini

tiate I/O to an off-chip host (see Section 3.7). The FSM is described in Section 3.6.

The processor assembly executes its microprogram once per sample interval.

Since primitive operations such as multiplies must be microcoded. it follows that

the sample rate must be substantially slower than the processor's clock rate. Oth

erwise, there would not be time for a significant amount of processing during the

sample interval. On the other hand, if the ratio of clock rate to sample rate

becomes very large, the architecture exhibits an imbalance wherein the control

ROM consumes nearly all of the silicon area, and the data path only a small frac

tion. This situation is aggravated since the horizontal control words are not

densely encoded.. Based on the relatively sizes of the library cells, the processor

architecture is most efficient if the ratio of clock rate to sample rate is between 50

and 1000. This corresponds to a sample rate range of 5 kHz to 100 kHz. since the

cell library is designed to operate at a maximum 5 MHz clock rate.

33 Control Sequencer

An important aspect of the macrocell design system is the fact that the indivi

dual processors are microprogrammed to perform dedicated tasks. In fact, most of

the design file input to the software system consists of microcode. The control

sequencers are programmed with this microcode, and therefore control all timing

and data-path operations for their processors. In addition, timing strobes gen

erated by the control sequencers can exit the processor assembly to be used for

control of interprocessor or off-chip communications.

CONTROL
OUTPUTS

Fig.3.3 Control sequencer

2 JSR
RET

RESET
INPUT

59

60

The control sequencer consists of the ROM macrocell, the PC (program

counter) macrocell. and the SPC (subprogram counter) macrocell. The subpro

gram is optional; if there is no subprogram, the SPC is not included. The outputs

of the ROM are known as the control word. The control word is very horizontal:

it contains many non-overlapping fields, each of which has an independent func

tion. Rarely are two different functions assigned to the same bit of the control

word.

The AUIO macrocell has many control inputs, accounting for perhaps half of

the control word. Therefore, provisions are made for defaulting unused signals in

this field to ground or Vdd. reducing the typical ROM width.

A few control signals are used to clear and increment the two program

counters. PC and SPC. It is required that the various processors on a chip be syn

chronized, i.e., each processor begins its microprogram on the same clock cycle at

the beginning of each sample interval. In order to allow this, one processor is

designated as the master processor for timing purposes. Contained in the control

word for the master processor is a signal named RESET. This signal is asserted at

the end of each sample interval, and serves to reset the PC (program counter)

macrocells for all processors on the chip. There are no inputs to the control

sequencer aside from this reset input.

There are two possible configurations for the control sequencer: with or

without a SPC. The following discussion applies to the case where there is a SPC.

The hardware is diagrammed in Fig.3.3.

The SPC macrocell requires two timing signals JSR and RET as control inputs.

The JSR signal is asserted at the end of the main program, and at the end of each

subprogram iteration. The RET signal is asserted concurrently with the final JSR

at the end of the final subprogram iteration. When JSR and RET occur simultane

ously, the SPC is cleared and remains cleared until the next JSR. "When JSR is

61

asserted but RET is inactive. SPC is loaded with a one and commences counting.

Thus. SPC equals zero during the main program and counts from one to an upper

limit during each subprogram iteration.

Note that the end of the final iteration of the subprogram need not be coin

cident with the end of the sample interval. The reason for this is that the total

execution times for different processor's microprograms will in general be unequal.

Therefore, there may be an idle interval following the end of the microprogram

lasting until the end of the sample.

Also note that the subroutine iterations are not explicitly counted. The sub

routine iterates the desired number of times only because the RET signal is

asserted on the proper cycle.

RESET. JSR. and RET are asserted two cycles before their respective actions are

effected. This delay is due to the pipeline register at the output of the control

ROM. As an example, suppose that there are 200 clock cycles in a sample inter

val. The program counter counts from zero to 199. Suppose that there are 60

instructions in the main program, and 40 instructions in each of three subprogram

iterations. The following table describes the sequence of events for a complete

sample interval:

PC value SPC value Timing signals

main program 0-59 0

58 0

1st subprogram 60-99 1-40

98 39

2nd subprogram 100-139 1-40

JSR

JSR

138 39

3rd subprogram 140-179 1-40

178 39

idle interval 180-199 0

198 0

JSR

JSR. RET

RESET

62

It is clear from the above table that the ROM must be programmed so that JSR is

asserted whenever PC = 58 or SPC = 39. and that RET must be asserted whenever

PC = 178. These signals are readily generated if the split control ROM structure

of Fig.3.3 is employed. In this arrangement, the and-plane (decoder) of the ROM

is split, with the upper half addressed by the SPC and the lower half addressed

by the PC. The or-plane (core) of the ROM is a single section with bitlines from

both halves connected together. This results in a given ROM output being asserted

if an instruction in either half of the ROM is programmed to assert the output.

Thus, in our example, location 39 in the upper-half ROM and location 178 in the

lower-half ROM both assert the JSR signal.

The lower half-ROM in the example only need contain locations 0-59. 178 and

198 (62 words). The upper half-ROM only contains locations 1-40 (40 words).

Thus the entire ROM contains 102 words. However, additional locations may be

included in the lower-half ROM if they are needed to generate external timing

strobes that happen to fall outside the main program, but still do not recur

periodically with the subprogram. The dual program counter. split-ROM arrange

ment makes it possible to generate such strobes, which would not be the case with

a more traditional single program counter approach.

Both PC and SPC provide complementary, buffered outputs which drive the

and-planes directly. The PC contains an additional output EOS (end-of-sample)

which is used for liming purposes in the AAU and in the host interface. The EOS

63

signal is always asserted during the last clock cycle of the sample interval (the

cycle following RESET).

3.4 Address Arithmetic Unit

In many traditional computer architectures, address arithmetic and data opera

tions are performed in the same arithmetic element. This can result in congestion

and inefficient data flow. In signal processing applications, the types of address

arithmetic encountered are less varied and may be categorized and implemented by

a special functional unit. This functional unit can then operate in parallel with

the arithmetic unit that processes the signal data, resulting in inreased

throughput. The AAU (address arithmetic unit) macrocell serves this purpose.

The AAU is included only if indexed adressing is used. The alternative is

direct addressing, where the address offset field of the control ROM is used as the

effective address for the RAM.

The AAU contains one or both of the counters IX and IY. Indexing by either or

both of these counters is possible. When indexed addressing is used, the index

counter is added to the address offset to give the effective address.

The IX counter counts the subroutine iterations. IX equals -1 during the main

program. 0 during the first subroutine iteration. 1 during the second iteration, and

so forth.

IX indexing is used if identical operations must be performed on a fixed number

of different data sets. The operation is coded into the subprogram of a processor.

The subprogram references IX-indexed arrays in the RAM data memory. Indexing

by the IX counter allows the subprogram to operate on elements of an array in

data memory, accessing a different array element each time the subprogram

iterates. This is the same sort of indexing used in the LPC vocoder IC (chapter 2)

Oddr

Off
ess

set

-

IX counter

i

0

2JI MUX

< \

\
\

V
I /

/

IY counter

<

0

2=1 MUX

\ f < 1

\
\

V
I /

/

*

lotch

effe Ctiv<
i
> oddres S

Fig.3.4 Counter mode AAU

x- index
control

y-index
control

64

oddress
offset IX counter

x-index
control

dato bus

IY register
\

i

0

> 4

2^1 MUX

i '

V
I

latch

effective address

Fig.3.5 Pointer mode AAU

lood
control

y-index
control

65

66

to multiplex the ten lattice filter sections into a single subprogram.

The IY counter has two modes: pointer mode and counter mode. In pointer

mode, the counter serves as a register which may be loaded from the data bus of

the arithmetic unit. This allows arbitrary address arithmetic to be performed in a

moderately efficient fashion. In counter mode. IY is a sample counter with a fixed

modulus.

Counter mode indexing by IY allows the main program to operate on elements

of an array in data memory, accessing different elements from sample to sample.

This permits multiplexed processing of a group of decimated signals. The imple

mentation of the scoring algorithm for the Gold pitch tracker, described in Section

2.5. is an example of this sort of multiplexing.

Pointer mode addressing, on the other hand, is useful for table look-up opera

tions. A good example is a controlled oscillator. A look-up table containing one

quadrant of a sinusoid is stored in RAM. The address sequence for this lookup

table is computed in the arithmetic unit, to give the desired phase and frequency.

The computed address is then transferred to the AAU. where it is used to index

into the look-up table.

The disadvantage of pointer-mode addressing is that it no longer preserves the

separation of address and signal data paths. It therefore is less efficient than the

IX and counter-mode IY indexing modes described above. Fortunately, pointer-

mode addressing is needed only in a small number of applications.

Fig.3.4 shows a block diagram for a fully configured counter mode AAU. while

Fig.3.5 shows a fully configured pointer mode AAU. Both types of IY indexing

are not available in a single AAU.

One final feature of the AAU. not illustrated in Figs. 3.4 and 3.5. is a provision

for providing outputs which test the IX and IY counters. Any number of test

outputs may be provided. The test outputs may test either individual bits of a

67

counter, or test for equality between a counter and a constant. These test outputs

are used as input to the FSM. and provide a useful hook into the address informa

tion. For example, it may be necessary to perform a given operation only during a

particular subprogram iteration. By testing IX it is possible to determine whether

the current iteration is the one in question, and condition an operation on this

information.

3.5 Processor Data Path

3.5.1 Data Path Organization

The data path architecture is of paramount importance in any computational

system. As a general rule, the most efficient architectures are highly specific to

particular applications. However, the set of target applications for the macrocell

system can reasonably be implemented using the same data path architecture. The

word length (data path width) may be specified to suit the requirements of the

particular application. A bit-slice organization for the arithmetic unit allows this

parameterization. The size of the data memory, and the I/O circuits that interface

the data path to other processors, may be configured as well.

The general philosophy of the arithmetic unit design was that of simplicity.

The number of busses is kept to a minimum, and registers are included only when

needed to allow pipelining. This approach results in a compact computational unit

whose aritmetic elements can be heavily utilized.

The AUIO macrocell contains the arithmetic unit and the processor I/O section.

The processor I/O section is described in Section 3.7. Together with the RAM

(data memory) macrocell. the arithmetic unit forms the main processor data path

where all signal processing is performed. Fig.3.6 shows the AUIO and RAM

r

AUIO<

^

PARALLEL I/O

£
PROCESSOR I/O

SECTION

MBUS3£
=>

DIVIDE
LOGIC

ARITHMETIC UNIT

BIT-SLICE

ARRAY
a

DECODERS U
BUFFERS

R/W
LOGIC

£BITLINES

ic

RAM

3-T

RAM

CELLS

or
UJ
o
o
u
UJ
o

Fig.3.6 AUIO and RAM macrocells

1 SERIAL
J I/O

QUOT
SIGN

COEF1
COEF2

CONTROL
INPUTS

68

(0)

COEF - -J
(serial
input)

OUOT-*

(send
output)

I

to data memory
I i

MOR

IE
2\ MUX

BARREL
SHIFTER

(0-7 BITS)

SOR

COMPLEMENTOR

(0) 1

MIR

—1~"

♦ m

2H MUX 3-1 MUX

T~\S—B
ADDER

ACC

Fig.3.7 Processor arithmetic unit

MBUS

69

to I/O
circuits

70

macrocells in block diagram form.

A large number of control signals enters the control section of the arithmetic

unit. These signals are decoded, buffered, and transmitted across the bit-slice

array.

In addition to control signals, two serial data inputs (COEF1 and COEF2). one

serial data output (QUOT). and the SIGN output connect to the arithmetic unit

control section.

3.5.2 Arithmetic Unit

The processor arithmetic unit (Fig.3.7) consists of a barrel shifter of depth

eight: a complementer; a saturating adder; three master-slave registers (MOR. SOR

and ACC); and a transparent latch (MIR). (The value loaded into a master-slave

register on one cycle appears at that register's outputs the following cycle,

whereas the effect of loading the transparent latch is immediate.) This processor

may be microprogrammed for all common signal processing functions. There is a

single bus (the "MBUS") through which I/O operations are performed.

All data is in two's complement format.

Every clock cycle, a new set of control signals is transmitted from the control

sequencer to the control section of the arithmetic unit. The following describes

the effect of these control signals.

The MOR (memory output register) is loaded each cycle with the value on the

data memory bitlines. This will be either the result of a read operation, or the

inverted write data.

A multiplexer at the input to the barrel shifter selects either the output of the

MOR or the output of the SOR.

The barrel shifter itself performs an arithmetic right shift of anywhere from

71

zero to seven bits. Three control signals are decoded to control the amount of

shift.

The SOR register is always loaded with the output of the barrel shifter.

A number of controls are provided for the A and B inputs of the saturating

adder. (The merits of saturating arithmetic were discussed in Section 2.2.) The A

inputs may be set to zero, or to the true, complement, or absolute value of the

SOR register. In addition, the A inputs may be gated (i.e.. bitwise and'ed) with

COEF1. COEF2 or the inverses of COEF1 or COEF2. This gating allows the

microcoding of two's complement multiplies, described in the following section.

The B inputs may be set to zero, MOR. or ACC.

The ACC (accumulator) has a single control option, "accumulate if positive",

used mainly for microcoding of divisions. When this option is enabled. ACC is

loaded with the adder output only if the adder output is non-negative. When the

accumulate if positive option is not enabled. ACC is always loaded with the adder

outputs.

A single bus (the MBUS) is provided. The MBUS is used for I/O. If an input

operation is in progress, the processor I/O section will enable the input data onto

the MBUS. At all other times, the ACC will be enabled onto the MBUS. \

The transparent latch MIR always takes its inputs from the MBUS. A control

is provided to either load or hold the value in the latch.

The COEF1 and COEF2 inputs are used for variable coefficient multiplies,

described in Section 3.5.3. The QUOT output is used for division, also described

in Section 3.5.3. The SIGN output is used as input to the FSM macrocell as

described in Section 3.6. The two inputs COEF1 and COEF2 are identical in func

tion: providing two sue inputs allows transmission of coefficients from two dis

tinct sources (e.g.. two procesors) to the same destination.

The pipeline organization of the arithmetic unit allows concurrent memory

72

access, barrel shift and add/accumulate operations. In addition, pipelining around

the MBUS prevents bus settling time from impacting throughput. A fast ripple

carry adder (identical to that described in Section 2.3) is used. This allows a

flexible bit-slice organization, but gives add times comparable to more complex

look-ahead designs.

Other organizations for single-accumulator arithmetic units are possible. One

popular arrangement is to put the barrel shifter after the accumulator rather than

before. In this case the least significant partiafproducts are accumulated first dur

ing a mutiply sequence, and the binary weight of the value in the accumulator

increases during the course of the multiply. This approach has the advantage that

the truncation errors are not as severe, gaining a few bits of precision for the same

wordlength. There are however two disadvantages: (1) an additional register is

needed to store intermediate results in a multiply-accumulate sequence: (2) an

external coefficient must be provided LSB-first. This is incompatible with the

MSB-first format which is needed to implement long-division operations

(described in the following section).

3.5.3 Multiply and Divide Operations

Essential to any signal processor architecture is the ability to perform

multiply-accumulate operations. Two cases are handled separately: multiplying

signal data by a variable coefficient external to the processor; and multiplying sig

nal data by a constant.

In the case of variable coefficients, the coefficient is available externally in a

bit-serial. MSB first, fractional two's complement format. Each processor arith

metic unit allows two such serial coefficient inputs. In fractional two's comple

ment form, the coefficient k can be expressed as follows:

i _ > • "-2 , *n-3 .
k = —*„-i + —=— + —-.— +.

To multiply a signal A by the coefficient k , the following equation is used:

A AkA = -~k„-XA + *»-2y + *»-3-j +•••

73

Each term on the right-hand side is a partial product, which is non-zero depending

on one of the bits of the coefficient k . To perform these variable-coefficient multi

plies, the external coefficient must be multiplexed into the control path for the

arithmetic unit. This allows the partial products to be summed sequentially, one

per clock cycle.

This method of multiplication is particularly convenient in conjunction with

the bit-serial approach to interprocessor communication. Two coefficient inputs

(COEF1 and COEF2) are provided for each processor arithmetic unit, along with

the control circuitry to enable these coefficients under microprogram control. A

coefficient may originate from the same processor that performs the multiply, or it

may originate from a different processor and be transmitted overa bit-serial path.

As an example, suppose that one wishes to multiply a variable A in data

memory by the 8-bit coefficient k . The following sequence is performed, each line

representing one clock cycle:

Read A from RAM into the MOR

Load the SOR from the MOR

If * 7=1 (negative) load -SOR into ACC; shift SOR right one bit

If *6=1 add SOR to ACC: shift SOR right one bit

74

If k5=1 add SOR to ACC; shift SOR right one bit

If it 4=1 add SOR to ACC; shift SOR right one bit

If k 3=1 add SOR to ACC: shift SOR right one bit

If * 2=1 add SOR to ACC; shift SOR right one bit

If k j=l add SOR to ACC; shift SOR right one bit

If k o=l add SOR to ACC

If one is performing a sequence of multiplies or multiply/accumulate operations,

the 8-bit multiplies can be performed at the rate of one every eight clock cycles.

In the case of a fixed coefficient, it is not necessary to input the coefficient into

the processor through the COEF inputs. Instead, a signed-digit representation of

the coefficient is embedded in the control stream. This is done by specifying a

sequence of shift depths and sign values. Thus, any coefficient g has a signed-digit

representation:

g = (-1)5°2'° + (-l)1^'1 + ...

Any binary number has a unique such representation with the minimum number

of digits. This is known as the canonical signed-digit (CSD) representation [22].

The importance of the CSD representation is that is minimizes the number of clock

cycles required to perform a multiply by a fixed coefficient. The multiply is per

formed by sequencing the barrel shifter and complementer so as to present the

desired terms to the accumulator.

Suppose, for example, that a variable A in data memory needs to be multiplied

by the constant g = .10111100. which may be recoded as

75

2-i + 2-2 - 2^

The following sequence performs the multiply:

read A from memory into MOR

load SOR with MOR shifted right one bit

load ACC with SOR: shift SOR right one bit

add SOR to ACC: shift SOR right four bits

add(-SOR)to ACC

The product gA is now in the accumulator.

In both the above cases, a sequence of multiplies may be performed, with the

result of each being accumulated. This is an efficient feature of the single-

accumulator architecture. The same accumulator is used for adding partial pro

ducts, and for accumulating the results of several multiplies.

Although not as prevalent as mutiplies in signal processing algorithms, divide

operations are also needed in some cases. Usually, a divide is used for normaliza

tion. The lattice LPC algorithm described in Section 2.4 requires a division to

compute a normalized cross-correlation value, for example.

A common situation requires performing a two-quadrant divide N /D. where

D > \N \. This will give a quotient between minus one and one. It is desirable to

createa two's complement signed quotient. In order to achieve this, first the abso

lute value of the numerator N is loaded into the accumulator, and the sign bit is

saved. The sign bit is immediately outputted as the sign bit of the bit-serial quo

tient. Then, an unsigned (one quadrant) long division of \N \/D is performed.

The resulting quotient bits are exclusive-or'ed with the saved sign bit. giving a

two's complement result.

76

In order to do the long division, the accumulate-if-positive control option is

used. This loads the accumulator only if the result of the accumulator operation

is not-negative. The inverted sign bit of the result of the accumulator operation is

used as the quotient bit. With \N \ in ACC, D/2 in SOR, and the accumulate-if-

positive option enabled, the following operation is repeated:

load ACC - SOR into ACC only if positive ; shift SOR right one bit

Each time this operation is performed, another bit of the quotient is computed,

that bit being the sign bit (inverted) of ACC-SOR.

Hardware for performing the absolute value, accumulate-if-positive. sign-bit

storage and exclusive-oring of the quotient bit is contained in the arithmetic unit.

This allows two-quadrant divides to be performed, with the resulting quotient

being in the same bit-serial, two's complement. MSB-first format that is required

for coefficients in variable-coefficient multiplies.

3.5.4 Data Memory

The data memory (RAM) macrocell is used for storage of temporary results

and slate variables of the signal processing algorithm. As such, a given memory

location is typically written at least once each sample interval. This generally

eliminates the need to explicitly refresh memory locations: thus no hardware

refresh is provided.

Read-only and read-write memory locations are intermixed in the RAM. The

read-only locations allow introduction of constants into the computation. Note

that in traditional architectures, constant introduction is accomplished by the use

of immediate operands, requiring a gateway between control and data paths. The

77

fact that the RAM is a macrocell configured for a dedicated application allows a

more direct and efficient method of introducing constants.

Read-only locations also allow the implementation of look-up tables, although

the current memory size limit of 64 words makes larger look-up tables impracti

cal.

3.6 Finite State Machine

In a traditional computer architecture, the only conditional operations avail

able are conditional branch operations. Usually, condition code flags are set by

testing one or more CPU registers. Then, a conditional branch operation may be

executed. The branch takes place only if the specified condition is satisfied by the

flags.

Another characteristic of the traditional approach is that all decision-making

logic is performed in the same ALU that processes numeric data. This is con

venient for general-purpose CPU's since the type of decision making is not known

in advance, and the hardware cannot be tailored to the application.

A radically different approach to decision-making was taken in the macrocell-

based design system. First, a conditional write operation is made available to the

programmer, as opposed to the conditional branch. Second. Boolean data is pro

cessed in a finite state machine (FSM). separate from and concurrent with the pro

cessing of numeric data in the arithmetic unit.

The configuration of the FSM with theprocessor data path is shown in Fig.3.8.

The use of conditional assignments as opposed to conditional branches is not

new. A classic result from the theory of programming languages [23] stales the

the conditional assignment statement is equally as general as the conditional

branch, although not necessarily as efficient. Intuitively, a conditional assignment

78

Fig.3.S Use of finite state machine

79

acts as follows:

if (condition is satisfied) then (assign a value to a variable)

while a conditional branch does the following:

if (condition is satisfied) then

(branch to different stretch of code)

The conditional branch has two major disadvantages if used in signal proces

sors such as those considered here. First, if conditional branches are used the exe

cution time of the program is data-dependent. This is undesirable in a real-time

sampled system, since the program must execute in its entirety each fixed-length

sample interval. Also, the interprocessor communication (Section 3.7) is depen

dent upon the programs of the processors being synchronized with one another.

Second, the control flow is also data-dependent. This makes it less practical and

less efficient to pipeline control sequence generation with data operations (i.e..

overlapped fetch/execute).

The conditional write approach has one major drawback. It is much less

efficient than the conditional branch if the test selects between two long, substan

tially different pieces of code. Fortunately, this situation seldom arises in signal

processor design.

An important feature of FSM usage in the macrocell approach is that the size

and contents of the FSM is tailored to the application. Thus, the state variables of

the FSM can be selected to correspond to conditions present in the signal process

ing algorithm. A field of the horizontal control word is used to modify the state

of the FSM: this modification is also made algorithm-specific.

80

In Section 2.5.2, the design of a customized FSM for the LPC Vocoder IC was

described. This FSM was sucessfully used in implementing the Gold pilch tracker

algorithm.

The design file input (described in Chapter 4) allows the design of the FSM to

be easily specified. This is a very powerful capability, since "FSM instructions"

may be specified and then later used in the microprogram for the processor. In

effect, the user is able to design part of his instruction set prior to programming

the processor.

The FSM is implemented as a PLA (programmed logic array) with an output

register for the state, and feedback from the output register to the PLA inputs.

Inputs to the FSM come from three sources:

(1) The sign bit of the ACC register in the AUIO macrocell

(2) "test" outputs of the AAU macrocell

(3) A field of the control word, used to modify the FSM.

Outputs of the FSM go to two possible places:

(1) the CC (condition code) output goes to the AUIO macrocell. and must be

asserted to enable conditional write instructions

(2) the MOF (middle of frame) and EOF (end of frame) outputs, used to ini

tiate host input and host output operations. These signals go to the Host Inter

face, discussed in Section 3.7.

3.7 Input-Output and Communications

3.7.1 Off-chip I/O

81

In designing any system, the issue of external interface is always important. In

designing digital ICs. how the circuit will integrate into larger systems is a matter

of concern. Circuits designed with the system described here interface in two dis

tinct ways (Fig.3.9).

Signal I/O refers to transfers of data at the sample rate over the signal I/O bus.

Here, the timing of data transfers is synchronous with the signal processing ICs

clock. The transfers are controlled by strobes generated by the signal processing

IC. Since the clock rate is considerably higher than the sample rate, transfer of a

number of signals is possible each sample interval. These signals are the

sampled-data inputs and outputs of the IC.

Host I/O refers to the transfer of data between the signal processing IC and a

host system. The host is typically a microprocessor, with the signal processing IC

behaving as a peripheral chip. In general, the host is incapable of sustained data

transfers at the signal sample rate, since it has other functions to perform as well.

Instead, a slower frame rate is defined. The frame rate is determined by the signal

processing IC. which interrupts the host with once-per-frame signals. The host

responds to these interrupts by reading and writing data in a buffer (the host

interface) contained in the signal processing IC. These data transfers occur asyn

chronously with the signal processing ICs clock. This simple handshaking

arrangement guarantees the validity of the data transfer.

Frame interrupts occur twice per frame (Fig.3.10). The write interrupt

(WINT*) occurs close to the end of frame. The host responds to WINT* by writ

ing into the host input interface. This must be performed before the end of the

frame. The new data is available to the signal processor after the beginning of the

new frame.

The read interrupt (RINT*) occurs just after the beginning of a frame. The

host responds by reading from the host output interface. The data read was

DATA BUS

/\
SIGNAL

STROBES

4%

iz

SIGNAL
PROCESSING

IC

RINT
WINT

1Z

READ
WRITE

/v /\

iz
HOST

MICROCOMPUTER

fig.3.9 Signal and host interfaces

HOST

DATA

BASE

82

RINT

fê
Start

Frame

WINT

Host reods

fromIC

Fig.3.10 Frame timing sequence

Host writes

toIC

WINT / RINT

Start

Frame

83

84

collected during the last sample of the previous frame.

The frame discipline described above was designed to support signal analysis

and synthesis operations by allowing a frame rate to be denned for the purposes

of host I/O. Transfer of sample-rate signals is done on a separate bus to prevent

congestion on the host processor's bus. The resulting I/O structure is not com

pletely general, but goes a long way towards integrating the signal processor IC

into a system constructed from standard components.

3.7.2 Interprocessor Communication

Internally, the signal processing IC contains one or more processors as shown

in Fig.3.11. If more than one processor is used the chip designer needs a way of

sending signals between processors, as well as on- and oflF-chip. This is done by

providing for serial communication paths among the processors, and between the

processors and the host interface. The number and function of these paths can be

selected to suit the application. Each path has a source and a destination.

The possible sources are the MBUS of a processor; the QUOT output of a pro

cessor; and the host interface. The possible destinations are the MBUS of a proces

sor: the COEFl or COEF2 inputs of a processor; and the host interface.

It is not required that the source and destination be different processors.

Although it would be pointless to have the MBUS of a single processor as both

source and destination, it is often useful to transmit from the MBUS to a COEFl

or COEF2 input on the same processor. This allows two variables local to the

processor to be multiplied together. Similarly, one might wish to transmit from

the QUOT output to the MBUS to obtain locally the result of a division.

If the source of a serial communication path is the MBUS. a parallel-serial con

verter must be provided at the source end since the MBUS data is in bit-parallel

i_

L.

Signal
Data Bus

<z

PROCESSOR

PROCESSOR
2

PROCESSOR
3

PROCESSOR
4

Fig.3.11 Internal communications paths

Host

Dato

Bus

85

86

form. A separate parallel-serial converter is provided for each communication

path. Similarly, a serial-parallel converter is provided at the destination end of a

serial communication path if the destination is the MBUS.

The serial-parallel and parallel-serial converters are included in the processor

I/O section as needed. A separate option provides for a parallel port. This port is

used for signal I/O (discussed above). Only one processor per IC may perform

signal 10. The parallel port is also used to provide a pathway from the MBUS to

the AAU macrocell if pointer-mode addressing is being used. If neither signal 1/0

or pointer-mode addressing is being performed, the parallel port hardware is not

included in the processor 10 section.

Provision is made for including a temporary storage latch in the parail el-serial

or serial-parallel converters. This is necessary to decouple the timing of the

source and destination processors. Thus, the destination processor may access the

data being transmitted over the communication path at any time. The data

retrieved will be that which was most recently generated by the source processor

(taking into account the delay of clocking the bit-serial data). This allows the

microprogram for a processor to perform an input or output operation at any

point in time, independently of the other processors.

3.73 Host Interface

The Host Interface consists of the 1/0 sequencer and the HI (host interface)

macrocell. This arrangement is shown in Fig.3.12. The HI macrocell consists of

FIFO buffers for data being transmitted to or from the host. Thus, there are two

major pieces to HI. the host output interface and the host input interface. If only

host input (output) is used, the host output (input) interface is not included.

The I/O sequencer is a small finite-state machine which is clocked by the EOS

HOST

INPUT

NTERFACE

HOST

OUTPUT

INTERFACE

HOST
DATA BUS

SERIAL DATA TO PROCESSORS

a

o
o
2
H
3D
O
r

MOF EOF

1

I/O

SEQUENCER

*-READ

«-WRITE

h^RINT

>w7nt
<—-—

to
host

SERIAL DATA
FROM PROCESSORS

Flg.3.12 Host interface hardware

87

88

WNP

RNP EOF

LS

FS

Fig.3.13 State diagram for the host interface

S/P CONVERTER

$

±Z.

FIFO

SECTION

v
S/P CONVERTERErT

at
FIFO

SECTION

?^

<s7
OUTPUT

BUS

S/P CONVERTER)*

7T
FIFO

SECTION

SERIAL
DATA IN

SERIAL
DATA IN

SEn.AL
DATA IN

Fig. 3.14 Split-FIFO arrangement for the Host Output Interface

89

90

(end of sample) signal (discussed in Section 3.3). Thus the sequencer never

changes states in the middle of a sample. The I/O sequencer controls the reading

and writing of data in the FIFO's and determines the sequence of events during

the frame. There are four states as shown in Fig.3.13.

There are four states:

0 WNP write not in progress

1 RNP read not in progress

2 LS last sample of frame

3 FS first sample in frame

The signals MOF and EOF (Section 3.6) drive the state sequencer through its

sequence. Ordinarily, the frame begins in state 3. progresses through states 0 and

1. and ends in state 2.

The role of the host output interface is to collect the various bit-serial signals

coming in from the processors: convert them into parallel form: and store them in

a FIFO. Once this is done, the FIFO may be read by the host. The timing is

arranged so that the FIFO is loaded with data produced by the processors during

the last sample of the frame. (Some of the signals may not arrive until the begin

ning of the first sample of the following frame due to clocking delays of the serial

paths.) At the end of the first sample the RINT* interrupt is asserted and the

host responds by reading the data out of the FIFO.

It is assumed that the host has read the complete contents of the FIFO before a

nominal two millisecond refresh interval has elapsed. Therefore no refreshing is

necessary for the host output interface.

The host input interface is somewhat more complex than the host output inter

face for two reasons. First, the frame consists of many samples: the host input

91

interface must transmit data to the processors on each sample. The host output

interface need only receive data from the processors on the final sample of the

frame. Second, the frame may exceed a refresh interval in length. Consequently,

the data stored in the host input interface must be refreshed.

To accomodate these added complexities, a double buffered FIFO arangement is

used in the host input interface. The MOF flag causes an immediateWINT* inter

rupt, and the sequencer enters state 1. The host proceeds to write the data into

the "master" section of the double-buffered FIFO. At correct moments near the

end of the frame, the data are transfered from the "master" to the "slave" FIFO.

The timing is arranged so that the processors receive the new data starting with

the first sample of the new frame.

The "master" section of the FIFO is not refreshed: therefore the MOF signal

must be asserted less than a refresh interval before the end of the frame, but long

enough before that the host is always able to fill the "master" FIFO. The "slave"

FIFO is refreshed throughout the frame.

In both the input and output interfaces a split-FIFO arrangement was used.

The arrangement for the host output interface is illustrated in Fig.3.14.

The idea here is that each serial communication path feeds its own FIFO sec

tion. A FIFO section may contain one or more words of storage. Inclusion of

more than one word of storage in a single FIFO section is allowed for two reasons:

(1) The host interface wordlength may be less that the wordlength of the data

coming from the processor, so that more than one word is needed: and (2) an

array of data, indexed by the IX or IY counter of the source processor, can be

placed in the FIFO section.

Operation of the split FIFO is as follows. For the purposes of writing into the

FIFO, the sections operate independently. Each processor sees a separate FIFO

which it can clear and write into until it is full. For the purposes of reading out

92

of the FIFO the sections are joined and act as a single, large FIFO. For reading, the

FIFO is initialized at the same time the RINT* interrupt is asserted. The host may

then read its entire contents one word at a time.

The host input interface is split in an analogous fashion. The split FIFO

approach provides an interesting solution to the problem of merging together

several unrelated and unsynchronized streams of data and formatting them into a

single block.

3.8 Cell Library

3.8.1 Characteristics of Library Cells

A major part of the macrocell based design system is the cell library. The

library consists of 160 cells, each of which was designed by hand and digitized

using the graphics editor Kic [24]. This may seem at first a rather large number,

but many of the cells are either very simple (containing just a few geometries) or

are slightly altered versions of other cells in the library.

The cells are designed specifically for the role of being formed into the macro-

cells described in the preceding sections. There are several ways in which this

requirement affects the design of the library cells.

Many of the macrocells (specifically: AUIO. PC. SPC. AAL. and HI) are organ

ized in a bit-slice fashion. These macrocells have several common characteristics:

(1) A GND (ground) line busses along the left side of the macrocell. This is

formed from library cells whose names typically end in the suffix ".gnd".

(2) Each bit of the bit slice has a fixed pitch (for the 3u NMOS cell library, the

93

pitch is 66u).

(3) Generally, polysilicon data busses run vertically through the bit slices.

(4) Aluminum control wires run horizontally across the bit slices. Aluminum

wires for power, ground and clocks have the same orientation.

(5) These control wires are driven by cells along the right side of the macro-

cell. These cells have names typically ending in the suffix ".ctl".

(6) Vdd (power), phil and phi2 (two-phase system clocks) bus along the right

side of the macrocell. through the ".ctl" cells.

A convenient feature of the bit-slice organization is that distribution of power,

ground, clock and control lines is facilitated by the way in which the cells are

tiled together. Thus, within limits, it is desirable to collapse as much circuitry as

possible into large bit-slice macrocells.

Control inputs to a bit-slice macrocell have terminals along the extreme right-

hand side of the macrocell. Data inputs and outputs are along either the top or

bottom, connecting to the individual bit slices. There are no terminals along the

left side.

Another convenient aspect of the bit-slice approach is that a bit slice array is

easily configurable. Word lengths may be varied simply by including the

appropriate number of slices. In the case of the HI (host interface) and I/O section

of the AUIO macrocells. sections of the bit-slice are stacked vertically to imple

ment circuitry needed to store and transmit global variables. The number and

function of the global variables is completely dependent on the application and its

94

design file description. The fact that the AUIO and HI macrocells may be built up

from the design file declarations of global variables is one of the more powerful

features of the macrocell system.

The two-phase clock (phil and phi2) is distributed globally to all macrocells.

At this time, off-chip clock drivers are assumed. This clock is symmetrical and

non-overlapping. A timing convention for most signals running between macro-

cells is the following. At the source macrocell. the signal is latched by phil. At

the receiving end the signal is assumed to be valid during phi2. This convention

assures that a fraction of the clock cycle is available for signal propagation

between macrocells. The exceptions to this convention are: PC and SPC outputs,

which feed ROM address inputs: RAM bitlines and control signals which connect

to AUIO: and signals going to and from bonding pad circuits.

The cell library is designed to function at the target clock frequency (5 MHz in

this case) over all allowable parameterizations of the macrocells. This requires

design for "worst case" in many instances. Improved speed/power performance

would be achieved if the individual cells could be parameterized (with regards to

transistor sizes, for example).

Each cell is a UNIX file [25]. All cells are contained in a single UNIX directory.

Also contained in this directory, and used by the software system, are the files

.KIC [26], descriptors (Section 4.2), and .techno (Sections 3.8.2 and 4.3).

3.8.2 Technology Parameters for Macrocells

One goal of the software package is that it be applicable to different semicon

ductor processes without substantial modification. Clearly, the cell library itself

must be designed using the rules and characteristics of the particular process.

However, by suitable parameterization of dimensional information, the software

Fig.3.15 Technology parameters for macrocells

2

Va
2

Fig.3.16 Technology parameters for the RAM macrocell

8 8

WZ777Z y//////////////////////////777?\

77?. W////////////////////////////77ZZ.

8 8

Fig.3.17 Technology parameters for the bonding padgroups

95

]*

96

package is technology-independent.

A set of technology parameters is provided that describes the width and posi

tion of power, ground and clock conductors with respect to the boundingboxes of

the macrocells. (Additional technology parameters relating to signal wiring are

described in Section 4.3.3.) Dimensions are given below in units of lambda (1.5

micron) for the 3 micron NMOS library.

For all macrocells except RAM and the bonding pad groups, the following

parameters apply (Fig.3.15):

(1) width of Vdd conductor — 20

(2) width of ground conductor — 20

(3) width of clock conductors — 4

(4) spacing from Vdd conductor to phi2 — 3

(5) spacing from phi2 to phil — 8

(6) spacing from phil to edge of bounding box — 7

For the RAM macrocell. the following are used (Fig.3.16):

(2) width of ground conductor — 20

(7) width of Vdd conductor — 9

For the bonding pad groups, the following apply (Fig.3.17):

(8) Width of Vdd and ground conductors — 50

(9) Spacing between Vdd and ground conductors —117

97

Chapter4 - Software Package for the Macrocell Design System

4.1 Design File and Front-end Software

4.1.1 The Design File

A primary goal in creating the format for the design file is that it be easy to

prepare and modify. Otherwise, the advantages of automatic layout generation

would be partially cancelled. The design file is the main user interface to the sys

tem since it is the input to both the emulator and the silicon compiler. In con

structing this interface it is helpful to consider the user of the system, and the

purpose for which it is used.

Although practical signal processors operate in real-time, much algorithmic

research involves non-real-time simulations. There is. however, a gap between

that which may be simulated and that which is efficient to implement on a real

time architecture. Bridging this gap isa major goal of thesystem. Adesigner who

knows both the requirements of the algorithm and the capabilities of the

hardware is in a position to understand the trade-offs involved and therefore

optimize his design.

The design system addresses this situation by providing an interface thai

allows both simulation and hardware specification. The level of expertise required

to use the system is consistent with that expected for a typical signal processing

researcher. No prior knowledge of integrated circuit design is necessary.

The design file format may be viewed as a programming language for mul

tiprocessor ICs with a specific architecture. Programming languages generally

become easy to use if they involve abstraction of complex concepts. Several exam

ples of abstraction in the design file are: symbolic names for processors, variables.

98

constants, and instructions: a register-transfer description of the data-path: and a

simple way of specifying interprocessor and off-chip communications. In each of

these cases, much of the hardware complexity is hidden from the user. Yet very

little efficiency is sacrificed considering the amount of simplicity gained.

The design file begins by declaring global variables, and specifying which of

these are used for off-chip communications over the host or signal interfaces. Glo-

bals which are not used for off-chip communications are presumed to be used for

interprocessor communications: however, the source and destination processors are

not specified explicitly. Instead, this information is implicit in the microcode for

the processors which reference these globals.

The following is an example of the global declaration and I/O specification part

of a design file.

.global

begin

/* host input globals */

ks[l 0] <S >: /* reflection coefficients */

pitch<&>; /* pitch period: zero means unvoiced */

amplitude<16 >: /* excitation amplitude */

/* signal output global */

outpui<12>: '* synthetic speech output */

end

.io <8 > /* 1/0 description */

begin

infile : ks. pitch, amplitude : host_put:

outfile : output : signal_put:

end

99

(Comments begin and end with the sequences "/*" and "*/".)

The keyword ".global" introduces global declarations. The declaration

"ks[lO]<$>;" declares an array of ten eight-bit global variables. Arrays of global

variables may be used for host input and output, and are indexed by the IY or IX

counters of the destination or source processor. Array globals are not permitted

for signal I/O or interprocessor communications. The declaration "ampli-

tude<16>" declares a 16-bit scalar (non-array) global variable.

The sequence ".io <&>* introduces the I/O declarations, and indicates that an

eight-bit host interface is to be used. (The other option is 16 bits, covering the

two most common microprocessor bus widths.) "infile" and "outfile" are UNIX

file names to be used for simulations. These are ASCII text files, so that test cases

may be easily prepared.

Following these global and I/O specifications is a definition of each of the pro

cessors. Each processor section begins by specifying the processor wordlength. and

declaring local variables and constants. An optional section specifying a FSM is

next, followed by the symbolic microcode for the main program and subprogram,

if used.

The processor wordlength must be an even number no larger than 32. Often,

this is a critical parameter affecting the dynamic range and noise performance of

the IC. Through simulation, the designer may optimize this value.

100

Local variables and constants all have the same wordlength as the processor

itself. The variables may be either scalars or arrays. An array variable is usually

used in conjunction with indexing by the IY or IX counters.

The following is an example of the initial section of a processor declaration,

showing the local and constant declarations.

.processor : filter <18>

begin

.local /* local variables for processor */

begin

.pitch, .amplitude; /* local copies of pitch, amplitude */

c[lOj; /* lattice filter state variables */

end

.constant /* local constants for processor */

begin

ONE-1;

FRAMELENGTH = 180: /* gives frame of 180 samples (22.5 ms) */

end

/* . .. (fsm declaration and microcode go here) . . . */

end /* end of processor "filter" */

The first line above declares an 18-bit processor with symbolic name "filter". The

101

symbolic processor name is useful when running the emulator in debug mode.

A section may be included to define an FSM. This is a powerful device, since

symbolic instructions are defined which modify the FSM state. These instructions

may then be used in the microcode for the main program and subprogram.

The FSM is described by giving a symbolic name to each state variable, and

providing equations which specify the state transitions. These Boolean equations

are translated by the software into a truth table format suitable for programming

the PLA-based FSM.

One bit of state for the FSM is usually called "cc". for "condition code". It is

this bit which must be set (true) if a conditional write operation is to be enabled.

Also, oneof the FSM inputs is called called "sign". and refers to the sign bit of the

accumulator. Thus, recalling that the contents of the accumulator is in two's-

complement form, if sign is zero, the accumulator is non-negative.

Simple examples of FSM instructions which may be defined are "SET" and

"AND" instructions. The "SET" instruction sets "cc" for non-negative accumula

tor. The "AND" instruction performs a logical and of "cc" with the condition that

the accumulator is non-negative. An FSM declaration defining just these two

instructions would be the following:

.fsm

begin

SET : cc = Isign:

AND : cc = Ssign & cc:

end

More complex FSM instruction sets may be defined for specific applications.

If host I/O is used, one of the processors must be configured with an FSM

102

which defines two outputs called mof (middle-of-frame) and eof (end of frame).

The eof signal is asserted during the sample before the last sample in the frame,

and results in a RINT* (read interrupt) being sent to the host a short time later.

The mof signal is also needed if host input, or IY-indexed host output is used,

mof is asserted no longer than a refresh interval (two milliseconds) prior to eof.

However, the interval between mof and eof must be sufficient for the host to

write all necessary input data into the host input interface.

Following the variable, constant, and FSM declarations is the microcode for the

processor. Because of the pipeline nature of the data path, the instruction set is

divided into groups, with one instruction per group allowed in a single line of

microcode. Each line of microcode corresponds to a single clock cycle.

These are the instruction groups:

(1) Memory group —reads and writes, which may be indexed or conditional.

(2) The SOR group, which controls the contents of the SOR register.

(3) The accumulator group, which controls the contents of the ACC register.

(4) The "le" (latch enable) instruction, controlling the MIR latch.

(5) The "mbus" group, which enable signals onto the processor's "mbus" (by

default. mbus=acc):

(6) The user-defined FSM group.

(7) The "aip" (accumulate-if-positive) instruction

(8) Instructions setting up a correspondence between global variables and the

coefficient inputs, quotient outputs, or "mbus": or assigning the mbus to l\

(pointer mode only), (several non-conflicting instructions from this group may be

used in the same line.)

103

Thus, a single line of microcode may contain many of the above instruction

groups, as in the following:

rx(C[0]). sor:«=mor>4. acc:«=acc+sor. mbus=pitch. le. SET:

There are several thing happening here:

An IX-indexed read from the local array C[] —group (1):

Assigning MOR. shifted right 4 bits, to SOR —group (2):

Adding SOR to the accumulator —group (3)

Enabling the global variable"pitch" onto the mbus —group (5);

Enabling the MIR latch —group (4);

Executing the user-defined FSM instruction "SET" —group (6):

As with any assembler-level programming, familiarity with the processor archi

tecture is needed in order to write efficient code.

In the design file, the main program may be begin with one of the following

three types of sequences:

.main_pr

.main_pr <&>

.main_pr <*>

In the first form, no IY indexing is used by the processor. In the second form, the

IY indexing is used in counter mode with modulus (decimation ratio) eight. In the

third form, the IY indexing is used in pointer mode.

Similarly, the subprogram might begin as follows:

104

.sub_pr <10>

In this case, there would be ten iterations of the subprogram.

Within the main program or subprogram, commas are used to separate the

different instructions within asingle line of microcode, and asemicolon terminates

the line. The entire main program or subprogram is bracketed by the "begin" and

"end" keywords.

In summary, the design file contains declarations for global variables and I/O
specifications, followed by ablock for each processor. The processor block defines
local variables and constants: the FSM: and the microcode for the main program

and subprogram.

4.1.2 The Emulator

The emulator allows simulation of the signal processing IC from the design file.

This is done in non-real-time. For a typical design file, on a VAX 11-750 or

68000-based Sun Workstation, the ratio of emulator simulation time to real time

might be 500 or 1000.

Upon invoking the emulator, the design file is read in and checked for errors.
If there are no fatal errors, an interactive mode is entered. A number of debug

commands are available, including:

Tracing a variable:

Printing a variable:

Setting a breakpoint at a point in the source program:

Setting the value of a variable:

Running a simulation for a given number ofsamples;

105

Aliasing a debug command to a shorter form.

These debug commands considerably reduce the amount of time needed to prepare

a design file for a given application. Also, single-stepping through a program is a

very good way to familiarize oneself with the architecture of the data path.

Much care was taken to ensure that the emulation exactly matches the

hardware itself. Truncation, round-off. and other arithmetic details are emulated

precisely.

The ability to simulate the signal processing IC from the design file, rather than

from a description of the circuit layout, is critical to the success of the entire

macrocell approach. The reason is thai signal processors require exceptionally

long test sequences to fully verify performance —perhaps several million clock

.cycles, or more. For this reason, verification at the circuit level is essentially

impossible. Thus the only practical choice for signal processor design is to verify

performance from a higher-level description such as the design file. The layout,

generated automatically from the design file, is "correct by construction".

4.13 The silicon compiler first pass

The compiler first pass resembles the emulator in its initial phases: in fact,

many subroutines which parse the design file are shared between the two pro

grams. After parsing, the first pass generates an intermediate file, a process which

is analogous to intermediate code generation in a compiler for a programming

language. Besides assembling the microcode into binary, the macrocells must be

specified at a hardware level. This involves extracting hardware parameters such

as the following:

106

Processor word lengths

Processor data memory sizes

Constant programming of data memory words

Configuration of IX and IY counters in the AAU

Translation of FSM declaration into and-plane and or-plane code

Program counter modulus

Subprogram counter modulus

Programming of microcode in ROM

Inclusion of parallel-serial and serial-parallel registers in AUIO

Constructing the host interface from the host-io declarations

In Section 4.2, the format for the intermediate file is described. Section 4.3

discusses the placement and routing of the processor assemblies.

4.2 Intermediate File and Macrocell Assembly

The first pass of the compiler outputs an intermediate file. This intermediate

file is a hardware description defining the macrocells and how they are intercon

nected. The macrocells are defined by describing how the library cells are to be

tiled (arrayed) to form the macrocells. The interconnect is defined by providing

unique names for the macrocells* terminals, and giving a net list.

Several examples of tiling programs exist [27]. Tiling is a useful method for

generating a complex block of circuitry from smaller cells. The two most com

mon organizations for a block of circuitry are the bit-slice organization (useful for

arithmetic units and register files) and array-type structures such as RAM's.

ROM's and PLA's. The second pass of the compiler employs a tiling routine that

can generate either of these structures.

107

Two features (generally lacking in existing programs) were needed for the til

ing routine used here. One is that terminal information must be preserved by the

tiling process, so that the assembled macrocells could then be used as input to

placement and routing routines. The second is that dimensional information must

be encapsulated in an easily modifiable form. This makes it possible to use the

software with cell libraries designed in different technologies.

To this end. dimensional information defining the sizes of library cells and

their terminal locations is contained in a descriptor file. The output of the first

pass contains no dimensional information, and is therefore technology indepen

dent. The descriptor file contains an entry for each cell in the cell library. A typ

ical entry might look like this:

cell ix.ctl 66 88

right eos 66 25

right inc 66 72

The keyword "cell" begins the entry for the cell "ix.ctl". The numbers "66 88"

are the tesselation dimensions of the cell. The x-dimension is 66 and the y-

dimension 88. Tesselation dimensions specify the distance between origins of cells

in adjacent rows and columns of an array. Cells are assumed to contain

geometries mostly in the first quadrant, with the origin being at or near the lower

left corner of the cell.

Note however that the tesselation dimensions are not the same as the dimen

sions of the cell's bounding box. Thus when cells are tiled, their bounding boxes

may overlap, abutl. or be separated by a gap.

The keyword "right" denotes a terminal on the right edge of the cell. Thus the

108

cell "ix.ctl" has two terminals, one of which is named "eos" and has x and y coor

dinates 66 and 25.

Given the information in the descriptor file, the macrocells are defined in the

hardware description by simple listing the cells in each row of the array. This is

done row by row. starting at the bottom of the array. The cells in a given row are

listed from left to right. The following is an example of a hardware description

for a program counter:

begin

counter.gnd. counter.O. counter.O. counter.O. pc.ctl:

pc.O, pc.l. pc.l, pc.l. pc.2:

end

To make more complex examples readable, a shorthand notation is allowed for

cells within a row. The following description is equivalent:

begin

counterOgnd. .0. .0. .0). pc.ctl:

pc(.0. .1..1..1..2);

end

The tiling routine assembles macrocells from these descriptions. The location

of terminals relative to the origin of the macrocell is determined. These terminals

are given unique names by appending the terminal name in the descriptor file to

the macrocell name and the row and column in which the terminal occurs. For

example.

109

prO_pc[1.5]_reset

refers to the terminal "reset" in the first row. fifth column of the macrocell

prO_pc (meaning the program counter for processor number zero).

The net-list portion of the hardware description uses these unique terminal

names to specify interconnection. A unique node number is assigned to each set of

terminals which are interconnected. This allows net-list verification subsequent

to routing using a circuit extractor program such as Mextra [28].

Power, ground and clock connections are not specified in the same way as the

signal terminals. Instead, entry points for power, ground and clock connections

bear a standard relationship to the bounding box of the macrocell. and are han

dled separately during placement and routing.

43 Placement and routing

43.1 Outline of placement and routing strategy

The problem of placement and routing of integrated circuitry has received

much attention in recent years. The reasons for this are clear. When performed

by hand, with only a graphics editor for assistance, placement and routing can be

a tedious and time-consuming affair. Thus a software system to perform place

ment and routing has been the goal of a number of research projects. Unfor

tunately, the software problem for the general case has proved to be difficult, and

satisfactory general purpose placement and routing systems are not available to

the typical IC designer.

The macrocell-based design system does not require a general-purpose place

and route program. Instead, it is only necessary to assemble those IC's the system

110

is capable of producing. This more constrained problem is much more easily

solved.

The approach used here is to subdivide the problem into two phases. In the

first phase, a combination of ad hoc and algorithmic methods is used to assemble

the individual processors. In the second phase, the processors, the host interface

(if included) and the bonding pads are assembled into the final IC. The first phase

is performed automatically by software. The second phase has been performed by

both by hand and by software [32]. In either case, the software package iscapable

of verifying whether the second phase wiring was performed correctly.

Because inter-processor signals are bit serial, the amount of wiring to be per

formed in the second phase is relatively minor. It is feasible for a designer to per

form this final step by hand in less than a day's work, and verify completely that

the hand wiring is correct.

43.2 Processor Floorplan

The individual processors are assembled from the AUIO. RAM. PC, ROM. and

optional SPC. AAU and FSM macrocells. In order to perform this assembly

efficiently, a fixed floorplan approach is used. The floorplan for the fully

configured case is illustrated in Fig.4.1. The floorplan consists of a left side (con

taining AUIO. RAM. AAU and FSM): a central wiring channel: and a right side

(containing PC. ROM and SPC). Wiring internal to either the left or right side is

accomplished by repeatedly calling a simple river router. The central channel is

wired by a general purpose channel router, based on Kuh's channel routing algo

rithm [29].

In order to employ a river router in the assembly of the left and right sides, it

is necessary to have prior knowledge of the interconnection pattern. This

left

side

center

channel

Fig.4.1 Processor floorplan

GND

right
side

B

AUIO
w*

SPC

I
'/////MM

r 1

w
n v\

FSM ROM

RAM

AAU E

iY»///////M&>//////M/MM,

PC

V00+clocks

Fig.4.2 Power, ground and clock 1L cs

Ill

112

knowledge is available since there is a limited number of ways in which these

macrocells may be organized.

A net is defined to be a collection of wires which share the same source and

destination. A source and destination are considered to be a given side (left, right,

top. or bottom) of a given macrocell. Thus,all the wires going from the top of PC

to the bottom of ROM are in the same net. whereas wires going from the top of

ROM to the right side of the PC are in a different net. Many wires, including all

wires which connect the left and right sides, are brought to the central channel.

For the fully configured case, the following nets may be identified:

left side:

right side:

source

AUIO top
AUIO top
FSM top
FSM top
AUIO bottom

AAU top
AAU bottom

PC top
SPC top
PC right
PC right
SPC right
ROM top
ROM top

destination

channel

(external)
FSM top
channel

RAM top
channel

RAM right

ROM bottom

ROM top
channel

(external)
ROM top
(external)
channel

function

IY inputs (pointer mode)
signal I/O bus
FSM feedback

FSM inputs and outputs
RAM control and data

address offset
effective address

lower ROM address
upper ROM address
reset line
end-of-sample line
SPC controls
I/O strobes
all other controls

(The functions of these signals aredescribed in detail in Appendix B.)

In addition to the above nets, the right sides of the AAU and AUIO abutt

directly to the central channel. Many control signals connect to terminals on the

right sides of these macrocells and are routed through the channel.

There are four places where signals enter and leave the processor assembly.

113

These locations, listed as "external" in the above chart, are as follows:

(1) At the top of the central channel are connections for bit-serial inputs and

outputs and the reset signal (used to synchronize the PC's of the various proces

sors).

(2) At the top of the processor assembly, directly above the AUIO macrocell.

are terminals for the parallel signal I/O bus. This bus is only used for exactly one

processor per IC. If used, a bus enable signal also appears at the top of the central

channel.

(3) Along the right edge of processor assembly is generally a group of ROM

outputs used as strobes for I/O operations. These strobes go to other processors,

the host interface, or to strobe output pads.

(4) Also along the right edge of the processor, closer to the bottom edge, will be

an EOS (end of sample) output, used for timing host input/output operations.

Because of special requirements regarding conductor width and series resis

tance, power, ground and clock signals are handled as special cases during proces

sor assembly. This is fairly straightforward in the fixed floorplan approach.

Fig.4.2 shows how these connections are arranged.

433 Technology Specification

As has been stated earlier, it is desirable that the software for a macrocell sys

tem be technology independent. Then the same software, in theory, could be used

for any technology simply by redesigning the underlying cell library. The

descriptor file, described in Section 3.5. provides technology independence for the

macrocell tiling software. It is also necessary to define the the technology for the

/

\
poly

H-S-H

Fig.4.3 Parameterization of critical din -snsions

1

1 metal

/

114

115

purpose of placement and routing.

All target MOS processes considered here contain at least two levels of inter

connect: polysilicon and metal (usually aluminum). Although many processes

offer additional levels of interconnect, for generality it is best to assume that only

these two will be available.

The first step in specifying a set of geometric design rules for an MOS process is

to decide to what resolution features will be digitized. This figure (called lambda

by Mead and Conway [30]) is usually taken to be some small integral sub-multiple

of the drawn gate length. Once a value for lambda is established geometric design

rules may be specified in terms of integral multiples of lambda.

For the purposes of routing, the technology can be specified by the following

six critical dimensions (illustrated in Fig.4.3):

3u NMOS 3u CMOS
(lambda=1.5u) (lambda=1.0u)

1. Metal width 3 3
2. Metal spacing 3 3
3. Poly width 2 3
4. Poly spacing 2 3
5. Contact size 2 3
6. Contact surround 1 2

(The above critical dimensions are given in lambdas for the processes used for this

project.)

43.4 Channel Routing Algorithm

Of all the possible routing situations, one of the most common is that of chan

nel routing. Suppose we have a rectangular channel with terminals along the top

and bottom rails. The position of the terminals, and the alignment of the lop and

31 m m l3| f4l 121 |4l

ZONE
I

IZONE

! 2
I
L

ZONE
3

m—unannn s

Fig.4.4 Routing example showing zone decomposition

m nrcirei isi—H

&H
♦ 1

n i
do—m~m sni m

trocks
I
2
3
4

nodes
3
1,4
2

5,6

Fig.4.6 Final route

116

117

INITIAL VERTICAL CONSTRAINT GRAPH

MERGED GRAPH AFTER ZONE 2

MERGED GRAPH AFTER ZONE 3

Rg.4.5 Merging the vertical graph

118

bottom rails is fixed. The height of the channel may be determined by the router.

The channel router is given a net list which specifies the desired interconnection

among the terminals. In other words, the set of terminals is partitioned into dis

joint subsets, each of which is a circuit node (sometimes called anet). In addition,

it is specified that some nodes must be brought to the extreme right edge, or the

extreme left edge, of the channel for external connection. However, the positions

of these external connections may be assigned by the router.

In general, the horizontal dimension of the channel is much longer than the

vertical dimension. Thus, if two levels of interconnect are available, the horizon

tal wires, or tracks, are routed using the interconnect level with the lower sheet

resistance (usually aluminum) and the vertical wires in the level with higher

sheet resistance (usually polysilicon).

(An optimization, not used here, would be to attempt to use aluminum for

some of the vertical wires as well.)

The above scenario is a common one in IC layouts, and describes the center

channel of the processor assembly as well (note that the orientation is rotated 90

degrees). Unfortunately, most channel routing algorithms add two further con

straints to the problem:

(1) The terminals are aligned with a coarse grid, the dimensions of the grid

being the minimum allowable contact-to-contact spacing.

(2) The density of terminals along the top and bottom rails is high, with a ter

minal in nearly every possible location.

The center channel of the processor assembly satisfies neither of these con

straints. Fortunately, a very efficient channel routing algorithm due to Kuh [29]

can be modified to eliminate these constraints.

119

The channel routing problem can be thought of as an attempt to assign nodes to

tracks. More than one node may be assigned to the same track if the terminals for

the different nodes occupy disjoint regions in the channel. The goal is to reuse as

many tracks as possible, to obtain the minimum channel height.

The channel router used for the processors never assigns more than one track

per node. It can be seen that in the case of the processor assembly, the need for

multiple tracks per node will never arise if the signals emerging from the right

side of the processor assembly (the ROM outputs) are ordered correctly with

respect to their destinations. Since the ordering of the ROM outputs may be easily

specified, it is not necessary to use a channel router capable of assigning more than

one track per node.

The first step in Ruh's algorithm is to form a vertical constraint graph. The

nodes of the circuit are nodes in this directed graph, with an edge from one node

to another if the first node has an upper-rail terminal overlapping in horizontal

position a lower-rail terminal of the second node. The significance of the vertical

constraint graph is the following: if there is a directed path from one node to

another in this graph, then the track assigned to the first node must be above the

track assigned to the second node.

Note that far fewer vertical constraints exist if the density of terminals along

the rails is low.

Situations where a single track per node is insufficient to achieve a route will

have a cycle in their vertical constraint graph.

Once the vertical constraint graph is formed, it is now possible to proceed with

a track assignment for the nodes. We first divide the channel into zones. Within

a zone, only one node will be assigned to a track. Zone decomposition is accom

plished by starting at the left edge of the channel, and assigning terminals to the

first zone by scanning left to right. Terminals are included until (1) the current

120

zone contains the rightmost terminal of a node and (2) the next terminal would

be the leftmost terminal of a node. This next terminal will be the first terminal

in the next zone. The process continues until the entire channel is subdivided into

zones. Fig.4.4 illustrates the zone decomposition for a simple channel routing

situation.

Note that if it is specified that a node must be brought to the extreme right

edge (or left edge) of the channel, then that node has no rightmost (or leftmost)

terminal for the purposes of zone decomposition.

An important concept, introduced by Kuh. is that of merging the nodes in the

vertical graph. This is a transformation wherein more than one node in the netlist

occupies a single node in the vertical graph, the implication being thai these nodes

will share a track in the final track assignment. Starting with the second zone, as

each zone is determined the vertical graph is merged. The criterion for merging

the vertical graph is to minimize the length of the longest vertical path. This will

tend to minimize the total number of tracks used in the final result. Heuristics

are used to satisfy this criterion.

Fig.4.5 shows the initial vertical graph, and a sequence of vertical graph

mergers, for our example. Each merger occurs after determination of a new zone.

The total number of tracks used will be the total number of nodes in the merged

vertical graph after the final zone is processed. The tracks must be assigned so

that arcs in the final version of the vertical graph always go from higher to lower

tracks.

121

4.4 Software Package Summary

Described in this chapter was the software system used to support the cell

library described in Chapter 3. There are two primary motivations for providing

this software package. First, the detailed design of an IC layout is time consuming

and error-prone. Thus, to the extent that software may be used to produce the

layout without compromise in functionality or area-efficiency, the cost of design

ing the software is easily justified from an economic point of view. Second,

integrated circuit design is a highly technical skill for which there is currently a

shortage of qualified individuals. Thus, it makes sense to involve those without a

specific IC background more directly in the IC design process.

An important goal of this effort is to provide an interface to the software sys

tem which is general, simple and abstract. The design file format qualifies in these

respects. It is general in the sense that it allows expression of any reasonable

combination of the library cells. Its simplicity stems from the fact that it is

essentially a programming language and that a relatively small file (usually a few

pages of text) is all that is required to represent most applications. As with any

programming language, abstraction is used judiciously to hide unimportant imple

mentation details, without an undue compromise in efficiency.

The emulator provides an interactive environment for the development of

design files. This is important, since without adequate feedback to the designer

the design files would be difficult to prepare. The availability of non-real-time

simulations is very useful in performance evaluation.

The compiler combines many techniques that are often applied separately in

the course of an integrated circuit design: microcode assembly. PLA optimization,

tiling, placement and routing. By integrating these techniques into a single

software program a large manpower savings results.

122

From a software design standpoint, a major decision for the compiler was to

divide compilation into two passes, with an intermediate file being the output of

the first pass and input to the second. It should be noted that the second pass,

with its module generation and routers, embodies most of what is traditionally

thought of as a silicon compiler.

Presented in the following chapter are case histories of the use of the macrocell

system for several classical signal processing applications.

123

Chapter 5 - Case Histories and Conclusions

5.1 Digital Audio Equalizer

Other than test circuits programmed with diagnostic microcode, the first IC

designed with the macrocell system was asingle-band digital audio equalizer. The

algorithm involves a two-pole, two-zero canonical form filler. Asignal flow chart

of this filter is given in Fig. 5.1.

The five fourteen-bit filter coefficients are inputted from the host processor,

and can be selected to give boost, cut. or shelf frequency response characteristics.

A two-millisecond frame rate is used, this interval being short enough to allow

the coefficients to be changed gradually without audible discontinuity. A50 KHz

sample rate is used.

Two versions of this filter were designed. The design files (Appendix D) were

prepared by Mats Torkelson [31]. Both versions used a single processor with a

twenty-four bit wordlength and an eight-bit host interface. A finite state

machine is included, whose sole purpose is to generate the EOF and MOF flags for

the host interface, since there are no conditional operations in the algorithm itself.

The first version implemented the entire application in the main program of

the processor, without using a subprogram. The five coefficients were implemented

as five scalar global variables.

A layout plot of this circuit is shown in Fig.5.2. The wiring of the bonding

pad groups and host interface to the processor assembly required six man-hours of

manual effort. Other than this, layout generation was performed entirely by the

compiler. Net-list extraction using the program Mextra [28] was used to verify

that the manual wiring was correct, eliminating a possible source of error.

Observing that the host interface and the I/O section of the processor's AUIO

124

macrocell consumed large amounts of area in this design, a second design file was

prepared. A single five-element global array was used for the coeficients. rather

than the five scalar globals. These globals were indexed by IX. with one multiply

being performed during each subprogram iteration.

A layout plot of the resulting circuit is shown in Fig.5.3. The smaller area of

this second implementation is indicative of the fact that global variables are a

significant expense in terms of area, and their use should be kept to a minimum.

125

Fig. 5.1 Signal Flow Chart for Digital Audio Equalizer

126

c Ifplot* Window: -'.?&7 3023 -S77 1799 9 u=2£T0 Scale

Fig. 5.2 First Version of the Digital Audio Equalizer

127

Fie. 5.3 Second Version of the Digital Audio Equalizer

128

5.2 IPC Vocoder

The algorithm used for the full-custom LPC vocoder described in Chapter 2

was implemented as a design file for the macrocell system. Three processors were

used, with a similar division of labor as was used in the full custom circuit. Glo

bal placement and routing software was developed and used in the layout of this

circuit, avoiding any need for manual wiring [32].

A layout plot of this circuit is shown in Fig.5.4. It is informative to compare

the full-custom with the macrocell-designed circuit, assuming equivalent 3u tech

nologies:

full custom macrocell

Transistors 23.000

Area (sq. mils) 33.200

Transistors .69

per square mil

27.000

73.700

.37

The macrocell version uses about 15 percent more transistors than the custom

version. This is because some very specialized circuitry (such as the squaring cir

cuit) in the custom vocoder was replaced by less-efficient microcode in the macro-

cell vocoder. Also, the control sequencer for the custom vocoder was smaller

since the sequencers for the three processors shared substantial amounts of circui

try.

Three factors contribute to the lower density of transistors per unit area in the

macrocell designed circuit. These are:

(1) The macrocells are less dense than the blocks of the full custom circuit.

129

(2) More area is consumed by wiring in the macrocell version.

(3) Suboptimal placement results in more empty areas in the macrocell ver

sion.

Factor (1) is a direct result of attempts to make the macrocells. particularly

those performing I/O functions, very general and facilitative to automatic genera

tion. Large numbers of timing strobes are needed to control these I/O functions,

resulting in read-only memories with fairly low transistor densities in their OR-

planes. One the other hand, arithmetic, addresing and data memory circuits are of

essentially the same density as the full-custom approach.

Factors (2) and (3) —the fact that placement and routing of the macrocells is

less than optimal —could certainly be mitigated by additional development effort.

Only a few man months of software engineering went into this aspect of the pro

ject, in contrast to the many man-years of effort that an industrial placement and

routing system would typically involve. But ultimately, it can be predicted that

hand-wiring will always yield a denser circuit.

The design file for the LPC vocoder can be found in Appendix D.

130

clfplot* Window: 0 4650 0 4664 9 u-200 -— Scale: 1 micron Is 0.0006 Incht

Fig. 5.4 LPC Vocoder

131

S3 Decision Feedback Equalizer

The compiler was used to design a two-processor circuit intended for use as a

equalizer for local telephone lines [33]. The sample rate is higher than the applica

tions already discussed, on the order of 120 kiloHertz. Also, the system makes

use of quite a bit of non-linear processing and decision-making. The user-

specifiable FSM construct was found to be highly useful in this application.

One processor implements a transversal-filter adaptive filter whose inputs are

a binary decision, represented by the values plus or minus one. The filter uses a

stochastic gradient algorithm. The filter's output is an estimate of the inter-

symbol interference observed for modulated data on the line. This estimated

inter-symbol interference can then be subtracted from the received signal to

created an equalized signal.

The second processor is used to recover timing information from the received

data. The output of the second processor is used to control an off-chip voltage-

controlled oscillator (VCO) which provides system timing, including the clock

input to the IC.

A signal flow chart for the circuit is given in Fig. 5.5. A circuit plot is shown

in Fig.5.6.

MJALO&
I

I

I ,

LOO* 1

,

TIMING

FVNCfiON

8-fi/r

APAPr/f£
TRANSVERSA L

—^

^i
PfC/s/ON
FUNCTION

• £>F£ CH/P

p/6/TAL.
Ol/TPUT

Fig. 5.5 Signal Flow Chart for Decision Feedback Equalizer

132

133

clfplot* Window : 0 594500 0 487800 Scale: 1 micron Is

Fig. 5.6 Decision Feedback Equalizer

134

5.4 300-Baud Modem

A 300-Baud full duplex modem has been designed using the silicon compiler

[36].

The modulator approximates a sine-wave synthesis by first synthesizing a

sawtooth waveform, and then performing piecewise-linear truncation. Four possi

ble synthesis frequencies are provided, corresponding to mark and space frequen

cies in both originate and answer modes.

The demodulator employs a pair of bandpass filters at the mark and space fre

quencies. The energy of the two bandpass outputs is compared to give the digital

output. Implementations based on a digital phase-locked loop were also studied

and found to be feasible.

A fixed 9600 Hz sample rate is used for both modulation and demodulation.

Two processors were used in the 300-baud modem chip. A signal flow chart is

given in Fig. 5.7. and a circuit plot in Fig. 5.8.

ORIGINATS/
, > SAWTOOTH

OSCILLATOR

•

—>

SIN£

CONNECTER

1 /

PATA
)

135

MODyiATOR

OUTPUT

PEMPPC/LATOfc

INPUT '"*
•J

6AMP-PASS

FILTER

fMARjc}

CARRIER.

fETKT
-*

•>

8ANPPASS

FiLTeR

(SPACE)

L£V£L

COMPARATORS]

is. 5.7 Signal Flow Chart for 300 Baud Modem
Fig

"*

ffscg/ve

PATA

51
Cro

be

w
O
c

I

CO
&>

c
Q.

o
a

3

(X9Z) seqsui 100*0 s| uojd|ui i :s>ibds 00Z = n £j fEg£ # S*6502 0 :Mopuift ^oid^jD

t i i

137

5.5 Conclusions

In Section 1.4. Chapter 1. the differences between procedural and graphical

methods of designing an integrated circuit were discussed. In the procedural

approach, a language is designed in which programs may be written. These pro

grams are then translated into a circuit layout. In the graphical approach, the

designer creates the circuit directly at the level of layout geometries.

The LPC vocoder IC described in Chapter 2 was designed with purely graphical

methods. This approach allowed a very large degree of freedom and resulted in a

very efficient design. However, the amount of design effort was also very large. It

became clear that one could not routinely design circuits of this complexity

without adopting higher-level design methods.

Much early work on procedural design was oriented towards the generation of

low-level circuit elements such as data paths [34]. Although there are applica

tions for custom data-path generation, this capability is of only limited use when

the application range is sufficiently narrow. In the case of digital signal proces

sors, a single data path architecture may serve many applications. By hand

crafting this data path the available silicon area is efficiently used.

Procedural design was used to advantage in the macrocell design system by

parameterizing the data path (rather than customizing its architecture) and by

configuring the I/O. multiprocessor and communications aspects of the ICin a pro

cedural fashion. Graphical design was used to advantage in the creation of the cell

library itself. This combined approach resulted in a powerful and useful design

system.

There are a number of drawbacks to the system as currently implemented.

The two most severe drawbacks are probably the restricted control structure, and

the fixed-floorplan approach to processor assembly.

138

The control structure requires definition of a single sample rate for all proces

sors on an IC. Each processor repeats its microprogram every sample interval.

Thus applications with many different sample rates, or those which are best

represented by programs whose execution spans many sample intervals, do not

map well on to this architecture.

The fixed-floorplan method of assembling processors does not always result in

an efficient layout. Experience to date suggests that in about two thirds of the

cases, the processor assembly is reasonably area-efficient. In the other cases, how

ever, size mismatch among the macrocells yields a processor assembly with a

significant amount of wasted space. In these instances a different floorplan would

have provided a more efficient layout. One proposal is to have a small number of.

alternative floorplans for the processor assembly, and to allow the compiler to

select the most compact. A second proposal is to allow some degree of human

intervention in the compilation process, allowing the designer to manipulate floor-

plans in a symbolic fashion.

Despite these two disadvantages, and several others of more minor consequence,

the macrocell design system remains useful and valuable. Also, neither disadvan

tage is inherent in the macrocell approach. The macrocell system described in this

dissertation remains both useful in its own right and a model for future efforts.

139

Appendix A — LPC Vocoder circuit microcode

A.l Instruction Set

This appendix describes the microcode used in the three processors of the LPC

vocoder circuit described in Chapter 2. (See Appendix D for equivalent informa

tion on the LPC vocoder of Section 5.2 of Chapter 5.)

The microprograms consist of a line of microcode per clock cycle. There are

several symbolic microinstructions per line. All microinstructions in a given line

operaie concurrently. The V character begins a new line of microcode. Separate

programs are given for the main program and subprogram of each processor.

Memory Instructions:

All memory instructions are followed by a field which is the symbolic address.

Except for these address fields, all fields are instruction fields. Indexed instruc

tions involve adding a index counter to the address offset to obtain the effective

address. For Processor 1. a mod-10 counter which counts subprogram iterations is

used for indexing. For Processor 2. all memory accesses are indexed by the same

mod-10 counter. For Processor No. 3. two mod-6 index counters. X and Y. are

available. The X counter counis the subprogram iterations, whereas the Y counter

counts samples. In addition. Processor No. 3 allows conditional write instruc

tions, whereby the write cycle is controlled by the FSM state variable "CC.

R : read from data memory into mor

RX : indexed read (Processors 1 and 3 only)

W : write from mir into data memory

140

WX : indexed write (Processors 1 and 3 only)

WC : conditional write (Processor 3 only)

WCX : indexed conditional write (Processor 3 only)

RY : indexed read from Y counter (Processor 3)

WY : indexed write from Y counter (Processor 3)

(transparent) : enable write data without cycling RAM (Processor 2)

Memory input register instruction:

writelatch : store mbus into mir (Processors 1 and 2 only)

This instruction causes the mir latch to be strobed. In Processor No. 3. the mir

latch is always held transparent (strobe always enabled) so this instruction is not

used.

Shift Register instructions:

These instructions indicate the value to be loaded into the shift register (sr) in

terms of the other registers in the arithmetic unit.

sr:=sr/2 : shift right

sr:=mem/2 : load for mor

sr:=-mem/2 : load from mor. inverted

sr:=lmem/2l: load form mor. absolute value

Special shift register instructions. Processor No. 1:

141

These instructions complement the data with the sign bit- of one of the

coefficients ka or ks. The coefficient ka is computed by Processor No. 2 for each of

the ten lattice analyzer stages. The coefficients ks are inputted from off-chip to

program the synthesis filter.

sr:=-ka*mem/2

sr:=ks*mem/2

sr:=-ks*mem/2

Accumulator instructions:

These instructions specify the value to be loaded into the accumulator in terms

of the various data path registers.

acc:=0: clear accumulator

acc:-acc : hold accumulator

acc:=mem : load from mor

acc:=sr: load from sr

acc:=sr+acc : add sr to accumulator

acc:=sr+mem : add mor to accumulator

aip : accumulate if positive (Processor No. 2)

Special accumulator instructions. Processor No. 1:

These instructions gate the data with a magnitude bit of one of the coefficients

ka or ks.

142

acc:=ka*sr+acc

acc:=ka*sr+mem

acc:=ks*sr+acc

acc:=ks*sr+mem

No operation:

NOP

Subprogram call and return. Processor No. 3:

jsr : jump to subprogram

ret : return from subprogram

These instructions are used to pass control from the main program to the subpro

gram and back. Due to pipelining these instructions act on a one-cycle-delayed

basis.

Conditional logic instructions. Processor No. 3:

These instructions modify the state of the FSM which is attached to Processor

No. 3.

SET : set condition code if positive accumulator

AND- : and condition code with negative accumulator

APV : and condition code if at peak or valley

VPE : valid pitch estimate (Y = 5)

143

SIP : set if peak

SIV : set if valley

SSL : set slope and last-slope flags

I/O instructions in general:

Input instructions serve to disable the accumulator from the mbus and enable

an input signal. Output instructions serve to latch the value of the accumulator

into an on-chip or off-chip register.

I/O instructions for Processor No. 1:

in : read from parallel bus

outl : serial output to squaring circuit

out2 : serial output to Processor No. 3

xmit_exc : input from excitation source

SDBdisable : disable data bus for input operation

Bogus instructions used for emulation:

These instructions were included in the source code but do not affect the

assembled object code.

(res)

(input)

(output)

(exc)

(ks_msb)

(plus)

(ka_msb)

(minus)

(quotient)

(plus_input)

(minus_input)

(energy)

I/O and timing signals for Processor No. 2:

mem:=in : input from squaring circuit to mir

ldsqr : timing signal for squaring circuit

strobedac : output strobe for Processor No. 1

stroberes: output strobe for processor No. 1

fifol : timing signal for FIFO buffer

fifo2 : timing signal for FIFO buffer

fifo3 : timing signal for FIFO buffer

egcl : timing signal for excitation source

egc2 : timing signal for excitation source

LSK : load ks into P-S converter

I/O instructions for Processor No. 3:

mem:=in : input from Processor No. 1

out:=acc : output pitch estimate

144

A.2 Processor No. 1 Microcode

Filter main program

Finish up last multiply of last subprogram from previous sample.
; Put residual in accumulator.

sr:=sr/2 acc:=ks*sr+acc
sr:=sr/2 acc:=ks*sr+acc

R last_A acc:=ks*sr+acc writelatch
W D(l) acc:=mem

Copy C to D(0). Demphasis filter. Write speech input to E.
Output residual, speech to SDB. Leave speech output in writelatch.

R last_C (res) : Residual is on SDB.
R II sr:=mem/2 acc:=mem writelatch
W D(0) sr:=mem/2 acc:=sr
acc:=sr+acc sr:=sr/2 writelatch in SDBdisable
W E acc:»=sr+acc sr:=sr/2 in (input)
acc:=sr+acc writelatch
(output) : Speech output is on SDB.

Preemphasis filter, with output going to Aand next_B(0). Store
writelatch at next_H following final read from lasr_E (same address).

R E

R lastJE acc:=mem
R last_E acc:=acc sr:=-mem/2
R last_E acc:=sr+acc sr:=-mem/2
W next_H sr:=-mem/2 acosr+acc
R E sr:=sr/2 acc:=sr+acc

R E sr:=mem/2 acc:=sr+acc

sr:=mem/2 acc:=sr+acc

acc:=sr+acc writelatch

W A

W next_B(0)

Lowpass filter first stage. Leave filter output in accumulator.
Store excitation at C.

RF

sr:=-mem/2 acc:=mem

R E sr:=»sr/2 acc:=acc

145

sr:«=mem/2 acc:«=sr+acc in SDBdisable writelatch xmit_exc
W C sr:=sr/2 acc:=acc in (exc)

Lowpass filter second stage. Lowpass output goes to out2.

R G acc:»sr+acc writelatch

W nextJF sr:=mem/2
acosr+mem sr:=sr/2

acc:=sr+acc writelatch

W nextjj out2

end

Filler Subprogram

Finish final multiply/accumulate of previous subprogram iteration,
putting result in writelatch. Start to form sum (A + B)/2.

sr:=sr/2 acc:=ks*sr+acc

R A sr:=sr/2 acc:=ks*sr+acc •

RX B(i-l) sr:=mem/2 acc:=ks*sr+acc writelatch

Load outl with (A+B). Store writelatch at next_D(12-i). Do first
multiply accumulate operation (C + ks*D(10-i)). putting result in
writelatch. Start second multiply/accumulate (A - ka*B(i-l)).

RX D(10-i) sr:=mem/2 acc:=sr
R C sr>ks*mem/2 acc:=sr+acc (ks_jnsb)
WX next_D(l2-i) sr:=sr/2 acc:=ks*sr+mem outl (plus)
sr:=sr/2 acc:=ks*sr+acc

sr:"=sr/2 acc:=ks*sr+acc

sr:=sr/2 acc:=ks*sr+acc

sr:=sr/2 acc:=ks*sr+acc

RX B(i-l) sr:=sr/2 acc:=ks*sr+acc
R A sr:=-ka*mem/2 acc:=ks*sr+acc writelatch (ka_msb)

Store result of first multiply/accumulate at C. Finish second
multiply/accumulate, putting result in writelatch. Start
to form sum (A - B(i-l))/2.

W C sr:«=sr/2 acc:=ka*sr+mem

sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:»=ka*sr+acc

146

R A sr:=sr/2 acc:=ka*sr+acc
RX B(i-l) sr:=mem/2 acoka*sr+acc writelatch

Store result of second multiply/accumulate at A. Load outl with
(A - B(i-l)/2). Do third multiply/accumulate (A - ka*B(i-l)).
putting result in writelatch.

R A sr:=-mem/2 acosr

RX B(i-l) sr:=-ka*mem/2 acc:=sr+acc (ka_msb)
sr:=sr/2 acc:=ka*sr+mem outl (minus)
W A sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:=ka*sr+acc

sr:=sr/2 acc:=ka*sr+acc

R C sr:=sr/2 acc:=ka*sr+acc
RX D(10-i) sr.=-ks*mem/2 acc:=ka*sr+acc writelatch (ks_msb)

Store result of third multiply/accumulate at next_B(i). Start
final multiply accumulate (C - ks*D(10-i)).

sr:=sr/2 acc:=ks*sr+mem

WX next_B(i) sr:=sr/2 acc:=ks*sr+acc
sr>sr/2 acc:=ks*sr+acc

sr:=sr/2 acc:=ks*sr+acc

.end

A3 Processor No. 2 Microcode

The main program and subprogram of Peocessor No. 2 differ only
in the assertion of various timing and I/O strobes.

; Correlator Main Program

Finish division operation from previous iteration.

sr:=sr/2 acc:=sr+acc aip : quotient bit 4 available
sr>sr/2 acc:=sr+acc aip : quotient bit 3 available
sr:=sr/2 acc:=sr+acc aip LSK ldsqr : quotient bit 2 available
acc:=sr+acc aip (quotient) : quotient bit 1 available
fifo2 stroberes : quotient bit 0 available

147

Single pole lowpass filter first signal from input port, leave
result in accumulator.

RC

sr:=-mem/2 acc:=mem

sr:=sr/2 acc:=acc

sr:=sr/2 acc:=acc

sr:=sr/2 acc:«=acc egcl
sr:=sr/2 acc:=acc fifo3 strobedac mem:=in writelatch
(transparent) sr:=sr/2 acc:=acc mem:=in (plus_input)
sr:=mem/2 acc:=sr+acc

R D acc:=sr+acc writelatch

Store result of first filter at C. Single pole lowpass filter
second signal from input port, leave result in writelatch.

W C sr:«=-mem/2 acc:=mem

sr:=sr/2 acc:=acc

sr:=sr/2 acc:=acc

sr:=sr/2 acc:=acc

sr:=sr/2 acc:=acc mem:=in writelatch ldsqr
(transparent) sr:=sr/2 mem:=in acc:=acc (minus_input) .
R C sr:=mem/2 acc:=sr+acc

R C sr:«=-mem/2 acosr+acc writelatch

Store result of second filter at D. Put ID-CI/2 in accumulator
and (C+D)/4 in shift register.

W D sr:=-mem/2 acc:=sr+acc

R D acc:=sr+acc writelatch ; now ace = (D-C)
R C sr:=mem/2

(transparent) sr:=mem/2 acc:=sr LSK
(transparent) sr:=-mem/2 acc:=sr+acc writelatch ; now ace = (C+D)/2
(transparent) sr:=mem/2 acc:=sr (energy)
sr:=mem/2 acc:=sr aip

; Do divide operation with sequence of "accumulate-if-positive" cycles.

: sr:=sr/2 acc:«=sr+acc aip ; quotient bit 7 (sign) available
: sr:=sr/2 acc:=sr+acc aip : quotient bit 6 available
: sr:=sr/2 acc:=sr+acc aip : quotient bit 5 available egc2

.end

Correlator Subprogram

Finish division operation from previous iteration.

148

sr>sr/2 acc:«=sr+acc aip : quotient bit 4 available
sr:=sr/2 acosr+acc aip ; quotient bit 3 available
sr:=sr/2 acc:=sr+acc aip LSK ldsqr : quotient bit 2 available
acosr+acc aip : quotient bit 1 available
fifo2

Single pole lowpass filter first signal from input port, leave
result in accumulator.

RC

sr>-mem/2 acc:=mem

sr:=sr/2 acoacc

sr:=sr/2 acoacc

sr:=sr/2 acoacc
; sr:=sr/2 acoacc fifo3 mem:=in writelatch
: (transparent) sr:=sr/2 acoacc mem:=in
: sr:=mem/2 acosr+acc

: R D acc:=sr+acc writelatch

; Store result of first filter at C. Single role lowpass filter
; second signal from input port, leave result in writelatch.

: W C sr:=-mem/2 acc:=mem

: sr:=sr/2 acc:=acc

; sr:=sr/2-acoacc

: sr:=sr/2 acoacc
: sr:=*sr/2 acoacc mem:=in writelatch ldsqr
: (transparent) sr:=sr/2 mem:=in acoacc .
: R C sr:=mem/2 acc:»=sr+acc
: R C sr:=-mem/2 acc:=sr+acc writelatch

; Store result of second filter at D. Put ID-CI/2 in accumulator
: and (C+D)/4 in shift register.

W D sr:=-mem/2 acc:*=sr+acc
R D acosr+acc writelatch : now ace = (D-C)
R C sr:=mem/2

(transparent) sr:=mem/2 acc:=sr LSK
(transparent) sr:=-mem/2 acc:=sr+acc writelatch : now ace = (C+D)/2
(transparent) sr:=mem/2 acc:=sr
sr:«mem/2 acc:=sr aip

; Do divide operation with sequence of "accumulate-if-positive" cycles.

: sr:=sr/2 acc:=sr+acc aip : quotient bit 7 (sign) available
: sr:=sr/2 acc:=sr+acc aip : quotient bit 6 available
: sr:=sr/2 acosr+acc aip '. quotient bit 5 available

.end

149

A.4 Processor No. 3 Microcode

Pitchtracker Main Program

Finish up scoring calculation from previous sample by comparing
"score" to "topscore" and if greater, updating "topscore" and
"winner".

R score

R topscore sr:«=mem/2
sr:=-mem/2 acosr

R score acc:=sr+acc

RY pp acc:=mem SET
WC topscore acomem
WC winner

If VPE (every six samples) compare "topscore" to constant "VOICED"
set "pitch" to either "winner" or zero, and reset "topscore".

R winner

R VOICED acomem sr:=mem/2 VPE
WC pitch sr:=-mem/2
R topscore sr:=sr/2 acc:=0
WC topscore acc:=sr+mem
Rsignal acoO AND- :Take "signal" from last sample and
WC pitch acomem SIP : update "lp"."Iv". and "Is" (last
WC lp acoacc SIV : peak, last valley, last signal).
WC lv acc:=acc

Wis

Beginning of new sample. Get new sample from input and store in
"signal". Compare signal to last signal and set slope (SSL).
Reset "score".

R Is mem:=in

W signal sr>-mem/2 mem:=in
sr:=-mem/2 acosr

acosr+acc

SSL acoO

W score

Send "pitch" to output port. Form "signal(l)" through "signal(5)n

150

from signal, lp. lv. Jump to subsprogram (" jsr").

R signal
R pitch acomem
W signal acomem
R lv acomem out:=acc

W signal(l) sr:=-mem/2
R signal sr:=mem/2 acosr
R lp acc:«=sr+acc sr:=mem/2
W signal(2) sr:=-mem/2 acosr
R signal(2) acc:«=sr+acc
W signal(4) acc:=mem
W signal(2) acomem
W signal(5) acc:=mem jsr
W signal(3)

End of main program sequence. Following word is addressed during
last iteration of subprogram. Next word is a left over, and following
are filler.

NOP ret

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

.end

Pitchtracker Subprogram

Increment pitch period counter by four and set condition code if
greater than BLANK (blanking interval). Conditionally decay
threshold. And condition code with peak/valley indicator.

RFOUR

RX ppc sr:=mem/2
R BLANK acosr+mem

WX ppc so-mem/2
sr:*=-mem/2 acc:=sr

RX thresh acc:=sr+acc

sr:=-mem/2 SET R lp acomem
sr:=sr/2 WX thresh acomem

sr:=sr/2 W lp

: Use spare memory cycles to refresh
thresh, lp. and lv.

151

sr:=sr/2 R lv
RX thresh sr:=sr/2 acomem

sr:=sr/2 acomem W lv
RX signal sr:»sr/2 acosr+acc
RX signal sr:=-mem/2 acc:=sr+acc
WCX thresh acosr+acc sr:=mem/2 APV

And condition code with result of (signal > threshold)
comparison. Conditionally update thresh. 1pp. ppc. pp.

RX pp acosr AND-
WCX thresh acomem

WCX lpp
RX ppc acc:=0
WCX ppc acomem
WCX pp

Add contribution for this channel to score of current candidate:
do three window comparisons with the current candidate and pp.
lpp. and pp+lpp- In each case increment score by four if true.

RYpp
RX pp sr:=-mem/2
R WINDOW 1 sr:=mem/2 acosr

R WIND0W2 somem/2 acosr+acc

R FOUR sr:=mem/2 acc:=sr+acc

R score sr:=mem/2 acc:=sr+acc SET
RY pp acosr+mem AND-
WC score sr:«=-mem/2

RX lpp acc:=sr
R WINDOW 1 sr:=mem/2 acoacc

R WIND0W2 sr:=mem/2 acosr+acc
R FOUR sr:=mem/2 acosr+acc
R score sr:=mem/2 acc:=sr+acc SET
RY pp acosr+mem AND-
WC score sr:=-mem/2

RX lpp acc:=sr
RX pp sr:=mem/2 acc:=acc
R WINDOW 1 sr:=mem/2 acosr+acc

R W1ND0W2 sr>mem/2 acosr+acc

R FOUR sr>mem/2 acosr+acc
R score sr:=mem/2 acc:=sr+acc SET
RY pp acc:=sr+mem AND- jsr
WC score sr:=mem/2

.end

152

153

Appendix B — NMOS Cell Library Documentation

B.1 Introduction

The purpose of this appendix is twofold. First, it describes the NMOS cell

library at the level of mixed-mode (gate and transistor) schematics. Second, it

describes how the cells are to be assembled into macrocells.

It is often the case that two cells which are adjacent to one another in part of

an assembled macrocell will connect electrically at one or more points. This is

indicated by labeling the schematics of the two cells with signal names, and using

the same signal name for points which are to be connected.

Cells which are located around the periphery of a macrocell may have termi

nals on their outside edges. The existence and location of such terminals can be

determined by examining the descriptor file. Section B.12.

Most schematics are drawn such that the orientation of the cells and location

of any signals corresponds to the cell layout itself. Thus, for example, a control

signal which busses horizontally through a cell are drawn that way in the

schematic.

Schematics are given only for cells which contain active circuitry. Cells

without active circuitry generally perform interconnect functions. Mention is

made in the text of any instance in which a cell without active circuitry performs

an interconnect other than GND. Vdd. phil or phi2.

The macrocell assemblies are described in a fashion corresponding to the way

in which they are tiled together by the compiler. Thus, a macrocell is a stack of

rows of cells.

Only a small number of cells are found in more than one macrocell. The same

counter bit-slice is used in the PC. AAU and SPC macrocells. The adder cell used

154

in the AAU macrocell is identical to the adder used in the AUIO macrocell.

although the two adders are in different cells. The FSM and ROM macrocells use

nearly the same set of cells.

This appendix presumes familiarity with the contents of Section 3.8 of

Chapter 3.

B.2 Program Counter and Subprogram Counter

The cell counter is the basic counter bit-slice. This is a synchrounous counter

with "count" and "load" control signals, as well as clocks, bussing through the

cell horizontally. The variants counter.0 and counter.] have their data input

hard-wired to ground or Vdd respectively.

The PC macrocell has a control cell, pc.ctl, that sits to the right of the bit slice

array, counter.0 cells are used in the array, and the control cell clears the PC when

the "reset" signal is asserted. Other than this thePC just increments. The "reset"

signal is delayed one clock signal to create "EOS", or end-of-sample.

The ouputs of the bit-slice counter are buffered by complementary drivers in

the cells pc.l. The drivers provided inverted and non-inverted addresses for the

lower half of the ROM and-plane.

Schematics of the cells counter, pcjctl, and pc.l are given in Figs. B.l and B.2.

The organization of cells within the PC macrocell is given in Fig. B.3.

The SPC also has a control cell, speed, and a complementary driver spc.l.

Sequencing the SPC is a little more complex. The cell counter is used in the

least-significant bit slice, and the cell counter.O is used in the remaining slices.

The logic in the cells spc.4, spc.5, spc.6 and spcctl (Fig. B.4) allows loading a zero

into the LSB during the main program, and a one at the beginning of a subpro

gram. During the subprogram, the SPC just increments.

on y

POUT

<(ctN fcr LSB)

>COUT

COUNT

CLOCK 1

LOAP

CLOCKS

Fig.B.l Counter bit-slice schematic

155

COUNT 4r

aocKi <—

t-OAp 4r-0<}

OPCKX <:

CxQir <RESET

IS>O-»E0S

« PC. CTL"

Dour

ffpCtl»

Fig.B.2 Schematics of cells used in PC macrocell

156

PC.0 Pc.l

z.

•
•

• • •

PCX PCI.

•

§
PC.CTL.

Fig.B.3 Organization of the PC macrocell

SPC.3 SPc.f SPC.5

z

•

lit

1

if!
I
o

•

of

s

SPc0 5PC.1 SPCJ.

♦ • •

SPcS SPc.fc

*

SPc.cn-

SPc.1. SPC.X

Fig.R5 Organization of the SPC macrocell

157

s
I

PXN VOVT

"SPC. 4"

* >

< f
r'< 0<}

"spcs* "SPC. 4"

158

•RET

jVOUT

jr

rVn
COUNT 4-

ClOCKLt- -y,

Oi/T

"SPC.l"

t0AP <—<k3—
O0CW.

"SPCCTL"

Fig.B.4 Schematics of cells used in SPC macrocell

•<f>i

159

The organization of cells within the SPC macrocell is given in Fig. B.5.

The cell counter.gnd contains no active circuitry, but it does connect the

carry-in of the counter to a bus that goes back across the slices to the control cell.

B3 The Address Arithmetic Unit

The AAU may contain either an IX counter, an IY counter, or both counters.

Fig.B.6 is the schematic of a single bit slice for an AAU which has both counters.

The cell names (except for the "decode" and "ydecode" sections, described below)

are given along the left side of the schematic.

The IX counter must be -1 during the main program. 0 during the first itera

tion of the subprogram and so forth. So usually counter.1 cells are used for the

IX counter, so that it loads a -1 at the end of the sample. However, in the

unusual case where there is no main program. counter.O cells are used here instead

so that a zero is loaded. This begins the subprogram immediately.

The aauinvert cell provides true and complement outputs of the IX counter.

This has two purposes: (1) The "decode" section can decode the value of IX to

generate a "test" output to the FSM macrocell: (2) The inverted output is feeds an

inverting input of the aauadd cell.

The decode section is empty unless a "IX<k>" or "IX[k]" reference is made in

the FSM definition. For each such reference a row is included in the decode sec

tion, which involves placing a zero. one. or don't care cell in each bit-slice of the

AAU. In this way an arbitrary function of the value of IX is created. Schematics

for these cells are given in Fig. B.7.

The inverted output of IX feeds an "aauadd.even" or "aauadd.odd" cell. The

adders themselves are identical circuits to the ones given in Fig.2.9 in Chapter 2.

A nor-gate was included to control the indexing of the AAU input with the IX

AAfAW.E

AAlMW.0

AAVCONNZCT

COUNTED
COUNTED

/KMZNV&iJ

AAMPP. £

AA(MPD.O

AMOUT

YINPUT

Fig.B.6 AAU bit-slice

160

WWT

INOZX

INPBX

OUT

161

OUT OUT OUT OUT OUT OUT

TBST>-

^
•> TEsr >

F
•>T£ST y

OUT oQY Ol/T WT

AAWEC.i

nsr—*-[>o—>t&t
AMOSC. CTL

TEST

TEST

ypsc ctu

OUT OU

AAUpEc.y

Fig.B.7 Scematics of cells used in AAU decode section

•»TEST

(c«)<—o<}
count <:—<X^-
Cioazx <

LOAP <r

CIPCki- <r

IX. CTL

(CIN) <

CWMT 4

CLOCK! <; ^.

LOAP < °<}
cu>ckx4 ${

/M?£X <•

«}

IY. CTL

«3
MUAPP. CTL

Fig.B.B Schematics of AAU control cells

£0S

A.

•A

TEST

ycu?c<

< /A/PEX

162

163

X- INPOT ftW

IY SEcnoH

OUTPUT ftfr/

Fig.E9 Organization of the AAL' macrocell (IX indexing onlv)

y-/MVr ROyl

\y secmi

ci/nfvT wv/

Fig.B.10 Organization of the AAL macrocell (IY indexing only)

164

y-iN'fur &oyJ

lY-SGC-TlOtl

CONNECT ROW

iy- SECTION

OUTPUT RfiW

FigJ3.ll Organization of the AAU macrocell (IX and IY indexing)

165

counter.

The IY counter and its decode section and adder are very similar to the IX. but

the sequencing is diflFerent. A "ydecode" section is included in both pointer and

counter modes.

If the IY indexing is in counter mode, the "ydecode" section is programmed

with the modulus of the counter and counter.0 cells are used for the bit slices.

The counter is clocked with the signal EOS. This has the effect of incrementing IY

each sample until its maximum value is reached, then resetting it.

If pointer-mode addressing is used, the "ydecode" section is programmed with

"don't cares" in every bit. and counter cells are used in the bit slices. Then when

ever the IY counter is clocked, it is loaded from its inputs, which in this case come

in externally to the AAU from the AUIO parallel bus. Note that in this mode, the

IY counter is used as a register and never counts.

A "decode" section is included for the IY counter to provide "test" outputs for

the FSM (as with the IX) and also to provide "IY=0" signals for the host interface

if IY-indexed host I/O is being performed.

The aauadd cells following the IY counter index the address with the value of

IY. Following this is an output buffer, aauout.

Schematics for the control cells for the IX and IY counters, and the aauadd

cells are given in Fig.B.8.

Figs. B.9. B.10. and B.ll show the organization of AAU macrocells with IX

indexing only. IY indexing only, and both types of indexing, respectively. The

following describes in exact terms the cellular organization of the AAU macrocell.

In every case the number of bit-slices in the AAU is equal to N. the number of

address lines.

The "output row" always consists of the cells:

166

aauoul .gnd

N instances of aauout

aauoul.ctl

The "connect row", if included, is similarly composed of the aauconnect.gnd, aau-

connect, aauconnect .ctl cells.

The y-input row consist of the cells:

aauin.gnd

aauin.y (N instances)

aauin.ctl

The "x-input row" consists of the cells:

aauin.gnd

aauin.x (N instances)

aauin.ctl

The "ix section" and "iy section" contain the following rows, listed from bottom

to top:

ix section:

adder row

[decode]

invert row

counter row

167

iy section:

adder row .

[decode]

ydecode

invert row

counter

The adder row consists of the cells:

aauadd.gnd

N instances of aauadd.e or aauadd.o (alternating)

aauadd.ctl

The "counter row" contains cells as follows:

counter.gnd

N instances of counter, counterJO, or counter.1 (see below)

ix.ctl or iy.ctl (for ix section and iy section, respectively)

The "invert row" contains aauinveri .gnd. aauinvert, aauinvert .ctl cells in the usual

fashion.

The [decode] section contains zero or more rows of the following form:

aaudec.gnd

N instances of aaudec.0, aaudec.l, aaudecx

aaudeccil

The ydecode section contains one row of cells

aaudec.gnd

N instances of aaudec.0, aaudec.l, aaudecjc

vdecctl

168

B.4 Control ROM and Finite-State Machine.

The construction of the ROM and FSM are very similar. The ROM may have a

split and-plane (as described in Section 2.3). while the FSM only has a single

and-plane. the ROM has dual complementary inputs to its and-planes. while the

FSM has registered single-ended inputs, and complementary drivers for the and-

plane. In practice, some of the FSM outputs will be wired to some of the FSM

inputs. However, this wiring is not part of the FSM macrocell itself.

Schematics for cells in the ROM/FSM and-plane are given in Fig.B.12. Com

plementary inputs enter the upper half of a ROMs split and-plane through the

cell romtop.4. Complementary inputs enter the bottom half of a ROMs splii

and-plane. or a non-split and-plane. through the cell rombtm.4. Single-ended FSM

inputs are registered and inverted by the cell fsmdrv.

The cells pladec.0, pladec.l, pladecx program the and-plane. The complemen

tary inputs bus vertically through these cells. The horizontal metal select lines,

which are pulled up in pairs by the cell romword.3, exit the and-plane along its

left edge and enter the or-plane.

The and-plane (and its upper and lower halves if split) must have an even

/ATOP INTOP
Y V

FSM IN

P:

A A

A A J A
A A*

INBTM tNBTr\

ttROrlSTM.lf))

A A

-< SELECT4

A A

SELECT*

169

•< SELECT

n n-
«PLAPEC. ^" ffPlAPEC.ly "PLAPEC. X"

SELECT <; 'W-

SELECT <r

r'f»MWDRP.3*

Fig.R12 Schematics of cells used in ROM-ISM and-plane

'OQ

Ot/T± 0C/T3L

fi.
^T-Vl'PP

8̂ITLINE e\TL\NE

a ROHTOP.X*

8lTL\NE

< SELECT

A

"PLAC $7"
frPLAcM.$rfM

8/TLlM£

-^W—I

BlTLWB

::&

^PLAC.l*
"PLACM.i*

Fig.Rl 3Schematics of cells used in ROM ISM or-plane

170

SELECT

171

ROtyTOP

Rom- PlAM€

tfOMMlP

rdm- PiAMe

(gQMfi"1"^]

Fig.R14 ROM organization

172

number of rows. Also, the SPC addressing the upper and-plane may have fewer

bits than the PC addressing the lower and plane. If this is the case, the unused

columns of the upper and plane must be filled with pladecjc cells.

The or-plane of the ROM and FSM macrocells is the only place in the cell

library where any sort of mirroring is used. Because of this, there is no mirroring

feature built into the tiling software. Instead, mirrored versions of or-plane cells

are contained in the cell library, and the compiler first pass specifies the correct

versions of the cells in the intermediate file.

Schematics of cells used in the ROM/FSM or-plane are given in Fig. B.13.

The cells pLac.0, plac.l and their mirrored versions placm.O, placm.l program

the or-plane. The select lines are polysilicon in the or-plane. and the metal bit-

lines are pulled up in the cell rombtm.2. The bitlines are also precharged in the

dual output register romtop.2. The use of large devices for precharging is needed

for fast access times, and the use of pullups prevents precharge clock feedthrough

from destroying the signal level if there are only a few words in the ROM (and

the bitline capacitance is low).

The output registers were laid out in pairs because of the narrow bit-line pitch.

There must be an even number of ROM outputs.

In both the and-plane and the or-plane of a ROM or FSM. diffusion (N+) wires

are used to supply ground connections to the cells. These wires run vertically

through the and-plane. and horizontally through the or-plane. However, il is

necessary to connect these diffusion wires to metal ground lines at intervals, to

prevent excessive voltage drop. Therefore, "dummy" rows are included which

contain these ground lines.

In the and-plane. a "dummy" row is included for every sixteenth row. This

requires a set of dummy cells dummy.1, dummy.2, dummy.3, dummy.4, dummy.5.

through both planes.

173

In the or-plane. every 20th column of data is followed by a ground-line

column, composed of ".g" cells: rombtm.g, plac.g, placm.g, rommid.g, romtop.g.

Where ground-line columns and dummy rows intersect, a dummy.g cell is

placed.

The true and complement address lines bus through the dummy.4 cells, while

the bitlines bus through the dummy.2 and rommid.2 cells. The select lines bus

through the plac.g, placm.g and romword.2 cells.

The following discussion describes the cellular structure of the ROM macrocell

in more exact terms. Fig. B.14 shows the general organization of a ROM macro-

cell.

The rows "rombtm". "rommid". and "romiop" vary only according to the

number of output lines (N) and address inputs (K). From left to right, the cells

in "rombtm" are:

rombtm.l

N/2 instances of rombtm.2

rombtm J

K instances of rombim.4

rombtm.5

In addition, prior to the 11th. 21st. 31st etc. instance of rombtm.2 is an

instance of rombtm.g.

The rows "rommid" and "romtop" are organized identically, "rombtm" and

"romtop" are always required: "rommid" is omitted if the upper (subprogram)

ROM-plane is empty, rombtm.2 contains pullups for the bitlines. romtop.2 contains

the output registers. Aside from these, there is no active circuitry in these three

rows. Upper and lower address input lines bus through the cells romtop.4 and

174

rombtm.4 respectively.

Every sixteenth word in a ROM-plane is followed by a dummy word. Other

than this, a ROM-plane is simply a stack of ROM-words. Some of the cells are

different in alternating ROM-words to increase density by mirroring. "Even"

ROM-words, meaning the first (bottommost) ROM-word and every second ROM-

word above it. contain the following cells from left to right:

romword.l

N instances of either plac.0 or plac.l

romword.2

K instances of either pladec.0, pladec.l or pladecx

romword.3

In addition, prior to the 21st. 41st. 61st etc. instance of plac.0 or plac.l is an

instance of plac.g.

Odd ROM-words are identical except that the cells plac.0, plac.l, plac.g, rom

word.l, romword.2, romword.3 are replaced by placm.O, placm.l, placm.g,

romwordm.l, romwordm.2, romwordm.3.

It was found convenient to design the cells romwordm.l, romwordm.2,

romwordm.3 without including any geometries. These cells have a non-zero size

for tiling purposes.

Whenever it is necessary to add a word to a ROM-plane in order to make the

number of words even, the cells "placm.O" and "pladec.x" are always used to pro

gram the added row.

The cells in a dummy word are:

175

dummy.l

N instances of dummy.2

dummy.3

K instances of dummy.4

dummy.5

In addition, the cell dummy.g is placed prior to the 21st. 41si. 61st etc. instance of

dummy.2.

The cell structure of an FSM differs from that of a ROM in two ways:

1) The cells romiop.4 in the top row are replaced by the cell fsmdrw These

cells contain a register and drivers for the decoder (and-plane).

2) An FSM always has only a single ROM-plane.

B.5 Arithmetic Unit

The AUIO macrocell consists of the bit-slice arithmetic unit, described in this

section, and the processor I/O section, described in Section B.6. The processor I/O

section (which is always included, since any processor requires I/O) sits on top of

the arithmetic unit, and connects to the bit-slices through the "mbus". The physi

cal organization is illustrated by Fig. B.15.

A block diagram of the arithmetic unit is given in Fig.3.7 in Chapter 3. A

schematic of the arithmetic unit bit-slice is given in Fig.B.16. Each of the cells au

contain circuitry for an odd and an even bit slice: the cell au.ctl contains circuitry

for the two most significant bits and additional control circuitry. Schematics for

these additional control circuits are given in Fig.B.17. In these schematics, the

PfcGcKSOf* r/<? SECTION

2.

m

<

Av AU 1 ♦ • AU AO.cn.

Fig.B.15 Al'IO organization

176

KoU61TLINE-. •^ ^^
jzf—£j¥ '

WKlTfLATOi

Fig.B.16 Arithmetic unit bit-slice schematic

177

M8C/S

CC,
wc

w

WEN-

WfcmELATCh''

SHIFT

5^

HEHB V.
ACC6 ?

Q>
i

f
w

£>0 4R

LOAP[ss=:

pecortK

• • • ' > ^l V

* 1 • JP
6S?

J «€HB
\ ACC6

Xrt/r.Acc

||W

l£*oA

Fig.B.17 Additional circuitry for arithmetic unit control slice (1/2)

178

179

SlSKJ

(additional circuitry for arithmetic unit control slice 2'2)_

180

physical ordering of signal lines differs between the drawings and the actual cell

layouts. 1 should therefore be noted that the following signals, named in these

schematics, originate from the left side of the au.ctl cell and bus across the au

cells:

phi1.wen

phi2.writelatch

shift

load

bsO. bsl. bs2. bs3. bs4. bs5. bs6. bs7

inv

zeroa

zerob

memb

accb

xmit_mor

pof

nof*

phi2.aip

xmit_acc

In addition, there are cell-to-cell connections in the adder carry chain and in the

barrel shifter.

The cell au.gnd connects the true and inverted carry-ins of the LSB of the

adder in the adjoining au cell to GND and Vdd. respectively.

The arithmetic unit connects to the RAM macrocell throughi the "bitline" ter

minals in the bit slices: and through the four terminals Hphi2". "phil*". "read*"

181

and "write*" along the bottom of the control cell au.ctl.

Control signals from the control ROM enter au.ctl from the right side. These

control signals control both the arithmetic unit and the RAM macrocell. Also

entering the right side of au.ctl are the coefficient inputs "coefl" and "coef2".

Leaving the right side of aujctl is the serial output "quol". and the signal "sign",

which may be used as an input to the FSM macrocell.

There are four pipeline registers in the arithmetic unit: MOR. SOR. ACC and

MIR. Arithmetic unit operation is best understood by the effect of the various

control inputs on the contents of these registers. A description of the various con

trol lines for the arithmetic unit follows. Control signals whose names end with

H*H are active low: others are active high.

zerob* — forces adder B inputs to be zero

memb* — AND's adder B inputs with MOR

accb* — AND's adder B inputs with ACC

(with none of the above three asserted, the B inputs are all ones)

writelatch —selectively loads MIR from the "mbus".

(MIR differs for the other three registers in thai it is transparent and selectively

loadable. The other three registers are master-slave and are loaded every cycle as

follows: RAM bitlines into MOR: shifter output into SOR: adder output into ACC.

The latter assumes the "aip" control is not used.)

r.w.wc.cc — control inputs for RAM decoder are

derived from these, "r" selects a read cycle: "w" a

write cycle: "wc" and "cc" are gated together for

a conditional write cycle

wen — enables MIR (inverted) onto bitlines

shift* — when asserted. SOR is fed to shifter inputs

instead of MOR

sO. si. s2 — these three encode (0 to 7) the number of

places the shifter's output is shifted right from its

input.

invl. inv2 — these control the value of a variable INVOLT

(which is gated into the adder A inputs) as follows:

invl inv2 INVOLT

0 0"ISORI
0 1 ISORI
1 0 "SOR
1 1 SOR

zeroal. zeroa2. zeroa3 — these control the gating of INVOLT

into the adder A inputs as follows:

182

zeroal zeroa2 zeroa3 Adder A input

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

INVOUT
INVOUT & coef2

INVOUT & C coef2)
INVOLT & coef1
INVOUT &C coef1)

183

xmitacc*. xmitmor* — enable ACC or MOR onto "mbus"

aip —accumulate if positive. If asserted. ACC is loaded

with the adder output only if it is positive. To allow

for a two's complement divide, aip also controls the

"quot" output.

B.6 Processor I/O Section

In order to simplify programming of the multiprocessor macrocell-based IC's.

interprocessor and off-chip I/O is abstracted by the use of global variables in the

input design file. This simplification is not without hardware cost, and the com

plexity of the I/O hardware reflects the fact that the silicon compiler must distin

guish between several types of I/O.

All interprocessor communication is through the use of scalar global variables,

as opposed to the array global variables that are permitted for host I/O.

Communications between processors, and between processors and the host

interface, may be classified according to the type of the source and destination.

Possible sources are: the processor "mbus": the processor "quot" output: and the

host interface. Possible destinations are: the processor "mbus": the processor

"coefl" or "coef2" inputs: and the host interface.

PARIO SECTION
I/O UNIT

I/O UNIT
PROCIO SECTION

Fig.B.18 Processor I/O section organization

184

tNBUS OVTBVS

A
n

•—'vVw-J

Mavs

ffPR0CIo»

•*•

Fig.B.19 Schematic of prucio cell

185

INBVS OVTBVZ

1— (pin)

j

r
CDNNECTtVN

^4>>fH>

0,

•fPATA}

Wire. f.

tfrrt"SP

Fig.R2(> Schematic of the cell "sp"

186

//vgi/s

-(EiVABlS)

1—Wl'B'fx

l(SP.<?"

187

(M) <r < <PATAtN

(ENABLE) < 0<|] °<3~XC C&ABLS

WRITE*f2. <r
A

"SP.CTL*

(MX <J" <DATAIN

r^XHO
^wrive

(EtfABL&)<r <>4\ 0<}-lJ <EMBLE

ffSPLATcM.CTLn

Fig.B.21 Schematics of control cells for SP and SP latch units

(Sata)

t
GDNN€CT€p

TO 6MP
IW "ft.WM

/A/fit/S

— K

(PATA^

-SHIFT

{LOAP)

Wfi.\TE*fcz^ri:
OUTBVS

«PC5PS"

Fig.&22 Schematic of the cell "ps"

188

-SHlFf

(WBUi OVTBvZ

189

(PATA)) •£» —}pATAOirr

SUIFT 4r

<LOAP

(LDAP) <r f:

WRITE *fiz4r
"PS.CTL*

£*> •» PATAOUT

-*<} < LOAV

<r

<XQ <3\
<W*IT£

?•.
((PSIATCK.CTL^

Fig.B.23 Schematics of control cells for PS and PS latch units

PAP10

<PAfiWT <r

-<ffl\ft/w)

INBVS OUTSUS

C(Pr\ZLO"

^X>

«PNtL0,CTL*

tt • nFig.&24 Schematics of cells in the pano section

190

+PAP&1ABUE

PA&tn

191

In general, for every global variable declared in the source program for a chip,

a serial communication line is set up. (The exceptions are globals used for parallel

signal I/O.) Each serial communication line requires a "transmit unit" and a

"receive unit" (hardware items consisting of serial-parallel and parallel-serial

registers) as follows:

source destination xmit unit receive unit

G

N

G

mbus

mbus

mbus

mbus

coef

host output

PS

PS latch

PS

SP latch

host interface

G

G

quot
quot
quot

mbus

coef
host output

♦NOT ALLOWED*
SP latch

host interface

N

N

host input
host input
host input

mbus

coef

host output

host interface
host interface

NOT ALLOWED

SP

(G means transmitted when generated. N when needed)

A given global is allowed to have exactly one source, but may have more than

one destination. If two of the source-destination pairs for a single global are

listed with a "G" in the above table, the transmit unit (if any) may be shared for

both destinations. Otherwise, separate transmit units are used, and the I/O struc

ture resembles that of two separate globals.

The individual processors are configured with the appropriate complement of

SP. SP latch. PS. and PS latch units as described by the above table. These units

become part of the processor I/O section.

The processor I/O section (Fig. B.18) consists of a "procio" section: a stack of

zero or more I/O units (in any order): and an optional "pario" section, included

only if parallel input or output (including pointer-mode iy indexing) is included.

192

The I/O units are the PS. PS LATCH. SP. and SP LATCH units mentioned above.

For an N-bit processor the "procio" section consists of the following single row

of cells:

procio.gnd

N instances of procio

procio.cil

A schematic of procio is shown in Fig.B.19.

There are four types of I/O units: the input units SP and SP LATCH: and the

output units PS and PS latch.

An SP unit consists of a single row of cells:

sp.gnd

N instances of sp (or sp.O, see below)

sp.ctl

An SP LATCH unit also consists of a single row of cells:

sp.gnd

N instances of sp (or sp.O, see below)

splotch.ctl

Schematics for these cells are shown in Figs. B.20 and B.21. Note that the cell

sp.gnd makes a connection to the input of the serial-parallel converter.

Both input units have an "enable" control input, the effect of which is to enable

the data onto the mbus on the following clock cycle.

193

The SP LATCH unit has in addition a "write" control input, the effect of which

is to store the shifted input in a temporary latch. For a K-bit global, the "write

control is asserted K-1 clock cycles following the cycle on which the MSB of the

serial data is on the external serial input.

Simultaneous assertion of "write" and "enable" results in the new data being

strobed onto the mbus.

For the case in which the processor word width is N bits, the global is K bits,

and N > K. some of the cells sp in an SP or SP LATCH unit are replaced by sp.O.

If the global is left-justified, the first (N-K) sp cells in the row are replaced by

sp.O. If the global is right-justified, the last (N-K) sp cells in the row are

replaced.

Please note:

(1) By default, a global is left-justified (justified towards the MSB side) unless

declared as right-justified in the source file.

(2) A right justified global is an unsigned integer — it is padded out with

zero's to the left (no sign extension).

A "PS" unit consists of a single row of cells:

ps.gnd

N instances of ps (or ps.O, see below)

ps.ctl

A "PS LATCH" unit consists of:

194

ps.gnd

N instances of ps (or ps.O, see below)

pslatch.ctl

The PS LATCH unit has a "write" control input. This is asserted the same cycle

that the data to be outputled is on the mbus. storing the data in a temporary

latch.

Both output units have a "load" control input. For the PS unit, this is always

asserted the same cycle that the data to be outputled is on the mbus. For the case

of the PS LATCH, the "load" control may be asserted on that cycle or any time

thereafter.

Asserting both "write" and "load" for a PS LATCH unit sends the newly writ

ten data to the serial output. In both cases, the MSB of the data appears on the

external serial data line on the cycle following the cycle on which "load" is

asserted.

The cell ps.0 may replace ps in the same fashion as sp.O replaces sp to allow

for globals with shorter wordlengths than the processor.

Schematics for cells used in 10 units are shown in Figs. B.22 and B.23.

To perform parallel I/O. the PARIO section is included. Parallel input occurs

from the off-chip signal data bus to the processor I/O section. Parallel output

occurs from the processor I/O section to either the off-chip bus or the APU's Y-

inputs (pointer mode addressing).

A PARIO section consists of a single row of cells: pario.gnd, pario, pario.ctl

with pario.O replacing pario in the usual fashion. Schematics for these cells are

given in Fig.B.24.

A parallel output operation is done by disabling "parin" (control input to

pario.ctl). This is done the same clock cycle that the desired data appears on the

195

mbus. If the destination of the word is the off-chip bus. an additional control sig

nal, active the same cycle, is sent to an output pad for use as an off-chip strobe.

There is one such additional control signal per global used for signal output. No

additional control signal is used if the destination is the AAU.

A parallel input operation is done by asserting "parin" the cycle before the data

is needed on the "mbus". An additional control signal for each signal input global

is sent to an output pad for use as an off-chip strobe.

The control line "padenable". derived from "parin". enables the pads used for

the signal I/O bus. The logic of this signal is that the signal I/O bus is enabled

every cycle except those for which it must be disabled for an input operation.

This allows the processor's mbus to be monitored at all times, useful for testing

purposes.

B.7. RAM

Described in this section is the processor data memory (RAM). Although the

term "RAM" usually refers to read-write memories, in this case some of the

memory locations may be programmed with read-only constants, the result of

"constant" declarations in the processor microcode definition. The RAM bitlines

are routed to the bottom of the AUIO. and all RAM control lines come from the

control section of the AUIO block. RAM address inputs originate either from the

AAU outputs, or directly from the control ROM in the event there is no AAU.

RAM's by their nature contain large numbers of small cells. Suppose that the

RAM has M N-bit words and K address inputs. The bottom row consists of the

following cells, from left to right:

rambtm.O

196

TOP ROV/

JfW-FT M * £AM.X mstL fcxfiWSC.X HAM-

KxfiWECX^M
goTTOM (iPW

Fig.&25 Organization of the RAM macrocell

BlTMZ

WStL

fcSEL 5
«gAN,C»

R?€L

WSCL-

6/tli^

RS£L- 3G ft$£L

«WH.f¥ '(fcAM.lM

ITEX REApX

-o<h—W—3"

(S6LECT)

(SELECT)

**AMS£L»

A A A T

•Kftfcr) (s^ct) C^^ECT)

A A

r((kMPEC±»

A

A A

"GAMD£C,£V

fa

53^
f(RAMP*V»

•AP^ESS

Fig.B.26 Schematics of cells in the RAM macrocell

197

198

rambtm.l (N times)

rambtm.2

rambtm.3 (K times)

rambtm.4

Above the bottom row are M rows, one for each word, as follows:

ramljt

ram.c. ram.O. or ram.l (N times)

ramsel

ramdcc.O or ramdec.J (K times)

ramrgt m

[optional address input cells; see below]

Finally there is a top row:

ramtop.0

ramtop.l (N times)

ramtop.2

ramtop.3 (K times)

ramtop.4

The overall organization is illustrated in Fig. B.25.

Some of the middle rows have cells on their right side that allow the address

lines to be buffered and routed into the decoder. If there is one or more address

line, cells are included in the first of the middle M rows. If there are two or more

address lines, cells are included on the third of the middle M rows: three or more.

199

on the fifth: an so on up to seven address lines.

On the first of the middle M rows the address input cells are ramcon.0

followed by ramdrv. On the third row. the cells are ramcon.J followed by

ramdrv. This continues on up to the thirteenth row. where ramcon.6 and ramdrv

are included for the case of seven address lines (seven is the maximum allowed).

Because of this organization, is is not allowed for the number of words in the

RAM to be one. three, or five.

The "ramcon" cells connect the complementary outputs of the ramdrv cells to

the true and inverted address lines running vertically through the decoder. The

"ramcon" cells are not illustrated in Fig. B.25: they extend from the left edge of

the ramdrv cells over the decoder plane.

Cells used in the RAM are shown in Fig.B.26. The bitline is precharged during

PHI2. and read accesses occur during PHI2*. Read data is strobed off the bitline

by PHIl. Weak pullups are also used on the bitline. to restore charge lost due to

coupling to the precharge clock.

Precharging is also used during a write. Note that following the trailing edge

of PHIl. the WSEL signal must turn off the 3-T cell's pass gate prior to the rising

edge of PHI2. when precharging begins. For this reason RAM operation depends

on sufficient clock separation.

The decoder consists of a NAND decoder for the address lines, followed by

two NOR gates for the RSEL and WSEL signals. Other inputs to the NOR gates

originate from the cell au.ctl. These inputs, "readl*". "writel*". "read2*".

"write2*". bus through the cell ramtop.2. which contains no active circuitry.

The read-only cells ram.0 and ram.l are used to allow for constant locations

within the RAM array.

B.8 I/O Sequencer

200

The I/O sequencer implements the finite state machine whose stale sequence

diagram is given in Fig.3.13 in Chapter 3. Functionally, the I/O sequencer is part

of the host interface; physically it is located with the bonding pads in padgroup2,

described in a later section.

The sequencer is contained in the cell iocontrol, which is not listed in the

descriptor file because it appears only as a subcell of padgroup2. A small finite-

state machine has three inputs (EOS. MOF and EOF) and two bits of state

corresponding to the four states shown in Fig.3.13.

The state bits are decoded to produce five signals used by the various parts of

the host input and output interfaces:

fs first sample
Is last sample
wnp write noi in progress
rnp read not in progress
wnp+ls

(state 3)
(state 2)
(state 0)
(state 1)
(stales 0 or 2)

In addition to its destination in the host interface, the "fs" signal is used to assert

the RINT* (read interrupt) signal which goes to the host.

Fig.B.27 is a schematic of the cell iocontrol.

B.9 Host Output Interface

Fig.3.12. in Chapter 3. shows the Host Interface macrocell as being composed

of the host output interface on the bottom, with the hosi input interface on top.

One or the other of these may be excluded if only one type of host I/O is required.

This section describes the host output interface.

Global variables used for host output originate from either the "mbus" or the

"quot" output of a processor. In either case the data is generated at a time

201

46AA&6
f.

SI

JxJLckJ"
o^loCp1

5/

,! -ii
r

o^kx^H
-O^KXPS

FS LS wwp KNP Wtf+LO
"Icrrs/Tsc.L11

5

Fig.B.27 Schematic of the cell "iocontrol"

202

pour Auy

POUT avx

rff/^rocrr)}

|c^§L w &

6

H"-
•4 * ^CZtiJciT

< "^ r-Ufc'r£L

"uostuvt.ctiJ

Fig.B.32 Host output section cell schematics

(BUS)

ft
S-P Register

FIFO Word

FIFO Word

Hostout Section

(BUS)

4
WRITE1

WRITE2

WCLR1
LWCLR2

l'ig.B.28 Organization ofa host output I-'Il'O section

203

POUT

nFlFO. C "

Fig.B.29 Schematic of the cell "fifo.c'

/N **

204

PIN A.UX

RS£L

WS£L

» f f *

V/.^, (*/P) W.^X iA/'/i
/T» "T*

/?S£L<-HD(^;
r<t—

VS£L<-

A S\ 1
* «AP*ri (W *•& W.^ W Vfa W'&

"FIFO. CTL"

* r- /- . i*>Fig.B.30 Schematic of the cell fifoxll

L--RAM

t.

VOuT

ti*N)4-

((

205

W* MX

•»sea.

< PATAlN

«SPZ.CTL

Fig.B.31 S-P register cell schematics

N

SP1.GM?

(PSZ.6NP)

(FiRtt.GNP)

FIFO, W

(plFOl.GNp)

FIFO.C

PR?

(PlPOl.c)
7^

Honour

(hinput)

Fig.B.33 Illustration of FIFO section assembly

SPT-

FiFac

(F1P&2.C)

FiPo. c

(RPfvl.c)

HOSTour

(wMfvr)

206

SPl.ctl

FiR?. cn_

I

FlPO.CTL

(fiPoi.ctl)

HOSfaJ.CTL

(w(WftT.ca)

HOST OUTPUT

FIFO SECTION

HOST OUTPUT

FIFO SECTION

HOST OUTPUT

FIFO SECTION

HREmD SECTION

5
to host

7^

READ
SREAD

EOS

FS

Hg.B.34 Organization of the host output interface

207

POUT

HOSTBUS

Ok

R 5 (KP)

(ROT)

AUX

)>frHR€AP.CTU

—(GGAP)

SK£*?

-£EA«/

Fig.B.35 Host read cell schematics

207a

208

determined by the processor.

Fig.3.14 in Chapter 3 shows how host output FIFO sections are combined into

the host output interface. Fig.B.28 shows the structure of one of these sections.

Suppose the host data bus is Nbits wide. Each "FIFO word" is composed of the

cells fifo.gnd, fifo.c (N times), fifo.ctl, whose schematics are given in Figs. B.29 and

B.30. The "S-P register" contains the cells sp2.gnd, sp2 (N times). sp2.ctl whose

schematics are given in Fig.B.31. Il should also be noted that the cell sp2.gnd

makes a connection to the serial input of the sp2 cell tits

The lower section, labeled "hostout". contains the cells hostout.gnd, hostout (N

times), hostout.ctl. See Fig B.32 for schematics.

Fig. B.33 illustrates how the cells in a hosi output FIFO section are assembled.

(Cell names in parenthesis refer to host input FIFO sections, discussed later.)

First the way in which data enters these FIFO sections will be discussed. In

simple terms, the serial data enters an 8 or 16 bit S-P register, and a liming signal

"writel" from the control ROM of the source processor tells the host output FIFO

section when to write the data into the FIFO.

There are two complications: (l) The data may be longer than the 8 or 16 bits

of the register; and (2) The data may be an array of words rather than a single

word.

If neither of these complications is present, there is only one word in the FIFO

section.

If the data is in an IX-indexed array, the "writel" control is asserted during

the subprogram, rather than the main program, of the processor. In addition,

there may be an additional assertion of "writel" in the main program shortly

after the end of the last subprogram iteration, to strobe the last element of the

array.

If the data is longer than 8 or 16 bits, enough words in the FIFO section are

209

included to hold the entire data. The "writel" signal from the source processor

must be asserted several times at 8 or 16 cycle intervals.

In addition, the source processor must determine when to clear the FIFO write

pointer so that the next write occurs at the first word. This is done either during

the last sample of the frame or the first sample, depending on when the data is to

be captured. For the case of scalar or IX-indexed globals. "wclrl" is a control line

from the source processor, and "wclr2" is wired to either "is" or "fs". The desired

data (generated during the last sample) is written into the FIFO, and the FIFO's

write pointer is subsequently allowed to increment past the last word of the FIFO

section so that data from other samples in the frame is ignored.

The situation is more complex for IY-indexed data. Here. Hwclr2" is asserted

when the IY counter is zero, rather than just at the end of the frame. "wclr2"

comes from a "lest" output of the AAU for the source processor. To prevent data

from changing while the host is reading it out of the FIFO. wwrite2" is wired to

"rnp" (read not in progress) to suppress writing during this interval. Thus, the

host gets a set of y-indexed values sampled near the end of the frame.

In cases other than the IY indexing. "write2" is always asserted (i.e.. wired to

Vdd).

Now consider the reading of the host output interface by the host. Reading is

controlled by a row of cells, hread.gnd, hread (N times) and hread.ctl, situated

below the FIFO sections. The arrangement of the "hread" section at the bottom of

the host output interface is shown in Fig.B.34. Schematics of the cells hread,

hread.ctl are given in Fig.B.35.

First note that the read pointer moves from section to section, as opposed to

the write pointers which are independent for each section. This pointer is cleared

at the end of the first sample by gating together "eos" and "fs". This is the same

point in time when the read interrupt is generated.

210

The synchronized read signal "sread" is used to read words from the FIFOs.

The read pointer increments each time a read is performed. The unsynchronized

signal "read" enables the data onto the three-state host bus. (Note that the syn

chronized signal could cause a bus conflict were it used to enable the data.)

B.10 Host Input Interface

The host input interface (Fig.B.36) contains a "hwrite" section, plus one or

more "host input FIFO sections". Each host input FIFO section (Fig.B.37) contains

a "hinput" section: one or more "fifo2" words; and a"P-S register". Again assume

the host data bus is N bits wide.

The "hinput" section contains the cells hinput.gnd, hinput (N times), hinput.ctl.

The "fifo2" words contain the cells fifo2.gnd, fifo2 (N times), fi.jo2.ctl. The "P-S

register" contains the cells psl.gnd. ps2 (N times). ps2.ctl. Schematics for those

cells with active circuitry are given in Figs. B.38 to B.41.

One feature of the host input interface is that it is possible to read a word out

of a FIFO section more than once before advancing to the next word. This is why

there are separate "read" and "radv" (read advance) controls for the "hinput" sec

tion. This allows a processor to reference a host input global more than once in its

program without storing it locally. This feature has the limitation that the

wordlength of the global variable must not exceed the width of the host data bus.

since there is no way to move the read pointer backwards. Nevertheless the

feature is sometimes useful.

If it is not desired to read the words more than once, the "read" and "radv"

lines are tied together.

The "read" control line originates from the control ROM of the destination

processor, and its timing is related to when the data is needed. The "rclrl"

HOST INPUT

FIFO SECTION

HOST INPUT

FIFO SECTION

HOST INPUT
FIFO SECTION

HWRITE SECTION

from host

/-
7

4

EOS
MOF

SWRITE

WRITE*

FigA36 Organization of the host input interface

211

(BUS)

ft
P-S Register

FIFO2 Word

FIFO2 Word
6

READ

RADV

Hinput Section
RCLR1

* / *<
RCLR2

0
(BUS)

WNP

^WNP+LS

Fi^.B.37 Organization of a hosi input FIFO section

212

pin pout

Wn

w I
t-jy^—I

"HINPUT"

KEF*eSH vwate (WP) w-A W-*i w^ (W I PAgV'Pi 4 V'
A A* A* A* T* 'r* n I

6Li fi *

<M
(WP) *./., w.^ ^

"hinPi/t. ctl"

Fig.13.3fc Hosi input section cell schematics

213

WNP+LS

—UPPATB

PW pour
fff|F02.C"

ft r. /» «, «•Fig.B.39 Schematic of the cell fifo2.c

RSEL

/?P«£SH

WSEL

214

REFRESH U?9ATE (WP)
/N

f*p> f? ft<w^, ft 6

C/Pl?AT£4-

KfRESH «-

ftFRKH VPPATE fWP) y.^ W.^ T7^_ (*P)

rrFlFC?2.CTL"

Fig.B.4() Schematic of the cell "fifo2.cil"

ir (?apv/.# *./,

215

>(PATA)

<SHIFF

<UAP

irpS1))

(PATA)- 1> •iPATAOUT

$H\FT <r

LOAP <- J

"PSl.CTL*

Fig.B.41 P-S register cell schematics

216

PZaJ

tffcire —£ tv*/r£

((WW*lTE°
AU*

^
&

(V*0 tf'fc 1^/.^ W-2.
/K /K A*

<3
-£CS

4 5W/5ITE

v£\TE 4r

T

Wfc/T£

"M^rccn."

Fig.B.42 Host write cell schematics

217

control line not only clears the FIFO read pointer, so that the next word read is

the first word in the FIFO, but controls a refresh operation to occur in the fifo2

cells. This refreshing is necessary since the frame length may exceed a refresh

interval. However, refreshing must be supressed while the host is writing into the

"master" part of the FIFO. Thus refreshing occurs only if the "wnp" (write not in

progress) signal is asserted.

A look at the schematic for the fifo2 cell shows that the "update" operation

must follow a"refresh" operation for the refresh to actually occur. When "wnp"
is active, "refresh" is equal to the complement of "rclrl". while "update" is equal

to "rclrl". The "update" control is also equal to "rclr" during "is" (last sample),

which has the effect of loading the new data into the "slave" pari of the FIFO

before the start of the new frame. By choosing the correct cycle for "rclrl". data

referenced during any sample of the frame (including the first or last sample) will

be identical.

The "rclr2" control is usually always asserted, with only "rclrl" in use. The

exception is if the FIFO section stores a IY-indexed global. In this event, the
"rclr2" is connected to a "IY=0" test output of the destination processors AAU.

Writing from the host into the host input interface is straightforward. The
"hwrite" section consists of the cells hwrite.gnd. hynrite (N times), hwrite.ctl,

whose schematics are given in Fig.B.42. The FIFO write pointer is cleared by

"mof" anded with EOS. which is when the write interrupt W1NT* is asserted.

The unsynchronized signal "write*" latches the incoming data, while the syn

chronized signal "write" controls the write cycle and advances the pointer.

Fig. B.33 (in the previous section) illustrates the assembly of a host inpui
FIFO section. (Parenthesized cell names apply to host input FIFO sections, those

without parentheses to host output FIFO sections.)

218

B.11 Bonding Pad Circuitry

Two package sizes are allowed: 40 and 64 pin DIP's. Because of the way pads

are grouped, a 64 pin package is used if:

(1) The host interface is 16 bits

(2) The signal 10 bus. plus the signal strobes, exceeds 19

(3) The number of signal strobes exceed 9

Otherwise, a 40 pin package is used. The signal 10 bus. plus the signal strobes,

may not exceed 31. The signal strobes may not exceed 15.

(The above could be refined to allow some projects with a 16 bit host interface

to still fit in a 40 pin package.)

Pads are divided (somewhat arbitrarily) into four groups:

(1) The host 10 bus

(2) Vdd. GND. PHIl. PHI2. READ*. WRITE*. RINT*. W1NT*

(3) Up to 10 (16) bits of thesignal 10bus for 40(64) pin package

(4) GND. all strobes, and the remaining bits of the signal 10 bus

These are referred to as padroupl, padgroup2, padgroup3 and padgroup4.

The following procedure for positioning the pad groups around the edges of a

chip has been used.

Following global place and route, the assembled padless circuit must have the

signal 10 bus along one edge, and the host IO bus along a separate edge. Place

group (3) along the first edge, and group (1) along the second. Either these two

edges are adjacent or opposite. If adjacent, place group (4) adjacent to group (3).

219

(pAO£Nr\BL£)

BtT
(lPADIO"

* j: "Fig.B.43 Schematic of padio

STR09B

Fig.B.44 Schematic of "padstrobe"

SfiEAp
(sw*»T<a

(MOF)

EOS i>

«PAPIST n

Fig.B.46 Schematic of "padint

£>o—>

"fAPSYNc"

» . ••Fig.B.45 .Schematic of padsync

220

»Si£>

5^eA^

(IN) (OUT)

Pap

W
i

RKST'ti i&SETour

"f>A?£ES£T»

ct . »Fig.R47 Schematic of padresei

221

222

If opposite, place groups (4) and (2) based on signal proximity.

It is assumed that pin-out is assigned by the software and may not be specified.

Following the placement of the pad groups, three sets of permutable signals are

identified:

The signal 10 bus

The host 10 bus

The strobes

For each set. signals may be assigned so as to to eliminate crossings within the

wiring of that set.

The individual bonding pads come in the following varieties:

Tristate pad (Bidirectional, with an active high output enable)

Strobe pad (latches strobe on PHI2)

Synchronizing input pad (samples input on PHIl into latch)

Interrupt output pad (with logic for setting/clearing interrupt)

Clock input pad (no drivers)

Ground pad for group (2)

Ground pad for group (4)

Vdd pad

IOC (I/O controller —not a bonding pad. but part of group (2))

Cell names for these are padio,padstrobe,padsync,padint, paddock, padgndJ.

padgnd4, padvdd and iocontrol. In addition, cell padio.end provides an "enable"

terminal for a row of "padio" pads.

Circuitry for pads with active circuitry are given in Figs. B.43-45.

223

Each of the four groups has a single row of cells, providing terminals only

along the bottom edge. GND and Vdd busses emerge along both left and right

sides of the group.

Groups (1) and (3) contain the following cells:

a number of instances of padio

padio.end

Group (4) contains:

a number of instances of padstrobe

padgnd4

zero or more instances of padio

padio.end (if at least one instance of padio)

Note that "padgnd4" contains a terminal that connects phi2 to the strobe pads.

Group (2) is always fixed, consisting of the single cell "padgroup2". The cells

contained in padgroup2 are kept available for future designs with more elaborate

pad arrangements.

An additional pair of pads, in the cell padreset, may be attached to the left

edge of padgroup4 and used for the "external sync" option described in Appendix

C. Figs. B.47 is the schematic for padresei.

B.12 Descriptor File

The following descriptor file lists all the cells, and their terminal positions, for

the NMOS cell library in the format described in Section 4.2 of Chapter 4. (A few

keywords not described in Section 4.2 are used in this version of the file.)

cell ram.O 17 19

cell ram.l 17 19

cell ram.c 17 19

cell ramblm.O 30 25

cell rambtm.l 17 25

cell rambtm.2 74 25

cell rambtm.3 14 25

cell rambtm.4 0 25

cell ramlft 30 19

cell ramsel 74 19

cell ramtop.O 30 12
cell ramtop.l 17 12
top bitline 2 12
cell ramtop.2 74 12
top writel* 9 12
topreadl* 16 12
top write2* 30 12
top read2* 37 12
cell ramtop.3 14 12
cell ramtop.4 0 12
cell ramdec.O 14 19

cell ramdec.l 14 19

cell ramrgt 0 19
cell ramdrv 51 19

right address 5117
cell ramcon.O 0 19

cell ramcon.l 0 19

cell ramcon.2 0 19

cell ramcon.3 0 19

cell ramcon.4 0 19

cell ramcon.5 0 19

cell ramcon.6 0 19

cell rombtm.l 23 23

cell rombtm.2 16 23

cell rombtm.3 16 23

cell romblm.4 16 23

bottom inbtm* 6 0

bottom inbtm 14 0

cell rombtm.g 8 23
cell rombtm.5 60 23

cell rommid.l 23 S

cell rommid.g 8 8
cell rommid.2 16 8

cell rommid.3 16 8

cell rommid.4 16 8

cell rommid.5 53 8

cell dummy.1 23 8
cell dummy.g 8 8
cell dummy.2 8 8
cell dummy.3 16 8
cell dummy.4 16 8
cell dummy.5 53 8
cell romword.l 23 7

cell plac.g 8 7
cell placm.g 8 7
cell romword.2 16 7

cell romword.3 53 7

cell romwordm.l 23 7

cell romwordm.2 16 7

cell romwordm.3 53 7

cell romlop.l 23 112
cell romiop.g 8 112
cell romiop.2 16 112
top outl 2 112
top out2 10 112
cell romtop.3 16 112
cell romtop.4 16 112
top intop* 6 112
top intop 14 112
cell romtop.5 53 112
cell fsmdrv 16 112

top fsmin 4 112
cell plac.O 8 7
cell plac.l 8 7
cell placm.O 8 7
cell placm.l 8 7
cell pladec.O 16 7
cell pladec.l 16 7
cell pladec.x 16 7
cell counter 44 88

cell counter.O 44 88

cell counter. 1 44 88

cell counier.gnd 30 88
cell pel 44 26
top out* 17 26
top out 25 26
cell spc.l 44 26
bottom out* 17 0

bottom out 25 0

cell aauoul.gnd 30 22
cell aauout 44 22

bottom out 2 0

224

cell aauadd.gnd 30 117
cell aauadd.e 44 117

cell aauadd.o 44 117

cell aauadd.ctl 66 117

right index 66 92
cell aaudec.gnd 30 17
cell aaudec.O 44 17

cell aaudec.l 44 17

cell aaudec.x 44 17

cell ydec.ctl 66 17
cell aaudec.ctl 66 17

right lest 66 10
cell aauinvert.gnd 30 10
cell aauinvert 44 10

cell aauinvert.ctl 66 10

cell aauconnect.gnd 30 8
cell aauconnect 44 8

cell aauconnect.ctl 66 8

cell aauin.gnd 30 7
cell aauin.x 44 7

top yinput 4 7
top input 417
cell aauin.y 44 7
top yinput 4 7
top input 41 7
cell aauin.ctl 66 7

cell ix.ctl 66 88

right eos 66 25
right inc 66 72
cell iy.ctl 66 88
right yclock 66 73
cell aauout.ctl 66 22

cell pc.O 30 26
cell pc.2 66 26
cell pc.ctl 66 88
right reset 66 75
right eos 66 44
cell spc.O 30 26
cell spc.2 66 26
cell spc.3 30 21
cell spc.4 44 21
cell spc.5 44 21
cell spc.6 66 21
right ret 66 2
cell spc.ctl 66 88
right jsr 66 75
cell hwrite.gnd 30 50
cell hwrite 44 50

bottom hostbus 41 0

cell hwritcctl 146 50

right eos 146 23
right mof 146 16
right swrite 146 9
right write* 146 2
cell hinput.gnd 30 72
cell hinput 44 72
cell hinput.ctl 146 72
right read 146 113
right radv 146 67
right rclrl 146 39
right rclr2 146 32
right wnp 146 22
right wnp+ls 146 4
cell fifo2.gnd 30 47
cell fifo2.c 44 47

cell fifo2.ctl 146 47

cell ps2.gnd 30 41
cell ps2 44 41
cellps2.ctl 146 41
right dataout 146 23
cell sp2.gnd 30 44
cell sp2 44 44
cell sp2.ctl 146 44
right datain 146 6
cell fifo.gnd 30 32
cell fifo.c 44 32

cell fifo.ctl 146 32

cell hostout.gnd 30 42
cell hostout 44 42

cell hostout.ctl 146 42

right writel 146 14
right write2 146 22
right wclrl 146 29
right wclr2 146 37
right h 146 54
cell hread.gnd 30 47
cell hread 44 47

bottom hostbus 41 0

cell hread.ctl 146 47

right read 146 3
right sread 146 19
right eos 146 27
right fs 146 35
cell au 88 430

bottom bitlineO 42 0

bottom bitlinel 86 0
cell au.gnd 30 430
cell procio.gnd 30 38

225

cell procio 44 38
cell procio.ctl 137 38
cell sp 44 64
cell sp.O 44 64
cell sp.gnd 30 64
cell sp.ctl 137 64
right datain 137 59
right enable 137 5
cell splatch.ctl 137 64
right datain 137 59
right write 137 26
right enable 137 5
cell ps.gnd 30 59
cell ps 44 59
cell ps.O 44 59
cell pslatch.ctl 137 59
right dataout 137 55
right load 137 47
right write 137 21
cell ps.ctl 137 59
right dataout 137 55
right load 137 47
cell pario.gnd 30 56
cell pario 44 56
top pario 2 56
cell pario.O 44 56
top pario 2 56
cell pario.ctl 137 56
right parin 137 10
right padenable 137 22
cell au.ctl 225 430

bottom bitlineO 42 0

bottom bitline1 86 0

bottom phil* 99 0
bottom r* 106 0

bottom w* 113 0

bottom phi2 160 0
right wc 225 13
right cc 225 20
right w 225 27
right wen 225 41
right writelatch 225 59
right r 225 66
right xmitmor* 225 86
right shift* 225 93
right sO 225 100
right si 225 107
right s2 225 114
right 1 225 151

226

right invl 225 201
right inv2 225 217
right memb* 225 239
right zerob* 225 247
right coef1 225 254
right zeroal 225 261
right coef2 225 268
right zeroa2 225 275
right zeroa3 225 282
right h 225 322
right quot 225 333
right sign 225 370
right aip 225 380
right accb* 225 400
right xmitacc* 225 419
cell padio 222 231
bottom bit 4 0

cell padio.end 10 231
bottom enable 6 0
cell padstrobe 212 231
bottom strobe 22 0
cell padgnd4 172 231
clock phi2 6 0
power gnd 103 0
cell padgroup2 1790 275
bottom read 4 0

bottom sread 20 0
bottom write 182 0
bottom swrite 198 0
bottom write* 230 0
bottom fs 980 0

bottom Is 1002 0
bottom wnp 1026 0
bottom rnp 1049 0
bottom wnp+ls 1072 0
bottom eos 1254 0
bottom eof 1261 0

bottom mof 1268 0
clock phil 1548 0
clock phi2 1720 0
power gnd 891 0
power vdd 1377 0
cell padresei 388 231
bottom resetin 22 0
bottom resetout 198 0

227

Appendix C — Design File Description

This Appendix is excerpted from the reference manual for the silicon compiler

[35].

CI Introduction

The design file gives a full description of a signal processing IC and serves as a

single input to the emulator and silicon compiler, so that both design tools are

consistent. A special purpose language has been developed. This language, which

describes the system al an intermediate level, can be kept rather simple, due to the

restriction to a well defined processor and interprocessor architecture. (The design

file will be generated by a higher level compiler in a future phase.)

For the formal definition of the syntax of the design file, the syntax is

described by the following notation: semantic constructs are denoted by English

words between the angular brackets < and >. These words are suggestive of the

nature or meaning of the construct. Production rules use ::= to define a construct

as an expression or a combination of constructs: curly brackets { } indicate repeti

tion any number of times including zero: square brackets [] indicate optional fac

tors (i.e. zero or one repetition): parentheses 0 are used for grouping. The vertical

bar I is used for the or-ing of constructs.

The design file contains a detailed description of the basic blocks of the signal

processing IC : the processors, the host I/O and signal I/O. the interprocessor com

munications. This determines the general format of the design file:

<iesign-file> ::= <jglobals> <l/0>(<proc> {<proc>}) [Constraints>]

228

In the next sections, the syntax and the contents of each of these blocks will be

discussed in detail. This is preceded by a discussion of the number representation

used in our architecture and its implications on the arithmetic operations.

C2 Number representation and arithmetic operations

The two's-complement number representation has proven to be the most flexi

ble way to handle negative numbers in a binary number system and is therefore

used for all arithmetic operations in our structure. In this section, details of this

representation are given. The way in which two's-complement multiplications

and divisions are performed is described.

In the two's-complement number notation, the representation of a positive

number is identical with its representation in an unsigned binary format. If a

number, x. is negative, the two's-complement of x is given by Eq. (1):

Two's -complement (x) = 2"-1 x I (x <D) (1)

One advantage of the two's-complement approach is that two's-complement addi

tion is the same as the addition of two positive arguments.

Variable-variable multiplications

Suppose now that we want to multiply two twos-complement numbers x and

y and that y is a fractional number (-1 < y < 1) with word-lengih n. It can be

seen that the y can be expressed in terms of its twos-complement notation as

shown in (2). where y, is the i-th bit of the 2's-comp. representation.

n-\y}

voZ(y) =-y0+I^- (2)
i=l *

This form allows a simple procedure for multiplication.

II — 1 —

xy ~ -.*_v„+ £ tt--v' ^
; = 1 *

229

Equation (3) suggests a method of multiplying two two's-complement numbers in
a parallel-serial fashion. Start with either 0 (when y is positive) or -x (y nega
tive). Add x. shifted over i positions, if the i-th bit if the coefficient y is one. Note

that the bits of the coefficient are needed serially on succesive cycles. MSB first, in

order to control the addition of the shifted values. (Examples of how this pro

cedure is microcoded are given in Section C.7.)

Example 1: multiplication of 011000 (3/4) with 0011 (3/8)

000000 /* sign bit of coefficient is zero */

0000000 /* first significant bit zero */

00011000 /* bit 2 equals 1 : add x/4 */

000011000 /* lsb equals 1 : add x/8 */

001001000 /* total = 9/32

Example 2: multiplication of 011000 (3/4) with 1101 (-3/8)

101000 /* sign bit of coeffient isone . invert x */

0011000 /* first significant bit isone . add x/2 */

00000000 /* bit 2 equals 0 */

000011000 /* lsb equals 1 : add x/8 */

230

110111000 /* total = -9/32 V

The result of multiplication has to be truncated to the wordlength of the proces

sor, dropping the least significant bits (3 in the above examples). It is necessary to
take this effect into account when determining the required number of bits in the

data word for a given application and given performance criteria.

Multiplication "with a constant

Adifferent approach is used when the coefficient is a high precision constant.

The number of cycles needed can be reduced drastically by representing the

coefficient in the canonical signed digit form. In this form, a constant is

represented in the form (4). where the x, have values of ± 1. and the exponents

n, are chosen so as to minimize j. the total number of digits. This representation
typically has one third the numbers of the digits as does a binary representation,

with no loss in precision.

csd(x)=£x,2"' (4)
»=o

231

Example : the constant 0110111 (55/64) can be represented as :

2<>-2-3-2"6

When multiplying by the above constant, only two additions are required. It

should be kept in mind that is only very effective for constant coefficients, where

the canonical form can be calculated before the processor's code is written.

Division of two variables

Divide operations are implemented using long division. To find the quotient

N/D with IDI > INI. one first has to determine the sign of quotient (for four qua

drant divisions). The division operation itself is performed as follows : INI is

loaded in the accumulator. On succesive cycles IDI/2. IDI/4 ... is subtracted form

the accumulator, the result being accumulated only if it is positive. If so. a one is

added to the quotient-result, otherwise a 0 is added. In this way. a sign magni

tude representation of the quotient is obtained in a bit-serial fashion. The result

can be transformed to two's:complemenl notation using some additional

hardware.

Section C.7 describes the procedure to implement this long division in micro

code.

C3 General syntax description

Each block has the same basic syntax :

<block> ::= <keyword [parameters] CR> begin <5tatement> end

232

with

<statement> ::= <dataline:> {<dataline:>}

Note that only the semicolon is considered as a statement separator. Blanks, tabs

and carriage returns are ignored. The only exception is the .keyword line, which

has to be terminated by a carriage return (CR). Certain keywords may be fol

lowed by parameters.

Comments can be included as follows :

<commenl> ::= /* put comment here */

These comments can be inserted everywhere in the design file.

C4 The global-block

A global is a variable which is shared between different processors or which is

shared with the outside world (host- and signal-I/O). All these variables are pro

cessed in bit-serial form and are buffered in temporary latches. The only excep

tions are signal-I/O variables, which are parallel and unbuffered. It must be noted

that the bit-serial transfer causes a delay of a number of clock cycles, on the order

of the word length of the global variable.

Global variables which are used for host I/O may be declared as arrays. Inpul

or output of array variables is indexed automatically with the ix-register if the

reference to the global is in a subprogram, and with the iy-register if the reference

is in the main program. Global array variables are stored in FIFO structures in the

233

Host Interface. Globals used for signal I/O or interprocessor communication are

never arrays.

Globals may be indexed by the iy-register only in counter mode and not in

pointer mode. These two modes of using the iy-register are described below.

The syntax of a global block :

<§lobal-block > ::= .global CR begin <block-statement>end

<block-statement> ::= <datajine:> {<data_line;>}

<tiata_line>::= <variable_decl > {. <variable_decl >} : [justification>]

<variable_decl> ::= <hame [dimension] <word_length>>

justification > ::= leftrustified i right_justified

("name" is a user-supplied variable name.)

Dimension declares the dimension of an array variable. If no dimension is

specified, a scalar variable is assumed. Wordjenglh defines the wordlength of the

global. This denotes the number of bits which is transferred over the serial line.

It defines the number of lines in the case of parallel transfer.

Justification denotes how the words are truncated if the wordlength of the

processor and the global are different : leftjustified preserves the most significant

bits or pads the word with zero's at the right side (if the word has to be

lengthened). RightJustified selects the least significant bits (and drops the sign-

bit). This is e.g. important when positive counter values have to be transferred,

leftrustified has been selected as the default value.

IMPORTANT REMARK : The definition of a global results in the generation of

234

extra hardware at the transmitter and the receiver side. Excessive use of globals
results in a untolerable growth of the processor-dimensions. The user should be
careful and should try to keep the number of global definitions to a strict
minimum in order to obtain an area-efficient design.

example :

.global /* interprocessor and I/O communications */

begin

ka[lO]<S> . ks[lO]<S>; /* array variables with dimension 10 and

wordlength 8 - leftjustified */

pitchJn <S >f pitch_put <S >: rightJustified:

/* scalar variables with wordlength 8 -

rightjuslified */

end

C.5 The I/O-block

This block defines which of the global variables are selected as I/O-variables.

Svntax:

<o-block>::= .io «host_wordJength »CR begin <block-statement>end

<block-statement> ::= <datajine:> {<datajine:>}

<tfatajine>::= <file> : <variable> Invariable>} : <o_specification>

<o_specification> ::= hostjn Ihost_put IsignalJn Isignal_put

235

The host_wordJength is specified on the same line as the .io-keyword and

determines the size of the parallel bus. connecting the host-I/O unit and the host-

processor. This equals normallly the wordlength of the host processor itself (8 or

16 bits) and by default is set to 8.

The file definition is only intended for emulation-purposes and determines

where the input data can be found or the output data has to be written. The vari

able specification specifies which global variable (already defined in .global) is

connected to a 1/O-unit. The io_specification determines the type of I/O . signal-

i/o is transferred through the parallel unbuffered bus. while hosl-I/O communi

cates with the host-processor through the FIFO-buffered host-l/O section.

example :

.io <16> /* 16 bit host interface */

begin

hostJn.d : ka.ks : hostjn:

host_out.d : pitch : host_put:

speechJn.d : speechjn : signaljn:

end

C.6 The processor block

A processor can be considered as an assembly of different macrocells. Some of

these cells have to be defined by the user (e.g. data-memory, finite state machine,

arithmetic unit), others are partially or completely assembled by the compiler

interpreting the user defined microcode (e.g. control section. 1/O-units. address-

arithmetic). This leads to following general format :

236

<£roc>::= .processor : <hame <wordJength » CR begin <subj>lk>end
<subJ>lk>::=<locals> <constants> <fsm> <main_program> <sub_program>

In the .processor line, a name is given to the processor and the wordlength of the

arithmetic unit and the data memory is determined. Note that this wordlength is

sufficient to assemble the complete aritmetic unit.

The syntax and meaning of the different subblocks is demonstrated in the fol

lowing sections. Note that each of these blocks is optional. However either a

main_program or a subprogram should be provided.

The local-block

In the hardware description, it has already been mentioned that the data

memory of each processor can be a mixture of RAM and ROM. The RAM-memory

locations are denoted as locals, the ROM-words are defined as constants (see

constant-block).

Syntax :

<ocals>::= .localCR begin <datajine:> {<datajine:>l end

<aatajine> ::= <name[dimension]> {.<hame[dimension]>}

If no dimension is specified, the variable is considered to be scalar, otherwise an

array of length [dimension] is reserved.

The constant-block

237

For definition, see local-block.

Syntax

Constants>::= .constanlCR begin <datajine;> {<datajine:>} end

<ilatajine>::= <hame[dimension] = value {.value}>

Each data-line contains the definition and the initialization of only one

constant-type. Arrays of constants of length [dimension] can be defined. In that

case, the number of values has to equal the dimension of the array.

Example :

.processor : pitch <18>

/* implements the Gold pitchtacker algorithm */

begin

.local

begin

thresh[6], ppc[6], pp[7]. lpp[6]. signal[6]:

Is. lp. lv. score, topscore. pitch, winner:

end

.constant

begin

TWO = 2:

BLANK =24: /* definition of blanking interval */

238

VOICED = 9: /* speech if unvoiced if score < VOICED */

WINDOW 1 =8: /* windows to compare pitches */

WINDOW2 = -14:

end

... definition of fsm and microcode

end

/* end of pitchjracker definition */

The definitions in the above example make provisions for a data-memory of 43

words (38 RAM + 5 ROM).

The finite state machine

A limited form of decision-making is feasible with the definition of a finite

state machine . This machine controls a conditional code-bit (cc). which in its turn

governs the write operation. This results in a conditional write-instruction. The

finite state machine operates in parallel with the processor.

The user defines the finite state machine completely. The state variables may

be given arbitrary names, except for the following following reserved names : cc.

mof and eof (cfr. hostJo). Note that a conditional write operation is only possible

when a cc-output has been defined and that only one processor may define the

mof and eof bits.

Following signals can be used as input to the fsm : the states itself, the sign bit

of the accumulator (TRUE if negative), the individual bits of the ix- and the iy-

registers. and expressions of the form "ix=constant" or "iy=constant".

239

Syntax :

<fsm>::= .fsm CR begin <command_def:>{<command_def:>} end

<command_def>::= <cmd_name>: <equalion>{.<equation>}

<equation>::= <state> = <expression>

Expression > :== combination of <booleans > and <operands>

<booleans> :== <state>. sign . ix[c], iy[c]. ix<>, iy<>

<bperands> :== &(AND). KOR) and KNOT)

The <tmd_name> is used to reference to a specified fsm-command in the micro

code. An expression is evaluated from left to right with normal operator pre

cedence : ! has the highest priority, and I the lowest. Parentheses can be used to

change the precedence. "ix<i>" denotes the i-th bit of the ix-register. with ix<0>

the least significant bit. "iy<>" has a similar interpretation. "ix[c]" denotes an

equality comparison between the ix-register and a constant. This is used, for

example, to execute an operation only during the final iteration of a subprogram.

"iy[c]" is used similarly.

Example :

.fsm /* finite state machine description */

begin

SET : cc = sign:

/* set condition code if ace >= 0 */

AND_MINUS : cc = cc & !sign:

/* set cc if ace < 0 and cc = TRUE */

APV : cc = cc & (!ix<0>&!slp&lsp I ix<»&slp&!lsp);

240

VPE : cc - iy{0]: /* set cc if iy = 0 */

SIP : cc - !slp & lsp:

/* set cc if peak */

SIV : cc - sip & !lsp:

/* set cc if valley */

SSL : lsp «= sip. sip «= sign:

/* set sip (slope) if ace >= 0.

set lsp (last_slope) to sip */

end

C.7 The Microcode-block : Main Program and Subprogram

General block-syntax

The basic structure of the control-sequencer is quite strict. A processor starts

a new sample interval with the execution of a main program, followed by a loop

of x_mod subprograms. Note that all processors are synchronized in that they

start a new sample at the same time. This means that a processor with a shorter

program has to wait (execute nop's) until all other processors have finished their

program. Both the main-program and the sub-program are optional.

The compiler infers the structure of the control sequencer from the microcode

description. It counts the number of instructions in main- & sub-program and

computes the number of cycles in a sample interval. This is done for all proces

sors and the maximum value is taken as the modulus of the system's main pro

gram counter. The subprograms of two processors can be synchronized using the

sync and the couple options (cfr. constraints).

Note that the microcode contains all the information needed for the generation

241

and assignment of the I/O-units and the address arithmetic unit. The compiler
scans the microcode to check for the use of indexed addressing and for different

kinds of I/O.

Syntax :

<mainj>rogram> ::= .main^r <y_mod>CR begin <microcode>end

Subprogram>::= .sub_pr <x_mod>CR begin <microcode>end

<microcode> ::= SimultaneousJnstr;>{SimultaneousJnstr:>}

SimultaneousJnstr> ::= <nstruction >{. "instruction >}

"y_mod" and "x_mod" determine respectively the modulus of the iy- and ix-
index counters. As already stated before, the ix-counter counts the number of

iterations of the subprogram and is incremented at the begin of anew iteration (ix
=-1 in the main program). The iy-counter (in counter mode addressing) is incre
mented at the start of a new sample-cycle and is used for e.g. decimation. These

registers (or counters) are basically used in the indexed read- and write operations
(cfr. microcode definition). The default values of x_mod and y_mod are both 1.

If the y_mod field of the .main_pr line is "*". pointer mode addressing is
implied. In this event, the iy-register may be loaded from the processor mbus.
The new value is available in the iy register on the second instruction following

the instruction in which the assignment to iy is performed.

Each microcode line consists of a number of simultaneously executed pipeline

instructions. The emulator checks the consistency of these instructions. The lay

out generator transforms the assembly level description into binary used for ROM

programming.

242

The assembler syntax

The set of available microcode instructions is split into groups of similar

instructions. Members of the same group are mutually exclusive, while instruc

tions of different groups can be executed simultaneously. There are the instruc

tion groups:

memory

sor

ace (accumulator)

mbus

mir (memory input register)

output

aip(accumulate if positive)

coef (coefficient)

quot (quotient)

One may perform simultaneously a mor. sor. ace. mbus. mir. output, aip. coef and

quot- instruction.

The Memory Instructions

All these instructions affect the mor (memory input resister). "loc_add"
denotes the address assigned the local variable "local". The immediate index "ind"
is used to address the different elements of an array variable, "ind" can be omit

ted when pointing to the first element of an array or in the case of scalar vari
ables. The presence of a finite state machine defining 'cc' is assumed when

243

invoking a conditional write-operation. In the case of indexed addressing, the con

tents of the ix- or iy-register (defined in Part I section 3.6) is added to the actual

address.

Note that in the syntax definitions. ":«" denotes a storage action (assignment

of a value to a storage location).

instruction

default

r(local[ind])
rx(local[ind])
ry(local[ind])
w(local[ind])
wx(local[ind])
wy(local[ind])
wc(local[ind])

wxc(local[ind])

wyc(local[ind])

mor := "* mir

action

mor := -1

mor > mem(loc_add + ind)
mor := mem(loc_add + ind + ix)
mor := mem(loc_add + ind + iy)
mem(loc_add + ind) := mir: mor := ~ mir
mem(loc_add + ind + ix) :=mir: mor := _mir
mem(loc_add + ind + iy) := mir: mor := * mir
if (cc) {
mem(loc_add + ind) := mir. mor := mir}
if (cc) {
mem(loc_add + ind + ix) :=mir. mor := mir}
if (cc) {
mem(loc_add + ind + iy) :=mir. mor := mir)
mor := "* mir (no memorv action)

The sor instructions (shift output register)

Instructions affecting the sor-register.

instruction

sor := mor

sor := sor

sor :«= mor>n

sor := sor>n

action

unshifted load of mor-register
unshifted load of sor-register
arithm. right shift of mor over n bits (0 <= n <= 7)
arithm. right shift of sor over n bits (0 <• n <= 7)

The Accumulator Instructions

244

The syntax of an accumulator instruction is somewhat more complicated. The

adder has two input busses (called abus and bbus). Both of these can represent a

whole set of different actions, so that a large number of combinations is possible.

To shorten the description of the instructions, we use a simplified syntax: the

accumulator instructions can take one of the following forms :

ace := 'abus'

ace := 'bbus'

ace := 'abus' + 'bbus

ace := 'bbus' + 'abus

where 'abus' and 'bbus* represent respectively entries from the "abus"- and

"bbus"-tables.

abus table:

instruction

0

sor

"" sor
Isorl

~ Isorl
coef.sor

coef."* sor

action

abus = 0

abus = sor

abus = "* sor (bit-inversion of sor)
abus «= Isorl (absolute value of sor)
abus = ~Isorl (bit inverted form of absolute val.)
if (Coef = 1) {abus = sor}
else {abus = 0}
if (coef «— 1) {abus = ~ sor}
else {abus » 0}

The order of the arguments in the coef-instructions is not significant: e.g.

sor.coef is equivalent to coef.sor .

bbus table:

instruction

0

mor

ace

mor&acc

acc&mor

action

bbus = 0
bbus " mor

bbus •= ace
bbus = mor&acc (bitwise AND-ing)
same as mor&acc

245

Most of these entries are clear from the above description. Some of them need

however a more detailed specification.

- The output of the complementer is a 1's-complement (bitwise inversion)
instead of a 2's-complement inversion. This results in an error of one least

significant bit. E.g. the inversion of 0101 (5) yields 1010 (-6) instead of 1011 (-
5). In digital filter implementations, this results in asmall amount of additional
noise. The effect must also be taken into account when using subtraction to per

form a comparison.

- The output of the adder is saturating, (cfr. hardware-description)

- The coef-instruction (abus) is used for serial-parallel, variable-variable multi

plications. One variable is loaded in the sor-register. while the second (coefficient)
controls in a bit-serial way the output of the abus-multiplexer. In this way a

shift-add multiplication is possible. More information can be found in the coef-

instruction below.

The aip instruction

instruction

aip

action

accumulate if positive : load adder output in accumulator
only if value is positive

246

This instruction makes the coding of a variable/variable division feasible (cfr.

quotient-instruction). Besides the conditional accumulation, the aip-instruction

adds a 1-bil to the quotient-result when positive, otherwise a 0-bit is added.

Note : the sign bit of the accumulator (used in the finite state machine) is checked

BEFORE the aip-hardware. This makes a negative sign possible, even when a aip-

instruction is executed.

The mbus instructions

These instructions assign the value of a certain register to the mbus. It is

however important to know that the mbus does not provide any storage and is

not a stage in the pipeline. Storage is provided in the mir-register or an external

global.

instruction

mbus = ace

mbus = global

action

(default)
mbus = mor

input command : loads external global

If the global (mbus = global) is defined as an array-variable, the iy- (ix-) register

is used as the index-pointer to select the array-elements in the main- (sub-) pro

gram.

The latch-enable instruction (mir-register)

instruction

le

action

mir := mbus

247

The mir is a transparent latch. This means that the loaded value is immedi

ately available and can be used in the same cycle for a write operation.

Meanwhile the value is stored in the mir and remains there until the next le

instruction. This in contrast with the other pipeline registers where the value is

updated every cycle.

Output instructions

instruction

global := mbus
iy := mbus

action

output of mbus to external global
loads the mbus into the iy-index register

When the global (global > mbus) is an array global, the iy- (ix-) register is used

as the index-pointer to select the array-elements in the main- (sub-) program.

The new value for iy Ciy := mbus'-instruction) is available in the iy-register on

the second instruction following the instruction in which the assignment to iy is

performed.

Finite state machine instructions

instruction

<FSM-instruction >

action

adapt fsm-status (execute user-defined
instruction)

248

With <FSM-instruction > the user-defined keyword (called <cmd_name> in

previous syntax definitions) is executed. '

The use of the finite state machine is illustrated with the following example :

suppose that we want to find the largest of two numbers, stored in the local vari

ables a and b. and that we want to store that number in the local c. We define a

finite state machine with only one instruction SET- :

SET- : cc = sign: /* set cc if ace < 0 */

The following microprogram realizes the specified action :

r(a): /* Id a in mor */

r(b). sor := mor. mbus = mor. le: /* Id a in sor and mir. Id b in mor */

w(c). sor := mor. ace := sor: /* Id a in c and ace. Id b in sor */

ace := ace + "* sor: /* ace = a - b */

r(b). SET-: /* lb b in mor. set cc if b > a */

wc(c). mbus = mor. le: /* Id b in c if cc (b > a) else keep a in c */

The coefficient instruction — the multiplication operation

instruction

coef := global

action

feeds global into a P/S and starts shifting bits to
the control of the abus-multiplexer

249

This instruction initiates a variable-variable multiplication. One of the variables,

called the coefficient, is regarded as a fractional number (-1 <= coefficient < 1).

The coefficient, which has to be defined as a global and is thus stored outside the

processor's local memory, is parallel loaded into a P/S-converter and serially
shifted into the control of the abus-multiplexer starting with the msb (sign-bit).

When a 'one-bit' is presented, the contents of the sor-register is added to the accu

mulator. The contents of the accumulator is left unchanged in the case of a 'zero-

bit'.

Basically, a variable-variable multiplication is performed in the following

way. One variable is loaded in sor. On the next cycle, the coefficient is loaded into

the P/S converter and the shifting is started. The msb (sign-bit) is presented to

the multiplexer-control. The sor-value is shifted right repeatedly in the subse

quent cycles, presenting a sequence of partial products to the adder input. The
value of the coef-bit. present at that time, determines if this product is added to

the accumulator value or not.

The following microcode fragment presents a typical 'multiply action. We

want to multiply two variables aand b. stored as local variables in processor x. In
a first step, b is transferred to c. defined as a left-justified global of wordlength 8

(the basic multiply action is going to Uke 8 cycles). Note that the transfer of the

n-bit variable b to the 8-bit global c results in a truncation : only the 8 most

significant bits of c are retained.

Next, the serial shift-in of c in the data-path is started. The rest of the algorithm

is identical to the two's-complement multiplication, defined in section 2.

250

/* multiplication - example */

Kb):

Ka). mbus = mor. c := mbus: /* load b in the global c */

sor > mor: /* load a in sor */

sor :<= sor>l. ace := coef." sor. coef - c:

/* sign-bit of c (== b) shifted in coef :

if (coef == 1) load ace with "* sor. else acc=0 */

sor > sor>l. ace := ace + coef.sor: /* bit 2 of c */

sor := sor>l. ace := ace + coef.sor: /* bit 3 of c */

sor := sor>l. ace := ace + coef.sor: /* ... */

sor := sor>l. ace := ace + coef .sor:

sor := sor>l. ace := ace + coef.sor:

sor := sor>l. ace := ace + coef.sor:

ace := ace + coef.sor; /* lsb of c */

/* result of multiplication in accumulator */

Note that in a variable-variable multiply, the local data is always multiplied

by a global coefficient. Thus, if the coefficient is stored locally it must first be

assigned to a global as in the above example. Alternatively, the coefficient could

originate from a different processor, where the global assignment is made.

A multiplication with a signed constant is however much simpler : Consider

e.g. an 8-bit constant : 11100001 (represented in 2's complement representation).

The following microcode fragment performs the multiplication of the mor-value

with this constant.

/* multiplication with constant - example V

sor :«= mor:

251

sor :« sor>l. ace := ~sor: /* negativesign-bit. invert sor */

sor := sor>l. ace :«= ace + sor: /* 2nd 1-bit */

sor :« sor>5, ace := ace + sor: /* 3rd 1-bit */

ace :«= ace + sor: /* 4th 1-bit » lsb */

/* result in accumulator */

The multiplication takes only four cycles here, the number of one-bits in the

coefficient.

The quotient instruction —the division operation

instruction

global := quot

action

load result of division in global

Divide operations, by means of long division, are implemented using the "accu

mulate if positive" control option for the accumulator, combined with the global

:= quot instruction. This procedure results in a quotient, stored in a global vari

able (= fifo!) with a wordlength as defined in the global-definition. The bits of the

quotient are obtained sequentially. The global := quot instruction closes the^

divide operation and stores the result in the global.

To find the quotient N/D with D >= 0 and IDI > INI. the absolute value of N is

loaded in the accumulator and -D/2 is loaded into the sor. The sign of N is

automatically checked and routed into the quotient (= sign of the sor-register two

cycles before the first aip). On successive cycles D/2. D/4. ... is subtracted from

the accumulator, the result being accumulated only if it is positive. A one (zero)

bit is routed into the quotient-S/P if the result is positive (negative). This results

in a sign-magnitude representation, which is converted automatically into a 2's

252

comp. representation for the global.

Example : (see section 2for numerical example)

/* division - example . ka isdefined as 8-bit global*/

r(N):

r(-D). sor := mor; /* N in sor - sign bit is tested */

sor := mor>l. ace = Isorl: /* load absol. val. of N in ace */

/* start division */

sor := sor>l. ace := sor +ace. aip: '*sign bit routed in quot*/

sor := sor>l. ace := sor + ace. aip: /*bil 1 in quot */

sor := sor>l. ace := sor + ace. aip:

sor := sor>l. ace := sor + ace. aip:

sor := sor>l. ace := sor + ace. aip:

sor := sor>l. ace := sor + ace. aip:

ace := sor + ace. aip:

ka := quot: /*division finished, quot in global ka */

Note : this example assumes that the negative value of the denominator Dis avail
able. This simplifies the code and also allows for a considerable noise reduction.
Instead, we could have used the ace := "sor +ace -command for the subtraction,

but this would have resulted in a higher noise-level.

The nop instruction

instruction

nop

action

No Operations (executes thedefault commands)

253

Following instructions are executed by default (when not overwritten by

another command) : mor :«= -1. sor := sor. ace :«= ace. mbus «= ace. mir := mir. The

major effect of these defaults is to refresh the values present in the pipeline regis

ters.

C.8 Constraints

This block has been added to give the programmer a certain amount of control

over the setup of the liming (and of the control sequencer) of the different proces

sors. Other constraints than the ones listed can be considered on user's demand.

Syntax :

<constraints> ::= .constraints CR begin <dataJ>lock> end

<dataJ)lock> ::= <datajine:> {<datajine:>}

<datajine> ::= sync : <master> Slave>l

<couple : <master> Slave>l

external_sync

Where <master>and Slave > are processor-names.

The sync option is used when the subroutines of two processors are communi

cating and thus have to be synchronized : this is the case when the subroutine of

the master processor sends data (in the form of globals) to the subroutine of the

slave. In order to avoid a sample-delay in this data-transfer, the sync-constraint

254

has been implemented : the emulator (& compiler) checks the globals (and their

delay), send from master to slave, and adjusts the timing of the slave so that the

slave can access the data from the master in the same sample, and this without

timing conflicts. It is clear that this constraint only makes sense when both pro

cessors have an equal number of subroutine iterations. Therefore, nops are added

to the shortest subroutine.

The couple option includes the sync-option, but puts some more constraints on

the subroutine alignment : in this case, the slave-subroutine not only receives data

from the master, but also wants to send data back. This data has to be present at

the master-side before it is accessed in the NEXT iteration of master- subroutine.

This asks for a somewhat more complicated alignment of the subroutines and the

inclusion of extra nop-instructions.

The external_sync option allows for a synchronisation of the processors to an

external clock. To achieve this, the compiler routes the reset-control lines of the

processors to the outside world (the reset-line initiates a new sample-cycle and

starts the execution of the first instruction of the instruction-rom).

C.9 Conclusions

The different aspects of the design file description of a concurrent signal pro

cessing system have been discussed. This description serves as the input to the

emulator and compiler development tools.

255

Appendix D —Design File Examples

D.l. A Simple Two-Processor Example

/* This simple example of a design file describes a two processor circuit. The cir
cuit acts as follows. The first processor has a constant stored in local memory. It
reads out this constant, and sends it over to the second processor, using a global
variable. The second processor accepts an external signal input. This signal is
divided by two. added to the constant from the first processor, and used as a sig
nal output. */

/* First three globals are declared, each eight bits. The three globals are the signal
input, signal output, and a global written by the first processor and read by the
second. */

begin
sigin <8 >. sigout <8 >. temp <& >: end

/* The "io" section indicates that the sigin and sigout globals are to be input and
output on thesignal data bus. respectively. There is no host interface. */

begin
infile : sigin : signaljn:
outfile : sigout : signal_put: end

/* The first processor is declared with symbolic name "pi" and data bus width of
8 bits. */

begin

/* One memory location is declared, a constant "fifty". There are no local vari
ables. */

begin
fifty=50: end

/* The main program reads the constant out of memory and assigns it to the glo
bal "temp". */

begin
r(fifty):
mbus = mor. temp = mbus: end

end /* pi */

/* The second processor is declared with symbolic name "p2" and data bus width

256

of 8 bits. V

begin

/* Two local variables are declared in the second processor. */

begin tempi ,temp2: end

/* Now comes the main program for the second processor */ /* (Neither processor
has a subprogram.) */

begin

/* Firstassign the signal input to"tempi" and the
constant from the other processor to "temp2". */

mbus » sigin. le. w(templ):
mbus <= temp. le. w(temp2):

/* A few read instructions which are basically no-op's */

r(tempi):
r(templ):
r(tempi):
r(tempi):

/* "tempi" is read, divided by 2. added to "temp2V
The accumulator is then assigned to global "sigout . */

r(tempi):
Ktemp2). sor:=mor>l;
sor:=mor. acc:=sor:

acc:=acc+sor:

sigout = mbus:

/* another no-op */

r(tempi): end

end /* p2 */

/* end of design file */

D.2. LPC Vocoder design file

/* LPC Vocoder Design File
/* There are three processors:
/* filter, correlator and pitchjracker */

.global /* interprocessor and i/o communications */
begin

ka[l0]<8>: /* hostoutput reflection coefs. */
ks[l0]<8>: /* host input reflection coefs. */

/* interprocessor communications */

ka_connect<8>. ka_shifl<8>: /* ka-connection +multiplier */
plus<l6>. min<16>;
low_pass<l6>;
squared 3 >:

/* signal inputs and outputs */
speechJn<16>. speech_put<16>. residu<16>. excitation<16>:

/* host output and input residual energy parameter */

energy _put <24 >:
energyjn<16>:

/* host input and output pitch periods */

pitchJn <S >,pitch_put <S > : rightJustified:
end

.io <8>/* io-description */
besin/audio/jan/dsp/speech/hostjn : energyJn. pitchJn. ks : hostJn:

host_put : energy_put. pitch_put. ka : host_put:
/audio/jan/dsp/speech/speechjn : speechJn : signalJn:
speech_put : speech_pul : signal_put:
residu_out : residu : signal_put:

end

/»******»***************»************************************/

.processor : filter <16>

/* main_program : low_pass filtering and */
/* pre-emphasis + deemphasis of signals */
/* subprogram : lattice filter : synthesis */
/* and analysis */

/******************************»*****************************/

257

begin
.local

begin
a. b[ll], c d[ll], temp:
e. f. g. h:
kajnternfll]:

end

.main_pr <1>
begin

/* copy cto d[lO], output residual, input speech (in e) */
/* deemphasis filter */

r(a):
r(h). mbus = mor: /* residu = mbus: */
r(c). sor := mor>3. ace := mor:
w(d[lO]). mbus «= mor. sor := mor>l. ace :«= ace + ~sor. le:
r(e). ace := ace + sor:
w(h). sor := mor. speech_put = mbus. le:

/* preemphasis filter */
sor := sor. ace := sor;

w(e). mbus = speechJn. sor := sor>2. ace := ace + sor. le:
sor := mor. ace := ace + sor:

r(b[0]). sor := sor. ace j= ace +~sor:
w(temp). ace :== ace + " sor. mbus = mor. le :
w(a). le:
w(b[0]):

/* Lowpass filters, first and second stages, input excitation */
r(f):
r(e). sor := mor>2. ace := mor:
w(c). sor := mor>2. ace := ace + ~sor. mbus = excitation, le.
residu = mbus:

r(g). ace := ace + sor:
w(f). sor := mor>2. ace := mor. le:

/* input last ka -coefficient and write in 10 */
w(kajntern[l0]). mbus =ka_connect. sor := mor. ace := ace + sor. le:
ace := ace + sor:

w(g). low_pass := mbus. le:

end

.sub_pr <10>

begin

258

/* implements analysis and synthesis lattice filler */

/* compute ~Ka + b[i])l and " Ka " b[i])l */
Ktemp):
Ka), sor := mor;
Ka). sor > sor. ace := sor + mor:

mor :="" mir, ace := ~ sor + mor. le:
mor := ~ mir, sor := mor. le:
rx(d[l]). sor := mor. ace := " Isorl:
Kc). sor := mor. ace := " Isorl, plus := mbus;

/* compute c = d(i+l)*ks + c */_
sor := sor>l. ace := mor + coef." sor. min := mbus. coef *= ks: /* sign bit */
sor := sor>l. ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor:

sor := sor>l. ace := ace + coef.sor;
rx(kajntern[l]). sor := sor>l. ace := ace + coef.sor;
Ka), sor := sor>l. ace := ace + coef.sor. mbus = mor. ka_shift := mbus.

ka := mbus; /* output ka to hostJnterface */
r(temp). mbus = mor. sor := sor>l. ace := ace + coef.sor. le:
mor := ~ mir. sor := mor. ace := ace + coef.sor:

/* compute a «= a - b(i)*ka */
w(c). sor := sor>l. ace := mor + coef." sor. coef = ka_shift. le;
sor := sor>l, ace := ace + coef.sor;

sor := sor>l. ace :«= ace + coef.sor;

sor := sor>l. ace := ace + coef.sor;

sor := sor>l, ace :*= ace + coef.sor:

Ktemp), sor := sor>l. ace := ace + coef.sor;
Ka). mbus = mor. sor :«= sor>l, ace := ace + coef.sor. le;
mor := " mir, sor := mor, ace :«= ace + coef.sor;

/* compute b(i+l) = b(i) - a*ka, update temp */
mor := " mir. sor := sor>l. ace :«= mor + coef." sor. coef = ka_shift. le:
w(a). mbus = mor. sor := sor>l. ace := ace + coef.sor.le:
rx(b[l]). sor := sor>l. ace := ace + coef .sor;
w(temp). mbus *= mor. sor :«= sor>l. ace := ace + coef.sor. le;
sor := sor>l. ace := ace + coef.sor:

rx(d[l]). sor :« sor>l. ace := ace + coef .sor;
Kc). mbus = mor, sor := sor>l. ace := ace + coef.sor, le;
mor :«= "* mir. sor :=» mor. ace := ace + coef.sor;

/* compute d(i) - d(i+l.) - ks*c */
mor := "" mir, sor :=» sor>l. ace > mor + coef." sor. coef = ks. le;
wx(b[l]). mbus = mor. sor := sor>l. ace := ace + coef.sor. le;
sor := sor>l, ace := ace + coef.sor:
sor := sor>l. ace := ace + coef.sor:

sor := sor>l. ace :=« ace + coef.sor:

sor := sor >1. ace := ace + coef.sor;

259

sor := sor>l, ace := ace + coef.sor;

/* input new ka-coefficient (from correl) for cycle i - 1 */
ace := ace + coef.sor. mbus «= ka_connect, wx(kajntern), le;
mor := ~ mir. le:
wx(d). mbus = mor. le:

end

end

/*******»******»**»**#*****»*********»*****************«***********/

.processor : correlator <26 >

/* main_program : frame_counter and waveform - generator */
/* sub_program : correlator */

/********»***»*****************«**********»****»*******************/

begin

.local

begin
energ_temp;

c[lO], d[lO];
sample_counter;
pitch_counter. pitch, voiced, unvoiced:
random, gain:
end

.constant

begin
INCREMENT = 1;

MASK = 32767;

SIX = 6:

FRAMEJ-ENGTH = -90:
MIDDLEJ)FJ:RAME = -70:
end

.fsm

begin
SETJFJ>LUS : cc = !sign:
SETJF_M1NUS : cc = sign;
MINUSJ-1VE : cc = cc & !sign:
CCJ)R_M1NUS : cc - cc I sign;

260

EXOR : cc = !cc&!sign Icc&sign;
EOF : eof = .'sign, mofJig = mof I(mofJig & !eof);
MOF : mof = Isign & !mof_flg:
.end

.main_pr <1>
begin

/* Here we have a little piece of code which counts
samples for the 11.25 millisecond frame interrups. */

Ksample_counter):
r(INCREMENT), sor := mor:
KFRAMEJ.ENGTH). sor := mor. ace := sor:
KMlDDLE_OFJrRAME). sor := mor. ace := ace + sor;
Kpitch_counter). ace := ace + sor. aip;
w(sample_counter). sor := mor. le. ace : = ace + sor. EOF;

/* increment pitch_counter - compare with pitch */
/* determine input-zone (<5. =5. >5)
voiced = gain/4 if <5
* voiced = ~gain if 5
* voiced = 0 if > 5 */

r(INCREMENT). sor := sor. MOF;
w (pitch) , ace := sor + mor. mbus = pitchjn. le:
w(pitch_counter). sor := mor. le:
sor := mor. ace := " sor + mor;
KSIX). sor := sor. ace := 0. SETJF_MINUS:
wc(pitch_counter). ace := sor + mor. le:
w(voiced), sor := mor. ace := ace. SETJFJ>LUS;
w(gain), mbus = energyJn. ace := sor + ace. le;
wc(voiced), sor := mor>2. mbus = mor. le. MINUSJWE;
r(random), ace := ~ sor;
wc(voiced), sor := mor. le;

/* generate random number (for unvoiced case) */
/* technique : exor lsb with lsb -1 and circular shift */
/* first, we have to check that the initial random number

is different from zero : this tends to block the

generator. */

KINCREMENT), ace := sor;
ace := mor&acc;

r(random). sor := mor. ace := ace. le; /* mor = -1 */
w(unvoiced), sor := mor>l . ace := ace + sor:
K1NCREMENT). ace :- sor. SETJFJ>LUS: /* check lsb */
ace := mor & ace. le;

mor := " mir. sor := mor. ace := ace;

261

sor := mor. ace := ace + sor;

r (MASK), ace :- " sor. EXOR; /* exor lsb & lsb -1 */
sor := mor, ace := ace & mor:
w(random). sor := sor, ace :«= ace + " sor, le; /* left shift */

/* check if random number is zero */
/* if yes. transform to largest negative number */

r(unvoiced), ace := ace + sor. le:
sor := mor. CCJ)RJV1INUS;

/* adjust unvoiced to gain/8 or -gain/8 */

r(gain). ace := sor + mor;
wc(random), sor := mor>3. SETJFJVn^US:
Kpitch). ace := sor:
sor := mor. le:

w (unvoiced), ace := sor + mor;

/* make voiced-unvoiced decision : if pitch = 0 :unvoiced */
/* output final waveform to excitation */

wc (unvoiced), mbus = mor. SETJFJ>LUS. le;
r (voiced);
wc (unvoiced), mbus = mor. le:
r (unvoiced);
excitation := mbus. mbus = mor. le:

/* send last energy_yalue to host_put */

r (energ_temp);
mbus = mor. energy.out := mbus;
end

.sub_pr <10>
begin
/* square plus-signal */
mor := " mir. mbus = plus, le;

:= mor. mbus = mor. square := mbus:sor

sor

sor

sor

sor

sor

sor

sor

sor

sor

sor

= sor >1. ace

= sor>l. ace

= sor>l. ace

= sor >1. ace

= sor >1. ace

«= sor >1. ace

= sor>l. ace

= sor >1. ace

= sor>l. ace

«= sor >1. ace

coef." sor. coef = square:
:= ace + coef .sor;

= ace + coef .sor;

«= ace + coef.sor:

= ace + coef.sor;

= ace + coef.sor:

= ace + coef.sor:

= ace + coef.sor:

= ace + coef.sor:

= ace + coef.sor:

262

sor := sor>l. ace :«= ace + coef.sor;
mor := ~ mir. sor := sor>l. ace := ace + coef.sor. mbus = min, le;
sor := mor, ace := ace + coef .sor, mbus = mor. square := mbus:

/* square minus-signal */
sor := sor>l. ace := coef." sor, coef = square, le;
sor := sor>l, ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor;
sor := sor>l, ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor;
sor := sor>l. ace := ace + coef .sor;
sor := sor>l. ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor:
sor := sor>l. ace := ace + coef.sor;
sor := sor>l. ace := ace + coef.sor;
mor := ~ mir. sor := sor>l. ace := ace + coef .sor;
rx(c). sor := mor. ace := ace + coef .sor;

/* start lowpass filtering of squared signals */
mor := " mir. sor := mor>6. ace •:= mor + sor. le;
rx(d). sor := mor, ace := ace + sor£
wx(c). sor := mor>6, ace := mor + ~sor. le:
sor := mor. ace :*= ace + sor;

wx(d). sor := sor>l. ace := sor + ace. le;

/* accumulator contains now D-C - calculate now (C-D)/2 & (C+D)/2 */
sor := mor>l, ace := ~ sor. le;
mor := " mir. ace := " sor + ace: /* (C+D)/2 in ace */
w (energjemp). sor := mor>l, le;
sor := mor>l. ace := Isorl:

/* start division */
sor := sor >1, ace := sor + ace. aip; /*sign bit av. */
sor := sor>l. ace :» sor + ace. aip:
sor := sor >1. ace := sor + ace, aip;
sor := sor>l. ace := sor + ace. aip;
sor := sor>l. ace := sor + ace. aip;
sor := sor>l. ace := sor + ace. aip;
ace := sor + ace. aip;
ka_connect = quot; /*division finished */
end

end

/***/

.processor : pitch <18>

263

/* implements the GOLD -pitchtrack algorithm (can be improved) */

begin

.local

begin
thresh[6], ppc[6], pp[7], lpp[6]. signal[6];
Is. lp. lv. score, topscore. pitch, winner:
end

.constant

begin
TWO = 2:

BLANK = 24:

VOICED = 9:

WINDOW 1 = 8;

WINDOW2 = -14;

end

.fsm /* finite state machine description */

begin
SET : cc = '.sign;
ANDJMINUS : cc = cc & sign:
APV : cc = cc & (!ix<0>&!slp&lsp I ix<D>&slp&!lsp);
VPE : cc = iy[0];
SIP : cc - !slp & lsp;
SIV : cc « sip & !lsp;
SSL : lsp = sip. sip = Isign:
end

.main_pr

begin
/* finish up calculation of previous time*/
r (score):
r (topscore). sor := mor>l;
sor := mor>l. ace := sor:

r(score), ace := ace + sor;
ry (pp). ace := mor. SET;
wc (topscore). ace := mor. le;
wc (winner), le;

/* if VPE (every six samples) compare topscore to constant VOICED,
set pitch to either winner or zero and reset topscore */

264

r (winner);
r (VOICED), ace := mor. VPE;
wc (pitch), sor := mor. le:
r (topscore), sor := sor. ace := 0;
wc (topscore). ace :=" sor + mor. le:
r (signal), ace := 0, ANDJdINUS:
wc (pitch), ace := mor. le, SIP;
wc Op), le. SIV;
wc (lv);
w (Is):

/* beginning of new sample . Compare new signal to last and set SSL.
clear score */

w (signal), sor :«= mor>l. mbus = low_pass. ace := 0. le;
w (score), sor := mor>l. ace := sor. le:
r (signal), ace := ace + ~sor;
mor := ~ mir. mbus = mor, SSL. le;

/* send pitch to output port . Form signal[l] through signal[5] . */

r (lv). sor := mor>l. mbus = mor, le;
w (signalfl]). sor := mor>l. ace :«= sor;
r (lp). sor :»mor>l. ace := sor + ace:
w (signal[3]). sor :=mor>l. ace :=~sor. le:
w (signal[2]). ace := sor + ace. mbus = mor. le:
r (pitch), le;
w (signal[5]). sor := mor>l;
w (signal[4])t mbus = mor. ace :=sor. le;
pitch_put := mbus;
end

.sub_pr <6>

begin

/* increment pitch_counter by two and set condition code
if greater than BLANK . Conditionally decay threshold .
And condition code with peak-valley indicator. */

rx (thresh):
rx (ppc). mbus = mor. le;
r (TWO), sor := mor;
r (BLANK), sor := mor. ace := sor;
wx (thresh), sor :«= mor. ace > sor + ace:
wx (ppc). sor := mor. ace := " sor + ace. le;
r (lp). sor := sor>6. ace := " sor. SET:
rx (signal), sor := sor>l. ace := ace + sor. mbus = mor.le:
w (lp). sor > mor>l. ace := ace + sor;

265

wxc (thresh), sor := sor. ace :« ace + ~ sor. le. APV:

/* And condition code with result of (signal > threshold)
comparison. Conditionally update thresh. 1pp. ppc. pp */

rx(pp). ace := sor. ANDJVIINUS:
wxc (thresh), ace := mor. le;
wxc (Ipp). le:
rx (ppc). ace := 0;
wxc (ppc). ace := mor. le:
wxc (pp). le:
r(lv):
w (lv). mbus = mor. le;

/* add contribution for this channel to score of current cand.
do three window comparisons with current candidate and pp.
Ipp and pp + Ipp . In each case, increment score with 2 if true */

r (pp[0]);
w (pp[6]). mbus = mor. le:
ry (pp[l]):
rx (pp). sor := mor>l:
r (W1NDOW1). sor := mor>1. ace := " sor:
r (WINDOW2). sor := mor>l. ace := ace + sor;
r (TWO), sor := mor>l. ace := ace + sor;
r (score), sor := mor. ace := ace + sor. SET:
ry (pp[l]). ace := mor + sor. AND_MINUS:
wc (score), sor := mor>l. le;
rx (Ipp). ace := ~sor;
r (WINDOW1). sor := mor>1. ace := ace:
r (WINDOW2). sor := mor>l. ace := ace + sor:
r (TWO), sor := mor>l. ace :«= ace + sor:
r (score), sor := mor, ace := ace + sor. SET;
ry (pp[l]). ace := mor + sor. ANDJVIINUS;
wc (score), sor := mor>l. le:
rx (Ipp). ace := ~sor;
rx (pp), sor := mor>l, ace := ace;
r (WINDOW 1), sor := mor>l. ace := ace + sor;
r (WINDOW2). sor :« mor>l. ace := ace + sor;
r (TWO), sor := mor>l. ace := ace + sor;
r (score), sor := mor. ace := ace + sor. SET;
ace := mor + sor, AND_MIM-:S:
wc (score), le;
end

end

.constraints

266

267

begin
couple: filter, correlator;
end

/* end vocoder description */ *

i
V

i

268

Appendix E — Companion Tape

A companion tape for this dissertaion. in UNIX tar format, is available. Con-

jjf tained on the tape are the following:

I
(1) A layout database for the LPC Vocoder circuit (Chapter 2). Also included

are microcode and emulation files.

(2) The cell library (Chapter 3 and Appendix B)

(3) Design Files. Intermedite files, and resultant CIF files for the examples

(Chapter 5 and Appendix D).

(4) Source code and documenution for the silicon compiler and the emulator

(Chapter 4 and Appendix C).

The various directories on the tape contain files (usually named ReadMe)

which describe their contents. Interested parties may contact:

Prof. Robert W. Brodersen

Department of Electrical Engineering and Computer Science

University of California

Berkeley. California 94720

269

References

1. L. R. Rabiner. B. Gold. Theory and Application of Digital Signal Processing,
Prentice-Hall. Englewood Cliffs N. J.. 1975. Ch. 6.

2. Ibid., Ch. 10

3. N. L. Daggett. "A Computer for Vocoder Pitch Extraction." Tech Note 1966-3.
Lincoln Laboratories. Lexington. MA (1966).

4. L. R. Rabiner. B. Gold. op. cit.. Ch. 8.

5. Nelson Morgan. Talking Chips, McGraw-Hill. 1984, pp. 75-78.

6. Y. Kawakami. et. ah. "A Single-Chip Signal Processor for Voiceband Applica
tions". International Solid State Circuits Conference Digest. San Francisco. 1980.
pp.40-41.

7. J. R. Boddie. et. al.. "A Digital Signal Processor for Telecommunications Appli
cations" . International Solid State Circuits Conference Digest, San Francisco. 1980.
pp. 44-45.

8. S. S. Magar. E. R. Caudel. A. W. Leigh. "A Microcomputer with Digital Signal
Processing Capability". International Solid State Circuits Conference Digest, San
Francisco. 1982. pp. 32-33.

9. Peter B. Denyer. "An Introduction to Bit Serial Signal Processors for Signal

270

Processing". University of Bristol. U. K.. July 1982.

10. Neil Bergman. "A Case Study of the F.l.R.S.T. Silicon Compiler", in R. Bryant,
ed.. Proc., Third CalTecH Conference on Very Large Scale Integration, Computer
Science Press. Rockville. MD, 1983.

11. S. Pope. J. Rabaey. R. W. Brodersen. "Automated Design of Signal Processors
Using Macrocells". Proc., ConJ. on VLSI Signal Processing, University of Southern
California. Los Angeles. Nov. 1984.

12. Richard F. Lyon. "A Bit-Serial VLSI Architecture Methodology for Signal Pro
cessing", in J. P. Gray. ed.. VLSI SI Academic Press. 1981.

13. R. Fellman. P. Hurst. R. W. Brodersen. "Switched Capacitor Circuits for Adap
tive Filtering and Autocorrelation". International Solid State Circuits Conference
Digest. New York. Feb. 1983.

14. Rabiner. L. R., Sehafer. R. W.. Digital Processing of Speech Signals, Prentice-
Ball, Englewood Cliffs. N.J.. 1978. Chapter 8.

15. Ibid, pp. 441-444.

16. T. E. Tremain. "The Government Standard Linear Predictive Coding Algorithm
LPC-10". Speech Technology, pp. 40-49. Apr. 1982.

17. J. Burg. "Maximum Entropy Spectral Analysis". Ph.D. Dissertation. Stanford
University. Stanford. CA. May 1975.

271

18. Kang. G. S.. "Application of Linear Predictive Coding to anarrowband voice
digitizer". Naval Research Laboratory Report 7779, Washington. D.C.. 1974.

19. B. Gold. L. R. Rabiner. "Parallel Processing Techniques for Estimating Pitch
Periods of Speech in the Time Domain". J. Acoustical Society of America. V. 34.
No. 7, pp. 916-921. 1962.

20. L. R. Rabiner. R. W. Schafer. OpCit, pp. 452-453.

21. D. Johansen. "Bristle Blocks: ASilicon Compiler". Pr<*., J6th Design Automa-
tion Conference. San Diego. June 1979.

22. Hwang. K.. Computer Arithmetic, Wiley. New York. 1979.
p. 149.

23. Bohm. C. and Jacobini. G.. "Flow-diagrams. Turing Machines, and languages
with only two formulation rules". Comm. ACM 9J. May 1976. PP. 366-371.

24. K. H. Keller. A. R. Newton. "KIC2: A Low-Cost Interactive Editor for
Integrated Circuit Design". Digest of Papers, IEEE CompCon 82 Conference. San
Francisco. Feb. 1982. pp. 302-304.

25. Ruchie. D. M.. Thompson. K.. "The UNIX Time-Sharing System". BeU Systems
Technical Journal, 57(6). pp: 1905-1929. 1978.

26. G. C. Billingsley. "Program Reference for K1C". Memorandum No. M83/62.
Electronics Research Laboratory. University of California. Berkelev. CA. October
1983.

%

272

27. R. N. Mayo. J. K. Ousterhout. "Pictures with Parentheses: Combining Graphics
and Procedures in aVLSI Layout Tool". Proc., 20th Design Automation Conference.
June 1983.

28. Dan Fitzpatrick. private communications.

29. T. Yoshimura. E. S. Kuh. "Efficient Algorithms for Channel Routing". IEEE
Transactions on Computer Aided Design. V. CAD-1. Jan. 1982. pp. 25-35.

30. C. A. Mead. Lynn Conway. Introduction to VLSI Systems, Addison-Weseley.
Reading. Mass.. 1980.

31. Mats Torkelson. private communication.

32. Jan Rabaey. privatecommunication.

33. Jeremy Tseng, private communication.

34. D. Johansen. op. cit.

35. Jan Rabaey. "LAGER - An Automated Layout Generating System for Digital
Signal Processing Circuits - User Manual Version 1.3". Depl. of Electrical
Engineering and Computer Science. University of California. Berkeley. CA.
December 1984.

36. W. L. Abbott. "Design of a300-Baud FSK Modem using Customized Digital
Signal Processors". Memorandum No. M84/83. Electronic Research Laboratorv.

273

University of California. Berkeley. CA. August 1984.

>

	Copyright noticE 1985
	ERL-85-11 (1 of 3)
	ERL-85-11 (2 of 3)
	ERL-85-11 (3 of 3)

