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ABSTRACT

Several new canonical circuits for solving nonlinear programming

problems in real time are presented. The solution of these circuits

coincides with the stationary point of circuit's potential function,

which is shown to exist even though it contains non-reciprocal circuit

elements. Each canonical circuit is shown to impose the Kuhn-Tucker

conditions for solving nonlinear programming problems.
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1. INTRODUCTION

Obtaining real-time solutions to nonlinear programming problems

is required in some engineering systems (robotic, satellite guidance,

etc.). Recently, a special circuit has been proposed [1] that allows

us to solve such problems by analog simulation. This circuit is made

of ideal diodes, nonlinear VCCS's and nonlinear CCVS's, and is capable

of simulating any nonlinear programming problem in a systematic way.

The fundamental property of the circuit in [1] is its relationship to

the Kuhn-Tucker conditions for solving nonlinear programming problems.

This relationship was shown to result from the fact that the circuit

posseses a stationary property [2], although it contains some

nonreciprocal circuit elements.

Our purpose in this paper is to show that there exist other

circuits that exhibit the same remarkable properties and hence can

also be used to solve any nonlinear programming problems. The new

circuits are canonic in the same sense as defined in [1], but, as we

shall see later on, two of them require only one type of controlled

sources, thus making these circuits more attractive from an

implementation point of view.

2. CANONIC NONLINEAR PROGRAMMING CIRCUITS: STATIONARY PROPERTY

Consider the general nonlinear programming problem of minimizing

a scalar function <J> (x^ , x2, ... x ), subject to the constraints

fj(xi, X£,... xq) £. 0 (l^j^p), where q and p are independent integers.
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The circuit in Fig. 1(a), whith xk denoting the voltage vk

measured at the k-th node on the right-hand side subcircuits, is known

to solve the above optimization problem [1]: The solution of this

circuit is a stationary point of its total cocontent function, and

hence, provided that <J> (.) has only one stationary point and is a local

minimum, that point is the global minimum of <j> (. ).

In this section, we will show that the new circuits proposed in

Figures Kb) to 1(d) also exhibit similar properties and can be used

for solving the same nonlinear programming problems. In order to

present the proof in a unified way, valid for all four circuits in

Fig. 1, let us redraw them as an interconnection of two q-ports, Na

and Nv,; and use the generic symbol xk to denote the "controlling" port

variable and the variable yk to denote the "controlled" port variable

for each n-port.

Na is a q-port made of q nonlinear controlled sources on the

right-hand side of each sub-circuit in Fig. 1. For the circuits in

Fig. 1(a) and 1(c), they are controlled current sources, and for the

circuits in Fig. Kb) and 1(d), they are controlled voltage sources.

Each of these four x-controlled q-ports N is characterized by

3<Mxal,xa2, ... x )
yak = — r k = l,2,...q (1)

9xak

Nb is a q-port made of the remaining circuit. In order to

describe Nb as an x-controlled q-port, let us first "model" each ideal

diode by a voltage-controlled resistor in Fig. 1(a) and Kb), and by a

current-controlled resistor in Fig. 1(c) and 1(d), respectively. In

particular, model each ideal diode in Fig. 1(a) and Kb) by
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idl = 9(vd£> = \
vu < 0

v
d.e

otherwise

and that in Fig. 1(c) and 1(d) by

v<u= 9<W - <
f o id£ < 0

1

7 idi '
I GB

otherwise
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(2)

(3)

Using the above notation and model, each of the four x-controlled

q-ports Nb is characterized by

P 3f-e(xbl'xb2"--xbq)
ybk = s -9t-f<e(xbl,xb2,...xb )i

1=1 4 3x
bk

(4)

1 < k < q

where y, . now denotes the current entering port k of N .

Assuming that the functions <{>(.) and f£ (. ) are twice continously

differentiable, we will now prove that both n-ports Na and Nb are

reciprocal. Indeed, for Na we have from Eq.(l)

3vam 3<J>(xal'xa2'-"xaq) 3yanlCi _

3xan 8xam 9xan 3x
am

and for Nb, we obtain from Equations (2)-(4)

ay
bn

3*bn

P

I
£=1

3Vbn P
= - I

3 X
bm

1=1

3f« 3g af» 32f«
—£- ( — ) + g(-f^) -—
3*bm 3f£ 3*bn 9xbm3xbn

3f£ 39 8^
( ) + g(-f£)

3Xbn 3f£ 3xbm

32f,

9Xbn9 *bm.

(5)

(6a)

(6b)

It follows from the above that the Jacobian matrices of both Na
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and Nb are symmetric, and therefore both q-ports are reciprocal.

Since Na and Nb are both reciprocal and homogeneously controlled

(either current-controlled or voltage-controlled), we can define a

potential function associated with each q-port, namely, Pa(xa) and

Pb(Xb). For the cases where x is a voltage vector ( Fig. 1(a) and

1(c)), these potential functions are the cocontents of N and N, ,
a b

respectively [2]. For the cases where x is a current vector

(Fig. Kb) and 1(d)), these potential functions are the contents of Na

and Nb, respectively. Thus,

Pa(xal'Xa2" Xaq»

Pb(xbi,Xb2...xbq) =

rxa

y (x ).dx
X»a r^SL r^SL

XK

yb(5b>-d»b =

-xa

q

z

k=l

3xa

^k

dxa — (J)(xai ,xa2 ••.xaq )

( i -g(-f£)
1=1 3xbk

(7)

)dxbk

P
Z

1=1

3f P
= I

1=1

rfi rwdl

-g(-f£) E dx

•b
k=l 3xbk

bk 1=1
g(wd£)dwd£

(8)

where w<i£ = v^i in Fig. 1(a) and 1(c), and w<i£ = id£ in Fig. Kb) and

Kd).

The potential function associated with the composite q-port made

up of the parallel connection of Na and 11^ ^s tne sum °f pa (*a ) an^

^(x^), where x =x=x , namely
° rJ° rv** a/° /**
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r"dl

P(xx ,X2 ,...xq )= <f> (x1 ,x2 ,...Xq )+ Z I g(wd^) dwd^ (9)
Jo

Now if we let RF—>0 in Eq.(2) and let Gg—>0 in Eq.(3), the

nonlinear resistors in Nb tend to the ideal diodes in the original

circuit, and the integral in Eq.(9) is zero for wd^<0, and tends to

zero as wd£—>0 from the right. Hence,

lim P(xlfx2,...x ) = <j)(x1,x2,...x ) (10)

K—>0

where K = RF or Gfi.

It follows from Eq.(10) and the stationary theorems in [2] that

the solution of every circuit in Fig. 1 is a stationary point of the

scalar function <j> (x^ ,x2....x ). This important property can also be

proved using the "penalty function" approach described in [3]. By

assumption, <{> (xj^ ,x2 ,.. .x ) has only one stationary point and is a

local minimum and hence the unique solution of the circuits in Fig. 1

is numerically equal to the global minimum of the objective function

<t> (Xj^ ,X2 ,. .. ,x ), subject to the inequality constraints

f. (xx ,̂ ,. .. ,x ) > 0.

3. RELATIONSHIP WITH THE KUHN-TUCKER CONDITIONS

Kuhn-Tucker conditions have been shown to be necessary for

solving constrained nonlinear programming problems [4]. It is

interesting therefore to prove that the circuits proposed in Fig.l

simulate such conditions. To do this, note first that for each of the

circuits in Fig.l, we have
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wd£ =-f^(x1,x2,...x)<0 , £=l,2,...p

zd£ ^ 0 " (11)

wd£zd£ = 0 ,

where wd£=vd£ and zd£=id£ in Fig. 1(a) and Kb), and wd£=id£ and

zd^=vd£ in Fig.1(c) and 1(d), respectively.

Referring to the right-hand port, we can describe the k-port of

all of the circuits in Fig.l as,

3<Mx,,x2...x ) P 3fdp(x1,x2...x )
— + * (-z<U> ~ = ° (12)

3xk 1=1 3xk

Identifying -zd« with a Lagrange multiplier, X« , and assuming

t is a unique so

Eqs.(11)-(12) as follow:

there is a unique solution, x , for the circuit, we can rewrite

3<Mx*) P * ift
+ z \t = 0 t k=l,2,...q

3^ 1=1 3xk

fp(x*) > 0

x*t< o

(13)

X^f^(x ) = 0

Hence, the constraints imposed by the circuits in Fig. 1 are

precisely the well-known Kuhn-Tucker conditions for solving a

nonlinear programming problem, assuming that <f> (. ) and f£«(. ) are

differentiable at x* and that the constraints on f£(. ) satisfy some

regularity conditions [4],

Although the Kuhn-Tucker conditions can be simulated by other

circuits, those given in Fig. 1 are canonical in the sense that there

is a one-to-one correspondence between the elements in Fig. 1 and the

number of constraints in the Kuhn-Tucker conditions.
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4. PRACTICAL CONSIDERATIONS

In this paper, the detailed physical implementation of the new

circuits is not a major concern since essentially the same guidelines

can be followed as given in [1]. Ideal diodes can be realized by a

semiconductor diode embedded in the feedback loop of an op-amp, and

the nonlinear controlled sources can be implemented by various

combinations of op-amp's and multipliers [5]-[6].

The canonical circuits in Fig. 1 can be further simplified in the

special case where each inequality constraint involves only a single

variable of the form

xk > 0 , k = 1,2,...q (14)

In this case, the diode-controlled source combination on the left

of Fig. 1(a)-(d) can be eliminated by connecting an ideal diode as

shown in Fig. 2(a) for the canonical circuits in Fig. 1(a) and (c), or

Fig. 2(b) for the canonical circuits in Fig. 1(b) and (d),

respectively.

The implementation flexibility is one of the more interesting

features that the new canonical circuits offer the designer. Cost and

performance are highly influenced by the availability of circuit

components for realizing each of the four alternative schemes. Note

that two of the four circuits (namely, Fig. Kb) and 1(c)) can be

built using only one type of controlled sources. For example, we can

first select the most convenient type of controlled sources, and then,

realize an optimum op-amp implementation taking into account the

differences in both cost and performance between a CCVS and a VCCS

realization [5]-[6]. The optimum choice of a particular canonical

circuit is illustrated below for the special but commom case of linear

or quadratic programs.



CANONICAL NONLINEAR PROGRAMMING CIRCUITS Page 8

In many applications, it is desirable to minimize an objective

function

<|>(x) = aTx + - xTB x
p*t r\J a/ _ r*r /w /v»

subject to the affine inequality constraints

f(x) = C x - d > 0

(15)

(16)

where a and x are q-vectors, f(.) and d are p-vectors, C is a (p>q)

matrix and B is a (qxp) symmetric positive-definite matrix. When

B=0, the resulting problem is called a linear program. Otherwise, we

are dealing with a quadratic program.

Each circuit in Fig. 1(a)-(d) can be used to solve this problem.

Figure 3 shows the four structures derived from Fig. Ka)-(d) for

simulating (15) and (16). Using (x, y) and (w, z) to denote the

hybrid vectors associated with the right-hand ports and the left-hand

ports of N, respectively, we can describe N by:

z 0 c w

y _ L-ct 0
A-*

(17)

Note that for the circuits in Fig. 3(a) and 3(d), N is a

(p+q)-port transformer. However, N is a current-controlled (resp.,

voltage-controlled) (p+q)-port in Fig. 3(b) (resp. 3(c)). Also, note

that R is a linear circuit, which is the same for all cases in Fig. 3.

Diodes and dc independent sources are used to load the left-hand ports

of N and to connect its right-hand ports with R.

Comparing these 4 alternative realizations, it is logical to

choose either Fig. 3(b) or 3(c) since the (p+g)-port requires a hybrid

realization, which is much more complicated. The final choice will
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depend on the cost of implementing a current-controlled or a

voltage-controlled n-port using the existing technology.

5. CONCLUSIONS

We have shown that the circuit reported in [1] is not the only

canonical circuit capable of solving any nonlinear programming

problem. Thus, a family of circuits has been presented here,

explicitly specifying its four canonical elements. In fact, since

they only use one kind of controlled sources, the circuits in

Fig. Kb) and 1(c) are only x-controlled canonical circuits.

The validity of the three new canonical circuit structures

(Fig. l(b),(c),(d)) has been verified by simulating several nonlinear

programming problems using the general-purpose computer program

SPICE2. The simulation results are consistent with those reported in

[1] and [3].



CANONICAL NONLINEAR PROGRAMMING CIRCUITS Page 10

6. REFERENCES

[1] L.O. CHUA and G.M. LIN, "Nonlinear Programming without

computation". IEEE Trans, on CAS, vol.Cas-31, n 2, pp.182-188,

Feb. 1984.

[2] L.O. CHUA, "Stationary principles and potential functions for

nonlinear networks", J. Franklin Inst., vol 296, n 2, pp.91-114,

Aug. 1973.

[3] L.O. CHUA and G.N. LIN, "Nonlinear optimization with

constraints: a cookbook approach". Int. J. Circuit Theory

Appl., vol.11, pp.141-159, 1983.

[4] O.L. MANGASARIAN, "Nonlinear Programming". New York:

McGraw-Hill, 1969.

[5] J.L. HUERTAS, J.I. ACHA and A. GAGO, "Design of general voltage

or current controlled resistive elements and their applications to

the synthesis of nonlinear networks", IEEE Trans. on CAS,

vol.CAS-27, n 2, pp.92-103, Feb. 1980.

[6] J.L. HUERTAS and A. GAGO, "On the realization of arbitrary

linear resistive n-port network", IEE J. Electronic Circuits and

Syst., vol.3, n 6, pp.247-252, Nov. 1979.



FIGURE CAPTIONS.

Figure 1: Canonical nonlinear programming circuits.

Figure 2: Circuits for imposing constraint (14).

Figure 3: Canonical quadratic programming circuits.
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