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ABSTRACT

Several design techniques for metal oxide semi-conductor MOS circuit are
described in this report. Some of these techniques are bootstrap drivers in NMOS,
CMOS dynamic circuits, and control logic using a finite state machine. The
detailed design of a 32-bit ALU is presented in this report as a design example.
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1. INTRODUCTION

In recent years, economies of scale have made very large scale integration, VLSI, one of the
most popular way to implement large digital systems. Among all the semiconductor technologies
available, metal oxide semiconductor, MOS, is one of the technologies most suitable for VLSI.
Because of its relatively simple layout, MOS circuits can have very high circuit density. Further-
more, MOS circuits are also easier to scale down and can gain more in performance than bipolar
circuits as feature size is scaled down. This report describes several design techniques for metal

oxide semiconductor, MOS, circuit with emphasis on VLSI system that uses a 5V power supply.

This report is organized into six chapters. The design of a bootstrap driver is described in
Chapter 2. NMOS is the technology considered here because bootstrap drivers are mostly used in
NMOS to minimize static power consumption. Furthermore most of the author’s experience in
bootstrap drivers was learned from fine tuning the bootstrap drivers used in NMOS SOAR
[Ung84). In Chapter 3, Domino and NORA logic, two of the most promising CMOS dynamic cir-
cuit design styles are described. The charge sharing problem, which is common to all dynamic cir-
cuits, is also described in this chapter. Chapter 4 is a CMOS design example in which the details
design of a 32-bit ALU is shown. Chapter 5 shows how the control logic in a VLSI system can be
implemented using a finite state machine. The first part of this chapter is devoted to the basic
principles of the finite state machine. The goal here is to introduce all the basic principles one
needs to understand the rest of thc chapter such that even a circuit designer has no previous

experience with finite state machines can understand the materials presented in the rest of chapter

6.

It must be pointed out that this report is not intended to be a complete design manual for
MOS circuit. The author’s intention is to summarize some of his experience in MOS circuit design
such that circuit designers can use this report as a guide in certain aspects of MOS circuit design.
The information covered in this report are gathered by the author during his first year of research

in the EECS department of the University of California, Berkeley.



2. NMOS BOOTSTRAP DRIVER

2.1 Introduction

In NMOS circuits, a bootstrap driver is usually used when a large capacitive load has to be
driven with minimum delay and minimum static power consumption. Besides using bootstran
driver, whose schematic is shown in Figure_2-2b, a large capacitive load can also be driven by a
super buffer [M&C80], or a low power push-pull driver. The schematic of a super bufler is shown

in Figure_2-1a, and Figure_2-1b shows the schematic of a low power push-pull driver.
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Figure 2-1a Super Buffer Figure 2-1b Push-Pull Driver

In order for the super buffer shown in Figure_2-1a to drive the output node (node y) to a
high voltage level (V) rapidly, (W/L) of M1 has to be large. Furthermore, to keep the low vol-
tage level within the noise margin requirement, (W/L) of M2 has to be k times bigger than M1. A
general rule is to use k=4 if node x can be driven to V,, and k=38 if node x is driven high through
a pass transistor and therefore cannot rise to V,, due to threshold loss {M&C80|. The large
(W/L)'s of M1 and M2 implies that the effective resistance between V,, and GND is relatively
small when both of these devices are on (the output node is at the low voltage level). This small

effective resistance results in large static current and a high power consumption results.
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In Figure_2-1b, the push-pull driver minimized its static power consumption by using an
enhancement mode transistor (M1) as the pull up device. The static power consumption of this
driver is small because only one of the two big output transistors (M1 and M2) can be on at any
time. Furthermore, no ratio is required for the (W/L)’s of M1 and M2. However using an enhance-
ment mode pull up does introduce the penalty of a high voltage level lower than V,, at the output

node. The voltage at the output node V(y) is given by:
Vls) =V - Vo V)]
where
Va [V(y)] is the threshold voltage of tramsistor M1 when its source voltage
equals to V(y)
The voltage degradation problem mentioned above can be eliminated by using an extra
power supply Vn a8 shown in Figure_2-2a. The desired value of V“ is:

Vo 2Vyu+ Vu(Va)

where
Vu(V“) is the threshold voltage of M1 when its source voltage equals V,,

When input (node x) is low, the gate of M1 (node w) will rise to V.. If V, mets the require-

ment stated above, then the output node (node y) can rise to V,,.

Figure_2-2b is a bootstrap driver which operates on the same idea as Figure_2-2a except
that the extra power supply V” is eliminated. To achieve a voltage level higher than V,, at the
gate of M1 (node w), node p is bootstraped. When input (node x) is high, output node (node y) is
at GND level and through proper (W/L) ratios of M3, M4, and MS5, voltage at node p should be
approximately 3V. The voltage across the bootstrap capacitor C\, is therefore approximately
3V. When input switches to low, the voltage across the bootstrap capacitor cannot change instan-
taneously. As the output node (node y) rises towards V,,, node p is bootstraped towards a vol-

tage higher than V,,. Ideally node p is bootstraped to V,; + 3V but due to charge sharing with



vdd
Vi vdd M5
Vgg>Vdd
Cpt P vdd
M4 M1 \(—y Cboot | |
e M4 M1
Y -
X. { |_)M3 { M2 —I X = l_ I e
M3
r—)

Figure 2-2a Extra Power Supply Figure 2-2b Bootstrap Driver

the gate capacitor of M1 Cgl’ the parasitic capacitors va and sz, node p can only rise to a

lower than ideal voltage. The charge sharing problem can be controlled by proper sizing of the

bootstrap capacitor C, .

2.2 Size Of The Bootstrap Capacitor

2.2.1 Factor Determines The Size Of Bootstrap Capacitor

The bootstrap capacitor C,,, must be big enough such that the bootstrap node (node p in

Figure_2-2b) can be bootstraped to V, despite of charge sharing.
V, >V +V,(Vy,) 2.1

Inequality 2.1 can be satisfied if the following rule is followed:

Cout >> (G + Cy + C,]



where

Viy(Vy) = threshold voltage of M1 when its source voltage equals V,,
/2 1/2
=Vm+'7[[Va+2|¢,|] - [2|¢,|] } 2.2

C'g1 = gate capacitance of M1

€

t

= W,XL,X 2.3

C‘,1 = paraasitic capacitance of node p (see Figure_2-—2b)

C,, = parasitic capacitance of node w (see Figure_2—2b)

In Equation 2.2, the first term V,, is the threshold voltage when the body-source junction of
the tramsistor is zero biased while the second term takes into account the increase in threshold
voltage due to body effect .[H&:J83]. In Equation 2.3, W, and L, are the width and length of the
transistor respectively. Furthermore, ¢, is the diclectric constant of silicon dioxide and and ¢, is

the silicon dioxide thickness [H&J83).

Parasitic capacitors Cpl and C’,,2 depend strongly on the layout and are therefore very hard
to estimate without the final layout. Unfortunately, the final layout won't be available until
design is done. However, in a good design, the parasitic capacitors should be much smalier than

the gate capacitor Cﬂ. Using the assumption C'gl >>C

pl’sz' one possible strategy is to pick

Cot = N XC, 2.4

where N can be found using the following simple charge sharing analysis.



2.2.2 Simple Charge Sharing Analysis

This charge sharing analysis is based on the simplified model shown in Figure_2-3. Let the
charge inside the control surface in Figure_2-3a be @, and the charge inside the control surface
in Figure_2-3b be Q,,. @,, and @,, are thus the charge inside the control surface before and after

the input has switched low.
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Figure 2-3a Bootstrap Driver With Input Vx(t0)=Vdd

Qi = V,[(t0) X [CM-Q-C’,] + Vi X [092+C,,]
Qp = [V,(t2)-Vu] X Coe + V,(t2) X [C,,+C,2+Cﬂ]

Since both node p and w are isolated from V4 and GND after input switched from high to

low, the initial charge Q,, should equal to the final charge Q. (assuming leakage current can be

neglected).
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Figure 2-3b Bootstrap Driver With Input Vx(t2)=GND

Qp = @
implies

V. (t0) X [cw+cﬂ] + Vi X [0,040,]

I

[Vp(t2)—Va] X Cyoe + V,(t2) X [c,1+c,2+c,,]

Solve for V_(t2)

[14460) X [CuuiCya] + Vi X [0t O] + VX Cu]
25

v,(t2) ,
[c'p, +C+ G,y + c,m,]

Vi Bas to be smaller than the threshold voltage of transistor M1 and therefore can be
assumed to be zero in Equation 2.5. This is a conservative assumption because it makes V,(t 2)

appear to have a smaller value. In other words, it makes charge sharing look more severe.



-8-
Ignoring the term VX [C,2+Cﬂ] Equation 2.5 becomes:

V,(£0)x [CM+C“] + VyyXCy

V,(t2) = 2.6
Cpy+Cpy+ Cpy + Cypyy

Substitute Equation 2.4 into Equation 2.6:

V. (t0) [Nx c,,+c,,] +V XNXC,,

v,(t2) = 2.7
Cpy + Cpp + (N+1)XC,,

As stated at the end of Section 2.2.1, both C;,l and C,z are hard to estimate but likely to be

much smaller than the gate capacitance of M1 (Cﬂ). Based on this, it is safe to assume
(N+1)xC‘71 >> [Cﬂ+092]
and
NxC, >>C,,
Using these two assumptions, Equation 2.7 is reduced to:

N x [Vp(w) + V“]

v,(t2) = 2.8
(N +1)




As discussed in Section 2.1:

V,(t0) =~ 3V
In digital circuit,
Vy = 5V

To ensure that the output reaches V,, =5V, it is necessary to have:

V,(t2) > 6.5V

Using these values, Equation 2.8 can be solved for N:

6.5V X (N+1) < N X (5V+3V)
6.5
N 2 —
1.5

N > 433

To account for the optimistic assumptions made when going from Equation 2.7 to 2.8 and
have some safety margin (this safety margin will be used when an extra depletion mode pull up is

added as shown in Section 2-5), it is recommended that:
Chot = NXC,,
where
N26
It is shown in Section 2.3 that C,_, is the gate capacitor of a special transistor whose drain

and source are connected. N=6 then simply implies that the gate area of this special transistor

must have a gate area 6 times as big as the gate area of transistor M1.
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2.3 Construction Of The Bootstrap Capacitor

2.3.1 Basic Structure Of The Bootstrap Capacitor

In a single layer polysilicon, single layer metal NMOS process, the gate capacitance of a
depletion mode transistor structure is used as the bootstrap capacitor C,_,. This is shown in
Figure_2-4. Notice that the source (S) and drain (D) of the depletion mode transistor are con-

nected together.

top plate

X
(’x

approximately
Source (S rain (D) equals to 4 ___| Cboot
Y
bottom plate °y
(a) Actual Capacitor (b) Theoretical Capacitor

Figure 2-4 Basic Structure Of The Bootstrap Capacitor

The reason for such a connection is illustrated in Figure_2-5. As a result of not connecting
the source and drain of the depletion mode transistor M, together, pull up transistor M1 is in
series with transistor M,_, in Figure_2-5a. The effective resistance of a depletion mode transistor
is high and since M1 has to pull up the load through this transistor, the rise time of the bootstrap

driver is severely degraded.

The above problem cannot be solved by connecting the load to the other end of the deple-
tion mode transistor M, , as shown in Figure_2-5b. Although this configuration does improve the
rise time of the bootstrap driver, it also has an obvious side effect. The pull down transistor M2 is

now in series with transistor M, and the fall time of the driver is now severely degraded.
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Figure 2-5 Bootstrap Drivers With Degraded Rise and Fall Times

2.3.2 Deviation From Ideal Capacitor

One major difference between the real bootstrap capacitor (Figure_2-4a) and the ideal
bootstrap capacitor (Figure_2-4b) is that the two terminals X and Y are NOT interchangeable for
the real bootstrap capacitor. For this reason, the two terminals should be identified as the "top
plate” and the "bottom plate” as shown in Figure_2-4a. This difference is a direct result of how

the bootstrap capacitor is constructed and can be understood easily by looking at the layout.

The layout of a bootstrap capacitor is shown in Figure_2-6b and Figure_2-6¢ is its cross sec-
tional view. Notice that a diffusion wire is used here to connect the source and drain of the deple-
tion mode transistor. A metal wire connection will be more ideal but it will use up much more
area because two diffusion-metal contacts are needed. This area penalty is severe for a small
driver. Furthermore for small driver, the connection is short and the resistance and capacitance of

the diffusion wire is acceptable.

The equivalent circuit of this bootstrap capacitor is shown Figure_2-6d. In this Figure:

E“
Coe = W, XL, X |—
t“
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Figure 2-6 Layout Of The Bootstrap Capacitor

Cﬂop

=W3XL1X

o

= parasitic capacitance between the top plate and the substrate



-13-

Copot = parasitic capacitance between the bottom plate and the substrate
=W,XL,xC; + [2x(W2+L2) - L‘] X Chp

where
Cj = dif fusion junction capacitance per unit area

ij = dif fusion sidewall capacitance per unit perimeter

Using parameters from any typical NMOS process and a reasonable set of W's and L's, the
above equations imply C, , >> Cm >> Cptop‘ Since Cpbo! >> Cpbp’ the bottom plate, which
is in diffusion, should always be connected to the output node. On the other hand, the top plate,
which is in polysilicon, should always be connected to the bootstrap node (node p in Figure_2-2b).

There are two reasons for such a connection:

(1) The large bottom plate parasitic capacitor C o 18 driven by large output transistors

M1 and M2.

(2) Charge sharing problem at node p (see Figure_2-3) is minimized because only the small
top plate parasitic capacitor Cm is making contribution to the total parasitic capaci-

tance at node p Cpl'

2.3.3 Problems With Design Tools

The layout of this capacitor has to obey a different set of design rules from those for an or-
dinary depletion mode transistor. A special layer, dcap, is introduced in the layout system Magic
[Ous84] to specify the area where polysilicon overlaps diffusion and is used as a capacitor instead
of a transistor. Physically, this layer is the same as the dfet layer which specifies a depletion mode
transistor. A different layer name is introduced because it enables the design rule checker within

Magic to check the design rules differently.

Circuit extractor Mextra [M&O&S83] does not extract the polysilicon to substrate capaci-

tance correctly. From Figure_2-6b and c, it is obvious that the poly to substrate capacitance
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should be:
eﬂ
Tﬂ
Instead of what Mextra gives:
E“
Cp‘y/’ﬁ = W‘ X Ll X |
TG

In other words, Mextra does not subtract the gate area when it calculates the poly to sub-
strate capacitance. This over estimation only has a small effect on ordinary circuit because the
gate area is usually small and the field oxide thickness T, is much thicker than the gate oxide

thickness ¢ o

This is not the case in a bootstrap driver because the "gate area” (poly overlap diffusion
area) of the bootstrap capacitor is big. As a result, Mextra grossly over-estimates the parasitic

capacitance at node p (ny in Figure_2-3) and thus make charge sharing look much worse.

Sim2spice [M&O0&S83] assumes all capacitors are connected between a circuit node and sub-
strate. As a result, even though the .sim file (output file of Mextra, circuit description in ESIM
[M&0O&S83] format) has the correct connectivity, when Sim2spice converts the .sim file to .spice
file (output of Sim2spice, circuit description in spice format), one end of the bootstrap capacitor is
always connected to the substrate. The resulting circuit either looks like Figure_2-7a or
Figure_2-7b. Fortunately when Sim2spice is doing the conversion, it creates a .name file which
maps all the node names in the .sim file to all the node names in the .spice file. Using this infor-
mation and knowing the fact that all connection is correct in the .sim file, one can easily edit the

spice file to obtain a correct circuit description in Spice format.
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Figure 2-7 Erroneous Circuits Created By Design Tool Sim2spice

2.4 Design Declslons Concerning Transistor Size

The basic bootstrap driver shown in Figure 2-8a consists of five transistors. In Sections 2.4.1
and 2.4.2, simple methods are introduced to estimate their sizes by hand calculation. However the
sizes of all these transistors, especially the two output transistors M1 and M2, should be refined

further by Spice simulation.

2.4.1 Sizes of The Supporting Transistors M3 M4 and M5

The sizes of transistors M3, M4, and M5 (Figure_2-8a) can be determined by the voltage
level requirement at node p and w when input is high (see Section 2.1 and 2.1). This is illustrated
in Figure 2-8b.

In Figure 2-8b, voltage at node p is approximately 3V. The voltage at node w has to be

smaller than V,,, the threshold voltage of an enhancement transistor, to ensure transistor M1 is
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off. Under these conditions, tramsistors M3 is resistive. M4 are likely to be resistive because
ng + = V,,—3v is likely to be greater than V), (threshold voltage of a depletion mode transistor).

Using Kirchoff’s current law:

Iy(res) = I, (res) 29

The drain current of a transistor in the resistive region is given by [H&J83]:

K w

I(res) = —Xx —X [2(1’;.—",)V4.—V“2] 2.10
2 L
where
k' = transconductance parameter

V, = threshold voltage of the transistor

V;. = gate source voltage

V,, = drain source voltage
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Using Equation 2.10 and the voltages shown in Figure_2-8b, Equation 2.9 becomes:

W, W

s 2 ‘« 2
— x [2(VW-V,,)V,,—V,,] > —x [2(-V“)(av-v,¢)-(3v-v,c)]
L, L,
W,
Solve for =
L,
)
W‘ [2(Vh¢ah-Vb)Vf¢‘Vte ] Wa
—_— X — 2.11
L, L,

2=V, )3v=V,)-(3v-V,)
[ ]

Assume V,, = 1v , V; = —2.5v , and Vh‘ah = 5v Equation 2.11 gives:

W4 WS
— < 117X —
L4 L8

The parasitic capacitance at node p and w, CFl and sz in Figure_2-8a, can be minimized if

both transistors M3 and M4 are minimum size device.

Transistor M5 is in saturation because Vm = 0v <V,. The size of this transistor can be

found by equating the drain current of M5 and M3:

I, (res) = I sat) 2.12

The drain current of a transistor in the saturation region is given by [H&J83]:

KW .
L(sat) = — X — X (V,,=V)) 2.13
2 L

Using Equation 2.13 and the voltages shown in Figure_2-8b, Equation 2.12 becomes:

W 2 W 2
— x [2(VWh—Vk)Vh—Vh] > — X (Vy—3v-V,)
L, L,

e

Solve for ™
L,



-18-

2
w, [2(VW,‘—V,‘)V,°-V“ ] W,
> " X 2.14
L5 (V“—av-Vb) La

Using the same assumption as above namely V,u.gh = bv, V,, = lv, and V; = 5v Equation

2.14 gives:
LA LA
Ly L,

2.4.2 Sizes Of The Two Output Transistors M1 and M2

The sizes of the two output transistors M1 and M2 (see Figure_2-8a) can be approximated

by the two simple models shown in Figure_2-9 and a specification of the 50% rise time ¢, and fall

time ¢ I
Vi(t) V() 4
8.5v 1 Vdd| _ Vin(t)
Vdd P =" =<
50% - 57 50% X, Vout(t)
P ~ -
! t= tr t t=0 tf ¢
Vdd

Vout(t) Vin(t) \ M2 S
Cboot —_

M__l 1 Vout(t)
Cboot

(a) Size Of Pull-Up | (b) Size Of Pull-Down

Figure 2-9 Simple Circuits For Calculation Of Output Transistors’ Size
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Figure_2-9a is a simple model for estimating the size of the output pull up transistor M1.

At time = 0, V” = 6.5v , V,, = Sv transistor is resistive. Using equation 2.10:

k! W,
L0)=—x — x [2(6.5v—V,0)(5v)—(5v)2] 2.15
2 L

At time = ¢, V” = 6.5v , V,, = 2.5v transistor is resistive. Using equation 2.10:

k! W, . :
Lt, = ; X -L_ X [2(50—Vm)(2.5v)-(2.50)] 2.16

1

In equation 2.16, V,, . is the threshold voltage of transistor M1 when its source to body

voltage V,, equals to 2.5v. From [H&J83] :

[2.5v+2 |4, ”m - [2 |4, ”w]

Vi = threshold voltage when V,, = GND

Vs = Vgt 7

Assume the average current during transition equals to the arithmetic mean of equa-

tion 2.15 and 2.16, then:

25v X Cpy X2
t, = 2.17
I,(0) + I,(t,)

Substitute equation 2.15 and 2.16 into equation 2.17 and solve for for W,/L,:

W, 10v X C,,
- = 218

L
! kXt X [2(6.5v-V,o)(su)+2(5v-Vm)(2.5v)-31.250’]

Figure_2-9b is a simple model for estimating the size of the output pull down transistor M2.

At time = 0, Va- = Sv , V,, = 5v transistor is in saturation. Using equation 2.13:

k' W, 2
I(0)= — X — X (5v=V,) 2.19

2 L,
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At time =t I Va- = 5v , V,, = 2.5v transistor is resistive. Using equation 2.10:

K W, 2
Lity=—X —X [2(50—Vw)(2.50)—(2.5v) ] 2.20

Assume the average current during transition equals to the arithmetic mean of equa-

tion 2.19 and 2.20, then:

25v X Cppy X 2
t, = 2.21
1,00) + 1,(¢,)

Substitute equation 2.19 and 2.20 into equation 2.21 and solve for W,/L, :

W, 10v X C) 4
- = 2.22

L wx t, X [(Sv-Vw)2+2(50—Vw)(2.5v)—-(2.51:)2]

The 50% rise and fall time t, and ¢ ; are usually given as design goals of the bootstrap
driver. Using these and some process parameters, Equation 2.18 and Equation 2.22 can be solved
for the approximate sizes of M1 and M2. These approximate sizes can then be used as the starting
point for further design iteration. Computer aided design tools such as circuit simulator Spice

must be used for any further design iteration.

2.5 Extra Depletion Mode Pull Up

The bootstrap driver shown in Figure_2.10 is identical to the basic bootstrap driver shown in
Figure_2.8a except a small (relative to the pull down transistor M2) depletion mode pull up
transistor M6 is added. This depletion mode transistor ensures the high voltage level at the output

node (node y) won't drop below V; even if input remains low for a long period of time.

There are several side effects when this transistor (M6) is added:
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Figure 2-10 Addition Of An Extra Depletion Mode Transistor

(1) The rise time of the bootstrap driver is improved especially when the gate of the deple-

tion mode transistor is connected to node w as shown in Figure_2-10b.

(2) An extra capacitor, namely the gate capacitance of transistor M6 (C“) , i8 now added
to node w in parallel with an and 0,2. As a result, charge sharing problem described

in Section 2.2.2. gets worse.

(3) The low level voltage at node y is no longer GND but a little bit higher. This will

reduce the voltage (hopefully by a small amount) across the bootstrap capacitor Cioot
when input is low.

Side eflect 2 becomes important only if the gate area of the depletion mode transistor M6

(see Figure_2.10) become big relative to transistor M1. Furthermore this side eflect can be taken

into account by the charge sharing analysis in Section 2.2.2 if C"l in all equations are replaced by

an effective C’,l :

Cpeff = C, +C,
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Side effect 3 is small unless W,/L, of transistor M6 becomes too big relative to W, /L, of
M2. In any case, W,/L, should be smaller than (1/k)X(W,/L,) where k=4 if node x can be

driven to V,, and k=8 if node x is driven high through a pass transistor [M&C80J.

The rise time of the bootstrap driver can be improved by making M6 larger and connecting
its gate to node w (see Figure_2.10b). However in doing so, we are taking the risk of making side
eflects 2 and 3 bigger. It is obvious that there is a compromise between the size of M1, M6 and
the size of the bootstrap capacitor. Unfortunately the best combination of these three is not obvi-
ous. One approach to this problem is to run Spice simulation on different combinations until 2
reasonable compromise is achieved. This was done when the bootstrap drivers for SOAR [Ung84]

were designed. These drivers are described in Section 2.6.

2.6 Examples Of Bootstrap Drivers

There are six different types of bootstrap drivers in SOAR [Ung84] which are ctrdriver,
lowctrdriver, ungatedctrdriver, granddaddy, addrdriver, and 3statedriver. Addrdriver and 3sta-
tedriver are pad drivers while all others are control line drivers. Their circuit diagrams are shown

in Figure_2-11 and Figure_2-12 is the layouts of these cells. Notice the following:

=lJ°"/°" {[ 2800
?L‘f" -

Figure 2-11a ctrdriver Figure 2-1b lowctrdriver
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Figure 2-11¢ ungatedctrdriver
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Figure 2-11d Bootstrap Driver - granddaddy

if the minimum length is used.

dress and data lines which are expected to change every cycle.

All input transistors have a L=06u instead of the minimum requirement of L=4u. The rea-
son is that the drain of this transistor is bootstraped to a voltage higher than V., and its

source is at GND. Under a source-drain voltage higher than Vdd, punch through may occur

The two pad drivers addrdriver and 3statedriver do not have the extra depletion mode pull

up described in Section 2.5. The reason is that these two drivers are used to drive the ad-
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Figure 2-11f Output Driver - 3statedriver

A test chip, which contains all these drivers, was built to test their performance. The output
of the two pad drivers addrdriver and 3statedriver can connect to the output pads of the test chip

directly.

The outputs of the other drivers, which are not designed to drive I/O pads, cannot connect
directly to the output pads of the test chip. Instead a source follower is used as shown in
Figure_2-13. To simulate these drivers’ working environment inside SOAR, long poly lines are
used to connect the output of these drivers to the source followers. The length of these poly lines
are approximately the same as the poly control lines in SOAR. Furthermore the size of the source
follower is sixteen times bigger than minimum size because sixteen minimum size gates are at-

tached to each control line in SOAR.

The rise and fall time measurements of addrdriver and 3statedriver showed that these
drivers are able to drive the pads to 5V or GND within 50ns after input has crossed the 50%
point. The input and output waveforms recorded during the rise time measurement of 3statedriver

is shown in Figure_2-14.

The rise time measurements of other drivers are done with the help of the variable resistor.

The variable resistor, which is connected between the pad :nd GND (see Figure_2-13), are adjust-
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Figure 2-14 3statedriver’s Rise Time Measurement

ed until the voltage swing is 0.5V at the probe. This voltage swing is kept small such that the de-
lay from the gate of the source follower to the probe is minimized. Figure_2-15 shows that
ctrdriver can drive the probe to 0.5V within 30ns after input has crossed the 50% point. If the
delay from the gate of the source follower to the probe is negligible, then it implies the ctrdriver is
able to drive the load to 5V within 30ns. Similar measurements, which are not shown here, indi-
cated all drivers are able to drive the probes to 0.5V within 40ns. Since source followers are used,

the fall time cannot be measured. However the fall time was found to be much shorter thaxi the
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rise time in Spice simulation.
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Figure 2-15 Ctrdriver’s Rise Time Measurement




3. CMOS DYNAMIC CIRCUIT

There are many ways to implement dynamic logic in CMOS. Most of these approaches
require some complicated clocking scheme. Domino [Kra82] and NORA [Gon83| are two excep-
tions which only require a simple clocking scheme. In section 3.1 and 3.2, CMOS Domino and
NORA logic are discussed. In section 3.3, charge sharing, which is a common problem in all

dynamic circuits, is described together with methods to prevent or at least control it.

3.1 Domino Cirecult

3.1.1 Baslc Structure

The two basic logic gates, the AND gate and the OR gate, implemented in Domino logic are

shown in Figure_3-1. These two Domino gates operate as follows:

¢, = GND — This is the precharged phase of the gate. The precharge transistor M1 is on
and the evaluation transistor M2 is off. As a result, node y is precharged to high (V,,) and

the output node (node f) is precharged to low (GND).

¢, = V, — This is the evaluation phase of the gate. M1 is off and M2 is on, enabling node
y to be discharged to GND conditionally. Assuming inputs A and B are stable during this
time, then node y of the AND gate will be discharged to GND only if both A and B are
high. On the other hand, node y of the OR gate will be discharged to GND if either one of

the inputs is high.

In the above discussion, ¢, can either be the system clock in a single phase system or one
phase of the system clock in a multi phase system. In either case, especially the multi phase case,
the time during which ¢, = GND is likely to be longer than the time during which $, = Vy.
Furthermore, the precharge transistor M1 connects V,, to the precharge node (node y) directly

(not in series with anything). Because of these two reasons, the precharged transistor M1 can be
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Figure 3-1b OR Gate Implemented In NORA Logic

small.

The assumption of both inputs A and B being stable during the evaluation phase is an
overly conservative requirement. The only requirement one needs to impose on the inputs is to
ensure that node y won't be discharged accidentally during the evaluation phase. Once node y is
discharged, no active device exists to drive it back to V,, until the next precharge phase. Instead
of requiring all inputs be stable (no transition) during the evaluation phase, accidental discharge
can still be avoided even if inputs are allowed to make one transition. However this single transi-
tion MUST be a low to high transition which implies all inputs must start out low at the begin-

ning of the evaluation phase. This is illustrated in Figure_3-2 and is summarized below:
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The input must either be stable or makes at most one low to high transition (this implies the

input must start out low) during the evaluation phase.

Input Waveforms Acceptable Comments

YES Stable in evaluation phase

YES One transition, low to high.

NO One transition, but high to low.
/\ NO Glitch - more than one transition.

Figure 3-2 Accepatable Input Waveforms For Domino Gates

This simplification in input requirements makes the connection of Domino gates much easier
(see Section 3.1.2) but it also introduces a charge sharing problem to some Domino gates. The

charge sharing problem will be discussed in Section 3.3.

3.1.2 Connection Of Domino Gates

The only requirement on the Domino gates’ inputs during the evaluation phase, as ex-
plained at the end of Section 3.1.1, is that they must either be stable or start out low and make
one low to high tranmsition. This simple requirement together with the property of the Domino
gate’s output make connecting Domino gates together very easy.

The property of the Domino gate's output can be understood by examining Figure_3-1. In
either the AND gate (Figure_3-1a) or the OR gate (Figure_3-1b), node y is precharged to V,, in
the precharged phase and then it is isolated from V,; during the evaluation phase when M1 is off.

Consequently node y, which is precharged to high, can make at most one high to low transition
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during the evaluation phase. The output node (node f), which is driven by node y through an

inverter, is therefore precharged to low and can make at most one low to high transition.

Notice that the property of the Domino gate's output fits exactly the input requirement of
the Domino gate. This implies the output of a Domino gate can be connected to the input of
another Domino gate directly. This is illustrated in Figure_3-3 which shows the implementation of
the logic function f = (A-B) + (C-D). As indicated in the timing diagram, as soon as ¢, goes
high, (A-B) and (C-D) are evaluated by the two AND gates. The low to high transition (if any) of
these two signals then cause the OR gate to evaluate the function f. This is similar to the
behavior of a row dominos toppling into one another and this is the reason why it is called Dom-

ino logic.

vdd
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Figure 3-3 Implementation Of (A and B) or (C and D) In Domino Logic
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3.1.3 Timing Considerations At The Circuit Boundary

In the example shown in Figure_3-3, input signals A, B, C, and D of the two AND Domino
gates must follow the same rule that governs all Domino gates’ inputs. That is, they must either

be stable or make at most one low to high transition during the evaluation phase.

The easiest way to ensure these signals make at most one low to high transition during the
evaluation phase is to generate these signals from other Domino gates whose evaluation phase is
also ¢,. Unfortunately this is sometimes very hard or even impossible to accomplish. For exam-
ple, these signals can be outputs of some static registers or can be inputs from the external world.
In these cases, it will be much easier to ensure these signals be stable (no transition) during the

evaluation phase by latching them into a dynamic latch prior to the evaluation phase.

A® A A® A
Latch
st [ N fg.37
JL Ju
phiz® ] phll
hi2
phto*

4— setup time
(a)
Figure 3-4 Two Ways Of Using A Dynamic Latch

There are two ways of using a dynamic latch. In Figure_3-4a, the inverse of the evaluation
clock (,) is used for latching and in Figure_3-4b, an extra phase ¢,, which does not overlap ¢,, is
used. The approach in Figure_3-4a has the advantage of using a single phase clock while the

approach in Figure_3-4b has much higher tolerance of clock skew. This is illustrated in Figure_3-
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5. Figure_3-5a shows that a clock skew larger than the set up time of the latch is fatal for the
single phase approach while the two non-overlap phase approach (Figure_3-5b) can tolerate a
clock skew up to the sum of the set up and the nominal non-overlap time between the two phases.
Since‘the nominal non-overlap time is specified by the system designer, the designer has much

more control over the clock skew problem in the two-phase approach.

. . lock t: inal non- .
clock skew > setup time A Dynamic A :k ew > a:'u:z +2“’::l: p time A0 Dynamic A
=> A may not be stable in —— Latch —> => A not be stable in N | &f‘ch L —
evaluation phase - phi2 fig. 37 may | X 37
. evaluation phase - phi2 e
==> System may fail L =3 System may fail .
phi2* T phit T
Evaluation ___,I Evaluation ____,l
Phase Phase
clock o Bl . I‘_____,"]Wk ‘
phi2___ | skew.. phi2 skew.

nominrl
non-overlap

e ohi ll time 3

—— 4 setup time #—setup time

(a) (b)

Figure 3-5 Comparison Of Clock Skew Tolerance

The output of the circuit (node f) in Figure_3-3 will be valid at the later part of the evalua-
tion phase (¢,=V,,). After #, goes low, node f* is precharged to V4 and node f is precharged to
GND. In other words, the output is valid only during part of the evaluation phase. The time at
which output is valid can be prolonged if the inverter between node f* and node f is replaced by a
dynamic latch as shown in Figure_3-6. Figure_3-6a and b show the two different approaches in
latching the inputs that are discussed in the last paragraph. In either case, the value at node f*

must be latched in during $,, not during ¢, During &, node f* is precharged to Vi

The dynamic. latches used here can be implemented in two different ways as shown in

Figure_3-7. Figure_3-7a uses a composite pass gate followed by an inverter and Figure_3-7b is a
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Figure 3-6b Implementation Of (A and B) or (C and D) - Two Phase Approach

C*MOS 1latch [Suz73]. Although these two implement identical logic, they have very different
electrical behavior. The details of their electrical behavior will be discussed in Section 3.3.2. For

the discussion here, it is sufficient to state that the following rules must be followed:

(1) If the input node (node x) is a dynamic node (node is precharged to either V,; or GND),

C*MOS latch MUST be used.
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(2) If the input node (node x) is NOT a dynamic node; approach 1, which uses a composite pass

gate followed by an inverter, is preferred but the CzMOS latch can also be used.
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Figure 3-7 Two Ways To Implement A Dynamic Latch

As a result of these two rules; the dynamic latch between node f* which is precharge node,
and node f (see Figure_3-6) MUST be a CzMOS latch. On the other hand, the type of dynamic
latch to be used at the input depends on whether signals A, B, C, and D are actively driven or are

precharged.

3.1.4 How To Use Non-Overlapping Multi-Phase Clocks

After reading Section 3.1.3, some readers may think any complicated combinational circuit
(for example a 32 bit ALU) can be implemented in Domino logic using a single phase clock (with

its complement) as shown in Figure_3-8. This is true in theory and it also has been done. Howev-

er it has some practical problems.

One problem is that Domino logic does not provide logic inversion. When both a signal s

and its complement s* is needed, extra logic gates are needed. Consider the implementation of the

following example:

/ = zXORy 3.1
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Figure 3-8 Implementation Of Domino Logic Using A One Phase Clock

where
z = aORY
y = cORd

One simple (but wrong) way to implement this in a one phase system is shown in Figure_3-
9a. Unfortunately this is also the WRONG way to do it because both signals x* and y* violate
the input requirement of the Domino gate (see Section 3.1.1 and Figure_3.2). Both these signals
are high at the beginning of the evaluation phase and therefore has the potential of discharging

node f* by accident.
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Figure 3-9a Erroneous Implementation Of (a or b) xor (¢ or d)
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One possible race condition that can lead to accidental discharge is shown in Figure_3-9a. In
this case both x and y are supposed to be high during the evaluation phase (both x* ar;d y* are
therefore low during the evaluation phase). During the precharged phase (¢ = GND), both x and
y are precharged to low (which is desi;'able) and as a result both x* and y* are precharged to high
(which is extremely undesirable). As soon as the evaluation begins (¢ = V), both x and y will
start rising and x* and y* will start falling. If for some unfortunate reason (one very reasonzble
reason is that the delay of the inverter is NOT zero) x rises faster than y* falls or y rises faster
than x* falls then, kaboom, node f* is discharged by accident and there is no way to recover this

accident.

The correct way to implement this example in a one phase system is shown in Figure_3-9b.
Notice that signals a*, b*, ¢*, and d* are assumed to be available and the dual of the logic has to

be implemented by two extra gates.

J%

11

B

Figure 3-9b Correct Implementation Of (a or b) xor (c or d)

Figure_3-10a is another WRONG approach to the problem. From the timing diagram, it is
obvious that this approach may not work because the delay of the inverters are not zero. Since
the delay of the inverters are not zero, signal x* and y* may not be stable at the beginning of

#=V,,. Notice that x* and y*, which may not be stable at the beginning of =V, are inputs to
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the second stage and §=V_, is the evaluation phase of this second stage. This is another race

condition that may cause node * to discharge incorrectly.

m Y JE
1'_ 1

i Jw

5_{ '_‘JW.SJ

i

Figure 3-10a 'Erroneous Implementation Of (a or b) xor (a or d) Using Dynamic Latch

The implementation of both the logic and its dual as shown in Figure_3-9b can be avoided if
a non-overlapping multi-phase clock is used as shown in Figure_3-10b. From the timing diagram,
it can be seen that if the non-overlap time between ¢, and ¢, is greater than the delay of the
inverter, then all inputs to the second stage (x, x* and y, y*) will be stable when the second stage
enters its evaluation phase (¢, goes high). This fulﬁllg the input requirement of Domino logic (see
Section 3.1.1 and Figure_3.2) and therefore has no potential danger of discharging the precharge

node (node f*) by accident.
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Figure 3-10b Correct Implementation Of (a or b) xor (¢ or d) Using Dynamic Latch

3.2 NORA Logic

3.2.1 Basic Principle

NORA logic [Gon83] is based on the pipelining concept of which Figure_3-10b is a good ex-
ample. In this Figure, when ¢,=V,, the first stage does its evaluation and the second stage is
precharged. The output of the first stage is piped to the second stage which starts its evaluation
as soon as ¢,=V_,. When the second stage is evaluating, the first stage is being precharged. The
advantage here is that no time is wasted for precharging only. Whenever one stage is evaluating,

the other stage is being precharged.

The pipeline in Figure_3-10b is not yet ideal because during the non-overlap time, both
stages are being precharged (not evaluating) and this time is thus wasted.! The pipeline proposed
in NORA logic [Gon83], which is shown in Figure_3-11, has no such dead time and only a single

phase clock ¢ together with its complement 3 is required.

! Actually in Figure 3-10b, the non-overlap time is not quite wasted because x* and y* are evaluated by the
static inverters during this time.
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Figure 3-11 A Generic NORA Pipeline

The combinational logic within each stage of the NORA pipeline is implemented by dynamic
gates that are similar to Domino logic gates. Consequently, the NORA pipeline is very similar to
the ill-fated pipeline shown in Figure_3-10a. Due to the similarities between these two pipelines,
static inverters cannot be used bet;ween the NORA pipeline stages {after each dynamic latch)
either. Otherwise the same race condition that causes the circuit of Figure_3-10a (see Section
3.1.4) to fail will also kill the NORA pipeline. Since a static inverter is not allowed between pipe-
line stages, the method showed in Figure_3-10b cannot be used to implement complementary
logic. The concept of N- and P-logic blocks is introduced in NORA logic to facilitates the imple-

mentation of complementary logic. This concept will be discussed in detail in Section 3.2.2.

3.2.2 The Concept Of N-logic Block And P-logie Block

The implementations of the NAND gate and NOR gate in N-logic blocks are shown in
Figure_3-12a and b and Figure_3-13a and b show how the same logic is implemented in P-logic
blocks. Figure_3-12¢ (Figure_3-13c) is a generic N-logic (P-logic) block for a more complicated
logic gate. An example of a more complicated gate, which implements the AND-OR function in

N-logic (P-logic) block, is shown in Figure_3-12d (Figure_3-13d).
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Figure 3-12 Examples Of NORA N-logic Blocks
In Figure_3-12 and 3-13, two sets of symbols (Symbol I and Symbol II) are proposed. These
symbols are designed to capture both the electrical and logical behavior of the N-logic and P-logic
gates. If one set of symbols is used everywhere consistently, (either use Symbol I or Symbol I
exclusively) then the gate connection rules, which are direct results of the input requirement and
output behavior of the N- and P-logic blocks, can be checked symbolically. This will be discussed

later in this section.

N-logic gate’s output (node f in Figure_3-12) is precharged to V,, during 3 and is evaluated
during ¢. This is the same as a Domino gate without its inverter. The rule that governs the N-

logic block’s input is therefore the same as Domino logic (see Figure_3-2):

The input must either be stable or makes at most one low to high transition (this

implies the input must start out low) during the evaluation phase.
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Figure 3-13 Examples Of NORA P-logic Blocks

Input Waveforms Acceptable 7 Comments
S
: YES Stable in evalustion phase.
NO One transition, but low to high.
YES One transition, high to low.
/\_ NO Glitch - more than one transition.

Figure 3-14 Acceptable Input Waveforms For P-logic Blocks

P-logic gate’s output (node f in Figure_3-13) is precharged to GND during ¢ and is

evaluated during $. Using reasons similar to those used in Section 3.1.1, the following
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requirement, which is illustrated in Figure_3-14, is derived for the P-logic block’s input:

The input must either be stable or makes at most one high to low tranmsition (this

implies the input must start out high) during the evaluation phase.

The rules concerning how these gates can be connected are direct results of the input
requirement and output behavior of the N- and P-logic blocks. From the above discussions, the
output of the N-logic block can make at most one high to low transition during the evaluation
phase 2 and therefore can be connected to the inputs of the P-logic block directly. For similar rea-
sons, the output of the P-logic block can be connected to the inputs of the N-logic block directly.
When N-logic block is connected to N-logic block, it becomes Domino logic and an inverter must
place between them for the same reasons as in Domino logic. Similarly, an inverter must also be
used whenever a P-logic block is connected to other P-logic block. The rules can be summarized
as:

(1) No inverter is needed when N-logic is connected to P-logic block or vice-versa.

(2) An inverter is needed when N-logic block is connected to N-logic block or when

P-logic block is connected to P-logic block.

There is an easy way to check for violation of these two rules. If all gates in a circuit are
represented by one set of symbols show in Figure_3-12 and Figure_3-13 (either Symbol I or Sym-
bol II but not both), then there is no violation of either rule stated above if bubbles are matched
for every signal line. The term bubble refers to the small circle that represents voltage inversion.

Bubbles are matched for a signal line if either:
(a) There is no bubble on either end of the signal line, or
(b) There are two bubbles on both ends of the signal line.

This is illustrated in Figure_3-15. In Figure_3-15a and d, bubbles are matched for signal line

aORb.H because there is no bubble on either side of the signal line. On the other hand, in

2 The output node of the N-logic block is precharged to high and is isolated from Vdd in the evaluation
phase. As a result, it can only be discharged to GND once in the evaluation phase.
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Figure_3-15b and f, bubbles are matched for signal line aORb.L because there are bubbles on both
ends. Figure_3-15¢, d and Figure_3-15e, f show how bubble mismatch can be corrected by insert-
ing inverters. This requires the inverter to have two different logic symbols. One with the bubble
at the input and one at the output. This bubble matching technique is a special case of the mixed

logic notation suggested in [Win80].

al aor bLH AH ' a or b).L
bL 3: —}_ bH ‘: ’:D

(a) match (b) match
al aor b).H al aor b)H
b.L b.L
(c) mismatch (d) match
.&.3 (aorb)L ¢ Al > (a or b).L :i > r
bH —DD— T.TF' —DD_

(e) mismatch (f) match
Figure 3-15 Illustration Of "Bubble Matching”

Using both N- and P-logic blocks, complementary logic can be implemented more easily
than in Domino. Figure_3-16 shows how the example in Section 3.1.4 (Equation 3.1), which Dom-

ino logic has problem implementing, is implemented in one NORA stage. This function is repeated

here:

J = 2z XORy
where
z = aOR)
y = ¢cORd
In Figure_3-16, s.L, means signal s is asserted whenever it is low and s.H means signal s is

asserted whenever it is high. This is an improvement over the implementation in Figure_3-9b

(Section 3.1.4) because the complements of a, b, ¢, and d are NOT required here. Since every
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control line has its bubbles matched in Figure_3-16, neither rule (1) nor (2) stated earlier in this

section are violated.

Vd!;li J
iy
aH £ a'lL ] 5
A -
bH v l_|
cH (x xor y).L 3 B
=
2
aH -~
J_A__l B
(x xor y).H
phi
L d'L
6
e —

Figure 3-16 Implementation Of (a or b) xor (¢ or d) Using N- And P-logic Blocks

3.2.3 Alternative Clocking In NORA Logie

The NORA pipeline show in Figure_3-11 uses a single phase clock (¢) together with its com-
plement ($). However in some digital system, it may be desirable to have a multi-phase clock. For
example, some microprocessors have a three-phase clock such that instruction fetch, decoding, and

execution can perform in each of the three phases separately.

As far as NORA logic is concerned, the multi-phase clock does not have to be non-
overlapping. Figure_3-17 shows how the original NORA pipeline (Figure_3-11) is implemented by
a three-phase clock (¢, ¢, #,) Wwith non-overlap time equals to zero. This pipeline performs the
function in one cycle while the NORA pipeline in Figure_3-11 performs the same function in three,
but probably much shorter cycles. In general, a multi-phase clock system performs more function

in one longer cycle than a single phase clock system does in one shorter cycle. One good reason for
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using a longer cycle is that the NORA pipeline may be a subsystem of a bigger system and the
cycle time may be limited by other subsystems. Consequently the cycle time in the single phase
approach cannot be 1/m of the m-phase approach. Therefore the m-phase clock approach has

better performance because more things are done in the same amount of time.

DL4 CL1 DL1 CL2 DL2 CL3 DL3
Dynamic . L. Dynamic . e Dynamic . e Dynamic
Latch Combinational Latch Combinational Latch Combinational Latch .

Xy 4 Logic 1 L Logic 2 2 Logics [— 3

Fig. 37 Fig. 37 Fig. 37 Fig. 37
U JL JL JU
Clock Clock Clock Clock

‘[ Evaluate T Evaluate ]‘ Evaluate T

|'—‘I. i1 I‘—'l hi2 I‘_—_'I Bis

phis P phit np phi2 ne phis

phit

phi2

phi3

Figure 3-17 A Generic Pipeline Using A 3-phase Clock

It was stated in last paragraph that the multi-phase clock can have a non-overlap time
equals to zero. As a matter of fact, different phases can even overlap. This is shown in Figure_3-
18. In this figure combinational logic blocks CL1, CL2, and CL3 are assumed to have their evalua-
tion completed before ¢,, ¢,, ¢; end. Consequently, their outputs can be latched into dynamic
latches DL1, DL2, and DL3 at the falling edge of ,, #,, and &, respectively. One possible reason
why ¢,, é,, ¢, are not shorten here is that it may be impossible to generate phase as short as

desired.

The clocking scheme used in Figure_3-11, 3-17, and 3-18 all assumed complementary logic
can be implemente;l within each pipeline stage either by method showed in Figure_3-9b or more
likely by combinations of N- and P-logic blocks. However in practice, the N-logic block is not the
same as the P-logic block. For high performance, sometimes it is desirable to use N-logic blocks

exclusively. Furthermore the method showed in Figure_3-9b, which implements complementary
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Figure 3-18 A Generic Pipeline Using A 3-phase Overlap Clock

logic by duplicating the logic, has severe area penalty. Consequently complementary logic may
have to be implemented by the method shown in Figure_3-10b. The resulting pipeline thus has
inverters after each dynamic latch and is shown in Figure_3-19. As illustrated in Figure_3-10b,
the non-overlap time between different phases of the multi-phase clock used in Figure_3-19 must

be at least bigger than the static inverter delay.

Even if no static inverter is placed between stages as in Figure_3-19, it may still be desirable
to use an nominal non-overlap clock as shown in Figure_3-20. The reason is the difference in clock
skew tolerance which is illustrated in Figure_3-21. The clocking scheme used in Figure_3-11, 3-17,

and 3-18 all have a maximum clock skew tolerance equal to the dynamic latch set up time. On
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Figure 3-19 A Generic Pipeline Using Static Inverters
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Figure 3-20 A Generic Pipeline Using A 3-phase Non-Overlap Clock

the other hand, the clocking scheme used in Figure_3-20 has a maximum clock skew tolerance

equals to the dynamic latch set up time plus the nominal non-overlap time.



-54.-

clock skew > setup time . Dynamic clock skew > setup time . Dynamic
==> A may not be stablein A—_| Latch |, A =3> A may not be stablein A~} Latch |, A
evaluation phase - phi fig. 37 evaluation phase - phi2 fig. 37
=> System may fail JLu ==> System may fail My
phi* T phit T

clock
hi ..Skew  :

Evaluation —,I Evaluation _,I
Phase Phase

—> fi—semp time —-) *—— setup time
(a) Clock Skew Tolerance Of Figure 3-11 (b) Clock Skew Tolerance Of Figure 3-17

Figure 3-21ab Comparison Of Clock Skew Tolerance

clock skew > setup time . Dynamic :!k.:vl: > s::;:: 232:;;1 :‘i:: . Dynamic
=> A may not be stablein A~} Latch | LA ) A* ] Latch |, A
evaluzzion phase - phi2 fig. 3-7 => mz;:tpl;e::abrh; fig. 3-7
=> System may fail Ju => System may fail o
phiz® T phit T

EV;.I:;gon _,I Evaluation __,l

—  M——setup time

(¢) Clock Skew Tolerance Of Figure 3-18  (d) Clock Skew Tolerance Of Figure 3-20

¥—— setup time

Figure 3-21cd Comparison Of Clock Skew Tolerance



-55-

3.3 Charge Sharing Problem

3.3.1 The Essence Of The Problem

In dynamic logic, there is a potential of charge sharing whenever there are more than one
transistors in series between the precharged node and the virtual power supply node. The virtual
power supply node is the node which connects to the power supply (V,, or GND) during every

evaluation phase. This is shown in Figure_3-22.

JVdd JVdd T vad ';dd E_{ |vaa . IVdd
3 P

.Pi.l Pi.' hi — (SelS1 x phi)* Mo
p - -
e, " ° fv

o —ihe foo R
s1* |[™ si* |[©

] ey ] h
M2

—
M1
—e — Sl Y =N
(N N
. o P B hi* | . o
pbi_| phi’ | SelSt x phi r_,Mz ® phi | 2bi%)
LI O

(a)  (b) (c) (d) (e) (f)

Precharged in phi® Evaluate in phi

Figure 3-22 Precharged Node (p) And Virtual Supply Node (v)

In Figure_3-22, node p's are the precharge nodes and node v’s are the virtual power supply
nodes. In Figure_3-22c and 3-22d, the virtual power supply nodes are the same as the actual
power supply because node x does not necessary connect to the power supply in every evaluation
phase in either figure. Every circuit in this figure has potential charge sharing problem because
there is more than one transistor (M1 and M2) in series between the precharged node (node p) and

the virtual power supply node (node v).

The charge sharing problems of circuits in Figure_3-22a, 3-22¢, and 3-22e are illustrated in

Figure_3-23a. For the sake of generality, the generic names A and B are given to the two inputs.
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Figure 3-23 Charge Sharing Problems

As one can see from the timing diagram, if input B remains low but input A makes a low to high
transition during the evaluation phase (after ¢ has gome to V,;) then there is charge sharing
between the precharged capacitor Cp and the parasitic capacitor at node x C,. The worst case

situation can be defined as follows:
V,(t) = GND
and

Coreriay << mazimum(C,,C,)

then

Vy X C,

V’(t )= <V,
C, +C,
The charge sharing problem of circuits in Figure_3-22b, 3-22d, and 3-22f are illustrated in
Figure_3-33b. Once again, the generic names A and B are given to the two inputs. As one can see
from the timing diagram, if input B remains high but input A makes a high to low transition dur-

ing the evaluation phase (after 3 has gone to GND) then there is charge sharing between the

precharged capacitor C‘p and the parasitic capacitor at node x C,. The worst case situation can be
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defined as follows:
Vz(to) = Vdd
and

Coerzp << mazimum(C,,C,)

then
Vy XC,

Vp(tl) = > GND
Cp +C,

3.3.2 How Charge Sharing Can Be Avolded And/OR Controlled

Charge sharing problem can be prevented or at least controlled b;' careful layout, and/or

placement of the inputs.

The charge sharing problem illustrated in Figure_3-23 can be avoided if the input closest to
the precharge node in a series combination (in Figure_3-23, it is the input to M1's gate) is required
to settle down before the end of the precharge phase (C, can then be precharged to the same vol-

tage as C") and stable throughout the evaluation phase.

The above requirement can be fulfilled easily in bus structures such as Figure_3-22¢, 3-22d,
3-22e, and 3-22f. Due to the way Domino gates are connected together (see Section 3.1.2) it is
impossible for Domino (and thus NORA) logic to fulfill the above requirement and the charge

sharing problem has to be controlled by the following techniques:

(1) Do not use any series combination of tramsistors. This implies NOR (OR) gates

are used exclusively, or

(2) If series combination of transistors are used, keep the number of transistors in

series small such that the effective C, is small (see Figure_3-24), and
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(3) Keep the parasitic capacitor C, small by careful layout.

Cx eff = Cx1 + Cx2 + ... + Cxn-1 + Cxn

Figure 3-24 AND Gate With Large Fan In

vdd vdd

i il

bus bus

s1* |_ So* I‘ Sn* | SelSlxgbi‘_ Selszxghi|_ SelSanhiI_
— = = —) )

L 2 L ] L ] * * L4

SelSlxghi'_ Selszxghi!_ Sels”ghil“‘ s1® "‘ s2* l_ Sn® l"
i o n n *

11

(a) (b)

Figure 3-25 Possible Charge Sharing Problem In Bus Structure

The charge sharing problem can also be avoided by careful placement of the inputs. For

example, the bus structure showr in Figure_3-25a can be free of charge sharing if signals Sl‘, Sz*,
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.. S,* are required to settle down before the end of the precharge phase (¢$==GND). On the
other hand, there is no way the charge sharing problem can be avoided for the bus structure
shown in Figure_3-25b. One of the SelS,  signals will go high when ¢=V,, and if its correspond-
ing S,,* is low, then busD will end up with a voltage lower than V), due to charge sharing.
Figure_3-26 is another example. In Figure_3-26a, charge sharing will degrade the output voltage
at node y if input x changes value after ¢ has gone low ($=GND and $=V_;). On the other
hand, the conventional CzMOS latch, which is shown in Figure_3-26b, does not have this problem
" because as soon as ¢ goes low, the M2 and M3 isolate the output node (node y) from the input.

h",‘dd | Vdd A

M1 M1

|

M2 | M2
In Out In Out
— > —> 3

M3 hi

.

M3

_I'E:
I

Figure 3-26 Possible Charge Sharing Problem In CCMOS Latch
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3.3.3 Dynamlic Latch

The two ways to implement a dynamic latch are shown in Figure_3-7 and are discussed

briefly in Section 3.1.3. In this section, the difference in their electrical behavior will be discussed.

vdd
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|
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Figure 3-27 Charge Sharing Problem In Dynamic Latch

The CzMOS latch is shown in Figure_3-27a and the other approach, which uses a composite
pass gate followed by an inverter, is shown in Figure_3-27b. Notice that if node x is a precharged
node, then as soon as ¢=V,, charge sharing will occur between C, and the capacitor at node w
C - Therefore if node x is a precharged node, CzMOS latch must be used.

However the CZMOS latch does have its disadvantage. The clock ¢=V,, must be long

enough to do two things:

(1) Charge or discharge the capacitance C, at node x, which consists mainly of the

gate capacitance of M1 and M4; then

(2) Charge or discharge the output capacitance C,, at node y .
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Capacitor C,, can be big and its charge and discharge paths consist of two transistors in
series (M1, M2 and M3, M4) which make the charge and discharge time even longer unless M1,
M2, M3, and M4 are big. However making M1 and M4 bigger will increase C, and therefore wor-

sen the first part of the problem (see (1) above).

On the other hand, the pass gate followed by an inverter approach only requires =V, be
long enough to charge or discharge the capacitor at node w C . C, is not likely to be big because
it consists mainly of the gate capacitance of M1 and M4. M1 and M4 here are likely to be smaller
than the M1 and M4 of the CzMOS latch because they are connected to the output node directly
here while in the CzMOS they are connected in series with M2 and M3. Therefore if node x is not
a precharged node, it is preferable to use a pass gate followed by an inverter to implement a

dynamic latch.
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4. A CMOS 32-BIT ALU - A DESIGN EXAMPLE

This 32-bit arithmetic and logic unit (ALU) is intended to be used in a 32-bit data-path
which operates in a four-phase non-overlap clock. The ALU itself operates on the last three
phases (¢2' ¢, and ¢,) of this four-phase clock. As shown in Figure_4-1, this 32-bit ALU is formed
by cascading four 8-bit ALU. The ALU can perform five different operations which are (1) add (A

+ B + Cin), (2) subtract (A + B* + Cin), (3) and, (4) or, and (5) xor.

Control Gi
Signalsl l o
A<T0> Cin
. DL7:0> .
B<T:0> Alu8bit >
Cout
Control | YCs8
Signals ]
A<15:8> Cin
. D<158>
B<15:8> Alu8bit >
g Cout
Control | Y C16
Signals
A<23:16> | Cin
. D<23:18>
B<23:16> Alu8bit >
Cout
Control| C24
Signals |
A<31:24> Cin D<3194>
B<31:24> Alu8bit ) >
Cout

l C32

Figure 4-1 32-bit Arithmetic And Logic Unit

The process to be used is a 3 micron CMOS with two layers of metal, metall and metal2.

However, only the first layer of metal, metall, can make contacts to both polysilicon and
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diffusion. The second layer of metal, metal2, can only make contact to metall. Furthermore,

buried contact is not supported by this process.
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Figure 4-2 8-bit Arithmetic And Logic Unit



The internal structure of the 8-bit ALU is shown in Figure_4-2. Each 8-bit ALU consists of a

Input Logic section, followed by an 8-bit look-ahead adder. There are two reasons why full 32-bit

look-ahead adder is not used:

(1)

(2)

A 32-bit look-ahead adder will require much more area, especially in the horizontal
dimension, which is very critical in the overall data-path. From [SW84], it is clear that
it will take much more than 560\ (1A\=1.5p4 => 7504) to implement a 32-bit look-

ahead circuit. The ALU implemented here only has a horizontal dimension of 450\.

Due to the distribution of tasks over different clock phases along the data-path (see
Section 4.1), an 8-bit look-ahead adder is fast enough. This means in each of the three
phases the ALU operates, the ALU can complete what it is supposed to do in that
phase faster than other parts in the data-path can complete their tasks. This clearly

illustrates the difference between local optimization and global optimization.

4.1 Distribution of Task

The distribution of task is illustrated in Figure_4-2.

%,

%5

Inputs from busA and busB2 are latched. Logic functions A xor B (same as p, the carry
propagate signal), A and B (same as g, the carry generate signal), and A or B are

evaluated for each bit.

The p’s and g's evaluated in ¢, should be settled by ¢, and they are used by the Loo-
kAhead block to evaluated the composite P's and G's (see Section 4.2 for details). The

CarryEval block then uses the P’s and G's to calculated the carry output for each bit.

The p's together with the carry out of each bit is used by the Sum block to evaluate

the sum. The result is put onto busD if it is an ADD or SUB operation. Otherwise the



-85«

results from ¢, (A xor B, A and B, and A or B) is put onto the busD depending on

what ALU operation is selected.

The most critical and complicated part of the ALU is the 8-bit look-ahead adder. It is

described in detail in the next section.

4.2 8-bit Look-ashead Adder

The 8-bit look-ahead adder consists of three parts. The LookAhead, the CarryEval and Sum

(see Figure 4-2).

4.2.1 LookAhead

The LookAhead is based on the signal low graph shown in Figure_4-3a. The inputs of this
graph are the carry propagate (p) and generate (g) signals for each bit and the outputs are the

composite propagate (P) and generate (G) signals over i bits.

p;, = A, zor B,

9 = 4, B,
P‘ } —1 po.pl. o« s e .p‘
Gy =0+ 0 4 Pt 0, P Pyt "0 +9°P Py T Py

where
i =0123,..,7

Each circle in the graph shown in Figure_4-3a represents a functional node. To keep layout
more uniform and avoid long routing wire, buffers (triangles) are added whenever functional node
is not necessary. Each functional node performs the logic function shown in Figure_4-3b. Its

implementation is shown Figure_4-3c and Figure_4-3d. Figure_4-3d is the transistor diagram but
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it also represents the topology of the circuit. There are three things worth noticing:
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(1) The basic topology is the same as the register cell of the register file to be used in the
data-path. Namely V,, on top, GND in the middle, and V, on the bottom. As a refer-
ence, the circuit diagram of the register cell is shown in Figure_4-3e. Using this struc-
ture keep the ALU pitch match with the register file. Furthermore, using this structure
also enable vertical space to be traded in for horizontal space such that the complete

ALU has a horizontal dimension less than 500\ (750 micron).

LaccessB accessAJ
vdd [ J Y vdd
L »
busA A AN —N , A _busA
< < > >-Sip
GND
bllSB \Y/ Vo N N\ \/ busB
= i
i
Vdd /) Vdd
raccessB accessAw

Figure 4-3e Register Cell

(2) Only N-logic blocks are used because NMOS transistors are much faster than PMOS
transistors, especially when they have to be connected in series. Furthermore, using
N-logic gates exclusively require inverting buffers between every gate. By changing the
size of these buffers, the critical path of the circuit can be fine tuned relatively easily

(see paragraph below).
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(38) V., and GND, which run horizontally, and all other horizontal connections will be
routed in metal2. Control lines, which run vertically, and all other vertical connections
will be routed in metall. Using metall to route the control lines makes them much
easier to drive because of the lower resistance and capacitance of metall relative to
polysilicon.

The overall structure of the LookAhead block, which is derived from the signal flow graph
Figure_4-3a, is shown in Figure_4-4a. From this, the floor plan of the LookAhead block is derived
in Figure_4-4b. This Figure shows that the LookAhead circuit is built from three basic cells, which
are NandNorl, InvPairl, and InvPair2, only. InvPairl and InvPair2 have the same function
except InvPair2 has bigger transistor size to drive higher fan out. The logic and transistor
diagrams are in Figure_4-3c and 4-3d respectively. Layouts of these basic cells are plotted in

Figure_4-5, 4-6, and 4-7 respectively.
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Figure 4-4b LookAhead’s Floor Plan

4.2.2 CarryEval

The CarryEval block is much simplier compared to the LookAhead block. It only consists of
two basic building blocks, NandNor2 and NandNor3. Both are Domino gates which evaluate car-
ry out C, 4 from P, G, and Cin. Their circuit diagrams are shown in Figure_4-8a and Figure_4-

8b. The layouts are plotted in Figure_4-9a and Figure_4-9b respectively.

NandNor?2 is used for every bit except bit7, 15, 23, and 31 (ie. the MSB of the four 8-bit

ALU’s). Notice that NandNOR3 is very similar to NandNor2 except it has an extra driver to
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drive the Cin input of the next 8 bits. This driver is big because it has a large fan out (fan out =
8) and the Cin line is long because it has to route through eight bit. Fortunately this vertical rout-

ing can be done in metall thus parasitic capacitance and resistance is minimized.
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In actual layout, dynamic latches and inverters are integrated into the CarryEval block. The
circuit diagrams for one CarryEval bit are shown in Figure_4-10a and Figure_4-10b. Figure_4-10b
is the MSB of the 8-bit adder and therefore it contains NandNor3 instead of NandNor2. The lay-

outs of these two bit slices are plotted in Figure_4-11a and Figure_4-11b respectively.

cin| ot phia‘J hﬂm
vdd vdd 1 vdd
Su/3u
P, } P, J —’I 3u/3u
v—"\—-l Su/3u 1 >p
P ] \Glda
[ 45u/3
NandNor2 j u/3u |
3u/3u
figure 4-8a _Tf_l 4.50/3u _| L /
GND GND _1 GND
—M——' | 4.5u/3u —
—'I 3u/3u
-
G +—] _'_' 4.5u/3u
T™~—cC
-
Ci“ —\ | - 0u/3u +—>C*
= —°| 3u/3u
3 > -Jl Su/3u t
Vdd vdd j ( “] Vvdd

Cin| lcm' pbizq ﬂmis

Figure 4-10a C_EvalCelll’s Circuit Diagram

The function of the latches are to latch in A;zorB; = p; and C, (C,

41 from the previous bit)

at the end of ¢,. These latches and inverters then provide stable p, C, and their compliments for
the Sum block during ¢, Notice that C, is latched instead of C, + because the Sum block evalu-

ates S, = C, zor p, instead of S, = C_,, zor p,. By doing the routing of C,’s here, which is more
§ ‘ t { + { ¢

natural, no routing is needed in the CarryEval and Sum block interface.
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Figure 4-10b C_EvalCell2’s Circuit Diagram

4.2.3 Sum

The Sum block is also relatively simple. It consists of an exclusive-or (xor) gate and some in-
terface logic to busD. The circuit diagram for one bit of Sum is shown in Figure_4-12. The layout

is plotted in Figure_4-13.

This circuit simply implements 2 Domino xor gate with busD as the output node. However
the value cannot put onto busD unless it is either a add or subtract operation. Therefore to ensure
functional correctness, control signal addORsub_¢, must be stable in ¢,. Furthermore busD has to
be precharged in ¢, (for ALU input) and in ¢3 (for ALU output). This is done by the PMOS
transistor with signal ¢ *AND¢,* at its gate. Precharged has to be done in both ¢, and 4, there-
fore if a NMOS transistor is used, the control signal is $,OR¢,. But a PMOS transistor is used

here, therefore the signal has to be inverted: (,0R4,)* = ¢, *AND¢ *
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Figure 4-12 SumCell's Circuit Diagram F

4.3 Input Loglce

The Input Logic section consists dynamic latches, inverters, a 2x1 Mux, three static NAND
gates and some busD interface circuitry. Figure_4-14 is the circuit diagram of a bit slice which

shows how these components are connected together. Figure_4-15 is the layout for one bit.

The 2x1 Mux is used to select the complement of B whenever the subtract (A + B* + Cin)
operation is desired. From the circuit diagram, it is observed that sub and sub® must settle before
¢, ends, otherwise node B* won't be charged or discharged to a known value. This requirement

was discovered when ESIM [M&O&S] was run on this section.

Static logic gates are used because busses’ values are latched in during ¢, and logic is also
evaluated in ¢,. If dynamic logic is used, race conditions will discharge precharged nodes mistak-

enly.

The control signals or_¢,, and_¢,, and xor_¢, together with addORsub_¢, in the Sum block
determine which output will get onto the busD in ¢, To avoid bus conflict, only one can be

asserted. Furthermore they can be asserted ONLY in ¢,.
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4.4 ALU Summary

The floor plan of the ALU together with all the interface signals is shown in Figure_4-16.
Figure_4-17 is the layout of a 8-bit ALU. The 32-bit ALU has been proved to be functionally
correct by ESIM [M&O&S]. The patch file for ESIM and ESIM’s output are all included in appen-
dix A.

The critical path for ¢,, as shown in Figure_4-18, is simulated before and after the layout
(6irst to get an idea of how big transistors have to be and then after the layout, parasitic capaci-

tance can be approximated more accurately) in Spice. The final simulation, which is included in

appendix A, shows this critical path has a delay of 31.6ns.

The critical path for ¢, is shown in Figure_4-19. It is also simulated by by Spice and the

result is 18.4ns. The print out of this simulation is also in appendix A.
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Figure 4-17a Layout Of 8-bit Adder

* XM 007 Q0000000000 T2 12 BOTIK T 12 I000CONX TR FIC S I0OCC T S DI0CAONC X 11 00000000 103 0K (0

B N Il I

i Vi | R erma
T, A ] B e

. X3
=

000ck - eUaNE - -
o —
o i
-
= T

1z

o - T A -V—"
== u T R RS

i Tesa ||
I I L & rh g g
| I} oy : ! = : Bl

1 S8 Q4 + BHRARRT KNFERINAN QR - = WX 0% = WP




-87-

“L3
T X001, > 000000 § 1 oK) ‘3 I0ICii DIXLOA X T 00000cA0 17000 &

i
e L
120, B8N mo\ 63D 452 Mil-'—“’.‘-»ﬁh -

o e
1-'”};“

1 mloron is 0.0155761 inches (396

2N L UK 7 J00C e o= - JOONOOTIRE,

oifplot® Window: -5 223.5 -1.5 337 € 1us200 --- Seale:

Figure 4-17b Layout Of 8-bit Arithmetic Logic Unit



This critical path is also shown in figure 4-14

Figure 4-19 Critical Path In Phi2
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5. IMPLEMENTING CONTROL FINITE STATE MACHINE IN VLSI
5.1 Finite State Machine

5.1.1 Definition Of a Finlte State Machine

A finite state machine is defined in [Koh78] to have its next state S(n<+1) uniquely defined

by the present state S(n) and the present input z(n):
S(n+1) = 6|S(n), z(n)] 5.1

where § is the state transition function.

The output of the finite state machine in state S(r) is z(n), which in the most general case,

is a function of both the present state S(n) and the present input z(n):
.2(n) = X[S(n) , z(n)] 5.2

where \ is the output function. A special case of this general case (Equation 5.2) is that the out-

put z(n) is a function of the present state S(n) only and is independent of the external input:
z(n) = )\[S(n)] 5.3

The above definition of the finite state machine is sufficient for most applications. For a
more formal definition of the finite state machine, please refer to [Koh78]. Before going any
further, it must be pointed out that the finite state machine defined above is a sequential machine
and clocking is NOT used anywhere in the definition. This means that the behavior of the
machine is determined by a sequence of events but NOT by a system clock (a high low high low
square wave). Sequences of events are events with respect to each other, which is NOT the same
as events with respect to the system clock. The clock is introduced later for implementation but

not as part of the finite state machine definition.

The finite state machine defined above (where clocking is not used as part of the definition)

can be completely specified by a state diagram similar to the one shown in Figure_5-1. One of the



x==a/3==alpha

x==b/z==gamma

x==a/3=beta

x==b/z==alpha

Figure 5-1 Example Of A State Diagram

things showed in Figure_5-1 is that if the present state is A then B will become the present state
and the output will become 7 as soon as input x changes from a to b. After this, even if input
remains b, the output z will still change to a because the present state is now B. Theoretically
any finite state machine can be implemented by a combinational circuit block and a delay block
as shown in Figure_5-2. This approach has many problems and will be discussed in details in

Section_5-2.

X(n) a Zm)

Combinational

Logic
S(n) S(n+1)

Delay l'—

Figure 5-2 Theoretical Implementation Of Finite State Machine
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5.1.2 Mealy vs Moore Machine

The general finite state machine defined by Equation 5.1 and Equation 5.2 (see Section 5.1.1)
S(n+1) = J[S(n) , z(n)] 5.1
z{n) = )\[S(n) , z(n)] 5.2

is known as the Mealy machine [Koh78] and the machine defined by Equation 5.1 and Equation

5.3 (see Section 5.1.1)

z(n) = X[S(n)] 5.3
is known as the Moore machine [Koh78]. Moore machine’s output z(n) depends only on the

present state S(n) and is a special case of the Mealy machine whose output depends on both the

present state S(n) and the present input z(n).

The above definitions of the Mealy and Moore machines do not use the concept of a system
clock (a square wave) either. However in some literature, the difference between the Mealy and
Moore machines were considered as finite state machines that either has asynchronous or synchro-
nous inputs and outputs. This definition may be useful in certain applications, but in general it

causes much confusion.

The confusion arises from the fact that finite state machine itself is not defined in terms of a
system clock and one cannot talk about synchronization unless a clock is introduced. Trying to
define the Mealy and Moore machines in terms of synchronization is like trying to define the AND
and OR logic functions in terms of series and parallel combinations of transistors. Although logic
can be implemented by combining transistors, logic and transistors combinations are independent
things and logic was invented long before transistor was invented. Similarly although a clock (on
which synchronization is based) is usually used in the implementation of finite state machine,
finite state machine and clocking are independent entries and finite state machine was invented

long before the concept of clocking was invented.
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An example of a state diagram for a Moore machine is shown in Figure_5-3. Since the out-
put of a Moore machine is a function of the present state only, for a given node (representing a
state) in the state diagram, all arrows leaving it has the same output (z) values on them. Instead
of duplicating this value over all arrows that leave a state node, the value is put inside the state
node as shown in Figure_5-3b. Furthermore to make the diagram more compact, the input(s) that
determines the next state is (are) put inside the state node with square bracket [ | around it

(them) as shown in Figure_5-3c. This notation is suggested by [Des83).

(a) (b)

Figure 5-3 State Diagram Of A Moore Machine

The less general output function of the Moore machine given by Equation 5.3 (less general
as compared to the output function of Mealy machine in Equation 5-2) also makes the Moore
machine easier to implement. Instead of using a large combinational block as shown in Figure_5-2
and Figure_5-4a to implement both the output and the next state function, the combinational cir-
cuit block can be decoupled into two smaller blocks as shown in Figure_5-4b. One of this block
will implement the next state function and the other will implement the relatively simple output

function. Figure_5-4 is only a theoretical approach to the problem. The actual implementation is
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more complicated and is discussed in Section 5-2.

n Z(n) ! —l' Output Logic —z@)—’

Combinational
Logic
- Siatt) He) 1 Next State n+1)
Logie
§(v)
Delay Delay
(a) Mealy Machine (b) Moore Machine

Figure 5-4 Theoretical Implementations Of Mealy And Moore Machine

5.2 Implementation Of The Finite State Machine Using Clock

Theoretically, a finite state machine can be implemented by a combinational logic block and
a delay block as shown in Figure_5-2. In practice, this approach has many problems. One of the
problems is illustrated in Figure_5-5. Assume the finite state machine is currently in state A, then
a glitch on the signal line x will causes a catastrophe. First, the low to high transition of the glitch
is interpreted as a x==1 input and cause the machine to change its state to B and its output z to
1. The falling edge of the glitch is then interpreted as a x=0 input and cause the the machine to

change its state to C and its output to 0.

The only solution to this problem (and all other race conditions that are not shown) is to use
an edge trigger register (D type flip-flop) and drive it by a periodic square wave as shown in
Figure_5-6. This periodic square wave is the clock of the system. Assume the edge trigger flip-flop
in Figure_5-6 is triggered by the rising edge (low to high transition) of the clock, then at each ris-
ing edge of the clock, S and z are sampled. The sample values, which are denoted as S(t) and

z(t), are then used by the combinational circuit to evaluate the output z and the next state S.
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Figure 5-5. One Problem Of The Theoretical Implementation

The output z is the output of the current state S(¢) and is thus denoted as z(t). On the other
hand, the S just evaluated won't have any effect until the next rising edge of the clock when it is

sampled by the register. This S therefore represents the next state and is denoted as S(t+1).

X Eige |22 2o, Cock | Xit) S(t)
Trigger Combinational
. FFE,;) Logie L Xt1) | se1)
s S(t+1) H | xen | sey
A
iR I A | x s

Figure 5-6 Implementation Of Finite State Machine Using A Clock Signal

Each rising edge of the clock marks the beginning of a state because a new S, namely
S(t+1), is sampled and becomes S(¢). The z(t), which determines this new state’s successor and
its output z (if this is a Mealy machine), is also updated at this same rising edge. Since z and S
are sampled simultaneously, the input z that are intended for a given state must stabilize to its
proper value before the beginning of that state (marked by the rising edge of the clock). This is
illustrated in Figure_5-7 where state A is assumed to start at t >t, and state B is the desirable
next state (which starts at ¢ >t,). The input x then must settle to x=0 one flip-flop set up time

before ¢,. This is illustrated clearly by the timing diagram in Figure_5-7.

Now that clocking is introduced to the implementation of the finite state machine, finite

state machines can be classified into synchronous and asynchronous according to the way they are
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A1) \ x{t)=0

(=1 x(t)=0

S()=B S(t)=D

s(t) X S(t)=A

3t)}=0 /Ht)=1

S(t+1) X S(t+1)=B X S(t+1)=D )CA
t1 State A t.2 State B ; State D
(=0 @ x=1 (t)=0 ;(T):n
S(t)=A S(t}=A
ak S(H-1)===B-—l S(t+1)=B
tl < t < t2 t=1t2-e
f——> ——J————)
t)=1 2(t)=0 x=k x(t)}=0 z(t)=1
S(t)=B S=A S{t}==D
S(t+1)=D ’—’ S(H-l)=A_|
t=1t3-e t3<t< t4

In the above diagrams: ? == unknown, k == don't care, and e == setup time of the flip fop

Figure 5-7 Illustrations Of The Timing Of A Finite State Machine

implemented:

Any finite state machine that are implemented by the approach shown in Figure_5-2 is

classified as an asynchronous finite state machine.

Any finite state machine that is implemented by the approach shown in Figure_5-6

(using a clock signal) is classified as a synchronous finite state machine.
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This classification together with the logical behavior classification are summarized in
Figure_5-8. From this figure, it can be seen that finite state machines can be classified into four
groups, which are: (1) Asynchronous Mealy , (2) Asynchronous Moore, {3) Synchronous Mealy, and

(4) Synchronous Moore.

Classification According To Logical Bebavior

v

Finite State

CMWW‘:: Machine Mealy Moore
Implementation - As h - As h
yncnronous ynchronous
Asynchronous Mealy Moaor
3 4
Synchronous Synchronous Synchronous

Mealy Moore

Figure 5-8 Classification Of Finite State Machine

As far as implementing the control logic in a digital system is concerned, the synchronous

Moore machine is the most popular. There are two reasons for its popularity:
(1) Its output is a function of the present state only.
(2) High tolerance to glitches at the inputs.

The first reason is very important because it makes the design of the state diagram much
easier by enabling the design effort to be split into two steps. First, the designer will consider all
the possible states his system can arrive at as a result of all the conditions (inputs to the finite
state machine), then he can determine all the control signals (output of his finite state machine) it

needs at each state.

A generic Synchronous Moore machine is shown in Figure_5-9a. When it is used to control a
digital system, different names can be given to the different components according to their func-
tions as shown in Figure_5-9b. The first step in designing the state diagram mentioned in the pre-
vious paragraph will result in the specifications for the "Next State Logic” block. The second stgp

will then produce the specifications for the "Control Logic” block.



«97 -
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5.3 Implementing Finlte State Machine In MOS VLSI

S(t)

Control Logie =z,
control
signals
Next State S(t4+1)

(b)
Figure 5-9 Implementation Of Synchronous Moore Machine

5.3.1 How The Non-Overlapping Two-Phase Clock Is Used

In MOS circuits, an edge triggered fip-flop is hard to build. However solution similar to

Figure_5-6 can be achieved if dynamic latches are placed at both the input and the output side of

the combinational circuit. These two dynamic latches are driven by ¢, and ¢, of a two-phase

non-overlap clock. This is shown in Figure_5-10.

_JX Dynamic X()
Latch 1
Fig. 3-7

S S(t)
Ju

Combinational
Logic

_'J Dynamic

Latch 2
Fig. 3.7

JLu

,T
\l phit
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phi2

)
phﬂ\]

Dynamic
Latch
| Fig. 3-7

—— phi1—

+— phil2 —%—— phiz —— phi21

2l

Lo
H

phit

Figure 5-10 Finite State Machine Using A 2-phase Non-overlap Clock
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S and z are sampled whenever ¢, =V,,. The sample values, which are denoted as S(¢) and
z(t) are then used by the combinational circuit to evaluate the output z and the next state S.
The output z, which won't be available from dynamic latch#2 until $,=V 4, is the output of the
current state S(¢) and is thus denoted as z{t). The S, which is available at the same time as z(t),
won’t be sampled by dynamic latch#1 and thus won’t have any effect on the finite state machine

until the next ¢, =V, ,. This S therefore represents the next state and is denoted as S(¢+1).

Each ¢,=V,, can be considered as the beginning of a new state because S(t) is updated.
The z(t), which determines this new state’s successor and its output z (if it is a Mealy machine),
is also updated when ¢,=V_,. Since z and S are sampled simultaneously, the input z that are
intended for a given state must stabilize to its proper value before that state begins (marked by
¢,=V). Since dynamic latch#1 won't stop latching until one set up time before ¢, goes low, z
does not have to settle to the proper value until one set up time before the falling edge of )

This, however, will require the combinational logic to have a delay detay smaller than:

tddcv .< ¢+ ¢2 = toctup2

t = getup time of dynamic latch#2

selup2

On the other hand, if z is required to settle down before the rising edge of by then the com-

binational logic delay ¢ delay only has to be:
tdday < bt ot b, - toetup2

The timing of the finite state machine can be best illustrated by an example similar to
Figure_5-7. This is done is Figure_5-11 where state A is assumed to start at t >t and state B is
the next desirable state (which starts at t >t,). Consequently the input x must settle to x=0 one

set up time before ¢, goes low.
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In this example, assume: State A-> B->D

: output of state A \ joutput:of B
=(t)' o H 0=
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— StateA > State B i “— D
t1 t2 ts

Figure. 5-11 Timing Of A Finite State Machine Using A 2-phase Non-overlap Clock

5.3.2 Two Set Of Signals In Each State

In MOS system, it is common that some control signals can only be asserted in certain
phases of the clock. For example, in a non-overlap two phases system, some control signals Z (%)

can only be asserted in ¢, while some other control signals Z,(¢,) can only be asserted in ?,

The above requirement can be handled by a more general finite state machine shown in
Figure_5-12. A Moore machine is used here (compare this to Figure_5-9) because Moore machine
is highly recommended for implementing control logic as discussed at the end of Section 5.2. The
timing diagram in Figure_5-12, however, also applies to the more general Mealy machine. Zl(¢1)
is glitch free and the extra dynamic latch#3 is used here to prevent glitches on the control line
Z,(¢,). Since both Z,(¢,) and Z,(¢,) are glitch free, they can be used to control precharged

nodes as shown in Figure_5-13.



- 100 -

)

z1(phil ' . H
g / \ T~ \

Figure 5-12 Timing Of A Finite State Machine With Two Sets Of Output Signals
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5 —

Node x precharged to Vdd in phil® Node x precharged to Vdd in phi2®
Discharged conditionally in phil Discharged conditionally in phi2

Figure 5-13 Control Signals For Precharged Nodes

An example similar to Figure_5-11 is shown in Figure_5-14. From the timing diagram in this

Figure (and Figure_5-12), it can be seen that control signal Z,(¢,) and Z,(¢,) of the current state
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won't be updated until ¢1 and ¢2 of the next cycle. This does not pose any serious problem
because this delay happens in every cycle and can be taken into account easily when designing the

state diagram.

phil
(%) | S L e,
x=0/z=1 X<zl [0
Logic

Wpux phz [ phun| |phe

o ‘° DL - Dynamic Latch, see figure 3-7
In this example, assume: State A-> B->D

st . S(=A \! S(t)=8 i D

| StyB 5 9(553553555;9( D

Hphiz) Y m A\

—  State A > StateB ————————»ie— D
t1 t2 ts

Figure 5-14 Example Of A Finite State Machine With Two Sets Of Outputs
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5.3.3 Suggested State Diagram

The finite state machine shown in Figure_5-12 has two sets of outputs. One can only be as-
serted in ¢#1 and the other can only be asserted in ¢, This is hard to represent in a general state

diagram but can be done easily for the state diagram of a Moore machine.

A\
phil: [x]
phil:

alpha phil

z1(t) =

0 otherwise
zl=alpha

phi2: z2=beta

beta phi2
22(t) = <

/ 0 otherwise

Current state is A, next state can be one of n possible
states determined by the value of input X.

Figure 5-15 A General State Of The Proposed State Diagram

Figure_5-15 shows the general state of a state diagram that can be used to represent the
Moore machine shown in Figure_5-12. Figure_5-15 is a simple extension of the state diagram sug-
gested in Figure_5-3c (Section 5.1.2). Besides showing explicitly that control signals Z , and Z, can
be valid only in ¢, and ¢, respectively, Figure_5-15 also shows that the input z, which determines

the next state, is latched in during ¢,.
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6. SUGGESTIONS FOR FUTURE RESEARCH

This report is by no means a complete coverage of MOS circuit design techniques. As a

matter of fact, this report asks more questions that can be only be answered by further research.

First of all, the bootstrap driver discussed in chapter 2 is in NMOS. Bootstrap drivers may
also be useful in CMOS just to achieve faster rise and/or fall time through a gate drive higher
(lower) than the supply voltage(s) (V,, and GND) . However in CMOS, certain nodes may be
desirable to be bootstraped to a voltage lower than GND while some other nodes are desirable to
be bootstraped to a voltage higher than V,,. Furthermore, no depletion mode transistor is avail-
able in CMOS and how a PMOS transistor can be used as a substitute will be an interesting ques-

tion to be answered. All these matters can only be understood by further research.

In the discussion of Domino and NORA logic discussion, a tradeoff exists between using all
N-logic block and using a mixed of N- and P-logic blocks. Using a mixed of N- and P-logic blocks
eliminates the needs of inverters between gates and thus eliminates the inverter delay. However,
P-logic block is inherently slower than N-logic block. Th_e inverter delay saved by using P-logic

block is therefore partially offset.

Another challenging question to be answered in Domino and NORA logic is the complexity
of a gate versus number of gate levels in implementing a given logic function. Figure_3-12d and
3-13d show how the composite function AND-OR is implemented by one single gate. This clearly
is an improvement over the implementation using two gate levels but how far this can be
extended is not known. As a gate becomes more complex, it becomes slower because of higher
parasitic capacitance and also because of more transistors are combined in series. Charge sharing
problem also intensifies as the gate becomes more complicated due to the increase in parasitic

[
capacitance.

The bubble matching technique, which is described in Section 3.2.2 and is used to check for
combination rule violation when N- and P-logic blocks are connected, can be automated. Another
candidate for automation is fine tuuing the critical path in Domino logic. It is shown in Section

4.2.2 that critical path in Domino logic can be fine tuned by varying the size of the bufter
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between gates. This process can probably be automated, but the 2nd order effects of varying the

bufler size must also examined.

Finally in chapter 5, only basic ideas of implementing control logic are introduced. It will be
extremely interesting to find out how these basic ideas can be extended to a multi-phase system
that has more than two phases in its system clock. Do the phases have to be non-overlapped?
Which two phases should be used to drive the input and output dynamic latches of the combina-

tional logic? The decision on this question will determine the maximum allowed propagation delay

of the combinational circuit.
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A. SIMULATION OF THE ARITHMETIC LOGIC UNIT

A.1 Logic Simulation (ESIM) Of The Arithmetic Logie Unit

Before simulating the whole 32-bit ALU, the subsystems CarryEval, LookAhead, and the
input logic section AlulnCell were simulated separately. First a bit slice was simulated, then a

byte of each subsystem was simulated. The subsystems were then put together to form an 8-bit

-

ALU and ijts function was simulated. Finally, after all these were done, the whole 32-bit ALU,
which is formed by cascading four 8-bit ALU together, is simulated. This appendix, only includes

the final simulation of the 32-bit ALU.

The following test cases were used in the 32-bit ALU simulation (see the patch file included
in this report):
Case 1:

Test (A - B) with C,, = 0 (borrow = 1)and A =B
busA <31:0> = 01 001 010 01 001 010 01 001 010 01 001 010
busB <31:0> == 01 001 010 01 001 010 01 CO1 010 01 001 010
Expected result (see ESIM’s output file included in this report):

busD <31:0> = 11 111 111 11 111 111 11 111 111 11 111 111

Case 2:

Test (A - B) with C,, = 1 (borrow = 0) and A =B

busA <31:0>

01 001 010 01 001 010 01 001 010 01 001 010

busB <31:0> 01 001 010 01 CO1 010 01 001 010 01 601 010

Expected result:

busD <31:0>

00 000 000 00 000 000 GO GCO GO0 GO 00O 0CO



Case 3:

Test (A + B) with C,, = 1and A=B
busA <31:0> = 10110 101 10 110 101 10 110 101 10 110 101

busB <31:0> 01 001 010 01 601 010 01 001 010 01 01 010

-

Expected result:

busD <31:0>

00 000 GO0 00 00O 000 G0 000 000 00 000 000
Coy =1

Case 4:

Test (A + B) with C,, = 0and A=B

busA <31:0>

Il

10 110 101 10 110 101 10 110 101 10 110 101

busB <31:0>

01 C01 010 01 ¢O1 010 01 CO1 010 O1 CO1 010
Expected result:
busD <31:0> = 1111111111 11111111 111 11111 111 111
Cu=0

Case 5:
Test (A or B) with C, = don't care

busA <31:0> = 11101110 1110 1110 1110 1110 1110 1110

busB <31:0> = 1010 1010 1010 1010 1010 1010 1010 1010
Expected result:

busD <31:0> == 1110 1110 1110 1110 1110 1110 1110 1110
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Case 6:
Test (A and B) with C,, = don't care
busA <31:0> = 1110 1110 1110 1110 1110 1110 1110 1110

busB <31:.0>

1010 1010 1010 1010 1010 1010 1010 1010

Expected result:

busD <31:0> 1000 1000 1000 1000 1000 1000 1000 1000

Case 7:

Test (A xor B) with C,, = don't care

busA <31:0> 1110 1110 1110 1110 1110 1110 1110 1110

busB <31:0> 1010 1010 1010 1010 1010 1010 1010 1010

Expected result:

busD <31:.0>

0110 0110 0110 0110 0110 0110 0110 0110

All these expected values are observed when ESIM was run (see ESIM’s output included in

this report). Furthermore, notice:

(1) busD has the expected value only during ¢,. During ¢, and ¢,, busD is precharged to

1.

(2) C,, has the expected value only during ¢,. During all other times, C_, is precharged

to 0.

(3) During ¢,, busD=busA because busD is driven by busA as input to the ALU.

(4) In the patch file, it can be seen that each clock cycle is simulated by four ESIM cycles.

This is a direct result of the four-phase clock.

(5) In the patch file, it can be seen that busA and busB have don't care values except dur-

ing ¢, because the ALU latches in these two busses only during ¢,.
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A.2 Timing Simulation (Spice) Of The Arithmetlc Logie Unit

1 ! P i M1 J
ﬁmm "j—w | i nLiﬁsz
wa‘ ;_" CM °‘L| 17
1 sv K
S M 12 [, ms
L Tov / 4 ,
cu —\_ | 7
. = _!—cxz — — -l““om

Cl11, C12, ... C19 are parasitic capacitance

spproximated from the layout

Delay:

50% 16.6ns
90% 18.4ns

(A and Bj*
l mo}j}-‘-v 4 174
w1 Uwe
AxgrB_/- (AxorB)*| 19
MR r |
i
T rj 201
M20 Cl9 L]
ms |—
0 | 1 - [

Figure A-1 Spice Simulation Of Critical Path In Phi2
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phi2 busAO
phi2 busAl
phi2 busA2
phi2 busA3
phi2 busA4
phi2 busAS
phi2 busA6
phi2 busA?7
phi2 busAS8
phi2 busAS

phi2
phiz*

—<<—llIl—=3333030333830303303303830305383333033333353 9

V phi3 i
V phi3*

busD<0>
busD<1>
busD<2>
busD<3>
busD<4>
busD<5>
busD<6>
busD<7>
busD<8>
busD<9>

phi2 busAl0 busD<10>
phi2 busAll busD<11>
phi2 busAl2 busD<12>
phl2 busAl3 busD<13>
phi2 busAl4 busD<14>
phi2 busAlS busD<15>
phi2 busAl6 busD<16>
phi2 busAl7 busD<17>
phi2 busAl8 busD<18>
phi2 busAl9 busD<19>
phi2 busA20 busD<20>
phi2 busA2l1 busD<21>
phi2 busA22 busD<22>
phi2 busA23 busD<23>
phi2 busA24 busD<24>
phi2 busA25 busD<25>
phi2 busA26 busD<26>
phi2 busA27 busD<27>
phl2 busA28 busD<28>
phi2 busA29 busD<29>
phi2 busA30 busD<30>
phi2 busA31l busD<31>

Ore clock cycle
15 four ESIMeycles

{v chid [ P1,02, P304

V phil*ANDphi3*

sub
sub*

or_phi4
and_phi4
xor_phi4

Cin
Cin*

—<<—<<<—<<—

|V addORsub
V addORsub_4
]

0 busAO
V busAl

Alu8Bbit_4/Adder8bit_0/CarryEval_0/C_EvalCelll_7/NandNor2_0/Cin Cin
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dNor2_0/Ci* Cin*
5 Cosel, 2, 3., 7

| See PRAL-3 4.
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| {

V busB2<24> xQ L
V busB2<25> x1 1
V busB2<26> x0 0
V busB2<27> x1 1
V busB2<28> x0

V busB2<29> x0 0
V busB2<30> x1 1
V busB2<31> x0

busD<0>
busD<1>
busD<2>
busD<3>
busD<4>
busD<5>
busD<6>
busD<7>
busD<8>
busD<9>
busD<10>
busD<11>
busD<12>
busD<13>
busD<14>
busD<15>
busD<16>
busD<17>
busD<18>
busD<19>
busD<20>
busD<21>
busD<22>
busD<23>
busD<24>
busD<25>
busD<26>
busD<27>
busD<28>
busD<29>
busD<30>
w busD<31>
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ESIM’s OUTPUT FILE



Script started on Mon Dec 17 15:29:56 1984
renoirl> kesim

sim> @ ALU.sim

sim> @ ALU.al

sim> @ ALU.patch

sim> I

initialization took 2733 steps

sim> I

initlalization took 5 steps
sim> I

initialization took O steps sel.2,3.. /

Ca
— see PPLAL-AD

simy\R

& Py

1010011161111
1010111G1111
1110 ]

01010111011
11011111111
01oh0113111
11011111010
11001118111
01010111111
11011119111
010p000p010
1011111}101

1910 :busD<0>

1011 :busD<1>

1111 :busD<2>

1110 :busD<3>

1010 :busD<4>

1011 :busD<5>

1111 :busD<6>

1110 :busD<7>

1010 :busD<8>

1011 :busD<9>

1111 :busD<10>
1110:busD<11>
1010 :busD<12>
1011 :busD<13>
1111 :busD<14>
1110 :busD<15>
1010 :busD<16>
1011 :busD<17>
1111 :busD<18>
1110 :busD<19>
1010 :busD<20>
1011 :busD<21>
1111 :busD<22>
1110 :busD<23>
1010 :busD<24>
1011 :busD<25>
1111 :busD<26>
1110 :busD<27>
1010 :busD<28>
1011 :busD<29>
1111 :busD<30>
1110 :busD<31>
0010 :Cout

sim> g

renoir2> exit

renoir3>

script done on Mon Dec 17

1101 :Cout®*
W—J

&L, P2, ®3, P4

15:34:14 1984



SPICE’S OUTPUT - CRITICAL PATH IN PHI2



1*#*xx%%%12/07/84 ****xxxx* SPICE 2G.6  3/15/83 ***#**%%043]12;21*x%x*
OCRITICAL PATH FOR ALUINCELL CIRCUIT

O**x%x INPUT LISTING TEMPERATURE = 27.000 DEG C

0***************i*****it*************t*****************t****************

M1 11 10 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M2 11 10 0 O CMOSN W=3U L=3U AD=4SP AS=45P PD=24U PS=24U
x

Cll1l 11 O 0.002P

* PASS TRANSISTORS OF 2X1 MUX

M3 11 0 12 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M4 11 1 12 O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
x

Ci2 12 0 0.002P
*

M5 13 12 1 1 CMOSP W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

M6 14 0 13 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M7 14 1 15 O CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M8 15 12 0 O CMOSN W=4.S5U L=3U AD=6.75P AS=49.5P PD=3U PS=24U
*

Cl4 14 0 0.002P
*

M9 16 14 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
Mi10 16 14 0 O CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

Cl6 16 O 0.002P
*

M1l 17 16 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M12 17 1 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M13 17 1 18 O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M14 18 16 O O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

C17 17 0 0.002P
x

M15 19 17 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M16 19 1 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M17 19 1 20 O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M18 20 17 O O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

Cl9 19 O 0.002P
*

M19 21 19 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U
M20 21 19 0 O CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
]

CL 21 0 0.05P
x

.MODEL CMOSN NMOS LEVEL=2.00000 LD=0.245423U TOX=500.000E-10
+NSUB=1.0000000E+16 VTO=0.932797 KP=2.696667E-05 GAMMA=1.280470
+PHI=0.600000 UO=381.905 UEXP=1.001000E-03 UCRIT=999000.

+DELTA=1.47242 VMAX=55346.1 XJ=0.145596U LAMBDA=2.491255E-02
+NES=3.727796E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=25 CGSO=5.2E~10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10 MJSW=0.33
*

-MODEL. CMOSP PMOS LEVEL=2.00000 LD=0.512860U TOX=500.000E-10
+NSUB=2.971614E+14 VT0=-0.844293 KP=1.048805E-05 GAMMA=0.723071



+PHI=0.600000 UO=100.000 UEXP=0.145531 UCRIT=18543.6

+DELTA=2.19030 VMAX=100000. XJ=2.583588E-08 LAMBDA=5,274834E-02
+NFS=1.615644E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=-1.00000
+RSH=95 CGSO=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=4.5E-10 MJSW=0.33
*

VDD 10 5

VIN 10 O PULSE (0 5 ON 1N 1N)

.WIDTH OUT=80

.IC V(11)=5 V(12)=5 V(13)=1 V(14)=0 V(15)=0 V(16)=5 V(17)=0 V(18)=0
+ V(19)=5 V(20)=4 V(21)=0

.TRAN 0.2N 25N

.PRINT TRAN V(21) V(19) V(17) V(16) V(14) V(12) V(11) (0,5)

.PLOT TRAN V(21) V(19) V(17) V(16) V(14) V(12) V(11) V(10) (0.5)

1%**x%x%]12/07/84 ****x*x* SPICE 2G.6  3/15/83 ***xx#x%04:12:2]1%****

OCRITICAL PATH FOR ALUINCELL CIRCUIT

Oxx%xx

MOSFET MODEL PARAMETERS TEMPERATURE =  27.000 DEG C

O XX XXX AARKKK KRR KR RKKRARKRR AR R R KRR R R RRRA KRR RAKNRRRARRRA AR AR R AR R A ARk Ak Rk kXX

CMOSN CMOSP
OTYPE NMOS PMOS
OLEVEL 2.000 2.000
OvVTO 0.933 -0.844
OKP 2.70d-05 1.054-05
OGAMMA 1.280 0.723
OPHI 0.600 0.600
OLAMEDA 2.49d-02 5.274-02
0CGSO $.204-10 4.004-10
0CGDO 5.20d4-10 4.00d-10
ORSH 25.000 95.000
ocJ 3.20d-04 2.00d-04
OMJ 0.500 0.500
OCJISW 9.00d-10 4.50d-10
OMJSW 0.330 0.330
OTOX 5.004-08 5.00d-08
ONSUB 1.004+16 2.97d+14
ONSS 0. d+00 0. d+00
ONES 3.73d+12 1.62d+12
0TPG 1.000 -1.000
0XJ 1.464-07 2.58d-08
OLD 2.45d-07 5.13d-07
ouo 381.905 100.000
QUCRIT 9.994+05 1.85d+04
OUEXP 0.001 0.146
OVMAX 5.53d+04 1.00d+05
ONEFF 0.010 0.010
ODELTA 1.472 2.190

1%**%%%%12/07/84 ****x**** SPICE 2G.6  3/15/83 **ax##%204:12:2]1%*xxx

OCRITICAL PATH FOR ALUINCELL CIRCUIT

O**x%kx

INITIAL TRANSIENT SOLUTION TEMPERATURE =  27.000 DEG C

ORXARXIRKR K AR R IR R AR R AR R AR KRR AR R R AR AR R AR AR KRR AR A AR R R AR R AR R AR Rk hkkk kX



?: V(10)
X
TIME
(*+=80<>?)

0. d+00
2.0004-10
4.000d-10
6.000d4-10
8.0004d-10
1.0004-09
1.2004-09
1.4004-09
1.6004-09
1.8004-09
2.0004-09
2.2004-09
2.4004-09
2.600d-09
2.800d4-09
3.0004-09
3.2004-09
3.4004-09
3.6004-09
3.8004-09
4.000d4-09
4.200d4-09
4.4004-09
4.6004-09
4.800d-09
5.000d4-09
5.2004-09
5.4004-09
5.600d4-09
5.800d-09
6.000d-09

4.908d4-10
4.7414-07
7.7214-07
9.928d4-07
1.166d4-06
1.2774-06
1.3614-06
1.4254-06
1.491d4-06
1.561d4-06
1.630d-06
1.685d-06
1.741d-06
1.782d-06
1.8104-06
1.837d-06
1.837d-06
1.829d-06
1.9134-06
2.016d-06
2.197d4-06
2.5374-06
2.8774-06
3.178d-06
3.4704-06
3.631d4-06
3.525d4-06
3.419d-06
2.697d-06
1.849d-06
5.4054-07

OLEGEND:

V(21)
V(19)
V(17)

1.2504+00

A
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o

Ve @ o e o ¢ @ @ o o & @ o o ¢ o o o o o o

e e Ae o o

o

$: V(16)
O0: V{(14)
<: V(12)
>: V(11)

2.500d4+00

Yop 1 2%
$0 Y@

3.7504+00 5.000d+0

A\

\
\'
v
A
A
A

A

6.2004-09
6.400d4-09
6.6004-09
6.8004-09
7.0004-09
7.2004-09
7.400d-09
7.6004-09
7.8004-09
8.000d4d-09
8.200d-09
8.4004-09

-1.703d-06
-3.947d4-06
=7.174d-06
=1.060d~-05
-1.424d-05
-1.831d-05
-2.238d-05
-2.763d-05
-3.312d-05
-3.282d-05
-=2.071d-05
-8.611d-06

o
o

o

o
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o
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<

8.600d-09
8.800d-09
9.0004-09
9.2004-09
9.400d4-09
9.6004-09
9.8004-09
1.0004-08
1.0204-08
1.0404-08
1.060d-08

4,3544-05
1.0394-04
1.816d-04
2.9444d-04
4.0724-04
5.594d-04
7.196d-04
8.8194-04
1.048d-03
1.215d-03
1.3224-03
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1.0804-08
1.1004-08
1.1204-08
1.140d4-08
1.160d4-08
1.1804-08
1.200d-08
1.2204-08
1.240d-08
1.2604-08
1.280d-08
1.300d4-08
1.3204-08
1.3404d-08
1.3604-08
1.380d4-08
1.400d-08
1.4204-08
1.4404-08
1.460d-08
1.4804-08
1.500d4-08
1.5204-08
1.5404-08
1.5604-08
1.5804-08
1.6004-08
1.6204-08
1.640d4-08
1.660d4-08
1.6804-08
1.7004-08
1.7204-08
1.7404-08
1.7604-08
1.780d-08
1.800d4-08
1.8204-08
1.8404d-08
1.860d-08
1.880d4-08
1.900d4-08
1.9204-08
1.9404d-08
1.9604-08
1.980d-08
2.000d4-08
2.020d-08
2.0404-08
2.0604-08
2.080d-08
2.1004-08
2.1204-08
2.1404-08
2.160d-08
2.1804-08
2.2004-08
2.220d-08
2.240d4-08
2.260d4-08

1.418d4-03
1.4924-03
1.5244-03
1.557d4-03
1.573d-03
1.5874-03
1.5704-03
1.4934-03
1.415d4-03
-8.408d-04
-3.545d-03
-8.220d-03
-1.6914d-02
=2.5594-02
-3.685d-02
-4.863d-02
-5.518d-02
-5.106d4-02
-4.693d-02
-3.7524-03
4.746d4-02
1.3204-01
2.843d-01
4.366d4-01
6.944d-01
9.7394-01
1.2824+00
1.650d+00
2.017d4+00
2.393d+00
2.7704+00
3.1234+00
3.427d4+00
3.7314+00
3.9524+00
4.1564+00
4.334d+00
4.457d+00
4.580d+00
4.660d+00
4.7314+00
4,7914+00
4.8314+00
4.870d+00
4.895d+00
4.917d+00
4.935d+00
4.947d4+00
4.960d4+00
4.9674+00
4.974d+00
4.980d4+00
4.983d4+00
4.987d+00
4.989d+00
4.991d+00
4.993d+00
4.9944+00
4.9964+00
4.9964+00
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SPICE’S OUTPUT - CRITICAL PATH IN PHI3



1%%*%xx%1] /08/84 ****xxxxx SPICE 2G.6  3/15/83 ***xx%%%%]12:38:58% x4 *%

OOVERALL CRITICAL PATH FOR 8 BIT LOOKAHEAD
O*x*x% INPUT LISTING TEMPERATURE =  27.000 DEG C

Otttt*t***t***tt*********i*t**t*******t**************t*t*******t********

*
* CRITICAL PATH FOR LOOKAHEAD CIRCUIT

M1l 10 3 11 O CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M2 11 1 12 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M3 12 1 0 O CMOSN W=9U L=3U AD=13.S5P AS=81P PD=3U PS=27U

4

Cl1 10 O 0.00297P
E

M4 13 10 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
MS 13 10 O O CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

Cl 13 0 0.039¢6P
*

M6 14 13 15 O CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M7 151 16 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M8 16 1 O O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

*

Cl2 14 0 0.00297P
*

M9 17 14 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U
M10 17 14 O 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
%

C2 17 0 0.13514P
®

M1l 18 17 19 O CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M1z 19 1 20 O CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M13 20 1 O O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

*

Cl3 18 0 0.00297P
*

M14 22 18 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U

* M1S 22 0 21 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

* M16 22 1 23 O CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M17 22 18 0 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.S5P PD=24U PS=24U
*

* CRITICAL PATH FOR CARRY EVALUATION

M101 110 22 111 O CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M102 111 1 112 O CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M103 112 1 0 O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

*

CY1l 110 O 0.00297P
%

M104 113 110 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
M105 113 110 O O CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

CX1 113 0 0.28893P
*
M106 114 113 115 O CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M107 115 1 116 O CMOSN W=9U L=3U AD=13.SP AS=13.5P PD=3U PS=3U
M108 116 1 O O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U



]

CY2 114 O 0.00297P
*

M109 117 114 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
M110 117 114 O O CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
4

CX2 117 0 0.28893P
*

M11l 118 117 119 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M112 119 1 120 O CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M113 120 1 0 O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

x

CY3 118 0 0.00297P
*

M118 124 118 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
M119 124 118 0 O CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U

CX3 124 0 0.28893P
x . .

M120 125 124 126 O CMOSN W=9U L=3U AD=81P AS=13.SP PD=27U PS=3U
M121 126 1 127 O CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M122 127 1 O O CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

*

Cl4 125 0 0.00297P
®

M114 121 125 1 1 CMOSP W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
M115 122 0 121 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M116 122 1 123 O CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M117 123 125 0 O CMOSN W=4.5U L=3U AD=6.75P AS=49.5P PD=3U PS=24U
*

CL 122 0 0.022P
*

-MODEL CMOSN NMOS LEVEL=2.00000 LD=0.245423U TOX=500.000E-10
+NSUB=1.0000000E+16 VT0=0.932797 KP=2.696667E-05 GAMMA=1.280470
+PHI=0.600000 UC=381.905 UEXP=1.001000E-03 UCRIT=999000.

+DELTA=1.47242 VMAX=55346.1 XJ=0.145596U LAMBDA=2.491255E-02
+NES=3.727796E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=25 CGSO=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10 MJSW=0.33

.MODEL, CMOSP PMOS LEVEL=2.00000 LD=0.512860U TOX=500.000E-10
+NSUB=2.971614E+14 VIO=-0.844293 KP=1.048805E-05 GAMMA=0.723071
+PHI=0.600000 UO=100.000 UEXP=0.145531 UCRIT=18543.6

+DELTA=2.19030 VMAX=100000. XJ=2.58358SE-08 LAMBDA=5.274834E-02
+NFS=1.615644E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=-1.00000
+RSH=95 CGSO=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=4.5E-10 MJSW=0.33

*

VDD 1 0 5

VIN 3 0 PULSE (O 5 ON 1IN 1N)

.WIDTH OUT=80

.IC V(110)=5 V(111)=0 V(112)=0 V(113)=0 V(115)=0 V(116)=0 V{114)=5 V(117)=0
+ V(118)=5 V(119)=0 V(120)=0 V(122)=0 V(124)=0 V(125)=5

+ V(126)=0 V(127)=0

+ V(10)=5 V(11)=0 V(12)=0 V(13)=0 V(15)=0 V(16)=0 V(14)=5 V(17)=0 V(18)=5
+ V(19)=0 V(20)=0 V(21)=0.7 V(22)=0 V(23)=0

.TRAN 0.2N 40N

.PRINT TRAN V(3) V(10) V(13) V(14) V(17)

.PRINT TRAN V(18) V(22) V(110) V(113) V(114)

.PRINT TRAN V(117) V(118) V(124) V(125) V(122)

* _PLOT TRAN V(22) V(18) V(17) V(14) V(13) V(10) V(3) (0.5)

.PLOT TRAN V(122) V(125) V(124) V(118) V(117) V(114) V(113) Vv(110) (0,5)



TIME

5.0004-09
5.2004-09
5.4004-09
5.6004-09
5.8004-09
6.000d4-09
6.2004-09
6.4004-09
6.600d-09
6.800d4-09
7.0004-09
7.2004-09
7.4004-09
7.6004-09
7.8004-09
8.000d-09
8.200d4-09
8.400d-09
8.600d-09
8.8004-09
9.0004-09
9.2004-09
9.4004-09
9.6004-09
9.800d-09
1.0004-08
1.0204-08
1.0404-08
1.060d4-08
1.0804-08
1.1004-08
1.1204-08
1.1404-08
1.1604-08
1.1804-08
1.2004-08
1.2204-08
1.2404-08
1.2604-08
1.2804-08
1.300d-08
1.3204-08
1.3404-08
1.360d4-08
1.380d-08
1.4004-08
1.4204-08
1.4404-08
1.460d4-08
1.4804-08
1.5004-08
1.5204-08
1.5404-08
1.5604-08
1.5804-08
1.6004-08
1.6204-08
1.€404-08
1.6604-08
1.680d-08

v(122)

-1.4754-05
-1.4764-05
-1.4774-05
-1.4784-05
-1.4794-0S
-1.4794-0S
-1.4794-05
~1.4804-05
-1.4804-05
-1.4804-05
~-1.480d-05
-1.480d-05
-1.481d-05
-1.481d-05
-1.4814-05
-1.4814-05
-1.4824d-05
-1.4824-05
-1.4824-05
-1.4824-05
-1.4824-0S
-1.4834-05
-1.483d-05
-1.483d-05
-1.483d-05
-1.483d-05
-1.484d-05
-1.484d-05
-1.4844-05
-1.484d-05
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B. A TYPICAL NMOS PROCESS

Included below are the Spice models for the enhancement mode transistor (enmos) and the

depletion mode transistor {dnmos) in a typical NMOS four micron process.

.model enmos nmos vto=1.0 kp=17.2u gamma=.40 lambda=.01 ¢gdo=350p
+ cgso=350p cgbo==200p cj=1.3e-8 cjsw=350p tox=85n ld=.5u uwo==350

+ ucrit=2.6e5 uexp==.23 vimax=4e4 level=2

.model dnmos nmos vto=-2.5 kp=18.0u gamma==.51 lambda=.015 cgdo=350p
+ cgso=350p cgbo==200p cj==1.6e-8 cjsw=2350p tox=85n ld=.5u u0o=366

+ ucrit=2.6e5 uexp==.23 vmax==3e4 level=2
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