

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SOME DESIGN TECHNIQUES FOR HIGH-

PERFORMANCE MOS CIRCUITS

by

Shing Ip Kong

Memorandum No. UCB/ERL M85/10

22 February 1985

SOME DESIGN TECHNIQUES FOR HIGH-

PERFORMANCE MOS CIRCUITS

by

Shing Ip Kong

Memorandum No. UCB/ERL M85/10

22 February 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by DARPA - NESC under Contract N00039-85-R-0269.

SOME DESIGN TECHNIQUES FOR HIGH-
PERFORMANCE MOS CIRCUITS

Shing Ip Kong

Department of Electrical Engineering & Computer Sciences
University of California

Berkeley, California

ABSTRACT

Several design techniques for metal oxide semi-conductor MOS circuit are
described in this report. Some of these techniques are bootstrap drivers in NMOS,
CMOS dynamic circuits, and control logic using a finite state machine. The
detailed design of a 32-bit ALU is presented in this report as a design example.

January 23, 1985

1. INTRODUCTION

2. NMOS BOOTSTRAP DRIVER

2.1 Introduction

2.2 Size of the Bootstrap Capacitor

2.2.1 Factor Determines the Size of Bootstrap Capacitor

2.2.2 Simple Charge Sharing Analysis

2.3 Construction of the Bootstrap Capacitor

2.3.1 Basic Structure of the Bootstrap Capacitor

2.3.2 Deviation from Ideal Capacitor

2.3.3 Problems with Design Tools

2.4 Design Decisions Concerning Transistor Size

2.4.1 Sizes of the Supporting Transistors

2.4.2 Sizes of the Output Transistors

2.5 Extra Depletion Mode Pull Up

2.6 Examples of Bootstrap Driver

3. CMOS DYNAMIC CIRCUIT

3.1 Domino Circuit

3.1.1 Basic Structure

3.1.2 Connection of Domino Gates

3.1.3 Timing Consideration at the Circuit Boundary

3.1.4 How to Use Non-Overlapping Multi-Phase Clocks

3.2 NORA Logic

3.2.1 Basic Principle

3.2.2 The Concept of N-logie Block and P-logic Block

3.2.3 Alternative Clocking in NORA Logic

3.3 Charge Sharing Problem

3.3.1 The Essence of the Problem

3.3.2 How Charge Sharing Can Be Avoided And/Or Controlled

3.3.3 Dynamic Latch

4. A CMOS 32-Bit ALU - A DESIGN EXAMPLE

4.1 Distribution of Task

4.2. 8-bit Look-ahead Adder

4.2.1 LookAhead

4.2.2 CarryEval

4.2.3 Sum

4.3 Input Logic

4.4 ALU Summary

5. IMPLEMENTING CONTROL FINITE STATE MACHINE IN VLSI

5.1 Finite State Machine

5.1.1 Definition of a Finite State Machine

5.1.2 Mealy vs. Moore Machine

5.2 Implementation of the Finite State Machine Using a Clock

5.3 Implementing Finite State Machine in MOS VLSI

5.3.1 How the Non-Overlapping Two-Phase Clock is Used

5.3.2 Two Sets of Signals in Each State

5.3.3 Suggested State Diagram

0. SUGGESTIONS FOR FUTURE RESEARCH

7. REFERENCES

Appendix A SIMULATION OF THE ARITHMETIC LOGIC UNIT

A.1 Logic Simulation of the Arithmetic Logic Unit

A.2 Timing Simulation of the Arithmetic Logic Unit

Appendix B A TYPICAL NMOS PROCESS

1. INTRODUCTION

In recent years, economies of scale have made very large scale integration, VLSI, one of the

most popular way to implement large digital systems. Among all the semiconductor technologies

available, metal oxide semiconductor, MOS, is one of the technologies most suitable for VLSI.

Because of its relatively simple layout, MOS circuits can have very high circuit density. Further

more, MOS circuits are also easier to scale down and can gain more in performance than bipolar

circuits as feature size is scaled down. This report describes several design techniques for metal

oxide semiconductor, MOS, circuit with emphasis on VLSI system that uses a 5V power supply.

This report is organized into six chapters. The design of a bootstrap driver is described in

Chapter 2. NMOS is the technology considered here because bootstrap drivers are mostly used in

NMOS to minimize static power consumption. Furthermore most of the author's experience in

bootstrap drivers was learned from fine tuning the bootstrap drivers used in NMOS SOAR

(Ung84j. In Chapter 3, Domino and NORA logic, two of the most promising CMOS dynamic cir

cuit design styles are described. The charge sharing problem, which is common to all dynamic cir

cuits, is also described in this chapter. Chapter 4 is a CMOS design example in which the details

design of a 32-bit ALU is shown. Chapter 5 shows how the control logic in a VLSI system can be

implemented using a finite state machine. The first part of this chapter is devoted to the basic

principles of the finite state machine. The goal here is to introduce all the basic principles one

needs to understand the rest of the chapter such that even a circuit designer has no previous

experience with finite state machines can understand the materials presented in the rest of chapter

6.

It must be pointed out that this report is not intended to be a complete design manual for

MOS circuit. The author's intention is to summarize some of his experience in MOS circuit design

such that circuit designers can use this report as a guide in certain aspects of MOS circuit design.

The information covered in this report are gathered by the author during his first year of research

in the EECS department of the University of California, Berkeley.

-2-

2. NMOS BOOTSTRAP DRIVER

2.1 Introduction

In NMOS circuits, a bootstrap driver is usually used when a large capacitive load has to be

driven with minimum delay and minimum static power consumption. Besides using bootstrap

driver, whose schematic is shown in Figure.2-2b, a large capacitive load can also be driven by a

super buffer [M&C80|, or a low power push-pull driver. The schematic of a super buffer is shown

in Figure.2-la, and Figure_2-lb shows the schematic of a low power push-pull driver.

Vdd Vdd Vdd Vdd

Figure 2-1a Super Buffer Figure 2-1b Push-Pull Driver

In order for the super buffer shown in Figure_2-la to drive the output node (node y) to a

high voltage level (Vu) rapidly, (W/L) of Ml has to be large. Furthermore, to keep the low vol

tage level within the noise margin requirement, (W/L) of M2 has to be k times bigger than Ml. A

general rule is to use k=4 if node x can be driven to V^ and k=8 if node x is driven high through

a pass transistor and therefore cannot rise to Vu due to threshold loss [M&C80]. The large

(W/L)'s of Ml and M2 implies that the effective resistance between Vu and GND is relatively

small when both of these devices are on (the output node is at the low voltage level). This small

effective resistance results in large static current and a high power consumption results.

-3-

In Figure.2-lb, the push-pull driver minimized its static power consumption by using an

enhancement mode transistor (Ml) as the pull up device. The static power consumption of this

driver is small because only one of the two big output transistors (Ml and M2) can be on at any

time. Furthermore, no ratio is required for the (W/L)'s of Ml and M2. However using an enhance

ment mode pull up does introduce the penalty of a high voltage level lower than V^ at the output

node. The voltage at the output node V(y) is given by:

%)=yu - v„[%)]
where

Va[V(y) is the threshold voltage of transistor Ml when its source voltage

equals to V(y)

The voltage degradation problem mentioned above can be eliminated by using an extra

power supply V as shown in Figure„2-2a. The desired value of V is:

ym * Vu +Wi)

where

V^jVjy) is the threshold voltage of Ml when its source voltage equals V^

When input (node x) is low, the gate of Ml (node w) will rise to V . If V mets the require

ment stated above, then the output node (node y) can rise to Vu.

Figure_2-2b is a bootstrap driver which operates on the same idea as Figure.2-2a except

that the extra power supply V is eliminated. To achieve a voltage level higher than VM at the

gate of Ml (node w), node p is bootstraped. When input (node x) is high, output node (node y) is

at GND level and through proper (W/L) ratios of M3, M4, and M5, voltage at node p should be

approximately 3V. The voltage across the bootstrap capacitor Cboot is therefore approximately

3V. When input switches to low, the voltage across the bootstrap capacitor cannot change instan

taneously. As the output node (node y) rises towards Vu, node p is bootstraped towards a vol

tage higher than Vu. Ideally node p is bootstraped to V^ 4- ZV but due to charge sharing with

Vgg_ Vdd

Vgg>Vdd

-4-

Vdd

Figure 2-2a Extra Power Supply Figure 2-2b Bootstrap Driver

the gate capacitor of Ml Cv the parasitic capacitors C v and Cv node p can only rise to a

lower than ideal voltage. The charge sharing problem can be controlled by proper sizing of the

bootstrap capacitor Cboot.

2.2 Size Of The Bootstrap Capacitor

2.2.1 Factor Determines The Size Of Bootstrap Capacitor

The bootstrap capacitor Cboot must be big enough such that the bootstrap node (node p in

Figure_2-2b) can be bootstraped to Va despite ofcharge sharing.

Inequality 2.1 can be satisfied if the following rule is followed:

2.1

-5-

where

^ii(^id) ==s threshold voltage of A/1 when its source voltage equals V^

1/2

-V^ + 7eao

fr i1'2 1/21
|h+2k/l] -[2k/l]

C j = gate capacitance of Ml

-H^X/^X
oat

OS

C x= parasitic capacitance of node p (see Figure„2—2b)

C 2—parasitic capacitance of node w (see Figure_2—2b)

2.2

2.3

In Equation 2.2, the first term V^ is the threshold voltage when the body-source junction of

the transistor is zero biased while the second term takes into account the increase in threshold

voltage due to body effect [H&J83]. In Equation 2.3, Wx and Lx are the width and length of the

transistor respectively. Furthermore, t^ is the dielectric constant of silicon dioxide and and tn is

the silicon dioxide thickness [H&J83].

Parasitic capacitors Cx and C 2 depend strongly on the layout and are therefore very hard

to estimate without the final layout. Unfortunately, the final layout won't be available until

design is done. However, in a good design, the parasitic capacitors should be much smaller than

the gate capacitor C y Using the assumption C x» C'C_„, one possible strategy is to pick

where N can be found using the following simple charge sharing analysis.

-6-

2.2.2 Simple Charge Sharing Analysis

This charge sharing analysis is based on the simplified model shown in Figure.2-3. Let the

charge inside the control surface in Figure.2-3a be Qw and the charge inside the control surface

in Figure.2-3b be Qn. Qw and Qn are thus the charge inside the control surface before and after

the input has switched low.

Vdd •' Cpl VpftOL"* 3v

Control /\A /:>•/ cboot
Surface

Simplified \

T
>

Model

Vy(tO)«GND

Simplified Model For Charge

Sharing Analysis

V(t)

Vdd

GND

. Vj(t)
. VM9-—

—j- ' "vy(t)
/

to tl t2 t

Figure 2-3a Bootstrap Driver With Input Vx(tO)=Vdd

q» - v°)x [c^cp] +n~ x [c,2+c,x]

Q* - [^("H^] xcw +Vp(t2) x[<7pl+Cp2+^i]

Since both node p and w are isolated from Vu and GND after input switched from high to

low, the initial charge QtQ should equal to the final charge Qn (assuming leakage current can be

neglected).

Vdd

Control
Surface

Simplified \

"7
>

Model

Vy(t2)=Vdd

GND

Vp(t2) \

Cboot

Simplified Model For Charge

Sharing Analysis

.-3&T-

Figure 2-3b Bootstrap Driver With Input Vx(t2)=GND

implies

Solve for Vp(*2)

Qto - Q*

V«°) X[C**+C,i] +V»» X[c„+Cfl]

- [^aj-Ky] xc„ +vp(*2) x [cpl+cp2+cal

vB(e2) -

[<V +̂ +°gi +<w]
2.5

^iow nas *° ^e sma^er tnan tne threshold voltage of transistor Ml and therefore can be

assumed to be zero in Equation 2.5. This is a conservative assumption because it makes V(t2)

appear to have a smaller value. In other words, it makes charge sharing look more severe.

8-

Ignoring the term V^X K?p2+^ai Equation 2.5 becomes:

Vp(t2) = 2.6
Cpl + Cp2 + C0\ + Cboot

Substitute Equation 2.4 into Equation 2.6:

vp(*o)x [Nxcal+cpl] +VUXNXC§1
Vp(t2) 2.7

Cpi + ^ + l^+yx^

As stated at the end of Section 2.2.1, both C. and Cp2 are hard to estimate but likely to be

much smaller than the gate capacitance of Ml (C x). Based on this, it is safe to assume

(w+i)xcsl»[c^+c^

and

NxCgX»CpX

Using these two assumptions, Equation 2.7 is reduced to:

at x [vp(eo) +v^]
Vp(t2) = 2.8

(AT+1)

-9-

As discussed in Section 2.1:

Vp(tO) » ZV

In digital circuit,

VM = 5V

To ensure that the output reaches Vj^bV, it is necessary to have

Vp(t2) > 6.5F

Using these values, Equation 2.8 can be solved for N:

6.5V X (N+l) < N X (5V+3V)

6.5

N >

1.5

N > 4.33

To account for the optimistic assumptions made when going from Equation 2.7 to 2.8 and

have some safety margin (this safety margin will be used when an extra depletion mode pull up is

added as shown in Section 2-5), it is recommended that:

C^ = NxCgX

where

N>6

It is shown in Section 2.3 that Cbooi is the gate capacitor of a special transistor whose drain

and source are connected. N=6 then simply implies that the gate area of this special transistor

must have a gate area 6 times as big as the gate area of transistor Ml.

- 10-

2.3 Construction Of The Bootstrap Capacitor

2.3.1 Basic Structure Of The Bootstrap Capacitor

In a single layer polysilicon, single layer metal NMOS process, the gate capacitance of a

depletion mode transistor structure is used as the bootstrap capacitor Cboot. This is shown in

Figure.2-4. Notice that the source (S) and drain (D) of the depletion mode transistor are con

nected together.

Source (S' rain(D)

Y

bottom plate

(a) Actual Capacitor

approximately y

equals to ~7
>

Cboot

(b) Theoretical Capacitor

Figure 2-4 Basic Structure Of The Bootstrap Capacitor

The reason for such a connection is illustrated in Figure.2-5. As a result of not connecting

the source and drain of the depletion mode transistor Mboot together, pull up transistor Ml is in

series with transistor Mboot in Figure_2-5a. The effective resistance of a depletion mode transistor

is high and since Ml has to pull up the load through this transistor, the rise time of the bootstrap

driver is severely degraded.

The above problem cannot be solved by connecting the load to the other end of the deple

tion mode transbtor Mbota as shown in Figure„2-5b. Although this configuration does improve the

rise time of the bootstrap driver, it also has an obvious side effect. The pull down transistor M2 is

now in series with transistor Mboot and the fall time of the driver is now severely degraded.

-11-

Vdd Vdd Vdd Vdd

(a) Rise Time is Degraded (b) Fall Time is Degraded

Figure 2-5 Bootstrap Drivers With Degraded Rise and Fall Times

2.3.2 Deviation From Ideal Capacitor

One major difference between the real bootstrap capacitor (Figure_2-4a) and the ideal

bootstrap capacitor (Figure_2-4b) is that the two terminals X and Y are NOT interchangeable for

the real bootstrap capacitor. For this reason, the two terminals should be identified as the "top

plate" and the "bottom plate" as shown in Figure.2-4a. This difference is a direct result of how

the bootstrap capacitor is constructed and can be understood easily by looking at the layout.

The layout of a bootstrap capacitor is shown in Figure.2-6b and Figure_2-6c is its cross sec

tional view. Notice that a diffusion wire is used here to connect the source and drain of the deple

tion mode transistor. A metal wire connection will be more ideal but it will use up much more

area because two diffusion-metal contacts are needed. This area penalty is severe for a small

driver. Furthermore for small driver, the connection is short and the resistance and capacitance of

the diffusion wire is acceptable.

The equivalent circuit of this bootstrap capacitor is shown Figure,2-6d. In this Figure:

^=^x^x

Implant
Pofysilicon
X - top plate

Y -bottQm plate
DiJusion

Diffusion
Wire

(a) Conceptual View

pptop ^^-top plate Cboot

rain(D)dr£
Source (S)

Cpbot

Y

bottom plate

(d) Equivalent Circuit

12-

; /^Polysilicon
Implant PTmTM

fe0M m

X'.- top plate

1 T
W3 '

JL

T
W2

1

mm*

Ll-t

*

m
tarn

1 J-L2 »|

W4

T
Wl

Diffusion
Y-

bottom plate

(b) Layout - Top View

Implant Diffusion

(c) Layout - Side View x-x

field oxide

Figure 2-6 Layout Of The Bootstrap Capacitor

C to = parasitic capacitance between the top plate and the substrate

Wj X Lx X

-IS

C' = parasitic capacitance between the bottom plate and the substrate

=W2 XL2 XC, +[2X(IV2+L2) - lJ XC^

where

C. = diffusion junction capacitance per unit area

C. = diffusion sidewall capacitance per unit perimeter

Using parameters from any typical NMOS process and a reasonable set of W's and L's, the

above equations imply Cboot » C^ » Cpiop. Since C^ » Cptop, the bottom plate, which

is in diffusion, should always be connected to the output node. On the other hand, the top plate,

which is in polysilicon, should always be connected to the bootstrap node (node p in Figure.2-2b).

There are two reasons for such a connection:

(1) The large bottom plate parasitic capacitor C.t is driven by large output transistors

Ml and M2.

(2) Charge sharing problem at node p (see Figure.2-3) is minimized because only the small

top plate parasitic capacitor C. is making contribution to the total parasitic capaci

tance at node p C ..

2.3.3 Problems With Design Tools

The layout of this capacitor has to obey a different set of design rules from those for an or

dinary depletion mode transistor. A special layer, dcap, is introduced in the layout system Magic

[0us84] to specify the area where polysilicon overlaps diffusion and is used as a capacitor instead

of a transistor. Physically, this layer is the same as the dfet layer which specifies a depletion mode

transistor. A different layer name is introduced because it enables the design rule checker within

Magic to check the design rules differently.

Circuit extractor Mextra [M&0&S83] does not extract the polysilicon to substrate capaci

tance correctly. From Figure_2-6b and c, it is obvious that the poly to substrate capacitance

-14-

should be:

w* = w-wy x^x
««

lr_

Instead of what Mextra gives:

'poty/nb - W4 X Lt X
OS

OS

In other words, Mextra does not subtract the gate area when it calculates the poly to sub

strate capacitance. This over estimation only has a small effect on ordinary circuit because the

gate area is usually small and the field oxide thickness T is much thicker than the gate oxide

thickness ^ .
oct

This is not the case in a bootstrap driver because the "gate area" (poly overlap diffusion

area) of the bootstrap capacitor is big. As a result, Mextra grossly over-estimates the parasitic

capacitance at node p (CpX in Figure_2-3) and thus make charge sharing look much worse.

Sim2spice [M&0&S83] assumes all capacitors are connected between a circuit node and sub

strate. As a result, even though the .sim file (output file of Mextra, circuit description in ESIM

[M&0&S83) format) has the correct connectivity, when Sim2spice converts the .sim file to .spice

file (output of Sim2spice, circuit description in spice format), one end of the bootstrap capacitor is

always connected to the substrate. The resulting circuit either looks like Figure.2-7a or

Figure_2-7b. Fortunately when Sim2spice is doing the conversion, it creates a .name file which

maps all the node names in the .sim file to all the node names in the .spice file. Using this infor

mation and knowing the fact that all connection is correct in the .sim file, one can easily edit the

.spice file to obtain a correct circuit description in Spice format.

15-

Vdd Vdd

(a) Top plate connects to substrate (b) Bottom plate connects to substrate

Figure 2-7 Erroneous Circuits Created By Design Tool Sim2spice

2.4 Design Decisions Concerning Transistor Size

The basic bootstrap driver shown in Figure 2-8a consists of five transistors. In Sections 2.4.1

and 2.4.2, simple methods are introduced to estimate their sizes by hand calculation. However the

sizes of all these transistors, especially the two output transistors Ml and M2, should be refined

further by Spice simulation.

2.4.1 Sizes of The Supporting Transistors M3 M4 and M5

The sizes of transistors M3, M4, and M5 (Figure.2-8a) can be determined by the voltage

level requirement at node p and w when input is high (see Section 2.1 and 2.1). This is illustrated

in Figure 2-8b.

In Figure 2-8b, voltage at node p is approximately 3V. The voltage at node w has to be

smaller than Vte, the threshold voltage of an enhancement transistor, to ensure transistor Ml is

-16-

Vdd Vdd

M5

-fc

Vp>3v P

M4

Vw<Vte

W

igh x-jVm»=Vhigh
M3

Figure 2-8a Bootstrap Driver Figure 2-8b Simple Circuit Determines
Sizes Of Ml M2 M3

off. Under these conditions, transistors M3 is resistive. M4 are likely to be resistive because

V^4 s» Vte—Zv is likely to be greater than Vu (threshold voltage of a depletion mode transistor).

Using Kirchoff's current law:

LA™3) = U™*)

The drain current of a transistor in the resistive region is given by [H&J83]:

k' W
—X ~

2 L

Id(res) =—X —X [2(^-^)^-1^]

where

k' = transconductance parameter

Vt = threshold voltage of the transistor

V = gate source voltage
a*

V. = drain source voltage

2.9

2.10

17-

Using Equation 2.10 and the voltages shown in Figure.2-8b, Equation 2.0 becomes:

W W

—*{nvw,-vte)vu-vj\ > —x [n-v^zv-v^H^-vj]

Solve for ——

\Y [2v fcfcft~*te)*te""*fc J |y
< X 2.11

L* [n-V^Zv-VJ^v-vj] L»

Assume Vte = lv , VM = -2.5v , and V^A = hv Equation 2.11 gives:

W4 W*
< 1.17 X

The parasitic capacitance at node p and w, C . and C 2 in Figure.2-8a, can be minimized if

both transistors M3 and M4 are minimum size device.

Transistor M5 is in saturation because V.6 = Ov <Vfe. The size of this transistor can be

found by equating the drain current of M5 and M3:

tj™) = U'*0 212

The drain current of a transistor in the saturation region is given by JH&J83J:

k' W
Id(sat)=~ X—X(Vg-Vtf 2.13

2 L

Using Equation 2.13 and the voltages shown in Figure.2-8b, Equation 2.12 becomes:

W* W*—* pOW-vjv^-v^] >— X(V^-Zv-Vj
L, fc L.

^6
Solve for ——

18

Wr
[Wtv-vjVt-vj]

wm

2.14

(^-3V-rj

Using the same assumption as above namely VJ- k = 5v, Vfc = lv, and V^ = 5v Equation

2.14 gives:

W,
* "3

> 7 X

W.

2.4.2 Sizes Of The Two Output Transistors Ml and M2

The sizes of the two output transistors Ml and M2 (see Figure.2-8a) can be approximated

by the two simple models shown in Figure.2-9 and a specification of the 50% rise time tr and fall

time t. .

V(t)'
6.5v

k V(t)^
Vdd

50%

k

Vm(t)
Vdd

50%- .\ Vout(t)
s \

t= 0 tr t t=0 tf t

Vm(t)

-*i

Vdd

Vout(t)
Ml

Vout(t)

Cboot

Vm(t)
M2

Cboot —> _

(a) Size Of Pull-Up (b) Size Of Pull-Down

Figure 2-9 Simple Circuits For Calculation Of Output Transistors' Size

-19

Figure.2-9a is a simple model for estimating the size of the output pull up transistor Ml.

At time = 0, V = 6.5v ,1^ = 5^ transistor is resistive. Using equation 2.10:

*' w
W =—X X[2(6.Si--Vtt)(5v)-(St;)2l 2.15

or1 J2 L,

At time =s ^, V^t = 6.5v , V^ = 2.5v transistor is resistive. Using equation 2.10:

2 L,

A' wi
*AK) - "~ X -X |2(5v-yew.)(2.5i;)-(2.5v)2| 2.16

In equation 2.16, V^ is the threshold voltage of transistor Ml when its source to body

voltage V^ equals to 2.5v. From [H&J83] :

»W*- vm+1
•/2 . l/2l

[2-5"+2l*/l] -[»k I]

Vtt = threshold voltage when V^ = GiVD

Assume the average current during transition equals to the arithmetic mean of equa

tion 2.15 and 2.16, then:

2.5v XClMdX2

W + id(K)
2.17

Substitute equation 2.15 and 2.16 into equation 2.17 and solve for for WjLx :

Wi 10* X C^
= — 2.IS

'i k' Xtr X[2(6.5t;-Vw)(5t;)+2(5v-VR8JJ)(2.5v)-31.25t;2]

Figure_2-9b is a simple model for estimating the size of the output pull down transbtor M2.

At time = 0, V » 5v , V^ = 5v transistor b in saturation. Using equation 2.13:

k> W2
W = - X X (Sv-Vj 2.19

2 L„

-20

At time = t., V = 5v , V^ = 2.5v transbtor b resbtive. Using equation 2.10:

k' *2
— x —

2 L,
h(*f) = —X X[2(5V-Vro)(2.5V)-(2.5v) j 2.20

Assume the average current during transition equab to the arithmetic mean of equa

tion 2.19 and 2.20, then:

2.5v XClcadX2
tf = 2.21

Substitute equation 2.19 and 2.20 into equation 2.21 and solve for VV2/L2 :

W~ 10v X CV2 w" "- ^loai

2.22

'2 k' Xtf Xf(5v-Vw)2+2(5v-Vw)(2.5t;)-(2.5v)2]

The 50% rise and fall time tf and t. are usually given as design goals of the bootstrap

driver. Using these and some process parameters, Equation 2.18 and Equation 2.22 can be solved

for the approximate sizes of Ml and M2. These approximate sizes can then be used as the starting

point for further design iteration. Computer aided design toob such as circuit simulator Spice

must be used for any further design iteration.

2.5 Extra Depletion Mode Pull Up

The bootstrap driver shown in Figure_2.10 b identical to the basic bootstrap driver shown in

Figure_2.8a except a small (relative to the pull down transbtor M2) depletion mode pull up

transbtor M6 b added. This depletion mode transbtor ensures the high voltage level at the output

node (node y) won't drop below Vu even if input remains low for a long period of time.

There are several side effects when thb transbtor (M6) b added:

-21

Vdd Vdd

(a) (b)

Figure 2-10 Addition Of An Extra Depletion Mode Transistor

(1) The rise time of the bootstrap driver is improved especially when the gate of the deple

tion mode transbtor b connected to node w as shown in Figure_2-10b.

(2) An extra capacitor, namely the gate capacitance of transbtor M6 (CA , b now added

to node w in parallel with C. and C 2. As a result, charge sharing problem described

in Section 2.2.2. gets worse.

(3) The low level voltage at node y b no longer GND but a little bit higher. Thb will

reduce the voltage (hopefully by a small amount) across the bootstrap capacitor Cboot

when input is low.

Side effect 2 becomes important only if the gate area of the depletion mode transbtor M6

(see Figure_2.10) become big relative to transbtor Ml. Furthermore thb side effect can be taken

into account by the charge sharing analysb in Section 2.2.2 if C xin all equations are replaced by

an effective C. :
0*

V = c»+ c«

-22-

Side effect 3 b small unless WjLt of transbtor M6 becomes too big relative to WJL2 of

M2. In any case, V/jLt should be smaller than (l/k)x{WjL2) where k=4 if node x can be

driven to Vu and k=8 if node x b driven high through a pass transistor [M&C80].

The rise time of the bootstrap driver can be improved by making M6 larger and connecting

its gate to node w (see Figure.2.10b). However in doing so, we are taking the rbk of making side

effects 2 and 3 bigger. It b obvious that there b a comprombe between the size of Ml, M6 and

the size of the bootstrap capacitor. Unfortunately the best combination of these three b not obvi

ous. One approach to thb problem b to run Spice simulation on different combinations until a

reasonable comprombe is achieved. Thb was done when the bootstrap drivers for SOAR [Ung84]

were designed. These drivers are described in Section 2.6.

2.6 Examples Of Bootstrap Drivers

There are six different types of bootstrap drivers in SOAR [Ung84| which are ctrdriver,

lowctrdriver, ungatedctrdriver, granddaddy, addrdriver, and 3statedriver. Addrdriver and 3sta-

tedriver are pad drivers while all others are control line drivers. Their circuit diagrams are shown

in Figure.2-11 and Figure_2-12 is the layouts of these celb. Notice the following:

Vdd

4tl/8u

-\

Figure 2-1 la ctrdriver

H «l/10u

Vdd

H
J

W/L-32u/*i

esocp
Vdd

*j/*j

HC
* .lJ

4*i/*lJ 1 *i/22u

*i/«i

Ou/Ou
*l/*l

±1 1
Figure 2-lb lowctrdriver

2*i/«i

23

Vdd Vdd

Vdd

4u/l0u 406u/4u

504u/4u

Figure 2-1lc ungatedctrdriver Figure 2-1 le addrdriver

Vdd Vdd

a.-n ^'i

Figure 2-lid Bootstrap Driver - granddaddy

(1) All input transistors have a L=6u instead of the minimum requirement of L=4u. The rea

son b that the drain of thb transbtor b bootstraped to a voltage higher than VM and its

source b at GND. Under a source-drain voltage higher than Vdd, punch through may occur

if the minimum length b used.

(2) The two pad drivers addrdriver and 3statedriver do not have the extra depletion mode pull

up described in Section 2.5. The reason b that these two drivers are used to drive the ad

dress and data lines which are expected to change every cycle.

24

DaUbot

604o/4a

Figure 2-1If Output Driver - ostatedriver

A test chip, which contains all these drivers, was built to test their performance. The output

of the two pad drivers addrdriver and 3statedriver can connect to the output pads of the test chip

directly.

The outputs of the other drivers, which are not designed to drive I/O pads, cannot connect

directly to the output pads of the test chip. Instead a source follower b used as shown in

Figure.2-13. To simulate these drivers' working environment inside SOAR, long poly lines are

used to connect the output of these drivers to the source followers. The length of these poly lines

are approximately the same as the poly control lines in SOAR. Furthermore the size of the source

follower b sixteen times bigger than minimum size because sixteen minimum size gates are at

tached to each control line in SOAR.

The rbe and fall time measurements of addrdriver and 3statedriver showed that these

drivers are able to drive the pads to 5V or GND within 50ns after input has crossed the 50%

point. The input and output waveforms recorded during the rbe time measurement of 3statedriver

b shown in Figure.2-14.

The rbe time measurements of other drivers are done with the help of the variable resbtor.

The variable resbtor, which b connected between the pad 2nd GND (see Figure_2-13), are adjust-

-25-

v/MMx....

its mm

?mm** •

Figure 2-12a Layout Of Ctrdriver

t
o

-27-

tiv

$3 mmntnpm.

£1

Figure 2-12c Layout Of Ungatedctrdriver

-28-

%\ :?l mMeaj|

_££.

Figure 2-12d Layout Of Granddaddy

-29-

llli

Figure 2-12e Layout Of Addrdriver

-30

Figure 2-12f Layout Of 3statedriver

31-

long poh/ Bne

W=4a L=4408u

•ee Dears 2-11 %ad 2-12

Vdd

W/Ls«4o/4a

Figure 2-13 Test Setup For Testing SOAR's Bootstrap Drivers

Vout(V)
Vd<V)

Figure 2-14 3statedriver's Rise Time Measurement

ed until the voltage swing is 0.5V at the probe. This voltage swing is kept small such that the de

lay from the gate of the source follower to the probe is minimized. Figure„2-15 shows that

ctrdriver can drive the probe to 0.5V within 30ns after input has crossed the 50% point. If the

delay from the gate of the source follower to the probe is negligible, then it implies the ctrdriver is

able to drive the load to 5V within 30ns. Similar measurements, which are not shown here, indi

cated all drivers are able to drive the probes to 0.5V within 40ns. Since source followers are used,

the fall time cannot be measured. However the fall time was found to be much shorter than the

rise time in Spice simulation.

Vin(V)

-32-

Vout(V)

time (ns)

Figure 2-15 Ctrdriver's Rise Time Measurement

-33-

3. CMOS DYNAMIC CIRCUIT

There are many ways to implement dynamic logic in CMOS. Most of these approaches

require some complicated clocking scheme. Domino [Kra82] and NORA [Gon83| are two excep

tions which only require a simple clocking scheme. In section 3.1 and 3.2, CMOS Domino and

NORA logic are discussed. In section 3.3, charge sharing, which is a common problem in all

dynamic circuits, is described together with methods to prevent or at least control it.

3.1 Domino Circuit

3.1.1 Basic Structure

The two basic logic gates, the AND gate and the OR gate, implemented in Domino logic are

shown in Figure_3-1. These two Domino gates operate as follows:

<f>2 = GND —This is the precharged phase of the gate. The precharge transistor Ml is on

and the evaluation transistor M2 is off. As a result, node y is precharged to high (V^) and

the output node (node f) is precharged to low (GND).

02 ~ ^44 ~ This is the evaluation phase of the gate. Ml is off and M2 is on, enabling node

y to be discharged to GND conditionally. Assuming inputs A and B are stable during this

time, then node y of the AND gate will be discharged to GND only if both A and B are

high. On the other hand, node y of the OR gate will be discharged to GND if either one of

the inputs is high.

In the above discussion, <f>2 can either be the system clock in a single phase system or one

phase of the system clock in a multi phase system. In either case, especially the multi phase case,

the time during which <f>2 = GND is likely to be longer than the time during which 4>2 —^di'

Furthermore, the precharge transistor Ml connects VM to the precharge node (node y) directly

(not in series with anything). Because of these two reasons, the precharged transistor Ml can be

=D—>-

levahate i

'" phase '

prechaige
phase

r

-34-

phi2 A B f

L X X L

H L L L

H L H L

H H L L

H H H H

Vdd Vdd

\ y { If

phB I

EL

M2

Figure 3-la AND Gate Implemented In Domino Logic

Phl2

=D~C^

evaluate

phase

prechaige
phase

r

ph!2 A B f

L X X L

H L L L

H L H H

H H L H

H H H H

Vdd Vdd

P TphtLf
Ml

H

B

H f

Figure 3-lb OR Gate Implemented In NORA Logic

small.

The assumption of both inputs A and B being stable during the evaluation phase is an

overly conservative requirement. The only requirement one needs to impose on the inputs is to

ensure that node y won't be discharged accidentally during the evaluation phase. Once node y is

discharged, no active device exists to drive it back to V^ until the next precharge phase. Instead

of requiring all inputs be stable (no transition) during the evaluation phase, accidental discharge

can still be avoided even if inputs are allowed to make one transition. However this single transi

tion MUST be a low to high transition which implies all inputs must start out low at the begin

ning of the evaluation phase. This is illustrated in Figure.3-2 and is summarized below:

-35-

The input must either be stable or makes at most one low to high transition (this implies the

input must start out low) during the evaluation phase.

Input Waveforms

phi (ev&hutloB f
—^——— phase

mm \ mm

mm i / "mm

mm i \ M$&

iiPiiiiilK ! A m

Acceptable ?

YES

YES

NO

NO

Comments

Stable in evaluation phase

One transition, low to high.

One transition, but high to low.

Glitch • more than one transition.

Figure 3-2 Accepatable Input Waveforms For Domino Gates

This simplification in input requirements makes the connection of Domino gates much easier

(see Section 3.1.2) but it also introduces a charge sharing problem to some Domino gates. The

charge sharing problem will be discussed in Section 3.3.

3.1.2 Connection Of Domino Gates

The only requirement on the Domino gates' inputs during the evaluation phase, as ex

plained at the end of Section 3.1.1, is that they must either be stable or start out low and make

one low to high transition. This simple requirement together with the property of the Domino

gate's output make connecting Domino gates together very easy.

The property of the Domino gate's output can be understood by examining Figure.3-1. In

either the AND gate (Figure„3-la) or the OR gate (Figure.3-lb), node y is precharged to Vu in

the precharged phase and then it is isolated from VM during the evaluation phase when Ml is off.

Consequently node y, which is precharged to high, can make at most one high to low transition

-36-

during the evaluation phase. The output node (node f), which is driven by node y through an

inverter, is therefore precharged to low and can make at most one low to high transition.

Notice that the property of the Domino gate's output fits exactly the input requirement of

the Domino gate. This implies the output of a Domino gate can be connected to the input of

another Domino gate directly. This is illustrated in Figure.3-3 which shows the implementation of

the logic function / = (A-B) + (C-D). As indicated in the timing diagram, as soon as 02 goes

high, (AB) and (C-D) are evaluated by the two AND gates. The low to high transition (if any) of

these two signals then cause the OR gate to evaluate the function /. This is similar to the

behavior of a row dominos toppling into one another and this is the reason why it is called Dom

ino logic.

*m J Vdd tf
+E

*H

"vvh r

Cand D

K>
O1

lO AandB ,s

^

a

Figure 3-3 Implementation Of (A and B) or (C and D) In Domino Logic

-37

3.1.3 Timing Considerations At The Circuit Boundary

In the example shown in Figure.3-3, input signals A, B, C, and D of the two AND Domino

gates must follow the same rule that governs all Domino gates' inputs. That is, they must either

be stable or make at most one low to high transition during the evaluation phase.

The easiest way to ensure these signals make at most one low to high transition during the

evaluation phase is to generate these signals from other Domino gates whose evaluation phase is

also <f>2. Unfortunately this is sometimes very hard or even impossible to accomplish. For exam

ple, these signals can be outputs of some static registers or can be inputs from the external world.

In these cases, it will be much easier to ensure these signals be stable (no transition) during the

evaluation phase by latching them into a dynamic latch prior to the evaluation phase.

She.

phB*

A* A«

phB*

Dynamic

Latch

n

pMl

Dynamic

Latch
ftj.3-7

n

___T-

5hg_

pldl

A* iiliiiiiiiiiiii

A :::::::::<:

-•etnptlme

ooo-ovvilap
thus

*wtap thus

(a) (b)

Figure 3-4 Two Ways Of Using A Dynamic Latch

There are two ways of using a dynamic latch. In Figure.3-4a, the inverse of the evaluation

clock ($J) is used for latching and in Figure.3-4b, an extra phase <f>x, which does not overlap <f>2, is

used. The approach in Figure.3-4a has the advantage of using a single phase clock while the

approach in Figure.3-4b has much higher tolerance of clock skew. This is illustrated in Figure.3-

-38-

5. Figure.3-5a shows that a clock skew larger than the set up time of the latch is fatal for the

single phase approach while the two non-overlap phase approach (Figure„3-5b) can tolerate a

clock skew up to the sum of the set up and the nominal non-overlap time between the two phases.

Since the nominal non-overlap time is specified by the system designer, the designer has much

more control over the clock skew problem in the two-phase approach.

clock skew > setup time

>> A may not be stable in
evaluation phase - phi2

>> System may fail

Phj£

^ clock J
t—• *

Evaluation
Phase

phi2 ..skew.

phi2*

A*

setup time

clock setup nominal non-
skew ^ time """overlap time .,
«•> A may not be stable in

evaluation phase - phi2
•=•> System may fail

phil

phi2

phil

A«

clock

Evaluation
Phase

..akea.........
nominal

non-overlap
time .

setup time

(a) (b)

Figure 3-5 Comparison Of Clock Skew Tolerance

The output of the circuit (node f) in Figure.3-3 will be valid at the later part of the evalua

tion phase (02=^). After 02 goes low, node f* is precharged to Vu and node f is precharged to

GND. In other words, the output is valid only during part of the evaluation phase. The time at

which output is valid can be prolonged if the inverter between node f* and node f is replaced by a

dynamic latch as shown in Figure.3-6. Figure„3-6a and b show the two different approaches in

latching the inputs that are discussed in the last paragraph. In either case, the value at node f*

must be latched in during <i>2, not during ^. During f2, node f* is precharged to Vu.

The dynamic latches used here can be implemented in two different ways as shown in

Figure.3-7. Figure„3-7a uses a composite pass gate followed by an inverter and Figure.3-7b is a

A*

J*

D*

DL

ghBj

phia

J Vdd

I
Vdd

CandD

zv AandB

4r

J

-39-

-TL

DL

phJ2*

A*

B»

D*

DL - Dynamic latch (see figure 3-7)

Figure 3-6a Implementation Of (A and B) or (C and D) - Single Phase Approach

jm J Vdd P" "vdd |

DL

/wul
CattdD

M> A A and B A

DL
A* B», C*. Df

D ,\

pM2| iT

n
phU -

DL - Dynamic latch (see figure 3-7)

Figure 3-6b Implementation Of (A and B) or (C and D) - Two Phase Approach

C MOS latch [Suz73|. Although these two implement identical logic, they have very different

electrical behavior. The details of their electrical behavior will be discussed in Section 3.3.2. For

the discussion here, it is sufficient to state that the following rules must be followed:

(1) If the input node (node x) is a dynamic node (node is precharged to either Vu or GND),

C MOS latch MUST be used.

-40-

(2) If the input node (node x) is NOT a dynamic node; approach 1, which uses a composite pass
2

gate followed by an inverter, is preferred but the C MOS latch can also be used.

Vdd

c&*|

J" H

CM

Latch
on

n

Clock Out

L

H

C*M)

In

Vdd T

SflfTOBCS*

Out

2L
(*) (b)OCM3SLMch

Figure 3-7 Two Ways To Implement A Dynamic Latch

As a result of these two rules; the dynamic latch between node f* which is precharge node,

and node f (see Figure.3-6) MUST be a C MOS latch. On the other hand, the type of dynamic

latch to be used at the input depends on whether signals A, B, C, and D are actively driven or are

precharged.

3.1.4 How To Use Non-Overlapping Multi-Phase Clocks

After reading Section 3.1.3, some readers may think any complicated combinational circuit

(for example a 32 bit ALU) can be implemented in Domino logic using a single phase clock (with

its complement) as shown in Figure„3-8. This is true in theory and it also has been done. Howev

er it has some practical problems.

One problem is that Domino logic does not provide logic inversion. When both a signal s

and its complement s* is needed, extra logic gates are needed. Consider the implementation ofthe

following example:

/ = xXORy 3.1

Vdd

INI

Input „
Pad* •

INa

GND

Dynamic
Latch

Clock

phf*

-41-

Phi I

Domtao

LogfcGatei

(Comtnatbnal)

Phi I

Dynamic
Latch

F^.3-7

TT
Clock

Phi

Vdd

* OUTl

s Output
• Fids

OUTh

GND

Figure 3-8 Implementation Of Domino Logic Using A One Phase Clock

where

x =* a OR b

y = c OR d

One simple (but wrong) way to implement this in a one phase system is shown in Figure.3-

9a. Unfortunately this is also the WRONG way to do it because both signab x* and y* violate

the input requirement of the Domino gate (see Section 3.1.1 and Figure.3.2). Both these signab

are high at the beginning of the evaluation phase and therefore has the potential of discharging

node f* by accident.

Vdd

phi \r

phi
J

j

—>

-k

I "vdd f

A_

H>

U
J~ *\.

3^

b

Figure 3-9a Erroneous Implementation Of (a or b) xor (c or d)

>

42-

One possible race condition that can lead to accidental dbcharge b shown in Figure.3-9a. In

thb case both x and y are supposed to be high during the evaluation phase (both x* and y* are

therefore low during the evaluation phase). During the precharged phase (<f> = GND), both x and

y are precharged to low (which b desirable) and as a result both x* and y* are precharged to high

(which b extremely undesirable). As soon as the evaluation begins (<f> —V^), both x and y will

start rbing and x* and y* will start falling. If for some unfortunate reason (one very reasonable

reason b that the delay of the inverter b NOT zero) x rbes faster than y* falb or y rises faster

than x* falb then, kaboom, node f* b dbcharged by accident and there b no way to recover thb

accident.

The correct way to implement thb example in a one phase system b shown in Figure_3-9b.

Notice that signab a*, b*, c*, and d* are assumed to be available and the dual of the logic has to

be implemented by two extra gates.

Vdd tr
pM '-,

<>L

SH

rn
h

*H
1

Figure 3-9b Correct Implementation Of (a or b) xor (c or d)

Figure_3-10a b another WRONG approach to the problem. From the timing diagram, it b

obvious that thb approach may not work because the delay of the inverters are not zero. Since

the delay of the inverters are not zero, signal x* and y* may not be stable at the beginning of

$—Vdd' Notice tnat x* an(j y*j wnjcn may not be stable at the beginning of ^—V^, are inputs to

-43-

the second stage and ^—V^ b the evaluation phase of thb second stage. Thb b another race

condition that may cause node f* to dbcharge incorrectly.

Vdd f

pu. J U

HL

I

D

Dynamic

Latch

Ffc.3-7

_TL
Clock

a

<>

->

Vdd

pfaf*

y*

phP-

h

ff

^

phi r

phP L

^\«.y

/ :
:•::•::•:•:•: :%•: J>*(j/'

S>:y\ 3C-, 3T

Inverter"

delay

Figure 3-10a Erroneous Implementation Of (a or b) xor (a or d) Using Dynamic Latch

The implementation of both the logic and its dual as shown in Figure„3-9b can be avoided if

a non-overlapping multi-phase clock b used as shown in Figure_3-10b. From the timing diagram,

it can be seen that if the non-overlap time between <f>l and <f>2 b greater than the delay of the

inverter, then all inputs to the second stage (x, x* and y, y*) will be stable when the second stage

enters its evaluation phase {<f>2 goes high). Thb fulfills the input requirement of Domino logic (see

Section 3.1.1 and Figure.3.2) and therefore has no potential danger of dbcharging the precharge

node (node f*) by accident.

Vdd

phil J
\-

l_r

phil
J

1
y\—i

D"
h

Dynamic

Latch

Ffe.5-7

Clock

44-

VH>

y

LH>

Vdd

phl2
J

J—I

phC-

h

H>*

pall

non-overi&p tins

pht2
A i

x*,y*::•::•:::::::}

inverter*
delay

Figure 3-10b Correct Implementation Of (a or b) xor (c or d) Using Dynamic Latch

3.2 NORA Logic

3.2.1 Basic Principle

NORA logic |Gon83] is based on the pipelining concept of which Figure.3-10b b a good ex

ample. In this Figure, when $>X—VU, the first stage does its evaluation and the second stage b

precharged. The output of the first stage b piped to the second stage which starts its evaluation

as soon as ^2—Vu. When the second stage b evaluating, the first stage b being precharged. The

advantage here b that no time b wasted for precharging only. Whenever one stage b evaluating,

the other stage b being precharged.

The pipeline in Figure.3-10b b not yet ideal because during the non-overlap time, both

stages are being precharged (not evaluating) and thb time b thus wasted.1 The pipeline proposed

in NORA logic [Gon83], which b shown in Figure„3-ll, has no such dead time and only a single

phase clock <j> together with its complement $ b required.

1 Actually in Figure.3-10b, the non-overlap time is not quite wasted because x* and y* are evaluated by the
static inverters during this time.

-45

Dynamic
Latch

Combinational
Dynamic

Latch
Combinational

Dynamic
Latch

Combinational
Dynamic

Latch

4 —» Logic 1 » 1 —i Logic 2 —» 2 —i Logic 3 » 3

Fig. 8-7 Fig. 3-7 Fig. 3-7 Fig. 3-7

Clock
Jl_
Clock Clock

n
Clock

t
phi*

t
phi phi*

f
phi

Figure 3-11 A Generic NORA Pipeline

The combinational logic within each stage of the NORA pipeline is implemented by dynamic

gates that are similar to Domino logic gates. Consequently, the NORA pipeline b very similar to

the ill-fated pipeline shown in Figure.3-10a. Due to the similarities between these two pipelines,

static inverters cannot be used between the NORA pipeline stages (after each dynamic latch)

either. Otherwise the same race condition that causes the circuit of Figure_3-10a (see Section

3.1.4) to fail will also kill the NORA pipeline. Since a static inverter b not allowed between pipe

line stages, the method showed in Figure_3-10b cannot be used to implement complementary

logic. The concept of N- and P-logic blocks b introduced in NORA logic to facilitates the imple

mentation of complementary logic. Thb concept will be discussed in detail in Section 3.2.2.

3.2.2 The Concept Of N-logic Block And P-logic Block

The implementations of the NAND gate and NOR gate in N-logic blocks are shown in

Figure.3-12a and b and Figure.3-13a and b show how the same logic b implemented in P-logic

blocks. Figure„3-12c (Figure.3-13c) b a generic N-logic (P-logic) block for a more complicated

logic gate. An example of a more complicated gate, which implements the AND-OR function in

N-logic (P-logic) block, b shown in Figure.3-12d (Figure.3-13d).

-H

-BhU

il

Vdd
phim Vdd

b

phirn
b

>hj I

(b) NOR

46-

Vdd TvddJALI1-1

-EhLj

1

•H

(c) General (d) AND-OR
XO

Xn •
N

phi

xo d

N

• c
f

XnV
phi_J

Output precharged to high in phi*
Evaluate in phi

Figure 3-12 Examples Of NORA N-logic Blocks

In Figure_3-12 and 3-13, two sets of symbob (Symbol I and Symbol II) are proposed. These

symbols are designed to capture both the electrical and logical behavior of the N-logic and P-logic

gates. If one set of symbob b used everywhere consbtently, (either use Symbol I or Symbol II

exclusively) then the gate connection rules, which are direct results of the input requirement and

output behavior of the N- and P-logic blocks, can be checked symbolically. Thb will be dbcussed

later in this section.

N-logic gate's output (node f in Figure.3-12) b precharged to Vu during $ and b evaluated

during <f>. This is the same as a Domino gate without its inverter. The rule that governs the N-

logic block's input b therefore the same as Domino logic (see Figure.3-2):

The input must either be stable or makes at most one low to high transition (thb

implies the input must start out low) during the evaluation phase.

47-

Vdd Vdd Vdd

phi
"J

•*HC

-H
b

a
-H

phi>hi| jl jhlj

h
(a)NAND (b) NOR (c) General

xo

Xn

phi

XO

Xn
P >

(d) AND-OR

Output precharged to low in phi
evaluate in phi*

Figure 3-13 Examples Of NORA P-logic Blocks

Input Waveforms

phi
< evahi&tton ,

phase

wmm mm

mm / Njiiiil!

w§W ~\ m

mm A 0m

Acceptable ?

YES

NO

YES

NO

Comments

Stable in evaluation phase.

One transition, but low to high.

One transition, high to low.

Glitch • more than one transition.

Figure 3-14 Acceptable Input Waveforms For P-logic Blocks

P-logic gate's output (node f in Figure.3-13) b precharged to GND during <f> and b

evaluated during $. Using reasons similar to those used in Section 3.1.1, the following

-48-

requirement, which b illustrated in Figure.3-14, b derived for the P-logic block's input:

The input must either be stable or makes at most one high to low transition (thb

implies the input must start out high) during the evaluation phase.

The rules concerning how these gates can be connected are direct results of the input

requirement and output behavior of the N- and P-logic blocks. From the above discussions, the

output of the N-logic block can make at most one high to low transition during the evaluation

phase 2and therefore can be connected to the inputs of the P-logic block directly. For similar rea

sons, the output of the P-logic block can be connected to the inputs of the N-logic block directly.

When N-logic block b connected to N-logic block, it becomes Domino logic and an inverter must

place between them for the same reasons as in Domino logic. Similarly, an inverter must abo be

used whenever a P-logic block is connected to other P-logic block. The rules can be summarized

as:

(1) No inverter b needed when N-logic is connected to P-logic block or vice-versa.

(2) An inverter b needed when N-logic block b connected to N-logic block or when

P-logic block b connected to P-logic block.

There is an easy way to check for violation of these two rules. If all gates in a circuit are

represented by one set of symbols show in Figure.3-12 and Figure.3-13 (either Symbol I or Sym

bol II but not both), then there b no violation of either rule stated above if bubbles are matched

for every signal line. The term bubble refers to the small circle that represents voltage inversion.

Bubbles are matched for a signal line if either:

(a) There is no bubble on either end of the signal line, or

(b) There are two bubbles on both ends of the signal line.

Thb b illustrated in Figure.3-15. In Figure_3-15a and d, bubbles are matched for signal line

aORb.H because there b no bubble on either side of the signal line. On the other hand, in

8 The output node of the N-logic block is precharged to high and is isolated from V\. in the evaluation
phase. As a result, it can only ^e discharged to GND once in the evaluation phase.

-49-

Figure.3-15b and f, bubbles are matched for signal line aORb.L because there are bubbles on both

ends. Figure.3-15c, d and Figure_3-15e, f show how bubble mbmatch can be corrected by insert

ing inverters. Thb requires the inverter to have two different logic symbob. One with the bubble

at the input and one at the output. Thb bubble matching technique b a special case of the mixed

logic notation suggested in [Win80|.

a.L

(a) match (b) match

(c) mismatch (d) match

s>(a or b).L =0J"aM>=D-

(e) mismatch (f) match
Figure 3-15 Illustration Of "Bubble Matching"

Using both N- and P-logic blocks, complementary logic can be implemented more easily

than in Domino. Figure.3-16 shows how the example in Section 3.1.4 (Equation 3.1), which Dom

ino logic has problem implementing, b implemented in one NORA stage. Thb function b repeated

here:

/ = x XOR y

where

x =s a OR b

y = c OR d

In Figure_3-16, s.L means signal s b asserted whenever it b low and s.H means signal s b

asserted whenever it b high. Thb b an improvement over the implementation in Figure.3-9b

(Section 3.1.4) because the complements of a, b, c, and d are NOT required here. Since every

50

control line has its bubbles matched in Figure_3-16, neither rule (1) nor (2) stated earlier in thb

section are violated.

Figure 3-16 Implementation Of (a or b) xor (c or d) Using N- And P-logic Blocks

3.2.3 Alternative Clocking In NORA Logic

The NORA pipeline show in Figure.3-11 uses a single phase clock (<j>) together with its com

plement (^). However in some digital system, it may be desirable to have a multi-phase clock. For

example, some microprocessors have a three-phase clock such that instruction fetch, decoding, and

execution can perform in each of the three phases separately.

As far as NORA logic b concerned, the multi-phase clock does not have to be non-

overlapping. Figure.3-17 shows how the original NORA pipeline (Figure.3-11) b implemented by

a three-phase clock (<f>x, <j>2, <f>s) with non-overlap time equab to zero. Thb pipeline performs the

function in one cycle while the NORA pipeline in Figure.3-11 performs the same function in three,

but probably much shorter cycles. In general, a multi-phase clock system performs more function

in one longer cycle than a single phase clock system does in one shorter cycle. One good reason for

51-

using a longer cycle b that the NORA pipeline may be a subsystem of a bigger system and the

cycle time may be limited by other subsystems. Consequently the cycle time in the single phase

approach cannot be 1/m of the m-phase approach. Therefore the m-phase clock approach has

better performance because more things are done in the same amount of time.

DL4

Dynamic

Latch
4

Fig. 3-7

n
Clock

T
phi3

phil

phi2

phi3

CL1

Combinational

Logic 1

Evaluateuuate A

phil '

DL1

Dynamic

Latch
1

Fig. 3-7

n
Clock

T~
phil

CL2

Combinational

* Logic 2

Evaluate

in phi2

DL2

Dynamic

Latch
2

Fig. 3-7

J"L-
Clock

T
phi2

CL3

Combinational

* LogicS

Evaluate

in phiS

Figure 3-17 A Generic Pipeline Using A 3-phase Clock

DL3

Dynamic

Latch
3

Fig. 3-7

_TL
Clock

T
phiS

r

It was stated in last paragraph that the multi-phase clock can have a non-overlap time

equals to zero. As a matter of fact, different phases can even overlap. Thb b shown in Figure.3-

18. In this figure combinational logic blocks CLl, CL2, and CL3 are assumed to have their evalua

tion completed before <f>x, <p2, <£3 end. Consequently, their outputs can be latched into dynamic

latches DL1, DL2, and DL3 at the falling edge of ^, ^, and ^ respectively. One possible reason

why 4>v <t>2, <f>t are not shorten here b that it may be impossible to generate phase as short as

desired.

The clocking scheme used in Figure.3-11, 3-17, and 3-18 all assumed complementary logic

can be implemented within each pipeline stage either by method showed in Figure.3-9b or more

likely by combinations of N- and P-logic blocks. However in practice, the N-logic block b not the

same as the P-logic block. For high performance, sometimes it b desirable to use N-logic blocks

exclusively. Furthermore the method showed in Figure.3-9b, which implements complementary

CL1

Combinational

* Logic 1

52-

CL2

Combinational

Logic 2

DL4

Dynamic
Latch

4

Fig. 3-7

n
Clock

Jt

DL1

Dynamic

Latch
1

Fig. 3-7

_TL
Clock

.y-,

T
phi*

I Evaluate J
' in phil "

Assume outputs of

CL1 (y*), CL2 (z*),
and CL3 (f*) are
all precharged
to high.

j |(Evaluate I
I " inphi2 "

phi2*

DL2

Dynamic

Latch
2

Fig. 3-7

R
Clock

phi3#

CL3

Combinational

4 LogicS

L Evaluate I

' in phi3 '

DL3

Dynamic

Latch
3

Fig. 3-7

n
Clock

T
phil*

Figure 3-18 A Generic Pipeline Using A 3-phase Overlap Clock

logic by duplicating the logic, has severe area penalty. Consequently complementary logic may

have to be implemented by the method shown in Figure_3-10b. The resulting pipeline thus has

inverters after each dynamic latch and is shown in Figure.3-19. As illustrated in Figure.3-10b,

the non-overlap time between different phases of the multi-phase clock used in Figure.3-19 must

be at least bigger than the static inverter delay.

Even if no static inverter is placed between stages as in Figure.3-19, it may still be desirable

to use an nominal non-overlap clock as shown in Figure.3-20. The reason b the difference in clock

skew tolerance which b illustrated in Figure.3-21. The clocking scheme used in Figure.3-11, 3-17,

and 3-18 all have a maximum clock skew tolerance equal to the dynamic latch set up time. On

DL4

Dynamic
Latch

4

Fig. 3-7

J"L
Clock

I

CLl

^Combinational

Logic 1

DL1

Dynamic
Latch

1

Fig. 3-7

n
Clock

-53-

CL2 DL2

Dynamic
' -TCombinationa|—*J

Latch

t
Logic 2

I

CL3

^^Combinational

Logics

DL3

Dynamic
Latch

3

Fig. 3-7

n
Clock

| L Evaluate J

phiS
in phil

^ L Evaluate i
I I in nn!9 "

phil
in phi2

Fig. 3-7

Clock
A

phi2
• ii

Evaluate

in phiS
phiS

phil

phi2

DU

Dynamic
Latch

4

Fig. 3-7

n
Clock

T
phiS

phil

phi2

phiS

(Please also refer to figure 3-10b)

Figure 3-19 A Generic Pipeline Using Static Inverters

CLl

Combinational

Logic 1

I Evaluate J
r b phil '

DL1

Dynamic
Latch

1

Fig. 3-7

n
Clock

phil

CL2

Combinational

' Logic 2

Evaluate

in phi2

DL2

Dynamic
Latch

2

Fig. 3-7

n
Clock

T
phi2

CU

Combinational

LogicS

l Evaluate A

' in phiS *

r

DL3

Dynamic

Latch
3

Fig. 3-7

n
Clock

T
phiS

r
Figure 3-20 A Generic Pipeline Using A 3-phase Non-Overlap Clock

the other hand, the clocking scheme used in Figure_3-20 has a maximum clock skew tolerance

equab to the dynamic latch set up time plus the nominal non-overlap time.

clock skew > setup time

>> A may not be stable in
evaluation phase - phi

*> System may fail

phi
clock

...skew.

phi*

Evaluation

Phase

-setup time

-54-

clock skew > setup time

»> A may not be stable in
evaluation phase - phi2

i> System may fail

phi2

phil

A*

clock :

...skew....

Evaluation
Phase

-setup time

(a) Clock Skew Tolerance Of Figure 3-11 (b) Clock Skew Tolerance Of Figure 3-17

Figure 3-21ab Comparison Of Clock Skew Tolerance

clock skew > setup time

:> A may not be stable in
evaluation phase - phi2

:> System may fail

phi2

phi2«

A*

clock

...skew....

Evaluation

Phase

-setup time

clock setup nominal non-
skew ^ time "'"overlap time
=> A may not be stable in

evaluation phase • phi2
=> System may fail

phi2

phil

clock

Evaluation
Phase

..skew...
nominal

non-overlap
time ..

-setup time

(c) Clock Skew Tolerance Of Figure 3-18 (d) Clock Skew Tolerance Of Figure 3-20

Figure 3-21cd Comparison Of Clock Skew Tolerance

55-

3.3 Charge Sharing Problem

3.3.1 The Essence Of The Problem

In dynamic logic, there b a potential of charge sharing whenever there are more than one

transbtors in series between the precharged node and the virtual power supply node. The virtual

power supply node is the node which connects to the power supply (V^ or GND) during every

evaluation phase. Thb b shown in Figure_3-22.

£hi_

phi

1 _
pj£

Vdd

tL

P

Ml
t

M2
h

V

phi*

' V

M2

Ml

h

2hL_J

Sl<

SelSl x phi

Vdd

£
bus

Ml
i

X

M2

u (SelSl x phi)*

Vdd

1 V

M2

«! |̂
X

Ml

,_P
bus

h

phi

SI'

SelSl

JE^L

a Vdd

Ml

M2

' V

h

phi*

SelSl
H

si
H

phi* I

i
Vdd

' V

M2

Ml

P

EL

(a) (b) (c) (d) (e) (f)
Precharged in phi* Evaluate in phi

Figure 3-22 Precharged Node (p) And Virtual Supply Node (v)

In Figure.3-22, node p's are the precharge nodes and node v's are the virtual power supply

nodes. In Figure.3-22c and 3-22d, the virtual power supply nodes are the same as the actual

power supply because node x does not necessary connect to the power supply in every evaluation

phase in either figure. Every circuit in thb figure has potential charge sharing problem because

there b more than one transbtor (Ml and M2) in series between the precharged node (node p) and

the virtual power supply node (node v).

The charge sharing problems of circuits in Figure_3-22a, 3-22c, and 3-22e are illustrated in

Figure.3-23a. For the sake of generality, the generic names A and B are given to the two inputs.

-56-

Vdd
J node v

at tl, this node's
voltage b» Vdd

^—A M2

TCoverlap aode P phi

Cp

Ml
Hi

nodex

M2

Hi

Vrfd"

•Cx B orjp
to • tl

* node v _
at tl, this node's
voltage = GND

(a) (b)
Figure 3-23 Charge Sharing Problems

As one can see from the timing diagram, if input B remains low but input A makes a low to high

transition during the evaluation phase (after <j> has gone to V^) then there is charge sharing

between the precharged capacitor C and the parasitic capacitor at node x Ca. The worst case

situation can be defined as follows:

Vx(tQ) - GND

and

overlap « maximum(C,Ct)

fien

vu*c9

c +c

Phi ;

B Vdd
GND-

to : tl

The charge sharing problem of circuits in Figure.3-22b, 3-22d, and 3-22f are illustrated in

Figure.3-33b. Once again, the generic names A and B are given to the two inputs. As one can see

from the timing diagram, if input B remains high but input A makes a high to low transition dur

ing the evaluation phase (after $ has gone to GND) then there b charge sharing between the

precharged capacitor C and the parasitic capacitor at node x Cx. The worst case situation can be

defined as follows:

-57

and

ComrtaP « maximum(CptC2)

then

V («,) = > GND

3.3.2 How Charge Sharing Can Be Avoided And/OR Controlled

Charge sharing problem can be prevented or at least controlled by careful layout, and/or

placement of the inputs.

The charge sharing problem illustrated in Figure.3-23 can be avoided if the input closest to

the precharge node in a series combination (in Figure.3-23, it is the input to Mi's gate) is required

to settle down before the end of the precharge phase (Cx can then be precharged to the same vol

tage as C) and stable throughout the evaluation phase.

The above requirement can be fulfilled easily in bus structures such as Figure_3-22c, 3-22d,

3-22e, and 3-22f. Due to the way Domino gates are connected together (see Section 3.1.2) it is

impossible for Domino (and thus NORA) logic to fulfill the above requirement and the charge

sharing problem has to be controlled by the following techniques:

(1) Do not use any series combination of transistors. This implies NOR (OR) gates

are used exclusively, or

(2) If series combination of transistors are used, keep the number of transistors in

series small such that the effective Ca is small (see Figure.3-24), and

Sl<

SelSl x phi I

-58-

(3) Keep the parasitic capacitor Ca small by careful layout.

phi

phi

?
E

Ml

XIn

Xh-1

J
Mn.

Xn

,.v

h

Cxi

Cxn-1 Cx eft* ™ Cxi + Cx2 + ... + Cxn-1 + Cxn

Cxn

Figure 3-24 AND Gate With Large Fan In

•j
eM_J

Vdd

S2*
n
h bus

Sn*

SelS2 x phi | SelSn x phi I

h_ "h 'h

SelSl x phi I

Sl<

EhiJ

J J J
SelS2xphi

S2*

J
Vdd

Q
SelSn x phi

Sn*

Q

(•) (b)
Figure 3-25 Possible Charge Sharing Problem In Bus Structure

The charge sharing problem can also be avoided by careful placement of the inputs. For

example, the bus structure shown in Figure..3-25a can be free of charge sharing if signals S*, 52*,

-59-

... Sm* are required to settle down before the end of the precharge phase (<f>=GND). On the

other hand, there is no way the charge sharing problem can be avoided for the bus structure

shown in Figure_3-25b. One of the SelSm signals will go high when 0=^ and if its correspond

ing 5m* is low, then busD will end up with a voltage lower than V^ due to charge sharing.

Figure.3-26 is another example. In Figure.3-26a, charge sharing will degrade the output voltage

at node y if input x changes value after <f> has gone low (4>=GND and ^sssVdd), On the other
2

hand, the conventional C MOS latch, which is shown in Figure.3-26b, does not have this problem

because as soon as <j> goes low, the M2 and M3 isolate the output node (node y) from the input.

In

Vdd I
phi* «M

phi

Ml

M2

Out

y

M3

M4

a

(a) (b)

Figure 3-26 Possible Charge Sharing Problem In CCMOS Latch

60

3.3.3 Dynamic Latch

The two ways to implement a dynamic latch are shown in Figure.3-7 and are discussed

briefly in Section 3.1.3. In this section, the difference in their electrical behavior will be discussed.

Cx

In

X

X

Vdd

phi*

phi

(a)

J
Ml

Out

y
MS

Cout

M4

n

In

phi*

J [JM2 L

X

Cx

> *M3 | '

L -r w>
phi

Vdd

(b)

Ml

Out

M4

Cout

Figure 3-27 Charge Sharing Problem In Dynamic Latch

The C MOS latch is shown in Figure.3-27a and the other approach, which uses a composite

pass gate followed by an inverter, is shown in Figure_3-27b. Notice that if node x is a precharged

node, then as soon as 0=^, charge sharing will occur between Ca and the capacitor at node w

Cw. Therefore if node x is a precharged node, C MOS latch must be used.

2

However the C MOS latch does have its disadvantage. The clock t^V^ must be long

enough to do two things:

(1) Charge or discharge the capacitance Cx at node x, which consists mainly of the

gate capacitance of Ml and M4; then

(2) Charge or discharge theoutput capacitance C<mt at node y .

-61-

Capacitor C(ni can be big and its charge and discharge paths consist of two transistors in

series (Ml, M2 and M3, M4) which make the charge and discharge time even longer unless Ml,

M2, M3, and M4 are big. However making Ml and M4 bigger will increase Ca and therefore wor

sen the first part of the problem (see (1) above).

On the other hand, the pass gate followed by an inverter approach only requires ^=V]U be

long enough to charge or discharge the capacitor at node w Cw. Cw is not likely to be big because

it consists mainly of the gate capacitance of Ml and M4. Ml and M4 here are likely to be smaller

2

than the Ml and M4 of the C MOS latch because they are connected to the output node directly

2

here while in the C MOS they are connected in series with M2 and M3. Therefore if node x is not

a precharged node, it is preferable to use a pass gate followed by an inverter to implement a

dynamic latch.

-62-

4. A CMOS 32-BIT ALU - A DESIGN EXAMPLE

This 32-bit arithmetic and logic unit (ALU) is intended to be used in a 32-bit data-path

which operates in a four-phase non-overlap clock. The ALU itself operates on the last three

phases (<f>^ <f>^ and <f>A) of this four-phase clock. As shown in Figure.4-1, this 32-bit ALU is formed

by cascading four 8-bit ALU. The ALU can perform five different operations which are (1) add (A

+ B + Cin), (2) subtract (A + B* + Cin), (3) and, (4) or, and (5) xor.

(Control n.
Signals Cm

A<7:0> Cin

Alu8bit
Cout

V

D<7:0> .
B<7:0> .

j>

<Control

Signals
'C8

A<15:8> . Cin

Alu8bit
Cout

p

D<15:8> .
B<15:8> v

p

p

<Control

Signals

r \ rC16

A<23:16> . Cin

Alu8bit
Cout

p
D<23:16> k

B<23:16> v
j*

<Control

Signals

r > 'C24

A<31:24> . Cin

Alu8bit
Cout

p

D<31:24> .
B<31:24> w

j>

\ rC32

Figure 4-1 32-bit Arithmetic And Logic Unit

The process to be used is a 3 micron CMOS with two layers of metal, metall and metal2.

However, only the first layer of metal, metall, can make contacts to both polysilicon and

-63-

diffusion. The second layer of metal, metal2, can only make contact to metall. Furthermore,

buried contact is not supported by this process.

busD

in phil
and in phi3

busD

precharged''
in phil and
in phi3

Figure 4-2 8-bit Arithmetic And Logic Unit

-64-

The internal structure of the 8-bit ALU is shown in Figure.4-2. Each 8-bit ALU consists of a

Input Logic section, followed by an 8-bit look-ahead adder. There are two reasons why full 32-bit

look-ahead adder is not used:

(1) A 32-bit look-ahead adder will require much more area, especially in the horizontal

dimension, which is very critical in the overall data-path. From [SW84], it is clear that

it will take much more than 500X (lX=1.5/t => 750/i) to implement a 32-bit look-

ahead circuit. The ALU implemented here only has a horizontal dimension of 450X.

(2) Due to the distribution of tasks over different clock phases along the data-path (see

Section 4.1), an 8-bit look-ahead adder is fast enough. This means in each of the three

phases the ALU operates, the ALU can complete what it is supposed to do in that

phase faster than other parts in the data-path can complete their tasks. This clearly

illustrates the difference between local optimization and global optimization.

4.1 Distribution of Task

The distribution of task is illustrated in Figure.4-2.

<p2 Inputs from busA and busB2 are latched. Logic functions A xor B (same as p, the carry

propagate signal), A and B (same as g, the carry generate signal), and A or B are

evaluated for each bit.

<p& The p's and g's evaluated in 4>2 should be settled by <f>& and they are used by the Loo

kAhead block to evaluated the composite P's and G's (see Section 4.2 for details). The

CarryEval block then uses the P's and G's to calculated the carry output for each bit.

4>A The p's together with the carry out of each bit is used by the Sum block to evaluate

the sum. The result is put onto busD if it is an ADD or SUB operation. Otherwise the

-65-

results from <f>2 (A xor B, A and B, and A or B) is put onto the busD depending on

what ALU operation is selected.

The most critical and complicated part of the ALU is the 8-bit look-ahead adder. It is

described in detail in the next section.

4.2 8-blt Look-ahead Adder

The 8-bit look-ahead adder consists of three parts. The LookAhead, the CarryBval and Sum

(seeFigure 4-2).

4.2.1 LookAhead

The LookAhead is based on the signal flow graph shown in Figure.4-3a. The inputs of this

graph are the carry propagate (p) and generate (g) signals for each bit and the outputs are the

composite propagate (P) and generate (G) signals over i bits.

pt = At xor B{

9< - V Bt

pi = Po ' Pi Pi

G{ = g{ + gt_x • p{ + g{_4 • p{ • p,_x + • • • + g0 • pt • p2 • • • • p7

where

i - 0,1, 2, 3,..., 7

Each circle in the graph shown in Figure.4-3a represents a functional node. To keep layout

more uniform and avoid long routing wire, buffers (triangles) are added whenever functional node

is not necessary. Each functional node performs the logic function shown in Figure.4-3b. Its

implementation is shown Figure.4-3c and Figure.4-3d. Figure.4-3d is the transistor diagram but

1**4

H r* 1 rS-

^e

^

-66-

FO.GO
—•

Pl.Gl

F2.G2

PS,G8
—>

P4.G4

—•

FB.GB
—>

^>Q O "'CT
Figure 4-3a Signal Flow Graph

pi = Ai xor Bi gi = Ai and Bi
Pi = pO and pi and ... pi

Gi = gi or (gi-1 and pi)
' ' " ' ' pi-1)

or

or (gi-2 and pi and
. (gO and pi and p2 and

Buffer

P?)

o Functional Node

-*-> £>

t>-£>

Figure 4-3b Functional Node

HSo/So

InvP&irl-^

9o/Srf~\
invPfcinr

Sa/Sa
Aim/in

4-5o/3u

Figure 4-3c Implementation In Domino Logic Figure 4-3d Transistor Diagram

it also represents the topology of the circuit. There are three things worth noticing:

-67-

(1) The basic topology is the same as the register cell of the register file to be used in the

data-path. Namely V^ on top, GND in the middle, and Vu on the bottom. As a refer

ence, the circuit diagram of the register cell is shown in Figure.4-3e. Using this struc

ture keep the ALU pitch match with the register file. Furthermore, using this structure

also enable vertical space to be traded in for horizontal space such that the complete

ALU has a horizontal dimension less than 500X (750 micron).

accessB

Vdd

busA /v

GND

busB

<

\/~

Vdd

IaccessB

H

y\
"\/"

<

^y
yv

accessAi
Vdd

y\ y\ busA

> >
GND

•\^ \A
busB

Vdd

accessA

Figure 4-3e Register Cell

(2) Only N-logic blocks are used because NMOS transistors are much faster than PMOS

transistors, especially when they have to be connected in series. Furthermore, using

N-logic gates exclusively require inverting buffers between every gate. By changing the

size of these buffers, the critical path of the circuit can be fine tuned relatively easily

(see paragraph below).

-68-

(3) V<id aQd GND, which run horizontally, and all other horizontal connections will be

routed in metal2. Control lines, which run vertically, and all other vertical connections

will be routed in metall. Using metall to route the control lines makes them much

easier to drive because of the lower resistance and capacitance of metall relative to

polysilicon.

The overall structure of the LookAhead block, which is derived from the signal flow graph

Figure.4-3a, is shown in Figure.4-4a. From this, the floor plan of the LookAhead block is derived

in Figure.4-4b. This Figure shows that the LookAhead circuit is built from three basic cells, which

are NandNorl, InvPairl, and InvPair2, only. InvPairl and InvPair2 have the same function

except InvPair2 has bigger transistor size to drive higher fan out. The logic and transistor

diagrams are in Figure.4-3c and 4-3d respectively. Layouts of these basic cells are plotted in

Figure.4-5, 4-6, and 4-7 respectively.

-69-

0°, .,:•!:';;.•(>—
a"

rn^i
^ win

—'I

i:"'i.i::::iiu-lLi'iiljll
J i:|Hl-fe!«!l|

:?::::!IL? si!!!

Figure 4-4a Logic Diagram Of LookAhead Block

-70

P0

0 0 2 2 2 2
po »

go G0 j

pi

1 2 2 2 2 2
Pl >

gl . G1 1*

P2

1 2 1 2 2 2

P2 >
g2 G2

P3

1 2 1 3 2 2
P3 j

g3 . G3
r

P4

o 0 2 2 1 2
P4 >

g4 G4
V j»

P5

1 2 2 2 1 2
P5 >

g5 G5 5?

P6

1 2 1 2 1 2

P6 >
g6 . G6 >

P7

1 2 1 3 1 2
P7 >

g7 G7 J

0 - Space Not Occupied 1 - NandNorl

2 - InvPairl 3 - InvPair2

Figure 4-4b LookAhead's Floor Plan

4.2.2 CarryEval

The CarryEval block is much simplier compared to the LookAhead block. It only consists of

two basic building blocks, NandNor2 and NandNor3. Both are Domino gates which evaluate car

ry out Cf+l from P., G{ and Cin. Their circuit diagrams are shown in Figure.4-8a and Figure.4-

8b. The layouts are plotted in Figure_4-9a and Figure.4-9b respectively.

NandNor2 is used for every bit except bit7, 15, 23, and 31 (ie. the MSB of the four 8-bit

ALU's). Notice that NandNOR3 is very similar to NandNor2 except it has an extra driver to

-71-

Figure 4-5 Layout Of NandNorl

-72-

Figure 4-6 Layout Of InvPairl

-73-

Figure 4-7 Layout Of InvPair2

Cin

w Coot

=Dn
CH-l* ,,

!=On
<K

Cl+1* 1

-74-

tda tcF
Vdd

P

GND

£»

Ydd

S

phlS

phiS

phlS

So/Sa

Oa/Stt

©a/So

Oo/So

Oo/Sa

9n/Sa

Vdd

>-> GND

a*

t
\a±

Figure 4-8a NandNor2's Circuit Diagram

GND

Figure 4-8b NandNor3's Circuit Diagram

drive the Cin input of the next 8 bits. This driver is big because it has a large fan out (fan out =

8) and the Cin line is long because it has to route through eight bit. Fortunately this vertical rout

ing can be done in metall thus parasitic capacitance and resistance is minimized.

23 c •-
» + C
O

P o a 2
:

p o 1
0

Is
0

.1
1

9
8

3
In

c
h

e
s

(3
0

4
4

i)

1

-76-

Figure 4-9b Layout Of NandNor3

-77-

In actual layout, dynamic latches and inverters are integrated into the CarryEval block. The

circuit diagrams for one CarryEval bit are shown in Figure.4-10a and Figure.4-10b. Figure.4-10b

is the MSB of the 8-bit adder and therefore it contains NandNor3 instead of NandNor2. The lay

outs of these two bit slices are plotted in Figure_4-lla and Figure.4-1 lb respectively.

Cin

Vdd

GND

Vdd

Cin

a* phis* Iphia

NandNor2

figure 44Ja

Vdd

GND

cir

Vdd

0u/3u

J

4.5u/3u

_^4.5u/3u

4.5u/3u

0u/3u

fiu/3u

a
lci+1* ph»3*| Jphi3

Vdd

—J 3u/3u

H

—*p

•sL -*p«

3u/3u

GND

3u/3u

>c

•*c»

3u/3u

Vdd

Figure 4-10a C.EvalCelirs Circuit Diagram

The function of the latches are to latch in A{xorBi —p{ and C{ {C{+1 from the previous bit)

at the end of <f>y These latches and inverters then provide stable p{ C(and their compliments for

the Sum block during <f>4. Notice that C. is latched instead of C/+1 because the Sum block evalu

ates Sf = C(xor pi instead of S(= Ci+l xor p{. By doing the routing of C '̂s here, which is more

natural, no routing is needed in the CarryEval and Sum block interface.

Vdd

-£_•.

GND

Vdd

-78-

Cin ICi* phis* phiSo

NandNorS

figure 4-8b

Vdd

GND

CS*

Vdd

Cout I j.Ci+1* phi3*| |phi3

Figure 4-10b C_EvalCell2's Circuit Diagram

u
0u/3u

0u/3u

J
4.5u/3u

J 4.5u/3u

|^4.5u/3u

4.5u/3u

1L0u/3u

«| 0u/3u H

Vdd

3u/3u

•*n»

3u/3u

GND

3u/3u

•*c

-*c*

3u/3u

Vdd

4.2.3 Sum

The Sum block is also relatively simple. It consists of an exclusive-or (xor) gate and some in

terface logic to busD. The circuit diagram for one bit of Sum is shown in Figure_4-12. The layout

is plotted in Figure.4-13.

This circuit simply implements a Domino xor gate with busD as the output node. However

the value cannot put onto busD unless it is either a add or subtract operation. Therefore to ensure

functional correctness, control signal addORsub_04 must be stable in <pr Furthermore busD has to

be precharged in <f>1 (for ALU input) and in 03 (for ALU output). This is done by the PMOS

transistor with signal 0j*AND0s* at its gate. Precharged has to be done in both $x and <t>y there

fore if a NMOS transistor is used, the control signal is tpftRfi^ But a PMOS transistor is used

here, therefore the signal has to be inverted: (^OR^J* = 0j*AND05*

II

<"t*«C>
«»'«»»!G86ir«*^!

«o-"»!«
IJ91«°S

---WC»<»*
S'Zt'S'l-

CG~S'e-'»opum

O>

i

o=
3

o0
)

ub
O

•
•
*

«

-80-

*7 US

.:^:::^SftW:¥:'::;v;::

Figure 4-1lb Layout Of C.EvalCell2

prechaijjed to high
in phil or phlS

-81-

(phil or phlS)* (add or cobXphM)

Vdd

GND

C*

busD

Vdd

Vdd

n
9o/3a

_ _ *a/Su

*->
GND

)—| On/**

Hh 0q/3Q
busD

a
0a/3a

Vdd

Figure 4-12 SumCell's Circuit Diagram!

4.3 Input Logic

The Input Logic section consists dynamic latches, inverters, a 2x1 Mux, three static NAND

gates and some busD interface circuitry. Figure.4-14 is the circuit diagram of a bit slice which

shows how these components are connected together. Figure_4-15 is the layout for one bit.

The 2x1 Mux is used to select the complement of B whenever the subtract (A + B* + Cin)

operation is desired. From the circuit diagram, it is observed that sub and sub* must settle before

<f>2 ends, otherwise node B* won't be charged or discharged to a known value. This requirement

was discovered when ESIM [M&O&S] was run on this section.

Static logic gates are used because busses' values are latched in during <j>2 and logic is also

evaluated in 02. If dynamic logic is used, race conditions will discharge precharged nodes mistak

enly.

The control signals or_04, and_^4, and xor_04 together with addORsub_^4 in the Sum block

determine which output will get onto the busD in <f>A. To avoid bus conflict, only one can be

asserted. Furthermore they can be asserted ONLY in 04.

F™
!,;

i
P

C
lg

J8
fP

I
|
g

|
,__

-

;
-

:•
•-•

^
—

2
1

K
S

W
W

K
M

'•"'
•

(t
il

l''

C
O

t
o

busB2

critical
path

83-

phi2*| |phi2 subj Isub* phi2*J Ipbi2 r<phi4) I xoi<phi4)l Jand(phi4)
—?—HH—™

Figure 4-14 Input Logic (AluInCell)

4.4 ALU Summary

The floor plan of the ALU together with all the interface signals is shown in Figure.4-16.

Figure.4-17 is the layout of a 8-bit ALU. The 32-bit ALU has been proved to be functionally

correct by ESIM [M&O&S]. The patch file for ESIM and ESIM's output are all included in appen

dix A.

The critical path for 4>y as shown in Figure.4-18, is simulated before and after the layout

(first to get an idea of how big transistors have to be and then after the layout, parasitic capaci

tance can be approximated more accurately) in Spice. The final simulation, which is included in

appendix A, shows this critical path has a delay of 31.6ns.

The critical path for ^2 is shown in Figure.4-19. It is also simulated by by Spice and the

result is 18.4ns. The print out of this simulation is also in appendix A.

-84-

M I;Ep^fa^^!p|§^fe
3MS5

[•*n~*-rr? _ . ' 'I r_jji.ii.ftl" BlltlFft ••„ ' . ?'!l f-L*. ...U.I

«_1| Z^#Wy/,y.'-yfti- „' W;T.,vi v|R/:P '#i:?;&;fff-V „•»&4ffi /.%iy.&$®. g

Figure 4-15 Layout Of Input Logic (AluInCell)

pbJ2phi2

oi(phi4)
xox{phi4)

phi2* phi2*
sub 0

:: 2, 1 sub* 1 T

AluInCell

AluInCell

AluInCell

AluInCell

AluInCell

180 lambda

AluInCell

AluInCell

AluInCell

-85-

id(pbi4) PhiS Cin (phi 1 or phiS)*
Cm* phiS*

phiS

i_

(add or sub)phi4

* * *

LookAhead

4 lambda

174 lambda -

* »

677 lambda

CarryEval Sum

67 lambda * *— 40 lambda

Figure 4-16 8-bit ALU's Floor Plan (Not in scale)

-86-

Figure 4-17a Layout Of 8-bit Adder

im IBifeyJLa:

5°°^ Mg^^Ji.jg..iJ Mt".A=*T

-87-

CCS

•...yw.yjwwi^.Uf«..W*W^^^

8 BBafcfl~2_

■♦^■mwia-tt'^^^fe&y^an-if^a^i"B

yif^fflTTWjB _ijnlii ITljin ii

MIWHMWMUW 2S2S3*

•FITTB

OlJ^-JL^ -3r ftiiwiijJjniiiiMii •^ffliiiiiiij^iBiitgrvrnfe -.|, ^r_OK..,..Jl. ;„]

5ig ii ii pi

• iigajgt.;-^- fej^ 'I E. •!
E2Q

imti

TPscaEac3E3B2:

FfcJlst

=V-« ••••••»•• •••gbp -g «:•>!•:.:»:.g jnr» -,,, -jus

^^r^r ^-^fr'**"r^w'ia^flfl-gjK• wfrw'-vm •iV'-'-hk "TT

fcassnos:

u^ifS—mbb8 |i?Jf* '̂ii |{j>'Hr.iLjBt H—irinitt
"^•- -:* *!i hi.,a—"—

JF*?^

l^^^^^^^n^
sqz2Z3S3

':X'" f*nif ,IHif •

Figure 4-17b Layout Of 8-bit Arithmetic Logic Unit

critical
path

-88-

O-i
£>-£>i

C8

=D~>
cia

M>H>
C24

-f\ C<2S^2><

Figure 4-18 Critical Path In Phi3

This critical path is also shown in figure 4-14

Figure 4-19 Critical Path In Phi2

*>

89

5. IMPLEMENTING CONTROL FINITE STATE MACHINE IN VLSI

6.1 Finite State Machine

5.1.1 Definition Of a Finite State Machine

A finite state machine is defined in [Koh78| to have its next state 5(n+l) uniquely defined

by the present state S{n) and the present input x(n):

5(n+l) = 5[5(n),x(n)J 5.1

where S is the state transition function.

The output of the finite state machine in state S(n) is z(n), which in the most general case,

is a function of both the present state S(n) and the present input x(n):

z{n) = x[s(n),x(n)J 5.2

where X is the output function. A special case of this general case (Equation 5.2) is that the out

put z(n) is a function of the present state S(n) only and is independent of the external input:

*(n) = x[s(n)J 5.3

The above definition of the finite state machine is sufficient for most applications. For a

more formal definition of the finite state machine, please refer to [Koh78|. Before going any

further, it must be pointed out that the finite state machine defined above is a sequential machine

and clocking is NOT used anywhere in the definition. This means that the behavior of the

machine is determined by a sequence of events but NOT by a system clock (a high low high low

square wave). Sequences of events are events with respect to each other, which is NOT the same

as events with respect to the system clock. The clock is introduced later for implementation but

not as part of the finite state machine definition.

The finite state machine defined above (where clocking is not used as part of the definition)

can be completely specified by a state diagram similar to the one shown in Figure.5-1. One of the

-90-

x==a/3=»alpha

x=»b/zo»gamma

x«=»a/z=beta

x=b/3=alpha

Figure 5-1 Example Of A State Diagram

things showed in Figure.5-1 is that if the present state is A then B will become the present state

and the output will become 7 as soon as input x changes from a to b. After this, even if input

remains b, the output z will still change to a because the present state is now B. Theoretically

any finite state machine can be implemented by a combinational circuit block and a delay block

as shown in Figure.5-2. This approach has many problems and will be discussed in details in

Section.5-2.

XM

Combinational

Logic

Z(n)

SM S(n+1)

9

Delay I

Figure 5-2 Theoretical Implementation Of Finite State Machine

91-

5.1.2 Mealy vs Moore Machine

The general finite state machine defined by Equation 5.1 and Equation 5.2 (see Section 5.1.1)

5(n+l) = $[s(n),*(n)J 5.1
z{n) = X[s(n),z(n)] 5.2

is known as the Mealy machine [Koh78] and the machine defined by Equation 5.1 and Equation

5.3 (see Section 5.1.1)

z{n) = x[s(n)J 5.3

is known as the Moore machine [Koh78]. Moore machine's output z(n) depends only on the

present state S(n) and is a special case of the Mealy machine whose output depends on both the

present state S(n) and the present input x(n).

The above definitions of the Mealy and Moore machines do not use the concept of a system

clock (a square wave) either. However in some literature, the difference between the Mealy and

Moore machines were considered as finite state machines that either has asynchronous or synchro

nous inputs and outputs. This definition may be useful in certain applications, but in general it

causes much confusion.

The confusion arises from the fact that finite state machine itself is not defined in terms of a

system clock and one cannot talk about synchronization unless a clock is introduced. Trying to

define the Mealy and Moore machines in terms of synchronization is like trying to define the AND

and OR logic functions in terms of series and parallel combinations of transistors. Although logic

can be implemented by combining transistors, logic and transistors combinations are independent

things and logic was invented long before transistor was invented. Similarly although a clock (on

which synchronization is based) is usually used in the implementation of finite state machine,

finite state machine and clocking are independent entries and finite state machine was invented

long before the concept of clocking was invented.

-92-

An example of a state diagram for a Moore machine is shown in Figure.5-3. Since the out

put of a Moore machine is a function of the present state only, for a given node (representing a

state) in the state diagram, all arrows leaving it has the same output (z) values on them. Instead

of duplicating this value over all arrows that leave a state node, the value is put inside the state

node as shown in Figure.5-3b. Furthermore to make the diagram morecompact, the input(s) that

determines the next state is (are) put inside the state node with square bracket [] around it

(them) as shown in Figure.5-3c. This notation is suggested by [Des83].

x=b/
z*=*beta

(a) (b) (c)

Figure 5-3 State Diagram Of A Moore Machine

The less general output function of the Moore machine given by Equation 5.3 (less general

as compared to the output function of Mealy machine in Equation 5-2) also makes the Moore

machine easier to implement. Instead of using a large combinational block as shown in Figure.5-2

and Figure_5-4a to implement both the output and the next state function, the combinational cir

cuit block can be decoupled into two smaller blocks as shown in Figure.5-4b. One of this block

will implement the next state function and the other will implement the relatively simple output

function. Figure.5-4 is only a theoretical approach to the problem. The actual implementation is

-93

more complicated and is discussed in Section 5-2.

XTn)

Combinational

Logic

Z(n)

S(n) S(n+1)

Delay

(a) Mealy Machine

Output Logic
Tin) t

X(n) ,S ,

——»

Next State

Logic
S(n-

(

H)

S(n)

Delay

(b) Moore Machine

Figure 5-4 Theoretical Implementations Of Mealy And Moore Machine

5.2 Implementation Of The Finite State Machine Using Clock

Theoretically, a finite state machine can be implemented by a combinational logic block and

a delay block as shown in Figure.5-2. In practice, this approach has many problems. One of the

problems is illustrated in Figure.5-5. Assume the finite state machine is currently in state A, then

a glitch on the signal line x will causes a catastrophe. First, the low to high transition of the glitch

is interpreted as a x=l input and cause the machine to change its state to B and its output z to

1. The falling edge of the glitch is then interpreted as a x=0 input and cause the the machine to

change its state to C and its output to 0.

The only solution to this problem (and all other race conditions that are not shown) is to use

an edge trigger register (D type flip-flop) and drive it by a periodic square wave as shown in

Figure.5-6. This periodic square wave is the clock of the system. Assume the edge trigger flip-flop

in Figure.5-6 is triggered by the rising edge (low to high transition) of the clock, then at each ris

ing edge of the clock, 5 and x are sampled. The sample values, which are denoted as S(t) and

x(t), are then used by the combinational circuit to evaluate the output z and the next state 5.

-94-

_TL XTn) ,
CombinatbiuJ

Logic

ZTn) r a

x=o/

ten

S(n) , STn+1) Z=i /

V B V

X=0/

(?*H

Delay
Vl/

Figure 5-5 One Problem Of The Theoretical Implementation

The output z is the output of the current state S(t) and is thus denoted as z(t). On the other

hand, the S just evaluated won't have any effect until the next rising edge of the clock when it is

sampled by the register. This S therefore represents the next state and is denoted as 5(i+l).

x > Edge
Trigger

Flip
Flop

xrt) B
Combinational

Logfe

Z(t)

s - S(t) . S<t+1)

_n_n_
V i

Clock

Clock X(t) S(t)

L X(H) S(M)

H X(H) S(M)

jr X s

Figure 5-6 Implementation Of Finite State Machine Using A Clock Signal

Each rising edge of the clock marks the beginning of a state because a new 5, namely

S(t+1), is sampled and becomes S(t). The x(t), which determines this new state's successor and

its output z (if this is a Mealy machine), is also updated at this same rising edge. Since x and S

are sampled simultaneously, the input x that are intended for a given state must stabilize to its

proper value before the beginning of that state (marked by the rising edge of the clock). This is

illustrated in Figure.5-7 where state A is assumed to start at t>tx and state B is the desirable

next state (which starts at t >t2). The input x then must settle to x=0 one flip-flop set up time

before tv This is illustrated clearly by the timing diagram in Figure.5-7.

Now that clocking is introduced to the implementation of the finite state machine, finite

state machines can be classified into synchronous and asynchronous according to the way they are

CLK.

zUL

s(t]_

95-

don't care

r M

K *<*)=* y a(t)=l K >(t>=0

|)(S(tHA X S(tHB =)(S(t)«D

/4(t)«=l
delay of comb. logic -

"X^tHl

In this exarnple, assume:
State A-> B-> D-> A

^Edge Trigger Combinational
V Flip Flop V Logic

t = tl - e

*Q1 a(t)=l

S(t+l) X S(H1HB X SCt+lj^D X~A

tl State A t2 State B t3 State D

tl < t < t2 t = t2 - e

t2 < t < t3 t = t3 - e t3 < t < t4

In the abovediagrams: ? =• unknown, k = don't care, and e =* setup time of the flip flop

Figure 5-7 Illustrations Of The Timing Of A Finite State Machine

implemented:

Any finite state machine that are implemented by the approach shown in Figure_5-2 is

classified as an asynchronous finite state machine.

Any finite state machine that is implemented by the approach shown in Figure.5-6

(using a clock signal) is classified as a synchronous finite state machine.

-96-

This classification together with the logical behavior classification are summarized in

Figure.5-8. From this figure, it can be seen that finite state machines can be classified into four

groups, which are: (1) Asynchronous Mealy , (2) Asynchronous Moore, (3) Synchronous Mealy, and

(4) Synchronous Moore.

Classification

According to
Implementation

Clasriflcatkm According To Logical Behavior

Finite State
Machine Mealy Moore

Asynchronous
1 Asynchronous

Mealy
2 Asynchronous

Moore

Synchronous
3 Synchronous

Mealy
4 Synchronous

Moore

Figure 5-8 Classification Of Finite State Machine

As far as implementing the control logic in a digital system is concerned, the synchronous

Moore machine is the most popular. There are two reasons for its popularity:

(1) Its output is a function of the present state only.

(2) High tolerance to glitches at the inputs.

The first reason is very important because it makes the design of the state diagram much

easier by enabling the design effort to be split into two steps. First, the designer will consider all

the possible states his system can arrive at as a result of all the conditions (inputs to the finite

state machine), then he can determine all the control signals (output of his finite state machine) it

needs at each state.

A generic Synchronous Moore machine is shown in Figure.5-9a. When it is used to control a

digital system, different names can be given to the different components according to their func

tions as shown in Figure_5-9b. The first step in designing the state diagram mentioned in the pre

vious paragraph will result in the specifications for the "Next State Logic" block. The second step

will then produce the specifications for the "Control Logic" block.

Edge

Trigger

FHp

Flop

A

Sft), Combinational
Logic 1

Z(t) >

—i

(),
Combinational

Logfc2s(t) ,
S(t- -1)

'cuc

97-

4 Input

State

Register

—' A

JQL,

m.

s&L_

TCLK

Control Logic

Next State

Logfc

(a) (b)

Figure 5-9 Implementation Of Synchronous Moore Machine

5.3 Implementing Finite State Machine In MOS VLSI

Zft) „
control
signal*

S(t+l)

5.3.1 How The Non-Overlapping Two-Phase Clock Is Used

In MOS circuits, an edge triggered flip-flop is hard to build. However solution similar to

Figure.5-6 can be achieved if dynamic latches are placed at both the input and the output side of

the combinational circuit. These two dynamic latches are driven by <f>x and 4>2 of a two-phase

non-overlap clock. This is shown in Figure.5-10.

Dynamic
Latch 1

Fig. 3-7

n

phil

phil

m.

Sft)

Combinational

Logic

Dynamic
Latch 2

Fig. 3-7

X

phfc]

m

s<t+i)

:

phi2

puii ~ plul2 "** phi2 ><--- phi21 ptui

Figure 5-10 Finite State Machine Using A 2-phase Non-overlap Clock

-98-

5 and x are sampled whenever ^—V^. The sample values, which are denoted as S(t) and

x(t) are then used by the combinational circuit to evaluate the output z and the next state 5.

The output z, which won't be available from dynamic latch#2 until <f>2==Vdd' * tne output of the

current state S(t) and is thus denoted as z(t). The S, which is available at the same time as z(t),

won't be sampled by dynamic latch#l and thus won't have any effect on the finite state machine

until the next t^V^. This 5 therefore represents the next state and is denoted as S(t+1).

Each $X—VU can be considered as the beginning of a new state because S(t) is updated.

The x(t), which determines this new state's successor and its output z (if it is a Mealy machine),

is also updated when ^1ss^(cr Since x and S are sampled simultaneously, the input x that are

intended for a given state must stabilize to its proper value before that state begins (marked by

0!=^)- Since dynamic latch#l won't stop latching until one set up time before <f>l goes low, x

does not have to settle to the proper value until one set up time before the falling edge of <j>v

This, however, will require the combinational logic to have a delay f^. smaller than:

1delay < ^12 + ^2 " *.et»p2

*9et«p2 ~ 8e*uP *,me °f dynamic latch#2

On the other hand, if x is required to settle down before the rising edge of <f>v then the com

binational logic delay tida only has to be:

idelay < ^1 + ^12 + ^2 " l^tup2

The timing of the finite state machine can be best illustrated by an example similar to

Figure.5-7. This is done is Figure.5-11 where state A is assumed to start at t>tx and state B is

the next desirable state (which starts at t >t2). Consequently the input x must settle to x=0 one

set up time before <f>x goes low.

s(t+i)

-99-

Dynamfc
Utcal

FTg.S-7

»ft) ,

m.

Combinational

Logk

I^mamfc
Latch2

Flg.S-7

Jl_

Sft+1)

I pall phl2 I

In this example, assume: State A -> B -> D

tl t2 tS

Figure 5-11 Timing Of A Finite State Machine Using A 2-phase Non-overlap Clock

5.3.2 Two Set Of Signals In Each State

In MOS system, it is common that some control signals can only be asserted in certain

phases of the clock. For example, in a non-overlap two phases system, some control signals ZA<t>x)

can only be asserted in 4>x while some other control signals Z2(<f>2) can only be asserted in <j>2

The above requirement can be handled by a more general finite state machine shown in

Figure.5-12. A Moore machine is used here (compare this to Figure.5-9) because Moore machine

is highly recommended for implementing control logic as discussed at the end of Section 5.2. The

timing diagram in Figure„5-12, however, also applies to the more general Mealy machine. Zx(<f>x)

is glitch free and the extra dynamic latch#3 is used here to prevent glitches on the control line

Z2[<f>2). Since both Zx(<f>x) and Z2(<f>2) are glitch free, they can be used to control precharged

nodes as shown in Figure_5-13.

M

1 Dynamic
Latch 1

Flg.S-7

x

phil

JItL, Control

Logic

m.

m

* Next State

Logie

-100

Dynamfe
Latch 2

Flg.S-7

_TL
x

srw)

phl2

urn

a2(t) , fc —| \ aflphtt),Dynamic
Latch

Ffc.S-7

phil phl2

Figure 5-12 Timing Of A Finite State Machine With Two Sets Of Output Signals

Vdd

phil

node x

xl(phil]_

Q

Node x precharged to Vdd in phil*
Discharged conditionally in phil

OR

Vdd

Phi2l ^

nodex

z2(phi2)

Node x precharged to Vdd in phi2*
Discharged conditionally in phi2

Figure 5-13 Control Signals For Precharged Nodes

An example similar to Figure.5-11 is shown in Figure.5-14. From the timing diagram in this

Figure (and Figure.5-12), it can be seen that control signal Zx(<f>x) and Z2($2) of the current state

-101

won't be updated until 01 and <f>2 of the next cycle. This does not pose any serious problem

because this delay happens in every cycle and can be taken into account easily when designing the

state diagram.

s(t+i);

*PhU)K

x(poK)

tl t2 tS

Figure 5-14 Example Of A Finite State Machine With Two Sets Of Outputs

X=il/j=0
DL

xft)

m^

Combinational
Logic

* DL

sft+D

phil

E

Iphil pMg pMl

DL • Dynamic Latch, see figure 8-7

In this example, assume: State A -> B -> D

phl2

102-

5.3.3 Suggested State Diagram

The finite state machine shown in Figure.5-12 has two sets of outputs. One can only be as

serted in 01 and the other can only be asserted in 02. This is hard to represent in a general state

diagram but can be done easily for the state diagram of a Moore machine.

*(t)=<
alpha phil

0 otherwise

52(t)« <[
beta phi2

0 otherwise

Current state is A, next state can be one of n possible

states determined by the value of input X.

Figure 5-15 A General State Of The Proposed State Diagram

Figure.5-15 shows the general state of a state diagram that can be used to represent the

Moore machine shown in Figure.5-12. Figure.5-15 is a simple extension of the state diagram sug

gested in Figure.5-3c (Section 5.1.2). Besides showing explicitly that control signals Zx and Z2 can

be valid only in 01 and 02 respectively, Figure.5-15 also shows that the input x, which determines

the next state, is latched in during 0X.

-103-

0. SUGGESTIONS FOR FUTURE RESEARCH

This report is by no means a complete coverage of MOS circuit design techniques. As a

matter of fact, this report asks more questions that can be only be answered by further research.

First of all, the bootstrap driver discussed in chapter 2 is in NMOS. Bootstrap drivers may

also be useful in CMOS just to achieve faster rise and/or fall time through a gate drive higher

(lower) than the supply voltage(s) (V^ and GND) . However in CMOS, certain nodes may be

desirable to be bootstraped to a voltage lower than GND while some other nodes are desirable to

be bootstraped to a voltage higher than Vu. Furthermore, no depletion mode transistor is avail

able in CMOS and how a PMOS transistor can be used as a substitute will be an interesting ques

tion to be answered. All these matters can only be understood by further research.

In the discussion of Domino and NORA logic discussion, a tradeoff exists between using all

N-logic block and using a mixed of N- and P-logic blocks. Using a mixed of N- and P-logic blocks

eliminates the needs of inverters between gates and thus eliminates the inverter delay. However,

P-logic block is inherently slower than N-logic block. The inverter delay saved by using P-logic

block is therefore partially offset.

Another challenging question to be answered in Domino and NORA logic is the complexity

of a gate versus number of gate levels in implementing a given logic function. Figure.3-12d and

3-13d show how the composite function AND-OR is implemented by one single gate. This clearly

is an improvement over the implementation using two gate levels but how far this can be

extended is not known. As a gate becomes more complex, it becomes slower because of higher

parasitic capacitance and also because of more transistors are combined in series. Charge sharing

problem also intensifies as the gate becomes more complicated due to the increase in parasitic

capacitance.

The bubble matching technique, which is described in Section 3.2.2 and is used to check for

combination rule violation when N- and P-logic blocks are connected, can be automated. Another

candidate for automation is fine tuning the critical path in Domino logic. It is shown in Section

4.2.2 that critical path in Domino logic can be fine tuned by varying the size of the buffter

-104-

between gates. This process can probably be automated, but the 2nd order effects of varying the

buffer size must also examined.

Finally in chapter 5, only basic ideas of implementing control logic are introduced. It will be

extremely interesting to find out how these basic ideas can be extended to a multi-phase system

that has more than two phases in its system clock. Do the phases have to be non-overlapped?

Which two phases should be used to drive the input and output dynamic latches of the combina

tional logic? The decision on this question will determine the maximum allowed propagation delay

of the combinational circuit.

-105-

7. REFERENCES

[Des83| A. Despain, Personal Communication, Berkeley 1983.

[Gon83| N. Goncalves, H. De Man: "NORA: A Racefree Dynamic CMOS Technique for Pipelined
Logic Structure", IEEE Journal of Solid-State Circuits, vol. sc-18, no.3, June, 1983.

|H&J83| D.A. Hodges and H.G. Jackson: "Analysis and Design of Digital Integrated Circuits",
McGraw-Hill, New York 1983.

[Koh78| Z. Kohavi: "Switching and Finite AutomataTheory", McGraw-Hill, New York 1978.

[Kra82| R. Krambeck, C. Lee, and S. Law: "High-Speed Compact Circuits with CMOS", IEEE
Journal of Solid-State Circuits, vol. sc-17, no.3, June, 1982.

[M&C80] C. Mead and L. Conway: "Introduction to VLSI Systems", Addison- Wesley Publishing
Company, Reading Massachusetts, 1980.

[M&O&S] R. Mayo, J. Ousterhout, and W. Scott, editors: "1983 VLSI Tools: Selected Works by
the Original Artists", Computer Science Division, University of California, Berkeley 1983.

[Ous84] J. Ousterhout: "Magic Tutorial #l-#6", Computer Science Division, University of Cali
fornia, Berkeley 1984.

[Suz73] Y. Suzuki, K. Odagawa, and T. Abe: "Clocked CMOS Calculator Circuitry", IEEE Jour
nal of Solid-State Circuits, vol. sc-8, Dec, 1973.

[SW84] S. Whalen: "CMOS Adder Designs for High Performance Microprocessors", Masters'
Report, Computer Science Division, University of California, Berkeley 1984.

[Ung84| D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson: "Architecture of SOAR:
Smalltalk on a RISC", 11th Annual Symposium on Computer Architecture, Ann Arbor, Michigan
1984.

[Win80] D. Winkel and F. Prosser: "The Art Of Digital Design: An Introduction To Top-Down
Design", Prentice-Hall, New Jersey 1980.

A. SIMULATION OF THE ARITHMETIC LOGIC UNIT

A.1 Logic Simulation (ESIM) Of The Arithmetic Logic Unit

Before simulating the whole 32-bit ALU, the subsystems CarryEval, LookAhead, and the

input logic section AluInCell were simulated separately. First a bit slice was simulated, then a

byte of each subsystem was simulated. The subsystems were then put together to form an 8-bit

ALU and its function was simulated. Finally, after all these were done, the whole 32-bit ALU,

which is formed by cascading four 8-bit ALU together, is simulated. This appendix, only includes

the final simulation of the 32-bit ALU.

The following test cases were used in the 32-bit ALU simulation (see the patch file included

in this report):

Case 1:

Test (A - B) with C{n = 0 (borrow = 1) and A = B

6uaA<31:0> = 01001010 01001010 01001010 01001010

busB <31:0> = 01001010 01001010 01001010 01001010

Expected result (see ESIM's output file included in this report):

busD <31:0> = 11 111 111 11 111 111 11 111 111 11 111 111

<W - °

Case 2:

Test (A - B) with C{% = 1 (borrow = 0) and A = B

6u«>l<31:0> = 01001010 01001010 01001010 01001010

buaB <31:0> = 01 001 010 01 001 010 01 001 010 01 001 010

Expected result:

busD <31:0> = 00 000 000 00 000 000 00 000 000 00 000 000

A-2

<W - 1

Case 3:

Test (A + B) with Cin — 1 and A = B

buaA <31:0> = 10 110 101 10 110 101 10 110 101 10 110 101

busB <31:0> = 01001010 01001010 01001010 01001010

Expected result:

buaD <31:0> = 00 000 000 00 000 000 00 000 000 00 000 000

<w - i

Case 4:

Test (A + B) with Cin = 0 and A = B

buaA <31:0> = 10 110 101 10 110 101 10 110 101 10 110 101

buaB <31:0> = 01001010 01001010 01001010 01001010

Expected result:

buaD<Zl:0> «= 11 111 111 11 111 111 11 111 111 11 111 111

<W - o

Case 5:

Test (A or B) with C{n = don't care

6u«i4<31:0> = 1110 1110 1110 1110 1110 1110 1110 1110

buaB <Z1:0> = 1010 1010 1010 1010 1010 1010 1010 1010

Expected result:

buaD <31:0> = 1110 1110 1110 1110 1110 1110 1110 1110

A-3

Case 6:

Test (A and B) with C{n = don't care

6uM<31:0> =* 1110 1110 1110 1110 1110 1110 1110 1110

buaB <31:0> « 1010 1010 1010 1010 1010 1010 1010 1010

Expected result:

buaD <31:0> = 1000 1000 1000 1000 1000 1000 1000 1000

Case 7:

Test (A xor B) with C{n = don't care

buaA<Zl:0> = 1110 1110 1110 1110 1110 1110 1110 1110

buaB <31:0> = 1010 1010 1010 1010 1010 1010 1010 1010

Expected result:

buaD <31:0> = 0110 0110 0110 0110 0110 0110 0110 0110

All these expected values are observed when ESIM was run (see ESIM's output included in

this report). Furthermore, notice:

(1) busD has the expected value only during 04. During <f>x and 0a, busD is precharged to

1.

(2) Cord has the expected value only during 0a. During all other times, Covt is precharged

toO.

(3) During 02, busD=busA because busD is driven by busA as input to the ALU.

(4) In the patch file, it can be seen that each clock cycle is simulated by four ESIM cycles.

This is a direct result of the four-phase clock.

(5) In the patch file, it can be seen that busA and busB have don't care values except dur

ing 02 because the ALU latches in these two busses only during 02.

A-4

A.2 Timing Simulation (Spice) Of The Arithmetic Logic Unit

H
basB

J model for 2x1 max.

|ov
r KB

ET 12

i • •

y
>

M2 Cll

n t t~

ov

Cll, C12, — C19 are pansttie capacitance

approximated from the layout

Delay:

50% 16.6ns

90% 18.4ns

• —i

P" **» -iJ SVjU
M5

H
M12

CV.M B«

MB ziz: 'Hi =±z ' ILM14 =h=

M̂19

AxorB

21

CL

M20

MS

B 18 17

+ SV ,-J
H MIS

17

10/ ||J C17 f
—I— I \JhA —I—

M10 CIS|

(A&adB)*

Hi «v Hi 17
hMlSJp

MIS

(AxorB)* 10

M17 P

20

CIS
M18

Figure A-1 Spice Simulation Of Critical Path In Phi2

Ml

•f =F1 I5
"H.t*

1

MU8

134

5
CB4

J
Ml

MS

118

I
Mill

119?

L.5V
MU2. |-

13

A-5

14
J

1 M»

M)

jlMU

18

n .Mo
5V. -i

h -0-\4= WH
CI

MU> SV,]. A-\
Mia —I— I=t= Hun*

ca q |ci
Ml —»— ' -»|

1 > H C13

CKtkal f*fth Of LookAhead (toe ffcure -Ma)

J
ML4

MI7

5
Output a LookAhead-

SfLMt» If

"V 110

r07

117 113 h 22

Clfl
116 c

Mt07 [~
6V

lilt
L SV

MUB |-

112 T
M.5V

sa|o")
M113 h z^

Qr3j p Oc2
hh_ A l-» I "^Ml^ MUJ61 —*— MI08 f- —|— l*C' —*— Mtos C—^~ MUB

124

CC4
MI20

120

HLm121
3

?m _d_iPHi Mt22

126

C32*

IF1"1 M114

—I M115
h 122

—ILmua
123

MU7

C32

Osl

Node
Delay
50%

Delay
90%

G7 11.4ns 12.6ns

C32 29.2ns 31.6ns

Figure A-2 Spice Simulation Of Critical Path In Phi3

ESIM's PATCH FILE

n phi2 busAO busD<0>
n phi2 busAl busD<l>
n phi2 busA2 busD<2>
n phi2 busA3 busD<3>
n phi2 busA4 busD<4>
n phi2 busA5 busD<5>
n phi2 busA6 busD<6>
n phi2 busA7 busD<7>
n phi2 busAS busD<8>
n phi2 busA9 busD<9>
n phi2 busAlO busD<10>
n phi2 busAll busD<ll>
n phi2 busA12 busD<12>
n phi2 busA13 busD<13>
n phi2 busA14 busD<14>
n phi2 busA15 busD<15>
n phi2 busA16 busD<16>
n phi2 busA17 busD<17>
n phi2 busA18 busD<18>
n phi2 busA19 busD<19>
n phi2 busA20 busD<20>
n phl2 busA21 busD<21>
n phi2 busA22 busD<22>
n phi2 busA23 busD<23>
n phi2 busA24 busD<24>
n phi2 busA25 busD<25>
n phi2 busA26 busD<26>
n phi2 busA27 busD<27>
n phi2 busA28 busD<28>
n phi2 busA29 busD<29>
n phi2 busA30 busD<30>
n phi2 busA31 busD<31>
I
= Alu8bit_4/Adder8bit_0/CarryEval_0/C_EvalCelll_7/NandNor2_0/Cin
= Alu8bit_4/Adder8bit_0/Carr^Eval_0/C_EvalCelll_7/^anc^or^0/Ci^

V phi2
V phi2*
I
V phi3
V phi3*

|V phi4
V phil*ANDphi3*
I
V sub

V sub*

!
V orj?hi4
V and_phi4
V xor_phi4
I
V Cin

V Cin*

I
jV addORsub
V addORsub_4
j
V busAO

V busAl

One clock cyc&
is-four ESlMcycksi

[01^
32

)ID<OlDODIDCOiOODIDODIDO0 JODTOO
1011101110111011101110111011

OQ1000100010D010D01000100010

1101110111011101110111011101

OOOIOOOIOOOIDOOIDOOIOOOIOOOI

OlOlOlOlfalOlOlOlOlOlOlOlOlOl

xllx xllxxOOx xOOxxOOx xOOx >c00x

xOOxxOOxxllxxllxxll*xllxxllx

oooooooqoooooooojoooioooooooo
OOOOOOOC 0000 OOOCQOOC 00010000
0000 OOOC 0000 DOOC 000C 0000 0001

xxOx xxl> xxlxxxO> xxO> xxOx xxOx
xxlx xxO> xxOxxxlx xxlx xxlx KXlX

xlllxlllxlllxlllxOOOxOOOxOOO
000100010001D001D0003000D000

xOxx xOxx xlxxkIxx kOxxxOxx kOxx
xlxx xlx> xOxx kOxx kOJxxpcOxxfcOxx

see PP.Al-3

Cin

Cin*

V

V

V

V

V

V

I
V

V

V

V

V

V

V

V

I
V

V

V

V

V

V

V

V

I
V

V

V

V

V

V

V

V

busA2

busA3

busA4

busA5

busA6

busA7

busA8

busA9

busAlO

busAll

busA12

busA13

busA14

busA15

busA16

busA17

busA18

busA19

busA20

busA21

busA22

busA23

busA24

busA25

busA26

busA27

busA28

busA29

busA30

busA31

V busB2<0>

V busB2<l>

busB2<2>

busB2<3>

busB2<4>

busB2<5>

busB2<6>

busB2<7>

V

V

V

V

V

V

I
V

V

V

V

V

V

V

V

I
V

V

V

V

V

V

V

V

busB2<8>

busB2<9>

busB2<10>

busB2<ll>

busB2<12>

busB2<13>

busB2<14>

busB2<15>

busB2<16>

busB2<17>

busB2<18>

busB2<19>

busB2<20>

busB2<21>

busB2<22>

busB2<23>

xux>xuxJXXX x>xtx>x£$L
xlx> xlxx xOxx xOxx xlx> xlxxxlxx

xOx> xOxx xlxx xlxx xOxx xOxxxOxx

xOxx xOxx xlxx xlxx xlxx xOxxxOxx

xlxxxlxx xOxx xOxx xlxx xlxxjxlxx
xOxxpcOxx^clxxIxlxxpclxxIxlxxjxlxx

xOxxbcOxxjxlxxjxlxxlxOxxbcOxxpcOxx
xlxx xlxx xOxx xOxx xOxx xOxxxOxx
xOxx xOxx xlxx xlxx xlxx xlxxxlxx

xlxxxlxx xOxx xOxx xlxx xlxxxlxx

xOxx xOxx xlxx xlxx xOxx xOxxxOxx

xOxxb<Oxx|xlxx|xlxx|xlxxp<OxxxOxx
.xxxlxx

xOxxbcOxxklxxbclxxbclxxbclxxxlxx

xOxx xOxx xlxx xlxx xOxx xOxxxOxx
xlxx xlxx xOxx xOxx xOxx xOxx xOxx

xOxx xOxx xlxx xlxx xlxx xlxxxlxx

Lxxjxlxxxlxxxlxx xOxxxOxx xlxx xl

xOxxxOxx xlxxxlxx xOxx xOxxxOxx

xOxxxOxx xlxxxlxx xlxx xOxxxOxx

xlxxxlxx xOxx xOxx xlxx xlxxxlxx

xOxxxOxx xlxx xlxx xlxx xlxxxlxx

xOxxxOxx xlxx xlxx xOxx xOxxxOxx

xlxxxlxx xOxx xOxx xOxx xOxxxOxx

xOxxxOxxxlxxxlxxxlxx xlxxpclxx
xlxxxlxxxOxxxOxx xlxx xl:

xOxxxOxxxlxx xlxx xOxx xO:

xOxxxOxxxlxxxlxx xlxx xO:

xlxxxlxxxOxxxOxx xlxx xl:

xOxxxOxx xlxx xlxx xlxx xl:

xOxx xOxx xOxx xOxx xOxx xO:

xlxx xlxx xlxx xlxx xlxx xl:

xOxx xOxx xOxx xOxx xOxx xO:

xlxx xlxx xlxx xlxx xlxx xl:

xOxxxOxx xOxx xOxx xOxx xO:

xOxxxOxx xOxx xOxx xlxx xl:

xlxxxlxx xlxx xlxx xOxx xO:

xOxx xOxx xOxx xOxx xlxx xl:

xOxxxOxx xOxx xOxx xOxx xO

xlxx xlxxxlxx xlxx xlxx xl

xOxxxOxx xOxx xOxx xOxx xO

xlxxxlxxxlxx xlxx xlxx xl

xOxxxOxx xOxx xOxx xOxx xO:

xOxxxOxxxOxx xOxx xlxx xl:

xlxxxlxx xlxx xlxx xOxx xO:

xOxxxOxxxOxx xOxx xlxx xl

xOxxpcOxxxOxxxOxxxOxx xO:
xlxxxlxxxlxx xlxx xlxx xl:

xOxxxOxxxOxx xOxx xOxx xO

xlxxxlxxxlxx xlxx xlxx xl

:OxxxOxx xOxx xOxx xO

)xxxOxx xOxx xlxx xl

xO

xO

xlxxpclxxklxxjx
xOxxlxOxxpcOxxpc!

lxxxOxxxO

Oxxxlxxxlxx^cl

V

V

V

V

V

V

V

V

busB2<24>

busB2<25>

busB2<26>

busB2<27>

busB2<28>

busB2<29>

busB2<30>

busB2<31>

w busD<0>

w busD<l>

w busD<2>

w busD<3>

w busD<4>

w busD<5>

w busD<6>

w busD<7>

w busD<8>

w busD<9>

w busD<10>

w busD<ll>

w busD<12>

w busD<13>

w busD<14>

w busD<15>

w busD<16>

w busD<17>

w busD<18>

w busD<19>

w busD<20>

w busD<21>

w busD<22>

w busD<23>

w busD<24>

w busD<25>

w busD<26>

w busD<27>

w busD<28>

w busD<29>

w busD<30>

w busD<31>

w Cout Cout*

xOxxxOxx xOxxxuxx xuxx xuxxxOxx

xlxxxlxx xlxx xlxxxlxx xlxx xlxx

xOxx xOxx xOxxxOxx xOxx xOxx xOxx

xlxx xlxx xlxx xlxx xlxx xlxx xlxx

xOxxxOxx xOxx xOxx xOxx xOxx xOxx

xOxxxOxx xOxx xOxxxlxxxlxx xlxx

xlxxxlxx xlxxxlxxxOxxxOxxxOxx

xOxxxOxx xOxx xOxx xlxxxlxxxlxx

ESIM's OUTPUT FILE

\i

Script started on Mon Dec 17 15:29:56 1984
renoirl> kesim

sim> @ ALU.sim

sim> @ ALU.al
sim> @ ALU.patch
sim> I

initialization took 2733 steps
sim> I

initialization took 5 steps
sim> I

initialization took 0 steps

limiluful^dlr^iO:busD<0>
1011101110101011:busD<l>

J1111111111101111:busD<2>
>111111110fL0iqi011111111111110:busD<3>
>101110101110jlllll010101Q1010:busD<4>
>1011101011iqillllllll0101011:busD<5>
>111111101010il0111111111Qllll:busD<6>
>1011101011ldlllllllllllllllO:busD<7>
>101110101110illlll01010101010:busD<8>
>111111101010il011101110101011:busD<9>
>10111010111ujllll 111111101111:busD<10>
>1111 HlOlOldlOll 111111111110:busD<ll>
>1011101011ldlllll0101Q10ll010:busD<12>
>10111010111O;illllllll010J1011:busD<13>
>1111111010iai011111111iqilll:busD<14>
>10111010111dllll 11111111^1110:busD<15>
>1011101011ldlllll01010iqi010:busD<16>
>11111110101Q1011101110101011:busD<17>

>1011101011ldllll111111101111:busD<18>
>1111111010ldl011111111111110:busD<19>
>101110101110J1111101010101010 :busD<20>
>1011101011iailll111110101011:busD<21>

>1111111010ldl01l!L11111101111:busD<22>
>1011101011ldllllllllllllllllO:busD<23>
>1011101011ldlllll01010101010:busD<24>
>111111101010il011101110101011:busD<25>
>101110101110|llllillllll0]llll:busD<26>
>111111101010ll01lJL11111111110:busD<27>
>101110101110jlllljL01010101010:busD<28>
>101110101110111liL11110101011:busD<29>
>111111101010fL01lJL11111101111:busD<30>
>1011101011101111L11111111110:busD<31>
>00000010D0100000D010D0103010:Cout

>llll|1101|110ljllllL10ljll0l)ll01:Cout*
sim> q l-v—'
renoir2> exit <t>l
renoir3>

script done on Mon Dec 17 15:34:14 1984

simfoR @ C2>;
>10EfllOI01i:
>11111110101(

>10111010111(

see

fc, <t>h fo

SPICE'S OUTPUT - CRITICAL PATH IN PHI2

1*******12/07/84 ******** SPICE 2Go6 3/15/83 ********04sl2s21*****

OCRITICAL PATH FOR ALUINCELL CIRCUIT

0**** INPUT LISTING TEMPERATURE = 27.000 DEG C

Q**

Ml 11 10 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M2 11 10 0 0 CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

Cll 11 0 0.002P

* PASS TRANSISTORS OF 2X1 MUX
M3 11 0 12 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M4 11 1 12 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

C12 12 0 0.002P
*

M5 13 12 1 1 CMOSP W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
M6 14 0 13 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M7 14 1 15 0 CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M8 15 12 0 0 CMOSN W=4.5U L=3U AD=6.75P AS=49.5P PD=3U PS=24U
*

C14 14 0 0.002P
*

M9 16 14 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M10 16 14 0 0 CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

C16 16 0 0.002P
*

Mil 17 16 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M12 17 1 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M13 17 1 18 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M14 18 16 0 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

C17 17 0 0.002P
*

M15 19 17 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M16 19 1 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M17 19 1 20 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
M18 20 17 0 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

C19 19 0 0.002P
*

M19 21 19 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U
M20 21 19 0 0 CMOSN W=6U L=3U AD=54P AS=54P PD=24U PS=24U
*

CL 21 0 0.05P
*

.MODEL CMOSN NMOS LEVEL=2.00000 LD=0.245423U TOX=50Q.000E-10
+NSUB=1.0000000E+16 VTO=0.932797 KP=2.696667E-05 GAMMA=1.280470
+PHI=0.600000 UO=381.905 UEXP=1.001000E-03 UCRIT=999000.
+DELTA=1.47242 VMAX=55346.1 XJ=0.145596U LAMBDA=2.491255E-02
+NFS=3.727796E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=25 CGSO=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10 MJSW=0.33
*

.MODEL CMOSP PMOS LEVEL=2.00000 LD=0.512860U TOX=500.000E-10
+NSUB=2.971614E+14 VTO=-0.844293 KP=1.048805E-05 GAMMA=0.723071

+PHI=0.600000 UO=100.000 UEXP=0.145531 UCRIT=1854306

+DELTA=2.19030 VMAX=100000. XJ=2.583588E-08 LAMBDA=5.274834E-02

+NFS=1.615644E+12 NEFF=1.001000E-02 NSS=O.000000E+00 TPG=-1.00000

+RSH=95 CGSO=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=4.5E-10 MJSW=0.33
*

VDD 10 5

VIN 10 0 PULSE (0 5 ON IN IN)
.WIDTH OUT=80

.IC V(ll)=5 V(12)=5 V(13)=l V(14)=0 V(15)=0 V(16)=5 V(17)=0 V(18)=0
+ V(19)=5 V(20)=4 V(21)=0
.TRAN 0.2N 25N

!PRINT TRAN V(21) V(19) V(17) V(16) V(14) V(12) V(ll) (0,5)
.PLOT TRAN V(21) V(19) V(17) V(16) V(14) V(12) V(ll) V(10) (0,5)
.END

1*******12/07/84 ******** SPICE 2G.6 3/15/83 ********04:12:21*****

OCRITICAL PATH FOR ALUINCELL CIRCUIT

0**** MOSFET MODEL PARAMETERS TEMPERATURE = 27.000 DEG C

Q***

CMOSN CMOSP

OTYPE NMOS PMOS

OLEVEL 2.000 2.000

OVTO 0.933 -0.844

OKP 2.70d-05 1.05d-05

OGAMMA 1.280 0.723

OPHI 0.600 0.600

OLAMBDA 2.49d-02 5.27d-02

OCGSO 5.20d-10 4.00d-10

OCGDO 5.20d-10 4.00d-10

ORSH 25.000 95.000

OCJ 3.20d-04 2.00d-04

OMJ 0.500 0.500

OCJSW 9.00d-10 4.50d-10

OMJSW 0.330 0.330

OTOX 5.00d-08 5.00d-08

ONSUB 1.00d+16 2.97d+14

ONSS 0. d+00 0. d+00

ONFS 3.73d+12 1.62d+12

OTPG 1.000 -1.000

OXJ 1.46d-07 2.58d-08

OLD 2.45d-07 5.13d-07

OUO 381.905 100.000

OUCRIT 9.99d+05 1.85d+04

OUEXP 0.001 0.146

OVMAX 5.53d+04 1.00d+05

ONEFF 0.010 0.010

ODELTA 1.472 2.190
1******* 12/07/84 ******** SPICE 2G.6

OCRITICAL PATH FOR ALUINCELL CIRCUIT

0**** INITIAL TRANSIENT SOLUTION

3/15/83 ********04:12:21*****

TEMPERATURE = 27.000 DEG C

0***

M
H
H
H
^
(
O
^
t
O
^
G
0
0
0
0
0
Q
D
0
(
)
N
]
>
]
s
]
N
j
v
]
^
(
^
(
^
^
^
(
n
(
P
(
^
O
l
^
^
^
^
^
^
(
U
O
)
(
^
(
A
)
O
J
K
)
M
M
M
N
)
H
H
H
H
H
(
)
0
^

O
O

O
O

0
0

o
o

o
o

o

I
I

I
I

I
o

o
o

o
o

0
0
0
0
0
0
0
0
v
O

o
o

o
o

o
o

o
o

o
o

Q
j
(
L

P
<
C
L
0
»

I
I

I
I

I
o

o
o

o
o

v
O

v
O

v
O

v
O

v
O

t
o
O

G
O
O
*
i
£
t
o

O
O

O
O

O
O

o
o

o
o

o
o

P
.
P
.
P
»
P
.
P
.
0
.

I
I

I
I

I
I

o
o

o
o

o
o

v
O
v
O

v
O

v
O
v
O
v
O

o
o
o

cr
»

»*
>
t
o

o
o

o
o

o
o

o
o

o
o

o
o

o
(
1
(
L
(
L

Q
i
d

(
1

I
I

I
I

I
i

o
o

o
o

o
o

v
O

v
O

v
O

v
O

v
O

v
O

0
0

C
h

o
o

o
o

a
a

I
I

o
o

o
o

v
O

v
O

v
O

v
D

o
o

O
Q

D
O

t^
to

O
O

D
O

*
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o

P
.
P
,
p
,
p
,
0
,
p
,
p
.
p
,

I
I

I
I

I
I

I
I

o
o
o
o
o
o
o
o

v
O

v
O

v
O

v
O

v
O

v
O

v
O

v
O

£
t
o

o
o

o
a

»
^
t
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
0

.
p

.
0

.
P

.
P

.
p

.
p

.
0

.
0

,
0

.
0

,
P

,
p

.
I

I
I

I
I

I
I

I
I

I
I

I
+

O
O

O
O

O
O

O
O

M
M

M
M

O
v
O

v
O

v
O

v
O

v
O

v
O

v
O

v
O

O
O

O
O

O
^
-"

M
H
H
O
)
«
O
a
i
(
{
k
K
)
H
H

Q
>

tt
*
t
o

O
0
0

(J
i

•£
>

0
o

o
o

o
o

o
o

o
o

o
o

o
o

Q
.
P
.
P
.
C
L
0
.
Q
*
0
«

1
I

I
I

I
I

I
O

O
O

O
O

O
O

l
O

V
O

V
O

V
O

V
O

V
O

V
O

I
I

I
I

I
I

tt*
0
0
t
o
O
i
O
J
t
o
t
o

I
I
t
i
l
l

P
s
J
(
A

)
H

U
tH

K
)
0

J
U

a
>

(
A

)
(
A

)
tO

K
)
tO

N
)

M
>

-
»

M
H

»
M

M
M

M
M

H
»

H
M

I
-
»

M
M

V
O

>
J
if

r
»

«
*

C
J
to

O
O

O
H

U
lO

v
O

O
O

O
C

J
O

tO
to

O
J

*
J

to
0

0
>

tk
o

o
o

h
-
»

a
>

o
)
O

J
to

c
n

v
j

N
J(

n
(D

v0
C

*
»

fe
tO

»
£

fc
C

*
vO

»
£

»
H

h
-*

tO
tO

<
A

>
0

0
t-

*
»

{*
O

»
tf

c
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
p

.
i

I
i

I
i

I
O

O
O

O
O

o
I

I
I

I
I

I
I

o
o

o
o

o
o

o
I

I
I

I
I

I
I

I
o

o
o

o
o

o
o

o

-
J
^
O

O
O

t^
U

lO
tt

th
M

C
O

U
lM

O
v
D

O
O

a
O

O
O

O
O

O
O

4
*

vO
a

i
tn

v
o

-J
a

a
a

a
i

i
i

i
o

o
o

o

h
-»

to
O

*
-
J

-
J

vO
U

l
M

O
0

0
P

.
Q

.
P

.
Q

.
0

.
I

I
I

I
I

o
o

o
o

o

s
l
O

H
O

H
H

W
W

W

0
.
P

.
P

.
0

.
P

.
0

.
0

.
0

.
P

.
I

I
I

I
I

I
I

I
I

o
o

o
o

o
o

o
o

o

>
4

-
jc

r
»

a
>

c
n

4
»

4
^
o

J
to

i-
»

v
o

-
v
i-

jv
D

O
O

tf
»

O
O

W
O

>
v
O

to
O

*
*

J
O

>
tO

tO
tf

k
O

t
O

M
0

l
O

M
H

»
0

l
H

«
J
<

r
»

0
0

M
M

0
0

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

p
.

I
I

I
I

I
I

I
I

I
I

I
I

I
I

o
o
o
o
o
o
o
o
o
o
o
o
o

*
»
»
»
»
»
»
»
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

X
X

X
X

X
X

X
X

tj
k
j

_
O

O
II

A
A

X
X

X
V

V
V

A
A

A
V

V
V

O
•t

o
||

A
A

A
V

V
V

o
•t

o
||

A
A

V
V

A
V

O
X

A
A

V
V

A
V

O
II

A
V

•t
o

A
O

V
II

A
V

»
0

V
•t

o
O

A
V

A
•

•
•

V
•

O
V

•t
o

A
V

V
O

A
V

•t
o

A
V

O
A

V
'O

•t
o

O
A

V

O
A

V
•
•
•
•
•
•
•
•

-t
o

•
•
•
•
•
•
•
•

9
©

•t
o

.•
a

•t
o

O

O
.
.
.
.

4
f
t
.
.

•

O

O
-t

o

•
to

o
jd

d
ii

o
o

-
a

v
O

O
A

O
O

-t
o

A
O

O
•t

o
A

V

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

A
V

A

~
X

» + II
•
to o A V

•
o

S
3

<

a + O O

O
II

+
»

M Q
M

<
<

<
^
^
^
•
^
^
^
^

1
5

K
>

»-
»

M
to

0
O

i
-
J

vO
M

•
•

o
"
^
^
"
^

a + O O

V
A

O
-
t
o

<
<

<
<

^
•
^
^
^
V

^
*

K
^
"
*

*
«

t
o

M
M

M
M

in
H

to
»t

k
O

t

o o p
.

+ o o . O
l

o a + o o e
n

. o o o + o

1.080d-08 1.418d-03 *X $ » <9 0 ?

1.100d-08 1.492d-03 *X$ • = <9 1 0 ?

1.120d-08 1.524d-03 X<$, = 0 ?
1.140d-08 1.557d-03 X<$, = 0 ?

1.160d-08 1.573d-03 XX , = :_ %, : 0 ?

1.180d-08 1.587d-03 X$, = 0?

1.200d-08 1.570d-03 X$ 0?

1.220d-08 1.493d-03 X$ • ^1\ • 0?

1.240d-08 1.415d-03 X$ 0?

1.260d-08 -8.408d-04 X$, = 0?
1.280d-08 -3.545d-03 X$ • = ox

1.300d-08 -8.220d-03 X$, s= ox

1.320d-08 -1.691d-02 X$ +0?
1.340d-08 -2.559d-02 X$ + X

1.360d-08 -3.685d-02 X$ = + X
1.380d-08 -4.863d-02 X += X
1.400d-08 -5.518d-02 X .+ X
1.420d-08 -5.106d-02 X , + X
1.440d-08 -4.693d-02 X , + X
1.460d-08 -3.752d-03 X • + \ X
1.480d-08 4.746d-02 X* + X
1.500d-08 1.320d-01 X* , + = X
1.520d-08 2.843d-01 X * , + : © = X
1.540d-08 4.366d-01 X * + = X
1.560d-08 6.944d-01 X * nK '• ~>\ = X
1.580d-08 9.739d-01 X *+ •§\ = X
1.600d-08 1.282d+00 X + ik °\ = X
1.620d-08 1.650d+00 X + * CP\ . = X
1.640d-08 2.017d+00 X + * = X
1.660d-08

1.680d-08

*? TTiri t c\r\ v i

w = X
z.oyoa+uu a +

2.770d+00 X +

' Sis
*

1.700d-08

1.720d-08

3.123d+00 X +

3.427d+00 X +

*

*

"> =x

I =x
1.740d-08 3.731d+00 X + i %s , i1 .J v =x

. * 4 =x1.760d-08 3.952d+00 X + 7- 8-S •
1.780d-08 4.156d+00 X + * =x
1.800d-08

1.820d-08

4.334d+00 X +

4.457d+00 X +
a- ~ ^

3> ^
* =x

* =x
1.840d-08

1.860d-08

a ^ftfid+nn y + . *-- =x

* =x4.660d+00 X + : \ :
1.880d-08 4.731d+00 X + ? * =x
1.900d-08 4.791d+00 X+ \ *=x
1.920d-08 4.831d+00 X+

5. * >
* X

1.940d-08 4.870d+00 X+ *x
1.960d-08 4.895d+00 X+

^8 o -x
*x

1.980d-08 4.917d+00 X+ *x
2.000d-08 4.935d+00 X+ *x
2.020d-08 4.947d+00 X+ fV G- v»^

*x
2.040d-08 4.960d+00 X » - »%- ! X
2.060d-08 4.967d+00 X

3 ^ «

X
2.080d-08 4.974d+00 X X
2.100d-08 4.980d+00 X V X
2.120d-08 4.983d+00 X X
2.140d-08 4.987d+00 X X
2.160d-08 4.989d+00 X X
2.180d-08 4.991d+00 X X
2.200d-08 4.993d+00 X X
2.220d-08 4.994d+00 X X
2.240d-08 4.996d+00 X X
2.260d-08 4.996d+00 X X

SPICE'S OUTPUT - CRITICAL PATH IN PHI3

1*******11/08/84 ******** SPICE 2G.6 3/15/83 ********12:38:58*****

OOVERALL CRITICAL PATH FOR 8 BIT LOOKAHEAD

0**** INPUT LISTING TEMPERATURE = 27.000 DEG C

Q***

* CRITICAL PATH FOR LOOKAHEAD CIRCUIT

Ml 10 3 11 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M2 11 1 12 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U

M3 12 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

Cll 10 0 0.00297P
*

M4 13 10 1 1 CMOSP W=6U L=3U AD=54P AS=54P PD=24U PS=24U

M5 13 10 0 0 CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

CI 13 0 0.0396P
*

M6 14 13 15 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M7 15 1 16 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U

M8 16 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

C12 14 0 0.00297P
*

M9 17 14 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U

MIO 17 14 0 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
*

C2 17 0 0.13514P
*

Mil 18 17 19 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M12 19 1 20 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U

M13 20 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

C13 18 0 0.00297P
*

M14 22 18 1 1 CMOSP W=9U L=3U AD=81P AS=81P PD=27U PS=27U

* M15 22 0 21 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
* M16 22 1 23 0 CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M17 22 18 0 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
*

* CRITICAL PATH FOR CARRY EVALUATION

MlOl 110 22 111 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U

M102 111 1 112 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M103 112 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

CY1 110 0 0.00297P
*

M104 113 110 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
M105 113 110 0 0 CMOSN W=3U L=3U AD=45P AS=45P PD=24U PS=24U
*

CXI 113 0 0.28893P
*

M106 114 113 115 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M107 115 1 116 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M108 116 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U

CY2 114 0 0.00297P
*

M109 117 114 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
MHO 117 114 0 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
*

CX2 117 0 0.28893P
*

Mill 118 117 119 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M112 119 1 120 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M113 120 1 0 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

CY3 118 0 0.00297P
*

M118 124 118 1 1 CMOSP W=18U L=3U AD=135P AS=135P PD=33U PS=33U
M119 124 118 0 0 CMOSN W=4.5U L=3U AD=49.5P AS=49.5P PD=24U PS=24U
*

CX3 124 0 0.28893P
*

M120 125 124 126 0 CMOSN W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M121 126 1 127 0 CMOSN W=9U L=3U AD=13.5P AS=13.5P PD=3U PS=3U
M122 127 10 0 CMOSN W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
*

C14 125 0 0.00297P
*

M114 121 125 1 1 CMOSP W=9U L=3U AD=13.5P AS=81P PD=3U PS=27U
M115 122 0 121 1 CMOSP W=9U L=3U AD=81P AS=13.5P PD=27U PS=3U
M116 122 1 123 0 CMOSN W=4.5U L=3U AD=49.5P AS=6.75P PD=24U PS=3U
M117 123 125 0 0 CMOSN W=4.5U L=3U AD=6.75P AS=49.5P PD=3U PS=24U
*

CL 122 0 0.022P
*

.MODEL CMOSN NMOS LEVEL=2.00000 LD=0.245423U TOX=500.000E-10
+NSUB=1.0000000E+16 VTO=0.932797 KP=2.696667E-05 GAMMA=1.280470
+PHI=0.600000 UO=381.905 UEXP=1.001000E-03 UCRIT=999000.
+DELTA=1.47242 VMAX=55346.1 XJ=0.145596U LAMBDA=2.491255E-02
+NFS=3.727796E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.00000
+RSH=25 CGSO=5.2E-10 CGDO=5.2E-10 CJ=3.2E-4 MJ=0.5 CJSW=9E-10 MJSW=0.33
*

.MODEL CMOSP PMOS LEVEL=2.00000 LD=0.512860U TOX=500.000E-10
+NSUB=2.971614E+14 VTO=-0.844293 KP=1.048805E-05 GAMMA=0.723071
+PHI=0.600000 UO=100.000 UEXP=0.145531 UCRIT=18543.6
+DELTA=2.19030 VMAX=100000. XJ=2.583588E-08 LAMBDA=5.274834E-02
+NFS=1.615644E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=-1.00000
+RSH=95 CGSO=4E-10 CGDO=4E-10 CJ=2E-4 MJ=0.5 CJSW=4.5E-10 MJSW=0.33
*

VDD 10 5

VIN 3 0 PULSE (0 5 ON IN IN)
.WIDTH OUT=80

.IC V(110)=5 V(111)=0 V(112)=0 V(113)=0 V(115)=0 V(116)=0 V(114)=5 V(117)=0
+ V(118)=5 V(119)=0 V(120)=0 V(122)=0 V(124)=0 V(125)=5
+ V(126)=0 V(127)=0
+ V(10)=5 V(11)=0 V(12)=0 V(13)=0 V(15)=0 V(16)=0 V(14)=5 V(17)=0 V(18)=5
+ V(19)=0 V(20)=0 V(21)=0.7 V(22)=0 V(23)=0
•TRAN 0.2N 40N

.PRINT TRAN V(3) V(10) V(13) V(14) V(17)

.PRINT TRAN V(18) V(22) V(HO) V(113) V(114)

.PRINT TRAN V(117) V(118) V(124) V(125) V(122)
* .PLOT TRAN V(22) V(18) V(17) V(14) V(13) V(10) V(3) (0,5)
.PLOT TRAN V(122) V(125) V(124) V(118) V(117) V(114) V(113) V(HO) (0,5)

5!H

r<
^
i*

*
i*

iS
S

*
i«

P
<

ii*
X

X
«

;*
X

X
X

X
X

X
«

X
X

X
X

X
X

X
X

X
X

g
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
fi~

p
»

r
»

<
v-

*
S*s

C8
(Tjo)

•
V

A

A

A
V

A
i
.
.
.
.
.
.

•
r>

•
A

"
N

O
J
M

H
H

H
H

H
^

A
P

^,,H
H

rH
r-t

H
H

»H
I

>
>

>
>

>
>

>
>

^
A

[&]
..

••
••

••
..

,.
..

..
A

t3
«

+
II
»

0
V

A
N

°
•

N
A

(*•
•

•
•

A

A

A

A
N

a
r
-

(V
.

N

A
P

"
f^

C
«

A
<

*•
<

*•
!*•

^
N

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

iO
<

0
^<

»
C

ft#
C

*
O

O
O

O
O

H
rH

iH
rH

C
>

«
fv

io
jc

g
rjro

ro
c
o

rO
fO

^^^^

H
iH

r^H
H

rH
rH

H
rH

H
H

H
rH

H
rH

rH
H

rH
H

rH
rH

rH
H

H
fH

^^H
rH

rH
H

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
p
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
p
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

i
i

i
I

I
i

i
i

i
i

i
i

i
i

i
I

I
I

I
I

I
l

I
l

l
I

I
I

l
I

l
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I
X

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Q
O
O
O
O
Q
O
O
O
O
O
O
O
O
O
O
O
O

O
O

O
O

O
O

O
O

O
O

O
O

Q
O

O
O

O
O

O
O

O
O

O
O

O
O

r
^
^
v
O

O
)
O

f>
l^

v
O

<
D

O
r
g

^
iO

a
)
O

C
S

Q
C

>
i^vO

O
O

O
rg

^vO
©

O
f>

»
^vO

()O
O

f>
J^vO

<
D

O
C

N
^vO

O
O

O
O

O
O

O
iH

rH
^iH

H
rv|c>

if>
iiN

r^rO
rO

rO
rt

io
i/)

io
io

io
v
o

v
o

v
o

v
o

v
©

r
*

t^
r
^
r
^
r
^
©

<
D

c
o

c
D

©
o

>
o

^
o

>
o

>
o

^
H

H
fH

X
X
X
X
X
X
X
X
X
X
X
X
X
X
+

+
+

+
+
+

+
+

+
+
+

+
+
+
X
X
X
X
X
A
A
X
X
X
A
A
A
A
A
A
A
A
A
A
A
A
A
A
X
X
X
X
X
X
X
X

«
•

A
A
A
A
A
A
A
A
A

+
0
0
0
0
0
0
0
0
0

X
X
A
A

O
O
O
O

^
^
A
A
A

O
O
O
+

II
A
A

TO-
O
O
O
+

II
II

A
A

O
II

II
A
A

A
«
•

O
O

+
||

A
A

O
||

A
A

«•
O

II
II

A
A

O
+
1
1

A
to-

O
II

A
O

O
+

1
1

A
«)•

||
o

o
c
.
.
.
«

.
.
.
.
•
•
•
•
.
.
.
.

.
.
.
.
/
-
\
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Q
en

p
S

v
o

v
X

o
v

o

0
i®

c
»

*

o
T

O
-

to
-

in

fo
-

to
-

to
-

C
29-

S*>
II

♦
■
■+

/*

«
•

II

«•
II

II
«o-

T
O

-
T

O
-

V
V

V
V

V
V

V
||

V
V

V
V

V
V

X

T
O

-
T

O
-

T
O

-T
O

-
T

O
-

T
O

-T
O

-T
O

-

<&
P

#

+
*

*
+

+
+

(
\.

(V
.

T
O

-T
O

-T
O

-T
O

-T
O

-T
O

-T
O

-*
X

X
r
.

r>
.(v.

(v.
r-.

r
.

i*.
o«

^
.

r
.

II
v

v
v

v
v

v
v

v
v

v
v

*
to-

to-
to-

to-
to-

to-
to-

to-
to-

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
'
X
X
X
X
X
'

•
'
'
X
1

1
•

•
1

1
•

•
1

1
1

'
•

1
1

•
1

•
1

1
1

1
1

•
«

'
1

1
+

+
+

+
T

5
1

J
1

J
1

j
1

J
^
T

J
1

3
1

J
1

J
T

j
1

J
1

J
1

J
1

J
1

J
T

J
1

3
1

3
T

J
T

J
T

J
1

J
^
1

3
1

J
^
T

J
T

J
^
^
1

3
^
^
1

3
1

J
1

3
T

J
1

3
T

J
1

3
T

J
^

c
o

^
o

v
o

c
o

c
n

H
C

f
to

o
r
«

v
o

r
o

c
n

to
~

~
_

_
_

.
v
O

^
r
O

H
C

O
v
O

^
r
*

iO
H

fO
v
O

<
N

<
X

)
^
r
^
r
o

o
iO

a
)
O

^
O

^
r
g

H
H

r
g

^
s
t*

iO
iO

r
^
v
O

v
O

^
C

O
O

O
O

O
C

O
r
N

jfO
r
«

g
r
o

r
g

r
o

H
u

i<
£

O
T

t^
r
^
r
^
r
«

[
^
r
^
o

iO
r
H

r
'*

o
>

v
o

r
>

'H
io

©
^
v
o

f>
j©

o
^
v
D

in
c
^

0
0

r*
^
^
^
^
^
^
f
0

^
0

^
0

^
0

^
^
^
^
O

f
0

^
^
J
(
n

^
o

^
l
l
0

^
H

(
n

f
0

^
H

l
n

o
v
D

O
H

H
«

0
^
H

l
0

v
0

^
^
l
C

0
^
O

^
0

^
f
0

^
v
0

O
H

^
J
(
0

^
H

H
(
0

v
0

(
^

I
I

r
HI

I
I

r
*

r
i

i-l
r
i

r-i
i-i

i-i
I

I
I

I
I

0
0

0
0

0
0

c
o

O
O

O
O

I
I

I
I

o
o

O
O

J
o

o
^

V
O

00
0

0
0

0
0

0
0

0
0

0
0

0
0

1
I

I
I

I
*0

1
3

*tJ
13

1
3

O
O

O
Q

O
C

O
O

<
N

*
vO

r
-

0
0

c
o

c
o

0
0

C
O

0
0

C
O

C
O

O
O

O
O

I
I

I
I

1
3

1
3

T
J

U
O

O
O

O
C

O
o

™
«

#
0

0
C

*
0>

V7»

r
H

C
N

io
jo

a
r
O

fO
^
iO

^
r
O

tN
f^

r
*

-
I

I
I

I
I

I
I

I
I

I
I

H
C

M
^
iO

t^
O

O
iH

i-
l

C
h

C
S

^I
fO

vO
(T>

I
I

I
I

I
c
j

r
o

r
o

r
o

o
j

I
I

I
I

I
1

0I
f
H

f
>

J
f
0

^
v
O

C
n

H
H

f
-
»

H

0
0

C
O

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
I

I
I

I
I

T
J

1
3

U
*

0
*

0
1

3
0

0
0

0
0

0
V

O
c
o

o
™

^
vO

o
t
w

o
o

o
o

0
0

0
0

0
0

0
0

O
O

O
O

I
I

I
I

U
U

T
i

1
3

O
O

O
O

O
H

H
H

C
O

0
0

0
0

C
O

C
O

0
0

O
O

O
O

O
O

I
I

I
I

I
I

*
0

1
3

*
0

U
1

3
x
j

O
O

O
O

Q
O

vO
0

0
O

M
V

vO
H

tH
O

J
C

S
C

N
C

N
J

0
0

0
0

0
0

C
O

O
O

O
O

I
I

I
I

t3
t
j

t3
1

3
O

O
O

O

c
i

e
n

c
o

c
o

G
O

C
O

C
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

I
I

I
T

J
U

1
3

0
0

0
VO

CO
Q

ro
ro

^P

I
I

I
1

3
*

0
T

3
0

0
0

V
O

0
0

o
x

?
^

^
^

1
0

C
O

0
0

0
0

0
0

O
O

O
O

I
I
I

1
3

*
0

U
I1
3

O
O

O
O

r*
^

vO
00

1
0

m
m

1
0

0
0

C
O

C
O

C
O

0
0

C
O

O
O

O
O

O
O

I
I

I
I

I
I

1
3

1
3

*
0

T
J

*
0

1
3

O
O

O
O

O
O

O
N

^
v
O

O
O

O
vO

vO
V

O
vO

V
O

r
*

0
0

0
0

O
o

I
I

•O
1

3

c
o

c
o

o
o

I
I

1
3

1
3

o
o

V
O

0
0

r
-

r»

C
O

C
O

0
0

0
0

C
O

0
0

0
0

0
I

I
I

I
I

1
3

1
3

1
3

1
3

1
3

O
O

Q
O

O
O

(N
sF

vO
CO

0
0

C
O

C
O

00
00

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
N

N
N

C
v
i
N

N
N

N
N

^
N

N
C

N
N

W
N

N
N

N
N

N
N

N
M

N
N

N
N

t
N

N
N

N
W

N
N

N

^
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

II
II

II
II

II
II

II
II

II
*

*
*

*
«

*
*

*
„

„
II

II
II

II
*

*
«

II
II

*
*

«
«

«

+
-*

+
+

x
&

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

oo+oc
n

I
yt^

C
ixs

deky
^

m
easu

red
a

t
5o%

p
o

in
t:

^9.a,>
s

oo+1
3

o
o

o
o

o
o

+
+

+
'O

'O
'O

<
N

O
C

O
1

0
C

*
C

N
C

*
H

^

O
O

o
o

+
+

•0
1

3
o

e
n

O
vO

v
o

r
>

o
o

o
o

+
+

o
o

r>
C

O
o

o
o

o
o

+
+

1
3

T
J

e
n

e
n

o
o

r
o

<
J*

m
ea

su
red

&
-L

$0%
poi^-t:3l.6ns

o
o

o
o

+
+

•a
1

3
C

n
V

O
O

V
O

1
0

1
0

o
o

o
o

+
+

•
d

-
d

H
V

0

vO
vO

o
o

o
o

+
+

1
3

*
0

C
O

vO
r>

r
>

o
o

o
o

o
o

+
+

+
t
j

t
j

*
d

n
c
n

o
j

CJ>
<

N
1

0
r>

o
o

o
o

o
o

o
o

+
+

V
O

0
0

0
0

0
0

O
O

O
O

O
O

O
O

+
+

+
+

•0
1

3
1

3
1

3
r-\

r>
V

O
1

0
O

r-\
c
n

r
o

e
n

e
n

c
^

e
n

o
o

o
o

+
+

•0
1

3
C

O
C

N
^

1
0

e
n

e
n

o
o

o
o

+
+

•
0

1
3

r>
c
n

1
0

vO
e
n

e
n

o
o

o
o

+
+

r>
c
n

v
o

r>
e
n

e
n

o
o

o
o

+
+

•0
1

3

r>
r>

e
n

e
n

o
o

o
o

o
o

+
+

+
•o

*
0

1
3

O
N

^
C

O
0

0
0

0
e
n

e
n

e
n

o
o

o
o

o
o

+
+

+
1

3
*

0
*

0
io

r>
c
o

C
O

C
O

C
O

e
n

e
n

e
n

o
o

o
o

o
o

+
+

+
*

0
*

0
1

3
C

f
t
O

H
C

O
e
n

e
n

e
n

e
n

e
n

o
o

o
o

o
o

+
+

+
1

3
'O

1
3

c
n

c
n

r
o

0
>

C
Ji

(7
t

e
n

e
n

e
n

o
o

o
o

o
o

+
+

+
•0

*
0

1
3

C
O

^
f

«
*

e
n

e
n

e
n

0
>

c
n

C
n

o
o

o
o

+
+

•0
1

3
^
1

0
e
n

e
n

e
n

e
n

o
o

o
o

o
o

+
+

+
•0

1
3

1
3

1
0

1
0

V
O

0
>

c
n

c
n

e
n

e
n

e
n

^
^

^
^

^
^

^
^

r
o

fO
c
o

r0
c
o

^
^

*&
^i^

^
^

*i^
^
r

^
r

^*
^
^

^*r
^
r

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
r

^
i

^
>

^
i

^
^

^
^

^
^

^
^

^
r

^
r

^
r

^*
^J^

^
^

^4^
^
^

^J^
^
^

*5j^
*&

^j*
^j^

^j^
^
^

^
^

^
^

^w

C
O

C
O

0
0

0
0

0
0

C
O

O
O

O
O

O
O

•
0
1
3

O
O

o
<
N

X
i

I
1
3
1
3
1
3

O
o

o
v
O
C
O
O

e
n
e
n

e
n
e
n
e
n
o

C
O
0
0
C
O
0
0
C
O
0
0
0
0

o
o

o
o

o
o

o

•
0
1
3
1
3
*
0
1
3
1
3
1
3

O
Q

O
O

O
O

Q
C
N
3
«
V
O
C
O
O

C
N
3
*

O
O

O
O

H
H

H

0
0

0
0

C
O

0
0

0
0

C
O

O
O

O
O

O
O

I
I

I
I

I
*

0
1

3
"
0

1
3

U
O

O
O

O
Q

V
O

00
O

C
N

^

o
o

o
o

o
o

c
o

O
O

O
O

I
I

I
I

1
3

1
3

.1
3

1
3

O
O

O
O

V
O

0
0

O
C

N
r
i

fH
C

N
C

N
c
n

<
n

e
g

r
o

(O
c
o

0
0

0
0

C
O

0
0

C
O

0
0

O
O

O
O

O
O

I
I

I
I

I
I

*
0

1
3

1
3

1
3

1
3

*
0

O
O

O
O

O
O

vO
00

O
CN

^
vO

ro
ro

^
^

^
^

o
o

o
o

c
o

o
o

o
o

o
o

o
o

o
o

c
o

o
o

o
o

o
o

o
o

o
o

O
O
O
O
O
O
O
O
O
O
O
O
O
O

I
I

I
I

I
I

I
T

J
*

0
"O

1
3

*
0

1
3

"O
O

O
O

Q
O

O
O

00
O

fN
^

vO
00

O
^
lO

lO
lO

lO
lO

v
O

v
O

v
O

v
O

v
O

I
I

I
I

•0
1

3
1

3
"O

O
O

O
O

C
N

<
*

V
O

0
0

I
I

I
1

3
1

3
1

3
O

O
Q

t
^

r>
r>

0
0

0
0

0
0

0
0

C
O

0
0

O
O

O
O

O
O

I
I

I
I

I
I

•O
1

3
1

3
*

0
*

0
"
0

O
O

O
O

O
O

VO
00

O
CN

3*
vO

r
>

r*-
c
o
c
o
o
o
o
o

o
o
c
o
c
o
o
o
c
o
o
o
c
o

o
o
o
o

o
o

o

X
X
X
X

i
•

i
*
0
"
0
1
3
*
0
*
0
1
3
*
0

O
O

O
Q

O
O

O
C
O
O

CN
^

VO
0
0
o

o
o
e
n
e
n
e
n
e
n
e
n
o

<
N

jc
g

c
N

C
N

C
N

r
o

r
o

c
o

r
O

c
o

c
o

r
O

c
O

r
o

r
o

c
o

r
o

r
o

c
o

c
o

c
o

r
o

r
O

r
o

r
o

c
O

c
o

r
o

r
o

r
o

r
o

r
^

B. A TYPICAL NMOS PROCESS

Included below are the Spice models for the enhancement mode transistor (enmos) and the

depletion mode transistor (dnmos) in a' typical NMOS four micron process.

.model enmos nmos vto=1.0 kp=17.2u gamma=.40 lambda=.01 cgdo=350p

+ cgso=350p cgbo=200p cj=1.3e-8 cjsw=350p tox=85n ld=.5u uo=350

+ ucrit=2.6e5 uexp=.23 vmax=4e4 level=2

.model dnmos nmos vto=-2.5 kp=18.0u gamma=.51 lambda=.015 cgdo=350p

+ cgso=350p cgbo=200p cj=1.6e-8 cjsw=350p tox=85n ld=.5u uo=366

+ ucrit=2.6e5 uexp=.23 vmax=3e4 level=2

	Copyright noticE 1985
	ERL-85-10 (1 of 2)
	ERL-85-10 (2 of 2)

