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Chapter 1

Introduction

Ptolemy II is a software system written in Java for modeling and simulation of em
bedded real-time systems. Ptolemy's focus is on supporting a rich variety of models
of computation, which deal with concurrency and time in different ways. Models in
Ptolemy II are hierarchical and heterogeneous. They can consist of several subsystems
which can be based on different models of computation as shown in figure 1.1.

continuous time

finite-state machine

discrete time

Figure 1.1: Hierarchical and heterogeneous modeling in Ptolemy II.

Ptolemy II takes a component based view on design. Models are constructed from
components which we will refer to as actors. In the context of this work, an actor
is a computational entity, which consumes sequence of tokens at its input ports and
produces sequences of tokens at its outputports as a function of the actors current state
and parameters and the incoming token sequences. It also changes its state, or rather
computes a successor state.

Figure 1.2 shows a simple actor before and after a firing. The CharReader actor has
two input ports (N and Data). When fired, it is supposed to read one token from port
N. The value of this token specifies how many tokens to read from the Data port. In
this case, the value read from N is 3 and the actor reads the three character tokens ' C ,
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Figure 1.2: The CharReader actor before and afterfiring

' A' and ' L' from Data. The actor has a state variable state, which at each firing
is incremented by the value of the token read form N. In this firing it is changed from
42 to 45. The actor has two output ports Out1 and Out 2. At each firing it outputs the
current value of sura at Out 1 and outputs the tokens read from Data at Out2.

Atomic actors in Ptolemy II have so far been written in Java. Writing actors in Java
requires a certain knowledge about the Ptolemy II API which poses a considerable
entrance barrier for new authors. Actor writingcan be error-prone and repetitiveeven
for experienced authors, and it forces the author to take certain design decisions on
issueswhich ariseonly due to the PtolemyAPI,butdo not reallyconcernthe semantics
of the actor. Chapter 2 will focus on those issues in detail, after giving a general
overview over the Ptolemy II software.

An alternativesolutionis to writeactors in CAL - a domainspecific languagefor writ
ing data flow actors. CAL is not a general purpose language, but is supposed to be
embedded into a richer environment. It is supposed to be platform independent and
retargetable to a rich variety of target platforms. It provides a strict semantics for defin
ing an actors computational operations, ports and parameters and it provides a set of
compositedata structures. But it leavescertain issues to the embeddingenvironment,
such as the choice of supported data types and the definition of their semantics. An
introduction to the CAL languagewill be given in chapter 3.

This work addresses the designand implementation of a code generatorwhich allows
generating atomic actors in Ptolemy n froman actorspecification in CAL. Chapter 4
will give the big picture of the CAL compiler,as it is shown in figure 1.3, and it will
explain howthestructure of thecompiler makes it easyto re-target it tootherplatforms.

In order to make the compiler easy to re-target and the code generation as easy as
possible to implement,the compilertransformsthe CAL specification of the actor into
a subsetof the language, which still fullyrepresents thesemantics of theactor. Chapter
5 gives an idea about the transformationsperformed and explains some of them more
in detail.

What does a generated actor look like? And how does it have to be structured in order
to be reusablefor other platforms?Chapter6 will focuson thedesignof the targetcode
in detail, and explainhowre-usabilityis achievedby separatingthe generatedcode into
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Figure 1.3: The big picture of the CAL compiler

a generic and a platform specific part.

Chapter 7 focuses on specific implementation details of the code generator itself. It
explains how the code generator traverses the source program and how it uses an inter
mediate representation of the source which allows writing the generated code in a non
sequential way.

In Chapter 8 we finally summarize the achievements of this work and explain opportu
nities for further work related to the CAL code generation.



Chapter 2

Ptolemy

PtolemyII is a softwaresystem written in Java for modelingand simulationof hetero
geneous systems. This chapter briefly introducessome aspects of Ptolemy which are
important to understand thecontext of thisreport, anditmotivates theactor description
language CAL, whichwillbe introduced in thenextchapter. A detailed documentation
of the Ptolemy projectcan be found in the mostrecent overview paper[5].

2.1 The Ptolemy Project

ThePtolemy Projectat UCBerkeley studies modeling, simulation, anddesign of con
current, real-time, embedded systems. Thefocus isonembedded systems, particularly
those thatmixtechnologies including forexample analog anddigital electronics, hard
ware andsoftware, andelectronics and mechanical devices. Thefocus is also on sys
tems that are complex in the sense that they mix widely different operations, such as
signal processing, feedback control, sequential decision making, anduser interfaces.

During the last years, the Ptolemy group has constructed a simulation and modeling
software system inJava. Thecurrent version of thissoftware is called Ptolemy II andit
enables simulation of heterogeneous systems. Ptolemy II includes a graphical userin
terface called Vergil forvisual depiction andconstruction ofmodels. Figure 2.1 shows
anexample of a Ptolemy II model displayed asa block diagram inVergil. Theexample
is a discrete time model of a simple communication system, and its functionality is
briefly commented in the model display. Figure 2.2 shows the execution of the model
in the run window.
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Figure 2.1: A Ptolemy II model displayed in the graphical user interface Vergil. This
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Figure 2.2: The model shown in figure 2.1 is executed in the run window. The run win
dow allows the user to control executionof the model and to set the model parameters.
It displays the graphical output produced by the TimedScopel actor, which is the
eye-diagram known from analog signal processing.



2.2 Hierarchical and Heterogeneous Modeling

Ptolemy supports a variety of computational models, such as continuous time, discrete
time, discrete events, synchronous data flow and many others. We will refer to the
implementation of a computational model as a domain. Each domain has a director
which controls the interactions between the actors and schedules the actors for firing.
The simulation of the discrete time model shown in figure 2.1 is controlled by the
discrete time director.

J . J continuous time^x-^^ite-state machine
discrete time

Figure 2.3: Hierarchical andheterogeneous modeling in Ptolemy II.

As shown in figure 2.3, a Ptolemy II model can consist of several sub-models which
can have different domains. Mixing different domains in one and the same model is
what we call hybrid modeling. The capability to simulate such hybrid models is the
key feature of Ptolemy II and its main 'selling point' in comparison to other existing
modeling software systems.

2.3 Actor based modeling

Ptolemy II takes a component view of design, in which models are constructed as a set
of interacting components which we refer to as actors.

Theconcept of actors was first introduced byCarl Hewitt in [8] asa mean of modeling
distributed knowledge-based algorithms. Actors has since then become widely used,
for examplesee [2], The GAL approach of defining the actorconcept is in part much
inspired by the work presented in [11].

In thecontext ofGAL, anactor is a computational entity with input ports, output ports,
state and parameters. It communicates withotheractors by sending and receiving to
kens (atomic pieces of data) through its ports. A GAL actor contains one ore more ac
tions. An action defines a computation, which consumes sequences of tokens from the
actor's input ports, and producessequencesof tokensat its outputports. The execution
of an action may change the actor's intemal state, and the producedoutput sequences
are functionsof the currentactor state as well as of the consumedinput sequences. An
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action may contain a set of guard conditions, which are expressions of type boolean
and pose necessary conditions for the action to be executed. The execution of one of
the actor's actions is called firing.

A Ptolemy II actor can be specified in two different ways: Either by composing several
other actors into a sub-model - these actors are called composite actors - or the actor
can be atomic. Atomic actors are (so far) coded in Java, the implementation language
of Ptolemy II. Of course, every composite actor's functionality could just as well be
defined by an atomic actor.

This report exclusively deals with atomic actors, and from now on if we use the word
actor in the context of Ptolemy, we mean atomic actor.

2.4 Writing atomic actors in Ptolemy U

This section gives a short introduction to actor design in Ptolemy II and discusses some
drawbacks resulting from specifying actors in Java. A more detailed documentation of
actor design is given in [5].

Before firing After firing
paramolers parameters

input ports A output ports input ports ^ output ports

tokens

Data. _

stato 0

tokens tokens

state ®

Figure 2.4: An actor before and after firing

Figure 2.4 shows the CharRead actor which was already introduced in section 1.
Remember that the actor has two input ports (N and Data). When fired, it is supposed
to read one token from port N, and this token specifies how many character tokens
to read from the Data port. The actor has a state variable state, which at each
firing is incremented by the value of the token read from N. The actor has two output
ports Outl and Out2. At each firing it outputs a token with the current value of
state at Out 1 and outputs the tokens read from Data at Out2. The actor has three
parameters max_N, max.state and endChar. Assume the actor cannot fire if the
value of the token read from N is more than max_N, or if the value of state has
reached max.state.

Example 1 shows the actor written in Java:

Example 1.
package ptolemy.actor.lib;

import ptolemy.actor.*;
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import ptolemy.kernel.CompositeEntity;
import ptolemy.kernel.util.*;
import ptolemy.data.*;
import ptolemy.data.expr.Parameter;
import ptolemy.graph.Inequality;

public class CharRead TypedAtomicActor {

public Parameter maxJ4;
public Parameter max^tate;
public Parameter endChar;

public TypedlOPort N;
public TypedlOPort Data;
public TypedlOPort Outl;
public TypedlOPort Out2;

private Token state;
private Token .state;

public CharRead(CompositeEntity container. String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
maxJ^ = new Parameter (this, "maxJJ", new IntToken (12)) ;
max.state = new Parameter (this, "max.state", new IntToken (99))
endChar = new Parameter(this, "endChar", new CharToken(""));
N = new TypedlOPort(this, "N", true, false);
Data = new TypedlOPort(this, "Data", true, false);
Outl = new TypedlOPort(this, "Outl", false, true);
Out2 = new TypedlOPort(this, "Out2", false, true);

}

public void initialize() throws IllegalActionException {
super.initialize 0;

-State = new IntToken(0);

}
prefireO {

return N.hasTokenO;

}
fireO {

.state = new IntToken(state);

IntToken n = N.getToken();
if (n.isLessThan(maxJI) ii _state. isLessThan (max.state)) {

if (Data.hasTokens(n)) {
.state.add(n);

for (int i = 0; i < n.intValue(); i++) {
Out2.send(Data.getToken());
Outl .send (.state);

}
} else {

// what to do with the value of n?

}
}

}
postfireO {

state = .state;

return true;

12
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Figure 2.5: An actor's parameters can be set using the parameter window, which ap
pears when right clicking the actor. This actor takes the parameters init, step and
firingCountLirait.

2.4.1 Parameters

CharRead defines three parameters: max_N, max_state and endChar.

The actor parameters can be set by right clicking the actor in the graphic editor Vergil.
Figure 2.5 shows the window for setting the parameters which appears on right clicking
the actor in the model.

The parameters are defined as public members of type Parameter:

public Parameter max_N;

public Parameter max.state;
public Parameter endChar;

They are instantiated in the actor constructor. The Parameter constructor take three
arguments, a reference to this, the parameter name as a String and a default value.

max_N = new Parameter (this, "max_N", new IntToken (12) ) ;

max.state = new Parameter (this, "max.state", new IntToken (99) ) ;
endChar = new Parameter(this, "endChar", new CharToken(" "));

2.4.2 Ports

Actors receive and send tokens through their ports. A port can either have exactly
one channel (single port), or it can have an arbitrary number of channels (multi port).

13



Ptolemy ports are single ports by default, but they can be set to of type multi port by
invoking their setMultiPort () method with the argument true.

The CharRead actor contains two input and two output ports. The constructor of
a port object TypedlOPort takes four arguments, a referenceto this, a String con
taining the portsnameand twobooleans specifying whether the port is an inputor an
output port. For input ports those booleansare true and false, for output false
and true:

public TypedlOPort N;

public TypedlOPort Data;

public TypedlOPort Outl;

public TypedlOPort Out2;

public CharRead( . ... ) {

N = new TypedlOPort(this, "N", true, false);
Data = new TypedlOPort(this, "Data", true, false);
Outl = new TypedlOPort(this, "Outl", false, true);
Out2 = new TypedlOPort(this, "Out2", false, true);

2.4.3 Tokens

Actors communicate by exchanging tokens, which can be defined as atomic pieces of
data.

The Ptolemy II, Token classes provide a type system with primitive types such as
IntToken, DoubleToken, BocleanToken, etc. as well as 'composite' types
such as ArrayToken, MatrixToken. The base class of thetoken hierarchy is the
Token class.

Although it is possible to use Java built-in primitive types orObjects fordefining vari
ables, we chose to representthe state variableby an IntToken.

2.4.4 Initialization

When starting the simulation of a model, every actor's initialize () method is
invoked by the director. Thismethod initializes theactor'sglobal statevariables. The
CharRead's initialize () method instantiates a new IntToken objectand as
signs it to .state.

public void initialize() throws IllegalActionException {
super.initialize ();

14



-State = new IntToken(O);

}

2.4.5 Split phase firing

The firing of a Ptolemy II actor is divided into three phases:

• Exactly one invocation of its prefire () method.

• Any number of invocations of its fire () method

• At most one invocation of its post fire () method.

2.4.6 Prefire

The prefire () method is the only method which is invoked exactly once per iter
ation. It returns a boolean that indicates to the director whether the actor wishes for

firing to proceed.

The CharRead actor's prefire () method checks whether there is a token available
at the input port (without consuming it) and returns true if there is one.

public boolean prefire() {
return N.hasToken();

}

2.4.7 Fire

The f ire () method is the main point of execution and is generally responsible for
reading inputs and producing outputs. It may also read the current parameter values
and the output may depend on them.

Some domains perform a fix-point iteration by calling fire () a number of times
while each time starting from the original state but consuming new tokens from the
input ports. Thus, the fire () method should not update the actor's persistent state.
Instead, that should be done in the post fire () method, which we will discuss in
the next section.

The fire () method in the CharRead actor gets a token from the input port and
assigns it to n. If the conditions n < max-N and ^tate < max^tate are met,
fire() checks for availability of tokens at the Data port. If there are at least n tokens
available, the outputs are produced. In case there are not enough tokens available.

15



thereare severalreasonable solutions of whatto do. Wewill focuson this point in the
following section.

fireO {
-State = new IntToken(state);
IntToken n = N.getTokenO;

if (n.isLessThan(inaxJ^) &s _state. isLessThan (max_state) ) {
if (Data.hasTokens(n)) {

-State.add(n);

for (int i = 0; i < n. intValue (); i++) {
Out2.send(Data.getToken()) ;
Outl. send (-state);

}
} else {

// what to do with the value of n?

}
}

2.4.8 Postfire

The postfire 0 method has two tasks: updating persistent state and returning a
booleanwhetherthe execution of an actor is complete.

The CharRead postfire () method assigns thetemporary -state to the persis
tent state and returns true.

postfire0 {
state = -State;

return true;

}

2.5 Issues in actor design

Writing atomic actors inJava isnota trivial matter, since it takes a certain knowledge
ofthePtolemy II API and ofcourse the Java language itself. Especially when writing
domain polymorphic actors, there is a certain riskfor creating bugs or unintended be
havior, sincetheactordesigner hasto be aware of theassumptions which thedifferent
domains make about the actors.

Let us illustrate those issues by the example of the CharReader actor:

In its f i re 0 method,the controlstructures governing theexecution of theactionare
nested because of the dependency between the valueon one port and the number of
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tokens to be read from the other. Also, it is important to note that this code defines
a way to deal with the eventuality that we have read a token from port N, but did not
finda sufficientnumberof tokenson port Datato start executing. In that case, we need
to decide what to do with the value read from N: Do we discard it, or store it for the
next time fire is called, in case there is no new token on the N port (in which case we
also need to modify the initial condition of the fire method testing for presence of this
token)?

The important point here is that possibly the right way of answering this question de
pends on the model of computation that this actor will be embedded into (and that may
be unknown to the author of this actor). Furthermore, the entire question may simply
be of no concem to the person writing the actor, and it only distracts from specifying
the actual functionality. Finally, the need to write these control structures and possibly
manage additional state introduces new ways of making mistakes without contributing
to the functionality that a user wants to specify.

Example 2 shows the firing methods of the CharRead actor. The lines which do not
really concem the actor semantics itself but are necessary for matching the actor to the
Ptolemy API are highlighted in bold text:

Example 2.
prefireO{

return N.hasToken();

}
fireO {

Jtate = new IntToken(state);
int n = N.getTokenO ;
if (n. isLessThan (maxJ^) && ^tate. isLessThan (max-state)) {

if (Data.hasTokens(n)) {
-State.add (n);

for (int i = 0; i < n; i++) {
Out2.putToken(Data.getToken());
Outl.putToken(_sum);

}
} else {

// what to do with the value of n?

}
}

}
postfireO {

sum = .sum;

}

Another drawback following from the example above, is that there is hardly any use
for Ptolemy actors written in Java outside the Ptolemy context, since they consist to a
big part of code which is specific to the Ptolemy II API.

It would be convenient to have a more abstract representation of atomic actors, which
is not specific to the Ptolemy API. This would combine the advantage of a clearer and
less error-prone actor definition with an increased re-usability of the designed actors in
other contexts than Ptolemy II.

17



This was the motivation to create CAL, an actor language for specifying data flow
actors. The next chapter will show how the CharRead actor looks like in CAL, and it
will give an introduction to writing actors in CAL.

18



Chapter 3

CAL

CAL [9] is a textual language for writing data-flow actors which was created as a part
of the Ptolemy II project at UC Berkeley. This chapter explains purpose and features
of the CAL language, and it provides a brief tutorial to the CAL syntax and semantics.

3.1 Purpose and features of the CAL language

CAL is a domain-specific language for defining the functionality of actors. Its goal is to
provide a concise high-level description of an actor, which insulates the actor behavior
from the semantics of a specific runtime platform, such as Ptolemy II.

CAL is not intended as a full-fledged programming language, but to be embedded
into a richer environment. The language itself does not specify a strict semantics for
all the constraints of an actor, such as for example the type system. Neither does
it provide communications mechanisms or scheduling schemes for the computational
model in which the actor is executed. Instead, it leaves those issues to the designer of
the application in which the actor is used.

3.2 Advantages in using CAL for actor definition

In order to show the advantages of CAL, we use the example of the CharRead actor
again. Here is the CharRead actor written in CAL:

Example 3.

actor CharRead {Integer Integer max^tate, String endChar)
Integer N, String data Integer Out!, String Out2 :
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Integer state := 0;
action N : [n], data : [d] repeatn =» Outl : (sum], Out2 : [d] repeatn

guard n < maxJV, state < max^tate
do

state := state + step;
endactlon

endactor

This version is obviously much shorter andlooks significantly more elegant then the
Java version, but that is not the deciding point. The main advantage of CAL is that
it insulates the author of an actorto deal with the Ptolemy specific constraints which
are not reallyconcerning the actors semantics, such as deciding what to do with read
tokens if the actorshows not to be firable, keeping a temporary copyof theactorstate,
howto separatethe firing into prefire (), fire () and post fire (), and so on.

Let us now summarize the benefits and drawbacks of CAL:

• Portability and re-usability of actors: Actors written in CAL can be used in
the context of any actor based simulation platform, provided the existence of
a compiler or interpreter, which translates the actor definition in CAL to the
platform's API. If a platform's API is modified such that its interface to the actors
changes, it is sufficient to modify theCAL compiler/interpreter and recompile
the actor libraryinstead of re-writing the wholelibrary.

• Simplicity of actor design and error prevention: When writing an actor for a
platform like Ptolemy, the author of an actor typically has to bring a certain
knowledge about the platforms API. Furthermore, it is hard to avoid that an un
experienced actorauthor maywrite erroneous actors, because of notbeing aware
of all the platform-specific constraints. A well written CALcompiler couldthus
reduce the entrance barrier in actor designas well as the risk for errors, because
it could take care of the platform specific issues for the user.

• Readability and maintainability: Actors written for a simulation platform in an
all-purpose programming language tendto be longand theirbehavior in certain
situations hard to extract from the code. Thus, they need to be very carefully
documented, such that a person other than the actors author can reconstruct the
actor's intended behavior. CAL offers a compact, clear and precise semantics,
which is tailored to theconstraints ofactor design andthus facilitates readability
and maintainability of the actor library.

• Information extractionfor modelcompilation: Another, maybe lessobvious ad
vantage ofspecifying an actorin CALis, that it allows to perform analysis on an
actordefinition, which is hardly possible withan actorwritten in Java. In chap
ter 8 we will explain why information extraction from actors could be useful for
further work in model compilation.
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Cost of writing a compiler: Writing a compiler for a language as complex as
CAL is a nontrivial task, and it takes a lot of workforce to build one from scratch.
The CAL compiler for Ptolemy n described in this work, was designed with a
focus on ease of retargetability, and intends to be a framework for the design
of further compilers to other Java-platforms. A later chapter will focus of the
design of this framework.

Reduced execution speed ofgenerated actors: Although an actor defined in CAL
looks very compact and clear, it is hardly possible to write a compiler, whose
generated code can compete with handwritten code in terms of compacmess and
execution speed. Depending on the time constraints and importance of the exe
cution speed of a platform, this may or may not be a serious drawback.

3.3 Another simple example of a CAL actor

To get a flavor of the the CAL language, we will start with a quick example using
the Ramp actor, which is slightly simpler than the CharRead actor shown in the last
section. The Ramp actor produces a sequence of Tokens, where the first token's value
is init and the value of each following Token is increased by step. The actor has
one input port which triggers its execution. Example 4 shows the CAL code of the
Ramp actor.

Example 4.

actori2amp {Integer init, Integer step) Integer In =» Integer Out:
Integer state = init;
action [c] [state] do

state := state -I- step;
endaction

endactor

3.3.1 Actor header

The first line of the Ramp actor is called actor header. The actor header defines the
actor's interface to the model, such as its name, parameters and ports, and opens the
actor scope. The keyword endactor in the last line closes the actor scope again:

actorflomp {Integer init, Integer step) Integer In => Integer Out
... this is the Actor Scope ...

endactor

Now let us take a closer look at the actor definition:
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• The actor definition starts by the actor keyword, followed by the actor name
Ramp.

• The actor name is followed by a pair of braces, which contain the parameter
declarations. Parameters are constants, whose values can be set by the user
through the simulation environment. A parameter definition consistsof a type
and a parametername. The Ramp actor takesone parameter k of type integer.

• The last part of the actor definitionis formedby theport declarations. The arrow
separates the inputport declarations on the left hand side from the outputport
declarations of the righthand side. Bothsides havethe samesyntaxand an actor
can haveany number(including zero)of inputand outputports. Eachport has
a type and a name. The Ramp actor has one input port In and one output port
Out.

Adoubledotmarkstheendof theactordefinition andthe beginning of theactorscope.
Sometimes it isconvenient tobreak theactordefinition intotwolines, if itgetstoolong
otherwise. Note that the CAL syntax completely ignores linebreaks.

3.3.2 State variable declarations

Actors have state, which they keep between two firings. State variables in CAL are
defined inside the actor scope, but outsidethe actions. The ramp actorhas one state
variable state, which is definedin the following line:

Integer state = init;

3.3.3 Action definition

As already mentioned in an earlier section, a CAL actor can have one ore several ac
tions. Actions aredefined within theactorscope, andeachaction defines a scopeitself,
which contains any number of statements.

TheScaleactorhasonlyoneaction, and its header looks likethe following:

action [c] => [state] do

It consistsof the the action keyword,theport pattern and the begin keyword.

The portpatterncontainsan arrowwhichseparates thebindingpatterns fromthe bound
patterns.
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The binding patterns define howmanytokens the action should read fromeach input
port, and they introduce newvariable names,whichare boundto the incoming tokens.
The binding pattern [c ] in our example defines, that the action should read one token
from the input port In, and binds the token read from In to the name c. If there
is no token available at In, the action cannot fire. Since binding patterns are very
important to the expressiveness of CAL we will explain them more in general in a
separate section. For now it is enough to understand the pattern in our example.

The bound patterns define how many tokens the action should produce at each output
port, and what values the output tokens should take. In our example, the actions bound
pattern is [state ], which defines the value of the token produced at the output port
to be the value of the state variable. Bound patterns will be explained more in detail
in the next section.

The actor scope contains a list of statements, which will be explained in detail in the
next section. The Ramp actors only action has one statement

state := state + step;

which adds the value of the step parameter to the variable state.

The example of the Ramp actor gave us an impression what the CAL language looks
like and showed the skeleton of a CAL actor - the actor definition and the action defini
tions - but it does not demonstrate all the capabilities of the language. The next section
will describe the introduced constructs more in detail and will introduce more language
features.

3.4 A short tutorial to the CAL language

This section provides a short tutorial to actor design in CAL, and introduces the key
constructs of the CAL language. A complete documentation of the language syntax
and semantics is given in [9].

3.4.1 The structure of an actor

The following example 5 gives a simplified framework of a CAL actor with two actions
and introduces names for the grammatical elements. It will help the reader to keep
the big picture when specific language elements are described more in detail in the
following sections of this chapter.

Example 5.

actor actorname {parameter decls) input port decls => output port deds
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{initialization) statements

action inputpatterns => outputexpressions
guard guard conditions
var declarations

do

{action) statements
endactlon

action...

do

endaction

endactor

3.4.2 Data types

As mentioned previously, CAL is designed to be embedded in a host environment or
host language.CALthus does not providean owntypesystem, and unstructured types
such as Boolean, Integer, Double have to be imported from the host environ
ment. So the choice of these types, as well as the operations on them is left to the
environment. In the context of this work, the host environment is the PtolemyII plat
form. The Ptolemytype system was alreadybrieflydiscussed in the last chapter.

3.4.3 Data structures

CAL provides a syntax for a number of built-in data structures, such as unstructured
types, tuples, comprehensions and closures.

Unstructuredtypesaresimplevariables, whichcontainone valueof a typelikeBoolean,
Integer, Double, Complex. How already mentioned in the last section, the choice
of unstructured types is left to the host environment.

Tuples definecompositedata structures,whichare simplycollectionsof membervari
ables. The member variables can be of different types. Example 6 shows the definition
of a tuple, containing three variablesof types Integer, Double and St ring.

Example 6 (T\ipies).

[Integer, boolean, String] myTuple = [7, false, 'hello'];

Comprehensions are parametric types and CAL provides three kinds of built-in com
prehensions: Set, Map and Ust. A Set is an unordered set of variables, a List is is a Set
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whose elements are ordered, and a Map is a Set of key-valuepairs, where keyand value
are variables of any primitive type.

All those comprehension types can be iteratively constructed by generators andfilters,
and the syntax and semantics is very similar in all three cases;

{ expressions : generators, filters }forSets
[ expressions : generators, filters ]for Lists
map{ mappings : generators, filters }forMaps

Let us explain those constructs for a Set by the following examples:

Example 7 (Set comprehensions). Theexpression {1,2,3} denotes thesetof thefirst
threenaturalnumbers, whilethe set {2*a : for a in {1,2,3}} containsthe values 2,4,
and 6. Finally, the set {a * 6 : for a in {1,2, 3}, for b in {4,5,6}, 6 > 2 * a} contains
the elements 4,5,6,10, and 12.

The first Set comprehension {1,2,3} contains no generators and no filters but three
expressions.

The second definition's comprehension has one expression 2 * a, and one generator for
a in {1,2,3}. Thegenerator loops through eachelement of the Set {1,2,3}}, assigns
the current element to a, evaluates the expression 2 * a for the current a and puts the
result of the expression evaluation into the generated Set.

The third example contains two generators and a filter b > 2*a. The generator evalua
tion works the same with two generators as with one, the second generator's evaluation
loop is simply nested in the first one's. For each pair of a and b generated by the gener
ators, the filter condition is applied, and if it is met, the expression is evaluated for the
current a and 6.

List definitions have the same syntax as Set definitions, except that they have square
brackets instead of curly brackets, and that the order of the elements is relevant.

Map comprehensions work similarly, but they construct Map objects, whose elements
are mappings. The following example shows the use of a Map comprehensions:

Example 8 (Map comprehensions). The following map comprehension
map{a—*2* a: for a In {1,2,3}}
creates the map {1 —• 2,2 —• 4,3 —• 6}.

The last composite data structure, the closures will be explained in section 3.4.10.

3.4.4 Parameter definitions

The parameter definitions define constants whose scope is the actor scope, and which
can be set by the user through the host application. CAL does not specify how the
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setting of the parameters should be implemented by the application, but it allows to
define a default value for the parameter, which the usermay or maynotchange. The
actor header in example9 specifies a parameterof type integer and sets its initial
value to 1.

3.4.5 Input and output port declarations

The portdeclarations inthe action header define the number ofinput and output ports,
theirnames andtheirtypes. CAL distinguishes between single ports which have one
channel, andmultiportswhich have any number ofchannels (including zero). A multi
port is definedby addingthe rau111 keywordto the portdeclaration, if mu11 i is omit
ted, the port is defined as a single port. Example 9 shows the actor header of an actor
which contains oneinputmulti portandoneoutput single port, both of type double.

Example 9 (Parameter and port declarations).

actorParcUlelToSerial {Integer MaxChannelNumber = 1)
multi Doxible Parallelln => Dovhle SerialOut

Tokens consumption from theinput ports and token production at theoutput ports are
specifiedby the inputpatterns and output expressions, which we will focus on in the
following sections.

3.4.6 Input patterns

Theinputpatternsareonthelefthand sideof theaction header's portpatternandhave
the following purposes:

• Definingthe numberof tokensconsumedby the action

• Posing a condition for firability of theaction depending on token availability

• Binding tokens or sequences of tokens to variables

Let us start by describing the single port case. Imagine an action which contains the
binding pattern [a,6,c] for one of its input ports. This action can only fire if there
are three or more Tokens at this input port. When the action fires, the value of the
first incoming token at this port is bound to a, the second token to 6 and the third one
to c. The statements in the action scope can now refer to the values of the first three
incoming tokens by usingthe names a, bandc. Binding patterns canthusbeconsidered
as a special kind of variabledeclarations with a special syntax.
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Sometimes, it is necessary to reada fewtokens fromtheinput, andadditionally be able
to query the restof the input sequence. Thiscanbe achieved by thepattern [a,b, c||s],
which bindso, bandc againto the first threeinputtokens, ands to a List representing
the rest of the input sequence. Tokens four and five at the input sequencecan now be
referred to as s[0] ands[l], etc.

Example10 (Single port input patterns). Assume theinput sequence [1,2,3,4]. The
pattern [a, 6] matches,and bindsa to 1,6 to 2.

Thepattern [a,hjjc] also matches, and binds a to1,6 to 2,and c totheList [3,4).

The pattern [a,6,c,d||e] also matches, binding a, b, c, and d to 1, 2, 3, and 4, respec
tively, and e to theemptylist Q.

The pattern[a, b,c,d, e]doesnotmatch.

In the multi port case things are a little bit different: Since a multi port can have any
number of channels, each of them corresponding to a sequence of incoming tokens, a
simple variable is not enough to keep one token out of each stream. The solution is
to use Maps and channel selectors for selecting a particular subset of the input port's
channels. There are four different selectors:

• at followed by an integer i selects the i-th channel of the input port. The pattern
binds tokens to (unstructured) variables.

• at* followed by a collection c of integers selects all the channels of the input
port whose members are elements of c. The pattern binds tokens to Maps which
all have the key set c.

• all selects all the channels of the input port. The pattern binds tokens to Maps.

• any selects only those channels which match the pattern. The pattern binds
tokens to Maps which all have the set of the matching channels as their key set.

Now let us explain these selectors by some examples:

Example 11 (Multi port input patterns). Assume there is a multi port with four
channels, and the following incoming sequences of integer tokens:

Channel input Sequence
0 [3,4,5]
1 [2.4,6,8]
2 [9]
3 [0,1]

The pattern[a,6)]c] at 1 bindsa to 2,6 to 4 andc to [6,8].
The pattern [a, 6] at 2 does not match.
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The pattern (a, b, c] at* {0,1} binds a to the map {0 3,1 —> 2}, b to the map
{0 ^ 4,1 —♦ 4},andc to themap {0 —♦ 5,1 —» 6}.
The pattern (a||6] at* {1,2} binds a to {1 -♦ 2,2 —» 9}, and 6 to a map {1 —»
[4,6,8],2-.0}.
Thepattern [a,6] at* {1,2} does notmatch.
The pattern [a] all binds a to the map {0 —» 3,1 —» 2,2 —» 9,3 ^ 0}
The pattern [a\\b] all binds a to {0 -♦ 3,1 -» 2,2 9,3 -» 0} and 6 to a map
{0^(4,5],1-.(4,6,8],2^Q,3-[1]}.
The pattern[a, b] all doesnot match.
The pattern [a,b] anybinds a to the map {0 3,1 —> 2,3 —• 0}, and 6 to {0 —»
4,14,3-1}.
Thepattern [a,b, c,d||e] anybinds a to the map {1 —» 2},6to {1 —» 4},c to{1 —6},
dto {1 — 8} and6 to {1 — []}.
Thepattern[a,6,c, d, e]anydoesnotmatch.

For each port there can be one corresponding binding pattern in an action header.
The bindingpatterns can be labeled by port tags by usingthe following syntax: port
name:[binding pattern]. If the patternsare not labeled,CALassumes that theyhavethe
same order as the input port definitions. If one pattern is labeled, all of the patterns
haveto be labeled. The following example 12illustrates the useof port tags:

Example 12 (Port tags). Assume thereis an actorwith the following inputportdec
larations:

Integer Select, multi Double In =» Double Out

Then the following three input patterns are equivalent;

• [a, bjati, [i]

• Select:[a. b] at i, ln:[i]

• ln:[i],Select:[a, b] at i

While the following two patterns are not valid:

• [•], [a> b] at i

• [a, b] at i, ln:[i]

3.4.7 Guards, var clauses and action matching

A significant part of the expressiveness of CAL comes from the way how actions are
chosen for firing. An Action can only be fired, if it matches the current input in the
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current state. The parts of an action definitionwhich are considered during an action
matching are the following:

• The input patterns

• The local variable declaration in the var-clause

• The boolean expressions in the guard-clause

We already focused on the input patterns and how they pose conditions for flrability of
an action in earlier sections.

The var-clause allows definition of local variables, whose scopes are the scope of the
action they are defined in. They are initialized before proceeding the guarcf-clause.

The guarcf-clause allows to define a set of additional conditions for firability of an
action. Those conditions have the form of boolean expressions, and they may reference
variables bound in the input patterns as well as variables defined in the var - clause.
Example 13 shows the use of a guard - and a var - clause in the action clause of the
Right Shi ft actor. The purpose of the map comprehension will be explained in the
following subsection.

Example 13.

SiCtOT Rightshi ft {) Double I nputBus, Integer Shift multl Double OutputBus :
action [a] all, [i] =»• [b] all

guard i > 0
var map{Integer, Double) b =

map{ k \l k <i then 0 else a[fc —i] end : for Integer k in dom a}
do

endaction

endactor

The RightShif t actor outputs 'connects' each channel k of InputBus to channel
A: + t of OutputBus. where t is a token read from Shift. The first i channels of
OutputBus are 'stuffed' by 0. Note that the keyword dom followed by a map is the
key set of the map.

3.4.8 Output expressions

The output expressions are on the right hand side of the arrow, and they define what
tokens the action produces at the output ports. A single port expects a List of (unstruc
tured) tokens. A multi port expects either a Ust of Maps or a Map with Lists as values.
The Map's keys are channel indices in both cases. In the List of Map case, the output
expressions have the same syntax as the input patterns and they can also have selectors.

Since there are some problematic cases in the List of Map representation, we will not
focus more in detail on the semantics of output expressions for multi ports. For the
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interested readerit is recommend to consult the actual release of the CALreference
manual [9].

The output expression in example 13 uses the Ust oiMap notation. The map is defined
in the Vhir-clause.

3.4.9 Expressions and Statements

Almost every grammatical structure inCAL iseither anexpression ora statement.

Expressions inCAL are side-effect-free and strictly typed. CAL provides several kinds
of expressions,here are some examples;

• Literals, such as 12,3.141, 'hello'

• Identifier, such as variablenames,pon names,etc.

• Ust, Set, Map comprehensions

• If- then- else- expressions, as inexample 13

• The actor definition itself

• Lambda expressions (will beexplained in thenext section)

Statements may change the state ofan actor, and actions are executed as asequence of
statements. CAL provides among others thefollowing kinds ofStatements:

• statements

• Flow control statements such as if- then- else- statements , while- statements.
foreach- statements

• exec-statement(will be explained in a following section)

Acomplete overview over all the expressions and statements isgiven in[9].

3.4.10 Functional closures

Closures are objects which encapsulate pieces ofcode and have an own scope. A.func
tional closure result from evaluating a lambda expression. Lambda expressions are
parameterized expressions, which may beassigned tofunction variables. The applica
tion of a functional closure is an expression as well.
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Example 14. A function variableaddFunction is declaredand assignedthe value
of a function closure, which defines two parameters and returns their sum:

[Double, Double —* Double] addFunction :=
lambda {Double a, Double b) —• Double : a + b endlambda

The expression

addFunction{2, 5)

is the application of the closure, and it is evaluated to the value 7.

Lambda expressions may refer to variables defined in the surrounding context, as in the
following example:

Example 15. The function variable statePlusA is assigned a functional closure,
which returns the sum of state and a:

[Integer —• Integer] statePlusA :=
lambda {Integer a) —• Integer : state + a endlambda

Note that the value of state is not changed by the functional closure, since expres
sions are side-efTect-free. The state variable is said to be a free variable of the
closure, and the closure can only be applied within a scope which defines a variable
state.

3.4.11 Procedural closures

Procedural closures encapsulate a list of statements which may change the actor state.
The syntax of a procedure definition is similar to the syntax of functional closures,
but there is an important difference in how they are applied. Since the execution of a
procedure is likely to have side effects (as opposed to the application of a function),
it cannot be part of the evaluation of an expression so it is a statement. A procedural
execution starts by the exec keyword. The following example illustrates the behavior
of a procedural closure:

Example 16. The procedure variable addToState is assigned a procedural closure,
which adds the value of a to state:

[Integer —• Integer] addToState :=
proc {Integer o) : state = state + a endproc

The following statement executes the procedure and thereby increases the value of
state by 2:

exec addToState{2)-,
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Chapter 4

An overview over the CAL

compUer

This work addressesthe designand implementation of a code generatorfor a compiler,
which generatesactors for Ptolemy II from the actor descriptionlanguageCAL. This
chaptergives an overviewover the design of the CAL compiler.

On the otherhand,this chapterdoes not provide anygeneral introduction to compiler
design and we assume the readerto havesomebasicknowledge in this area. Compiler
design has been a research topic since several decades and there exists a lot of literature
about it. The most standard works are [3] and [4]. A well written and very pragmatic
introduction is given in [12].

Thefollowing figure shows theoperational stepsperformed bytheCALcompiler when
translating source language CAL into the target language PtJava:

^, K CAL K CalCore ,
CAL •=;> . „ „ c=;> PtJava

parser ' trans- MO I Code
formations generator

The CAL compileris designedas a multi-pass compiler, a pass denotesthe traversal of
the whole sourceprogram. Parsingis the first pass, each of the following transforma
tions is done in a separate pass and code generationtakes two more passes,as we will
see in chapter 7.

A multi-pass compiler is more modular than a single-pass compiler, and it facilitates
performing certain context analysis, which a single-pass compiler could not do.

The following sections will explain the figure above more in detail and focus on the
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terms it introduces.

4.1 The parser

Parsing is the first pass in the compilation process, and its purpose is to construct the
abstract syntaxtree (CALAST), a data structure which is a tree representation of the
sourceprogram. Designingthe parser for the CAL compilerwas not part of this work.
The parser used in the CAL compilerwas createdwithjavacc, which is a softwarethat
facilitates generation of a parserfor a language specified by its recursive grammar.

4.2 The CAL AST

The CAL ASTis a treelikedata structureof Java objects. The nodes of this tree repre
sent the reproduction rules of the recursiveCAL grammar,and the tree is a complete
description of the source program.

Constructing an abstract syntax tree representation of the source program brings the
benefit, that each of the following passes can operate on one and the same data structure
which is easy to transform and to annotate with context information.

Abstract syntax trees are explained in detail in [3], [4] and [12].

4.3 AST Transformations

Before generating the target code, the CAL compiler performs a set of transformations
on the abstract syntax tree. The transformationshave the followingpurposes:

• Annotation of the ASTwith information needed by the following transformations
or the code generator.

• Replacing grammatical structures by more basic ones, in order to get to a subset
of the grammar, which is semantically rich enough to support all constructs of
the full language, but which is easier to implement code generation for.

The following chapter will give an overview over the transformations performed on
the AST. It will explain their purpose and describe what the AST looks like after the
transformations.
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4.4 TheCalCoreAST

CalCoreASTis what we call theAST after the transformations. CalCore is supposed
to be a minimal subset of CAL, which still supports all the necessary constructs to
describe anactor's semantics. Acomplete documentation of theCalCore sub-language
is given in [9].

4.5 Code Generation

Code generation is the laststep in the compilation process. Thecode generator takes
the CalCore ASTdata structure as inputandgenerates a stream of characters repre
sentingthe actor in Java. Design and implementation of the code generator was the
maintask of this work. Chapter 6 willexplain the structure of the generated codeand
chapter7 will focus on designand someparticular implementation details of the code
generator.

4.6 Ptjava

The target language ofourCAL compiler isJava. Since generated actors aresupposed
tomatch thePtolemy API wewill refer to thetarget language asPtJava. ThePtolemy
II API was described in chapter 2, and the structure of the generated code will be
explained in chapter 6.
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Chapter 5

Transformations on the AST

This chapter lists the transformations which the current CAL compiler performs on the
AST, and briefly explains their purpose. The transformations are described in the same
order as they are executed during compilation.

5.1 Unary and binary operation removal

The first two transformations performed during compilation address removal of unary
and binary operations, such as

• The r/om operator (unary)

• The nor operator (unary)

• Additional operations +, - (binary)

• Boolean operations: and, or (binary)

• Comparisons: =,<,>,<=,>= (binary)

Each of these operations is replaced by a corresponding^ncrio/i application, where
the function to apply is included from a library. Replacing operators by function appli
cations has the following advantages:

• It eliminates the unary operation and the binary operation construct from the
language, which reduces the required input for implementing or re-targeting the
code generator.
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It allows code generation for those operations, without providinga static type-
checking.

The second issue might requiresome explanation; The evaluation of unaryand binary
operationsdependson the typesof their arguments. Twointegers for examplehave
a differentsemanticsfor the operatorthan twoMaps. Becauseof that, translatingbi
nary operations into Java expressions requires a static type checking which determines
the operand types at compile time. Since a static type checking for CAL does not exist
yet, the compiler transforms the + operator into an application of the global Plus ()
function, which checks for the operand types at runtime.

5.2 Variable annotator

CAL distinguishes between variables which are assignable, and variables which are
not. Non-assignable variablesarecalledconstants.Parameters in functionapplications
for exampleare constants, since once they have been initialized at instantiation they
cannot be re-assigned.

Anotherpropertywhichvariablescan haveor not, is mutability. Mutability is only rele
vantfor compositedata structuressuch as Sets,Listsand Maps, and it denotes,whether
single elements of the composite structurecan be re-assigned or not. Sequences are
represented as immutable Lists, whereas user defined Lists usually are mutable.

Assignability and mutablity has a certain impact on how variables are declared and
initialized, as we willsee in the implementation chapter. Because of that,thecompiler
maintainsan environment, whichcontainsa bindingentry with the variables properties
for each variable. The purpose of the variable annotator, is to annotate each variable
reference occurring in the CAL code with a reference to their binding entry. When
the compiler has to generate the code for the variable reference, it can find the vari
ables binding entry through the annotation and check for the variables assignability
and mutability properties.

5.3 Port tagging transformer and input pattern canon-
icalizer

As already explained in the CAL chapter, input patterns can occur with or without
tags. The port tagging transformer transforms all the patterns into the tagged notation,
by adding a tag to every port pattern which does not have one yet.

The input pattern canon/ca/tzer transforms every input pattern to a pattern which sim
ply binds the incoming sequence to a sequence variable. The variables bound in the
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original pattern are declared and initialized in the var-clause instead. Let us illustrate
this by the following example:

Example 17. Imagine there is an action which looks as follows:

action (a,6II c] =• (dj do

endaction

Afterhaving passed the inputpattern canonicalizer andtheporttagger, theaction looks
as follows:

actionInput: [ || SGO] =» Output: [d]
guard SGl
var

boolean $Gl = Savoi/a6/e(SG0, 2),
Integer a = if SGI then $G0[O] else null endif,
Integer 6 = if SGI then $G0(1) else null endif,
Set\Integer] c = if SGI then Ssubsequence(SGO, 2) else null endif,
do

endaction

The second form is perfectly valid CAL syntax, and although the first version looks
much more elegant, the user could write the actor directly in the second form. The
purpose of this transformation is, again, to simplify the grammar of the CalCore AST,
such that the code generator needs to deal with less grammaticalconstructs.

5.4 Dependency annotator and sorter

There are two places in a CALaction header, where variables can be defined: in the
input patterns and in the var-clause. As we saw in the last section, definitions in the
input patterns are moved to the var clause by the annotator.

Variable definitions can depend on each other, so it matters in what order they are
performed. In the input patterns and the var-clause, variablemay be defined in any
arbitrary order. When generating the Java code, the variable definitions have to be
sorted. The dependencyannotator annotatesdependenciesin the variabledeclarations,
and the sorter puts them in the right order.

The following example gives an example of a set of variable declarations before and
after sorting them:

Example 18. Assume a var-clause of an action to contain the following variable
declarations:
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Double b — a(fc);
Integer k = i + 2;
Integer i = 0;
[Integer]a = (1, 2, 3, 5, 7, 11, 13)

The first variable b cannot be initialized, since a and k are still undefined at this time.
Variable k in the second line cannot be initialized as well, since i is not defined until the
next line. After the sorter has run, the variablesare in the right order:

Integer i = 0;
Integer k = i + 2;
[Integer] a = [1, 2, 3, 5, 7, 11, 13]
Double b — a[A:];

5.5 Transforming composite expressions and statements

CAL provides a set of composite expressionsand statements, such as:

• if-then-else expression

• comprehension generator expression

• while statement

• foreach statement

• if-then-else statement

Each of those expressions and statements has an own transformer, which replaces the
corresponding construct by a function invocation, or a nesting of function invocations
and closure definitions.
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Chapter 6

Structure and behaviour of the

generated actors

This chapter discusses the issues in designing the structure of the generated code and
explains the design decisions that were made. Furthermore, it describes what generated
actors look like, how they interact with the Ptolemy API and the runtime infrastructure
that had to be added to Ptolemy II in order to support execution of the generated actors.

6.1 Design considerations

The following list describes the considerations and optimization criterions which we
considered as being the most important for the design of the code generator. The issues
are listed in order of decreasing importance and they will help to motivate the ideas and
design decisions described in the following sections:

1. Making retargetability of the code generator as simple as possible

2. Simplify the implementation of the code generator for Ptolemy II

3. Execution Speed of the generated actor

While there seemed to be a positive correlation between the optimizatioin of the first
two issues, their optimization seemed to antagonize the optimization of the execution
speed and vice versa. In most of the trade-off design decisions taken, more weight was
put on retargetability than on speed constraints.
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Ptolemy API ^ PtActor >̂S ActorCore

Moses API ^[\ Moses <
/ Actor Ŝ ActorCore

A platform for ActorCores S> ActorCore

Figure 6.1: An ActorCore can be re-used for several platforms if a corresponding
adapter exists, and the costs for retargeting the code generator are reduced. Some
platforms might even have a statical interface to the ActorCore and use it without an
adapter.

6.2 Generic and specific part of the generated actor

In orderto make retargetability of thecodegenerator as easyas possible, we decided
to separate the target code into a generic, platform independent part and a Ptolemy
II specific part. Retargeting the code generator only requires changes in thePtolemy
specific part,and keeping the specific partas small as possible reduces the amount of
code thathas toberead, understood and replaced forretargeting of thecode generator.

Figure 6.1 illustrates how the generic andthespecific code are encapsulated into two
separate objects ActorCore andPtActor, andhow PrActor works asanadapter between
the ActorCore and the Ptolemy API. As a side effect, the ActorCore can be re-used for
otherplatforms thanPtolemy II, suchasMoses (described in [1]).

Forsome platforms it is even imaginable that the platform specific part of the actor
might be thesame forevery actor and thus could be implemented as a static library
instead of beinggenerated. In thefigure thisis named asplatformfor actor cores.

In the next sections we will see how the PtActor interacts with the ActorCore at run
time, andhow they communicate by using a Factory object which is provided by the
runtime environment.
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6.3 Interactions with the runtime environment

This section explains how the PtActor interacts with the ActorCore at runtime, and how
theycommunicate by usinga Factoryobjectwhichis part of the runtimeenvironment.

6.3.1 What is the runtime environment?

The runtimeenvironment is a library, whichextendsthe PtolemyAPI by a set of classes
that enable the execution of generated actors. The purposeof this package is to put
as much functionality as possible into this static library, instead of generating those
functionalities into each generated F*tActor. This simplifies both implementation and
retargetabilityof the code generator,since it is easier to write functionality into a static
library than to write a generator which generates this functionality.

The runtime environmentprovides the following elements:

• A Factory for creation of Ptolemy specificobjects in the ActorCore and for com
munication between the actor objects

• A port wrapper for emulating random access to the Ptolemy input ports, which
only allow sequencial access to their tokens

• Classes for representation of CALvariables

• A change listener, which handles state shadowing of the variables

• A set of globalfunctions, which the actors can access

• Interfaces throughwhich the ActorCorecan access those ptolemy specificstruc
tures

In this chapter we will describe the interactions between the runtime environment and
the generated actors on a rather abstract level. The next chapter will explain the com
ponents of the runtime environment more in detail.

6.3.2 Passing ports and parameters through the factory

Even though the ActorCore is generic, it needs to have some kind of access to objects
which are specific to the Ptolemy II platform. It needs to get input tokens from the
Ptolemy input ports and parameters, and it has to send tokens to Ptolemy output ports.
But since the ActorCore is generic, it may not have references to any Ptolemy specific
object.

41



•interface*

CoreFactory

*addPtOblect(in ptObject: Object)

*crBateVar(in name: String, In type: Object): Vat
*getParameteittn name: String): Object
*getGlobalObject(inname: String): Object
*getlnputSequence(in name: String): Sequence
*getlnputMap(in name: String): Map
*••.()

-_ptFactory

PtActor

•_ptFactory: PtFactoiy
-_actoiCore: ActorCore

TheFactory

-_actorCore

ActorCore
•_coreFactory

-_corBFactory: CoreFactory

Figure 6.2:ThePtActor pushes Ptolemy ports andparameters intoTheFactory bycall
ing its addPtObject method. The ActorCore can access thoses objects through the
methods of the CoreFactory interface

This problem is solved by the Factoryobject, provided by the runtime environment.
Figure 6.2 illustrates in a simplified UMLscheme,how the Factory collaborates with
the actors at runtime. TheFactory implements two interfaces:

• PtFactory provides a method addPtObject, which allows the PtActor to pass
Ptolemy specific objectsto TheFactory andsaving them intothemap_ptOb j ects.

• CoreFactory provides a set of methods for accessing the objects saved in the
map. Those methods all return objects of not ptolemy specific types, such as
Map, Sequence, Object. We will see in the next chapterhow those objects are
wrapping the corresponding Ptolemy specificobjects.

6.3.3 Creating CAL variables using the factory

Ptolemy n actors use Token objects to represent variables. The ActorCore may not
referencethose objectsdirectly in order not to lose its generality. CAL variablesin the
ActorCore are thus represented by PtVarobjects whichwrapthe platform specific To
ken objects, and the ActorCore accesses those objects through the Varinterface which
they implement. Since the ActorCore may not instantiate the Ptolemy specific PtVar
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objects itself, it uses the createVar () method of the Factory to create those vari
ables:

Var variableName = _coreFactory.createVar(type, initValue);

6.3.4 Actor and runtime environment instantiation

The PtActor 'xs instantiated by the Ptolemy II application, when the user places it into a
model. The PtActor then creates the objects of the runtime environment Ac/orCore.

Figure 6.3 shows the order in which the objects are created:

1. The user starts the simulation of the model. The application first calls the actor's
initialize () method.

2. PtActor pushes a parameter into the factory by calling the factory's addToP-
tOb jects method.

3. PtActor pushes a parameter into the factory by calling the factory's addToP-
t Ob jects method.

4. PtActor calls ActorCore's initialize() method.

5. ActorCore pulls the parameter from the factory by invoking getParameter ().

6. ActorCore gets an output port wrapper object by getOutput ().

7. ActorCore createsastate variable by using the factory'screateVar () method.

8. The factory instantiates a PtVar object, which it retums to the ActorCore.

6.3.5 Actor initialization

The initialize () method of the PtActor pushes the Ptolemy port and parameter
objects into the factory by invoking the factory's addP t Ob ject () method. This was
already explained in section 6.3.

After having passed all the Ptolemy specific objects to the factory, the PtActor calls the
initialize () method of the ActorCore, which pulls the Ptolemy objects from the
factory.

Figure 6.4 gives an example of a runtime initialization:
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'PtActorQ
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, --

j new TheFactory ()[^

new ActorCore (TheFactofy)
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new TypedlOPort ()

U T]
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Figure 6.3:ThePtActor pushes Ptolemy ports andparameters intoTheFactory bycall
ing its addPtObject method. The ActorCore can access thoses objects through the
methods of the CoreFactory interface

1. The user, usually by dragging the actor into the model window in Vergil. The
PtActorconstructoris invoked by the Ptolemy application.

2. P/Actor instantiatesthe ChangeUstenero\>]eci.

3. PtActorinstantiates TheFactory bypassing it thechange listener.

4. PtActor instantiates theActorCore by passing it thefactory object.

PtActor instantiates a TypedlOPort object. Of course, an actor can have any
numberof ports, and therecouldbe any number of parameters instantiations as
well.

6.4 The structure of the ActorCore

The last section focused on the instantiation of the ActorCore and its collaboration with
the PtActor and the environment. This section explains the structure of a generated
ActorCore more in detail. Figure 6.5 shows the ActorCore and lists the members and
methods, which appear in every ActorCore:

6.4.1 Variable representation

Asalready mentioned, GAL variables are represented byPtVar objects which imple
ment the Varinterface.The Var interfaceprovidestwo publicmethods:
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Ptolemv It PtActor ActorCore TheFactorv PtVar

1)

2)

3)

4)

5)

6)

7)
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initialize ()

addPtObject (Parameter)

addPtObject (TypedlOPort)

Initialize ()

getParameter ()

1]
getOutput ()

createVar ()

new RVar ()

1]

Figure 6.4: The PiAcwr pushes Ptolemy ports and parameters into TheFactory by call
ing its addPtObject method. The ActorCore can access thoses objects through the
methods of the CoreFactory interface
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ActorCore

-_coreFactory: CoreFactory
•_firableAction: Action
-actionO: Action

+initialize()
+prefireO: boolean
+fire()

Figure 6.5: The minimalmember infrastructure of a generatedActorCore

• assign (Object o), which assigns the Object o to the variable

• value 0 , which returns the Object contained in the variable

The next chapter will focus on the Var interface and the PtVar class in more detail.

6.4.2 Action Objects

Actions in CAL have their own scope. Variables defined locally in theaction scope
cannot be accessed from outside theaction. Inorderto implement action scoping, the
code executed by the action is encapsulatedinto an inner class of the ActorCore,which
implements theAction interface. Variables defined locally in theCAL action scope are
thus defined as members ot the inner Action class.

Each Action Object provides the following methods:

• prefire (), which evaluates the inputpatterns, the var clause and the guard
conditions and returns a boolean whether the action matches or not.

• f 1 r e 0 , which executes the CAL statements in the statement block of the action
andsendsresulting outputtokens to an outputportwrapper

Actions are instantiated in the ActorCore's prefire () method, which will be ex
plained in the following section.

6.4.3 The preiire method

Each ActorCore contains a prefire () method, which returns a boolean whether
at least one of the actions can fire or not. It assigns a reference to thefirable action
to the member _firableAction. The code of the prefire () method is rather
straightforward and for an actor with two actions it looks as follows:
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public boolean prefireO throws IllegalActionException {

actionO = new ActionOO;

if (actionO.prefire()) {
_firableAction = actionO;
return true;

}

actionl = new ActionlO;

if (actionl.prefire{)) {
_firableAction = actionl;
return true;

}

_firableAction = null;
return false;

The reason why action objects have to be newly instantiated in each fire cycle will be
explained in section 6.4.8.

6.4.4 The fire method

The f i r e 0 method of the ActorCore is the same for every actor and looks as follows:

public void fireO {
_firableAction.fire() ;

It simply invokes the fire () method of the actor that was stored as Arable in pre-
fireO.

6.4.5 Closure Objects

Functional closures in CAL, just like actions, dehne their own scope. Thus, closures
in the generated actor are represented by inner classes, which implement the Closure
interface. Since closure declarations in CAL are expressions, they can appear almost
anywhere in the actor dehnition. As a result. Closure objects can be inner classes of an
Action, another Closure or th& ActorCore itself, as shown in figure 6.6.

The Closure interface defines one function apply (Object args), whose argu
ment can be an object or an array of objects. The apply (Object args) method
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Closures
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apply (Object arg): Object

ClosureFactoryS

create (j: Object

apply (Object arg j: Object

Figure 6.6: Closurescan be inner classes of Action objects, other Closure objects or
the ActorCore

extracts the parametersfrom the passed array,evaluates the lambdaexpression and fi
nally returns the evaluation result. The following example shows the structure of a
generated Closure object, which takes two parameters:

public class lambdal implements Closure {

Object a;

Object b;

public Object apply(Object arg) {
Object!) argArray = (Object[])arg;

a = argArray(Oj;

^b = argArray (1 ] ;

// evaluate expression of a and b

return evaluationResult;

}
};

6.4.6 Closure instantiation

Closure objects are newly instantiated each time before their apply () method is in
voked. This might seem like a waste of resources, but it is absolutely necessary to do
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so, as we will see later in this chapter.

There is one problem that arises from the fact that closures have to be re-instantiated
before their application: Since function variables can be assigned any closure object,
the code generator cannot know at compile time what closure the function variable will
refer to at runtime, so it cannot simply generate the code for closure instantiation to the
place in ih&ActorCore, where the function is applied.

To solve this problem, the code generator creates ClosureFactory objects, which are in
ner classes of the ActorCore as well, and instantiate their corresponding closure object.
When a closure is assigned to a function variable in CAL, the corresponding Java code
assigns a ClosureFactory to the variable object. When the function is applied, first a
new instance of the closure is produced by the factory's create () method, then the
closures apply () method is invoked.

In the following example a function variable _add is instantiated and later assigned a
ClosureFactory. Finally, the assigned Closure is instantiated and applied to a and b:

Var add = _coreFactory.createVar(null, null);

add.assign(new ClosureFactoryl ());

tuples [0] = a;

tuples[1] = b;

Object aPlusb = ((ClosureFactory) add).create().apply( tupleS);

6.4.7 Procedural closures

Procedural closures are realized exactly the same way as functional closures. Procedu
ral closures implement the Procedure interface, whichdefinesa funtion exec (Ob j ect
arg) for starting procedure execution. Procedure objects are instatiated by their cor-
rensponding ProcedureFactory object.

6.4.8 Why actions and closures need to be re-instantiated

The goal of this section is to explain, why action objects have to be newly instantiated
at each firing cycle, and why closure objects need to be instantiated before each appli
cation or execution.
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The following example shows an actor implementing the Sieveof Eratosthenes. The
actorproducesthesequenceof all primenumbers provided that its inputisconnectedto
a sourcewhichproducesthe sequenceof the naturalnumbers startingat 2. The source
actor could be for example the Ramp actor introduced in chapter 2, with parameters
init = 2 and step = 1.

Example 19.

actorPrimeSieve () Integer Input Integer Output :

[Integer—• boolean)/i/ter := lambda {Integer n)—• boolean : false endlambda

[Integer, Integer —» boolean ] divides :=
lambda {Integer a, Integer b) —• boolean : b mod o = 0 endlambda

action [o] =• 0
guard filter{a)
endactlon

action [a] => [a]
guard not filter{a)
var [Integer —• boolean ] / = filter

do

filter := lambda {Integer n) —• boolean : f{n) or divides{a, n) endlambda
endactlon

endactor

The first two initialization statements declare and initialize two function variables:

• filter is initialized to referto a closure, which simply returns false. The function
applicationfilter(x) will thus returnfalse for anyx.

• divides is initialized to a closure, which checks whether its first argument divides
the second argument.

Now the actor performs a sequence of firings, where it has two actions to chose from.
Remember that the inputsequence is assumed to be the natural numbers starting with
2, so a = 2 in the first firing, a = 3 in the second, and so on:

• The first action does not match, sincefilter(2) isfalse

• The second action matches, andfilter is assigned a new closure which evaluates
false or divides(2, n)

• In the second firing again, the first action does not match, sincefalse ordivides(2.
3) is false
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• Thesecond action matches, andfilter is assigned a new closure which evaluates
false or divides(2, n) or divides(3, n)

• In thethird firing, thefirst action matches, andfilter is notchanged.

• In the fourth firing again, the first action does not match.

• Thesecond action matches, andtheexpression inthefilterclosure keeps growing
iofalse or divides(2, n) or divides(3, n) or divides(5, n)

Theexpressions/a/^e or dmdes(0,n)or divides(I.n)or... contain several application
of thesameclosure. Sincethoseclosures arepartly evaluated with different parameters
(theirfirst arguments areboundto0,1,2,...) weneedto keeptracksomehow of those
different sets of bound parameters. Since parametersare membersof the lambda clo
sure,the simplest way to solve thisproblem is to re-instantiate the closure every time
it is applied.

The expression illustrates as well, whywere-instantiate theaction objectin eachfiring
cycle. If we would not do so, there would be only one instance of the variablea. Each
firingcycle wouldchange its valueto the valueof the next incomingtoken,and would
hereby change the arguments previously passed to the divides functions. The variable
filter wouldthusrefertofalse or divides(k, n) or divides(k, n)or... after A: -|-1 firings.
Re-instantiation of the action allowsto easily keeptrackof multiplevaluesfor a.

6.4.9 Global functions

As explainedin the last chapter,manycaltrop features such as binaryoperations,gen
eration and indexingof comprehensions, foreach-statements and so on, are replaced
during the transformations by global functions and procedures.
Those global closure objects are provided by the Factory, and the actor core can access
them by using the access methods specified in the CoreFactory interface. The follow
ing exampleshows how a generatedActorCoregets the Plus methodfrom the factory
and applies it to the variables a and b:

// ActorCore class members

private Object Plus;

// in the initialize method

Plus = _coreFactory.getGlobalObject("Plus");

// in an action or a lambda closure

tuples[0] = a;

tuples[1] = b;
Var sum = ((ClosureFactory) Plus).create().apply( tupleS);
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The function variable is defined as a member of ActorCore. It is initialized in the

initialize () method and applied in the same way as a user defined function. The
global variable annotator introduced in the transformations chapter helps the code
generator to include only those functions into the generated actor, which are really
needed.

6.5 The Ptolemy II specific part of a generated actor

For reasons of retargetablilty, it was one of our design goals to make the Ptolemy
specific part of the actor, which we will refer to as PtActor, as simple as possible.
Thus, the structureof the PtActor is rather straightforward and its firingmethodslook
pretty much the same for everyactor. This chapterexplainsthe design of the PtActor.

6.5.1 Construction and Initialization

The constructorof the PtActor instantiates the following objects:

• the PtVarChangeListener

• TheFactory

• the ActorCore

• the actor ports

• the actor parameters

The initialize 0 methodpushes the Ptolemyport and parameterobjects into the
factory by invoking the factory's addPtObject () method. This was already ex
plained in section 6.3.

6.5.2 Ports and Parameters

The PtActor defines,instantiates and configures the actor's ports and parameters. This
isdone in exactly the samewayas in a handwritten actor, which wasalready explained
in chapter 2.

6.5.3 Firing methods

The firability of CAL actions usually depend on the availability of tokens at the in
put ports, and it thus seems reasonable to check for token availability in the PtActor'^

52



prefire () method. This can be achievedby simply invoking the ActorCore's pre-
firemethod, since this methoddoes check for availability of tokens.

However, there is a Ptolemy specific problem with this solution which has a severe
drawback: In the CT domain of Ptolemy there are no tokens available at the actors in
put ports at the timetheirprefire () methods are invoked. Thus,modelscontaining
any actor which checks for token availability in itsprefire methodcannot execute in CT.

In order to make the generated actors usable in the CT domain, we decided to intro
duce a compilerflag, wich allows the user to control whether the pre f i re () method
of the ActorCore should be invoked from the PtActor's prefire () or its fire ()
method.

The following table shows for the two possible values of the compiler flag, how the
PtActor invokes the firing methods of the ActorCore:

PtActor

method

CTFlag = 1 CtFlag = 0

prefireO
return true; return actorCore.prefireO;

fireO
if (.actorCore.prefireO) {

.actorCore.fire();

}
return;

actorCore .fire () ;

return true;

postfireO
return true; return true;

Note that the functions above are not complete. Some lines for exception handling
state shadowing and other things were omitted for didactical reasons. State shadowing
will be explained in the next section.

6.5.4 Variable change listener and state shadowing

In chapter 2 we already explained that the fire () method of an actor should not up
date the persistent state of the actor. In some domains, the actor's f ire {) method is
invokedseveral times, each time starting from the original state. As soon as the desired
result is achieved, the actor state is persistently updated by invoking its post fire ()
method.

This state shadowing could be implemented by introducing new temporary variables
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for the shadowed state, but this would make the ActorCoredepend on this particular
way of using it. In order to faciltate the state shadowing without losing generality of the
ActorCore,the PtActorcontainsa memberof type PtVarChangeListener, whose refer
ence is passed to the factory constructor when the latter is instantiated. Every variable
produced by the factory gets a reference to the change listener upon its construction.

Whenever a variable is assigned by using its apply () method, the PtVar object no
tifies the PtVarChangeListener, which enters its reference into a map. The PtActors
then uses the following two methods of the change listener, in order to realize the state
shadowing:

• rollBackAllO loops through all the variableswhich were noted as changed,
and sets them back to the original value. After that, the map of changedvariables
is cleared. The rollback method is invoked in the beginning of the PtActoPs
fire () mehod.

conunitAll () makes all the variablechangespermanently and clears the map
of changed variables. The commit method is invoked in post fire ().

Figure 6.7 shows a simplified example of the instantiation, initialization and a first
firingof an actor,whichsummarizesmostof themechanisms presentedby this chapter.
The arrowsconcemingstateshadowing aremarkedby numbers, andwewillgo through
each of them in the following enumeration:

1. The VarChangeListenerobject is instantiated by the PtActor.

2. In the beginning of the PtActor's f ire () method, the change listener's rol 1-
back () method is invoked. In this case, nothing happens, since no variable was
assigned to yet.

3. The ActorCore assigns a new value to an earlier defined variable. The variable's
assign () method notifies the change listener.

4. The PtActor post fire () method,calls the change listener's conunitAll {)
method, in order to commit the variable changes.

5. The change listener's conunitAll () method invokes each changed PtVar's
commit () method. In this example, only one variable was changed.
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Figure 6.7: A simplified summarizing example of how Ptolemy II application, gen
erated actor and runtime environment interact at runtime. The arrows highlighted by
numbers are those which concern state shadowing.
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Chapter 7

Implementation

7.1 The code generator

This section provides ahigh-level view onsome implementation issues ofthecode gen
erator. First wewill focus on thestructure of thecode generator, then wewill explain
how thecodegenerator uses thevisitorpatternto traverse theinput datastructure, and
finally wewill take a look ontheTargetCode classes, which provide anintermediate
representation of the generated code.

7.1.1 Generic and Ptolemy specificcode generator

The last chapterexplained howgenerated actors are separated intoa generic Actor-
Core and a platform specific PtActor class. Since each of those classes can be
generated separately, we decided to split up the code generator into a generic and a
specific partas well. Figure 7.1 shows thestructure of thetwo-part code generator.

Re-targeting thecodegenerator requires writing a new platform specific part for the
code generator,which is illustratedin the figure by the dashedarrows.

7.1.2 The visitor pattern

The input data structure to the code generator, the CalCore AST was introduced in
section 4.4. Thecodegenerator traverses traverses theCalCore ASTandgenerates the
corresponding Java code for each node in this tree.

The most straightforward implementation for generatingcode would thus be to add a
code generation method to every AST node, which generates the Java code from the
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Figure 7.1; The code generator is divided into a generic code generator for generation
of the ActorCore, and a Ptolemy code generator which generates the adapter object
PtActor. The dashed arrows show how the code generator can easily be re-targeted
to a new Java platform such as PSls jo, by simply re-targeting the specific part of the
code generator.

information contained in the node. The code generator could then simply traverse the
tree and invoke each node's code generation method.

But using this approach has a severe drawback; It mixes the AST data structure with
the operations performed on it. Remember that the transformers and other code genera
tors have to operate on same AST structure. The described solution would thus require
adding one method per transformer and code generator to each AST node, which would
cause the AST classes to grow and to become hard to maintain. It would be cleaner to
avoid 'polluting' the AST structure with the transformation or code generation opera
tions, which any of the applications performs on it.

The solution to this problem is a design, which [7] refers to as the visitor pattern.
Figures 7.2 and 7.3 illustrate the implementationof the code generators using the visitor
pattern.

Figure 7.2 shows the class structure of the generic and the specific code generator
CoreVisitor and PtVisitor. Both of them extend the class BasicVisitor.

Figure 7.3 shows how the pattern works at runtime:

1. The visitor invokes the accept () method of the current node (which is Ex-
prApplication) by passing it a reference to this.

2. The node calls back the visitor's visitApplication()method by passing it a refer
ence to this.
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Figure7.2: Implementation of the code generator using the visitorpattern: The visit
methods in BasicVisitor control the traversal of the AST, butdo not perform anyoper
ations on the nodes. Each code generator extends this base class and overwrites some
or all of its visitmethods with code generating methods.

PtVisitor ExorAoolication ExprVar ExprTuple

accept (this)

VisitApplication (this)

accept (this)

VesitVar(this)

accept (this)

VIsitTupla(this)

Figure 7.3: The PtVisitor visits the ExprApplication by invoking its accept ()
method. ExprApplication calls the corresponding visit method in the PtVisitor, which
generates the Java code for the function application. While generating the code it eval
uates the function's name and parameters by visiting ExprVarznd ExprTuple.
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3. Thevisitor 'knows' thatthedescendants of theExprApplication areExprVar and
ExprTuple andvisitsbothof thosenodes by calling theiraccept () method.

TheBasicVisitor traverses theAST without generating any code or changing the
tree. In order to perform operations on the visited nodes, the inherited classes PtVisitor
and CoreVisitor simply have to overwrite the corresponding visit methods by meth
ods performing those operations. If a visit method for a node is not overwritten, the
code generator will not generate any code for this node, but it will still traverse the
descending nodes and eventually generate code for those nodes.

7.1.3 Generating code for expressions

Most of the grammatical elements in CAL are either a statement or an expression.
Every existingCAL statementcan be generatedinto a Java statementor a sequenceof
Java statements. But CAL expressions do not always translate into a Java expression
but some of them translate into a sequence of statements and expressions. This has
certain consequences as we will explain in the following example;

Example 20 (Code generation for an ExprApplication). Imagine we want to gen
erate code for an ExprApplication, as it is shown in figure 7.2. Note that an ExprAp
plication is a function invocation and its descendants ExprVar and ExprTuple are the
function name and a tuple containing the arguments passed to the function.

If both the ExprVarand the ExprTUple could be translated into simpleJava expressions,
the vis itApplication method of the code generator could be implemented as
follows:

public void visitApplication(ExprApplication e) {
e.function.accept(this); // print Java expr for function name
addToTargetCode("(");

e.arg.accept(this); // print Java expr for tuple creation
addToTargetCode(");");

}

The reason why this does not work is in the third line: CAL tuples are represented by
object arrays in the generated code, and there is no way to instantiate and initialize a
Java array in one simple expression. Of course we could define a function somewhere
which instantiates a tuple and initializes its values with the passed arguments, but since
we would have to provide one function for every possible tuple length, this is not a very
reasonable solution.

This problem is solved by passing a String containing the expression evaluation result
between the two visit methods using the global state variable .exprResult.
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The visitTuple () method (which is called by the accept () method) adds the
generated Java statements to the targetcode but storesthe generated Javaexpression
String into _exprResult.

ThevisitApplication () method assigns theStringcontaining the tupleexpres
sion to tuple and then calls the acceptmethodfor evaluating the functionname. The
function name is passed using _exprResult again, and in the last line of visi-
tAppl icat ion (), functionand tuple are combinedintoa Java functionapplication
expression which is stored in _exprResult again:

public void visitApplication(ExprApplication e) {
e.arg.accept(this); // the invoked accept() method prints

// the Java statements for creating
// the tuple, f.ex.:
// Object[2] .tuple;
// Object[0] = argl;
// Object[1] = arg2;
// then it assigns the name of
// the tuple object[] to .exprResult
// .exprResult = .tuple;

String tuple = .exprResult;

e.function.accept(this); // the invoked accept() method
// assigns the name of the
// function to .exprResult

String function = .exprResult;
.exprResult = ... + function +...+"("+ tuple + ")";

}

Soletussummarize how thisworks ingeneral: Visit methods forexpression nodes add
generated Java statements to thetarget codebutwrite the resulting Java expression as
a String into the .exprResult variable.This global variableis available for the visit
method of the parent node, and theparent visit method concatenates theString value
.exprResult with the code it generates for the parentnode. The resulting String is
then either printed to thetarget code or written into .exprResult again, depending
on if theexpression is partof aJavastatement or another Java expression.

Theimplementation using thestate variable .exprResult solves theproblems caused
bythefact, thatCAL expressions can translate into Java statements in the target code.
The dots in the last line symbolize that there is some more code in the real version of
visitApplication whichwas omitted in order to keep the exampleas simpleas
possible.

7.1.4 Variable names

When generating the target code, the code generator may introduce new internal vari
ables in the Java code to store intermediateresults and temporaryobjects. The names
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of those variables consist of a prefix and a sequence number.

Java variables representing CAL variables consist of a prefix and the variable name in
CAL. The prefix is to avoid name collisions in the generated actor, in case the user
defines a CAL variable with a name which is used for compiler generated classes or
objects, such as Actionl or envChangeListener.

7.1.5 An intermediate representation of the target code

Chapter 6 explained how the generated code is separated into the actor classes PtAc
tor and ActorCore. Both of those classes contain a number of methods, and the

latter one can even contain an arbitrary complex structure of nested inner classes. Gen
erating code for one AST node often requires adding code to more than one of those
methods and inner classes.

As a result of that, the generated code cannot be written sequentially. There has to be
an intermediate more treelike representation of the target code, which allows the visitor
to add code to a specific method or inner class of the generated actor class.

The calt rop. codegen. target package provides such an intermediate represen
tation, which is depicted in the static UML scheme in figure 7.4. Now let us explain
the purpose of those different interfaces and classes:

• The Code interface provides one simple function toList (), which is imple
mented by all the other classes. The purpose of this function is to convert the
target code contained in the class implementing this interface from a tree repre
sentation into a list of Strings.

• The CodeLine class is basically just a wrapper around a String, which imple
ments the toListO method.

• The CodeChunk interface defines two add () methods, which are supposed to
facilitate adding code to the code in CodeChunk. One of those methods takes
a String, the other one takes any object implementing Code as parameter.

There are four classes, which implement the CodeChunk interface. They can be com
posed into a tree structure representing the generated actor with its nested inner classes,
methods and members. This tree structure uses CodeClass objects as intermediate
nodes, since CodeClass has a Map methodsAndClasses containing any number
of references to other objects implementing CodeChunk. In [7] this kind of combin
ing objects is called composite pattern.

CodeList has a member .theCode containing a list of CodeLines representing
the lines of a code block.
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Figure 7.4: The classes of the target packagecan be composedinto a tree structure
which is an intermediate representation of the generated code.

A CodeBlock is almost the sameas a CodeList, exceptfor including two charac
tersforopening andforclosing a blockwhich areadded to the listof Strings produced
by the toList () method.

A CodeMethod is basically a CodeBlock which contains an additional String rep
resenting the method definition.

CodeMethod could have been inherited from CodeBlock and the latter one from

CodeList inorderto savesomewriting work. Butsincetheeffortfor re-writing such
a few members is nota matter, wedecided notto useinheritance herein orderto keep
the class hierarchy as flat as possible.

CodeClass contains methods for adding code to its class members or to one of its
methods. Besides that, it hasmethods forgetting a reference to a CodeChunk repre
senting the class members, a certain method or an inner class. Since the method names
shown in the UML scheme arequite selfexplaining, wewill not list them andexplain
them more in detail.

In orderto decouple thecodegenerator from thecodeclasses in figure 7.4, thepack
age provides the two classes PtolemyClassCode and CoreClassCode. Both of
them contain a setof methods for constructing the target code structure consisting of
the classes in figure7.4, and for writingcode into arbitrarynodes in this structure.

The genericcodegeneratorusesthe class CoreClassCode for accessing theclasses
shownin figure7.4. CoreClassCode providesthe following membersand methods:
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• A variable .rootClass referring to a CodeClass which is the root class of
the tree of nested inner classes. A basic set of methods is added to this root class

by the constructor, same as in PtClassCode.

• A variable -currentClass referring to the current CodeClass object in the
hierarchy of inner classes.

• A set of addLineTo. . () methods in order to add a line of code to a specific
method or the class members of the _rootClass object.

• The methods beginNewAct ion (), beginNewLambda (), beginNewPro-
cedure {) which instantiate a new CodeClass object, set its .parentClass
to the object refered to by _currentClass, and set .currentClass to the
newly instantiated object. Those three methods mainly differ in what String they
put into the definition of the instantiated CodeClass.

• A setof addLineToInnerClass . . () methods in order to add a line of code

to a specific method or the class members of the .currentClass object.

• A set of get. . () methods in order to get a reference to a method or the class
members of the .currentClass object.

• A method exitlnnerClass () which sets .currentClass to its parent
CodeClass object.

• And finally there is a printAll () method for printing out the class file to an
output stream.

By using the methods of the CoreClassCode object, the generic code generator
can add code to the main class and the last added inner class of the target code. This
simplifiesimplementation of the visitor functions and make the code generatoreasier
to understand and to maintain.

PtolemyClassCode is the corresponding facade object for the Ptolemy specific
code generator. PtVisitor uses it for having random access to the members of the
generatedcode. The following list givesa short description of those functionalities:

• PtolemyClassCode contains a map for storing CodeMethod objects.

• The constructor of PtolemyClassCode initializes this map by a set of meth
ods which are common to every ptolemy specific actor. The method definitions
are hard coded as constants in PtolemyClassCode.

• The class provides a set of addTo. . methods in order to add a line of code
to a specific method or the class members.

• The class contains a set of get. . () methods in order to get a reference to a
specific CodeMethod or the CodeList containing the class members.

63



• There is a printAll () method for printing out the class file to an output
stream. This method uses the toList (} methods of the contained class ob
jects.

The Ptolemy specific part of a generated actor does not contain any inner classes. Thus
the PtolemyClassCode does not provide any methods for adding inner classes to
the target class.

64



Chapter 8

Conclusions

This chapter summarizes the achievements of this work and explains opportunities for
further work in the context of the CAL code generation.

8.1 Achievements

This work covers the design and implementation of a code generator for the actor lan
guage CAL. We summarize the achievements as follows:

1. The code generator can generate code for the full-fledged CAL language sup
porting grammatical constmcts such as:

(a) higher-order function closures

(b) procedural closures

(c) Set/List/Map-comrehensions

(d) input port patterns

(e) regular action selectors (was not explained in chapter 3)

(0 the 'usual' control structures such as if then else, f oreach, etc.

(g) ...

2. The code generator is easily retargetable to other Java platforms, due to its strict
decoupling between generic and Ptolemy speciflc part.

3. The code generator is a powerful framework for creating code generators for
other target languages such as C. The code generator has already been re-targeted
to the PSlsjo platform [6] at LTH Lund, Sweden, where generated actors are used
for controlling a mobile robot.
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4. The generated actors are surprisingly efficient,even if the primaiy optimization
goal was to maintain modularity between specific and generic part of the gener
ated code instead of optimizing for speed.

5. The strict decoupling of generic and specific part of the target code makes gen
erated actors reusable for other platforms then Ptolemy II.

8.2 Further work

Even if the code generator produces surprisingly efficient actors, there are still a num
ber of opportunities for improving their efficiency:

• Speed optimization for PtolemyII: Starting with the current modular code gen
erator, the execution speed of the generated code for the Ptolemy II platform
could probablybe optimized by usingPtolemy specific assumptions, sacrificing
generality for efficiencyand implementingspecial treatment of special cases.

• Re-targeting to other platforms: In order to make CAL accessible to a broader
community the language could be re-target to further platforms, such as Moses
[1] or LegOS.

• Implementing static typechecking: The currentversion of the compilerdoes not
provideanystatic type checking.Typeerrors result in runtimeexceptions,which
makes themharderto localize. A static type checking would help to maketype
errors in actor specifications detectable at compile time.

• Describe ASTtransformations in xslt: The transformations performed on the
AST are currently defined in Java, and some of them are very hard to read and
understand. A moreabstract specification of the transformations would help to
make the transformations more flexible and maintainable.

Figure8.1 shows currentandfurther work in the broader context of CALand Ptolemy,
that build on the results of this work.

There have been efforts to compile Synchronous Data Flow models [10] into C, where
the actor specifications are given in Java. But it is hard to analyzeJava actors and to
extract theirSDFspecific behavior, sincetheinformation relevant forSDFis implicit.

Another approach to compile models into C is to create a transformation which trans
forms a model consistingof CALactors intoone single actor. This is performedin the
following two steps:

1. network + actors —» schedule

2. network -t- actors -f schedule —» actor
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The resulting actor can then be compiled into C by using a re-targeted CAL compiler.
While the current efforts focus on Cyclostatic Data-flow Models in particular, it is a
long-teim goal to be able to compile several kinds of models into C.
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Figure8.1: Thedashed thickarrow shows theefforts tocompile models intoC by using
actor specifications in Java. But extracting explicit information from actors written in
Java is very difficult. Another approachof model compilationis to re-target the CAL
compiler to C, and to implement an algorithm which transforms an SDF model with
actorsspecifiedin CAL into a singleCAL actor. The CAL actor can then be compiled
to C by the CAL to C compiler.
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