

Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MICA HIGH SPEED RADIO STACK

by

Nelson Lee, Philip Levis and Jason Hill

Memorandum No. UCB/ERL M02/34

11 September 2002

MICA HIGH SPEED RADIO STACK

by

Nelson Lee, Philip Levis and Jason Hill

Memorandum No. UCB/ERL M02/34

11 September 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Introduction

Mica High Speed Radio Stack

Nelson Lee, Philip Levis, Jason Hill

September 11, 2002

This document describes the TinyOS networking stack released in TinyOS 1.0. This stack
provides variable length packets and data-link level synchronous acknowledgements at a
40Kb data rate; it only works on micamotes. This document assumes the reader is familiar
with nesC.

The Old Network Stack

The pre-mica TinyOS networking components used a vertical protocol stack. It roughly had
this structure:

Application
I

V

GENERIC_COMM

I
V

AM_STANDARD

I
V

CRCPACKETOBJ.SIGNAL
I

V

SEC_DED_RADIO.BYTE_SIGNAL
I

V

RFM

This vertical layering made each component dependent on the components directly above and
below it, and allowed different components (e.g. a non CRC packet) to be easily interchanged.
However, experience has shown that most of the interesting and important functionality had to
be encapsulated in SECJDEDJIADIOJYTE-SIGNAL, as only it could use the bit-level interface to the
radio (RFM).

For example, SECJ)EDJlADIO_BYTE_SIGNAL was responsible for the MAC layer, packet start
symbol detection, and data encoding/decoding: three very separate pieces of functionality.

Introducing the New Radio Stack in nesC

In nesC, configuration files link components together according to the interfaces they use and
provide. The hierarchy that links applications to the radio stack is as follows:

Application
I

V

GenericComm (configuration ''/tos/system/")
I

V

AMStandaurd (module ' Vtos/system")
I

V

RadioCRCPacket (configuration "/tos/platform/mica")
I

V

MicaHighSpeedRadioM (module 'Vtos/platfoim/mica'O

I I I I I . I
I I I I I I
V IV I V I

ChannelMonC.td I RadioTimingC.td I SlavePinC.td I
V V V

SpiByteFifoC.td SecDedEncoding.td RandomLFSR.td

All componenents below RadioCRCPacket, except for RandomLFSR, are implemented in
/tos/platform/mica.

A Brief Overview

Several components combine to form the network stack.

• MicaHighSpeedM contains the logic and state at the packet-level, and acts as a central con
troller for all of the components below it. It does not communicate directly to hardware,
instead, it calls on other components to do so.

• ChannelMonC observes the radio at bit-level at 20kbps. When the stack is idle, it samples
waiting for the preamble and start symbol. When the stack is sending a packet and is in
backoff, ChannelMon monitors the radio and signals idleDetect to MicaHighSpeeedM.

• SpiBytePifo provides a b3rte-level abstraction to the radio. In essence, it uses the Serial
Peripheral Interface (SPI) of the ATmegal03 processor to shift out bits to the radio when
sending, and shift in bits fi:om the radio when receivingat 40kbps.

• SlavePinC caUs HPL functions to flip the SlavePin high and low.

• RadioTiming uses counters on the ATmegal03 and input capture to sync a receiver of a
packet to the sender.

• SecDedEncoding provides a byte-level implementation of encoding/decoding single error cor
rection and double error detection.

• RandomLFSR returns a 16 bit random number. This is used by ChannelMon to determine the
length of the backoff state in radio clock ticks.

Init/Idle

The network stack is initialized by calling init() in MicaHighSpeedRadioM. In turn, RandomLFSR
is initialized and ChannelMonC is initialized. RandomLFSR initializes the seed from the ID of the
mote for therandom number generator. ChannelMonC sets its CM_waiting field to -1, sets theradio
hardware to receiving, scales timer2 and compare register2, clears the current counter value and
enables timer2's interrupt to go off every 200 clock ticks (200 clock ticks/bit = 4MHz/20kbps).

Every timetimer2's interrupt fires, T0SH^IGNAL(SIG.0UTPUT_C0MPARE2) iscalled in ChannelMonC.
While the entire network stack is idle (MicaHighSpeedRadioM has not accepted any packets and its
state and send_state are both IDLE_STATE), it shifts in the bit received into a buffer and checks
for the preamble. Preamble/start symbol detection will be discussed in further detail below.

The new TOSMsg format

The new structure of the TGS_Msg (the struct declaration can befound in ' Vtos/system/AM.h' *:

typedef struct TOS.Msg

uintl6_t addr;

uint8_t type;
uint8_t group;
uint8_t length;
int8_t data[TOSH_DATA_LENGTH];
uintl6_t crc;

uintl6_t strength;
uint8_t ack;

uintl6_t time;

> TOS_Msg;

It consists of an unsigned two byte field addr, followed by three unsigned single byte fields
type, group, and length addr specifies a motelD or the broadcast address (Oxffff). When the
MicaHighSpeedRadioStackM receives a packet, the packet is passed to the AM level. If addr is
not the broadcast address nor the address of the mote receiving the packet, the packet is dropped.
The group field specifies a channel for motes on a network. Ifa mote receives a packet sent by
a mote with a different group field, the packet is dropped at the AM level. The default group is
0x7d. The type field specifies which handler to becalled at theAM level when a packet is received.

^®^S^h field specifies the length ofthe data portion of the TOS_Msg. Packets have a maximum
payload of 29 b3rtes.

The next field in the TOSJlsg struct is the data portion. It consists of an array of 29 b3rtes
(as specified by TOSHJ)ATA_LENGTH). The unsigned two b3d;e field crc follows. When sending, the
CRC is incrementally calculated as each byte of the packet is transmitted. The maximum length
of a transmitted TOSJlsg is 36 bytes (addr(2 b3d:es) + type(l bjrtes) + group(l bytes) + length(l

bytes) -f data(29 bjrtes) + crc(2 bytes = 36 bytes)). The strength, ack, and time fields are not
transmitted; they are meta-data about the packet.

The last three fields ofTOS_Msg are the single imsigned bjrte ack field, the unsigned two byte
strength and unsigned two bytetime fields. The ack issent by the receiver, andset by the sender.
This is the mechanism that can provide refiabifity in the stack. When the network stack finishes
sending a packet, it will returnthe TOSJMsgPtr to the application that issued thesend request, with
the ackfield set to either 1or0. If the field is1, thedata link layer received anacknowledgement for
the packet. When a packet is received, the data link layer transmits an ack if the receiving mote is
a valid destination for the packet: (rec.ptr- >addr == TOSJLOCAL_ADDRESS || rec_ptr- >addr
== TOS_BCAST_ADDR). The strength field of TOS_Msg is currently unused, and the time field stores
an atomic capture of a 16-bit 4MHz counter.

Sending a Packet

MicaHighSpeedRadioM contains two state variables, send_state and state. When AMStandard
hands down a TDS_MsgPtr to send, MicaHighSpeedRadio's state must be IDLE_STATE. If it is
IDLE_STATE, then the radio stack accepts the packet. Its state changes and does not return until a
packet is completely sent, which includes the reception of an ack.

MicadlighSpeedRadioM then calls macDelay() in ChcinnelMonC. macDelay sets its CM-waiting
field to a random number. CM_waiting specifies the number of ChannelMonC clock ticks (one
ChannelMonC clock tick is equal to 200 ATmega clock ticks at 4MHz) to wait for idle over the
network. This Backoff state, as described previously, ensures that a sender of a packet in the
network will not interfere with the transmission of another sender's packet in the network. The
random factor prevents starvation.

Now, since ChannelMonC is waiting for idleness in the network, each call to
TOSH-SIGNAL (SIG_0UTPUT_C0MPARE2) in ChannelMonC decrements CM_waiting. When CM-waiting
is equal to 1, it checks to see if during the past 12 ChannelMonC clock tid^s a single 1 bit was
not received (checking if CM_search[0] & Oxfff == 0). If so, it sets CM_waiting to -1, disables
timer2's interrupt (thereby disablingChannelMonC) and signalsMicaHigSpeedRadioM that idleness
was detected on the network and that it may begin sending over the radio. If activity was detected
over the network, it sets CM-waiting to another random number and continues waiting for idleness.

It is important to note that while ChannelMonC searches for idleness over the network, it is
simultaneously searching for a preamble. If a preamble is detected, ChannelMonC begins search for
a startjsjnmbol. This in effect switches the network into receive mode. However, when the network
finishes receiving the packet or reafizes that it falsely detected a preamble, ChannelMonC will return
to IDLE-STATE and resume its detection for an idle network to send the packet it accepted to send.

ChannelMonC signals MicaHighSpeedRadioM via the idleDetect signal handler that the net
work is idle and ready for transmission. MicaHighSpeedRadioM then caUs on SecDedEncoding
to encode the first byte of the TOS_Msg. Each byte to be encoded results in three bjrtes to be
sent over the network. Hence, SecDedEncoding signals MiceJlighSpeedRadioM three times for each
byte called to be encoded. MicaHighSpeedRadioM then activates SpiByteFifoC to send the first
byte of the preamble/start sjnnbol (char start [12]), sets the time field of the TOS-Msg to be
sent (send-ptr— >time), and begins crc calculation with the first byte of the TOS-Msg to be sent
(send-ptr[0]). MicaHighSpeedRadioM's msgJLength field is also calculated here. This value cor
responds to the number of b)rtes to be encoded and sent over the network excluding the crc. This
calculation proceeds as foUows: taking the maximum munber of unencoded bytes of a TQS_Msg that
can be sent over the network (36), subtracting the maximum length of the data field (29) and the

crc (2), adding the length field of the TOSJIsg, which specifies the number of bytes of the data
array to be sent, results in the number of bytes to be encoded and sent over the network.

SpiByteFifoC holds at most two bytes at any time; the one that is cmrently being sent, and
the one that is waiting tobesent (uint8_t nextByte). Being in IDLE state corresponds to inactivity
in SpiByteFifoC. When its buffer is free, its state is open, and when its buffer is in use, its state
is full.

SpiByteFifoC receives a byte to send, and if it is currently in its IDLE state, which in this
particular case it will be since it was inactive before receiving the first byte of the start symbol, it
will accept the byte and signal to MicallighSpeedRadioM that data is ready. SpiByteFifoC also
initializes the SPI hardware, initializes and sets timer2 (modifying registers TIMSK, TCNT2, GCR2,
TCCR2), and sets the radio to transmit.

The hardware shift register used by the SPI is now configured to shift in a bit from the radio
every 100 clock ticks (100 ticks/bit = 4MHz/40kbps). After eight bits are shifted out of the SPDR
register (data register of the SPI hardware) and sent over the network, T0SHJ5IGNAL(SIGJSPI)
in SpiByteFifoC is called. The nextByte field of SpiByteFifoC is then output to SPDR and the
hardware continues shifting a bit out and sending it over the network at 40kbps (1 bit every 100
clock ticks) for another group ofeight bits. This is the primary interface to the radio hardware for
sending out bits. Contrary to the old stack, there is no software layer that commimicates directly
to radio hardware when sending.

To understand the following explanations on the intricacies of MicaHighSpeedRadioM, the dis
tinction between "calling send on a byte", "sending a byte", and "signalling that a byte has been
sent" must be fully understood. SpiByteFifokeeps a single byte buffer. Calling send() will place
thebyte inthebuffer; thebyte isnot immediately sent. SpiByteFifoC can beinone ofthree states:
IDLE, when it not sending a byte, OPEN, when it issending a byte but its buffer is open and can be
used, and FULL, when it is sending a byte and has a byte in its buffer. When a b3rte has been sent,
SpiByteFifoC signals a dataReady() event. As there is aone byte queue, the dataReady() event for
a given byte may not be the one immediately following the send() request. The calling component
must keep track of the send() and datsdleady() counts to know which event is associated with a
specific byte.

When MicaHighSpeedRadioM calls send on the first b3rte of the start symbol, its state changes
to TRANSMITTING^TART. At each signal of dataReady, it calls send on the next byte of the start
symbol. After the tenth bjrte of the preamble/start symbol has been sent, Tneaning dataReady is
signaled with the tenth byte, MicaHighSpeedRadioM calls send on the twelfth and final byte of the
preamble/start symbol and changes its state to TRANSMITTING.

When dataReady is signaled for the eleventh byte of the preamble/start symbol,
MicaHighSpeedRadioM caUs send on the first encoded byte. MicaHighSpeedRadioM stores encoded
bytes in its 4byte array encoded_buffer. After send is called on two of the three encoded bytes for a
single byte of the TOSJIsg, MicaHighSpeedRadioM will call encode on the next byte of the TOSJIsg
to be encoded and buffered for sending. Using the field tx_count as an index into send_ptr cast
into a char*, the bjrte pointed to wiU be the next byte encoded.

The field tx_count corresponds to the index of the next byte to be encoded and buffered
for sending. Let's use the application CntToRfm to iUustrate how exactly MicaHighSpeedRadioM
behaves. The first packet sent by CntToRfm appears as follows:

TOS_Msg: encoded bytes
addr = Oxff 0x9b, 0x55, 0x55

Oxff 0x9b, 0x55, 0x55

type = 0x4 0x52, Oxaa, 0x9a

group = 0x7d 0x48, 0x95, 0x59

length = 0x4 0x9b, 0x55, 0x55

data = 0x1 0x5b, Oxaa, 0x9a

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

ore = 0xd9 0x58, 0x59, 0x69

0x2d 0x95, OxaS, 0x59

At eachcall to SpiByteFifo.dataReady, send is called on the next encoded byte and enc.count
is decremented. Therefore, taking the first byte of the TOSJlsg (Oxff), the orderof operations is as
follows:

• tx_count is set to 1, and enc.count equals 3

• SpiByteFifo.dataReadyO is signaled. Call SpiByteFifo.send(0x9b) on the first encoded
byte, decrement enc.count to 2

• SpiByteFifo. dataReady () is signaled. Call SpiByteFifo. send(0x55) on the second encoded
bjrte, decrement enc.count to 1. To fill up the encoded buffer, call Code.encode (next_data)
where next.data is send-ptr [tx.count]. Increment tx.count to 2 and incrementallycom
pute the crc (calc.crc = add.crc.byte(next.data, calc.crc)).

• Code.encodeDoneC) is signaled. Add the number of encoded bytes (3) to enc.count, to make
it 4.

• SpiByteFifO.dataReadyO is signaled. Call SpiByteFifo. send (0x55) on the third encoded
byte (the final encoded b3rte of the first data byte of the packet). Decrement enc.count to 3.

• SpiByteFifO.dataReadyO is signaled. Call SpiByteFifo.send(0x9b) on the fourth en
coded byte (the first encoded byte of the second data byte of the packet). Decrement
enc.count to 2.

This cycle repeats itself for each byte of the TOSJlsg that is sent over the radio. In the instance
of the dataReady handler that calls send on the second to last byte of the encoded three bytes of
the second to last byte of the TOSJlsg to be sent (in this case it would be the fifth to last encoded
byte before the crc, Oxaa, refer to CntToRfm example above), tx.count is automatically changed
to 34. Therefore, independent of what msgJ.ength or the number of data bytes encoded and sent
over the network is, the crc bjrtes will always be the last two byte encoded and called send on.

After the six b3rtes of the encoded crc are called send on, MicaHighSpeedRadioM changes its
state to SENDING.STRENGTILPULSE. The time from when MiccJlighSpeedRadioM transitions from
TRANSMITTING to SENDING.STRENGTHJ>ULSE, to the time when it transitions from
SENDING.STRENGTHJ>ULSE to WAITINGJ^ORJICK, two bytes of Oxffare sent. As the name of the state
suggests, a strength pulse is sent. However, currently in the radio stack, the strength pulse is used
merely as a timing mechanism.

After the strength pulse is sent, during the transition from SENDINGJSTRENGTH_PULSE to
WAITING_FOR_ACK, SpiBjrteFifo.phaiseShiftO is called. phaseShiftdelays SpiB3rteFifoC, mean
ing SpiBjrteFifoC pauses before resuming shifting in bits from the radio.

Once MicaHighSpeedftadioM enters the WAITING_FOR_ACK state, it transitions the radio to re
ceive mode. SpiByteFifoC continues to signal dataReady to MicaHighSpeedRadioM in 800 clock
tick intervals (after 8 bits are shifted in), and the byte signalled (uint8_t data) corresponds to
the byte heard over the radio. MicaHighSpeedRadioM listens for four bytes, and on the last one,
if the b3rte is equal to 0x55, then it sets the TOS^sg ack field to 1, indicating the message sent
was properly received. A packetReceived task is then posted, which sets MicaHighSpeedRadioM
to IDLE_STATE, sets ChannelMonC to IDLEJ5TATE and activates it to search for a preamble/start
symbol, and passes the sent packet to the AM layer with the ack field and time fields set.

To summarize, the sender's interaction with the radio in the CntToRfm example is as follows:

bytes sent

addr = Oxff 0x9b, 0x55, 0x55

Oxff 0x9b, 0x55, 0x55

type 0x4 0x52, Oxaa, 0x9a

group = 0x7d 0x48, 0x95, 0x59

length = 0x4 0x9b, 0x55, 0x55

data = 0x1 0x5b, Oxaa, Ox9a

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

crc = 0xd9 0x58, 0x59, 0x69

0x2d 0x95, 0xa6, 0x59

strength Oxff

pulse Oxff

phase shift occurs
radio now set to receiving

byte received 0x55

byte received 0x55
byte received 0x55
data = byte received (send_ptr->ack = (data = 0x55))

DONE

Receiving a Packet

ChannelMonC initiates the reception of a packet. When the radio stack is initialized,
ChannelMon.startSymbolSearch is called. This method initializes ChannelMonC to IDLEJSTATE as
described earUer insection init/idle. Once CheumelMonC detects a preamble, its state changes into
START_SYMBOL_SEARCH, where it will shift in bits in search of a start symbol. If a start symbol was
not detected after 30 bits received, it changes its state back to IDLE_STATE. If a start symbol was
detected, it signals MicaHigSpeedRadioM startSymDetect.

In the StartSymDetect handler, MicaHighSpeedRadioM changes its state to RXJSTATE, sets
the time field of the packet received to the ciurent time, trivially sets the strength field of the
packet to 0, synchronizes the receiver (RadioTiming.getTiming() and startReadBytes(tmp)) to

the sender and activates SpiByteFifoC to begin shifting in bits. Synchronization details can be
found in section Timing.

SpiByteFifoC is now configured to shift in bits sampled from the radio once every 100 clock
ticks, and signals dataReady to MicaHighSpeedRadio after 8 bits have beensampled.

Now, each time dataReady is called in MicaHighSpeedRadioM, SpiByteFifoC will call de
code on the b3rte received and returned by SpiByteFifoC. SecDedEncoding signals decodeDone
to MicaHighSpeedRadioM after three bytes have been called to be decoded. Therefore, most of the
logic for the receiver resides in the decodeDone handler.

Many constants areused in the decodeDone handler and theyareMSG_DATA_SIZE, LENGTH_BYTE_NUMBER
and DATA-LENGTH. MSG_DATAJ5IZE is equal to 36, the number of bjrtes of a TOS_Msg up to and in
cluding thecrc field. LENGTH_BYTE_NUMBER corresponds to theindex ofthelength field ofTOS-Msg
when it is cast into a (char*). DATA.LENGTH corresponds to the size of the data field ofa TDS_Msg,
which is currently set to 29.

The logic decodeDone foUows is nearly identical to the logic described in the previous section
for the sender of the packet. Each time a byte is decoded, it is written into the buffer TOS_Msg
(rec-ptr) using the index rec.count. The field msg_length, corresponds to the number ofdecoded
bytes that should be received excluding the crc. The calculation for msg_length is the same as
described in the previous section, except that it cannot be calculated until it has received the
length field of the packet being sent (if(rec_count == LENGTH.BYTE_NUMBER){...}). For
the sender, msg_length can be calculated right away because the length ofthe packet is passed as
a paramter to the AM layer.

Once msg_length bytes have been received and decoded, rec.count is automaticaUy set to 34
(if(rec_count == msg-length){...}). This occurs because the next two bytes decoded will be the
crc, and the index ofthe first byte ofthe crc ofrec_ptr, when cast as a (char*), is 34.

As a note regarding CRC reception and calculation, each byte received excluding the two crc
bjrtes is used to calculate the CRC. After the crc has been received, it is compared with the
calculated CRC. If they are the same, the crc field of the TOS_Msg is set to 1 (if(calc_crc ==
rec_ptr->crc){ rec_ptr->crc = 1; ...}). If not, rec-ptr->crc is set to 0.

If the received crc and calculated CRC match, MicaHighSpeedRadioM checks if the address of
thepacket was either its own motelD or thebroadcast address. Ifso, it tells SpiByteFifoC to send
the ack (0x55) and changes its state to ACK_SENDJ5TATE. Ifnot, a call to SpiByteFifoC send isnot
made.

After receiving the last decoded byte of the packet being sent, the receiver will receive the
first Qxff byte sent by the receiver during the sender's SENDING_STRENGTH_PULSE state. During
this instance of dataReady, MicaHighSpeedRadio will call SpiByteFifo.txMode(), which keeps
SpiByteFifoC active but changes the state of the hardware to transmit.

For the next five instances of dataReady, either 0x00 or 0x55 is sent over the wire: 0x00 if
packet was corrupted or intended for a different mote, 0x55 ifthe packet was received properly and
addressed to itself.

During the fifth instance ofdataReady, MicaHighSpeedRadioM deactivates SpiByteFifo (call
SpiB3rteFifo.idle()), and posts a packetReceived task. The packetReceived task sets the
radio stack to IDLE-STATE, signals to the AM layer that the packet was received, and activates
ChannelMonC to search for a preamble/start symbol (caU ChannelMon.startSymbolSearch). The
purpose for this check, "if(tmp != 0) rec.ptr = tmp;" in the packetReceived task is because
the AM layer wiU return a TOS-Msg (tmp), but that TOS-Msg may be an application's buffer and
different than the bufferused to receive the packet. Therefore, it is an established convention that
the receive signal handler return a free TOS-Msg for the radio stack to use for reception ofanother
packet when a packet was signaUed upon reception.

To summarize, the receiver's interaction with the radio in the CntToRfm example is as follows:

bjrtes received

addr = Oxff 0x9b. 0x55, 0x55

Oxff 0x9b, 0x55, 0x55

type = 0x4 0x52, Oxaa, 0x9a

group = 0x7d 0x48, 0x95, 0x59

length = 0x4 0x9b, 0x55, 0x55

data = 0x1 0x5b, Oxaa, 0x9a

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

0x0 0xa4, Oxaa, Oxaa

ore = 0xd9 0x58, 0x59, 0x69

0x2d 0x95, 0xa6, 0x59

strength pulse Oxff

. radio now set to sending
bjrte sent 0x55

byte sent 0x55

byte sent 0x55
byte sent 0x55

byte sent 0x55
DONE

Timing

As discussed previously, there are two components that communicate directly with radio hardware:
SpiByteFifoC and ChannelMonC. SpiByteFifoC reads from the radio and is the only component
to send tothe radio. It samples/outputs to the radio every 100 clock ticks (40kbps). ChannelMonC
only reads from the radio, and this occurs every 200 clock ticks (20kbps).

When the sender sends the preamble/start symbol, the following bytes are sent over the wire
at 40kbps (using SpiBjrteFifoC).

start[12] = {OxfO, OxfO, OxfO, Oxff, 0x00, Oxff, OxOf, 0x00, Oxff, OxOf, OxOf, OxOf};
ChannelMonC monitors for packet reception by searching for thepreamble and start symbol. The

following timing diagram illustrates the transmission and reception of the preamble/start sjmibol.

Sender 11110000111100001111

Receiver -

i I I I I I I I I I I I I I I I I I I I
0 500 1000 1500

(time in clock ticks)

Sender

Receiver

1o1c1o
1o1<1o

1111 1111 00000000

i 1 1 1
2000

1 1 1 i
2500

till
3000

1 1 1 i 1 1 i 1
3500

Sender llllllllOOOOllllOOOO

Receiver ~ -

I I I I I I I I I I I I I I I I i I I I
4000 4500 5000 5500

Sender

Receiver

0 0 0 0

(

1111

{

1111

t ^

00001111

r ^ ^

1 1 1 1
6000

1 1 1 1
6500

1 1 1 1
7000

1 1 1 1 1 1 1 1
7500

Sender 00001111000011ll\\\\

Receiver ' " '♦*

i I I i i I I I I I I i I I I I I I I I
8000 8500 9000 9500

indicates when the Receiver received a bit using CM_search[0]
' indicates when the Receiver received a bit using CM_search[l]

The sender sends a bit once very 100 clock ticks.

ChannelMonC has an unsigned short CM_search[2] that it uses to shift in bits once every 200 clock
ticks. When ChannelMonC is in its IDLE^TATE, it shifts in bits into CM_search[0] only. Everytime
a bit is received (TGSH_SIGNAL(SIG_0UTPUT_C0MPARE2)), it masks CM_search[0] with 0x777 and
checks to see if it is equal to 0x707. If so, it changes its state to START_SYMBQL_SEARCH, sets both
CM_search[0] and CM^earch[l] to 0 and sets CM_startSymBits to 30.

10

preamble check: 0111 0000 0111
preamble mask in bits: 0111 0111 0111

bits received up to : 110 0110 0110 0111 1000 0111
preamble detection
As shown firom the timing diagram above, thelast bit received before start sjrmbol detection is the
1 bit ChannelMonC samples right after 4400 clock ticks as indicated bya

During start symbol detection, both CM_search[0] and CM_search[l] are used. Since
T0SH_SIGNAL(SIG_0UTPUT_C0MPARE2) rims once every 200 clock ticks and the startsymbol sent by
the sender is actually a 10kbpssignal, the bits received in two consecutive instances of
TOSH-SIGNAL (SIG_GUTPUT^_C0MPARE2) go to separate buffers. As shown in the timing diagram
above, where there is a "" the bit was shifted into CM.search[0], and where there is a the bit
was shifted into CM_search[l].

The contents of CM_search[0] and CM_search[l] after preamble detection areshown below:

startjsymbol mask: 0001 1111 1111
start-symbol check: 0001 0011 0101

CM_search[l]: 01 0011 0101
CM_search[0]: 10 1001 1010
In the timing diagram above, CM-search[l] will detect the start symbol before CM_search[0]. The
bit received, as marked by the "**" is the last bit received by ChannelMonC. Upon receiving this
bit, ChannelMonC disables itself and signals startSymDetect to MicaHighSpeedRadioM.

The next timing issue that needs to be discuessed is the synchronization/input capture the
receiver of a packet performs after detecting the preamble/start symbol. In essence, since the
sender issending the packet at 40kbps and thereceiver is receiving bits at 40kbps, it iscrucial that
they are in sync. Since start symbol detection was performed at 10kbps, having the receiver know
when to start clocking in bits at 40kbps is critical. This is accompHshed through input capture.
The receiver loops until a 1 bit is received, and begins clocking in bits for the packet some offset
from when the 1 bit was received.

In the timing diagram above, the first bit of the packet is sent at 9500 clock ticks, 100 after
the last 1 bit sent at 9400 clock ticks. Seeing that the last bit received for the start symbol occurs
sometime between 8400 and 8500 as marked by '**, the receiver synchronizes itselfwith the sender
between 8500 and 9500. The bits over the wire dming this time are:

111000011ll\\\\

I I I I I I I I I I i
8500 9000 9500

each bit sepeirated by 100 clock ticks.

As soon as the '** bit is received, RadioTiming's getTiming method is called from
MicaHighSpeedRadioM's startSymDetect. The code line "while(TGSH_READJlFM_RXD_PIN()) { }"
will hold the receiver in a spin loop until the 0at 6800 clock ticks isreceived. RadioTimingC then
enables input capture from the radio and the code fine "while((inp(TIFR) &(0x1 \\ ICFl)) == 0)
{ }" pauses the receiver until the 1at 9200 is received. RadioTimingC retiums the time the input
capture occurred to MicaHighSpeedRadioM, and MicaHighSpeedRadioM then calls SpiByteFifo's
startReadBytes with the time stamp of when the input capture occurred.

11

startReadyBytes sets SpiByteFifoC's state to reading, and delays itself based on the times-
tamp of when the input capture occurred to begin clocking in bits between 9600 and 9700, when
the first TOS_Msg packet bit is sent over the network.

The last timing issue that needs to be addressed is the phase shift that occurs when the sender
switches its state from SENDING.STRENGTHJ'ULSE to WAITING_FOR_ACK. Up to thispoint, thesender
and receiver are in perfect sync. The sender sends at 40kbps and the receiver receives at 40kbps.
When the sender and receiver switch roles for the transmission and reception of the ack, it is
necessary for the sender of the packet, to delay SpiByteFifo so that it remains in sync with the
receiver of the packet (the one sending the ack). The timing diagram below illustrates the phase
shift.

sender:

<- tx rx ->

1 1 ### 0 1

tx ->

receiver: 1

I
0

i I I I I I I I
100 200 300 400 500 600 700 800 (clock ticks)

As shown above, the sender is sending the last 3 bits of the strength pulse, Oxff. The ###
indicates that the sendershifts its timing, changes its radio hardware to receive so that the next bit
SpiByteFifoC shifts in occurs after the 0 bit is transmitted by the receiver of the packet shortly
after 300 clock ticks.

12

Preamble TX
Start Symbol TX Ack RX

Timing Bits TX Phase Shift

Strength Pulse TX

Sender HUWrai •Packet Transmission ^

Receiver Packet Reception

Preamble RX GetTiming Strength Pulse RX

Start Symbol RX

0 1 2 3 4 5 6 7 8 9 10 11 12 13

X10^ clock ticks (on a 4MHz clock)

Figure 1: Timing Diagram of Network Send/Receive

	Copyright notice 2002
	ERL-02-34

