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DISTRIBUTED GRADIENT ESTIMATION USING RANDOM SENSOR

NETWORKS

SLOBODAN N. SIMIC AND SHANKAR SASTRY

Abstract. Wepresent a distributed algorithm for estimating the gradient of an environmen
tal scalar field (such as temperature, the intensity of light, atmospheric pressure, etc.) using
a random sensor network. We derive an error estimate, discuss the algorithm's complexity,
and showsome simulation results. Potentied applications are in preventing forest fires, energy
conservation, oceanography, building science, etc.

Introduction

Recent advances in MEMS, computing, and communication technology have sparked the
emergence of massively distributed, wireless sensor networks consisting of hundreds or po
tentially thousands of nodes. Each node is able to sense the environment, perform simple
computations, and communicate with its peers or to an external observer. The challenges
these networks present are beyond the reach of current theory and algorithms.

In this paper, we present a distributed algorithm for monitoring an environmental scalar
field (such ^ temperature, intensity of light, atmospheric pressure, etc.) using a random
wireless sensor network. We also derive an error estimate in terms of the parameters of the
sensor network. Possible applications of the algorithm are in preventing forest fires, energy
conservation, oceanography, building science, etc.

Our work is mainly motivated by the Sensorwebs and Smart Dust [KKP] projects at
UC Berkeley, whose aim is to develop a unified framework for distributed sensor networks.
Some previous work on environmental monitoring using random sensor networks was done in
[DohOO].

Due to high long range communication costs and low battery power, it is natural to seek
decentralized, distributed algorithms for sensor networks. This means that instead ofrelaying
data to a central location which does all the computing, the nodes process information in
a collaborative, distributed way. For instance, they can form computational clusters, based
on their distance from each other. The outcome of these distributed, local computations is
stored in local memory and can then be, when necessary, relayed to a centralized computing
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2 SLOBODAN N. SIMIC AND SHANKAR SASTRY

unit. Robustness to node failures is another reason to seek distributed rather than centralized
algorithms.

The basic idea ofour algorithm isthefollowing. Each node communicates with itsneighbors
and computes the maximal difference quotient of the measured variable. The estimate of the
gradient at each node is taJcen to bethe vector in thecorresponding direction with norm equal
to the maximal difference quotient. The algorithm is simple enough to be implemented on
the current sensor network platform of Mica motes [Cul].

We point out that the main purpose of this paper is to rigorously analyze the accuracy
and complexity of our algorithm from a probabilistic point of view; its purpose is not to deal
with technical details of time synchronization, data fusion, communication protocols, etc. We
believe that this approach fills a void in the literature as most articles known to the authors
do not rigorously address mathematical aspects of sensor networks.

The paper is organized as follows. In Section 1, we introduce the terminology, notation, and
the environmental monitoring problem. Section 2 describes the algorithm. In Section 3, we
derive an error estimate; Section 4 discusses average complexity, followed by some simulation
results in Section 5. The paper concludes with a summary of the results and discussion of
future work.

1. Preliminaries

In this section we introduce the basic mathematical framework and formulate the problem.
Assume that a random sensor network consisting of N nodes S\,... \s deployed in some

region D C The number i will be called the ID of the node Si. Assume that:

• Every node is aware of its own position p, in some fixed coordinate system in D. That
is, the network is assumed to have performed node localization (see, e.g., our earlier
work [SSOl]).

• Each node Si measures some environmental scalar field V such as temperature, pres
sure, or the amount of light at its own location. We assume that its measurement Vi
is exact, i.e., Vi = V[pi).

• Each node has a maximal isotropic RF communication range R, i.e., two nodes can
communicate if they are less then R meters apart. For every 0 < r < R, each node
can adjust it signal strength to achieve communication range r.

Remark. If 0 < r < R is the maximal communication range, then any two nodes whose
distance is < r are called r-neighbors.

The goal is:

Using only the information collected by the sensor network, design a distributed
algorithm for estimating the gradient of at pi,... ,pAr.

We make the following assumptions on D, V, and the network.
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• D has unit area and is homeomorphic to the closed unit disk in
• V : W —> IR is a function of class i.e., twice continuously differentiable, where W

is some neighborhood of D in
• For eaoh 1 < i < pj is a random variable with uniform distribution on D.

Notation. Throughout this paper, • will denote the standard dot product on R^. The
corresponding 2-norm of a vector v € is |v| = y/v^. For a matrix A € ||i4|| will
denote its operator norm relative to | |,

mil = sup{|i4u| : V€ |v| = 1}.

Further, for a, 6 € Z?, a ^ 6, denote the difference quotient of K at a relative to b by

|6-a|

Finally, let

G(a,b) = Q{a,b)
\b-a\'

2. The algorithm

Let S = Si for some 1 < i < TV be a node with position p = Pi- Assume the signal strength
of all the nodes has been adjusted to achieve maximum communication range of r meters.

We now state our algorithm for estimating VV(p), called GRADs{r).

Step 1: INITIALIZE variables: q{S) = 0,n(5) = i.
Step 2: SEND "Hello, what is your ID, position, and measurement?"

Each r-neighbor replies with My = (z^,Pi/, v„), where u is its ID, py its position, and Vy
its measurement of V at py.

Step 3: For each r-neighbor I/, COMPUTE Q{p,py).
U Q{p} Pu) > q{S) then
n(S) = V, q{S) = Q{p,pv)-

Step 4: STOP when all responses have been processed. The estimate ofW{p) is

Grad(p) = G(p,p„^s)).

Note that Vy = V{py).

Remark. The algorithm maximizes the difference quotient Q{p,py) over all neighbors Sy of
S. Grad(p) is the vector parallel to pn{s) - p of length Q(p,p„(5)).

Observe that the algorithm is distributed. The number of operations it executes is a con
stant multiple of the number of r-neighbors of S. The only operations a node needs to be
able to perform are the four elementary arithmetic operations, squaring, square root, and
comparisons.
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3. Error estimates for GRADs{r)

We will need the following estimate. Here /.{u,v) will denote the angle between vectors
u,v e

3.1. Proposition. For allp^q ^ D, q,

\G{p,q) - VV(p)| <|W(p)|sin \Z(yV(p),q- p)| +^IpVUool? -p|.
Proof. By the Fundamental Theorem of Calculus,

V(q) - V(p) = VK(p) •(g - p) + -p)-{q-p),

for some | lying on the segment connecting p and q. Therefore,

V{q) - K(p)
\G{p,q)-VV(p)\ =

|9 - pP
VV(p)-(g-p)

(g-p)-VV(p)

(g-p)-VK(p)
1

+ 2
D''V(i)(q-p)-(q-p)

Consider first

* k-pP
Letting v = VV(p) and x = g- p, by elementary linear algebrawe obtain that the numerator
of (1) is

|(v•x)x- \x\^v\ = {[(v •x)x - \x\\] •[(v •x)x -

= |x|^|v|sin|Z(t;,x)|

Thus,

I=|Vnrt|sin|Z(VV(p),g-p)|.
It is not hard to see that

k - p\-
= I + II.

j ^ l[W(p) •(q- p)](g -p) - k - ppVV(p)|

ll<i||f)V|Ug-p|.
This completes the proof of the Proposition

For every I < i < N, denote by 6i the angle between VV(pi) and the vector Pn{s ) - Pi
(Fig. 1).

3.2. Corollary. For every I <i < N,

1

|9-P|'

|Grad(ft) - VV(pO| < |VK(pi)|sm|ei| + i||DV|U|p„(so - ft|.

Let

Ai = |Vl^(pi)| and H=\\D''Vl

il-p)

•
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Figure 1. The angle 0i.

3.3. Lemma. Let q,qi, ---^Qk ^ L) be distinct points and let

a, = |Z(VK(?),g,-g)|.

There exist p > 0 such thatfor allqi, q^ with \qi—q\j \Qj~Q\ < P o/nd ai, aj < 7r/2, the following
holds:

ai < aj Q{q,qi) > Q{q,qj).

In other words, in a sufficiently small polar coordinate neighborhood of q, qi Q{q, qi) de
creases as ai increases.

Proof. Let

c = min{| cos am ~ cosa„| : am ^ ocn, am, otn < 7r/2, 1 <m,n < K}.

Since c> 0, we can choose p > 0 so that

p< min|̂ :1<i<A"! •
Assume Ift - g|, \qj -q\<p, Qj, a, < 7r/2, and as < a,. Then

QM-QM - +

= \W{q) I(cos a, —cos aj)

= I + 11,
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where is a point on the segment connecting qand qi, and similarly for Further, |II| < 2pH,
and I > AiC. Therefore,

I + II > I - |II| > AiC - 2pH > 0,

implying Q{q, qi) > Q(q, qj). •

Denote by P(A\B) and E{A\B) the conditional probability and expectation of A given B
[GS97]. Let dD be the boundary ofD, and d(x, dD) the distance from x to dD.
3.4. Proposition. For alll <i< N and e > 0 small enough,

P(IGradfe) - VV{pi)\ < e | dfe,> r) > 1- [1 - /iv(e)]^-^

where

Pv{^) = max{ii2sin"^ui : AiUi + Hu2 = e, ui,> 0}.
In particular, if Pi is an equilibrium ofW, then

P(|Grad(pi)| <e|d{pi,dD) >r) >1- ^1 -
Proof. Let Ci{ui,u2) be the circular sector at pi of radius U2 > 0, angular width sin~^wi
(ui > 0), and axis of symmetry W(pi). If >1,^1 H- Hu2 < e, then by Corollary 3.2,

P(|Grad(pi) - W{pi)\ < e | d{pi,dD) >r)> P(p„(5<) € Ci(uuU2) | d{pi,dD) > r).

For e small enough, Ci(ui,U2) 0 D = Ci{ui, U2); its area is

ot(ui, U2) = u\ sin~^ ui.

Ifeissmall enough, then by Lemma 3.3, Pj »-> Q(pi,Pj) isa decreasing function of\A(W(pi),pj—
Pi)I on Ci{ui,U2). Therefore, theprobability that p„(5.) e Ci{ui,U2) (given that d{pi, dD) > r)
equals the probability that at least one node different from Si lands in Ci{ui,U2). Thus,

N-l

P(Pn(Si) €Ci{ui,U2) Id{pi,dD) > r) = ^ P(exactly knodes 7^ Si lie in Ci{ui,U2) | d(pi,dD) > r)
k=l

N-l

ik=l ^ I

= 1-[1-q(wi,U2)]^"^

Since this is true for any pair («i,H2) with the above properties, it follows that

P(|Grad(pi) - VVfe)! < e Id(Vi, dD)>r) > 1- [1 - maxa(ui, uj)]""'
til i'U2

The second part of the Proposition follows analogously. •
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3.5. Corollary. For every 1 <i < N and e> 0,

^li^P(|Grad(pf) - W{pi)\ < e | d{pi,dD) > r) = 1.

3.6. Proposition. Suppose pi is an equilibrium o/VV and0 < ?? < 1. If

log//
N>N, = 2 +

then

P(|Grad(pi)| < e | d{pi,dD) >r)>l-T).

Proof. Follows directly from Proposition 3.4. The growth of the function c iVg, as e —^ 0+
can be seen in Fig. 2. •

2-flog(O.OS)/loo(1-4)(X^)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O.t

Figure 2. The graph of e i—> TVg for p = 0.05 and H = 1.

Remark. Let F = W. If p is not an equihbrium of F, then in a neighborhood of p, F
looks essentially like a constant vector field, up to a smooth change of coordinates. This is
known as the Flow Box Theorem in dynamical systems. If F{p) = 0, then the picture can be
much more complicated. However, if A = DF{p) has no eigenvalues on the imaginary axis,
then in a neighborhood ofp, F looks essentially like or, more precisely, up to a continuous
coordinate change near p, the fiow of F is the same as the flow of A. This is known as the
Hartman-Grobman theorem. Observe that the condition "£)P(p) has no eigenvalues on the
imaginary axis" is generic, i.e., it is satisfied by almost all F. Furthermore, it is well known
that, generically (when D'̂ V is nonsingular), the equilibria of W can only be saddles and
stable or unstable nodes.
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4. Average complexity

One way to measure the average computational complexity of GRADs{r) is to require that
it satisfy an error bound such as |Grad| < e with probability greater than 1—??, and then count
the expected number of steps the algorithm has to perform. The random variable crucial in
this count is the number Xr of r-neighbors of a fixed node Si. If the position of Si is Pi, it is
not difficult to show that

(2) E{Xr Id{pi, dD) > r) = (A - l)7rr\

4.1. Proposition. (a) //VV(pi) = 0, then the average computational complexity ofGRADs{r)
satisfying

P(|Grad(pi)| < e | d{pi,dD) > r) > 1 - 77,

isO^ilog^, ase,7?->0.
(b) The average communication complexity of GRADs{r) is O(A^). That is, on average,

the number of messages exchanged in the execution of GRADs{r) is of the order N^.

Proof The average complexity of GRADs{r) is 0{E{Xr | d{pi,dD) > r)), where Xr is the
number of r-neighbors of Si. Part (a) then follows from (2) Proposition 3.6. Part (b) is also
a direct consequence of (2), since each of the N nodes on average has to communicate with
{N —l)7rr^. •

5. Simulation results

In accordance with the previous Remark, it is sufficient to test our algorithm in three cases:
near a nonequilibrium point for VV^, near a saddle for W, and near an unstable node for
W. Therefore, we present three examples: in the first one, is a linear function (Fig. 3); in
the second one, V is quadratic and W has a saddle at (10,10) (Fig. 4); in the last one, V is
quadratic, but W has an unstable node at (10,10) (Fig. 5). In all cases, the algorithm gives
good results away from the boundary oi D = [0,20] x [0,20]. Observe that if we excluded
the edge effects from the calculation of the average relative error (i.e., average absolute error
divided by the norm of the gradient at the corresponding point), the accuracy would go up.

6. Conclusion

We presented a distributed algorithm which estimates the gradient of a smooth function
using a random sensor network. The method amounts to approximate differentiation of a
function given its value at several random points. We estimated the probability that the error
is small and showed that it converges to zero, as the number of nodes goes to infinity.

It would be useful to estimate the expected value of the error and show that it converges
to zero with the number of nodes going to infinity. Furthermore, it is particularly important
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Figure 3. V(x,y) = x + y, D = [Q,2Q\ x [0,20],
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Figure 4. K(i, y) = (x -10)^ - (j/ -10)^ £> = [0,20] x [0,20].

to investigate the robustness of the algorithm to noise and node failures. We plan to do this
in future work.
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