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Abstract

SPFDs : A New Approach to Flexibility in Logic Synthesis
by

Subarnarekha Sinha

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Robert K. Brayton, Chair

Logic synthesis algorithms convert one representation of a Boolean network into another one that is
more desirable from the point of view of area, delay, power, testability, wireability or other criteria.
The main requirement on such transformations is that it preserves functionality across all required
operating conditions. The quality of the final implementation is strongly influenced by the ability
of a transformation to suitably express and utilize the flexibility inherent in the original implemen-
tation of a Boolean network. Depending on the particular transformation, several formalisms have
been developed over the past decade for suitably expressing flexibility. In this dissertation, a new
formalism for expressing flexibility called Sets of Pairs of Functions to be Distinguished (SPFDs) is
presented. SPFDs provide a powerful mechanism for expressing flexibility during certain logic syn-
thesis transformations. The expressive power of SPFDs is compared with previous formalisms for
expressing flexibility. It is proved that the flexibility expressed by them completely contains some
previous formalisms (like Incompletely Specified Functions) and extends (but does not completely

contain) other formalisms (such as Boolean Relations).

An in-depth exposition is provided for various applications of SPFDs. It is argued that
SPFDs provide a more powerful and intuitive mechanism for expressing flexibility in logic and
for rewiring of a network. Any such improved formalism usually comes at the cost of increased
computational expense in using that flexibility. Efficient algorithms are provided for hamessing
this extra flexibility without incurring too much additional overhead. Other interesting applications

of SPFDs to some classical logic synthesis problems like functional decomposition and sequential



synthesis are also presented.

Professor Robert K. Brayton
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Design Flow

The traditional static CMOS standard cell based design methodology aimed at minimiz-
ing the overall gate area and delay. The design process was usually carried out in a top-down
fashion with several distinct, relatively decoupled phases like high level synthesis, logic synthesis
and physical design (Figure 1.1).

During high level synthesis, a Register Transfer Level (RTL) structure was generated
which realized the given behavioral description. Temporal scheduling, and allocation and binding
of hardware were the issues considered at this stage.

The input to the logic synthesis phase was the RTL description of the circuit, and a cell
library. The circuit was typically represented as a multi-level logic network, that was then optimized
for various design objectives like area and delay for generating a gate level netlist implemented with
the elements from the given cell library. The optimization phase itself consisted of two sub-phases:
technology-independent and technology-dependent optimization. The objective of the technology-
independent phase was to simplify the logic level netlist without making any assumptions about
the underlying technology to be used for the actual implementation of the circuit. Each node in the
multi-level logic network at this stage represented an arbitrarily complex function. The network was
then optimized using Boolean and algebraic operations on nodes like node factoring, substitution,
elimination, node simplification using don’t cares, etc. The technology-dependent phase took this
netlist as input and transformed it for implementing and optimizing in a particular technology. The
mapped netlist was then input to the physical design tools which placed and routed the netlist thereby
realizing the physical layout of the circuit which had been optimized for area and delay. This flow
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l Behavioural Specification \

\
High Level Synthesis

l Logic Description (BLIF Verilog) l

Logic Synthesis

Technology Independent Optimization

*‘I’echnology Dependent Optimization

Technology Mapped Netlist

——— Netlist Signoff

Physical Design
Placement
Clock Tree
Routing
Extraction

Figure 1.1: Traditional design flow.

was the de-facto standard until the mid-90s when most of the delay was in the gates. It made sense
to de-couple logic synthesis from physical design and to focus more on area and delay minimization
of gates during the logic synthesis phase.

As process geometries scale down, interconnect becomes an important factor in deter-
mining the delay. This is mainly due to the following two reasons. First, the gate delay depends
mostly on the output capacitance it drives, of which the net capacitance becomes the largest contrib-
utor. Second, the delay of the long nets, which depends on their capacitance, becomes larger than
gate delays. This trend has resulted in a revision of the standard design flow. It has necessitated a
much closer integration between logic synthesis and physical design so that more accurate estima-
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tion of the optimization parameters can be obtained. Another consequence of this trend has been a
modification of the focus of traditional logic synthesis transformations to include more interconnect
specific optimizations. Some recent work has already started in this area, for instance wireplanning
for logic decomposition [1].

The main focus of this dissertation is improving and enhancing some of the transforma-
tions of logic synthesis, specially in the light of the changing scope of the area. At the heart of
any logic synthesis transformation is the flexibility of changing the given network into a different
network for improving some criteria, while still maintaining required input-output functionality.
The input-output functionality specifies what the output(s) of the network should be for each in-
put pattern. Depending of the transformation, this flexibility can be modeled and used in different
ways. In the next section, some of the commonly used formalisms for modeling flexibility in certain

fundamental logic synthesis transformations are described in some detail.

1.2 Flexibility in Logic Synthesis

Logic Synthesis is the process of transforming a set of Boolean functions, obtained from
the RTL structure, into a network of gates in a particular technology. The task of logic synthesis is
to transform one representation of a network into another , which is more desirable from the point
of view of area, delay, power, testability, wireability and/or other criteria. Some common transfor-
mations include changes in the local functionality of a group of nodes (don’t care optimization),
logic restructuring during timing optimization, gate resizing for meeting the area-delay constraints,
modifying the wiring pattern between the nodes in the network, etc. Each of these transformations
exploit the inherent flexibility of the network. Depending on the transformation at hand, this flexi-
bility can be modeled in a particular fashion, thereby making it more suitable for manipulation by
the synthesis algorithms.

In the following two sections, the manner in which the inherent flexibility in a Boolean

network is modeled in two important transformations in logic synthesis is presented.

1.2.1 Flexibility in Logic

The transformations that exploit implementation flexibility of a node in a multi-level net-
work are described here. This transformation is possible due to the fact that while it is absolutely

necessary to maintain certain required input-output functionality of the network, it not always nec-
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essary to maintain the identical local functionality at every node in the network. This relaxation of
criteria provides the flexibility to transform some nodes in the network and the environment of the
node provides the information needed for exploiting this additional flexibility. The basic task for the
logic synthesis transformation is to look at a node in a network and try to find different functions,
that are more desirable from the point of view of the optimization criteria and can be used instead of
the current one. A naive approach would try to replace the original function with all possible func-
tions and see which one gives the best solution, while still satisfying the input-output functionality.
However, this is computationally too extensive as the number of possible Boolean functions is very
large. Furthermore, some Boolean functions cannot be used as the functionality of the network can
change if these functions are used at the node. Over the past decade, a lot of research has focussed
on trying to mathematically characterize the flexibility at a node in order to eliminate the ad hoc
nature of the search process. Incompletely Specified Functions (ISFs) [2] and Boolean Relations [3]
are the most common formalisms used for representing the flexibility of a single-output node and a

multiple-output node, respectively.

An ISF consists of the onset, the offset and the don’t care set. The minterms in the onset
and offset have to produce 1 and O, respectively. On the other hand, minterms in the don’t care
set can produce either a 0 or a 1. For each assignment of a minterm in the don’t care set, a new
function is obtained. This choice can be exercised to obtain several different functions at the node.
A Boolean relation specifies several output values for each input minterm. For each input minterm,
any output in the specified set can be chosen. As in the case of ISFs, depending on the choice of the

output value for each input minterm, several functions can be derived.

The best function in both cases is chosen depending on the optimization criteria. The most
common criteria used is the minimization of area, typically modeled as the number of the literals
in the factored form of the function at the node. These transformations are present to different
extents in all commercial logic synthesis tools. In Chapter 3, an in-depth exposition of the different

formalisms used for expressing this flexibility is provided.

It is necessary to realize that optimization is often limited by the expressive power of the
formalisms chosen to represent the flexibility. This has resulted in the sustained effort for improving
the power of the formalism used for representing the implementation flexibility of a node in a
network. For instance, Boolean relations were introduced to represent the implementation flexibility
of a multi-output node since ISFs (which were used to represent the flexibility of a single-output

node) were shown to be inadequate [3].
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1.2.2 Flexibility in Wiring

Just as the functionality of some nodes in the network can be changed while keeping the
overall network functionality unchanged, the wires between the nodes can also be changed without
altering input-output behavior of the circuit. The basic task of this synthesis transformation is to
replace one wire with another, in order to optimize the circuit for certain criteria. The typical
criterion used in the past to select such a change was routability (i.e. whether the new wire is
predicted to be easier to implement in the final layout than the one it is replacing). A lot of work has
been done in the past decade for characterizing the set of wires that can replace a given wire in the
network, without affecting its functionality. Most of the previous work in this area involved adding
redundant wires and thereby rendering some of the original wires in the network redundant (4, 5, 6]
and hence candidates for removal. This approach is commonly called redundancy addition and
removal. Like the formalisms for expressing the implementation flexibility of a node, the quality
of the results depend on the power of the formalisms. To improve the quality, this basic idea was
extended in a few other papers [5, 7, 8] to allow simple functionality changes of the nodes, thereby
allowing more wiring changes to be accepted.

Another set of techniques [9, 10] performed rewiring by modeling the problem of wire
reconnections by a flow graph and then solving the problem using maxflow-mincut algorithm on
the flow graph.

These techniques do not affect the functionality of the nodes in the network and are suit-
able for use during the later stages of the design flow when it may be undesirable to perturb the
network substantially.

1.3 Focus of this Work

In this dissertation, a new formalism, Sets of Pairs of Functions to be Distinguished
(SPFDs)!, for expressing flexibility during some logic synthesis transformations is presented. The
expressive power of SPFDs is compared with previous schemes. It is proved that in some cases the
flexibility expressed by SPFDs completely contains the flexibility expressed by previous approaches
and in other cases it extends (but does not completely contain) the flexibility expressed by previous
approaches.

The problems mentioned in the previous section are revisited. It is illustrated how SPFDs

Yintroduced by Yamashita et. al. in the limited context of FPGA synthesis [11]
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provide a very powerful and intuitive mechanism for expressing the flexibility in logic and for
rewiring of a network. As mentioned earlier, any improved formalism for expressing flexibility usu-
ally comes at the cost of an increase in computational expense in using that flexibility. For instance,
while Boolean Relations are more expressive than ISFs, they are also more computationally expen-
sive to manipulate. Efficient algorithms are provided for hamessing this extra flexibility without
incurring too much additional overhead.

Finally, other interesting applications of SPFDs to some classical logic synthesis problems

like functional decomposition and sequential synthesis are also considered.

1.3.1 Dissertation Outline

* Chapter 2 contains all preliminaries, including the definitions and terminology that will
be used in the rest of the dissertation. As mentioned before, flexibility in logic is a well-researched
problem. In Chapter 3, the various schemes are presented and compared.

SPFDs are formally introduced in Chapter 4, where they are defined and their ability
for representing flexibility in logic is compared to previous approaches. How an SPFD attached
to a node/wire can be used to represent its information content is also described. This provides
an intuitive explanation of what a node contributes to its surrounding network. There are some
interesting implications and applications of this connection, some of which are presented in later
chapters.

In Chapter 5, the flexibility expressed by SPFDs is used for optimizing a network with the
goal of reducing the overall literal count. One major problem associated with the increased flexibil-
ity of SPFDs is addressed and techniques are provided for solving them. The results obtained are
compared to previous schemes. Image Computation-the process of expressing minterms in one vari-
able space in terms of another variable space- is an important step in the node simplification process.
Most previous image computation approaches used Binary Decision Diagrams (BDDs) [12], which
are very efficient for set manipulation but often suffer from memory explosion. On the other hand,
SAT solvers (e.g. [13, 14]) suffer from the reverse problem. SAT solvers are robust and can handle
large circuits but are inefficient for set manipulation operations. A hybrid approach, combining the
efficiency of BDDs and the robustness of SAT solvers, for image computation is also presented.

Rewiring a given network using the increased flexibility expressed by SPFDs is described
in Chapter 6. Some preliminary theoretical work is presented to compare the power of SPFD-

based rewiring schemes relative to previous rewiring schemes like redundancy addition and removal,
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described earlier. Two rewiring scenarios are subsequently presented. In one approach, rewiring
a Boolean network in an attempt to reduce the wire count without increasing the literal count is
described. Another approach for performing SPFD-based rewiring in a combined logic synthesis-
physical design environment is presented. Possible interesting extensions of this approach are also
described.

An interesting application of SPFDs to functional decomposition is presented in Chapter
7. Given a network topology (i.e. the interconnectivity of the nodes) and its required input-output
functionality, an algorithm is provided for synthesizing the nodes in the network. An interesting
metaphor describes a network as a channel that transfers information from the inputs to the outputs.
Some possible applications of this algorithm are also presented here.

The concept for using SPFDs for sequential circuits is presented as an extension in Chap-
ter 8. Theoretical results are provided for illustrating that SPFDs can be extended very easily for
expressing the classical incompatibility graph of a Finite-State Machine(FSM). An algorithm for
partitioning the state bits in a sequential circuit is provided, thereby possibly increasing the size
of machines that can be handled by sequential synthesis tools. The actual implementation of such

techniques is beyond the scope of this dissertation.



Chapter 2

Preliminaries

In this chapter, some basic definitions and concepts that are essential for describing the

work presented in this dissertation are presented.

2.1 Boolean Functions and Relations

Definition 2.1 A completely specified Boolean function f with n inputs and | outputs is a map-
ping:
f:B" = B,
where B = {0,1}. In particular if | = 1, the onset and offset of f are:
onset = {m € B"|f(m)=1}
offset = {m € B"|f(m)=0}.
Definition 2.2 Any vertex in B™ is also called a minterm. A minterm of a function f is a vertexm
such that f(m) = 1.
Definition 2.3 An incompletely specified function (ISF) F with n inputs and | outputs is a map-
ping:
F:B" oY,
where Y = {0,1, —}. The onset, offset and don’t care set (dcset) of F : B™ = Y are:
onset = {m € B"|F(m)=1}
offset = {m € B"|F(m)=0}
dcset = {m e B"|F(m)=-}.
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The symbol - means that the function can either be a 0 or 1.

Definition 2.4 A Boolean relation is a one-to-many Boolean mapping R : B™ — B'. In general
R(z) C B'is a set.

Definition 2.5 A function f : B® — B™ is compatible with R iff for every input minterm z, f(z)

is a member of R(z).

Let z;,29, - - - ,z, be the variables of the space B™. A vertex or a vector of variables in

B™ is represented as x.

Definition 2.6 Let A C B". The characteristic function of A is the function f : B® — B defined
by f(z) =1ifz € A, f(z) = 0 otherwise.

Characteristic functions are nothing but a functional representation of a set. Any completely speci-

fied function f : B™ — B is a characteristic function of its onset.

Definition 2.7 A literal is a variable in its true or complemented form (e.g. z; or T;). A product

term or cube is the conjunction of some set of literals (e.g. £1T3z3).

Definition 2.8 Ler f : B® — B be a Boolean function, and x; an input variable of f. The cofactor
of f with respect to a literal z; (T;), shown as fg; (fz7), is a new function obtained by substituting

I(0) for x; (Z;) in every cube in f which contains z; (%3).

Definition 2.9 Let f : B® — B be a Boolean function, and z; an input variable of f. The Shan-

non’s expansion of a Boolean function f with respect to a variable x; is:
z;f z; + z_tf Ty
Lemma 2.1 f = z;f,, + T fz.

The iterated Shannon decomposition of a Boolean function is a binary tree representing the function
obtained by applying Shannon’s expansion with respect to all variables. The leaves are either 0 or

1. Each path of the tree represents a minterm of a function.

Definition 2.10 A cover for an ISF |F| : B® — Y is any completely specified Boolean function f
such that f(m) = 1if F(m) =1, f(m) =0 if F(m) =0, and f(m) =O0or 1 if F = —.

There are two common ways for representing the cover of a Boolean function.
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Definition 2.11 A sum-of-products representation of the cover of a Boolean function is a sum of

cubes.

Definition 2.12 A factored form of a cover is either a product or a sum such that:
e A product is either a single literal or a product of factored forms.

e A sum is either a single literal or a sum of factored forms.

Both representations have their own advantages and disadvantages and are used depending on the

problem at hand.

2.2 Boolean Networks

Definition 2.13 A Boolean network, VN, is a directed acyclic graph (DAG) such that for each node,
74, in N there is an associated representation of a Boolean function f;, and a Boolean variable y;,
where y; = f;. There is a directed edge (n;,n;) from 1; to n; if f; depends explicitly on y; or ;. A
node m; is a fanin of a node n; if there is a directed edge (n;,7;) and a fanout if there is a directed
edge (n;, 7). A node v; is a transitive fanin of a node n; if there is a direct path from n; to n; and
a transitive fanout if there is a directed path from n; to n;. Primary inputs X = (z1,--- ,Tn) are
inputs of the Boolean network and primary outputs Z = (z1,- - - , 2p) are its outputs. Intermediate
nodes of the Boolean network have at least one fanin and one fanout. The global function f7 at n;

is the function at the node expressed in terms of primary inputs.
Definition 2.14 The support of a function f is the set of variables that f explicitly depends upon.

Definition 2.15 A topological ordering of \V from the primary outputs is a linear ordering such
that for nodes 1;,m; € N, if n; is a fanout of 1;, then n; appears before nj; in the linear order. A
topological ordering of N from the primary inputs is a linear ordering such that for any two
nodes n;,n; € N, if n; is a fanin of n;, then n; appears before n; in the linear order.

2.3 Boolean Operations

Definition 2.16 Given two Boolean functions, f : B® — B and g : B® — B, the AND operation
h = f.g is defined as:
h = {z|f(z) =1Ag(z) =1}.
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Definition 2.17 Given two Boolean functions, f : B’f — Band g : B® — B, the OR operation
h = f + g is defined as:
h={z|f(z)=1Vg(z) =1}.
Definition 2.18 Given a Boolean function, f : B* — B, the NOT operation h = [ is defined as:
h = {z|f(z) = 0}.

Since sets can be represented using Boolean functions, hence set operations like union, intersection
and complement can be computed using the above operations.
Definition 2.19 Let f : B® — B be a Boolean function, and z = (x;,,--- ,%;,) a set of input
variables of f. The smoothing of f by x is:

Szf Sz,'l te Sz:.-,, .f

S:B.'jf = f:l:,'j + fz_,;‘-

If f is interpreted as the characteristic function of a set, the smoothing operator computes

the projection of f to the subspace of B™ orthogonal to the domain of = variables. This is the

smallest Boolean function independent of z;,, - - - , z;, which contains f.

Lemma 2.2 Let f : B® x B™ — Band g : B™ — B be two Boolean functions. Then:

S:(f(z,9)9(y)) = Sz(f(z,v))9(v)-

Definition 2.20 Let f : B® — B be a Boolean function, and z = (z,,- - ,%i,) a set of input

variables of f. The consensus of f by x is:
C.f Szi, * Sei f
Cz.-j f = .f Ti; f 5‘7

This is the largest Boolean function contained in f which is independent of z;,,- - - , Z;,.

2.4 Image and Inverse Image Computations

Definition 2.21 Let f : B® — B™ be a Boolean function and A be a subset of B™. The image of
A by f is the set f(A) = {y € B™|y = f(z),z € A}. If A = B™, the image of A by f is also
called the range of f.

Definition 2.22 Let f : B® — B™ be a Boolean function and A be a subset of B™. The inverse
image of A by f is the set f~1(A) = {z € B"|f(z) = y,y € A}.
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f=z1+z24+ 3

Figure 2.1: Shannon Decomposition and Binary Decision Diagram of a simple function.

2.5 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [12] are compact representations of recursive Shan-
non decompositions. The decomposition is done with the same order along every path from the root
to the leaves. BDDs are unique for a given variable ordering and hence are canonical forms for rep-
resenting Boolean functions. They can be constructed from the Shannon’s expansion of a Boolean
function by 1) deleting a node whose two child edges point to the same node, and 2) sharing iso-
morphic subgraphs. Technically the result is a Reduced Ordered BDD (ROBDD) [12], which shall
henceforth be referred to as a BDD. BDDs can be used for representing and efficiently manipulating

sets. The Shannon decomposition and the BDD of a simple function is shown in Figure 2.1.

2.6 Conjunctive Normal Form and Satisfiability

A Conjunctive Normal Form (CNF) [15] is a conjunction (product) of clauses, where a
clause is a disjunction (sum) of literals. For example, ¢ = (z1 + 7z)(T1 + z3) denotes a CNF
formula with two clauses and three variables.

The Boolean satisfiability problem (SAT) [15] for a CNF formula is formulated as follows:
Given a CNF formula ¢, representing a Boolean function f(z1,-- - , z,), the satisfiability problem

consists of identifying a set of assignments to the formula variables, {z1 = v1,:-+ ,Zn = vp}, such
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that all clauses are satisfied, i.e. f(v1,: - ,vsn) = 1, or proving no such assignment exists.
A number of logic synthesis transformations like Automatic Test Pattern Generation (ATPG)
and redundancy addition and removal can be modeled as SAT problems [16].

2.7 Combinational and Sequential Circuits

Definition 2.23 A circuit is combinational if it computes a function which depends only on the

values of the inputs applied to the circuit; for each input value, there is a unique output value.

All circuits with an underlying acyclic topology are considered combinational and can be modeled
as a Boolean network. There are circuits containing cycles that are combinational also [17] but

these are unusual and are not considered in the rest of the dissertation.

Definition 2.24 A circuit is sequential if it computes a function that depends both on the present

values of its inputs and the values applied to the inputs of the circuit at some previous time.
Definition 2.25 A Finite-State Machine(FSM) is a quintuple:
M =(5,1,0,4,}),

S : finite non-empty set of states, I : finite non-empty set of inputs, O : finite non-empty set of
outputs, 6: S x I — S transition (or next state function), and X : S — O output function.

FSMs provide a behavioral view of sequential circuits. They can be used to describe the transitional
behavior of these circuits. They can be used to distinguish among a finite number of classes of
input histories: these classes are referred to as the internal states of the machine. FSMs are often
represented graphically as a State Transition Graph (STG).

2.8 Notation

A Boolean network is represented by A and its primary inputs and primary outputs as
PI(N) and PO(N), respectively. A node 7; in network A is associated with two variables, y;
and y;. The variables associated with the primary inputs of A/ are collectively denoted as either
X or X', depending on whether the unprimed or primed variables are used. Both X and X’ are
referred to as the primary space. Similarly, the variables associated with the fanins of a node 7; are
collectively denoted as Y; or Y;. In the sequel, both Y; and Y] are often referred to as the fanin
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space of n;. The fanin and fanout nodes of 7; are collectively denoted as FI(n;) and FO(n;),
respectively. Similarly, the transitive fanins and transitive fanouts of n; are collectively denoted as
TFI(n;) and TFO(n;), respectively. The primary inputs in the transitive fanin of 7; are denoted
as PI(n;). Similarly, the primary outputs in the transitive fanout of 7; are denoted as PO(n;). The
local and global functions of 7); are denoted as f; and f7, respectively. A directed edge between 7;
and 7);, also called a wire, is denoted as wy,—n;. The expression 7; <y 7; denotes that 7; has less

flexibility than 7;. Similarly, 7; > 7; denotes that n; has more flexibility than #;.



15

Chapter 3

Flexibility in Node Functionality

In this chapter, some formalisms used for specifying and exploiting the flexibility in logic
during combinational logic synthesis are reviewed. In particular, two related problems are consid-
ered:

e Deriving and representing a set of permissible functions at a node or a set of nodes in the

network.

e Using an appropriate representation of these functions with an associated minimizer to search

for one that best fits the optimization criteria.

These two issues are examined for a node embedded in a network of single-output func-
tions and for a node in a network of multiple-output functions as well. One of the most common
optimization criteria used for this set of logic transformations is minimization of the literal count
of the covers of the functions at each node. It is worthwhile to note that for combinational logic
the classical use of flexibility is in two-level sum-of-products minimization, where the objective
is to find a cover of a function with the least number of product terms. Usually, this problem is
formulated with the input or output don’t cares [18] given for the function. A don’t care is an input
vector for which a function’s value can be either 0 or 1. Thus in minimizing f, one has the option
of choosing 1 or 0 for this value and in that sense, additional flexibility is given to the minimizer for
making the choice which is best in meeting the minimization criteria. ESPRESSO, developed by
Rudell et. al., is the most commonly used two-level minimizer. For a more detailed explanation of
ESPRESSO, please refer to [18]. Most logic is implemented in multi-level form and so for the rest
of this chapter, the main focus will be on deriving the flexibility of a node in a multi-level network
and using that flexibility to simplify the node.
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X

Figure 3.1: Network with single-output nodes.

3.1 Flexibility of a node

3.1.1 Networks of Single-Output Functions

The outputs of the Boolean network (shown in Figure 3.1 ) are associated with a set of
don’t cares d(X) = (d1(X), -+ ,dm(X)), which may be empty in some cases. These are called the
external don’t cares. It is implicitly assumed that these don’t cares are independent, i.e. the don’t
care set of one primary output can be used independently of the don’t care sets of other primary

outputs.

3.1.1.1 Derived Don’t Cares

One of the strategies used for multilevel minimization is to use a two-level minimizer as a
subroutine. The algorithm proceeds as follows. The focus is on a single node, say a node 7;, of the
Boolean network with the node’s current representation given by a cover of its single-output function
fi. Unlike in the two-level case, no don’t cares are given a priori for this node, but it is possible to
derive some from the information about the surrounding network. Three classes of don’t cares are
derived: External Don’t Cares (EXDC), Satisfiability Don’t Cares (SDC) and Observability Don’t
Cares (ODC) [19].
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The EXDC is just the given external don’t cares for the network. The EXDC is used to
restrict the computations performed for SDC and ODC, so that only the care inputs are used in their
computation.

The SDC are obtained from the part of the network in the transitive fanin of a node. The
constraints of the fanin network ensure that certain input patterns of 7; can never appear. The SDC
of a node 7; is given as:

SDC(m)= 3, (501
750 €TFI(n:)
Since they never occur, the output for f; for these input patterns can be either O or 1, i.e. itis a don’t

care.

Example 3.1 Consider the following multi-level circuit [20]:

t = sk+ Sabed + Sabed

k = ab+ab
s = ef+¢ef
r = cd

If t is simplified using the SDCs,
(k @ (ab+ab)) + (s ® (ef +€f)) + (r ® (cd)),

t = sk + Skr. Here, in addition to s and k, v has been substituted into t. However, the global
function of t remains unchanged. This technique is used in some commands in SIS for performing

Boolean resubstitution.

The ODC occurs because of the part of the network separating the node from the primary outputs.
The ODC consists of primary input patterns for which toggling the value of the output of 7; does
not affect the functionality of the primary outputs, i.e. no primary output is also seen toggling as a
result of the changes at the output at n;. The ODC of a node 7; is given by:

ODC(m) = H 8z [By;.
k=1
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Example 3.2 Consider the following circuit [20]:

fo = nit+y2+tuys
1 = 122
Yo = 223
Ys = T173

The ODC of y1 is equal to 8 fo/By1 = y2 + ys. Similarly, the ODCs of y2 and y3 are (y1 + y3) and
(y1 + y2) respectively.

If the function at each z; does not depend on the variable y;, then the computation is a lot
more complicated. For details, please refer to [20]. In general, deriving the complete ODC for a
node in a network is a very computationally intensive problem. This is because modifying a node
using its ODC requires the ODCs of the remaining nodes to be recomputed. Hence, in practice,
only subsets of ODC are used.

One such subset that is commonly used are the Compatible Observability Don’t Cares
(CODCs) proposed by Savoj [20]. The CODCs are compatible i.e. if a node is modified using its
CODC, the CODCs of the remaining nodes are not affected. The computation of CODCs for inter-
mediate nodes in the network depends on two key operations. One is the computation of CODCs
for the fanin edges of a node, given the CODC of a node and an ordering of the fanins. Suppose a
node 7; has k fanins, n;, <j --- <js m;,, where 7;, will be assigned least flexibility and n;, most
flexibility. Then, the CODC of the jth fanin 7;; is given as:

CODC(mi;) = (8fi/0Yizsr + Vs, ) -+ - (8Fi/ Bk + Yy, )(8i/By;) + CODC (1)

In the first term, Way, denotes the ODC of the fanin 7;; and the rest of the terms produce the
compatibility. The second key operation is computing CODCs of each node by intersecting the
CODC:s of its fanout edges.

Consider again the network in the previous example. Let y1 >; y2 >y y3. Thus y; has
the most flexibility and y3 has the least flexibility. Then, their CODCs are computed as follows:

d = Ofo/On=y2+y3
d2 = (0fo/0y1 +Vy,)(8fo/0y2) =Tz +y3
d3 = (0fo/0y1 + Yy, )(0fo/By2 + Yy, )(8f0/0y3) = n1T3 + Y273
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Figure 3.2: Network with multi-output nodes.

Maintaining compatibility can reduce the don’t care sets of some nodes. For example, y2 and y3
have fewer minterms in their don’t care set than their ODCs.

Another related technique for deriving the implementation flexibility of a node is trans-
duction [21]. In transduction, don’t cares are represented as permissible functions. Permissible
functions are defined at each node and represent the sets of allowable functions for those nodes. As
in the case of ODCs, permissible functions can be incompatible (Maximum Set of Permissible Func-
tions) or compatible (Compatible Set of Permissible Functions). The Maximum Set of Permissible
Functions (MSPF) is computed for a node 7; in a NOR-gate network N as follows:

1. Derive a new network N’ by replacing n; with an OR-gate.
2. Given that z* is the kth primary output in A"/,

M Jj(z) if gz € EXDCy and 2x(z) # Zx(x)
fi'(=) = .
- otherwise

It can be shown that the don’t cares in the MSPF of a node constitute the ODCs of a node. Thus,
ODCs simply are a generalization of the flexibility provided by MSPFs.

3.1.2 Networks of Multiple-Output Nodes

When the nodes in the network have multiple outputs, as in Figure 3.2, the notion of

don’t cares can be generalized so that each node 7; with [ outputs has a set of don’t cares d(X) =
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Figure 3.3: Example circuit for Boolean relation.

(d1(X),d2(X),-- - ,di(X)) which provides the flexibility that can be used for deriving a minimum
cover of 7;. However, it was shown [3] that don’t cares can no longer completely specify the
flexibility of implementation of a multi-output node in a network. The same paper introduced the

concept of Boolean relations.

3.1.2.1 Boolean Relation

A Boolean relation is a relation between inputs and outputs. Suppose z is a vector of the
inputs of node 7; and y is a vector of its outputs. Then, a Boolean relation B(zx,y) gives a set of
allowable outputs y for each input vector z, i.e., the set {y|B(z,y) = 1} gives the set of allowable
outputs for input z. The reason why Boolean relations can express more flexibility than don’t cares
is that with a Boolean relation, it is possible to express the fact that for a particular input z, either
01 or 10 are valid outputs. But this fact cannot be represented using don’t cares, since don’t cares
can only be used to represent sets of the form f(z) = -1, f(z) = -0, f(x) = 1-, f(z) = 0—,
none of which produce the set f(z) = {01, 10}.

It is also possible to simplify a cluster of nodes in a network of single output nodes by



CHAPTER 3. FLEXIBILITY IN NODE FUNCTIONALITY . 21

ys = be - Ys=ac
%1 = be y2=0 Ys = ac
@
Ya
Ys 0 1
o | 1 01

)

Figure 3.4: Network N;.

treating the cluster as a single multi-output node.

When using Boolean relations, the input-output flexibility of the network is represented
as a relation O(z, z) called the output observability relation. This relation specifies the set of
allowable primary output patterns for each primary input pattern. The Boolean relation representing
the flexibility of implementing a node n; with inputs u and outputs v is given as:

Oi(u,v) = Yz [Vg :[L1(z, @) + La(z, v, 2) + O(z, 2)] + L1(z, u)],

where L, (z, u) denotes the mapping from the primary inputs z to the inputs u of n; and La(z, v, 2)
expresses the mapping from (z, v) to the primary outputs z.

Consider the network shown in Figure 3.3( [3]). Suppose the task is to simplify the
network N; so that the external behavior of the circuit remains unaltered. It is possible to think of
N, as a multi-output node and derive Boolean relations for this node. Using these Boolean relations,

the network N, can be modified to the one shown in Figure 3.4(a). This is because the network
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N behaves identically for y4ys = 00,11. Hence, it is possible to modify network NN; to produce
00, when the original network produced 11, as shown in Figure 3.4 (b). This simplification is not
possible with don’t cares as there is no way to express the mutual constraint between the outputs.
A Boolean relation can not be minimized using a minimizer for minimizing functions with
don’t cares. A special Boolean relation minimizer is required. One such minimizer is GYOCRO

[22], a heuristic minimizer patterned on the ESPRESSG paradigm.

3.1.3 Multiple Boolean Relations

The most general set of functions is just an arbitrary subset of functions. Such sets can
be compacted into Multiple Boolean Relations (MBRs) [23] such that the function is in the subset
if and only if it is compatible with one of the relations. It was shown [23] that certain permissible
functions cannot be expressed using Boolean relations. This is because a Boolean relation is a set
of functions of a special type. For example, a Boolean relation represents a set of functions that
are “output correlated” but input uncorrelated. This means that the choice made for one of the
outputs for a input affects what the other outputs will be of that particular input, but does not affect
any of the choices allowed for the other inputs. On the other hand, a set of functions are “input
correlated” if the choice of the output for one input minterm determines the outputs for other input
minterms. An example with input correlation is the set of two 2-output functions {f1, f2} where
f1(0) = 01, f1(1) = 10, f(0) = 10, f(1) = 01. This set cannot be represented with a single
Boolean relation since the choice of 01 for input 0 forces the choice of 10 for input 1. Multifunctions
are used for representing a set of functions that are input correlated but output uncorrelated.

A multiple Boolean relation can express both input correlation and output correlation.
Each Boolean relation in the MBR expresses output correlation but the choice of the Boolean rela-
tion expresses input correlation.

FPGA rectification [24] refers to the problem of modifying the functions of some LUTs in
a network of LUTs so that a given network specification can be satisfied. Furthermore, the supports
of the LUTs (whose functions can be changed) must remain unchanged. In [23], a procedure is
given for solving this problem using MBRs. This problem cannot be framed using either Boolean
relations or multifunctions.

In [23], an algorithm for finding all the functions that are contained in a MBR is provided.
It is based on finding the smallest cover of primes of a suitable function derived from the given MBR.
Then, the function that best satisfies the optimization criteria can be selected.
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Figure 3.5: Flexibility hierarchy.

3.2 Flexibility Hierarchy

In the previous sections, some of the commonly used techniques for extracting the flex-
ibility of altering the functionality of a node or group of nodes was reviewed. Here, the relative
power of the different techniques are compared. This is achieved by ordering them according to the
number of functions that can be expressed using the corresponding formalism. Note, that in some
cases, the formalism for expressing flexibility may be slightly different from the technique used to
extract that flexibility. This difference will be pointed out when relevant.

3.2.1 Completely Specified Functions

Completely specified functions lie at the bottom of the hierarchy. A single output com-
pletely specified function f is a many-to-one mapping f : B™ — B; there are 22" possible functions
f. A multiple output completely specified function F is a many-to-one mapping F' : B® — B™,
there are (22" )™ = 2™2" possible functions in F. In both cases, there is no choice in the function

to be implemented; each minterm maps to exactly one output minterm.



CHAPTER 3. FLEXIBILITY IN NODE FUNCTIONALITY v 24

3.2.2 Incompletely Specified Functions

This formalism is used to represent the flexibility extracted using don’t cares. A single
output incompletely specified function F is a many-to-one mapping ¥ : B — Y, where Y =
{0,1, -} and — indicates that the corresponding output is unspecified (it is allowed to be either
0 or 1). There are 32" possible single output incompletely specified functions. A multiple output
incompletely specified function F is a many-to-one mapping 7 : B™ — Y™; there are gm2"
possible functions.

3.2.3 Multifunctions

A single output multifunction f is a set of many-to-one mappings f : B® — B. Each
mapping represents a valid function for the single output. The number of specifications is the
combination (power set) of all the possible single output completely specified functions : 22" A
multiple output multifunction F is m sets of mappings F' : B™ — B. Each set of mappings rep-
resents a set of valid functions for one of the outputs. Since the outputs are chosen independently,
the number of possible specifications is the product of the number of specifications for each out-
put: (222” ™ = 9m.2" Multifunctions allow a choice among several given completely specified
functions. Multifunctions can express input correlation.

This formalism was not used previously for expressing flexibility of nodes in combina-
tional networks. In the next chapter, it is shown that the flexibility of single-output nodes expressed

using SPFDs is a multifunction.

3.2.4 Boolean Relations

As mentioned before, a Boolean relation R is a one-to-many multiple output mapping
R : B® — 2B™. Each of the 2" input minterms maps to a subset of the 2™ possible output
minterms, so there are 22"-2™ possible Boolean relations; R C B™ x B™. Boolean relations allow
a choice for each input minterm among several output minterms. A value chosen for a particular

output may force the values on some remaining outputs; i.e. the output values are correlated.

3.2.5 Multiple Boolean Relations

A Multiple Boolean Relation M is a set of Boolean relations M = {R1, Rz, , R},
where R; C B™ x B™. M represents a collection of multiple output functions. There are 2m-2"
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Figure 3.6: Network representation of flexibility.

such functions and M represents a subset of these, so there are 22" possible specifications.
These different formalisms can be organized according to their expressive power as shown

in Figure 3.5. An arrow from representation A to representation B indicates that A is strictly more

expressive than B: A can represent a larger set of specifications, but A is usually more difficult to

represent and minimize than B. This flexibility hierarchy was first proposed in [23].

3.3 Network Representation of Flexibility

Another set of logic synthesis tools operate directly on a network representation of flex-
ibility, and therefore do not need other representations described earlier i.e. they do not need to
derive separate equations for representing don’t cares or other types of flexibility. These meth-
ods are based on determining satisfiability of certain conditions; in particular, whether a node in
“testable for stuck-at-0" (or stuck-at-1).

A node is testable for stuck-at-0 if the functionality of the network would change upon
replacing the node with constant 0. Similarly, for a node testable for stuck-at-1. A node that is
not testable for stuck-at-0 or 1 is called redundant. Redundant nodes can be replaced by a constant,
leading to further simplifications. For example, input z of the AND-gate in Figure 3.6 is not testable
for stuck-at-0. After replacing it with a constant 0, the network can be further simplified.

The connection between redundancy removal and implementation flexibility was explored
by Bartlett et. al [19]. It was proved that if each node in the network is minimized so that it is prime
and irredundant using the don’t care set DC = SDC+ODC+EXDC, then each wire of the network
is irredundant. i.e. the network is 100% single stuck-at-1 and stuck-at-0 testable. In general, one
may have to iterate this minimization process over all nodes in the network, until no further changes
occur, since after minimizing node 7; and then node 7;, it may be possible to further minimize 7;.

Since, these two methods are equivalent, the network representation of the flexibility for

expressing the implementation flexibility of a node is not used in the rest of this dissertation.
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Chapter 4

Sets of Pairs of Functions to be

Distinguished

In this chapter, the concept of Sets of Pairs of Functions to be Distinguished (SPFDs) is
introduced. SPFDs were first introduced in the context of FPGA synthesis by Yamashita et. al. [11].
Here, the notion of SPFDs is generalized to general, Boolean networks and it is shown how they can
be used to represent and extract the implementation flexibility of a node in a multi-level Boolean
network. Later, SPFDs are placed in the flexibility hierarchy described in the previous chapter. The
ideas in this chapter are developed for networks of single-output nodes. However, the same ideas

can be easily extended to multi-output Boolean networks.

4.1 SPFDs

Definition 4.1 A function f is said to distinguish a pair of functions g, and g if either one of the
Jollowing two conditions is satisfied:

IA
IA
Q|

2 ' @.1)
. 4.2)

9 f
f
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Note that this definition is symmetrical between g; and g. It is possible to think of g; as

the onset for f and g- as the offset in Condition 4.1 or vice-versa for Condition 4.2.

Example 4.1 Let g1 = ab and g; = ab. fi = b distinguishes g, and go but f» = a does not
distinguish g; and go.
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Definition 4.2 An SPFD

{(91a:918)s - - - » (Gna> Gnb)}

represents a Set of Pairs of Functions to be Distinguished.
Example 4.2 {(ab,ab), (@b, ab)} is an example of an SPFD.

A minterm s a special case of a function. So, a set of pairs of minterms that have to be distinguished
can also be represented as an SPFD.

Definition 4.3 A function f satisfies an SPFD, if f distinguishes each pair of the set, i.e.

[((916 < F<T1) + (916 S F < Tua)]A-- A
[(Qna SfL<Gm)+ (o < f < gna)]'

Example 4.3 The function fy = a satisfies the SPFD {(ab, ab), (ab, ab)} since it distinguishes each
pair in the set. However, the function, f2 = b, does not distinguish the functions in the second pair
in the set and hence does not satisfy the SPFD.

The choice of which of the two conditions to satisfy provides the additional flexibility of SPFDs.
In a later section, it is shown that SPFDs represent increased flexibility over don’t cares - the only
condition required is that the function implemented at the node satisfy its node SPFD.

4.1.1 Derivation of the SPFD of a node from its function

The SPFD of a node can be derived from its function very easily. The SPFD states that all
minterms in the onset of the function have to be distinguished from all minterms in its offset. For
example, the SPFD of an OR-gate is {(00,01), (00, 10), (00, 11)}, i.e. the offset minterm (00) has
to be distinguished from all the onset minterms ({01, 10, 11}). Note that this SPFD can be satisfied
by the NOR function also.

If a node has a don’t care set associated with it, the SPFD derived from its function
specifies that the minterms in the care onset (i.e. onset minterms that are not in the don’t care set)

have to be distinguished from the minterms in the care offset.
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Figure 4.1: SPFD as a graph.

4.1.2 Graphical Representation of SPFDs

An SPFD , R = {(91a,815); - - - » (9na;s gnb)}, can also be represented as a graph, G =
(V, E), where

V = {mklmk € gij,1 < i<n,j= {a, b}}1
E = {(mi,m;)|((m: € gpa) A (m; € gpb)) V
((mi € gpp) A (mj € gpa)); 1 < p < n}.

Every e € E is referred to as an SPFD edge. For instance, the SPFD in Example 4.2 can
be represented by the graph shown in Figure 4.1.

Definition 4.4 A function f satisfies an SPFD R = (V, E), if for each edge (m;,m;) € E,
f(mi) # f(m;).

Thus, the problem of finding a function that satisfies an SPFD can be reduced to a graph
coloring problem. If the SPFD is bipartite i.e. only two colors are required to color the SPFD, then
all functions that satisfy the SPFD can be enumerated easily. For nodes in a network of single-output
nodes, the SPFDs are mostly bipartite (how they could become non-bipartite is described in Chapter
5). Hence, for single-output nodes, it is possible to explore a lot more functions than allowed by

previous methods.

4.1.3 SPFDs and Information

An SPFD can also be thought of as a graph that encapsulates information. For combina-
tional networks, information is the ability to distinguish one primary input minterm from another.

Each pair of such minterms is an atomic unit. Each pair in an SPFD associated with a node can
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Figure 4.2: OR gate.

distinguish some of the primary input minterms. Since an SPFD can distinguish some of the pri-
mary input minterm pairs, hence it provides information. This connection between SPFDs and

information can be exploited in a number of interesting applications of SPFD.

4.14 Notational Representation of SPFDs

Given an SPFD {(g1a,915)," - * s (9na» gnb)}, it can be denoted as a relation R(X, X'),
where X and X’ denote two sets of variables representing the same input space. For each pair in
the SPFD (giq, 9iv)> R(gia(X), gis(X')) = 1, where g;, is expressed in terms of the X variables
and g;; is expressed in terms of the X' variables. In some computations, the SPFD is represented as
a symmetric relation. Thus, R(giq(X), 9is(X')) = 1 iff R(gip(X), gia(X')) = 1.

Let X = (z,x2,- - ,Zn). The computation,

Ri(X,X") = R(X,X') A (z; # i),

denotes the SPFD edges that can be distinguished by the z;th variable i.e. an edge e = (m;,m2) €
Ri(X, X') if m; and m, differ in the value of the z;th variable. Similarly, R(X,X’) A (z; = =)
denotes the edges that cannot be distinguished by the z;th variable.

Example 4.4 Consider the simple OR-gate shown in Figure 4.2. Suppose the input A is associated
with two variables, y, and y,. Similarly, let B be associated with variables yy, and y,. Then,

R, A (ya # ¥2) = {(00,10), (00,11)} and R, A (ya = y,) = {(00,01)}.

In the rest of this chapter, the concept of the minimum SPFD of a node is introduced. The
flexibility expressed by a minimum SPFD is compared to that represented by an ODC. Then, a brief
sketch is provided for how compatible SPFDs can be computed for a network. It is also proved
that CODCs can be generated using a version of the SPFD generation algorithm. Thus, compatible
SPFDs also represent more flexibility than CODCs.
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Figure 4.3: The set of nodes marked by dots denotes the separator );.

4.2 Minimum SPFD of a node

Definition 4.5 Given the SPFDs of its primary outputs, the minimum SPFD of a node n; is the
minimum set of edges that have to be distinguished by the node. Once the node function is modified
using its minimum SPFD, the functionalities of some nodes in the network may have to be changed
to ensure correct functionality of the network. However, the functions of the nodes in the transi-
tive fanin of the node should remain unchanged. Also, the topology of the network should remain
unchanged, except possibly the removal of 1;.

So, the minimum SPFD of a node denotes the unique information that is provided by
the node to the outputs of the network for ensuring correct functionality of the network, given the
network topology and the information provided by its fanins.
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Definition 4.6 A separator containing n; is a set of nodes, S = S' U, that satisfies the following

conditions:

1. The primary inputs of the network are completely disconnected from the primary outputs

when all the nodes in S are removed.
2. Anodemny € S that is a transitive fanin of n; has to fanout to a node not in the transitive fanin

Of -

In the next section, an algorithm is provided for computing the minimum SPFD of 7; using the
notion of the separator. The second condition in the definition of the separator ensures that the
functionalities of the nodes in the transitive fanin of n; will remain unchanged after 7; is modified

to satisfy its minimum SPFD.

4.2.1 Algorithm for computing the minimum SPFD of a node

Here, the algorithm for computing the minimum SPFD of the node 7; is described. Con-
sider the separator set ); (shown in Figure 4.3) containing ;.

It includes:
1. The node 7;.
2. All the primary inputs of A/ that are not in the transitive fanin of n;.

- 3. All nodes (including primary inputs) in the transitive fanin of 7; that fanout to at least one
node that is not in the transitive fanin of 7;.

It is easy to see that removing these nodes will disconnect the primary outputs from the primary
inputs. Also, each node in )); that is a transitive fanin of 7; has a fanout to at least one node not in

the transitive fanin of ;. Hence, ); is a separator containing 7;.

Algorithm com_minspfd_for_sep(V, Y;):
1. For each z; € PO(N)

(a) Compute Uy = {ni|n; €Y; and {n; € FI(np) such that (np & Y;)A(np € TFI(2x))}}.
U contains all the nodes in the separator Y); that provide all the information required

by z.
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(b) Derive the SPFD of z, in terms of the primary inputs. This SPFD specifies that all the
primary input minterms in the onset of zy, have to be distinguished from all the primary

input minterms in the offset of zy. Let it be denoted by Si.

(c) Compute the SPFDs of all the nodes in Uy \ {n;}. Given a node n; € Ui \ {n;}, its
SPFD S; specifies that the primary input minterms in the onset of n; ( f?) have to be
distinguished from the primary input minterms in the offset of n; (f_f).

(d) Compute

Cr = UpieUy mistn; Si-
C. denotes the set of edges that can be distinguished by all the nodes in Uy \ {n;}.

(e) Compute Rjx = Sk A Ck. Thus, Rji. denotes the edges in S, the SPFD of z, that
cannot be distinguished by the other nodes in Y; and hence have to be distinguished by

mj-
2. Rj = U™, R;i, where m is the number of primary outputs of N.

Once the function at n; is simplified using a function that satisfies its minimum SPFD, the
SPFDs of the nodes between Y; and the primary outputs of N may have to be modified. This is due
to the fact that the information content of these nodes may have to be modified to account for the
reduced information available at n;, due to its new simplified function. These nodes will then have
to be resynthesized using their new SPFDs. In a later chapter, the algorithm for computing the new
functionalities of the affected nodes is provided.

The same algorithm can be used with different separators of 7; (say y} and y; illustrated
in Figure 4.4). In order to satisfy Condition 2 of the definition of a separator, the other separators
of 7; should be lie between the nodes in ); and the primary outputs of N Thus, J); is the separator
closest to the primary inputs. In the sequel, }V; is denoted as y;.’ to differentiate it from other
separators. The SPFD computed in Step 2 of algorithm com_minspfd for_sep using separator y}*
is denoted as Rf.

Next, it is argued that Rg computed using separator y;? has the least number of edges,

when compared to any other R%.

Lemma 4.1 Let the SPFD of node n; be denoted as R;(X, X"). Then,

.R,'(X, X,) c UnkEFI(n.-)Rk(X) X,)s

where Ry(X, X') is the SPFD of ny.
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Figure 4.4: Separators: y;.’, y} and J'?; the nodes connected by a dashed line indicate a separator.
Each of these separators can be used in the algorithm com minspfd for sep for obtaining an SPFD

of ;. The SPFD computed using ) is the minimum SPFD of 7

Proof Assume there exists an edge (m, m') € R;(X, X') such that (m,m’) & U, e p1(n) B (X, X)
") € Ri(X,X') for any fanin 7 of ;. Hence, m and m’ can produce the

This implies that (m,
will both produce the same minterm y. But, m and m’ have to be distinguished at the output of 7;
O

i m
same outputs for each of the fanins of 7;, i.e. the image of m and m' onto the fanin space Y; of #;,
This implies that the same minterm y € Y; has to produce two different values at the output of 7;

This is impossible since all the nodes in NV are deterministic
Theorem 4.1 R computed using the separator Y} in com_minspfd_for.sep has the least number

of edges.
Proof Suppose there exists another separator which can be used in the above algorithm to produce
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an SPFD with fewer edges (Step 2 of com_minspfd_for_sep). Let this new separator be ;v; and the
SPFD computed for 7; using yJ’F in algorithm com_minspfd_for _sep be Rf.

It is known that y;? is the separator closest to the primary inputs. Thus ;vf can only contain
nodes that are either in y;? or are in the transitive fanout of nodes in y;?. By Lemma 4.1, the SPFD
of a node is always a subset of the union of the SPFDs of its fanins. Hence C, computed in Step
1(d) using separator y,’F is a subset of Cj, computed using y;?. Hence R}‘ has to be a superset of R;

since Sy, is the same in both computations in Step 1(e). O

Theorem 4.2 If any two minterms that are connected by an edge in R_? evaluate to the same value
at the output of m;, the network specification cannot be satisfied if the functionality of the nodes in

the transitive fanin of n; and the topology of the network is unchanged.

Proof It is proved below that given the functionality of the nodes in the transitive fanin of 7; and
the topology of N, if any two minterms have an edge between them in R, then they cannot be
assigned the same value without affecting network functionality. Assume there exists an edge e =
(m,m') € Rf,’ such that m and m' can be assigned the same value at the output of ;. By Step 1(e)
of com_minspfd_for_sep, e has to belong to the SPFD of some primary output. Let that primary
output be 2. Furthermore, e € Ci.

Thus e is not distinguished by any of the other nodes in Uj. Since the functionalities
of the nodes in the transitive fanin of 7; and the topology of A remains unchanged (i.e. no new
wires are added between previously unconnected nodes), m and m' evaluate to the same value for
all the nodes in U, (computed in Step 1(a) of com_minspfd_for_sep) other than 7;. By the above
assumption, m and m' also evaluate to the same value at the output of ;. Hence, m and m' evaluate
to the same value for all the nodes in Uj. Let y denote the minterm obtained by computing the image
of both m and m' from the primary inputs to the nodes in Uj. Since e = (m,m') belongs to the
SPFD of z;, m and m’ have to evaluate to different values at the output of z. This implies that the
same minterm y at U can produce different values at z;, (this is because the nodes in Uy, uniquely
determine the value at z;). This is impossible since AV is deterministic. O

In Chapter 7, it is argued that no edges have to be added to Rg for ensuring that the
network functionality can be maintained after suitable modification of the functions of the nodes
lying between J’;’ and the primary outputs. Thus, R;? is the minimum SPFD of 7;.

While the separator y;.’ (shown in Figure 4.3) provides the minimum SPFD, it may still
be beneficial to use the same algorithm with different separators (say V1 and ), illustrated in Figure
4.4). Each separator provides an SPFD that is a superset of the minimum SPFD. However, it may be
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2k = T1T9 + YZT2 + YZ3

Y = T1Z2 + T1T3

I T2 I3

Figure 4.5: Example for Minimum SPFD computation.

more efficient to use a separator closer to the primary outputs since the number of nodes that have
to resynthesized can be reduced.

It may also be useful to compute the minimum information that n; provides to another
node 7, in the network, where 7, is such that all paths from 7; to the primary outputs have to pass
through 7,. This could be useful because it may be undesirable to change the network beyond 7,

for efficiency.

Definition 4.7 A node 7, is a dominator of another node 7;, if all paths from n); to the primary
outputs have to pass through 7.

Definition 4.8 Let 1), be dominator of 1. The minimum SPFD of 7; wrt to 7, is the unique
information that 7); provides to 7, such that the functionalities of the nodes in the transitive fanout
of np can remain unchanged after n; is simplified with its minimum SPFD. The functionalities of

nodes in the transitive fanin of ; and the topology of the network must remain also unchanged.

For computing the minimum SPFD of 7; wrt to its dominator 7, the sub-network consisting of 7,
and all the nodes in its transitive fanin is taken as the input network A for com minspfd for sep.
The node 7, is treated as the primary output. Its SPFD is derived from its original function and its
ODC. With these modifications, the same algorithm can be used.

Definition 4.9 The minimum SPFD of a wire w;,, _,,. is the set of edges in the minimum SPFD of

7); that can only be distinguished by the function at 7.

The concept of the minimum SPFD of a node wrt to one of its dominators and the minimum SPFD
of a wire has applications in rewiring (Chapter 6). Obviously, the notion of a dominator can be

extended to a set of nodes dominating 7;.
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Unless otherwise specified, the minimum SPFD of a node 7; refers to RJ computed wrt
to the primary outputs using the separator ;v;.’. To differentiate this special separator from the other
separators, it is referred to as the minimum separator. For all other minimum SPFD computations,

the parameters will be explicitly mentioned.

Example 4.5 Consider the circuit shown in Figure 4.5. The separator is {z, 2, 23,y}. Since all
the primary inputs are included in the separator, all the information to z, can be directly provided
by them. Hence, the minimum SPFD is empty. So, the node y can be replaced with a constant node.

But, the functionality of z;. has to be modified to reflect the changes in y.

4.2.2 Connections to Previous Work

Theorem 4.3 If a minterm is an ODC of n;, then it does not appear in the minimum SPFD of n;.

Proof Let m be an ODC of n;. Assume it appears in the minimum SPFD of 7; and let m belong to
the onset of z;.

Since m appears in the minimum SPFD of 7;, there exists a minterm 77 in the offset of z;,
such that (m, 7n) is not distinguished by any other node in the separator i.e. for all the other nodes
in the minimum separator m and 7 produce the same output value. Also, m can be set to have the
same output value as 7 without affecting network behavior since m is an ODC of #;. Then all the
nodes in the separator set will have identical values for m and / and hence cannot produce different
values at z (as 2 is a deterministic function). But m and 7n belong to the onset and offset of =z,
respectively and need to be distinguished. Hence (m,m) has to be distinguished by some other
node in the separator. Thus the assumption that m belongs to the minimum SPED of 7; is incorrect.

O

Note however that it is not true that if a minterm is missing in the minimum SPFD of 7;,
it is also an ODC. In the previous example, the minimum SPFD of y was zero but its ODC is given
as T1z2 + Z273 + T2x3. So, the minterm T172z3 does not belong to the minimum SPFD of y but it
is not an ODC of y either. This is due to the fact that the minimum SPFD algorithm requires the re-
computation of the functionalities of the nodes between yg’ and the primary outputs. But, the ODC
computation does not require that. So, minimum SPFDs allow more changes to the functionality of

a node compared to ODCs.

Theorem 4.4 If an output observability relation O(z, z) can be represented as an SPFD, any func-
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tion that is compatible with the Boolean relation

O;(u,v) = VYz[Va . [Li(z, @) + La(z, v, 2) + O(z, 2)] + L1(z, u)]
of n; also satisfies its minimum SPFD.

Proof Since the observability relation can be represented as an SPFD, each primary output has an
SPFD that specifies what pairs of minterms it has to distinguish. Consider a function f that is
compatible with the Boolean relation O;. Assume f does not satisfy the minimum SPFD. Hence
there exists an edge e = (m,m’) in the minimum SPFD of n; such that f(m) = f(m'). By
Theorem 4.2, if both m and m' are assigned the same value, the network functionality is affected
if the functionalities of the fanins and the network topology are left unchanged. But in the above
computation of the Boolean relation, neither of them are changed. Hence, m and m' cannot be
assigned the same value in the function f. Thus the assumption that f does not satisfy the minimum
SPED is incomrect. u]
In Section 4.4, a Boolean relation is provided that cannot be expressed using SPFDs. If the output
observability relation of the network is one such Boolean relation, then the above theorem is no

longer valid.

4.3 Compatible SPFDs

As in the case of ODCs, it is not practical to simplify each node in A using its minimum
SPFD, recompute the functions of all the nodes in the transitive fanout of )V and then move on to the
next node. Hence, the notion of compatibility is particularly important for SPFDs. In this section,
a brief sketch of a procedure that computes compatible SPFDs for all the nodes in the network is
provided. Thus, two nodes can be changed using their SPFDs without having to re-compute their
SPFDs from scratch. Or, in information-theoretic terms, the information provided by the nodes are
compatible. For convenience, compatible SPFDs are simply referred to as SPFDs in the rest of this
dissertation. In the next chapter, a detailed explanation of an efficient algorithm used for computing
SPFD:s of all the nodes in the network is provided. Here, an intuitive explanation of the algorithm
is presented.

SPFDs can be computed for an entire network by starting at the primary outputs. The
SPFD of a primary output specifies that the care onset of its function has to be distinguished from
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the care offset of its function'. Keeping in mind that only one path is necessary, the algorithm starts
at a primary output, and assigns to each of its immediate inputs, a subset of the information that the
input is responsible for. This assignment is not necessarily unique. Each piece of information (a pair
of primary input minterms that the output must distinguish) can be assigned to exactly one of the
fanin wires of that output node. The algorithm then considers a node 7; in the next level away from
the primary outputs. After all the primary outputs have distributed information requirements to their
fanins, the information assigned to each fanout wire of n; is summed for obtaining the information
n; must propagate to its fanouts. This required information is then distributed to the fanins of 7;.
As the network is traversed backward, each node is assigned a set of information requirements; this
is an SPFD for the node.

The SPFDs are compatible in the sense that the information content of each SPFD is
made compatible to the information content of the SPFD of other nodes that can possibly affect it.
Of course, depending on the manner of distributing the edges of the SPFD of a node to its fanins,
different results can be obtained. In the next section, a particular scheme for distributing the SPFD
edges of a node to its fanins is considered, that can be used for deriving CODCs using SPFDs.
Other interesting schemes for distributing the SPFD edges of a node to its fanins are also presented

in other chapters of this dissertation.

4.3.1 Emulating CODCs using SPFDs

Consider a node 7, with n fanins, {#1,%2,-+ ,7n}. The ordering between the fanins,
denoted as O, is given as:
m>fn2>5 " >f .
Thus, 7, has the greatest flexibility and 7,, has the least flexibility. The SPFDs of 7, and its fanins
are expressed in terms of Y, and Y, (the fanin spaces of 7p). In the rest of this section, 7; is often
referred to as the ith fanin of 7,.
Algorithm compute_codc_with_spfd(z,, O):

1. Compute the SPFD of np. Denote this as Rp(Yp, Y;).
Ro(Yp,Yy) = fo(Yo)Fo(Yp) + Fo(Ye) Fo(Y3)-

Thus, Rp(Yy,Yy) specifies that the onset of n, has to be distinguished from the offset of .

1The care onset and care offset are derived from the onset and offset by intersecting them with the complement of the
external don't care set, respectively.
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2. Process the fanins in order starting from 1, to n,,.
3. For each fanin n;, repeat the following steps:

(a) Compute
n
Ri(YY,) =RV V) wi #uh) [ (we =)
k=(i+1)
Thus, R;(Yy,Y,) denotes the edges in Rp(Yp,Y,) that can be distinguished by n; but
cannot be distinguished by the nodes with lesser flexibility.

(b) Fork=1, (i-1)

i. Compute

R} (Yp,Y;) = R (Yp, Y;) A (Ri(Yp, Y7) A (i # 9k))-
Thus, R} (Yy, Y,) is modified by removing the edges in it that are already in Ry (Y, Y;)
and can be distinguished by ;.
(c) Remove the minterms in R} (Yp, Yp’) that no longer have any edges connected to them

and make the remaining R}(Yp,Y,) completely connected. Let this SPFD be denoted
as Ri(Yp,Yy). This is the SPFD of ;.

In the next few sections, it is proved that the algorithm compute codc_with_spfd can be
used for computing the CODCs of the fanins of a node.

4.3.1.1 Additional Notation

Ci(Yp) denotes the CODC of 7; obtained by using Savoj’s algorithm and the ordering
given in Section 4.3.1. Thus,

Ci(Yp) = (0fp/ 01 +Vy,) - - - (8fp/BYi-1 + Vy,_, ) OFp/O%:)-

Given the SPFD R;(Yp, Y;) of a fanin 7); obtained from the algorithm compute_codc_with_spfd, let
Vi(Y,) = 3y Ri(Y;, V7).

Vi(Yp) denotes the set of all minterms that have at least one edge attached to them in R; (Y, Y},).
Consider a minterm m of the Y}, space. The notation m(3) is used to refer to the value of

the jth fanin in the minterm m. Also, m(j = a) denotes the minterm that is obtained by setting the

value of the jth fanin to a in minterm m. The minterm obtained by toggling the value of the jth

fanin in minterm m is denoted as m(j }).
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4.3.1.2 Formal Proof

Theorem 4.5 For each fanin, a minterm m € C;(Yp) iff it is not present in R;i(Yp, Yy). Or in other
words,
Ci(Yp) = Vi(Yy)

Proof Proof by induction on :.
Base Case :
Consider the case of the first fanini.e. i = 1.

(+): Consider a minterm m in C1(Yp). Assume that m € f,. It is easy to see that for all
€ fp, m and 7 differ in some other position besides the value of the first fanin. Thus, m will not
be included in R}(Yp, Y;7) and hence will not be included in Ry (Yp, Yp). Thus, C1(Yp) € Va(Yp)-

(=) : Similarly, consider a minterm m ¢ C;(Yp). Then, m € (8fp/0y1). Assume
m € fp. So, this implies that there must exist a minterm 7 € fp such that 72 = m(1 |). Now, the
edge e = (m, 1) can only be distinguished by 7, and thus has to be included in R, (Y3,Yy). Thus,
m € Vi(Y,). Hence, C1(Yp) C Va(Yp) or V1(Y) C C1(Yy). Hence, C1(Y,) = Vi (Yp)-

Inductive Step:

Assume it is true for all fanins less than (i — 1). Now, it has to be proved for the ith fanin.

(«): It has to be shown that if a minterm m is an element of C;(Y}), then it is not an
element of V;(Yp). Let m € C;(Yp). Let m € fp. Also assume that m € V;(Yp). Thus, there must
exist a minterm 77 such that the edge e = (m,m) € R;(Y;,Y;) and the following two conditions

are satisfied:
1. m and 7n are same in the values of the fanins greater than . (Step 3(a) of the algorithm.)
2. e = (m,m) is not contained in the SPFD Ry (Y3, Yy), where k < i and m(k) # (k).

Since m € C;(Yp), hence m is not sensitive to the value of the ith fanin. So, it is easy to see thatm
and 7n differ in more fanins besides the ith fanin. Let this subset of fanins be denoted as S. Now,
both m and 77 cannot simultaneously appear in the SPFD Rj(Y},Yy) of any 7 € S. Otherwise,
condition (2) would not be satisfied by the edge e = (m, 7).

Let J C S such that m is a CODC for the fanins in J. Consider the minterm,

m' = m(l =m(l));{(m € J) A (m =)}

Thus m/ is obtained from mn by setting the values of the fanins in J and the value of 7; equal to their

corresponding values in 7. Since, by assumption m is a CODC of the fanins in J and of #;, hence
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m' € fp. Thus, the edge e’ = (m/, ™) needs to be distinguished. It is easy to see that this edge can
only be distinguished by one or more fanins in S \ J 2. So 7 has to belong to the SPFD Ry (Yp, Yy)
of a fanin 7, such that ;. € S\ J. Also, since m is not a CODC of any fanin 7 € S'\ J, hence by
IH, m has to belong to the corresponding SPFD Ry (Y3, Yy).

Hence, there exists at least one fanin 7, where k& < %, such that both m and m appear in
its SPFD Ry (Y3, Y,). Hence, by Step 3(c) of the algorithm, e € Ri(Yp, Yy)- Thus, the algorithm
will not include e in R;(Y5, Y;). Hence, a contradiction occurs. Thus, C;(Yp) € m

(—): It has to be shown that if a minterm m does not appear in V;(Y}), then it is a CODC.

Consider a minterm, m ¢ V;(Yp). Let m € f,. This happens in either one of the two cases:

1. m does not appear in Step 3(a) of the algorithm. This means that for every m € f_,,, m and
7 always differ in some 7;, where j > i. Thus, toggling the values of all the fanins < ¢ (i.

71 - - - 7;) in m will necessarily yield a minterm m’ such that m’ € f,. Thus,

m € Yy, 1, i-10Sp/Oi.
Thus, m is a CODC of fanin ;.

2. There exists edges in R} (Yp, Y}) in Step 3(a) but are not included in R;(Yp, ;). This implies
that for each such edge e = (m, ) (i) m and 7n are identical in all the fanins > 4 and (ii) m
and 7n differ in the ith fanins and some other fanin j, where j < i. Hence, just by toggling

the value of the ith bit in m, it cannot become an offset minterm. Thus,

me 3fp/3y,

So, m is definitely an ODC. In order to show that it is a CODC, it has to be shown that it is
also compatible with the CODCs of the fanins from {»,-- - ,7;—1}. Proof by contradiction.
Assume that m is not compatible with the CODC:s of the previous fanins. Let m be a CODC

of a subset J of the fanins {71, - - - ,7i—1}°. Construct a minterm m’ as follows:
m' =m(k }),{(k=49)U (m € J)}.

It is obtained from m by toggling the values of the fanins in J and the value of n;. Since, m
is not compatible with the CODC:s of the previous fanins, hence m' has to belong to f_p. Now,

the edge e/ = (m,m') has to be distinguished. But, €’ can only be distinguished only by the

2By construction, m’ and % differ only in these fanins.
3Note that if m is not a CODC of any fanin < 7;, then it has to be compatible with their CODCs.
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fanins in J or by fanin ;. Since, m is a CODC for the fanins in J, hence by IH, m does not
appear in the SPFDs of the fanins in J. Thus, e can be distinguished only by fanin ;. But,
this contradicts the initial assumption that m does not appear in V;(Y). Hence, m is both an
ODC of 7; and it is also compatible with the CODCs of the fanins from 7,,- - - ,7;—1. Hence,
m is a CODC.

Thus, V;(Yp) C Ci(Yp). Hence,

CilYy) = Vil%y).

(]

Hence, the above theorem shows that CODCs can be computed using compute_spfd _with codc.
Thus, SPFDs can represent all the flexibility that CODCs represent.

4.4 SPFD:s in the Flexibility Hierarchy

In this section, SPFDs are placed in the flexibility hierarchy shown in Figure 3.5. First,
it is argued that the flexibility expressed by SPFDs cannot be expressed by either multi-output
multifunctions or Boolean relations. Each of these formalisms are considered in turn.

The following example illustrates why the flexibility of SPFDs cannot be completely cov-
ered by multifunctions. Consider the following problem: Given a set of single-output or multi-
output nodes in a network, suppose it is necessary that some pairs of minterms have to be distin-
guished by the group of nodes. Also, suppose it is sufficient, if for each pair of minterms, the output
of a single node in the set is different. This problem can be very easily formulated using SPFDs.
The set of minterm pairs that have to be distinguished forms the SPFD for the group of nodes. Any
valid coloring of this SPFD can provide functions for all the nodes in the set that satisfies the given
condition. The set of functions represented by this SPFD cannot be captured by any multi-output
multifunction since these are incapable of expressing any kind of output correlation. Hence, the re-
quirement that only one output needs to differ for a particular pair of minterms cannot be expressed
by them.

Similarly, a Boolean relation cannot express all the flexibility that an SPFD can repre-
sent. Consider the following SPFD {(00, 01), (00, 10), (00, 11), (01, 10), (01,11), (10,11)}. Any
function that satisfies the SPFD has to assign different values to all the minterms in the SPFD. The
functions shown in Table 4.1 satisfy the SPFD.
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Linput | L [fo [ Fa [ fa
00 gojo1110} 11
01 0110|1100
10 1011100 01
11 11{00]|01]| 10

Table 4.1: Functions that satisfy SPFD {(00, 01), (00, 10), (00, 11), (01, 10), (01, 11), (10, 11)}.

But all these functions cannot be captured by a single Boolean relation. This is because
Boolean relations cannot capture input correlation. Hence, the requirement that the output value of
one input minterm has to be distinguished from the output values of all the other input minterms
cannot be captured using a Boolean relation.

Thus, the flexibility expressed by SPFDs cannot be captured using either multi-output
multifunctions or Boolean relations. The functions that satisfy an SPFD can be captured by a special
type of MBR. This MBR consists of a single Boolean relation and set of constraints:

1. The Boolean relation specifies that each input minterm can take any value from the set

{0,- - - ,n}, where n is the number of input minterms.

2. The constraints are derived from the edges in the SPFD graph. Each edge e = (m, m’) in the
SPFD graph is translated into a constraint that states that the output produced by m cannot be
equal to the output produced by m’.

All functions that are compatible with this MBR definitely satisfy the SPFD. This is because any
function f that satisfies this MBR ensures that for any two minterms m,m’ that have an edge
between them in the SPFD graph, f(m) # f(m’). Similarly, all functions that are captured by the
SPFD are also functions that are contained in the above MBR.

SPFDs can completely capture all the flexibility expressed by multi-output multifunctions.
This is because multi-output multifunctions express only input correlations, which can be easily
expressed using SPFDs. On the other hand, the flexibility of Boolean relations cannot be completely
captured using SPFDs. As an example, consider the following Boolean relation:

00 —» 0
01 —» 1
10 —» 0,1
11 —» 1,2
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Figure 4.6: Flexibility hierarchy revisited: BR; denotes the set of Boolean relations that have a
unique input minterm for each output value.

All the functions that are compatible with this Boolean relation cannot be captured using an SPFD
because 10 has to be distinguished from 00 or 01 but not both, and 01 can’t have output value 2.
Only a subset or superset of the functions can be represented using an SPFD. However, there are
some specific kinds of Boolean Relations that can be represented using SPFDs. One such type is

given below.

Lemma 4.2 Suppose a Boolean Relation has n output values. If a Boolean Relation has a unique
minterm for each output value, then an SPFD can be constructed such that all colorings of the
SPFD with n colors can provide a function that is compatible with the Boolean Relation, modulo

renaming.

The SPFD can be constructed by adding an edge between any two minterms that have non-overlapping
output parts. Since the Boolean relation has 7 output values, the unique minterms of each output
value form a clique of size n in the SPFD. Thus, any coloring of the SPFD with n colors will
uniquely determine the output values of these minterms. Any other minterm will have an edge to
all the unique minterms that don’t produce the same output value. Hence, the output values of these

minterms can also be uniquely determined. Hence, this SPFD can capture all the functions captured
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by the Boolean Relation.

Example 4.6 Consider the following:

00 = 0
oL - 1
10 - 0,1
11 - 2

The SPFD that can capture all the functions that are compatible with this Boolean relations is :{(00,
11),(00, 01), (01, 11), (11, 10)}. The edge (11, 10) implies that 10 cannot output a 2, but can output

any other value.

It is unclear if there are other types of Boolean relations that can also be completely captured using
SPFDs.

Thus, SPFDs can capture all the flexibility expressed by multi-output multifunctions and
a part of the flexibility expressed by Boolean relations. Hence, the flexibility hierarchy shown in
Figure 3.5 can be re-drawn as shown in Figure 4.6.

4.5 Summary

This chapter provided a detailed exposition of the concept of SPFDs. The relationship
between the SPFD of a node and its information content was described. The minimum SPFD of
a node was defined and an algorithm was provided for computing it. To avoid the computational
expense of minimizing each node in a network using its minimum SPFD, the notion of compatible
SPFDs (similar to CODCs) was proposed. The core idea of the algorithm that can be used for
computing these SPFDs was also described. It was proved that CODCs can be emulated using
compatible SPFDs. Hence compatible SPFDs are strictly more powerful than CODCs. Finally,
SPFDs were placed in the flexibility hierarchy described in the previous chapter, by comparing their

ability to express flexibility to that of previously proposed approaches.
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Chapter 5

SPFDs for Network Optimization

In this chapter, the details of computing compatible SPFDs for nodes in a network are
provided. Then, the algorithms that use these SPFDs for resynthesizing the nodes is described.
Some problems of these algorithms are outlined and alternative solutions are proposed. The .chapter
ends with the results of using SPFDs for network optimization. The results are compared to the
optimization results of CODCs.

5.1 SPFD Computation Algorithm

In this section, a new scheme for computing compatible SPFDs for the nodes in a network
is presented. The algorithm starts by ordering the nodes in the network. This ordering is then used
for the distribution of SPFD edges during the SPFD computation phase.

5.1.1 Ordering Schemes

The ordering scheme works as follows: The level of a node 7; is computed recursively as:
Level(n;) = max({Level(mn) : nx is a fanout of 7;}) + 1,

where nodes with zero fanout have Level = 0 i.e. Level is the maximum distance to any Primary

Output. Given the levels, the computation order of a node is obtained as follows:
e A node with a lower level (nearer the primary outputs) occurs earlier in the ordering.

o Given two nodes at the same level, the node with the most fanouts is earlier in the ordering.
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Figure 5.1: SPFDs for the fanins of an OR gate, O = A + B, given A >; B.

The nodes are visited, according to their computation order (from lowest to highest), and
their SPFDs are computed. Hence, the SPFD of a node is always computed before the SPFDs of its

fanins.

5.1.2 Computing the SPFD of an node

The SPFD computation starts at the primary outputs. The SPFD of a primary output node
is computed from its function. Thus, its SPFD specifies that all minterms in the onset of the function
have to be distinguished from the minterms in the offset of the function. In case, an EXDC set is
specified for each primary output, only the care onset has to be distinguished for the care offset.

At a internal node 7);, the following two steps are performed:
1. The SPFD of each of its fanout wires is computed.
2. The SPFD of a node is computed from the SPFDs of its fanout wires.

The SPFD of each fanout wire wy,; 5, is computed as follows:

Given Ry, the SPFD of a fanout node 7, the edges of Ry, that can be distinguished by 7;
but not by the fanins of 7 later in the ordering are computed (if 7y, is later in the ordering than 7n;,
then 7y, is given less flexibility than 7; i.e. #m <; n;). This is denoted as R;x. Thus,

Riu=Ren{ J] @=u)}u#4)
Yi€Yeni<gn;

Example 5.1 Consider the simple OR-gate shown in Figure 5.1. Its SPFD is given as R, =
{(00,01), (00,10), (00,11)}. Now, let A >5 B, i.e. A will only distinguish the edges that B
cannot distinguish. Of all the edges in R, the edge {(00, 10)} can only be distinguished by A since
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Figure 5.2: Y; and Y}, spaces.

B is equal to zero for both the minterms in the pair. Thus the SPFD of A is {(00,10)}. The SPFD
of B contains all the remaining edges of R, i.e. {(00,01),(00,11)}. If A <; B, then the SPFD of
A would be {(00, 10), (00,11)}.

The SPFD at a node is obtained by first mapping the SPFD of each fanout wire to its local
input space and then computing the union of these mapped SPFDs. The SPFD of each fanout wire,
R;i(Yx, Y)), is mapped to the local space of 7; using the following equation:

Rjk(y}’ Y;) = BYg,Y,:Rjk(ka Yl:)En(Y.'h Yk)En(]G”: Ykl)
The encoding relation En(Y},Y:) provides the mapping between the Y; and the Y. spaces, shown
in Figure 5.2, and is given by:
En(}Gy Yk) = axg(Xa Y})Q(X, Yk)’
G(X,Y;) denotes the characteristic relation between the primary inputs of A/ and the fanins of ;.
Thus (m,, m2) € En(Y;,Y3) if there exists a primary input minterm z that produces m;

in the Y; space and m; in the Y}, space.

For the circuit shown in the Figure 5.3, the encoding relation between the Y3 and Y;

spaces is:
00 — 00,01
01 - 11
10 —» 10,11
11 = 11
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Figure 5.3: Example circuit.

5.1.3 Improvements

Some additional improvements can be built into the SPFD computation algorithm. During
the computation of the SPFD R, of the fanout wire wy,, ., , the edges that are distinguished by the
SPFD:s of the fanins of 7;, earlier in the ordering ! are removed to get R;k. Thus,

R;'Ic = Rjk A nﬂi>!')j 3Ys',Y,-' (E'"'(Yi’ Yk)En(Yi,: YI:)R1(Yh Yz,))

This process has the effect of eliminating some edges from R ;; that have already been distinguished

Figure 5.4: Example illustrating the advantages of the improvements in Section 5.1.3.

by other fanins of 7. The advantage with this scheme is illustrated in Figure 5.4. Assume that node
7; is earlier in the ordering than 7;. Suppose (e, ') belongs to R;, and is distinguished by both #;
and 7;. In both the schemes, let n; <js 7;. In the approach explained in the previous section, (e, e’)

Inote that the fanins earlier in the order than 7n; already have SPFDs associated with them since the SPFDs of the
nodes are computed in that order
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is assigned to the SPFD Ry of wy,y,. Further suppose that (e, e') is required by the fanout wire
Wy, e > and hence is already included in the SPFD of #;. In the new SPFD computation scheme,
(e, €') will not be included in the SPFD of the wire wy, sy, . The previous scheme would add (e, ¢')

to n; and thus duplicate some information in 7; and 7);.

5.2 Resynthesis Algorithm

Here, the algorithm for resynthesizing the nodes in the network using their SPFDs is
presented.

The nodes are resynthesized in a topological order from primary inputs to primary outputs.
Thus, when a particular node is being resynthesized, the new implementations of its fanins are
available. The SPFD of a node is given in terms of its original inputs. Due to the re-implementation
of the fanins, the mapping to these inputs might change. For instance, suppose in the circuit in
Figure 5.3, n; is converted from an OR-gate to an inverter, as shown in Figure 5.5. Then the SPFD
of 73 computed in terms of the Y3 space now has to be converted to an SPFD in terms of the new
fanin space Y3.

The modified SPFD of the node 7; under the new encoding of the inputs is obtained by
the following:

1. The mapping between the old fanin space Y; and the new fanin space, denoted as 17, is

computed.

2. The original SPFD in terms of the Y; is translated to a modified SPFD in terms of the }73

space.

The relation between the old fanin space Y; and the new fanin space f’j, shown in Figure
5.6, is given by:
En(Yj, ?.1) = IxG(X, K,)é(X, YJ)
G(X,Yj;) is the characteristic relation between the primary inputs of N and the original fanins of

nj- G(X,Y;) is the characteristic relation between the primary inputs of A" and the resynthesized

fanins of n;.

This has already been computed since 7, is earlier in the ordering.
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Figure 5.5: Example circuit (Contd).

Thus the encoding relation, En(Y3, }A’;;), between the Y3 and Y3 space in Figure 5.5 is
given as

00 —» 01
01 —» 00
10 —» 11
11 — 11,10.

The modified SPFD is then computed as:
R; (?J’ };;') = 3}’;,,1’;RJ (y:?’ Y]')En(Y_.,, ?J)E"(YJ', };_1')

Note that these steps are very similar to the mapping and translation phase in the SPFD generation
phase.

Figure 5.7 illustrates how the new encoding of the inputs changes the original SPFD of
73 in Figure 5.3. Note that the edge (00, 11) translates into two edges {(01,11), (01,10)}.
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new

Figure 5.6: Y; and Y; spaces.

Ry(Y3,Y)) By(Ys,Y5)
00 o1
01 E 00
10 10
11 11

Figure 5.7: Modified SPFD of 73 under the encoding E.

Any function that satisfies the modified SPFD is a valid new function at ;. The new
functions are derived by coloring the modified SPFD graph such that no two minterms that are
connected by an edge have the same color.

With single-output nodes, the modified SPFD is mostly bipartite>. Since most of the
experiments described later involve networks of single-output nodes, the coloring algorithm used
for bipartite SPFDs is explained in a little more detail below.

The main source of flexibility in bipartite SPFDs is the presence of Strongly Connected
Components (SCCs). The advantage of SCCs is that the minterms in one SCC do not have to be
distinguished from those in another. The coloring algorithm for bipartite SPFDs first enumerates
all the SCCs. Then, for each SCC, one set of minterms is placed in the onset and the other set
of minterms is placed in the offset. But the choice for one SCC is completely independent of the
choice for another SCC. Hence, if there are k strongly connected components in R ; ¥, )}j’), then

3In a later section, it is described how the modified SPFD can be non-bipartite.
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old SPFD 110 = 111 new SPED
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Figure 5.8: Non-bipartition of the modified SPFD after encoding.

there are 2* functionally different ISFs that can be implemented at j- The new implementation at

a node is chosen to be the minimum of the minimum covers of all the 2* ISFs.

Finding the SCCs:

In this section, an implicit algorithm for enumerating all the SCCs is proposed. Given
an SPFD R(z,2’), the individual SCCs can be obtained as follows. Initially, the two step graph
Ry(z,2') = 3yR(z,y)R(y, 2) and the set of all nodes N(z) = 3, R(z, y) in the bipartite graph are
obtained. Then the following steps are performed:

1. Pick zp € N(z2).

2. Compute the fix point Ey(z), which is all the nodes that can be reached from zq using Rs.
Compute Eo(z) = 3,R(y, z) E1(y), the set of nodes that are connected by an edge to a node
in Ey(z). Store (E, Eo) as an SCC pair.

3. Let N(z) = N(2)Ey(2) + Eo(2) . f N #0,g010 1.

Note that this algorithm assumes the SPFD R(z, z’) is a symmetric relation. Since these
SPFDs are expressed in terms of the local fanin space, the SPFDs are not too large. Hence, it is not

very expensive to express it as a symmetric relation.

Non-bipartition:

There could be situations where R;(Y;, l}j') is not bipartite, even though R;(Yj;,Y]) is.
Figure 5.8 illustrates one such example. In such a situation, the result is a general graph. If the
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graph can be colored using k colors, the new function can be encoded using log k bits. Thus the
original node is replaced by log k nodes, all of whose fanouts are the same as the original node. This
situation is undesirable since the number of fanins of the fanout nodes may increase. Techniques
are being explored for constraining the SPFD propagation through the network so that under any
encoding, the graph R; (}7'_,-, ?j') remains bipartite.

In the next section, it is proved that the SPFD of a primary output node can never be
bipartite after translation from the Y; space to the 17', space. Hence, the primary output nodes in a
network of single-output nodes can never be split into multiple nodes. Experiments indicate that
non-bipartite structures occur rarely even for internal nodes.

In the sequel, this algorithm of SPFD computation followed by resynthesis is referred to
as compute_global _spfds.

5.3 Proof of Correctness

In this section, it is proved that the algorithm compute_global spfds always produces an
equivalent network.

Definition 5.1 The original SPFD of n; is the SPFD R;(Y;,Y]) attached to it after the SPFD
computation phase of compute_global spfds.

Definition 5.2 The modified SPFD of n; is the SPFD R; (l7j, f’J!) obtained by mapping the original
SPFD from the old fanin space Y to the new fanin space f’,

Definition 5.3 The global SPFD of n; is obtained from its original SPFD R;(Y;, Yj') by composing
each yy, € Y; by f{(X) and each yj, € Y] by f{(X'). It is denoted as R;(X, X').

Theorem 5.1 If the new function at every node 7; in the network satisfies its modified SPFD
R; (17,, 17;’) then it also satisfies its global SPFD R;(X, X').

Proof The proof is by induction on the level of each node in the circuit. The first-level nodes are

functions of the primary inputs only. For any such node 7;,

R;(Y;,Y;) = By(X, X') = B;(%;, Y;),

since the primary inputs are not changed and hence any function that satisfies the modified SPFD of
the node also satisfies its global SPFD.
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Now suppose that all level n nodes implement their respective modified SPFDs. Let 77; be
alevel n+1 node. It is proved that if the new function at n; satisfies its modified SPFD, R; (]7}, f’J ,
then it also satisfies the global SPFD R;(X, X'). Proof by contradiction.

Assume n; satisfies R;(¥;, ¥7) but it does not satisfy R;(X,X"), where R;(X, X') is
obtained from R; (Y}, Y;) by composing each yx € Y; by f7(X) and each y;, € Y} by f(X"). This
means that there exists an edge (z,z’) € R;(X,X’) that is not distinguished by the new function
at 7);. Now, the edge (z,z’) € R;j(X, X') corresponds to an edge (y,y’) € R;(Y;,Y]), where y is
the image of z in the ¥; space and y/ is the image of =’ in the Y] space. Since, while distributing
the SPFD edges, it is ensured that all the edges of the SPFD of a node are assigned to at least one
of its fanins, the edge (y, y’) has to be assigned to a fanin of 7; and is included in the SPFD of that
fanin. Assume that the fanin is 7. Since the level of 73, < n, then by the induction hypothesis, 7
satisfies its global SPFD R (X, X'). Since (y,y’) € R(Yk, YY), (z,2') € Ri(X,X’) and hence
(z,’) is distinguished by ;. Hence (z,2') € R;(X, X') produces an edge (3, ') € R;(¥;,Y}),
where § and g’ differ in the bit corresponding to 7. But it is given that the new function at N4
satisfies R;(Y;,¥;) and hence (§,4") has to be distinguished by it. Thus (z,z') also has to be
distinguished by the new function at 7;, leading to a contradiction. Thus the new function at 7;
satisfies R;(X, X'). m]

From the above, it can be concluded that if a node 7); satisfies its modified SPFD R; (Y, ¥7)
then it also satisfies its global SPFD R;(X,X’). By the inductive proof given above, it can be

-

claimed that each node in the circuit implements its global SPFD. In particular, each primary output
does so, thereby satisfying the original input-output functionality of the network.

Theorem 5.2 The modified SPFD of a primary output 1); is always bipartite in a network of single-

output nodes.

Proof It is shown that for every edge é = (ri1,72) € R;(Y;, f’j’), all the minterms of M; =
EI;,J, 1 En(Yj, f’,-) and M, = Elf,j 1 En(Y;, ¥;) belong to the original onset and offset, respectively
(or vice versa). Thus all the edges in the modified SPFD are only between onset minterms and offset
minterms. Hence the modified SPFD of a primary output is always bipartite. Proof by contradiction.

Suppose there exists an edge é € R;(Y;, 17}' ) such that there is a minterm m, € M, and a
minterm mg € M» and both m; and m2 belong to the onset. For the edge é to occur in the modified
SPFD, there has to exist at least one edge in the original SPFD that maps to €. Assume that edge
€ = (71, M2) in the original SPFD satisfies the above condition. The original SPFD of the primary
output is constructed by adding edges between all onset minterms and all offset minterms. Thus,
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7y has to belong to the onset(offset) and 7722 has to belong to the offset(onset). Let m, belong
to the onset and 772 belong to the offset. Then the minterms m; and mg belong to M; and Mo,
respectively, only because both m; and /) map to 77; and both my and iz map to 7. But the
edge (mz, ) has to belong to the original SPFD (since m is in the onset and 72 is in the offset).
Hence they have to be distinguished and cannot map to the same minterm 7722 (by Theorem 5.1).

Thus the assumption that both m, and m2 belong to the onset leads to a contradiction. 1]

5.4 Example

A simple example is provided for illustrating the execution of compute global spfds.

Consider the following network configuration:

f = g3(q192 + 71 52) where

g = T3+ 3122
g2 = T1T3+ 2173
g3 = T1+ Z2T3+ T2zx3

Let the ordering algorithm return the ordering : f < g3 < g2 < g1. Thus, in terms of flexibility,
91 <g g2 <y g3.

000
011 001
101

111
110

Figure 5.9: SPFD of f in terms of its local inputs.

The SPFD of f in terms of it local inputs, g;, g2 and g3, is
{(000,111), (110, 111), (011, 111), (101, 111), (000, 001), (110, 001), (011, 001), (101, 001)}.

This can also be represented by a bipartite graph as shown in Figure 5.9. Now, the edges of the
SPFD of f have to be distributed to its inputs. An edge is assigned to g, only if it is not distinguished
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000
011 001
011
111 110
101 111 111
101

110

Figure 5.10: SPFDs of (g1, f), (g2, f) and (g3, f) in terms of the local inputs of f.

000 :
o1 001
000
011 ol o0
010
1
00 010 011
101 10 11 110
110
111

Figure 5.11: SPFDs of g1, g2 and g3 in terms of their respective local inputs.

by g1 and similarly an edge is assigned to g3 only if it is not distinguished by both g, and g,. For
example, the edge (011, 001) was put on g2 because g; = 0 for both minterms. The SPFDs of the
wires (g1, f), (g2, f) and (g3, f) in terms of the fanins of f (i.e. g1, g» and g3) are shown in Figure
3.10. The SPFDs of the nodes gy, g2 and g3 (which are in terms of vertices in the z space) are
derived by mapping the SPFDs of the wires (g1, f), (g2, f) and (gs, f) respectively to their input
spaces and are shown in Figure 5.11.

Then the new functions at g,, g2 and g3 are derived (as functions of z) using their re-
spective SPFDs.  The SPFD of g; has two strongly connected components. For the component
{(000, 001), (100, 001), (600, 110), (100, 110)}, let {000, 100} be in the onset and {001,110} be
in the offset. Similarly for the component {(011, 010), (101, 010), (111, 010)}, let {011, 101,111}
be included in the onset and {010} be in the offset. For deriving the new function at g5, let {01, 10}
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100 E: 000 — 101

000 001 — 000
101 011 — 111

101 — 100

110 101 — 101

010 110 — 111
111 111 — 010

Figure 5.12: Modified SPFD of f under encoding E.

and {00,11} be in the onset and offset, respectively. Similarly for the new function at g3, let
{000, 011} be the onset and {010, 110, 001} be the offset. Thus, the new functions at g, g2 and g3
denoted as g1, g2 and ga respectively are given by:

g1 = 7173+ 2273 +T2 T3
g2 = TiT3+T1T3
g3 = T2T3+T327T3

The new functions, gi, g2 and g3, provide a new encoding at the inputs of f and thus the SPFD of f
under this encoding is shown in Figure 5.12.

If {000, 010} is included in the onset of f and the rest in the offset, the new function at f
is given as f™¢* = gy. Of course, an inverter has to be inserted at the output to get back the original

function. Even then, the savings in the number of literals is considerable.

In contrast, this optimization cannot be obtained using CODCs. This simple example
illustrates that SPFDs can perform optimizations on circuits when CODCs cannot. Thus SPFDs can
be used to get better optimized circuits.

In the following sections, two main problems associated with SPFD algorithms are ad-
dressed: non-robustness and unpredictability. Non-robustness issues arise due to the memory prob-
lems of BDD engines. Alternative schemes are provided in the next section for solving this prob-
lem. The increased flexibility of SPFDs can produce some uncontrolled changes in the network and
thereby adversely affect the predictability of SPFD-based optimization. In a later section, the causes

of this unpredictability are provided and some solutions are proposed for countering this problem.



CHAPTER 5. SPFDS FOR NETWORK OPTIMIZATION ' 59

5.5 Robust Computations

The first implementation used BDDs for all computations. This worked well for medium
sized circuits. However for larger circuits, computing the relation En(Y;,Y)) during the SPFD
computation phase and the relation En(Y;, ¥;) during the resynthesis phase caused BDD memory
explosion problems.

SAT solvers are known to be more robust than BDD engines. Hence they can handle much
larger circuits without significant memory problems. In the next section, an algorithm is presented

for computing the above relations using a SAT solver.

5.5.1 SAT-based scheme

The algorithm com_enc_reln given below computes En(Yj,Yx) for any (n;,7:) pair in
the network, where 7 is a fanout of 7;, using a constructive approach. En(Yj,Yy) is initialized
to the empty set. Given 7; and its fanout 7y, a SAT instance C is created which contains the
clauses of all nodes in the transitive fanin of 7. Thus C contains all the information about the
relationship between the fanins of 7y, and 7;. Each solution S returned by the SAT solver is modified
by projecting out the variables not in Y; or Y; to yield §'. S’ is a cube of En(Yj,Yz) since there
exists a setting of the primary input variables that gives S’. S’ is added to En(Yj,Y:). Then C is
modified by adding the clause 57 to C. The SAT solver is invoked again and the process is repeated.
The added clause S” guides the SAT solver and prevents it from returning another solution S” which
yields S’ after projecting out all variables not in Y; or Y;. Thus this process guarantees that after
each call to the SAT solver, the cube S’ is unique. The algorithm stops when the SAT instance is
not satisfiable. At this point, all cubes of En(Y;, Y3 ) have been enumerated.

Algorithm com_enc_reln (N, n;, 7z):

L En(Y;,Yi) = 6.
2. Associate a SAT variable y; with each node 7; in the network.

3. Write down SAT clauses for each node in the transitive fanin of 0y, to get a SAT instance C.
4. LaV=Y;VUY;

5. Call a SAT solver on C. If the instance is unsatisfiable, go to step 7. Given a solution S,
project out variables that are not present in V to get a cube S’ of En(Y;,Yx). Add S’ to
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Figure 5.13: Relation between 7;, 7; and 7.

En(Y;, Yi). Thus,
En(Y;,Yi) = En(Y;,Yi) U S’

6. Given S', add the complement of S' as a clause to C to get a new SAT instance. Thus,
C=CAS'. Gotosteps.

7. Stop. Output En(Yj;,Yy).

This algorithm can be implemented using any complete SAT solver, i.e. one that can find
a solution if one exists. In the actual implementation, CHAFF [14], developed by Moskewicz et al.
at Princeton, was used. CHAFF has an option for enumerating all solutions of a SAT instance over
a subset of the variables. So Steps 5 and 6 are implemented in one call to CHAFF.

During the resynthesis process, the relation En(Y;,Y;) for the node n; has to be com-
puted. The procedure is similar except for some minor changes. In Step 2, two variables y; and y;
are associated with each node 7); in the network. The variable y; is used for expressing the original
function of 7; and the variable y; is used for expressing the new function of 7;. In Step 3, clauses
are added for both the original and the new functions of all nodes in the transitive fanin of ;. V, in
Step 4, is equal to the union of ¥; and ¥;.

Some additional efficiencies were built in to reduce the run-times:

o While computing the relation En(Y;,Yy) for (n;, n), if the primary inputs in the transitive
fanin of n; (a fanin of ni) and m; are disjoint (as shown in Figure 5.13), then any clauses
pertaining to either n; or any of its transitive fanins are not added to the SAT instance C in

Step 3.
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o After resynthesis, if a node n; is not changed, a new variable y. is not associated with it. Note
that ideally this is desirable, whenever the globai function of a node is unchanged. However, it
may be too computationally expensive to perform the global check. Instead, a node is tagged
as unchanged, if the local function of the resynthesized node is the same as the original and all
its fanins are also tagged unchanged. This is especially efficient since, in almost all circuits,
there are nodes that remain unchanged after resynthesis. By re-using the same variable for
the original and the new node, the SAT solver can establish relations between the Y; and the

~

Y variables more quickly.

e During resynthesis, the relations R;(Y;, f’,) Jfor each fanin v; of the node 7; are also added.
The idea is to provide as much learned information to the SAT solver as possible. The en-
coding relations of the fanins of n; can help eliminate some unnecessary combinations early

on.

These have helped to reduce the time taken by the SAT solver to compute the encoding

relations.

5.5.2 Combined Strategy

SAT solvers suffer from efficiency issues, particularly for set manipulation problems.
BDDs, on the other hand, are very suitable for set manipulation. Hence, a hybrid approach combin-
ing the efficiency of the BDD engine and the robustness of SAT is used. In this approach, BDDs
are used for performing the image computations until the number of BDD nodes increases beyond
a certain user defined limit. After that, a SAT solver is used for the remaining image computations.

5.6 Making the Results more Predictable

In this section, the unpredictability that can arise during resynthesis using SPFDs is de-
scribed. This happens because when a node is changed in the network using SPFDs during the
resynthesis procedure, all the nodes in its immediate fanout have to be changed since the mapping
of the fanin spaces of these fanouts changes. This is turn causes the mapping of the fanin spaces
of their fanouts to change. This domino effect as illustrated in Figure 5.14. The problem with
this uncontrolled change is that a choice made early during the network optimization process can
adversely affect the nodes in the transitive fanout. This effect could manifest itself as an undesirable
increase in the literal count in the factored form after SPFD optimization.
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P

Figure 5.14: Resynthesizing a node using its SPFD can potentially change all the nodes in its
transitive fanout.

In the following section, the blocking techniques used for avoiding uncontrolled change

and making the results more predictable are explained.

5.6.1 Window-based computation
5.6.1.1 Region of Change

A “region of change” (ROC) denotes the set of nodes that can possibly be affected during
the resynthesis step. In the interest of predictability, it is good to have a small ROC. However, a very
small ROC can affect the amount of the flexibility of SPFDs that can be used. In this work, a ROC
contains a node and its fanouts up to some level as shown in Figure 5.15. A ROC is parameterized
by ! : all nodes within [ fanout levels of a node 7; are in the ROC of n;.

The algorithm spfd_simplify proceeds from inputs to outputs in topological order and at
each node 7; performs the following steps:

1. Compute the ROC at nj and determine the nodes at the outer boundary of this region. These
are the nodes that have at least one fanout to a node not present in the ROC. Denote this set

as Uj.

2. Derive an SPFD for each node in U; from the functionality of the current network. Basically,
the SPFD of each node in U; specifies that its onset derived from its current function has to
be distinguished from its offset. This ensures that the changes in U; are not propagated to
their fanouts.

3. Compute the SPFDs of all the nodes in the ROC in reverse topological order as described in
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ROC (R;)

Figure 5.15: Region of Change of 7;.

Section 5.1.

4. Resynthesize all the nodes in the ROC in forward topological order as described in Section
5.2

5. If the sum of the literal counts (or some other cost function) of resynthesized nodes in the

ROC is less than that of the original, replace all the nodes by their new functions.

Since the nodes in the ROC are modified only if the net effect is positive, it is guaranteed
that the final result will be better than or equal to the original result. Also note that as ! increases,
there are more computations in Steps 3 and 4. So, typically [ < 2.

One problem with this scheme is that the non-observability of the boundary nodes of a
ROC is not exploited during the optimization process. In Section 5.6.2, a novel method for combin-
ing SPFDs and CODC:s for circumventing this problem is described.

5.6.1.2 Parameterized Image Computation

In Section 5.5, a new scheme for image computation combining a SAT solver and a BDD
engine was proposed. Here, another scheme for image computations using BDDs is proposed. This

scheme can be used with the notion of the ROC since only a few nodes are changed at each step.
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Primary Inputs (p = c0)

Figure 5.16: Parameterized BDD-based image computation.

The basic idea is illustrated in Fig 5.16. Instead of computing images all the way down
to the primary inputs, only a few levels below the ROC are used for image computation. Parameter
p is used for specifying the cutset that is used for the operation. For p = 1, only the immediate
fanins of the nodes in the ROC are used as a cutset for doing the image computations. For p = 2,
nodes that are fanins of the nodes in the p = 1 cutset are used. As the cutset is moved closer to the
primary inputs, more of the SDCs are taken into account during the image computation. The cutset
consisting solely of primary inputs is denoted as p = oo.

5.6.2 SPFDs and CODCs combined

Here an algorithm for using both CODCs and SPFDs for performing controlled optimiza-
tions in the network is sketched.

The algorithm is almost identical to spfd _simplify except that in Step 2, the LDCs (CODCs
expressed in the fanin space of a node) are used to derive the SPFDs of the boundary nodes. The
rest of the algorithm proceeds exactly as before. Once the nodes in the ROC have been resynthe-
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sized, the CODCs/LDCs of some of the nodes in the network may no longer be valid. For a detailed
explanation of why this happens, please refer to [25].-

In the following two sections, an algorithm is provided for computing the LDCs of the
boundary nodes (if they become invalid). A naive approach would invalidate the CODCs/LDCs of
all the nodes in the network after the resynthesis step. However, in reality, only a few nodes have
invalid CODCs/LDCs after the resynthesis step. These nodes are identified in Section 5.6.2.2.

5.6.2.1 Computing the LDCs of a node on demand

The LDC of a node 7; is only computed on demand i.e. it is only computed if n; is a
boundary node of the current ROC being processed:

1. If LDC of w; is valid, then return.

2. If the CODC of w; is valid, then compute the LDC from it using an image computation step
and return. (Note that either SAT or BDDs can be used for this step.)

3. Let TFO; be the nodes in the transitive fanout of n; in reverse topological order.
4. For each ., € TFO;, do the following:

(a) If CODC of 0, is valid, then return that. Else, go to the next step.

(b) Determine the CODC of each fanout wire wy, —»y, of nx. In order to obtain this, first
determine the fanin minterms of m which are insensitive to the value of 1. Then, make
them compatible with the fanins of m; that already have CODCs associated with them.
This gives the CODC of wy, —n,-

(c) Intersect the CODCs of all the fanout wires of ny, to get the CODC of 1.

5. Obtain the LDC of n; from its CODC by expressing it in terms of the fanin space Y;.

5.6.2.2 Updating/Invalidating the CODCs and LDCs of the nodes

If the nodes in a ROC are changed, then it is necessary to update or invalidate the CODCs
and/or LDCs of some of the nodes in the network.

Given a node n; with ROC R;, the nodes in the transitive fanin of the nodes in U; have
invalid CODC:s and hence invalid LDCs. This is because the observability of these nodes may have
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changed, due to the changes in the functionalities of the nodes in their transitive fanout (due to the
resynthesis of the nodes in R;).

The CODCs of the nodes in Uj; are valid. However, their LDCs are invalid and need to be
updated. The LDC of each node 7; in U; can be easily updated according to the following formula:

Li(%:) = IGEn(Y;, V) Li(Y).

The CODCs of the nodes in the transitive fanout of U; are valid but their LDCs may no longer be
valid because of possible changes in the SDCs of the network. Hence, the LDCs of these nodes are
invalidated (note that the LDCs are directly updated from the old LDCs whenever possible to avoid
unnecessary image computations).

This scheme of using both SPFDs and CODCs for optimizing the nodes in a ROC is called
CODC bounding. Only the primary inputs (p = o00) are used for image computation in the CODC
bounding algorithm. It is implemented as an option “-codc” of spfd _simplify.

5.7 Results

Table 5.1 compares the efficiency and robustness of the different image computation
schemes used in spfd_simplify for p = co. Column 2 gives the runtimes for spfd_simplify (I = 2)
-when it uses the BDD-based image computation scheme. Columns 3 and 4 give similar results for
the SAT-based and the BDD+SAT-based image computation schemes, respectively. The improved
robustness of the SAT-based schemes (both the pure and the integrated approach) over the pure
BDD-based scheme is evident in the last three examples. For these large examples, the BDD-based
method ran out of memory but both the SAT-based scheme and the integrated BDD+SAT-based
scheme completed. The advantage in terms of efficiency of the BDD+SAT-based scheme over a
pure SAT-based image computation is evident in the runtimes. The improvement is because BDDs
(which are typically efficient for set manipulations) were used at the beginning and the more time
consuming SAT-based scheme was used only when the number of BDD nodes in the BDD manager
was large thereby causing memory related problems for BDDs. In these experiments, the BDD node
limit was set to 480000. Thus, the integrated BDD+SAT-based scheme exploits the efficiency of the
BDDs for the smaller circuits and the robustness of the SAT solver for the larger circuits, thereby
making the integrated approach both robust and efficient.
The command spfd_simplify used the scheme described in Section 5.6 to optimize the
network. Table 5.2 gives the results of spfd_simplify for various window sizes (of the ROC) and
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circuit || BDD Runtime(s)

SAT Runtime(s) | BDD+SAT Runtime(s)

9symml
b9
cmb
cordic
It frgz
i9
lal
k2
terml
2
x2
x3
x4
C2670
C3540
C6288

149.2
8.1
0.5
6.4

232.6
463
44

288.6

28.0
6.0
1.2

76.5

20.2

2754
36.2
24
17.85
5981.6
1444.0
13.785
376.5
211.7
43.5
3.7
1202.5
306.3
1852.3
2784.2
4499.9

149.2
8.1
0.5
6.4

232.6
463
44

288.6

28.0
6.0
1.2

76.5

20.2

1760.2
2756.0
3294.3

Table 5.1: Comparison of runtimes for different image computation schemes.

| circuits || original | fullsimplify | 1=2;p=o0 [I=l;p =00
9symml [ 277 270 270 268
b9 236 188 190 190
cmb 62 59 59 59
cordic 194 155 155 155
frg2 2010 1454 1438 1438
i9 1453 1132 1078 1078
lal 223 184 150 194
k2 2928 2889 2664 2664
2 341 268 230 242
term1 625 336 233 251
x2 71 60 58 58
x3 1345 1200 1166 1169
x4 672 568 534 534
C2670 | 2043 - 1710 1710
C3540 | 2934 - 2654 2654
C6288 || 4800 - 4699 4699
| c7522 || 6098 | - 4239 4239
[ % imprv 0 | 1230 20.53 19.00

Table 5.2: Comparison of spfd_simplify for different values of [ and p = oo vs full_simplify.

67
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[ circuits | original | full simplify | I=2;p=1 | 1=2;p=2 | 1=2;p=00 |
9symml || 277 270 268 269 270
b9 236 188 190 190 190
cmb 62 59 59 59 59
cordic 194 155 155 155 155
frg2 2010 1454 1792 | 1728 1438
lal 223 184 194 184 150
k2 2928 2889 2664 | 2664 2664
| terml 625 336 468 422 233
I w2 341 268 277 246 230
x2 71 60 59 57 58
x4 672 584 592 536 534
C2670 || 2043 - 2043 | 2043 1710
% imprv 0 | 1607 [ 1277 [ 1564 2223 |

Table 5.3: Comparison of spfd_simplify for different values of p and [ = 2 vs full simplify.

how they compare to full simplify (Column 3). Columns 4 and 5 give the results obtained by
using a ROC that includes all fanouts within two levels (! = 2) and one level (I = 1) of the node
respectively.

Table 5.3 provides a comparison of the results of spfd_simplify for different values of p.
Column 3 gives the results for full_simplify. Columns 4, 5 and 6 provide results forp = 1,p = 2
and p = oo, respectively. The ROC window was setto ! = 2. For p = 1 and p = 2, BDDs were used
for image computation and for p = oo, SAT was used. The results for C2670 indicate that while
the BDD-based full_simplify ran out of memory, spfd_simplify (that also used BDDs forp = 1,2
) completed without any memory problems. Also, the quality of the results improved as the cut was
moved closer to the primary inputs. This is expected as more of the SDCs were taken into account
when the image computation used a cutset closer to the primary inputs. However, it is interesting to
note that even for a cutset close to the ROC (p = 1), some optimizations were obtained. This factor
can be exploited in medium to large circuits for achieving some preliminary optimizations.

Table 5.4 compares spfd_simplify (only SPFDs) with spfd_simplify -codc (SPFDs with
CODC bounding) for ! = 1 and [ = 2. Columns 3 and 4 give the results with and without CODC
bounding for | = 2, respectively. Columns 5 and 6 give the corresponding results for [ = 1.
The results indicate that CODC bounding did not achieve much improvement except for the last
example. This is probably because for these examples, CODCs did not provide much additional
improvement. This is supported by Table 5.5 which gives the effect of using full simplify with and
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[| circuit | original | ss-codc(1=2) | ss(1=2) | ss-codc(1=1) [ ss(l =1) |

cmb 62 59 59 59 59
term1l 645 233 233 253 253
ttt2 341 233 235 235 246

x3 1345 1166 1166 1169 1169
x4 672 533 533 533 533
apex6 904 842 844 849 854
apex7 289 262 262 261 261
9symml 277 271 271 265 268

frg2 2010 1407 1436 1315 1436

% imprv | O 20.18 19.93 20.43 1922
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Table 5.4: Comparison of spfd_simplify with and without CODC bounding for different values of {

and p = oo.

circuit || original | full_simplify | full simplify -d

cmb 62 59 60
terml 625 369 348
ttt2 341 276 271

x3 1345 1209 1209
x4 672 569 570
apex6 904 885 886
apex7 289 256 256
9symml 277 270 270

frg2 2010 1522 1645

% imprv 0 14.68 14.16

Table 5.5: Effect of CODC optimization on the examples in Table 5.4.

without CODCs*. Except for the last example, the effect of CODCs on network optimization was

very limited. It was found that only for a few large examples in the MCNC benchmark circuits was

the effect of CODCs on network optimization pronounced. However, the runtimes of spfd _simplify

-codc for these circuits were excessive and hence for them the effectiveness of spfd simplify -codc

over spfd_simplify could not be tested. The blowup in runtimes of spfd_simplify -codc was mainly

because the CODCs of many of the nodes in the network had to be recomputed quite often.

“The -d option of full_simplify does not use CODCs.
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5.8 Summary

This chapter provided an in-depth exposition to the various algorithms for SPFD-based
network optimization. SPFDs can be unreliable for network optimization since modifying a node
can affect the nodes in its transitive fanout adversely. To counter this, the notion of a ROC was
introduced. The results on benchmark circuits were favorable. In general, the quality of results was
found to improve as the value of [ was increased. However, the runtimes can be quite large for! > 2.

Alternative image computation schemes were also proposed. The SAT-based image com-
putation algorithm was implemented using CHAFF. This enabled SPFD optimization on much
larger examples than BDD-based methods. However, the SAT-based method can be relatively slow
for smaller circuits. To deal with this problem, an integrated scheme that initially used BDDs for
image computation and automatically switched to a SAT-based computation when the number of
nodes in the BDD manager exceeded a certain user specified limit was also proposed. The results
indicated that the integrated approach nicely combines the efficiency of BDD engines with the ro-
bustness of SAT techniques. This scheme is general and can be used in other applications where
BDD-based computations blow up. For instance, it can be used to make full simplify work for
larger circuits. A scheme for parameterized image computation was also proposed that used a pa-
rameter p for controlling the cutset through which the image computation was performed. This
scheme enabled the use of BDD-based SPFD optimization for large circuits. It will be interesting to
explore other schemes such as partitioned BDDs and BDD subsetting/supersetting to increase the
portion of the circuit for which BDDs can still be used.
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Chapter 6

Wire Manipulation Techniques

In this chapter, first a brief overview of rewiring is provided and it is argued that SPFDs
provide a more general framework for rewiring a given network. Then a few different flavors of

rewiring are explored.

6.1 Previous Work

The basic idea of rewiring is to replace one wire with another without changing the func-
tionality of the network. Rewiring can have a number of interesting application. For instance, a
wire on the critical path can be replaced with another wire that is not on the critical path or a wire
in a heavily congested routing area can be replaced with another in a less congested area. Most of
the previous work in this area used ATPG-based methods [4, 5, 6]. The common idea in all these
algorithms is the ability of adding a redundant wire and in the process, making some of the other
wires redundant, which can then be removed. These techniques are often referred to as redundancy
addition and removal (RAR). The algorithm proceeds as follows: Given a wire wy, first the set of
mandatory assignments for testing the fault at w, are identified. A wire is redundant only if the
set of mandatory assignments are inconsistent. Then, a new wire w, is added so that the set of
mandatory assignments for w; become inconsistent. In addition, it is necessary to check that w, is
redundant, so that the functionality of the network is unchanged after addition of w,. This basic idea
of making some wires redundant by adding other redundant wires was first proposed in [4] and was
further extended in [5] by allowing changes in functionality of certain nodes for rendering a par-
ticular target wire redundant. However, the changes allowed were small since only the assignment

of the don’t care minterms of the function could be altered. This rewiring scheme has been applied
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to post-layout logic restructuring for improving the routability of the circuit. More recently, there
has been work on rewiring based on functional symmetries [7). Here, an implication supergate is
constructed for detecting the functional symmetries. It is shown that wires of the supergate can be
swapped without changing the network functionality. In some recent work [8, 26], the requirement
that the added wire had to be redundant was dropped. In [26], some simple functionality changes
were allowed for eliminating the error introduced by the irredundant wire. The main problem with
the approach was it required the use of a formal verification tool for guaranteeing the correctness
of the modified circuit. The work in [8] attempted to eliminate the use of formal verification by
finding some necessary and sufficient conditions under which a new irredundant wire could replace
an original wire without affecting network functionality. However, the nature of the functionality
changes allowed to the nodes, if any, is unclear.

Some related work has been done using the concept of global flow analysis [9]. This
technique performs rewiring by modeling the problem of rewiring using a flow graph and then
solving it using the maxflow-mincut algorithm on the corresponding flow graph. The advantage of
this approach over ATPG methods was that it could simultaneously add and remove many redundant
wires at the same time. One drawback of this method was that it allowed only fanout reconnections.
This work was extended by [10] for allowing both fanin and fanout reconnections. However,
these methods are similar to ATPG-based methods in the sense that they still try to make the wires
redundant by making them untestable. Hence they don’t allow any functionality changes of the

remaining nodes in the network.

6.2 SPFDs and Rewiring

SPFDs provide a powerful tool for rewiring. As mentioned, SPFDs can be used for repre-
senting the information content of a wire in the network. This notion can be exploited for rewiring
the circuit. Suppose the SPFDs assigned to a wire from node 73 to 7,, denoted as wy, —y,,, is a
subset of the SPFD assigned to node 7,,,. Then a fanout from 7%,, is a candidate replacement for
Wy —39n» SINCE Wy, 5y, SUpplies no less information than wy, .y, . The node 7, can also be called
an alternate source for the wire wy, 5, . Of course if the replacement is made, the logic function
at node 77, may have to change (because the information being supplied is in a different form), but
such a function always exists. When a wire wy, 5, does not provide any unique information to
node 7, it can be removed. Again, the function at 7, has to be changed to account for the different
flow of information.
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Figure 6.1: Rewiring example.

Consider the circuit shown in Figure 6.1:

z = gb+gb
g = a@b+ab
z2 = b+ec

For wire (g, 2), the SPFD is A = {(00, 10), (01,11)} (in the set A, each minterm is of the form
gb). If the minterms of A is expressed in terms of the primary inputs, a and b, then a new SPFD
A’ = {(00,10), (11,01)} is obtained (the minterms in A’ are of the form ab). The primary input
a can distinguish both pairs in A’. Hence a fanout from a is a candidate wire for replacing (g, z1).
Simplifying 2, gives z; = a. In contrast, redundancy removal based rewiring cannot simplify the
circuit. This is because there are no mandatory assignments for propagating a stuck-at-fault on g.
This is due to the presence of an XOR gate along the path because the output of an XOR is sensitive
to the both its inputs. SPFDs, on the other hand, look for the actual information content and are
not affected by the kinds of gates. Moreover SPFDs provide more flexibility for implementing the
function. Any function that distinguishes all the edges of the SPFD is a suitable implementation.
Using SPFDs, the onset and offset minterms in the original function can be swapped, thereby deriv-
ing many different functions, many of which cannot be obtained by ATPG-based techniques (which
can work mainly with the don’t care set).

A systematic exploration of the link between SPFDs and other tools for rewiring would
be of interest. It is believed that SPFDs provide more rewiring opportunities than the RAR-based
rewiring approaches and the global flow techniques proposed by Berman et. al [9]. In the rest of the
section, some initial arguments are presented for illustrating that the simple RAR method proposed
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7p is a dominator of 7,

Figure 6.2: Illustration for the proof of Lemma 6.2.

by Cheng et. al. can be emulated using SPFDs. Thus the SPFD rewiring is at least as powerful as
RAR.

As mentioned, the basic idea in RAR techniques is to make a wire redundant by adding
another redundant wire. It is proved that the same result can be obtained using SPFDs.

Lemma 6.1 If a wire is redundant, then its minimum SPFD wrt the primary outputs is empty.

Proof Assume that the wire is s-a-0 redundant. Thus, it can be set to zero and an equivalent circuit
will be obtained. Therefore, this wire provides no information to the circuit and hence its minimum
SPFD (wrt to the primary outputs) is empty. (m}

If the minimum SPFD is empty, it is not necessary that the wire is s-a-0 or s-a-1 redundant.
This is illustrated by the example in Figure 6.1. The minimum SPFD of the wire (b, g) is empty,
but the wire can be tested for both s-a-0 and s-a-1 faults. This is because even though the minimum
SPFD of a wire is empty, the current function implementation at the node ensures that some of the
necessary information comes in from that wire. Hence it may not be enough to set it to zero; new
functions have to be derived at all nodes in the transitive fanout of the wire. However since the

minimum SPFD is empty, after setting the wire to a constant zero, the functions of its destination
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node and the transitive fanouts of its destination node can always be modified to obtain an equivalent

circuit.

Lemma 6.2 If the RAR techniques say that the wire w, = wy,_y, is an alternative wire for wire
Wt = Wy, —n, (Figure 6.2), where nyp is a dominator of 1, then the minimum SPFD of w; wrt to np
is contained in the SPFD of n; derived from its function. The minimum SPFD of w; wrt to 1y is not
empty in the original network N.

Proof According to RAR, when the new wire w, is added the functionalities of the nodes beyond
7p are not changed. Hence the new function of 7, after the addition of w, must be contained within
its ODC in V. Consider two networks, N1 and NVa. N consists of 7, and all its transitive fanins.
N2 consists of 7, and all its transitive fanins and the newly added wire w, and the nodes in the
transitive fanin of 7;. It is given that the minimum SPFD of w, wrt to 7, is not empty in V. This is
the same as the minimum SPFD of w; wrt to 7, in V] (since the computation of the minimum SPFD
of w; wrt to 7, in A only looks at AV;). Hence the minimum SPFD of w; wrt to 7, is not empty in
MNi. On the other hand, in A2, w; becomes redundant after adding w,. Hence its minimum SPFD
(wrt to the primary output of N2 i.e. 7p) is empty (Lemma 6.1). Since the information required at
the output of 7, is the same in A} and A3, the edges in the minimum SPFD of w; wrt to 7, now
have to be contained in the SPFD of 7); derived from its function. 0

In the rest of the chapter, two different SPFD-based rewiring schemes are proposed and
some preliminary results are provided. The basic idea is the same as that described earlier. But some

changes are made for ease of computation and for incorporating different metrics for rewiring.

6.3 Wire Replacement in Boolean Networks

The objective here is replacing a wire wy, —p; to node 7; with a wire from another node
7, originally not a fanin of node 7n;, such that a new function fj can be found, which depends on
75 but not on 7. Moreover, the change in the functionality of 7; must not affect the rest of the
network. The basic idea is illustrated in Figure 6.3. The function f; must still satisfy the SPFD at
7; and some gain should be obtained by this replacement.

In the next few paragraphs, the algorithm used for identifying alternate wires and a resyn-
thesis process using a chosen alternate wire is described.

The algorithm proceeds in topological order from primary inputs to primary outputs and

attempts to change the wiring of each node in the network. In order to avoid a change in the wiring
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Mk Mk

Figure 6.3: Rewiring: the solid lines indicate wires and the dotted lines indicate non-existing wires.

at a node from affecting the remainder of the circuit, the SPFD of each node is derived from its
CODC. The CODC is used instead of the ODC since the ODC computation is more expensive, and
once a node is modified, the ODCs of the remaining nodes will have to be re-computed. This idea
is similar to the ROC idea used in Chapter 5 for blocking the changes made to a single node in a
network.

Consider a node 7; in the network. Let R;(Y;,Y]) denote its SPFD derived from its
original function and its CODC. The unique set of edges in R (Y}, Yj’) that can only be distinguished
by n is computed. Let this be denoted as R (Y5, Y;). Thus,

Rz.l‘iin(n’ Y?l) = R;(Y;, IG') A Uy eYjmity; (i # vi)-

Then candidate nodes {,} are sought that can distinguish all the minterms in R7;"™(Yj, ;).
A necessary and sufficient condition is that H(y;) = ¢, where H(y,) is derived by the following
steps:

1. Substitute y; = f7(X) in R’,:;"'(Y}, Y]) for each y; € Y to obtain RZ;-‘" (X,Y]).
2. Compute R¥™(y,,Y]) = {3x(ys = fI(X))RE™(X,Y))}-

3. Substitute y} = f{(X) in R (ys, Y;) for each y! € Y 1o obtain R7™ (ys, X).
4. Compute H(ys) = {3x (ys = fs(2))RE; ™ (ys) X)}-

H (y,) has the property that if H(y,) # 0, then there exists at least one pair of minterms
in RZ;‘" (Y, Y) that cannot be distinguished by 7, and hence 7, cannot be a candidate.
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Since it is not practical to consider all the nodes in the network, only a subset is consid-
ered; only the fanins of n; and the nodes in their transitive fanout are considered. Of course, nodes

in the transitive fanout of 7; cannot be considered.

After the set of candidate nodes S is obtained, a new function at 7; is derived for each
ns € S. The procedure is similar in spirit to the resynthesis algorithm presented in Chapter 5. The
main difference is in the derivation of the modified SPFD.

The modified SPFD of 7; is obtained in the new space:
Yj ={yi €Yj,i # k}U{y,}.

Then a new minimized function at node n; is obtained from this modified SPFD as described in
Chapter 5. If the number of literals in the factored form of the new function is less than the number
in the factored form of f;, the replacement is done. In case of a tie in the number of literals, the
replacement is also done if the level of 7, is less than the level of 7;. Otherwise, the next node in

the candidate set is selected and the same procedure repeated.

This procedure is implemented SIS as a command, wire_replace.

6.3.1 Results

The results for wire_replace are shown in the Table 6.1. The initial circuits were obtained
by optimizing the original blif circuits using script.rugged. These were then subjected to an itera-
tion of wire_replace until no gain was obtained. The number of wires, the number of literals in the
factored form of the network and the ratio of these results to the output of script.rugged are under
the heading (wire_replace)*. For 8, the values of the previous iteration are used, since the program
ran out of memory before the iterations could converge. The third set of columns was obtained
by taking the result of (wire_replace)* and repeating script.rugged followed by (wire replace)*
until no gain was recorded. For k2 and toolarge, the program ran out of memory even before the
first iteration was over. At the bottom of the table the average ratios for both experiments and for
both wires and for literals is computed. On average a 11% reduction in wires and 6% in literals
after (wire_replace)* is obtained. Better results are obtained for the repetition of script.rugged and
(wire_replace)*, a 19% reduction in wires and 12% in literals. Note that all the computations are

done using BDDs.
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script.rugged (wire_replace)* (script.rugged, (wire replace)*)*
NAMES || wires [ literals | wires | ratio | literals | ratio | wires | ratio | literals | ratio
apex6 650 | 741 625 10962 | 724 | 0977 | 621 | 0955 | 715 0.965
apex7 222 245 203 | 0914 | 235 | 0959 | 198 | 0.892 [ 226 0.922
b9 115 122 111 |0965] 119 | 0975 | 112 | 0974 | 122 1
bbara 51 63 46 | 0.902 60 0952 | 49 | 0.961 61 0.968
bbsse 140 140 119 | 0.85 126 0.9 102 | 0729 | 110 0.786
c1908 378 540 352 | 0931 525 | 0972 | 352 | 0931 | 525 0.972
c432 205 205 186 | 0.907 | 222 1.083 | 186 | 0.907 | 222 1.083
c499 344 | 552 300 | 0.872 | 552 1 300 | 0872 | 552 1
c8 128 139 127 |1 0992 | 138 | 0993 | 125 | 0977 | 136 0.978
cht 165 165 164 | 0994 [ 165 1 163 | 0988 | 164 0.994
cse 213 215 201 10944 | 204 | 0949 | 162 | 0.761 | 183 0.851
dk16 348 348 316 | 0.908 [ 321 0922 | 187 | 0.537 | 245 0.704
dk17 88 89 40 |0455| 53 0596 | 37 | 042 51 0.573
ex1 279 280 | 255 {0914 | 258 | 0921 | 219 | 0.785 | 229 0.818
ex2 172 172 142 | 0.826 | 160 0.93 134 |1 0779 | 151 0.878
ex3 84 86 82 [0976 | 85 0988 | 45 [0536| 62 0.721
ex4 91 91 82 | 0.901 85 0934 [ 71 0.78 78 0.857
ex5 71 71 60 | 0.845 67 0944 | 26 |0366| 51 0.718
ex6 108 109 92 | 0852 103 | 0945 | 8 |0.824| 96 0.881
f51m 60 91 39 | 0.65 83 0912 | 45 | 0.75 70 0.769
frgl 79 136 44 0557 127 | 0934 | 51 |0.646 | 127 0.934
frg2 833 886 696 (0836 792 | 0.894 | 690 | 0.828 | 735 0.83
i6 391 457 391 1 457 1 391 1 457 1
i7 518 584 | 517 [ 0998 | 583 | 0998 | 517 | 0.998 | 583 0.998
i8 1012 | 1015 | 980 [ 0.968 | 988* | 0.973*
i9 587 596 584 10995 | 596 1 580 | 0988 | 592 0.993
k2 1112 | 1120 | 1067 | 0.96 | 1082 | 0.966 * *
kirkman 300 308 137 [ 0457 | 198 | 0643 [ 85 0283 | 126 0.409
lal 89 105 82 0921 101 0962 | 79 |0.888 | 102 0971
planet 614 617 586 | 0954 | 593 | 0961 | 555 |0.904 | 589 0.955
sl 429 430 349 | 0.814 | 381 0.886 | 275 | 0.641 | 298 0.693
sand 612 613 566 | 0925 | 574 | 0936 | 521 [ 0.851 { 550 0.897
scf 983 985 970 | 0987 | 974 | 0989 | 870 | 0.885 | 917 0.931
sct 63 79 57 | 0905 78 0987 | 55 (0873 175 0.949
sse 140 140 119 | 0.85 126 09 102 [ 0.729 | 110 0.786
styr 596 | 596 550 | 0923 555 | 0931 | 431 (0723 | 482 0.809
term] 130 179 97 (0746 | 152 | 0849 | 93 |0.715| 103 0.575
too_large 266 | 347 253 | 0951 | 234 | 0.674 * *
ttt2 184 | 219 160 | 0.87 | 206 | 0941 | 122 | 0.663 [ 163 0.744
vda 611 615 607 [ 0993 | 612 | 0.995 | 571 | 0935 579 0.941
x1 285 298 279 | 0979 | 295 099 | 279 | 0979 | 295 0.99
x2 44 48 43 | 0977 | 48 1 39 |0.886| 46 0.958
x3 720 | 787 650 | 0903 | 753 | 0957 | 628 | 0.872| 705 0.896
x4 367 386 | 347 {0946 | 381 0987 | 332 {0905 367 0.951
z4ml 29 41 28 | 0966 | 38 0927 | 28 |0966 | 38 0.927
AVERAGE 0.888 0.936 0.807 0.871

Table 6.1: Results for wire_replace.
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Figure 6.4: Don’t care wire-based logic/physical design flow.

il

6.4 Don’t Care Wires

The results in the previous section illustrate the rewiring ability of SPFDs. In this section,
rewiring is performed in an integrated synthesis- placement engine so that a more sophisticated

metric can be used for rewiring.

First a brief description of the flow of the algorithm is provided. Then some of the steps
in the flow are examined in greater detail
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64.1 Flow

The basic flow is shown in Figure 6.4. An initial network is first minimized using the
usual logic synthesis methods. Then it is decomposed and clustered into PLAs with the target of ab-
sorbing as many wires as possible internally in each PLA, with the constraint that the resulting PLA
network has no cycles. During this clustering no placement information is known, so a heuristic is
used that the smaller the number of wires, the better the clustering. This usually leads to a smaller
number of PLAs. During clustering, the logic is minimized and the PLA folded. Then the result
is assessed for being within given bounds on the number of rows and columns (dictated mainly by
delay and noise constraints within the PLA) of the resulting PLA structures.

After clustering, a set of compatible alternates is generated for each input wire. SPFDs
are used for generating alternate wires. These alternates are used in a floorplanning algorithm where
during each move the best choice of alternate wires for each local input is used to evaluate the move.
Once the final placement and final netlist are chosen, the logic inside a PLA may change and may
no longer fit within the row and column bounds; however, the experiments indicate that the PLA
areas are usually well controlled in this process. Note that the number of inputs and outputs does

not change for a given PLA.

6.4.2 Network of PLAs

Recent work on noiseless fabrics [27] led to a re-examination of the use of multi-level net-
works where each logic node is implemented as a PLA. This is a general logic synthesis technique,
and has been shown to have advantages even for implementations where noise is not a concern. In
some sense the PLAs are similar to the initial application of SPFDs to FPGAs; each node contains a
significant logic function, and if that logic function changes, the area requirement for implementing
the function does not change much. For FPGAs, the area does not change at all if the number of
inputs does not change. For PLAs, the area may change but typically if the number of inputs does
not change, the area change can be controlled(it is possible to use bit pairing, folding, etc to keep
the area within bounds). PLAs offer some additional advantages in that the layout for each PLA
is regular and can be accurately characterized in terms of its electrical characteristics (delay, noise,
etc.).

In the experiments, the PLAs are of medium size (e.g. 10-15 inputs, 1-5 outputs, 15-25
cubes).
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6.4.3 SPFDs and Compatible Wire Sets

The basic idea is similar to that presented in the previous section, where a wire replaces
another wire if it can provide all the required information. However since it is desirable to retain
the freedom of choosing an alternate wire for one wire, independent of the choices made for the
other wires, the sets of alternate wires are made compatible. The idea is similar to the concept
of logic don’t cares, where it is desirable to be able to choose the function for a particular node
independent of the values chosen for the other nodes. So compatible sets must guarantee that the
union of information coming into a node through its input wires is always enough to supply the
information required for that node’s output requirements.

Let Si; denote the set of alternate sources for wire wy, ;. The sets of alternate wires
are constructed using the algorithm, compute_comp _alts.

Algorithm compute_comp_alts(N):

1. Starting from the primary outputs and proceeding in a backward topological order, for each
node n; in the network, and each of its input wires wy, _yy,, assign SPFDs using the procedure
described in Section 5.1. R; and Ry,

- denote the required information of nj and wy, sy,

respectively. Once this is done, each SPFD represents the set of minterms which must be

distinguished by that node or wire.

2. Initialize for each node n;,
ex(n;) = {n;} UTFO(n;).
and for each input wire wy, —q; of nj, let Sg; = ¢. Si; will eventually represent the set of

alternate wires for wy, _p,.

3. Starting from the primary inputs and proceeding in some topological order, at each node 1,

do the following:

(a) Let C = ex(nj;)
(b) For each fanin wire wy, vy, of nj:
i. Find ann, € C such that R.,,,,k__,,,j CR,.
ii. Include 0 in Skj, Skj = Sk; U {ns}.
iii. Foreachmn, € {TFI(ns)VUns}, update ex(np) = ex(n;) U ex(mp). (This is done to
avoid cycles in the resulting network. )

iv. This continues until no more nodes can be added to Sj;.
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Figure 6.5: Network N”: wp, sy, is replaced by wy,, 7., and wn, sy, is replaced by wy, —n;.

Given the set of alternate wires {Sy;}, an alternate is picked for each wire in the original
circuit such that some optimization criteria such as total wirelength is minimized!. Let A denote
the new network that is obtained by replacing each original wire in A with its chosen alternate.
Note that the functions of the nodes in A/ cannot be the same as their corresponding functions
in AV as the fanin supports of a node could be different in N and A". The new functions of the
nodes in A’ are computed in a topological order from the primary inputs to the primary outputs. At
each node n; € N, a new SPFD is derived by expressing its original SPFD (obtained after Step
1 of compute_comp._alts) in terms of the fanins of 7; in N’. This new SPFD is then colored for
obtaining a new function at 7);.

In the rest of the section, it is proved that the new network N derived above always
implements the same functionality as the original network N.

Definition 6.1 Given a set of sets of nodes S = {Sk;}, a selection is a ordered set of nodes

{m, ... ms,;} such that . € Sg;.

Definition 6.2 Given any selection of {Sk;}, the network derived from the selection is obtained

1The algorithm for picking a suitable alternate for each wire in the network is described in Section 6.4.4.
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from the original network N by replacing each wire Wy, —yy; in N by a wire wy,n; such that

np € SkJ°

Definition 6.3 A set of sets S = {Si;} is compatible if for each selection, there exist logic func-
tions at each node such that the network derived from that selection can implement the specifications

at the primary outputs.

Definition 6.4 The old global SPFD of a node(wire), 1j(wn,—y;), is the SPFD attached to it in
N after Step 1 of compute_comp_alts. It is expressed in terms of the primary inputs of N and is
denoted as Rj(R,,

Mg =05 )

Definition 6.5 The rewired SPFD of a node nj; is the SPFD obtained by expressing its old global
SPFD in terms of the fanins of n; in the new network N, after all the nodes in the transitive fanin
of 1); have been resynthesized in N'. It is denoted as R},

The set {S;} obtained by the procedure has the following property:
Lemma 6.3 For any selection of {Sk;}, the network derived from the selection is acyclic.

Proof Assume there exists a selection such that the network derived from it is cyclic. This occurs
only if the situation shown in the Figure 6.5 exists in the new network. This in turn can happen only
if compute_comp_alts puts 7,, in Sj; and 75, in Spm. It is argued below that this is impossible.
In compute_comp_alts, the sets {Si;} are built in a particular order (Step 3). Suppose Si; is
constructed before Spm. Since 75, € Sy, then for each 7, in the transitive fanin of #;,, ez(7p)
includes all the nodes in ez(n;) (Step 3(b)(iii)) of the algorithm). Now 7,, € ex(n;) since it is in
the transitive fanout of 7; in the original network. Thus 7;, € ex(n,). Hence when the set Sy,
is being constructed in a later step in the algorithm, the node n,, will not be included in the set C
(Step 3(a)) and hence can never be included in the set Sy,,,. (m}

Lemma 6.4 Given a set of sets of nodes {Si;} satisfying the following two properties:
1. for any selection, the network derived from it is acyclic, and
2. s € S5 — -Rw,,k..",j C R,

Let N denote the new network derived from any given selection of {Sk;}. Any function that satisfies
the rewired SPFD of a node in N also satisfies its old global SPFD.
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Proof By Lemma 6.3, any selection is guaranteed to produce an acyclic network. Thus A/ can
always be levelized. The above theorem is proved by induction on the levels of N’

Base Case Consider a node 7n; of level 1. For each fanin 7 of 7; in AV, the selection
picks a node, g, € Sk;. Note that 7, has to be a primary input, since 7; is a level 1 node in N
Condition 2 ensures that Ry, _,,, C Rp. Hence, R} = R;. Thus, any function that satisfies R
also necessarily distinguishes all the edges in R ;.

Inductive Step Given that the functions of all the nodes in N’ of level < k satisfy their
rewired SPFDs, it is necessary to prove the above theorem is true for all nodes of level (k + 1).
Assume that’s not true. Then there exists a node 7; of level (k1) such that its new function satisfies
its rewired SPFD R, but an edge e = (z,z’') in its old global SPFD R; is not distinguished by the
new function. According to the SPFD computation algorithm in Step 1 of compute_comp alts,
each edge in R; has to be assigned to a fanin of n; in N. Thus, Rj C Uy, cFIN (5;) g, ., » Where
FIVN (n;) denotes the fanins of n; in A. Condition 2 ensures that any alternate source 7 of a fanin
wire wy, y,; satisfies the following condition : Ry, _,, € Rp. Hence, Rj C U, ppv () By,
where FIV' (n;) denotes the fanins of 7; in A”. Thus the edge (z,z’) necessarily belongs to the
old global SPFD of a fanin of 7; in A’. Let the fanin be 7,. Since, the level of 7, < k in A, then
by the induction hypothesis, the function at 7),, satisfies its old global SPFD R,,. Thus z and z’ have
to evaluate to different values at the output of 7,. This implies that the edge (x, z’) in R; has to
produce an edge (y,y’) in the rewired SPFD, since = maps to a minterm y in the new fanin space
and z' maps to a different minterm . Hence the edge (y, y') definitely exists in the rewired SPFD.
Thus any function that satisfies its rewired SPFD also satisfies its old global SPFD. m]

Theorem 6.1 Any set of sets of nodes {Sk;} satisfying:

1. for any selection, the network derived from it is acyclic, and

2. s € Sk — Ry CR,

e —+n;

is compatible.

Proof Lemma 6.4 proves that if each node in A/’ is implemented using a function that satisfies its
rewired SPFD, the old global SPFD of the node is also satisfied. This is also true for all the primary
outputs of A. The old global SPFD of a primary output distinguishes its onset minterms in A from
its offset minterms. Thus the specifications at the primary outputs (given by the original network
N) are satisfied in A’ if each node in A’ is implemented using a function that satisfies its rewired
SPFD. Hence the set of sets of nodes {Si;} is compatible. O
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Thus to form a compatible set of alternate wires it is sufficient to make sure that whatever
netlist is chosen, it is acyclic and that each alternate’s SPFD covers the original input’s SPFD.

The rewiring done here has the property that the global SPFDs of the nodes remains
unchanged. In Section 6.5, conditions where the global SPFDs of the nodes may no longer be the
same after rewiring are explored. This will require more complicated algorithms for computing the
functions at the nodes in the network after rewiring. In Chapter 7, an algorithm that can be used for
synthesizing the nodes under these more relaxed conditions is provided.

In the next few sections, the placement algorithms that are used in the flow are described.
For convenience of explanation, a slightly different terminology from the previous sections is used.
Each PLA has input pins and output pins. A net consists of an output pin and all its wires. If w,, -y,

is an alternate wire for wy, —,y,, then 7, is an alternate source for the input pin that supplies to 7.

6.4.4 An Assignment Problem

In the experiments, the total wire length was used as the cost function to be minimized.
Note that indirectly, this controls total area, routability, and power, but not necessarily worst case
delay. For example, a significant area increase will result in an increase in total wire length. Eval-
uating the total wire length of a placement requires that a best selection of alternate wires be made
for that placement. Thus the following problem is obtained.

Alternate Wire Choice Problem (AWC) Given a point placement of pins, and a set { R, }
of candidate sources for each pin, find the selection which minimizes the sum of the half perimeters
of the bounding boxes of the nets.

Theorem 6.2 (Chong) The Alternate Wire Choice (AWC) Problem is NP-complete.

Branch and bound techniques can be applied to solve AWC exhaustively. However, for
efficiency the following algorithm is proposed.

Procedure 6.1 (Semi-greedy Algorithm for AWC)
PHASE I:

1. For each pin with alternate wires, temporarily disconnect it from the current net.

2. For each net form the bounding boxes of the currently connected pins. These partial bounding

boxes form a lower bound on the total wire length.
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3. For each pin with alternate wires, if its pin position is inside one of the partial bounding boxes
for its candidate wires (the original wire plus its alternates), assign it to that net. No increase
has been caused by this assignment, and hence the partial assignment seen so far must be part
of an optimum assignment.

4. For each remaining pin with altenate wires, compute the “delta” costs if it is assigned to each
of the candidate nets. There is a net assignment which increases the total net length by the

least amount. Choose this assignment and update the chosen net.
5. Continue step 4 until all pins have been assigned.
PHASE II:

1. For each pin which is an extreme of the bounding box of its currently assigned net, temporarily
release it from its assignment, and compute the best net to put it in and its delta decrease cost

in doing this. Note that the delta decrease is nonnegative.
2. Choose the pin with the maximum delta decrease and reassign the pin to the new net.
3. Repeat 1 and 2 until the best delta is 0.
Notes:

o After PHASE I, there may be pins that can be moved to different nets to improve the total

cost.
e After Step 2 in PHASE I, the deltas need to be updated efficiently.

e During PHASE II, a pin may be reassigned more than once. To speed up the process, one

may want to “lock” a pin once it is reassigned once.

o After PHASE II (with no locking), the solution is locally optimal, in that there is no pin which
can be moved to a new net such that the total cost is decreased. However, there might be a set

of pins that can be reassigned all at once which decreases the cost.

6.4.5 Two Placement Algorithms

For this work, total wirelength, measured by the half-perimeter bounding box for each
net, is used as the metric for the final design. By minimizing overall wirelength, the total wiring

utilization for the design and hence minimize overall congestion is reduced.
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Note that the half-perimeter bounding box metric is affected by the locations of the pins
on the PLAs. However, since the exact pin locations are not available, these locations are estimated
by the center points of blocks.

If the alternate wire choices for each input pin are considered and the network is optimized
for both area and total wire length, a two dimensional solution space-physical placement and logical
wire-is obtained. Given a physical placement of the blocks as points in the physical dimension,
choosing the best set of logical wires is NP-complete (Theorem 6.2). Similarly given a set of
wires, choosing the best placement is also hard. Here two approaches are provided for tackling this

combined problem.

6.4.5.1 Mincut Placement Approach

One of the approaches uses a mincut placement algorithm [28] to evaluate the placement
of a netlist with alternate wires. This method differs from traditional mincut placement techniques
by using alternate wires to change the cut costs during the recursive bipartitioning of the design.
Choosing alternates for wires on a cut net may prevent that particular net from being cut at all, thus
reducing the cost. Therefore the cost of a partition is evaluated by accounting for such effects. This
reduction in cut cost will generally translate to a reduction in wire length for the final placement;
alternate choices which prevent nets from being cut during bipartitioning will generally correspond
to the selection of shorter local wires.

The FM partitioning algorithm [29] was modified to account for alternate wires. After
recursive bipartitioning is applied to a design, partitions are adjoined in a quadrature fashion [28]
to obtain a placement. As well, additional wire length minimization heuristics are used to guide the
placement.

After mincut partitioning, a low-temperature simulated annealing, based on a sequence
pair representation [30], is used to further improve the layout. In the annealing process, after each
random move on the sequence pair, the layout is derived and the greedy AWC algorithm is applied
to give the best wire length based on the wire choices. Once annealing is done, a greedy compaction
method is applied, which evaluates the best location for each cell for minimal wire length. Finally,

the AWC problem is solved for this layout using branch and bound to obtain the final wire choices.
6.4.5.2 Force-Directed Approach

Another approach uses a force-directed placement algorithm. The force-directed placer
is incremental, so the AWC subroutine can be easily embedded. At each step the new position of
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Regular Maximum
PLAs/ APins  Alts APins  Alts
Design || IPins #(%) # #(%) #

[ alu2-5 [ 18/233 | 32(13.7) 28.44 | 37(15.9) 37.43
apex6-5 || 37/553 | 21(3.8) 16.10 | 27(4.9) 81.56
apex7-4 || 12/157 9(5.7) 2222 | 12(7.6) 38.75
apex7-5 || 11/146 5(3.4) 1440 6(4.1) 55.83
count-4 || 6/67 4(6.0) 12.75 4(6.0) 30.25
count-5 || 6/68 3(4.4) 21.67 3(44) 35.00
terml1-4 || 15/186 | 23(12.4) 19.61 | 29(15.6) 37.03
terml-5 || 12/170 | 11(6.5) 32.55 | 15(8.8) 44.00

tt2-4 | 7/73 7(9.6) 14.00 7(9.6) 15.29
te2-5 || 8/85 9(10.6) 15.22 | 10(11.8) 18.30
x4-5 || 24/269 | 19(7.1) 34.05 | 28(10.4) 32.64

Table 6.2: Characterization of Examples.

the cells is computed in terms of the forces acting on the cells, where the forces are generated from
the existing wires attached to each PLA. Then AWC is invoked to determine if better wire choices
exist. All input and output ports are fixed on the chip boundary so that no trivial solution (all cells
collapse into one single point) will be derived. To overcome cell overlaps, the algorithm introduced
in [31] is used, while some modifications are made to improve speed. The basic idea is to form a
density field in the chip area. Cells in this field tend to move towards those areas with lower density

and away from areas with higher density.

6.4.6 Experimental Results

Two experiments were performed for investigating the contribution of alternate wires.

Experiment I: The first experiment was to decompose each example into a set of PLAs
as described in Section 6.4.2. Table 6.2 shows the results of this decomposition. The number
following the design name is related to the maximum physical width allowed for each PLA in the
decomposition [27]. The resulting number of PLAs for each design is shown in the PLAs column,
and the total number of input pins on these PLAs is shown in the IPins part.

Don’t care wires were generated for each of these examples. The number of pins with
alternate wires for each example is shown in the APins column under the Regular heading (the
Maximum columns are described in Experiment Il below). The percentage (in parentheses) of input

pins which have alternate choices is also shown. The average number of alternate choices for each
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Design || Init [ Reg | Resyn [ Max |
alu2-5 || 6143.5 [ 198 16.8 | 20.9
apex6-5 || 18053.5 | 0.0 | 3.3 0.0
apex7-4 || 28435 | 2.2 | 139 | 13.3
apex7-5 || 2512.0 | 6.2 | 155 | 7.0
count-4 || 758.0 | 4.2 8.0 0.0
count-5 || 849.0 | 0.0 | 0.0 0.0
term1-4 || 4748.0 | 8.9 | 343 | 14.2
terml-5 || 40570 | 42 | 164 | 16.0
ttt2-4 1251.0 | 224 | 23.1 | 224
ttt2-5 1116.0 | 142 | 0.0 | 0.0
x4-5 45905 [ 00 | 00 | 0.0
average || 4265.6 | 7.5 | 12.0 | 8.7 |

Table 6.3: Wirelength Improvement, Mincut.

of these pins is shown in the Alts column.

The following comparisons were performed:

89

1. The PLAs were placed without using alternate wires. The total wire lengths for these initial

placements (using the two placement methods) are shown in the Init column of Tables 6.3

and 6.4.

2. The same placement algorithms were applied on the network of PLAs using alternate wires.

The percentage improvement in wire length over the initial placement is shown in the Reg

column in the two tables.

3. The chosen best wires were returned to logic synthesis and the functionalities of the PLAs

were determined according to the wire choices. Another placement was performed using

the new PLA areas, and the resulting wire lengths were compared to the initial results. The

improvement in wire lengths over the initial placement is shown in the Resyn column in the

tables.

Experiment II: In the results for Experiment I, a fairly high correlation is observed

between the improvement in wire length and the percentage of wires that have alternates. Note that

the percentage of wires with alternates for the examples is small (on average about 7.5%). As an

additional experiment, the effect of having more wires with alternates was determined. For this,

the acyclic constraint was ignored when generating alternates. In addition, for each wire wy, —n;,
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[ Design | Init | Reg | Resyn | Max |
alu2-5 6492.0 | 64 7.6 7.4
apex6-5 || 22253.0 | 7.7 1.1 9.9
apex7-4 || 3097.0 | 1.8 0.7 33
apex7-5 || 2688.0 | 9.5 57 | 104
count-4 || 788.0 5.1 4.7 3.9
count-5 823.0 | 0.8 1.5 1.1
terml-4 || 5374.0 | 11.9 | 2.8 4.2
terml-5 || 61120 | 0.8 1.5 1.8
t2-4 1111.0 | 3.5 3.1 114
“_t—ttZ-S 1649.0 | 53 | 124 | 38

x4-5 | 61480 | 34 | 15 | 19
[ average || 5139.5 [ 5.1 [ 39 [ 54

Table 6.4: Wirelength Improvement, Force Directed.

the minimum set of edges distinguished by it in the SPFD of n; was computed and another wire
was designated as an alternate if its SPFD covered this smaller SPFD. The resulting number of pins
with alternate wires and the average number of choices for each of these is shown in the Maximum
columns of Table 6.2. This generated only a few more wires with alternates (their average increased
to 9%), although the average number of alternates on wires with at least one altemate increased
substantially.

The wire length improvement over the initial placement using these extended sets of al-
ternate wires is shown in the Max columns of Tables 6.3 and 6.4. This figure loosely indicates an
upper bound on the possible improvement due to alternate wires alone, and should be compared to
the Reg column since resynthesis was not done. As expected, the results obtained correlate with the

increased number of wires with alternates.

6.4.6.1 Some Observations

Although not presented in Tables 6.3 and 6.4, there was a change in total areas of the
placed designs when alternate wires were used. For all experiments, the worst-case final placed
area increase was 8%. This small increase in area is partly due to the choice of total wirelength as
a metric; since minimizing area was not the main intention, the final design area can be expected to
increase after replacing a wire with its alternate. Also, after selection of alternate wires the network

has to be resynthesized, and so a change in the PLA areas at that stage is also possible.
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As noted, the gains in wirelength achieved is very much correlated with the percentage
of pins which have alternates. When these were incréased from 7.5% (Regular) to 9% (Maximum)
in Experiment III, the gain in wire length improvement went from 7.5% to 8.7% for the mincut
placement, and 5.1% to 5.4% for the force-directed technique.

In some cases, there was an increase in wire length when alternate wires were introduced.
There are two explanations for this. First, the placement algorithms do not guarantee a global min-
imum, so different local minima can be obtained. Second, using the mincut placement technique,
there is no direct relation between the cut sizes in the recursive bipartitioning and the final placement
wirelengths. Thus a selection of alternate wires which reduces the cost of a cut may in fact increase
the total wirelength. For cases where using alternate wires increases the total wirelength, the results

were ignored and instead the initial placement generated without alternate wires was used.

6.5 Partial Don’t Care Wires

This idea is an extension of the don’t care wires described in the previous section. In the
previous section, it was mentioned that a positive correlation was observed between the improve-
ment in wirelength and the percentage of wires that have alternate wires. This motivated the search
for more alternate wires.

The idea here is to relax the conditions an alternate wire must satisfy, thereby possibly
increasing the number of wires with alternate wires. Thus, a wire wy,,,; can be an alternate
wire for another wire wy,, , if it can provide only a part of the information that the original wire
provides. The actual amount of information that the alternate wire has to provide can be a parameter
of the algorithm. The wire wy,, ., is then called a partial don’t care wire of wy, ;.

The resynthesis problem can become more involved with partial don’t care wires. This is
because some of the original information of the network might be missing when the original wires
are replaced by their partial don’t care wires. It is the task of the resynthesis algorithm to fill in
the missing information. An algorithm presented in the next chapter can be used for the resynthesis

problem.

6.6 Summary

Rewiring using SPFDs was described in this chapter. Two different rewiring scenarios

were presented. Rewiring in Boolean networks produced some significant reduction in wire count
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and literal count. Analogous to a logic don’t care, the concept of don’t care wires was presented.
Rewiring in an integrated synthesis-placement environment using don’t care wires also provided
some encouraging results. The interesting conclusion is that there was a positive correlation between
an increase in the number of alternate wire and an improvement in wirelength. A generalization of
don’t care wires called partial don’t care wires was also proposed. Experiments need to be done
for evaluating the benefit of this generalization.

Some initial arguments were provided for proving that SPFD-based rewiring can be more
powerful than some other previous approaches, like RAR. It will be interesting to conduct a more
thorough theoretical and practical investigation for exactly determining the added advantages of
SPFD-based rewiring.
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Chapter 7

SPFDs and Decomposition

In this chapter, the idea of using SPFDs for a particular kind of functional decomposition
called topologically constrained logic decomposition is explored. First a very brief overview of the
previous work on functional decomposition is provided, and then some motivation is given about
why SPFDs can be used for functional decomposition. A generalization of the traditional functional

decomposition problem is proposed and it is shown how SPFDs can be used for solving the problem.

7.1 Previous Work

Decomposition is a fundamental problem in logic synthesis. Its goal is to break a function

into smaller functions. The problem can be stated as:

F(X) = G(H(X1),X2),
XjuXe, = X

Generally, G and H are less complex than F'. It is known, in the worst case that the circuit size
realizing an n-input logic function is O(2" /n). If F(X) has a decomposition G(H (X1}, X2), the
worst case for the decomposed circuit is O(2™ /n; + 2"2+1/(ny + 1)), where n; = |X;| and
ng = | X3|. Thus functional decomposition can reduce the circuit size exponentially.

The first systematic study of decomposition [32] characterized the existence of a simple
disjoint decomposition of a function. This is a special case of the above equations, where X1NX3 =
¢ and G is a single output function. The problem is shown in Figure 7.1.

The set X; is called the bound set and X the free set. This procedure is described in

some detail for explaining the basic idea behind functional decomposition.
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Figure 7.1: Ashenhurst decomposition.
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Figure 7.2: Decomposition chart.

The necessary and sufficient condition for the existence of a decomposition was given in
terms of the decomposition chart D(X;|X?2) for F for the partition X;|X2. A decomposition chart
is a truth-table of F where the vertices of B™ = {0, 1}" are arranged in a matrix. The columns
of the matrix correspond to the vertices of BX! = B?, and its rows correspond to the vertices of
BX2 = B¢ = B!. The entries in D(X;|X2) are the values that F takes for all possible input
combinations. For example, if F'(a,b,c) = ab¢ + Gc + bc, the decomposition chart for F for the
partition ab|c is shown in Figure 7.2.

Ashenhurst proved the following result, which relates the existence of a decomposition to

the number of distinct columns in the decomposition chart D(X1|X32).

Theorem 7.1 (Ashenhurst) A simple disjoint decomposition exists if and only if the corresponding

decomposition chart has at most two distinct columns.

Two vertices z; and 2 in B® are compatible if they have the same column pattems. For an in-
completely specified function, a don’t care entry - cannot cause two columns to be incompatible.
Thus, two columns ¢; and ¢; are compatible if for each row k, either c;(k) = —, or ¢;(k) = —,
or ¢;(k) = c;(k). For a completely specified function, compatibility is an equivalence relation and
the set of vertices that are mutually compatible form an equivalence class. Hence the column multi-

plicity of the decomposition chart is the number of equivalence classes. For incompletely specified
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functions, the compatibility relation is not an equivalence relation, i.e. there may be a case when
i~jAj~k,buti 2 k. So, a column may be coﬁtained in two or more compatible sets and a
nontrivial procedure, called “minimum set covering” procedure, is needed for determining column
multiplicity.

Since then, many more complicated functional decomposition models have been intro-
duced that don’t require either the bound set and the free set to be disjoint or the node G to have
a single output. Recent research in the field also includes work on BDD-based methods aimed at
improving the efficiency of decomposition [33, 34].

7.2 SPFDs and Decomposition

Before the connection between SPFDs and decomposition is explored, the connection
between SPFDs and information content is briefly reviewed. An SPFD attached to a node specifies
which pairs of primary input minterms have to be distinguished by the node. This can be thought
of as the information content of the node, since it tells what information the node contributes to its

surrounding network.

Example 7.1 Consider the simple node shown in Figure 7.3. Input A has the ability to distinguish
00 and 01 from 10 and 11. Similarly, input B has the ability to distinguish 00 and 10 from 01 and 11.
Thus, the two inputs together can distinguish every input minterm from every other input minterm.

However, the output of the node only has the ability for distinguishing 00 from 10, 01 and 11.

Any single-output node that depends on more than one input always results in a loss of information.
Only a single-input single-output node (buffer or inverter) does not lose information. Also, an n-
input n-output node, whose function is reversible (i.e. for each input combination there is exactly
one output combination, and vice versa) does not lose information.

Now consider the problem of disjoint decomposition. Consider the example shown in
Figure 7.1 and look at it in terms of information flow. The original function F required that the
onset minterms have to be distinguished from the offset minterms. Each input of F does a part of
the distinguishing job. Now, if F' has to be re-implemented as the decomposed circuit shown in
Figure 7.1, it is necessary that the new node G should be able to do all the distinguishing that the
inputs in X did for the function at F'. In order to achieve this, consider the following algorithm,
com_decomp_w_spfd.

Algorithm com_decomp_w_spfd(F, X1|X2):
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Figure 7.3: Information flow through an OR-gate: Ry is a subset of R;y = R4 U Rp.

1. Compute the SPFD of F in terms of the input space X = X1 U Xo. Denote it as Rp.

2. Remove all edges of R that can be distinguished by the inputs in Xo. Denote this new SPFD
as R

3. Existentially quantify out the variables associated with the inputs in X2 from R' to get the
SPFD of the node G. Denote this SPFD as R¢.

The new function at G can be obtained by coloring Rg. Similarly, the new function at '
can be obtained by expressing R in terms of (x4 U X2) and coloring it.

Theorem 7.2 For a completely specified function F and a given partition (X1|X2), any two minterms
belong to the same compatible if and only if there exists a coloring of Rg such that that the two

minterms can be colored with the same color.

Proof — : It is shown that all minterms in the same compatible can be colored with the same color
in Rg. Assume that it is not true. Thus there exists two minterms m; and mg that belong to the
same compatible but cannot be colored with the same color. This happens only if there exists an
edge e between m; and m in the SPFD Rg. This implies there exists a minterm y € B* such that

F(m,,y) # F(mz,y). However, in that case m; and mg cannot belong to the same compatible.
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+: If two minterms m, and m in the SPFD of Rg can be colored with the same color,

then it implies that no edge exists between them. Therefore,

Vyept (F(m1,y) = F(ma,v)).

Thus, m; and mg3 belong to the same compatible. o0
SPFDs can also be used for obtaining a non-disjoint decomposition. If a fanin z; belongs
only to X3, then it has to be assigned to the SPFD of partition X . On the other hand, if a fanin z;
belongs to both X; and X, then it is possible to assign an edge distinguished by z; to either the
SPFD of partition X or the SPFD of partition X». Assigning it to X could increase the complexity
of G whereas assigning it to X2 could increase the complexity of H.
Given that SPFDs can be used for obtaining simple functional decompositions, an inter-

esting decomposition scheme can be developed.

7.3 Topologically Constrained Decomposition Problem

A generalization of the decomposition idea to an arbitrary network of nodes is shown
in Figure 7.4. Here, instead of specifying the free set and the bound set, the topology of the net-
work is given i.e. the fanin and fanout connections of all the nodes in the network are provided.
The problem is to determine the functionalities of the nodes so that the network implements the
required output functions. The nodes in the network can have multiple outputs (or equivalently can
be multi-valued). The configuration could be generated by a wireplanning algorithm, where the
communication between the boxes is specified but the actual contents of each box is not specified.

In the rest of this chapter, the condition that the network topology has to satisfy in order to
ensure that the network can be synthesized is provided, and a particular approach based on SPFDs
is presented for synthesizing the nodes.

7.4 Problem Solution

7.4.1 Preliminaries

Definition 7.1 A cut is a set of nodes in the network that when removed completely isolates the

primary inputs from the primary outputs.

Obviously, a network can have many cuts.
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Figure 7.4: Problem definition.

Consider a node 7; in network A. Let L; denote its level in the network. R7*** denotes
the maximum SPFD of 7;. The SPFD of #); that is used for deriving its function is denoted as R;.
The synthesized function at 7; is denoted as f;. R; is expressed either in terms of the (Y U Y})
space or the (X U X’) space.

74.2 Algorithm

In this algorithm, the analogy of information flow through the network is used. The
network specification specifies what information needs to be passed on from the primary inputs to
the primary outputs. As mentioned earlier, SPFDs can be used for denoting the information content
of a node. So the network function specification can be thought of as the information content of the
primary outputs and can be re-expressed as SPFDs associated with the primary outputs. Similarly,
the information content of the primary inputs can be expressed as SPFDs associated with the primary
inputs. It is instructive to think of SPFDs of the primary outputs as the required information and
the SPFDs of the primary inputs as the available information (as shown in Figure 7.5). The task
of the synthesis process is to determine the information flow through the nodes in the network so
that the required information is present at the primary outputs. A network can be thought of as
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Figure 7.5: Information flows through the network.

a lossy information channel. For this method to work, it is necessary to ensure that the available
information is not less than the required information. This translates into a topology constraint given

in the following lemma.

Lemma 7.1 The network N of empty nodes has to satisfy the following requirement : each primary

output should have at least one path to each primary input in its true support.

Proof Let z; be a primary input in the true support of a primary output z. It is proved by contra-
diction that at least one path has to exist between z; and z;, for ensuring correct functionality.
Assume no path exists between z; and z; in AV. Since z; is in the true support of zy,
82y, /0z; is not empty. Hence there exists at least one pair of minterms my = z;m and mq = Tym
such that m, belongs to the onset of z; and mq belongs to the offset of z;. Note that m, and mao
differ only in the value of ;. According to the above assumption, the primary input z; does not lie
in the transitive fanin of zj, (since no path exists between z; and z;). Thus, the values of the primary
inputs in the transitive fanin of 2, are identical for both m, and mg and is equal to m. Since m,
and mq belong to the onset and offset of zj, respectively, this implies m has to produce different
values at the output of 2, for ensuring correct functionality. This is impossible since z; implements

a deterministic function. Thus the assumption that no path exists between z; and 2, is incorrect. O
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Note that there are many topologies that can satisfy Lemma 7.1. For example, a two
level network that expresses a primary output solely in terms of the primary inputs is also a network
topology that satisfies Lemma 7.1. This lemma is not useful for generating any multi-level network
topologies. Interesting topologies can be generated using the concept of partial don’t care wires,
briefly described in Section 6.5. However, this is beyond the scope of this dissertation and will not
be discussed further here. The condition in Lemma 7.1, however, ensures that each edge in the
SPFD of a primary output is contained in the SPFDs of one or more primary inputs in its transitive
fanin. This way of framing the problem in terms of SPFDs enables us to utilize some of the familiar
techniques of SPFD manipulation for determining the flow of information through the network from
the primary inputs to the primary outputs.

Several other papers [35, 36] exploit the connection between information flow and synthe-
sis. In the first paper, an evolutionary approach towards network synthesis is used, where a function
is corrected by adding either a few constants or variables until it becomes the specified function. The
algorithm presented in the second paper uses a function expressed in terms of its primary inputs as
its starting point and progressively decomposes the function at each step until some user-defined
limit like the number of fanins of each node is reached. This method looks at the information con-
tent of each node for determining a function of the fanins. At each node, either a serial or parallel
decomposition is allowed. However, this method does not use a fixed network topology.

The basic idea of the algorithm is to ensure that the information necessary to meet the
network specification is not lost on the way from the primary inputs to the primary outputs. It
accomplishes this by defining a set of cuts in the network starting from the primary inputs and
moving towards the primary outputs, and ensuring that each cut has the necessary information. The
general flow of the algorithm is shown in Figure 7.6.

There are two basic steps in the algorithm:

1. Defining the cuts in the network.

2. Computing the SPFDs of the nodes in the cut and synthesizing these nodes using their respec-
tive SPFDs.
Many schemes could be used for either of two steps; one scheme for each step is proposed.

7.4.3 Defining the Cuts in the Network

The procedure goes as follows:
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Figure 7.6: Algorithm for topologically constrained decomposition problem.

1. Levelize all the nodes in the network starting from the primary inputs. For each primary input
ni, L(m) = 0. For any other node n; € N,

L(n;) = max{L(n;) : (n; € FI(m))} + 1.

2. Let max denote the maximum level of any node in the network. Define the cuts in the network
starting from the primary inputs to the primary outputs. So, fori =0, --- ,max,
(a) For each primary output zi,, compute C;. to include

i. All nodes in the transitive fanin of z;. with level = i

ii. All nodes with level < 1 that directly fanout to a node with level > i in the transitive

fanin of z..
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Thus,

Ci = {njl(nj € TFI(zx)) A (L(n;) =)}
U{n;|(L(nj) < i) A [Bn,(L(mp) > 3) A (mp € FO(n;)) A (mp € TFI(zi))]}-

(b) Construct C; = UxCix. Thus C; includes all nodes in N with level = i and all nodes
with level < i that directly fanout to a node with level > i. Note that C; is a cut in N as
removing these nodes will completely disconnect the primary inputs from the primary
outputs. Cj. denotes the subset of nodes of C; which provides all the information to a

primary output 2j.

Co consists of the primary inputs of V. A node 7; definitely appears in cut Cp(y,).
Furthermore, let Imaz = max{L(m)|m € FO(n;)}. Then n; also appears in a cut C;, where

L(n;) < i < lmaz. Thus two cuts in A/ can share some nodes.

7.4.4 Synthesizing the nodes in the cut

Here, the algorithm for synthesizing the nodes in a particular cut C; is described. The
main requirement that has to be satisfied after the synthesis step is that for each primary output
zj, Ci, must be able to provide all the information that 2, requires. In the rest of the section, the
algorithm that ensures that this condition is satisfied is presented.

The cuts are synthesized from the primary inputs to the primary outputs. Hence when the
nodes in C; are being synthesized, all the nodes in cuts C1, - - - , C;—1 have already been synthesized.
The nodes in C; that have already been synthesized are denoted as C]. These are the nodes of
level< 7. The nodes in C; with level = 7 have to be synthesized and are denoted as C}*. Note that
C;=C}uUCy.

The algorithm syn_cuts first orders the nodes in C; according to some heuristic such that
that all the nodes in C] are earlier in the ordering than all the nodes in C}. It then computes the
maximum SPFD of each node in C}. This maximum SPFD denotes the total set of edges that a node
can distinguish, derived solely from the distinguishing ability of its fanins. The SPFD computation
then proceeds from the nodes earlier in the ordering to the ones later in the ordering. At each
node 7;, its SPFD R; is derived from its maximum SPFD as follows:. For each primary output
z € PO(n;), the algorithm determines the edges in R (X, X') that cannot be distinguished by the
remaining nodes in Cj; (Cy is the subset of nodes of C; that provide all the information to z;). The
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node’s SPFD R; is simply the union of all these edges. The new function at ; is derived from R;.
Then the algorithm moves to the next node in the cut.
Algorithm syn_cuts(C;):

1. Assume that each primary output z). has an SPFD Ry(X, X'} associated with it.

2. Order the nodes in C;. All the nodes in C} should be earlier in the ordering than all the nodes

in C}.
3. For each node n; € CY, compute the maximum SPFD of the node and denote it as R,

R7*(X, X') = (Un,eriian Bo(X, X)),

where Ry(X, X') is the SPFD of 1, expressed in terms of the primary input space'. Thus
R]**(X, X') denotes the maximum set of edges that 1); can distinguish. However, if all the
edges in R are assigned to R;, a lot of information will be duplicated in the network.

Hence the amount of redundant information in R; is minimized in the next step.

4. Process the nodes in C}! in order, starting from the one earliest in the ordering. For each

node n; € C}, do the following:

(a) For each z, € PO(n;),

i. Determine the edges in the SPFD of zy. that can only be distinguished by n; accord-
ing to the ordering computed in Step 2. Hence, from

Rjk(X, X') = R;naz(X’ X') A Rk(X, X'),

A. Remove the edges that are distinguished by the SPFDs of the nodes in C';, that

are earlier in the ordering. Thus, for each 1, < 7;,
Rjr(X, X") + Rjr(X,X') A Ru(X, X').

B. Remove the edges that can be distinguished by the nodes in C;, that are later
in the ordering. Thus, for each N, > n;,

Rjk(X, X') + Rjr(X, X') A Roz(X, X').

(b) R;j(X,X") =UL,R;i(X, X'), where n = |PO(n;)|.

=1

!Since 7, is a fanin of 7;, hence it has already been synthesized and has an SPFD associated with it.
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(c) Compute
R;(Y;,Y]) = IxxG(X,Y;)G(X', Y;)R;(X, X').
This is the image of Rj(X, X') to the local input space of ;.
(d) Determine the new function at ; by coloring R;(Yj, Y;') and minimizing the resulting
ISF using ESPRESSO-MV. Let this new function be f;. Note that f; can be multi-valued,

in general.

5. Stop.

7.4.4.1 Global SPFDs vs Local SPFDs

In all the above computations, the SPFDs were expressed in terms of the primary inputs
(global SPFDs) instead of the local inputs (local SPFDs). While computations of global SPFDs can
be fairly memory intensive, the disadvantages of expressing the SPFDs of the nodes in terms of the

local fanin space are two-fold:

1. Expressing the SPFD in terms of the local space can add some extra useless edges. For
instance, suppose the primary input edge (z,z') produces the edge (v, ') in the local fanin
space of ;. Now, if the inverse image of (y, ') is computed back to the primary input space,
then in addition to (z,z'), a few more edges may be obtained. Hence, expressing R7*** in
terms of the local inputs could add some useless edges. This, in turn, may result in some

useless edges in the SPFD R; that is used for deriving the new function at n;.

2. Translating the SPFD from one local space to another also results in some loss of precision
due to early existential quantification. Thus, suppose it is necessary to remove the edges in
the SPFD R,, of 7, from the SPFD R7***. The current algorithm would do the following (as
shown in Step 4(a)(i)(A)):

R;(Y;,Y]) = Axx (R]**(X, X")Rp(X, X'))G(X, ¥;)G(X, Y}).
On the other hand, if all the SPFDs were expressed in terms of the local fanin spaces, the
computation would be the following:
R;(Y;,Y)) = BJ“*(Y;,Y}) A Gy, Bp(Yp, ¥ En(Y;, 1) En(Y}, ),

where En(Y;,Yp) = 3xG(X,Y;)G(X,Y;). So in the second equation, first the quantifica-
tion is done and then the conjunction. This could result in some additional edges. This is
particularly the case if the nodes do not share any primary inputs as then En(Y;,Yp) = 1.
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In practice, these disadvantages were indeed operative. Hence all the computations are performed
on global SPFDs.

7.4.5 Correctness

Lemma 7.2 Given a primary output z, let C}; and C}, denote the synthesized and unsynthesized
- nodes of C;, respectively. Then,
Cli-1yk = Cj U C°%,

where C%% = {n,|(n, € FI(n;)) A (n; € C4)}.

Proof — : C(;_1)x C Cfj, U Co%:
Consider a node, 7, € C(;1)- Either 1, fans out to at least one node in the transitive fanin of zj
of level > ¢ or else the maximum level of its fanouts in the transitive fanin of zj is = i. In the first
case, it belongs to C7;.. In the second case, it belongs to the C42,

+:CLUC* C Cii_yp
Any node 7, € C7}. has level < 7 and fans out to at least one node of level > 4 in the transitive fanin
of ;. Thus 7, € C(;_1)x- Consider a node 7, € C%44, Let it be the fanin of a node 7; in C%. Note
that n; € TFI(z). This is because 7; € C};. and L(n;) = i. Moreover, since L(n;) = 4, hence
L(np) < (i — 1). Two cases must be distinguished:

1. L(np) = (i — 1): Since n; € TFI(2;) and np, € FI(n;), hence 7, is a transitive fanin of
primary output z;. Hence 1, € Ci—1)x-

2. L(np) < (i — 1): Since 7, fans out to n;(whose level = 7), hence it fans out to ; with level
> (i —1). Also, n; € TFI(z;). Thus np € Ci_q)k-

o

Theorem 7.3 If the topology constraint given by Lemma 7.1 is satisfied, each primary output z},
can always be synthesized to satisfy its network specification. The internal nodes in the network can

be multi-valued after synthesis.

Proof The above is proved for an arbitrary primary output 2.
Base case: The topology constraint ensures that C;, has all the information that 2z, requires.
Inductive step: Suppose Cj;. has all the information required by z. It is proved that the algorithm

syn_cuts ensures that C(; ), will have all the information that z,, requires.
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Figure 7.7: After n; is simplified using its minimum SPFD, the nodes of the above modified network
N can be synthesized using syn_spfd.

Assume that’s not true. Then there exists an edge e = (z,z’) € Ri(X, X') that cannot be
distinguished after synthesizing the nodes in C'(;..;)x- This happens only if e is not in the SPFDs of
the nodes in Cf; ), or in the maximum SPFD of the nodes in Cf; ;- Since the maximum SPFD
of a node is simply the union of the SPFDs of its fanin nodes, e does not belong to the SPFDs of
any of the fanin nodes of Cz:. 1)k But the fanins of the nodes in Cz‘i 1)k together with the nodes in
Cli+1)x, form the nodes in C;y, (Lemma 7.2). Thus e does not belong to the SPEDs of the nodes in
Cj;).. But this contradicts the assumption that e can be distinguished by the nodes in C . m}

The entire algorithm (comprised of defining the cuts in a network and synthesizing the
nodes in each cut using syn_cuts) is referred to as syn_spfd.

7.5 Connections with minimum SPFD

The ideas presented in the previous section also support the claim that R;-’ computed us-
ing y;? (shown in Figure 4.4) in com minspfd for_sep is indeed the minimum SPFD of 7;. In
Theorem 4.2, it was proved that all the minterms that have an edge between them in R‘]? have to
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circuits || original | syn_spfd | % MV-nodes
apex7 292 278 9.09
cht 236 199 0
cmb 62 76 7.14
cc 99 102 0
cu 90 88 0
f51lm 195 194 0
lal 224 223 8.92
te2 339 292 8.51
terml 625 341 24.07
x2 71 53 11.11
Average 0 -8.27 6.88

Table 7.1: Results of using syn_spfd on ISCAS benchmark circuits.

be distinguished at the output of 7;, after 7); has been simplified. Here, the reverse claim is made.
Thus if all the minterms that don’t appear in R;? are assigned the same value at the output of the 7;
after simplification, correct functionality at the primary outputs can still be guaranteed by simply
modifying the nodes between 7 and the primary outputs. This is because Y7 is a cut in the network
and it has all the information required by the primary outputs even after simplifying 7; using R;’.
Thus, R? is indeed the minimum SPFD of n;.

The algorithm presented in the previous section can be applied for resynthesizing the
nodes with some minor modifications. The modifications arise in the definition of the cuts. Here,
the separator y;? should be treated as the cut C. Applying the algorithm presented in the previous
section on the modified network? A/’ (shown in Figure 7.7) determines the functionalities of all the
nodes in between y;.’ and the primary outputs of the original network. For instance, for the circuit
in Figure 4.5, after setting y to zero, the new function at z is given as z = z1z2 + T273.

This scheme can also be used when the minimum SPFD of 7; is computed using any of

the other separators, say )}, shown in Figure 4.4.

7.6 Experiments

In this section, some experiments that were performed for determining the practical fea-

sibility of the above scheme are described. As mentioned before, the algorithm syn.spfd needs a

2 All the nodes in the transitive fanin of 7; in the original network except the ones in y,9 are removed.
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circuits || script.rugged | synspfd | % MV-nodes | simplify |
apex7 246 260 3.03 254 |
cht 165 162 9.75 162
cmb 51 58 16.67 53
cc 63 64 0 64
cu 60 62 0 60
fSlm 119 115 8.33 115
lal 106 107 0 107
ttt2 219 252 234 236
terml 176 163 6.67 157
x2 48 49 0 49
Average 0 2.99 6.78 0.36

Table 7.2: Results of using syn_spfd on optimized ISCAS benchmark circuits.

network topology and an input-output specifications as its starting point. For this work, circuits
from the ISCAS benchmark suite (or their derivatives) were used and their topology information
and input-output specification served as the starting point. The experiments were set up to test if the

procedures are valid and if they can closely reproduce the original circuit.

In the first set of experiments, the initial topology of a given ISCAS benchmark circuit
and its input-output specification was used as the starting point. Thus, given the topology of the
original circuit, syn_spfd was used for synthesizing the nodes in these networks. The initial results
are shown in Table 7.1. Columns 2 and 3 show the literal counts of the original circuit and the circuit
after using syn.spfd. An average improvement of 8.27% in literal count was obtained after using
syn_spfd>. One negative artifact of the greedy edge distribution scheme used in syn_cuts is that
some of the nodes may be multi-valued 4. This is because a node that appears later in the ordering
in a cut may have to distinguish many edges and its SPFD graph may no longer be bipartite. Practical
results, however, indicate that on average only 6.88% of the nodes were multi-valued (Column 4).

Table 7.2 provides results of using syn._spfd on optimized ISCAS benchmark circuits.
In this experiment, a circuit was optimized using script.rugged and the topology of the optimized
circuit was used as the starting point of syn_spfd. The input-output specification was the function-
ality of the original circuit. This experiment was set up to test if the algorithm works under tighter

3This improvement is because many of the original circuits are not optimized and the synthesis procedure has the
opportunity of removing some redundancies.

“Note that a solution exists for the given starting topology and the input-output specification in which all the nodes
are binary. This solution is the original circuit.
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topology constraints. The results indicate the optimized circuit can be reproduced quite closely.
Even though, the results were worse than the original. optimized circuit in some cases, the average
increase in literal count was only about 3%. The average percentage of nodes that were multi-valued
is 6.78%. The results of Table 7.2 should be viewed from the point of view of a real application. In
a real application, a solution is not available. Only the topology and the input-output specifications
of the network will be provided. There would be no way for judging the quality of the solution
returned by syn_spfd. Table 7.2 supports the claim that the solution is pretty good. In addition,
network optimization methods that do not alter the topology like full simplify can be applied for
improving the solution. The results of running full simplify [37] is shown in Column 5 in Table
7.2. Thus essentially the heavily starting optimized circuit can be recovered.

The preliminary results indicate that it is possible to use the algorithm described in this
chapter for synthesizing the nodes in a network from its topology and its input-output specification.
In the experiments with the topologies of the unoptimized circuits, there was also a reduction in the .
literal count with respect to the original circuit. Also, in practice, it was found that on average less
than 7% of the nodes were multi-valued in both the optimized and unoptimized topologies.

One problem with this approach is non-robustness. This is mainly due to the large memory
requirements of the global SPFDs.

7.7 Summary

In this chapter, the synthesis process for topologically constrained decomposition” was
presented. The initial results were quite encouraging. One problem was the memory usage of the
global SPFDs. There are a few approaches for dealing with this problem. It may be beneficial from
the memory perspective to represent the global SPFDs as asymmetric relations. Another possible
help in this direction is the use of SAT as described in Chapter 5. Also, instead of working on an
entire network, this algorithm could be applied to portions of a partitioned network.

The partial don’t care wires introduced in the previous chapter could be used for obtaining
the initial network topology. This algorithm could also be useful in wireplanning scenarios where
the interconnect structure is planned out before the node functionalities are decided.
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Chapter 8

Sequential SPFDs

In this chapter, the concept of sequential SPFDs is introduced. First, an example is pro-
vided for illustrating how sequential SPFDs can be used to reduce the number of state bits. Then
a general procedure is provided for state reencoding using sequential SPFDs and the correctness of
the algorithm is also established. A procedure for resynthesizing the circuit using the newly derived

state encoding is also described.

8.1 Previous Work

The classical computation of equivalence classes of states for FSMs was introduced in
[38). There has been a whole body of work on the minimization of FSMs (c.f. [39]). Most of
these approaches suffer state space explosion. In addition, the benefits of state minimization do
not necessarily translate to the final implementation of the sequential circuit. Approaches based
on structural techniques try to solve this problem by working directly on the sequential circuit.
The circuit structure is used to extract the set of unreachable states which are later used as don’t
cares for circuit optimization ( [40), [41]). However, these approaches still have to represent the
entire state space and can potentially run into the state space explosion problem. To cope with
this problem, local transformation techniques such as ATPG-based methods [42] and retiming and
resynthesis [43] have been used. These are currently the most widely used techniques, but were
designed with efficiency as the main consideration. As a result, sequential freedom is not completely
explored, due to limited time-frame expansion. The approach presented here avoids the state space
explosion problem by using a partition of the state space while exploring more sequential freedom.
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)4} 1 Y 3 0 P3 0 D4 0 output

Figure 8.1: Example sequential circuit.

8.2 Motivating Example

Example 8.1 Figure 8.1 gives a simple example of a sequential circuit and its corresponding State
Transition Graph (STG). It consists of four latches connected in series to form a shift register. The
output of the fourth register is the only primary output of the circuit. The initial value of the first
register is 1, the others 0. This circuit is sequentially redundant and could be implemented with two

registers only.

Combinational optimization treats the register inputs as primary outputs and the register
outputs as primary inputs, and optimizes the combinational network between these boundaries. For
the example in Figure 8.1, the resulting combinational network is shown in Figure 8.2. Clearly,
combinational optimization techniques based on CODCs or SPFDs will not produce any circuit
reduction.

Another way to apply combinational optimization techniques to a sequential circuit is to
ignore the register inputs of the circuit. Thus, the circuit used during combinational optimization
will have the primary inputs plus register outputs of the sequential circuit as its primary inputs, and
the primary outputs of the sequential circuit as its primary outputs. However, the register outputs
are constrained to combinations that correspond to states that are reachable. Using this approach,

the example of Figure 8.1 yields the combinational optimization problem shown in Figure 8.3.
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Figure 8.2: A combinational circuit derived from the sequential circuit in Example 8.1.

R* (reachable states): 1000, 0100, 6010, 0001

1000 0001
p(1) T n(2)
RH— ! X
K/ p4.(1) ll—— P4.(2)
0100 0010
PL:p1(1) + ... + pa(1) R,
PO :p1(2)

Figure 8.3: Another combinational circuit derived from the sequential circuit in Example 8.1.

Applying SPFDs on this combinational circuit, the SPFD of the primary output, which is the same as
for p1 (2), requires that all minterms that produce a 1 have to be distinguished from all the minterms
that produce a 0. Its SPFD in terms of the present state bits (p1(1), p2(1), p3(1), p4(1)), denoted
R, is shown in Figure 8.3: the minterm (0001) must be distinguished from the minterms (1000),
(0100) and (0010). The SPFDs of the remaining state bits are empty. Thus, the union of the SPFDs
of all state bits yields R;. These are exactly the state pairs that produce different outputs in one
transition. Thus SPFDs can provide information about the transitions of a sequential circuit, but
it is not sufficient to just capture the information about one time frame. Informally speaking, it is
necessary to unroll the circuit multiple times and determine the SPFDs at each node in a sequential
circuit by computing the union of the SPFDs of the node in all time frames. These are called
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R* : 1000, 0100, 0010, 0001
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Figure 8.4: SPFDs obtained after unrolling once.
sequential SPFDs.

8.2.1 Sequential SPFDs

Consider a single unrolling of the circuit in Figure 8.1 which yields the combinational
optimization problem shown in Figure 8.4. Denote the first and second copies by C(1) and C(2),
respectively. The resulting combinational circuit has one primary output p;(3) and four primary
inputs, p1(1), 2(1), p3(1) and py(1).

Computing the SPFDs of all the nodes in the circuit and expressing the union of the
SPFDs of the present state bits of C(2) and C(1) in terms of the present state bits of C(2) and
C(1), respectively yields R; (1) and Rz(1) as shown in Figure 8.4. R;(1) is exactly the same as
R, in Figure 8.3. R3(1) denotes the state pairs that produce different outputs after exactly two
transitions. Hence the union of the two SPFDs, Rz = R2(1) + R;(1), gives all those state pairs that
produce different outputs in one or two transitions. Unrolling the circuit once more and computing
the SPFDs of all three copies gives Rz shown in Figure 8.5(a). It has an edge between any two
states that can produce different outputs in one, two or three transitions.

Unrolling the circuit any further produces no additional edges. Thus R3 includes all pairs
of states that must be distinguished. If a pair of states s and s’ has no edge between them, then the
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Figure 8.5: Various levels of unrolling and the corresponding SPFDs.

Ry

sequential circuit behaves identically, irrespective of whether it starts from s or s’. Hence these two

states could be merged. The graph R3 can be colored to obtain equivalence classes for the states.

Four colors are needed and hence two state bits are required to implement the circuit.

This example illustrates how progressive unrolling adds edges between state pairs (s, s')
that behave differently in the future. In this particular example, since all states behave differently,

no additional information over the fact that the set of reachable states has four states and can be

colored with four colors is gained.

The next example illustrates how sequential SPFDs can provide useful information that

cannot be gained just by examining the set of reachable states.
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Figure 8.6: Another example sequential circuit.

Example 8.2 Consider the circuit in Figure 8.6. 1t is similar to that in Figure 8.1 except that the
primary output of the circuit is now the OR of the first and third register outputs. The results for no
unrolling and one unrolling are shown in Figure 8.7 and are denoted Ry and Ry respectively. Ry
and Ry denote the state pairs that produce different outputs in one and two transitions, respectively.
Here Ry = Ry, so the unrolling process is stopped. Unrolling the circuit any further does not
produce any more state pairs that behave differently in the future. Since R is bipartite, only one

state bit is required to implement the circuit.

Thus, SPFDs can give useful relations between states which can be exploited for deriving
a new state encoding. In the following section, a general procedure which uses SPFDs for re-

encoding the state space is provided. The correctness of the procedure is also established.

8.3 Sequential SPFD Computation

8.3.1 Additional Notation

For a sequential circuit M, denote the set of states by .S, the set of transitions by T, the
present state bits by P, and next state bits by P’. Let p; € P denote a present state bit of M and
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Figure 8.7: R, and R;.

P € P’ denote the next state bit corresponding to p;. Let P = {Py, Pa, - -+ , P}, denote a partition
of P, where each P; is an individual part of P. Each node n; € M has a sequential SPFD Rj
associated with it.

Let C be the combinational circuit obtained from M where its primary inputs are the

primary inputs plus the present state inputs of M, and primary outputs are the primary outputs and
the next state outputs of M.
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8.32 Algorithm

The algorithm com_seq_spfds starts with the combinational circuit C obtained from M
without unrolling. It computes the SPFDs of all nodes in C and uses them to update the sequential
SPFDs of the nodes in M, which are initially empty. The SPFDs associated with the present state
bits denote the information that they have to provide for ensuring correct functionality after one
time frame. Next, the SPFD of each present state bit p; is attached to the primary output of C that
corresponds to p;. Then the SPFDs of C are re-computed. In general, the i*® step computes the
sequential SPFDs of the nodes required for correctness in < % time frames. The process stops when
no more edges are added to any node in the network.

Algorithm com_seq_spfds(M, P):

1. R* = Reach_state(M).
2. For eachnoden; € M, R} + ¢.
3. Obtain the combinational circuit C from M.

4. Restrict the present state inputs of C so that it allows only R*; these are used to restrict the
number of input combinations that can be used during the image computation steps. The
initial SPFDs on the POs of C that are also POs in M are given by the functions of the gates
driving these outputs. The SPFDs of the remaining POs of C (i.e., the next state bits of M)

are empty.
5. Compute_spfds(C).
6. Update_spfds(M ).
7. repeat {

(a) Modify_state_spfds(M, P).

(b) Attach empty SPFDs to the POs of C that are also POs of M and the SPFDs of the
present state bits of M to the POs of C that correspond to the next state bits of M.

(c) Compute_spfds(C).
(d) Update_spfds(M).

}until (no change in SPFDs of nodes).
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8. Stop.

Reach_states computes the set of reachable states of M starting from the initial states. In
general, any over-approximation of the reachable states can be used. However, the SPFDs of the
nodes are the smallest if the set of reachable states is used. Compute _spfds computes the SPFDs of
all the nodes in C as in the combinational case, described in Chapter 5. The subroutine Update _spfds
uses the SPFDs of the nodes in C for updating the sequential SPFDs of the corresponding nodes of
M. For each node 7; in M, it computes the union of the sequential SPFD of 7; stored in M with
the new SPFD attached to the copy of n; in C. During each SPFD computation phase, the present
state bits are treated as primary inputs; hence the SPFD of each present state bit p; is expressed in
terms of the fanins of the fanouts of p;. The subroutine Modify_state_spfds transforms this SPFD
so that it is expressed in terms of the variables in Py, where p; € Pj. The set of reachable states
R* are used to restrict the minterm combinations in the SPFD of p;. It only contains edges between
a and b such that a and b are cubes of Py variables and are contained in Sy, where Sy is obtained
from R* by existentially quantifying the variables not in Py.

For now, the algorithm assumes that P has been chosen. It is important to observe that the
algorithm only uses P in the subroutine Modify state_spfds. P is useful if it is desirable to perform
partial re-encoding of the state space since each partition can be re-encoded independently. This
avoids building an incompatibility graph over the entire state space. One simple heuristic to choose
P could group present state bits that have paths to the same set of primary outputs. In general, the
structure of the circuit’s topology can be used to find a good partition.

8.3.3 Theory

The ideas presented above are formalized in this section. In general, M is a Mealy ma-
chine; its primary output logic is a function of the present state and the primary inputs.

Definition 8.1 A pair of states (s, s') in S is distinguishable if there exists an input sequence such
that M produces different outputs for s and s'.

Definition 8.2 Given a state s, the projection of s onto the set of variables Z, denoted as 8%, is

obtained by existential quantification of all variables not in Z from s.

Definition 8.3 The sequential SPFD at a node n; is the SPFD R associated with it when com _seq spfds

terminates.
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Figure 8.8: Illustration for the proof of Lemma 8.3.

In the sequel, R7* denotes the SPFD of n; after m steps of com_seq_spfds.

Definition 8.4 The SPFD of a part P}, of P is the union of the SPFDs of the present state bits in
Py. It is denoted as Rp,.

Definition 8.5 The state SPFD R is a graph G = (S, E), where an edge exists between two states s
and s' if there exists a part, P; € P, such that (s, s'P i) € Rp,. Here, sPi and s'P+ are projections

of s and s’ respectively onto P;.

First it is shown that the algorithm com _seq_spfds terminates and then that the state SPFD
R has an edge between a pair of states if they are distinguishable.

Lemma 8.1 The computation of R;? of a node n; by com_seq_spfd is monotonic in k.

Proof Let the SPFD of 7; after k and (k + 1) iterations be denoted as R;-c and R;“"l respectively.
Since R is obtained from RY by adding SPFDs edges, hence R¥ C RE*1, o

Lemma 8.2 R is finite for k > 0.

Proof The input space of 7; is denoted as Y. R;-‘ denotes input combinations that have to be
distinguished after k iterations. Since n; has a finite number of inputs, R;? CY; xYjisfinite. D

Lemma 8.3 If two reachable states s and s' are distinguishable, then the state SPFD R contains

an edge between them.
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Figure 8.9: M’: implementing the transition relation of M.

Proof By contradiction. Suppose s and s’ are distinguishable in k steps but (s, s") € R. Then, there
must be a set of states {s,, 55, 55, s} € S such that (s}, sa) € T, (s}, %) € T, (84,5) € R and
(4, s;) € R. This is illustrated in Figure 8.8.

Suppose the algorithm stops after m steps. The stopping criterion requires that no more
additional SPFD edges are added. Since, (54, 5p) € R, then e = (s7*, sf”) must exist in the SPFD
of at least one partition Pj. This implies that there exists a present state bit p; € Ps, such that its
SPFD R; contains e. Since e € RT', the algorithm would have added e’ = (s™, sgp') to the SPFD
of a present state bit p; in the next iteration, where p; € P;. Hence, €' € Ryp,. This contradicts the
assumption that (s}, s;) € R. 0

Theorem 8.1 The sequential SPFDs computed by com _seq_spfds contains the information for cor-

rect re-encoding of a sequential machine.

Proof R is monotonic (Lemma 8.1) and finite (Lemma 8.2) for all ¥ > 0. Thus RY has a
fixed point and hence com_seq_spfds terminates. By Lemma 8.3, an edge exists in the state SPFD
between any two reachable distinguishable states. u]

8.3.4 Previous Work

The work presented in this chapter is similar to classical state minimization of completely
specified machines (c.f. [39]), which progressively partitions the state space into equivalence classes
until no additional refinements can be made. At this point, the states in an equivalence class can be

merged. Thus each equivalence class contains states which are not distinguishable. By Lemma 8.3,
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the state SPFD contains an edge between any two states that are distinguishable. Hence the states
that can be colored with the same color are a subset of .an equivalence class obtained by the classical
state minimization. However, two states in the same equivalence class can have an edge between
them in the state SPFD, since in general, only containment is guaranteed.

Consider the circuit M’, shown in Figure 8.9. M has a single multi-valued node 7 which
implements the transition and output relations of M. The inputs of # are the primary inputs and
the present state variables of M. The outputs of # are the primary outputs and next state variables
of M. The state SPFD obtained by executing com_seq._spfds on M’ with P = {P} has an edge
between two states iff they are distinguishable. In this case, the equivalence classes obtained from
the state SPFD coincide with the ones obtained by the classical state minimization algorithm. Thus
the additional edges are due to the particular decomposition of M and the partitioning of the state
bits.

8.3.5 State Encoding Using Sequential SPFDs

The SPFD of each part in the partition can be used to perform a re-encoding of the state
space. For each part P, its SPFD Ryp, is solely expressed in terms of the variables of P;. Rp, can
thus be colored to get a new encoding of the bits of P;. This procedure can be repeated for each P;.

This method can accomplish a wide range of state encodings depending on the partition
used while computing the SPFDs. On one extreme, if P = { P}, then the SPFD of that part is equal
to the state SPFD. Coloring the state SPFD yields a complete re-encoding of the state space. On the
other extreme, re-encoding using P = {P1, P2, -+ , P}, Where P; = p;, yields the original state
encoding. A good partition that uses the initial decomposition of the circuit can be used to do partial
re-encoding of the state space. This approach is computationally feasible for very large machines
since it only encodes a subset of the state variables in each step. Traditional state minimization
algorithms must build an incompatibility graph over the entire state space.

The following example illustrates the effect of the different partitions of P on the quality
of state re-encoding.

Example 8.3 Consider the circuit in Figure 8.6 and perform re-encoding of the state space for

different partitions of P:

1. P = {P1} where Py = (p1,p2,P3,p4). After the first step, the SPFDs of p2 and p4 are
obtained. The SPFDs of pa and ps are {(0100,1000), (0100, 0010)} and {(0001,1000),
(0001, 0010)}, respectively. Similarly, after the second step, the SPFDs of py and p3 are
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{(1000,0100), (1000, 0001)} and {(0010,0100), (0010,0001)}. Arother step of the algo-
rithm adds no more edges and thus the algorithm stops. The SPFD of P is bipartite. Hence,
this SPFD can be colored using two colors'. As a result, the reached states of the original

state space can be encoded as:

1000 — 0; 0010 — 0; 0100 — 1;0001 — 1;

2. P = {P1, P2}, where Py = (p1,p3) and P2 = (p2,pa). After the first step, the SPFDs of
p2 and p4 are obtained. The SPFDs of p2 and p4 in terms of the variables in their respective
parts are {(10,00)} and {(01,00)}, respectively. Similarly, after the second step, the SPFDs
of p1 and p3 in terms of variables in their respective parts are {(10,00)} and {(01,00)}.
The algorithm terminates in the next step. Consider the effect of re-encoding each partition
separately. The SPFD of P, is {(10,00), (01,00)}. Since it is bipartite, it can be colored
using two colors. Let minterms 00, 01 and 10 in Py map to 1, 0 and 0 respectively. Similarly,
P, can be re-encoded by coloring Rp,. Since Rp, is also bipartite, it can also be colored
with two colors. Let minterms 00, 01 and 10 in P2 map to 0, 1 and 1 respectively. Hence a

circuit with two state bits can be obtained. So, the new encoding of the reached states is:

1000 — 00; 0010 — 00; 0100 — 11;0001 — 11;

3. P = {P1, P2, Ps,Ps}, where Py = p1, P2 = p2, P3 = p3 and Py = ps. The algorithm
terminates in three steps and computes the SPFDs of all the nodes. The SPFDs of each p; in
terms of PPi is {(1,0)}. Re-encoding each partition separately produces no reduction in the

State bits.

8.3.6 Sequential SPFDs Using Classical Incompatibility Graph

It is interesting to note that the incompatibility graph of M derived using the classical
state minimization algorithms ( [39]) can be directly used to derive the sequential SPFDs of all the

nodes of M in one step. The procedure is outlined below:

1. Treat M as a specialized combinational circuit C where the POs are the POs of M and the
PlIs are the Pls of M plus the state bits of M. The next state bits of M are the inputs of a
dummy node D in C. The SPFD of D is the supplied incompatibility graph.

1 This is exactly what was obtained at the end of Section 8.2.1.
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2. Compute the SPFDs of all nodes in C (including D) in reverse topological order from primary

outputs to primary inputs using Compute _spfds.

8.4 Resynthesis Procedure

Given the encoding relation Enc between the old states and the new states and the se-
quential SPFDs at all the nodes in M, the original circuit can be resynthesized using the following
algorithm.

Algorithm seq_resyn(M, {R3}):

1. Proceed in topological fashion from primary inputs and present state bits to primary outputs
and present state outputs.

2. For each node 7, perform the following two steps:

(a) Compute the mapping between the original and the new fanin spaces of node n;:
En(Y;,Y;) = 3x,ppeR*(P)(P* = Enc(P))G(X, P,Y;)6(X, P¢,¥;),

where X is the set of primary inputs, P is the set of old state variables, P¢ is the
set of new state variables, R*(P) is the set of reachable states, Enc gives the new
encoding of the states, G(X, P,Y;) gives the transition relation of the original fanins
and Q(X , P€, f’,) the transition relation of the new fanins. The process is illustrated in
Figure 8.10.

(b) Obtain the modified SPFD as:
RY(Y;,¥}) = 3y, v, En(Y;, V;) En(Y], V) RI(Y;, V7).
Color it to get an ISF for the node and minimize it.
3. Atntach a new multi-output node F at the output of the next state bits. F has n inputs and m
outputs, where n is the number of original state bits and m is the number of new state bits.

It can be implemented as a PLA. This node maps the re-implemented next state bits P' onto

their new state encoding Enc(P'), as shown in Figure 8.11.
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Figure 8.10: Encoding relation between the original and new fanin variables, En(Y;, f’,)
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Figure 8.11: Computing the function of the multivalued node.

Example 8.4 Figure 8.1 can be redrawn as shown in Figure 8.12. Assume that the sequential
SPFDs of all the nodes are given. Further, let the encoding between the old and the new state
spaces be {(1000, 00), (0100, 01), (0010, 10), (06001, 11)}.

The sequential SPFD of fi is {(1000,0100), (1000, 0010}, (10600,0001)}. In terms of its
inputs, the SPFD can be re-written as {(0001, 1000), (0001, 0100), (0001,0010)}. The SPFD of f,
in terms of its new fanins p$ and p§ is {(11,00), (11, 10), (11, 01)}. Thus f, can be re-implemented
as fi = (p% +p5). Similarly, the new functions of fa, f3 and f4 are fo =15 9% fa = (0 +P5) and
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Figure 8.12: Revisiting Example 8.1.

fa = pSPS respectively. The encoding between P’ and Plis

1000 — 0010
0100 — 1110
0010 — 1000
0001 — 1011.

The new function of the output node F is given below.
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It can be implemented as two binary nodes, n, and ns.
n = ff(fs®fs)
ne = fifs(f®fs)
The SPFD of the output in terms of its inputs is {(0001, 1000), (0001, 0100), (0001, 0010)}.
Given the new state encoding, the modified SPFD is {(11,00), (11,01),(11,10)}. Thus the new
Junction of the output is p§p5.

The above circuit can be further simplified by collapsing fl, fz, f3 and f4 into ny and no

to yield the circuit shown in Figure 8.13.
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f1=p_‘1’+p_§

ny = Il‘f_ @ p5
ng = ps
Intial state : 00

Figure 8.13: Re-implementation of Example 8.1.

Similarly, resynthesizing the circuit in Figure 8.5 using the state encoding
1000 — 1;0100 — 0;0010 — 1;0001 — 0;

and simplifying it yields the circuit in Figure 8.14.
Note that in general com_seq_spfds followed by seq_resyn may be iterated to yield further

reductions.

8.5 Summary

The concept of sequential SPFDs was introduced in this chapter. Given a partition of
the state bits, an algorithm was presented which computes sequential SPFDs for the nodes in a
sequential circuit. Each part in the partition was also associated with an SPFD. The SPFDs of these
parts could be used for re-encoding the state space. This approach can be particularly useful for
larger machines as it avoids building the incompatibility graph for the entire state space. The effect
of different partitions on the quality of results was illustrated.

Another algorithm used the sequential SPFDs and a new state encoding for resynthesizing
the sequential circuit. The resynthesis procedure could also be used in conjunction with other state

minimization algorithms for obtaining a new circuit. The two algorithms could be iterated to yield
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Figure 8.14: Re-implementation of Example 8.2.

new partitions and new encodings. The algorithms worked directly on the current implementation
of the machine and thus only dealt with completely specified machines. A natural extension is to

investigate the application of these ideas to incompletely specified machines.
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Chapter 9

Conclusions

A new formalism for expressing flexibility during logic synthesis was studied in this work.
The contributions of this dissertation are summarized below. Some directions for future work are
also outlined.

In Chapter 4, the concept of Sets of Pairs of Functions to be Distinguished or SPFDs
was introduced. The notion of representing the information content of a node/wire using SPFDs
was presented. The concept of the minimum SPFD for a node was proposed. An algorithm was
presented for computing the minimum SPFD of a node in a network. It was argued that node sim-
plification using the minimum SPFD could be very computationally expensive. Hence the concept
of the compatible SPFD of a node was introduced. The flexibility expressed using SPFDs was com-
pared to several previous formalisms used for expressing flexibility. It was shown that SPFDs are a
special type of Multiple Boolean Relation (MBR). They completely contain the flexibility expressed
by Multi-output multifunctions and they extend the flexibility expressed by Boolean Relations but
do not completely contain it.

Algorithms for generating compatible SPFDs and for resynthesizing the nodes in a net-
work using these SPFDs were described in Chapter 5. This SPFD computation is similar to the
CODC computation algorithm [20] but the resynthesis process is more involved than the resynthe-
sis phase in CODCs. This is mainly because the SPFDs allow changes to node functionality that
are not allowed by CODCs. The increased flexibility of SPFDs comes at an increased cost, both in
terms of robustness and predictability. While robustness issues have arisen in other logic synthesis
operations using BDDs, it can become particularly acute for SPFDs. This is mainly because more
information needs to be stored in the BDDs during SPFD manipulations. The robustness problem
was partially solved by using a SAT solver and a BDD engine together. SAT solvers are known to be
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more robust than BDD engines. But they also suffer from the problem of reduced efficiency for set
manipulations. A hybrid scheme combining the robustness of SAT with the efficiency of BDD was
presented for tackling some of the more memory-intensive computations of the algorithms. The
increased flexibility represented by SPFDs can often cause uncontrolled changes in the network.
This could manifest itself as an unpredictability in the optimization results. The notion of a “region
of change” was introduced for limiting the changes allowed by SPFDs, while using some of the
additional flexibility provided by SPFDs.

With the decrease in feature sizes, interconnect effects are becoming more dominant.
SPFDs provide a powerful tool for manipulating the interconnections of a network. At the heart
of this ability is the notion that SPFDs represent the information content of a wire in a network,
in the form of primary input minterm pairs that the wire has to distinguish. This concept was
exploited for using SPFDs for changing the wiring between the nodes in a network in Chapter
6. Some preliminary intuition was provided in order to explain why SPFD-based rewiring can be
much more powerful than traditional ATPG-based methods. Several different rewiring scenarios
were presented. SPFD-based rewiring was used for reducing the number of interconnections(wires)
in Boolean networks. The experiments showed that this method produced a 19% reduction in wire
count and a 12% reduction in literal count. The concept of don’t care wires was also proposed.
These refer to alternate wire sets where the choice for one wire is completely independent of the
choice for other wires. The concept is similar to that of compatible logic don’t cares. An algorithm
was presented for generating these don’t care wires, which were subsequently used for minimizing
the total wirelength of networks of PLAs. Initial experiments were done in an integrated synthesis
and placement environment with favorable results. A 12% reduction in wirelength was obtained
using the don’t care wires. Moreover, a positive correlation was observed between the number of
wires with don’t care sets of wire and improvements in wirelength.

An interesting application of SPFDs to functional decomposition was presented in Chap-
ter 7. It was proved that SPFDs can be used for solving the Ashenhurst-Curtis decomposition prob-
lem. A new type of decomposition problem called the topologically constrained decomposition
problem was introduced. The problem requires synthesizing the nodes in a network so that a par-
ticular functionality is implemented, given a priori the final topology of the network. This type of
problem may arise in interconnect-centric algorithms like wireplanning, where the interconnection
between the nodes is decided before the logic in the nodes is fixed. The notion that the network acts
as a lossy channel through which information flows from the primary inputs to the primary outputs
was developed. The constrained decomposition problem was formulated in terms of information
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flow and an algorithm for synthesizing the nodes in the network using SPFDs (which can represent
information content of a node or wire) was presented.

The concept of sequential SPFDs was proposed in Chapter 8. An algorithm for state
re-encoding of a general, sequential circuit was presented and the correctness of the method was
established. A procedure for resynthesizing the sequential circuit using the new state encoding was
also presented. The idea of partitioning the state bits of a sequential machine for dealing with large

sequential machines was also proposed.

9.1 Future Work

SPFD:s are interesting and seem fundamental to the synthesis process since they represent
how information is passed along and processed by a network. This dissertation attempts to highlight
some of the interesting applications of SPFDs to logic synthesis algorithms. Much work remains in
order that they can be computed and used efficiently. In this section, we provide some directions for
future work.

The basic algorithms for SPFD computation and resynthesis are still quite expensive
which might affect their acceptance by the rest of the community. In this dissertation, some tech-
niques for improving the efficiency and robustness of SPFDs were provided. However, more work

is required in this area. Some other ideas that haven’t been tried include:
1. Using specialized BDD operators for speeding up some repeated operations.

2. Approximating the SPFD computations thereby losing some flexibility but greatly increasing
efficiency.

3. Using an incremental SAT solver (since the SAT problems generated during SPFD computa-

tions are very similar).

The other problem of SPFDs, namely uncontrolled change, was solved using the concept of a “re-
gion of change”. Other techniques for controlling the changes induced in the network after optimiz-
ing a few nodes using SPFDs need to be investigated, such as creating independent partitions in the
network and using SPFD optimization on each of the independent partitions.

SPFDs can be a very powerful tool for rewiring. There are many interesting rewiring ap-
plications of SPFDs. The concept of don’t care wires was presented and some initial experiments
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were presented in Chapter 6. A lot more work can be done in that area. For example, the computa-
tion of the don’t care wires assumes a random ordering of the wires during the SPFD computation.
The ordering scheme can be made more intelligent depending on the metric being optimized such
that “expensive” wires have a greater chance of finding alternates. Different metrics like delay, con-
gestion, crosstalk, etc can also be optimized using don’t care wires. The concept of partial don’t
care wires was also introduced in the same chapter. These are a generalization of don’t care wires,
in that an alternate wire contains only a part of the information provided by the original wire. The
resynthesis process can become more complicated when partial don’t care wires are used. Experi-
ments need to be performed for examining the benefits of using this generalization.

In Chapter 7, an algorithm was presented for using SPFDs for solving the topologically
constrained decomposition problem. Interesting applications of this technique are being currently
investigated. Any application that can generate an initial topology can be used. In particular, topolo-
gies that are generated using partial don’t care wires should be examined.

Sequential SPFDs provide a whole new area for interesting research problems. The work
described in Chapter 8 needs an efficient implementation of the ideas presented there. The ben-
efits of different partitioning strategies need to be experimentally investigated. It should also be
interesting to explore rewiring possibilities in a network of finite state machines using sequential
SPFDs.
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