
 

 

 

 

 

 

 

 

 

Copyright © 2002, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



THE TIME-BASED APPROACH TO EMBEDDED

PROGRAMMING: A HARDWARE-IN-THE-LOOP

SIMULATION FRAMEWORK

by

Judith Liebman

Memorandum No. UCB/ERL M02/16

16 May 2002



THE TIME-BASED APPROACH TO EMBEDDED

PROGRAMMING: A HARDWARE-IN-THE-LOOP

SIMULATION FRAMEWORK

by

Judith Liebman

Memorandum No. UCB/ERL M02/16

16 May 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



The Time-Based Approach to Embedded Programming:

A Hardware-in-the-Loop Simulation Framework

by Judith Liebman

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements

for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Shankar Sastry

Research Advisor

Date

Thomas A. Henzinger

Second Reader

Date



Abstract

One of the most troublesome issues in embedded controller design today is the

failure to account for the interaction of the control laws with their implemen

tation. Another problem in current embedded software design is the lack of

subsystem re-usability. This dissertation proposes an embedded software de

sign methodology that will connect the mathematical control laws with their

software implementations and will build in component reuse. To accomplish

this goal we explore the notion of time-based control and the tools of platform-

based design. A key feature of our design is the use of Giotto, a high level

language developed for programming time-based embedded systems. In this

dissertation we also propose and use a hardware-in-the-loop simulation frame

work to test embedded systems and further explore the connection between

control laws and their embedded realizations. This simulation framework pro

vides repeatable, safe testing of the implemented control system. We have built

both the embedded control system and a hardware-in-the-loop simulator for a

helicopter uninhabited aerial vehicle (UAV). We present the detailed design of

these two halves working in real-time. We conclude this dissertation with the

experimental results of the embedded control system flying the simulator.



Acknowledgments

First, I would like to acknowledge my co-workers on this project, Cedric Ma

and Ben Horowitz, who have truly been invaluable, hardworking, and inspiring.

I would especially like to thank David Shim for going out of his way to share

his practical and vital knowledge about the helicopters and their control.

Thanks also goes to John Koo, who initiated this research and has been an

important mentor for me. I am also grateful for his efforts to spear-head the

writing of several papers that include work covered in this dissertation.

I would like to thank Ron Tal for his help in providing useful resources and

adding practical structure and guidelines to this project from its conception.

I would also like to thank Professor Henzinger for his support of this research

project.

I greatly appreciate the time, energ}^, and enthusiasm Professor Alberto

Sangiovanni-Vintencelli added to this project and his willingness to meet and

correspond with us regarding the details of the design.

I would also like to thank Peter Ray for keeping me sane and motivated,

and my family and roommates for their continual support.

Lastly, I'd like to extend my greatest thanks to my advisor. Professor

Shankar Sastry. His guidance and insight started me on this project, and

continued to support this research through to this day. I greatly appreciate all

of the meetings and frank conversations with Professor Sastry that contributed

to my personal development as well as to my research and graduate career

throughout the past two years.



Contents

1 Introduction 9

1.1 Problem Statement 9

1.2 Solution Methods 11

1.2.1 Embedded Software Design 11

1.2.2 Hardware-in-the-Loop Simulation 12

1.3 Application to Helicopter UAV 13

1.4 Dissertation Structure 14

2 Background for a Model Helicopter 16

2.1 The BEAR Helicopters 16

2.2 Flight Control System Development 18

2.2.1 System Identification 19

2.2.2 Control Techniques 24



2.3 Limitations of the First Generation System 27

3 The Time-Based Control Philosophy 29

3.1 Decomposition 30

3.2 The Form of Real-Time Interfaces 31

3.2.1 Event-Based Interfaces 32

3.2.2 Time-Based Interfaces 34

3.2.3 Comparison of Interface Alternatives 35

3.3 Extending a Time-Based System 36

3.3.1 Scheduling and Control Integration 37

3.3.2 High Level Control and Hybrid Systems Applications . . 39

3.4 A Second Generation System 40

4 Platform-Based Design Methods 42

5 A Time-Based Control Platform: Giotto 45

5.1 The Giotto Programmer's Abstraction 47

5.2 Tools to Implement Giotto 49

5.3 Giotto Compared to Related Technologies 51

6 Design of Helicopter UAV Embedded Software 53



6.1 Building Functional Description using Platform-Based Design . 54

6.2 Implementing Functional Description using Platform-Based Design 56

6.2.1 Implementing the Controller Application 56

6.2.2 Implementing the UAV Platform 58

6.3 Comparison of Implementation Alternatives 61

7 Hardware-in-the-Loop Simulation System 64

7.1 General Simulator Properties 66

7.1.1 The Dynamical Model 66

7.1.2 The Simulation Framework 67

7.1.3 ODE Solution Methods 68

7.1.4 Numerical Recipes in C 70

7.2 Development System 71

7.2.1 Controller 71

7.2.2 Simulator 75

7.2.3 Using the Development System 80

7.3 Final Hardware-in-the-Loop System 81

7.3.1 Real-Time Operating System Configuration 82

7.3.2 Changes Needed for Real-Time System 84



7.3.3 Sensors 86

7.3.4 Final Simulation System and Future Work 88

8 Experimental Results 90

8.1 Velocity Controller Performance 90

8.2 Kalman Filter Performance 94

8.3 Position Controller Performance 95

9 Conclusion 104



List of Figures

1.1 Hardware-in-the-loop simulator description 13

1.2 Design flow for an embedded control system 15

2.1 A Yamaha R-50 Berkeley autonomous helicopter 17

2.2 Structure of the first generation flight control system 18

3.1 First generation helicopter software system diagram 30

3.2 Stale data delay in event-based systems vs. time-based systems 35

4.1 The system platform stack 43

5.1 The Giotto programming language as a platform interface ... 47

5.2 An example Giotto program 48

5.3 Design flow for the Giotto compiler 49

6.1 Platform-based design of helicopter based UAV 54



6.2 Refined Giotto program 57

6.3 First implementation of UAV platform 58

6.4 Second implementation of UAV platform 60

6.5 Hardware-in-the-loop simulation 62

7.1 Graphical flight display 64

7.2 Flight capable hardware with real-time operating systems .... 65

7.3 Diagram of simulator in Simulink blocks 67

7.4 Numerical Recipes fourth-order Runge-Kutta function 71

7.5 Giotto code implementing the helicopter control laws 74

7.6 Block diagram of simulator processes 76

8.1 Velocity controller flight pattern 91

8.2 Desired velocities and heading 92

8.3 Output velocities and heading from HIL simulator 93

8.4 Sideways velocity: desired vs. HIL simulator output 94

8.5 Forward velocity: desired vs. HIL simulator output 95

8.6 Downwards velocity: desired vs. HIL simulator output 96

8.7 Heading: desired vs. HIL simulator output 97

8.8 True x position vs. estimated x position 98



8.9 True y position vs. estimated y position 99

8.10 True z position vs. estimated z position ICQ

8.11 Position controller flight pattern 101

8.12 Positions and heading of the HILS helicopter 102

8.13 Desired positions and heading 103



Chapter 1

Introduction

In this dissertation we present a design methodology for embedded control

software and a hardware-in-the-loop simulation framework for evaluating that

software. Our strategy utilizes platform-based design and time-based control.

Platform-based design is a methodology that builds in abstraction layers to pro

mote modularity and a 'meet-in-the-middle' approach to development. Time-

based control, also referred to as synchronous control, is a control configura

tion in which control tasks are run based on time, as opposed to being based

on events. We apply this method to the example system of a helicopter UAV

and present the final design of both the embedded control software and the

hardware-in-the-loop simulator. Finally, we present results of the helicopter

embedded control software flying the hardware-in-the-loop simulator.

1.1 Problem Statement

Automation of traditionally human-controlled domains has long been a driving

force within the controls research community. Now, automation systems thrive

within industrial plants, vehicles, airplanes and even home appliances. Their



pervasive growth has been aided by advances in integrated circuit capabilities

and control theory. The design process for these systems, for the most part, has

been a two step process. First the theoretical control laws are chosen, then an

implementation method is selected and built. Exhaustive testing is the general

method for determining if the implementation achieves a realization that is

close enough to the theoretical one. However this may not be the ideal method

for bridging control laws with their implementations.

Originally, custom hardware was the most economical way to implement

control laws. However, more recently increases in the computing power of

microprocessors have shifted the majority of implementations to software. Un

fortunately, currently pervasive high level languages do not provide for all the

needs of an embedded systems programmer. 'Real-time' programs that utilize

standard languages are often a combination of nondeterministic timing and

quick fixes. Furthermore, software structures for embedded systems are re

invented with every system. These methods did produce functional systems

when the overall complexity was low. However, recent incidents where software

bugs caused severe problems in very expensive systems such as the Mars Polar

Lander and the Ariane rocket, point out the risks associated with using an

outdated approach when developing embedded controllers.

One of the most serious problems in controller design is the current disre

gard for the interaction of the control laws with their implementation. When a

control law is designed, the computational power of the implementation plat

form is only grossly estimated. This neglect leads to long re-design cycles when

the timing requirements of the applications are not met. On the other hand,

implementations alter control algorithms by introducing delays or other non-

idealities. This situation arises from the difficulty of mixing implementation

and functional design.

Another problem in current embedded software controller design is the de

ficiency in component re-usability. Reusing components that are specific to

10



function or implementation decreases time-to-market and validation time. As

suming a component is fully validated, the only obstacle is composing the ob

jects to work properly. Components can be full subsystems such as engine

controllers and ABS for cars, or sensors such as GPS for airplanes, or software

modules such as device drivers, operating systems and algorithms.

1.2 Solution Methods

This dissertation focuses on two main methods to bridge the divide between

control laws and their implementations: (1) the embedded software design of

the implementation itself, and (2) testing the finalized implementation.

1.2.1 Embedded Software Design

This dissertation proposes and displays an embedded software design method

ology that will bridge the functional description of the control laws with their

implementations and will maximize component reuse. In order to achieve the

first goal, we will first explore two general implementation strategies: time-

based control and event-based control. This dissertation will chose to focus on

time-based control due to its advantages in validation and scheduling analy

sis. Through the use of time-based control and a newly developed high level

language for time-based embedded systems, we will create a reasonable and

supportive connection between the control laws and their implementations.

In particular, the choice of a specific software platform to guarantee correct

timing performance for the control laws is of interest. Here we focus on the

Giotto software platform and we show how this platform substantially aids the

development of correct embedded controller software in comparison to other

approaches.

11



In order to achieve the second goal we will draw on the principles platform-

based design [San02]. A platform, in this context, is a layer of abstraction that

hides the unnecessary details of the underlying implementation and yet carries

enough information about the layers below to prevent design iterations.

1.2.2 Hardware-in-the-Loop Simulation

In this dissertation we also propose and use a hardware-in-the-loop simulation

framework for the evaluation and further exploration of embedded systems.

This simulation framework can provide the key service of verifying that the

embedded implementation of the control laws is similar to the theoretical con

trol law behavior, without the risk of running the embedded implementation in

the physical environment. This is accomplished by running the actual embed

ded control system, but simulating the plant, sensors and actuators. Therefore,

as can be seen in Figure 1.1, the hardware that is 'in-the-loop' is the embedded

control system hardware. This type of simulation is vital for the embedded con

trol community. As can be seen in Figure 1.2 the control laws themselves are

tested using a simulation during their development. Since the transition from

the control laws to the embedded control system is a rocky one, both manual

and currently unstructured as discussed above, the embedded control system

should similarly be tested in simulation, i.e. a hardware-in-the-loop simulation.

Furthermore a hardware-in-the-loop framework provides repeatable, convenient

tests for embedded hardware and software systems. Otherwise, testing these

systems needs to include the environment, which produces inconclusive results

due to the inherent variability of the environment. The nature of the hardware-

in-the-loop framework allows for a controlled study of the delay, guarantees, and

specific behavior of the embedded software layer. Also, testing in the environ

ment can be hazardous. HIL simulation allows potentially dangerous tests to

be carried out, such as the response under duress or multi-vehicle coordination.

The final benefit to this approach is the ease of transfer between control sys-

12



tems developed on the HIL simulator and the final embedded product. Unlike

other simulation environments, the HIL simulator is a practical step directly

before using the final embedded control system in the environment.

(Hardware *in-the-loop')

Sensors

1

1

1

1

Embedded

Control

System

1

1

1

Actuators* *
1

1

1

1

1

1

(Simulated)

Figure 1.1: Hardware-in-the-loop simulator description

1.3 Application to Helicopter UAV

We present the platform-based design methodology for embedded controller

design and the hardware-in-the-loop simulation framework via a challenging

example of automatic control: a helicopter based UAV. We have built both

the embedded control system and the hardware-in-the-loop simulator for this

nontrivial system. With these two halves working together in real-time we con

clude this dissertation with the experimental results of our embedded control

system design fiying our simulator. The difficulty and complexity of the appli

cation serve well the purpose of underlining the features of the design method

and demonstrating its power. The choices of design solutions are somewhat

application-dependent but the overall scheme is not, so that the example could

provide a general guideline for the application of our method. The methodol

ogy we propose works particularly to integrate systems with the following key

traits:

13



1. They contain embedded, real-time computers.

2. They often integrate subsystems that were designed to work indepen

dently — for example, sensors from different vendors.

3. Their proper operation is important to ensure human safety.

4. They can utilize legacy code such as device drivers or controllers. This is

due to the fact that automation projects have long lives and many design

iterations. Careful reuse of code often saves money and increases product

quality.

1.4 Dissertation Structure

The structure of this dissertation is as follows. In Chapter 2, we lay the ground

work for the helicopter example. In Chapter 3 we explore the applicability of

time-based control. Next, in Chapter 4, we introduce the reader to the princi

ples of platform-based design. In Chapter 5, we describe a software platform

for programming time-based controller applications. Then, in Chapter 6, we

present helicopter UAV embedded software designs that use the concepts of

the previous chapters, and we discuss how to compare designs using hardware-

in-the-loop simulation. In Chapter 7 we present in detail the implementation

of the embedded controller software and the hardware-in-the-loop simulation

software. Finally, in Chapter 8 we present resulting data from the working

combination of the UAV embedded control system and hardware-in-the-loop

simulator.

14



Software

Simulator

HIL

Simulator

Physical
System

Model

Control Laws

Embedded

Control

System

Figure 1.2: Design flow for an embedded control system: On the right side of

the diagram is the design flow of the embedded control system starting from

the physical system, on the left side of the diagram are testing methods for

different pieces of the design flow on the right. A software simulator can test

the control laws, for example in a Simulinkenvironment, while a HIL simulator

tests the final embedded control system itself.

15



Chapter 2

Background for a Model

Helicopter

In this section, we introduce the Berkeley Aerial Robot (BEAR) helicopters,

and motivate the redesign of their embedded software. We begin with a brief

description of the BEAR helicopters and of why autonomous flight is difficult

(Section 2.1). We next discuss the development of the first generation flight

control system (Section 2.2). Section 2.2 includes a description of the sensors

needed for autonomous flight, an overview of the system identification process

and the final dynamic model, and an overview of the control laws developed for

and used on the first generation helicopters. Finally, in Section 2.3 we describe

some of the limitations of this first generation embedded control system.

2.1 The BEAR Helicopters

The first goal of the BEAR project was to build a flight control system for

small, remotely controlled helicopters. The aim was to fly autonomously and to

provide a base for research in other areas such as vision, pursuit evasion games,

16



Figure 2.1: A Yamaha R-50 Berkeley autonomous helicopter

hybrid systems, etc. Basic autonomous flight capabilities include hovering,

forward flight, turning at a fixed point, and so on. More advanced maneuvers

include formation flying and obstacle avoidance. However, it is difficult to

achieve even basic autonomous flight, for the following reasons:

• The helicopter is unstable during hover. It will tip over within a few

seconds if left alone. Therefore, the flight control system needs to take

an active role in the stabilization of the helicopter.

• A crash is very dangerous, even at low speeds.

• The helicopter is an intricate machine, whose mechanical and electronic

systems must operate harmoniously under harsh conditions, such as phys

ical vibration and electromagnetic interference.

Moreover, it is difficult to obtain an accurate dynamic model of the helicopter:

The helicopter controls are often coupled. For example, changing the

collective pitch affects the amount of power available to the tail rotor,

which temporarily affects the yaw characteristics.

The behaviors of the helicopter are dissimilar in different flight regimes,

such as hover and forward flight.



• The airflow surrounding the helicopter body is chaotic, especially near

the tail rotor. In addition, the helicopter is affected by wind, and its

aerodynamic behavior changes when it hovers near the ground.

In spite of the challenges, the BEAR team managed to build a working flight

control system that makes autonomous flight possible. One of the autonomous

helicopters, the Yamaha R-50, is shown in flight in Figure 2.1. In the Section 2.2

we introduce the structure of the controller for this system in more detail.

2.2 Flight Control System Development

Flight Computer

RS-232 RS-232 PWM

GPS INS Servos

Figure 2.2: Structure of the first generation flight control system

Figure 2.2 illustrates the primary components in the first generation flight

control system. The actuators consist of servo-motors controlling the throttle,

main rotor collective pitch 6m, longitudinal cyclic pitch Bi, lateral cyclic pitch

Ai, and tail rotor collective pitch Or to generate forces and torques applied to

the helicopter. We assume the use of an engine governor to regulate the main

rotor RPM so the throttle is not directly controlled by our flight control system,

and therefore does not appear as an input in the dynamic equations.

The primary sensors of the flight control system are as follows:

Inertial Navigation System (INS). The INS consists of accelerometers and

18



rotational rate sensors that provide frequent estimations of the helicopter's

position, velocity, orientation, and rate of rotation. Although this esti

mate is provided at a high rate —roughly 100 Hz— the error in estimate

could grow unbounded over time, due to sensor noise and limits in sensor

accuracy.

Global Positioning System (GPS). The GPS solves the INS drift problem

by providing a position measurement whose error is small —on the order

of 1 cm— and bounded over time. However, this accurate measurement

is also infrequent —roughly 5 Hz.

An integrated INS-GPS solution uses a Kalman filter to provide frequent update

of the estimated state of the helicopter.

2.2.1 System Identification

The helicopter is a dynamical system and its equations of motion can be de

rived from the Newton-EulerEquation[MLS94] for a rigid body subject to body

forces f e and torques r € 3?^ applied at the center of mass. The position

and velocity of the center of mass are given by X*' € 3?^ and G 9?^,

respectively, expressed in terms of the inertial frame, also called body coordi

nates, using the North-East-Down orientation. We parameterized the orienta

tion R G 50(3) of the helicopter relative to the inertial frame by ZVX(or "roll,

pitch, yaw"), and Euler angles are denoted by F = [$ 0 Let G3?^ and

G 3?® be the body angular velocity vector and the body linear acceleration

vector. The equations of motion of the helicopter model can be written as:

19



Xb = V

Vb = ^R(r)f(u)

r = n(r)u^

U7 = I~^(r(it) — Xu}^)

where m is the body mass, I € 3?^^^ is the inertial matrix, H -> 9?^^^ maps

the body rotational velocity to Euler angle velocity, and u = [9m 9t Bi Ai]^

is the input vector. In [KS98], the above system is characterized to be non-

minimum phase, i.e. it has unstable internal dynamics. Since input u effects

both the body forces and the torques, the linear and rotational dynamics are

coupled. Therefore, controlling a helicopter is an extremely difficult task.

The above rigid body motion equations shown in equation( 2.1) have been

expanded and applied to the helicopter [ShiOO]. Many aerodynamic properties

need to be measured and accounted for in this process. The force and torque

matrices involve separate forces in the X, Y, and Z directions as well as sepa

rate torques in the roll, pitch, and yaw directions. The interacting forces are

also broken down to denote their relation to the main rotor, tail rotor, fuselage,

horizontal stabilizer, and vertical stabilizer. The goal of this system identifi

cation process is to accurately formulate each force and moment term and the

geometric constants specific to the component and center of mass locations.

Unfortunately, these parameters are very difficult to find, and still more diffi

cult to verify. However, a certain amount of accuracy in the model is needed

for simulation as well as for formulating a controller. Therefore, a different

approach to system identification was also employed [ShiOO].

The new approach uses empirical parameter identification rather than the

theoretical model. Here, a template model for the LTI MIMO parametric iden

tification that is proposed by Mettler et al is the starting point [MTK99]. This

template can be derived from the linearization of the general theoretical model

by discarding terms with negligible contributions [ShiOO]. The template model

is as follows:

20



X = Ax + Bu (2.2)

where:

X= [u Vp q ^ Q ais hs w r rjb Ei (2.3)

u= [«oi. "I.,. ««», «r.,/ Y € S?" (2-4)

In this model the state is made up of: [u^ v, w), the body velocities, (p,q, r),

the roll pitch and yaw rates, (^, 0, ^), the Euler angles, (ais, 615), the longitu

dinal and lateral flapping angle of the main rotor, and r/j,, the feedback gyro

system state. The control vector in this framework is different than in the

original more general situation. Here it is made up of: the input to the

longitudinal flapping, the input to the lateral flapping,^^^, the input to

the main rotor collective pitch, and the input to the yaw rate feedback

system on the R-50.

The matrices A G and B € have the following form:

21



A =

0 0 0 0 -9 0 0 0 0 0

0 Yy 0 0 9 0 0 n. 0 0 0 0

Lu Ly 0 0 0 0 Lait I'b,. 0 0 0 0

My 0 0 0 0 Ma,. Mt,. 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 -1

TI
^bi. 0 0 0 0

0 0 -1 0 0 0 ^ai. -1

T/
0 0 0 0

0 0 0 0 0 0 Za,. ^bi. Zyj 0 0

0 0 Np 0 0 0 0 0 Ny; Nr Nrff 0

0 0 0 0 0 0 0 0 0 Kr Krfb 0

0 0 0 0 0 0 0 0 0 1 0 0

B =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ttalj 0 0

J
0 0

0 0 0

0 0 Nue,
0 0 0 0

0 0 0 0

(2.5)

(2.6)

The practicality of this method is that the parameters in the matrices above

are found using flight data. The first step, therefore, is to equip the helicopter

with an onboard computer which can log the pilot's control input and the

vehicle response. The next step is to stage a flight test in which the pilot issues

frequency-sweeping commands to each channel, roll, pitch, yaw, and vertical

and the inputs and vehicle response is recorded. This flight test can also be

carried out with more complicated stages in order to capture the cross-couplings

of channels [ShiOO].

22



Once the flight data is obtained, the parameters can be obtained using a

prediction-error method supported in the MATLAB System Identiflcation Tool

box. This method seeks to minimize the quadratic error between the predicted

and actual position by finding the optimal system model and error model. This

method is extremely sensitive to the initial guess of the parameters, therefore

the parameters are identified in stages, with the first stage consisting of the

angular rate/rotor dynamics. These dynamics only involve a few variables and

are known to be stable, so a consistent solution is readily attained. Now, using

these parameters, the next stage, the horizontal dynamics, are sought. This

process continues until all parameters are obtained. Then the entire process is

iterated in order to fine tune the model [ShiOO].

The main benefit of this method is that our own specific flight data is used

to obtain the parameters in the template. This takes into account all of the

custom flight hardware. Using these methods the A and B matrices were

accurately filled in and the model template is therefore complete and tailored

to our exact helicopter R-50 configuration [ShiOO].

A =

-0.1257 0 0 0 0 -9 -9 0 0 0 0 0

0 -0.4247 0 0 9 0 0 9 0 0 0 0

-0.1677 0.0870 0 0 0 0 36.7050 161.1087 0 0 0 0

-0.0823 -0.0518 0 0 0 0 63.5763 -19.4931 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 -3.4436 0.8287 0 0 0 0

0 0 -1 0 0 0 .3611 -3.4436 0 0 0 0

0 0 0 0 0 0 -38.9954 9.6401 -0.7598 8.4231 0 0

0 0 -1.3300 0 0 0 0 0 0.0566 -5.5105 -44.8734 0

0 0 0 0 0 0 0 0 0 1.8157 -11.0210 0

0 0 0 0 0 0 0 0 0 1 0 0

23

(2.7)



B =
-0.8417 2.8231

-2.4090 -0.3511

0 0

0

0

0

0

0

0

0

0

70.5041

0 0 23.6260 44.8734

0 0 0 0

0 0 0 0

(2.8)

2.2.2 Control Techniques

The general nonlinear model, whose framework was presented in equation( 2.1),

was used to build a nonlinear controller with the techniques of approximate

linearization and approximate state trajectory generation based on differential

flatness [KS98]. Exact input-output linearization fails to transform the system

into a linear and controllable system due to the couplings between the rolling

moments and the lateral acceleration, and between the pitching moments and

the longitudinal acceleration. These couplings are introduced due to the pres

ence of ais,bis and Tt, the torque generated by the tail rotor. Therefore, in

order to use approximate linearization, the coupling terms must be neglected by

assuming that au, and Tp are small. Simulations of this controller, using the

model that the controller was derived from, showed that the approximate lin

earization controller was able to stabilize the system and provide good tracking

performance [KS98]. However, performance of the approximate linearization

controller degraded with increases in uncertainty and external disturbances.

Also, due to the approximation assumptions that have been introduced, the

actual performance in the presence of model perturbation and sensor noise

may deviate from the simulated performance [ShiOO].

24



Linear control theory was also explored. Of course, the helicopter is a

highly nonlinear system. However, many practitioners choose linear control

theory based on its consistent physical performance and well-defined theoreti

cal background. It has been proved that linear control theory is able to stabilize

unstable nonlinear dynamics consistently, as long as the system stays in the re

gion where the linearity assumption holds. Therefore, the deficiency of the

linear approach can be addressed with a coordinate transformation algorithm.

Another difficulty with this approach is that the helicopter system is inher

ently MIMO with couplings among the longitudinal, lateral, vertical, and yaw

dynamics. However, the cross-couplings among these channels are mild and

the SISO approach has been shown to function well in practice. For these

reasons, one approach to flying the first generation helicopters was to develop

the controller using linear control theory and the experimental model shown

above 2.2 [ShiOO].

The linear controller development considers the helicopter system to be

broken into four subsystems: roll, pitch, yaw, and heave. Each channel is then

stabilized using proportional-differential controllers. By studying the damping

responses and the root loci of the different modes, the following controller was

conceived and flown on the first generation helicopter [ShiOO]:

The static stabilizing feedback law is of the general form:

= f(yre/(<)) (2-9)

where the control U/^ steers the vehicle to follow the desired trajectory,

specified by the difference between the current position and the desired position

in the x, y, and 2 directions, and the difference between the current heading,

and the desired heading:

25



yref(t) = {Pxr.,{t},Py„,(t),Pz„i(t), ^re/CO) (2-10)

The resulting specific control equations developed:

where:

Uai — JKp^^p^

Uf)i = KqQ —K-uU Kp^^p^

^©M ~ KyjW —Kp^^p^

Ur^f = —Ki^A^

Uai = the input to the longitudinal flapping

Ubi = the input to the lateral flapping

= the input to the main rotor collective pitch

= the input to the yaw rate feedback system on the R-50

U^V,W =r body velocities

^,0,^ = roll, pitch, yaw Euler angles

^Px = P^actual P^ref

= PVactual PVref

^Pz = P^actual P^ref

^Pxj^Pyj^Pz = feedback gain for Py, Pz- -.01, -.01, .12

•^^Uj = feedback gain for u, v, w: -.02, -.02, .035

Kq, = feedback gain for roll, pitch, yaw: -.55, .55, 1

In this project we utilize the above control law because of its proven robust

ness for the specific helicopter and configuration that we are developing the

embedded software for. For more information regarding the system identifica

tion process, the dynamical model of the helicopter, and the controllers, refer

to [SKHS98, KooOO, ShiOO].

26



2.3 Limitations of the First Generation Sys

tem

With basic autonomous flight successfully demonstrated, the BEAR team then

set off to equip a number of helicopters with a similar flight control system.

Over time, two new and unfamiliar challenges emerged.

1. The first challenge resulted from a widening choice of devices: as the fleet

of helicopters became more diverse, so did the selection of sensors, actua

tion schemes, and computing hardware. Each device provided or received

data at different speeds, used different data formats, communicated using

different protocols, and so on. To take just one example, the actuators of

the first generation helicopter expected PWM signals as input, whereas

the actuators of later helicopters had a serial interface.

The first generation flight control system reflected the desire to demon

strate the feasibility of autonomous flight, rather than elegance of design.

Consequently, the design of the initial system emphasized fast flight com

puter reaction, achieved by means of tightly coupled sensors, actuators,

computer hardware, and embedded software. The tightly integrated flight

control system was not prepared to handle the diverse assortment of new

devices. Inevitably, any change to the original system required an exten

sive software rewrite followed by an extended verification process.

In short, the original embedded software was not written with modularity

in mind. Yet it would be prohibitively expensive to rewrite all of the

software for each particular combination of devices. Instead, we would

like to develop embedded software that is simple to configure, so that new

components can be added or substituted with relative ease.

2. Thesecond challenge resulted from the event-based natureofthe first gen

eration flight control computer. To ensure the fastest possible response,

27



the computer was set up to process the incoming sensor data as soon as

it arrived and to immediately send the control output to the actuators.

As an example of the problems that arose in this event-based system,

consider the following first generation setup. The GPS and INS were

synchronized with each other but not with the control computer. The

GPS sent readings to the control computer at 5 Hz. The INS sent readings

at 100 Hz. The control computer ran the control task at 50 Hz. Because of

the lack of synchronization, the sensor data seen by the control computer

ranged from 0 ms to 10 ms out of date. Due to clock drift, this amount

of time was nondeterministic. Similarly, the servos were triggered by a

clock whose rate was independent of the control computer's clock. Since

the servos were triggered at 23.78 Hz, by the time the actuators used the

control data, these data could be 42 ms out of date.

Unfortunately, the diflferent rates of the sensors, actuators, and computer

resulted in a system whose timing behavior was not particularly easy to

analyze. Consequently, the physical behavior of the helicopter could vary

greatly from the simulation results. The event-based nature of this system

will be further discussed and challenged in Chapter 3.

We have presented several limitations of the first generation helicopter system.

In the next section, we discuss properties that the second generation should

have in order to lessen these limitations.

28



Chapter 3

The Time-Based Control

Philosophy

As discussed in the introductory chapter, this dissertation attempts to connect

the control laws with their implementation by presenting a design methodology

for the implementation of embedded control systems and by using appropriate

testing methods. In this chapter we focus on the background needed for the

first strategy: the design of the embedded software. Here we will explore two

predominant implementation methods for embedded control systems: basing

interactions on events or basing interaction on time. In Section 3.2.3 we support

the decision of using time-based interfaces for automatic control systems. Next,

in Section 3.3 we present extensions to a time-based embedded control system

to further connect the control laws to their implementations and to place higher

level control into this structure. Finally, in Section 3.4 we draw on the concepts

from the previous sections and construct the goals for the second generation

helicopter UAV embedded software.

29



3.1 Decomposition

Complexautomation control systems, which the helicopter UAV is one example

of, almost always require many real-time components that will need to com

municate across well defined interfaces. The complexity of the systems under

study is the reason for this 'divide and conquer' strategy. One of the best

ways to reduce complexity in such a system is to partition the system and then

reduce the subsystem interactions. This strategy suggests that the subsystem

interfaces should be as small as possible [Kop98].

In keeping with the above themes, the first generation helicopter system

was indeed built with many communicating subsystems. The subsystem inter

actions were based on events, as shown in Figure 3.1 and discussed above in

Section 2.3. For example, the 'INS data ready' event causes the INS handler

subsystem to begin and the 'combined data ready' event causes the control

subsystem to run. Every subsystem is triggered by a specific preceding event,

which may occur at any point in time. Looking at the overall system, one can

see that the initial driving events that begin to trigger the software subsystems

are the raw sensor data readings. Therefore, the entire embedded software

system can be seen as a chain reaction entirely based on the various sensor tim

ings. In the remainder of this section we evaluate the role of these event-based

interfaces and consider their replacement with time-based interfaces.

Synchronizes
® IHz .

INS

Triggers

® lOOHz

updates
INS Handler

Triggers
@ lOOHz

updates

Updates @ 1 Hz

GPS GPS Handler

Triggers

@5Hz

updates

Data Processor

Updates

@SHz

Triggers
@SOHz

updates
Controller

Embedded Software

Updates

® 50Hz^ Servos

Triggers
@50Hz

updates

Clock

Figure 3.1: First generation helicopter software system diagram

30



3.2 The Form of Real-Time Interfaces

Earlier in this chapter, we explained that complex real-time systems are often

broken down into smaller subsystems bridged by interfaces. In this section, we

first discuss characteristics of decomposed systems that can be used to compare

different interface strategies [Kop98].

Composability A system is composable with respect to a given property if:

when the property is established at the subsystem level, system integra

tion does not invalidate the property at the system level. Therefore, if you

have a composable system, each subsystem can be tested independently,

greatly reducing the overall complexity.

Reusability When multiple components satisfy well defined interfaces, they

can be exchanged with one another. This allows for the reuse of legacy

subsystems that have been heartily tested and whose inclusion thereby

reduces complexity.

Error Detection As data is passed from one component to another, the par

ticular interface may be able to guard against or detect errors in control

flow or in data format. Subsystem errors can then be detected and con

tained from other subsystem processes.

Schedulability In automation control systems, subsystems need to run con

currently and often on one processor. It is crucial to verify that subsys

tems can be scheduled satisfactorily, although in many cases this proves

a difficult problem.

Jitter Reduction The jitter is the variability of the time interval between

data observation and use. Many controllers are designed to expect a

certain fixed amount of delay between the data observation and the input

of that data to the controller. However, variation in that delay time

is problematic and degrades the control performance. The jitter in a

31



system may be a consequence of many combined factors, but is always

highly dependent upon the interface type.

Stale Data Minimization Here, we refer to the mean time between data

measurement and data usage as the stale data time.

The ideal interface would be designed to enable composable, reusable subsys

tems, to detect errors at the interface level, and to reduce jitter and stale data.

First we will examine how event-based interfaces and time-based interfaces in

corporate the above properties. Finally, we will contrast these two interface

strategies based on their usefulness for automation control systems.

3.2.1 Event-Based Interfaces

An event-based interface bridges subsystems using event information. The for

mat of this event information needs to be specific to the particular subsystems

in question and the temporal properties of the interface also must conform to

the independent timing of each subsystem. Therefore, systems using event-

beised interfaces can be accurately defined as tightly coupled.

Kopetz redefines event-based interfaces as composite interfaces because they

are examples of interfaces in which unidirectional information fiow is dependent

upon the receiving subsystem [Kop98]. An example of this dependence on the

receiving subsystem is where the event information is stored by the interface

in a queue. Then the information consumer must service the queue before

the next event is produced. In our first generation helicopter UAV example,

again referring to Figure 3.1, although the event-based interface does not make

use of a queue, the control subsystem must be ready to input the sensor data

event information and begin control computations. Otherwise the subsystem

producing the event information will be blocked and will not be able to continue

its proper execution cycle. The conclusion is that event based interfaces create

32



a system in which communicating subsystems are mutually dependent.

Due to this mutual dependence found in event-based systems, several of

the interface characteristics are negatively affected, while there is one main

advantage:

• Since subsystems depend on each other, some properties, especially tem

poral properties, verified for one subsystem will not be guaranteed to hold

when the system is combined. These properties may be affected by the

interaction with other subsystems.

• The timing of each subsystem must be tailored to the specific system

setup since the interface does not establish a common timing scheme.

This interconnectedness hinders the reusability of each subsystem.

• Scheduling for event-based systems is accomplished using the infrastruc

ture of the real-time OS. This means that the programmer sets priorities

for different concurrent tasks and analyzes the schedulability by hand.

• In the above paragraph, event-based interfaces were identified as produc

ing a system in which the subsystem sending data is dependent upon the

subsystem receiving the data. This dependence enables errors to prop

agate back from the subsystem receiving the data. In fact, an error in

either the information provider or in the information receiver will propa

gate to the adjoining subsystem [Kop98].

• Jitter is neither reduced nor greatly exaggerated in a well designed event-

based system. Assuming transmission time is minimal in comparison with

sensor output delays and computation times, an event based interface

merely propagates the data from its observation to use without drastically

affecting its variation in arrival time.

• Stale data is potentially optimally minimized, event-based interfaces in

general have a fast response due to the fact that data is relayed across

the interface immediately.

33



3.2.2 Time-Based Interfaces

A time-based interface bridges subsystems based on a strict adherence to a

common clock. In these systems, subsystems run at a certain predetermined

time, as opposed to at the occurrence of an event. Since there is no control signal

crossing the interface, the subsystems execute independently. New versions of

the data simply replace the previous versions without any activity needed from

the receiving subsystem. The receiver fetches the most recent version of the

data from the interface.

Time-based interfaces are better suited for most of the desirable interface

characteristics, but not all:

• Subsystem properties can be validated in isolation since the interface

composition allows each subsystem to execute independently.

• Similarly, subsystem independence maximized subsystem reuse.

• Time-based interfaces build in error detection in two ways. First of all,

they do not propagate errors in the receiving subsystem backwards to

the sending subsystem. Secondly, since it is known a priori when the

program functions should occur, if any transmissions are erroneous in

time the subsystems can detect that error [Kop98].

• Scheduling in time-based systems allows more readily for subsystem ad

ditions and schedule validation.

• Jitter is reduced but not eliminated in time-based systems. Jitter in these

types of systems is mainly a result of sensor inaccuracies in time. In a

time-based system, the subsystem receiving the data has a certain set

period which can bound the jitter if that subsystem replaces no-data

with either a safe input or the previous sensor reading.

34



Time-based interfaces trade off all of the above advantages for an increase

in stale data time. This increase can be bounded and minimized but is

always a feature of the system. The cause of the stale data delay is that

although our software system is time-based, the environment will always

operate on an event basis. Therefore, sensor readings will come in at any

time. In an event-based system, those sensor readings were the events

that triggered their processing, thereby minimizing the stale data time.

However, in time-based systems sensor readings are not processed until

the correct instant in time. Therefore, the time dependence inherently

creates stale data. Please refer to Figure 3.2 for a graphical representa

tion.

Event-based

Service:

<u

> <D
WC/3

1 r 1 '

^

Time

I i

Step C 8

<D
00

Time

Time-based

Service: Stale data delay

Figure 3.2: Stale data delay in event-based systems vs. time-based systems

3.2.3 Comparison of Interface Alternatives

Event-based interfaces require a close interaction between coupled subsystems.

This tight integration does bring the advantages of short stale data times and

ease of construction. On the other hand, event based systems allow for lim

ited composability, reusability, scheduling analysis, jitter reduction, and may

propagate control errors.

35



Time-based interfaces are less complex due to the independence of the sub

systems. This simplicity allows time-based systems to excel in most of the

interface categories. The main trade-off is the increase in stale data time de

picted in Figure 3.2. One other draw back is the comparably greater initial

investment needed to build the interface structure to ensure timeliness.

In the case of automation control systems the trade off is an interesting one.

Here, validation and scheduling analysis are paramount due to the emphasis on

safety. However, control performance is also important. Jitter reduction is a

crucial factor in control performance. Stale data can also degrade control per

formance, even with the use of a control algorithm designed to handle specific

data delays [ABE*'*99]. In this project we focus on validation and scheduling
analysis for control systems. Therefore we choose to explore and implement a

time-based helicopter UAV controller. To mitigate the drawbacks of this choice

we concentrate on bounding the stale data time, shown in Section 6.2.1, and we

employ a time-based language to ensure the timeliness of our control system.

3.3 Extending a Time-Based System

The chosen time-based interface system does require a more difficult setup

process to build the low level control embedded software. However, when this

is accomplished it not only has the advantages discussed above, but also leaves

open simple ways to further explore control performance and to enlarge the

overall scope of the system. In this section we briefly touch on a few possible

extensions for a time-based real-time control system.

36



3.3.1 Scheduling and Control Integration

In a time-based system, information about the control law should influence the

scheduler. There are many types of information that could be passed, with the

most extensive information transfer resulting in the best control performance.

Information Prom the Control Code for the Scheduler

At the most basic level, worst-case-execution-times (WCET's) for the subsys

tem tasks can be used to verify schedulability. A WCET should provide a

prediction that is a tight upper bound of the longest possible execution time.

There are two main components that go into WCET estimation [Kop97]:

Structure-level analysis: determining the longest possible path, or the "crit

ical path", in the code. This analysis requires solving the difficult prob

lem of bounding loop iterations and recursion depths. Both symbolic

execution and integer linear programming have been employed in this

arena [ABE"^99, LMW95]. In order to make structure-level analysis a
more tractable problem, a few restrictions can be imposedon the code [Kop97]:

• No unbounded control statements at the beginning of a loop,

• No recursive function calls,

• No dynamic data structures.

Hardware-level analysis: determining the WCET of one "atomic" block of

object code on a particular computing platform. In general, techniques

such as caching, pipelining, and speculative execution, which improve

average execution time, complicate hardware-level analysis. Assuming

the worst case happens every time results in estimates that are off by a

factor of 10-100 or more, and is a recipe for wasting performance. An

37



extended integer linear programming (ILP) approach has been used in

this area as well [LMW95]. Other approaches are overviewed in [Kop97].

Combining these two analyses provides an estimate for the WCET of a partic

ular piece of code on a particular computing platform.

As an alternative, worst-case-response-time (WORT) can also be used to

analyze schedulability. A task's WORT is the maximum possible time between

when the task was enabled and when it completes execution. The main dif

ference here is that this time includes interference from other (higher priority)

tasks. The algorithm to compute WORT begins with the assumption that an

upper bound is the length of the longest interval in which the processor is con

tinuously busy and no tasks of priority lower than the one to be estimated

execute. A more detailed explanation and the continuation of the algorithm

can be found in [BLMSV98].

The above information, to the extent that it can be calculated, along with

control task periods with period ranges and control task deadlines are typically

transfered to a scheduler. This information allows the scheduler to choose a

scheduling scheme and determine schedulability.

Information Prom the Scheduler For the Control Code

On the other hand, information is rarely passed from the scheduler to the

control code. However, closing the loop in this manner has been proposed in

order to explore the following compelling goals [ABE"'"99]:

• The control algorithm should take into account the availability of com

puting resources.

• When the scheduler is in an overloaded situation the control tasks should

be able to adapt task parameters so that stability and minimal control

38



performance are maintained. That is, the system should be able to dy

namically trade off control performance with CPU utilization.

This integrated control and scheduling approach to embedded system design

can be much more readily explored on a time-based system than on an event-

based system due to the relative ease of timing analyses.

3.3.2 High Level Control and Hybrid Systems Applica

tions

Another extension to time-based low level control systems is the addition of

higher level algorithms.

As applications become more complex, hierarchical control levels are often

employed both to reduce complexity and to allow for validation. For example,

in the avionics domain, hierarchical control structures have been employed for

strategic planning and multi-vehicle flight [KSS'̂ 98]. In [KLMSOl] the c£ise

for using a time-based lowest level is presented. Each of the higher level ap

plications discussed in [KLMSOl] rely on guarantees of execution times that

are available from a time-based lower level. The four higher level applications

discussed are used in the design of large-scale autonomous control systems:

Control Law Synthesis Since high level control laws are designed using in

formation about the vehicle dynamics and lower levels of embedded soft

ware, validation requires guarantees from the lower levels. Interesting

and applicable high level control exploration arecis include least restric

tive control, where a game theoretic approach is used to synthesize a

control law that keeps the vehicle states within a safe flight envelope and

computes the maximal safe set by solving the corresponding Hamilton-

Jacobi equation [LTS99].

39



Control Mode Switching Synthesis A variety of high level tasks can be

completed by appropriately switching between a set of low level con

trollers. One example is the reachability task, where the goal is to reach

a final control mode from an initial one. This control mode switching

problem is shown to be solvable in [KPSOl]. A control mode graph is

formulated, and from there the exploration can be conducted in the se

mantics of directed graphs.

Maneuver Sequence Synthesis The goal of this application is to synthesize

the parameters of a maneuver. An example would be finding a sequence

of fiight modes and the condition for switching between them that would

result in a maneuver that is proven to be within the safety limits of the

particular model.

Routing Sequence Verification By making assumptions about mobility within

a discretized map, the map may be reformulated as a directed graph.

Then the existence of a route from an initial to a final node may be

verified using discrete reachability computations [KLMSOl].

These higher level applications may need to be asynchronous, such as control

mode switching sjmthesis where mode switches are not governed by the global

clock. However, they can work in conjunction with an underlying time-based

level. This project focuses only on the low level control system, but in doing

so in a time-based manner it leaves open the possibility of adding the above or

other higher level applications.

3.4 A Second Generation System

As discussed in Section 3.2.3, in this project we choose to develop a time-

based system whose overall physical behavior can be analyzed and predicted.

Our new helicopter UAV system will utilize the dynamic model and control

40



algorithm presented in Section 2.2 but will strive to ameliorate the faults found

in the first generation system. To this end, we need a unified approach to the

timing behavior of the elements —sensors, actuators, and computer— of the

control system. We believe the key to this unified approach lies in a time-based,

modular design:

A time-based design. The system should be time-based in order to allow

easy analysis of its closed loop behavior. However, the system must

maintain compatibility with existing devices such as sensors, which are

not time-based. A clear boundary between the system's synchronous and

asynchronous elements must be drawn, and provisions must be made to

bridge the gap.

A modular design. The new system must allow the designer to choose from

a diverse mix of sensors, actuation schemes, and controllers. The new

system must allow a configuration of the same software to run on different

helicopters, which may have very different physical dynamics and devices.

41



Chapter 4

Platform-Based Design Methods

Automation control systems, such as the BEAR helicopters, can be designed

with legacy code reuse and safety guarantees, and without deficiencies in sub

system integration. This chapter presents the building blocks that will later be

used to design such a system.

The building blocks we use are those of platform-based design. The main

tenet of platform-based design is that systems should employ precisely defined

layers of abstraction through which only relevant information is allowed to pass.

These layers are called platforms. For example, a device driver provides a layer

of abstraction between an operating system and a device. This layer hides

most of the intricacies of the device, but still allows the operating system to

configure, read from, and write to the device. Designs built on top of plat

forms are isolated from irrelevant subsystem details. A good platform provides

enough useful information so that many applications can be built on top of it.

For example, the C programming language, despite its fiaws, provides an ab

straction of instruction set architectures that is versatile enough to allow many

applications to be written in C.

A system can often be usefully presented as the combination of a top level

42



System

Platform

Stack

Application Space

Architecture Space

Platform

Interface

Figure 4.1: The system platform stack

view, a bottom level view, and a set of tools and methods to map between

the views. On the bottom, as depicted in Figure 4.1, is the architecture space.

This space includes all of the options available for implementing the physical

system. For example, a PC can be made from a CPU from Intel or AMD,

motherboards from a variety of vendors, etc. On the very top is the application

space, which includes high level applications for the system and leaves space for

future applications. These two views of the system, the upper and the lower,

should be decoupled. Instead of interacting directly, the two design spaces meet

at a clearly defined interface, which is displayed as the shared vertex of the two

triangles in Figure 4.1. The thin waist of this diagram conveys the key idea

that the platform exposes only the necessary information to the space above.

The entire figure, including the top view, the bottom view, and the vertex, is

called the system platform stack.

The platform-based design process is a "meet-in-the-middle" approach, rather

than being top-down or bottom-up. Top-down design often results in unim-

plementable requirements, and bottom-up design often results in a mess. In

platform-based design, a successive refinement process is used to determine the

43



abstraction layer. In this process, an initial application design helps to define

a provisional platform interface. This platform interface in turn suggests what

the architecture implementation needs to provide. The architecture space can

then be explored to find an implementation that comes closest to satisfying

both the platform interface and the preset physical requirements. The plat

form interface may need modification, and the application design may need

some rethinking. This process repeats until an appropriate platform interface

has been defined. At this point the platform interface is a reasonable and well-

specified point of contact between the application and architecture spaces. As

a result, new applications may be developed to use the same platform, and new

architectures may be explored for future support of the same platform interface.

As we have seen, the focus of platform-based design is the correct definition of

the platform interface, a process that may involve feedback loops.

44



Chapter 5

A Time-Based Control

Platform: Giotto

Control laws for autonomous vehicles are typically implemented on top of micro

processors using an RTOS and device drivers. These software implementations

of control laws have real-time constraints: the code running the control laws

must execute periodically, or at some minimum rate. However, it is difficult to

ensure that these constraints are satisfied using only the tools provided by the

RTOS and device drivers. The main problem is that the only scheduling pa

rameter available to the programmer is the choice of priority for each task. The

programmer therefore must be concerned with complicated issues of scheduling

such as priority inversion. Furthermore, the programmer is responsible for an

alyzing the overall schedulability of the system by hand. A second difficulty is

that the array of possible inter-task communication schemes supported by the

specific RTOS all require detailed setups. Due to these difficulties the develop

ment of the control laws, and the scheduling of the embedded software tasks are

often constructed entirely in isolation from each other. This results in problems

ranging from transient timing errors to costly but necessary redesigns.

45



In order to ameliorate these difficulties, we introduce a new abstraction

layer which will sit between the RTOS and the functional description of the

control laws. This abstraction layer will provide the control designer with a

more relevant and very simple method for programming the control laws to

meet real-time constraints. However, the control designer must adhere to the

simple guidelines that this abstraction allows. In this way, the abstraction

layer will restrict the design space available to develop the control laws, but

will significantly shorten the time to market and increase the correctness of the

design.

To illustrate this idea using the hourglass platform-based design figure, we

place the possible control laws in the application space on the top, and the

RTOS in the architecture space on the bottom as shown in Figure 5.1. The

proposed abstraction layer makes up the interface between these two views. Ide

ally, this platform interface should pass the timing constraints of the application

downwards, and should pass the performance capabilities of the architecture

instance upwards. On the baais of these constraints, the platform's tools should

be able to determine if the timing requirements of the application can be ful

filled. In this section, we discuss in detail an abstraction layer between the

RTOS and the real-time control laws that is used in the helicopter embedded

software. This abstraction layer is the Giotto programming language.

Giotto consists of a formal semantics [HHKOlb] and a retargetable com

piler. Giotto has already been used to reimplement the control system onboard

a small autonomous helicopter developed at ETH Zurich [KSHP02]. In this

chapter, we first present a brief introduction to Giotto (Section 5.1). We then

discuss the tools that may be used to map a Giotto application to its possible

implementations (Section 5.2). Finally, we compare Giotto with related tech

nologies (Section 5.3). The reader wishing a more detailed introduction should

consult [HHKOla].

46



Platform

Interface

Figure 5.1: The Giotto programming language as a platform interface

5.1 The Giotto Programmer's Abstraction

In this section, we discuss the abstraction that Giotto presents to the pro

grammer. Control applications often have periodic, concurrent tasks. For ex

ample, the helicopter control application runs a measurement fusion task at

a frequency of 100 Hz, and a control computation at 50 Hz. Typically, the

periodic tasks communicate with each other. The mechanism used to imple

ment such communication —whether message queues, shared memory, or some

other mechanism— may vary depending on the operating system. Control ap

plications also need a means to input from and output data to their physical

environment. Finally, control applications often have distinct modes of behav

ior; in two different modes, different sets of concurrent tasks may need to run,

or the same set of tasks may need to run but at different rates. For example, a

robot on a discovery mission may first need to run one set of tasks to navigate

to a location; once that location is found, the robot may need to run a diflFerent

set of tasks to query its surroundings. Giotto provides the programmer a way

to specify applications with periodic, concurrent, communicating tasks. Giotto

also provides a means for I/O interaction with the physical environment, and

for mode switching between different sets of tasks.

47



GPS / ^ GPS (

- INS Fusion • INS Fusion (

GPS r
C>4-H>

GPS

0#-H>
INS Fusion # INS

o>-
Fusion

Control

^ Servos I
Control

—20 ms —10 ms 0 ms 10 ms 20 ms

Figure 5.2: An example Giotto program

Consider the example program of Figure 5.2. The concurrent tasks —

Fusion and Control— are shown as rectangles with rounded corners. Each

task has a logical execution interval. In our example, Fusion logically executes

from 0 ms to 10 ms, from 10 ms to 20 ms, etc., whereas Control logically

executes from 0 ms to 20 ms, from 20 ms to 40 ms, and so on. Each task has

input ports and output ports, shown as black circles. A task's input ports are

set at the beginning of its logical execution interval. During its execution, the

task computes some function, and the results are written to its output ports

at end of its logical execution interval. For example, the input ports of Fusion

are set at 0 ms; between 0 ms and 10 ms, Fusion computes its function; at 10

ms, the result of this function is written to Fusion's output ports.

A Giotto program may also contain sensors and actuators, both of which

are depicted as white circles. Rather than being actual devices, sensors and

actuators are programming language constructs which let the programmer de

fine how to input data to and output data from a Giotto program. Logically,

sensors and actuators are passive: they are polled at times specified in the

Giotto program, and cannot push data into the program at their own times.

Our example program has two sensors, GPS and INS, and one actuator. Servos.

The sensors are read at 0 ms, 10 ms, 20 ms, etc., and the actuator is written

at 0 ms, 20 ms, and so on.

48



Tasks communicate with each other, and with sensors and actuators, by

means of drivers, which are shown as diamonds. In Figure 5.2, the drivers

connect the GPS and INS sensors to the input ports of the Fusion task. They

also connect the output port of Fusion to the input port of Control, and

the output of Control to the Servos actuator. Thus, the Fusion task which

executes between 0 and 10 ms receives its inputs from the GPS and INS readings

at 0 ms. Similarly, the Control task which starts at 0 ms receives its inputs

from the Fusion task which finishes at 0 ms, and writes its outputs to the

Servos actuator at 20 ms.

In order to carry out scheduling and analysis, Giotto does require some of

the information about the control code that was described in Section 3.3.1.

Specifically, the desired period and elusive WCETs for each task must be given

by the programmer.

In this section, we have described the abstraction that Giotto presents to

the programmer. In the next section, we willdiscuss the Giotto compiler, which

transforms Giotto programs into real-time operating system applications.

5.2 Tools to Implement Giotto

Giotto

program

Tasks, drivers,

sensors, actuators

Executable

RTOS

Figure 5.3: Design flow for the Giotto compiler

The platform-based design methodology advocates the use of tools to map

49



from high level abstractions to the underlying architecture. Here, the Giotto

language is the abstraction, and real-time operatingsystems (RTOS) constitute

the architecture. This section describes the Giotto compiler, which maps Giotto

programs to RTOS executables. Just as a conventional C compiler transforms

C programs into object files for an instruction set architecture, the Giotto

compiler transforms Giotto programs into object files for a real-time operating

system (see Figure 5.3).

The input to the Giotto compiler is a Giotto program, together with code

to implement the tasks, drivers, sensors, and actuators. These other pieces

of code may be written in a conventional programming language such as C.

These pieces of code are annotated with worst-case execution times. In effect,

these annotations allow constraints to pass upwards from the architecture to

the platform. The Giotto program also specifies timing constraints that pass

downwards towards the architecture. Using both sets of constraints, the com

piler performs schedulability analysis, which ensures that all deadlines in the

executable it produces will be met. The compiler then generates an object file

which can be run on any RTOS. This object file contains instructions for the

Embedded Machine, which is an RTOS-independent virtual machine [KHOl].

At run-time the Embedded Machine sequences and schedules the tasks, drivers,

sensors, and actuators of the Giotto program.

An RTOS typically supports applications with multiple threads of control,

whether they be called threads, processes, or tasks. In addition, an RTOS

usually provides a means for scheduling these threads, whether by priorities,

deadlines, or round robin. The Giotto compiler aims to make efficient use of

these RTOS services. The Giotto compiler currently uses heuristics for develop

ing a pre-runtime schedule: drivers, sensors, and actuators are executed at the

fixed times given by the Giotto program, whereas tasks are scheduled using ear

liest deadline first. For example, in the program of Figure 5.2, GPS and INS are

executed at 0 ms, 10 ms, and so on, and the deadline of Fusion is always 10 ms

after its start time. Using the techniques of [LH95], the Giotto compiler checks

50



that, in the schedule it has developed, all deadlines are met. Work is currently

underway to enable the Giotto compiler to schedule programs for which its

present heuristics are not sufficient, using techniques similar to [Bla76, CSB90].

5.3 Giotto Compared to Related Technologies

The services provided by Giotto are similar to those provided by other technolo

gies with which the reader may be familiar. In this section, we compare Giotto

to real-time operating systems, the synchronous programming languages, and

the time-triggered architecture, in order to clarify the niche that Giotto is meant

to occupy.

As discussed in section 5.2, Giotto tasks are transformed by the Giotto com

piler to operating system threads. At run-time, these threads are scheduled by

a real-time operating system. Thus, the Giotto programmer's abstraction could

be viewed as similar to the abstraction provided by a real-time operating sys

tem. However, standard real-time operating systems do not provide integrated

schedulability analysis. It is up to the programmer to perform such analysis

on her own. In addition, real-time operating systems commonly provide many

styles of inter-task communication. Some of these, e.g. shared memory, can be

tricky to program. In contrast, Giotto provides only a single communications

semantics, but automates its implementation.

The synchronous programming languages are a family of programming lan

guages that have been under development since the 1980s. Both Giotto and

synchronous languages try to reduce the unpredictable effects of concurrency.

The same general approach is taken by both: all activities of the program may

be dated on a single timeline. Informally, a timeline is a sequential ordering

of the activities of a program. In a traditional multithreaded application, each

thread has its own timeline. These timelines may be interleaved in many pos-

51



sible ways depending on the operating system scheduler and the inputs from

the environment. In contrast, a synchronous program or a Giotto program

specifies exactly one way to interleave the timelines of the program's compo

nents. Thus, programs written in Giotto and the synchronous languages are

more deterministic than those written for traditional multithreaded operat

ing systems. Software implementations of synchronous programs are typically

single-threaded; preemption is not a feature of these implementations. This

makes for potentially inefficient CPU utilization. In contrast, since Giotto pro

grams are multi-threaded, they can incorporate preemption, and thus fuller

CPU utilization.

The time-triggered architecture (TTA) is a hardware and software system

which provides fault-tolerant time-based services. The TTA consists of spe

cialized boards which communicate using its own time-based communication

protocols. In contrast, Giotto concentrates on providing an abstract program

mer's interface. The TTA's time-based nature makes it particularly suitable

for running Giotto. However, Giotto can also be run in other hardware and

software environments. For example, Giotto is run on hardware and software

designed at ETH Zurich, and is also run (without real-time guarantees) on

Linux.

52



Chapter 6

Design of Helicopter UAV

Embedded Software

In this section we discuss strategies for building a helicopter based UAV, with

two main goals in mind.

1. The first goal is to incorporate both asynchronous input devices and a

time-based controller. In Chapter 2 we saw that the sensors send data

at their own, possibly drifting, rates. We also presented the advantages

of using a time-based controller. However, in Chapter 5 we saw that our

chosen time-based controller reads from input devices at its own fixed

times. Thus, combining these components gives rise to a mismatch in

timing behavior which needs to be addressed.

2. The second goal is to build a system that is modular enough to allow one

suite of devices (e.g., a sensor suite) to be replaced by another.

To achieve these two goals we will use the principles of platform-based design

presented in Chapter 4. We will show how the insertion of a layer of abstrac

tion between the devices and the controller can be used to bridge the timing

53



mismatch and allow for the inclusion of different sensor suites.

In Section 6.1 the platform-based design principles are used to specify a

functional description of the helicopter based UAV. In Section 6.2 we describe

the process of implementing the functional description. Finally, in Section 6.3

we discuss how to compare implementation alternatives.

6.1 Building Functional Description using Platform-

Based Design

RUAV
Platform
Interface

Figure 6.1: Platform-based design of helicopter based UAV

In Chapter 4 we explained how to begin the platform-based design process

by separating the system into two views: the application and the architecture.

Here we apply this separation to our helicopter based UAV, which is naturally

seen from two views. From the top, a designer sees the time-based control

54



application. From the bottom, a designer sees the available physical devices,

such as the helicopter, the sensors, and the actuators. Figure 6.1 situates

these two views in the context of platform-based design: the time-based control

application sits in the application space, while the physical devices make up

the architecture space. Following the meet-in-the-middle approach of platform-

based design, we include an intermediate abstraction layer, the UAV platform,

whose top view is suitable for time-based control and whose bottom view is

implementable using the available devices.

We next describe the functionality of the UAV platform.

Interaction with devices. The UAV platform should be able to receive trans

missions from the sensors at their own rates and without loss of data.

Similarly, the platform should be able to send commands to the actu

ators in the correct formats. It will also need to initialize the devices.

Furthermore, the platform should be able to carry out these interactions

with a variety of different sensor and actuator suites.

Interaction with control application. The UAV platform should provide

measurement data to the control application in the format and at the fre

quency dictated by the controller. Similarly, the platform should receive

the commands from the controller at times dictated by the controller, and

immediately send them on to the actuators. The platform should also be

able to support a variety of controllers.

One natural conclusion is that the platform should buffer incoming data from

the sensors, convert sensor data into formats usable by controller applications,

and convert control commands into formats usable by actuators. In Section 6.2

we describe in detail two ways to implement the functions of the platform.

55



6.2 Implementing Functional Description us

ing Platform-Based Design

While the platform-based design methodology isa meet-in-the-middle approach,

it suggests implementing the application first. In this section we begin by dis

cussing the realization of the controller application. This implementation, as

discussed above in Section 6.1, places constraints on the platform. Platform

implementations which meet these constraints are presented next. Though the

platform is constructed to work with a variety of available devices, we work

with only one such architecture instance. Comparing the efficacy of alternate

sensors and actuators is beyond the scope of this dissertation.

6.2.1 Implementing the Controller Application

To attain the benefits of time-based control, presented in Section 3.4, the con

troller application is realized using the Giotto programming language, detailed

in Chapter 5. Section 5.1 presented a rough sketch of the Giotto implementa

tion in Figure 5.2. The two essential tasks are Fusion and Control. Fusion

combines the INS and GPS data using a Kalman filter and is run at a frequency

of 100 Hz. Control uses the output from Fusion to compute the control law

shown in Section 2.2 at a frequency of 50 Hz. The frequencies of these two tasks

are chosen based on the expectations of the control law and on the limitations

of the devices. Each task is written as a separate C function. These C functions

are referenced inside of the Giotto program, which schedules and runs them as

described in Section 5.2.

Unfortunately, the advantages of using such a time-based controller ap

plication —in particular, reduced jitter— trade off with the disadvantage of

increased latency. For example, in Figure 5.2, consider the Control instance

which executes from 0 to 20 ms. The incoming sensor data for this instance

56



GPS

INS

•i

—10 ms

Fusion

—5 ms

Fusion

Control

0 ms 5 ms 10 ms

Figure 6.2: Refined Giotto program

was sampled at —10 ms. At 0 ms the data has been transformed by Fusion

and is ready for use by Control. The output of Control is not written to the

actuator until 20 ms, resulting in a total latency of 30 ms. This is unfortunate,

since a new output of Fusion is available at 10 ms. In fact, the actual execu

tion time of the Control task is less than 10 ms, so Control should ideally be

scheduled after Fusion has made a new output available at 10 ms.

One way to reduce the latency of the program of Figure 5.2 is to increase the

frequency of Control to 200 Hz, so that its deadline reduces to 5 ms. However,

this results in Control being executed unnecessarily often. Instead, we wish to

execute Control only once per 20 ms interval, but to retain the 5 ms deadline.

Achieving this result in Giotto is possible, with a little extra effort. We first

note that each Giotto driver is equipped with a guards which is a condition on

the driver's input ports. If the guard of a task driver evaluates to true, the

task is executed, but if it evaluates to false, the task is not executed. To fix

our problem, we add a counter which is incremented every 5 ms, and we add

a guard to the driver of Control which evaluates to true when the counter

equals 0 mod 4. Control thus executes from 0 to 5 ms, from 20 to 25 ms, and

so on. The refined Giotto implementation with reduced latency is displayed in

Figure 6.2.

57



6.2.2 Implementing the UAV Platform

Having considered a realization of the time-based controller, we now turn to

the UAV platform. In Section 6.1, we discussed the requirements that our

UAV platform needs to fulfill. We now present two possible implementations

of the UAV platform, both of which fulfill these requirements. The first imple

mentation uses one computer, effectively implementing in software the buffer

discussed in Section 6.1. The second uses two computers, and implements the

buffer in hardware.

First implementation: one computer.

Control Computer

Time Based Controller

Shared Shared

Data

Formatting

Library

Actuator

Message

Data Processor

Servos

Physical Devices

RUAV
Platform
Implementation

Figure 6.3: First implementation of UAV platform

The single computer implementation has three main elements, which are

depicted in Figure 6.3.

Data processor. The data processor is an independent process, similar to a

standard interrupt handler. In the sensing case, it responds to the new

sensor data sent by the devices, and saves this data to a shared mem-

58



ory space with the sensor specific data format intact. In the actuation

case, the data processor passes on to the servos the messages sent by the

controller application.

Shared memory. The shared memory contains recent sensor readings, and is

implemented as circular buffers. Data are placed into the circular buflfers

by the data processor, and can be accessed by the controller application.

In this way the controller application can grab the sensor data without

worrying about the timing capabilities of each sensor.

Data formatting library. Within the controller application, the sensor spe

cific data format must be transferred to the format that the control com

putation expects. In the sensing case, the controller application uses the

data formatting library to transform the buffered sensor readings. In

the actuation case, the controller application uses the library to convert

actuation commands into the format expected by the servos.

Recall from Section 5.2 that the controller application comes with guaran

tees about the deadlines of its own internal tasks. These guarantees, however,

do not take into account the time that may be needed by other processes or

interrupt handlers. If more than a "negligible" amount of time is spent in the

other processes, then the timing guarantees of the controller application may

cease to be valid. For this reason, the above design keeps the time needed by

the data processor to a bare minimum. The data transformations necessary

are instead written into the data formatting library and called from within the

control tasks. The benefit of this approach is that the timing guarantees of the

controller application are preserved, as much as possible.

Second implementation: two computers.

Though the single computer implementation results from a platform-based de

sign methodology, one might well argue that it does not adhere to a strict

59



Control Computer

Time Based Controller

GPS
message

INS
message

Data Processor

Data

Computer

GPS

Physical Devices

INS

actuation
message

Data
Formatting
Library

Servos

I RUAV
Platform

I Implementation 2

Figure 6.4: Second implementation of UAV platform

separation of the control from the sensor details. This problem results from the

fact that the format conversion functions are run from within the controller. We

have argued that this is needed to preserve the guarantees on the timing of the

controller application. In a second implementation, both the timing guarantees

and the separation of control from sensor details are maintained by including

two computers on the helicopter. This alternative is depicted in Figure 6.4.

The two computers perform distinct functions:

Control computer. The control computer runs the controller application.

When the application needs the most recent sensor reading, it sends a

request to the data computer. The application also forwards actuator

commands to the data computer.

Data computer. The data computer performs the same functions as the data

processor and data formatting library from the first implementation. It

60



receives readings from the sensors. When the control computer requests

the most recent reading, the data computer replies with this reading in the

correct format. When the control computer sends an actuator command,

the data computer relays the command to the servos in the correct format.

In this implementation the separation of control from sensor details is

strictly followed, and the timing guarantees of the controller application are

maintained. There is a tradeoff, however. The downside to this second ap

proach is an added amount of latency that is introduced between the time the

sensor readings are taken and the time the control laws use the measurements.

This latency is introduced by the communication between the control computer

and the data computer. This increase in the staleness of the data is a common

tradeoff with more structured designs. In the next section, we discuss methods

for a quantitative comparison of the two designs.

6.3 Comparison of Implementation Alternatives

Now that we have two platform implementations the next question is natural:

which one is the best? Ideally, carefully controlled tests could be performed on

the physical system. However the fact that we are working with an automation

control system makes that a difficult proposition:

• Testing is expensive and potentially dangerous. For the helicopter, a

safety pilot must be on hand for every test run in case a takeover is

necessary.

• Tests are difficult to standardize. For example, the winds and GPS signal

strength cannot be controlled.

To ameliorate this problem, we propose the use of a hardware-in-the-loop sim

ulator, which allows for the direct testing of the entire control system. Instead

61



ofmounting the control system onto the helicopter, the controller (often called
the system under test) is connected to a simulation computer. The simulation

computer uses a dynamic model to mimic the exact inputs and outputs of the

sensors and actuators on the helicopter.

RUAV Platform
Interface

Controller
RUAV

Platform
Helicopter
Devices

S.U.T.
Simulation
Computer

(a) HIL simulation for testing controller

Device I/O

Controller
RUAV
Platform

Helicopter
Devices

S.U.T.
Simulation
Computer

(b) HIL simulation for testing RUAV Platform

Figure 6.5: Hardware-in-the-loop simulation: S.U.T. refers to the system under

test

Hardware-in-the-loop simulators [SSOl, Led99] are well suited to take ad

vantage of the abstraction layers provided by platform-based design. The suit

ability arises from the capacity to slide back and forth the dividing line between

the simulation computer and the system under test, as shown in Figure 6.5. To

compare the controller applications, the simulator should act as the platform

interface, and the controller applications should act as the system under test.

To compare platform implementations, the simulator inputs and outputs should

closely approximate those of the actual devices, and the controller application

and platform implementation should be part of the system under test.

Due to the fact that the simulation computer must imitate a physical sys

tem, the simulator must meet two additional constraints:

• The simulator must run in real time. This greatly limits the choice of

operating systems available to run the simulator. It also mandates a

careful selection of the numerical methods used for solving the model's

differential equations [Led99].

62



• The simulated helicopter should faithfully duplicate the dynamics of the

real world helicopter. The parameters of the simulator should be set

to values that have been measured on the helicopter. To check that

the simulator software mathematically implements the behavior of the

physical models, we propose the use of system identification techniques.

The parameters of the mathematical model should be compared with

those obtained using system identification on the input-output behavior

of the hardware-in-the-loop simulator.

The proposed simulation framework, in combination with platform-based de

sign, allow for the development of automation control systems that are modular

and have guaranteed performance.

63



Chapter 7

Hardware-in-the-Loop

Simulation System

Figure 7.1: Graphical flight display

The work of building the hardware-in-the-loop simulation framework and

the accompanying control computer was broken down into two main stages to

aid development. For the first cut, the entire system Wcls developed on a Linux

operating system. This allowed for a simple means of inter-task communication

and network communication, and a robust development backbone. Of course,



Figure 7.2: Flight capable hardware with real-time operating systems

Linux is not a real-time operating system and is therefore unsuitable for the

final implementation. Furthermore, because this is a hardware-in-the-loop sim

ulation, the hardware the controller runs on should be identical to the onboard

computer. After this initial development stage, we ported the software to flight

capable computers running VxWorks. The details of each build are provided

in this chapter.

In Section 7.1 we present components that are pervasively used in both

builds, such as the dynamic model and the simulation framework. Section 7.2

delves into a discussion of the implementation of the development system run

ning on Linux, and Section 7.3 discusses the flnal hardware-in-the-loop simula

tion system implementation.



7.1 General Simulator Properties

7.1.1 The Dynamical Model

The simulator uses the practical dynamic model for the Yamaha R-50 presented

in Section 2.2.1, equation( 2.2). The presented numeric matrices A and B are

the main constituents of this model. The state vector associated with this

model (equation( 2.3)) denotes the quantities in body coordinates, where the

origin is tied to the center of mass of the rigid body. Since we would also

like the simulator to compute the position of the helicopter in tangent plane

coordinates, and the non-linearized orientation, T , the linear model is

supplemented by the first and third sections of equation( 2.1). These two added

nonlinear equations can compute and T from the state variables. They

are shown here in their expanded form:

£
dt

A
dt

• "

yTP
—

^TP

" $' 1 sin($)tan(0) cos(<J>)tan(0) P

e = 0 cos($) —sin($) q (7.1)

0 sin(<>)/cos(0) cos(^)/cos(0) r

cos 'I' cos © —sin ^ cos $ + cos sin © sin ^ sin ^ cos $ H-cos sin © cos

sin ^ cos © cos cos ^>+ sin sin © sin $ —cos sin $ + sin ^9/ sin © cos $

— sin © cos © sin $ cos © cos $

U

V

w

(7.2)

The concatenation of these model equations make up the dynamic model

that the simulator uses. With these additional state variables: the nonlinear

orientation angles (^, 0, ^), and the position {x^^, 2/^^, the final

dynamic model state contains 18 elements.

66



7.1.2 The Simulation Framework

The original idea was to use the Simulink toolbox from MATLAB to create the

simulator, and to translate it to C code using Real-Time Workshop. In general

terms, the Simulink simulator was made up of one feed-through S-function

containing the diflFerential equations of the above model, and one integration

step. The Simulink block diagram is displayed in Figure 7.3.

C±>
fxu xdot ^ 1

s
w

S-Function Integrator

>CD

Figure 7.3: Diagram of simulator in Simulink blocks

The main problem with this approach was that we wanted the generated

C code for the simulator to be able to interact, using the network, with a

controller process. These input/output requirements ended up necessitating

various modifications, or hacks, within the Real-Time Workshop framework.

Even with the extensive I/O patches, the combination of Simulink with Real-

Time Workshop proved to be too inflexible for our purposes.

After the failure of the tidy approach presented by Simulink and Real-Time

Workshop, various simulation techniques were weighed. The most important

characteristics necessary for our application were that the simulator framework

be:

• straightforward

• flexible

• eflScient

67



• portable to a real-time operating system

• convenient.

The choice that maximized the above characteristics was to custom build the

simulator with hand written C code. Our C implementation makes use of a

numerical recipes software package. The chosen package provides a suite of

C functions that provide the programmer with a practical and efficient means

of implementing mathematical tasks [num92]. This package aims to make the

functions portable across different operating systems and different compilers,

which makes the job of porting between Linux and VxWorks easily possible.

In fact, the programs are "guaranteed" to run without modification on any

compiler that implements the ANSI C standard. The chosen package does

require a strict adherence to a rather cumbersome definition of arrays and 2-

dimensional arrays, but this is a small price to pay in return for simplicity and

efficiency.

7.1.3 ODE Solution Methods

The main use of the numerical recipes package is to solve the ordinary differ

ential equations of the dynamic model so that the state vector can be updated

based on the new inputs to the system at each time step. This objective boils

down to an initial value problem where the starting point of the state variable

Xi is given and it is desired to find some final point Xf or some discrete list

of points (i.e. at tabulated intervals). All solutions to this pervasive initial

value problem are based on the same idea: the dx's and the dt's are thought

of as finite steps Ax and At. Now one can multiply by At, algebraically for

mulating the change in the function as a result of stepping by one "stepsize"

At. A good approximation can be achieved with this methodology by making

the stepsize very small. The simplest and most literal implementation of the

above description is known as Euler's Method^ which makes use of the following

68



equation:

Xfi^l = Xji + ^tf(tfii Xji) ('̂ •3)

This method, unfortunately, is too simple to achieve a practical approxima

tion. The main problem is that the formula is asymmetrical in that it advances

the solution through an interval in time, but only uses the derivative informa

tion dx recorded at the start point of the interval. Instead, other methods use

the idea of a "trial" step to the midpoint of the time interval. The values of t

and X are again evaluated at this midpoint and the combined set of information

produces a more accurate total step across the whole interval. A very widely

applicable and generally efficient algorithm by the name of Runge-Kutta builds

upon the simple Euler framework in this manner. The Runge-Kutta method

propagates a solution over an interval by combining the information from sev

eral Euler-style steps. The information attained is then used to match a Taylor

series expansion up to some higher order. The classical fourth-order Runge-

Kutta formula can be expressed as follows:

ki — ^tf(tfi,Xji)

^2 — Af/{tji H —j

f A At k2.kz = At/(t„-f-—,a:„ + y)
A:4 = Atf(tn -\-h,Xn + kz)

k\ ko kz kA ^ ^
3^n+i = 0(At ) (7.4)

It is apparent from the above equation that the fourth-order Runge-Kutta

method requires four evaluations of the function per step size At.

Other popular solutions include the Bulirsch-Stoer method and predictor-

corrector methods. These rely more heavily on past data and are therefore

69



suitable for a smaller class of problems. They are, however, more efficient for

problems that fall within their domain.

For solving ordinary differential equations in real-time, Ledin recommends

the use ofalgorithms which use a fixed step size and require inputs for derivative

evaluation that are available at the current time or earlier [Led99]. The sim
plest algorithm satisfying these constraints is the aforementioned Euler method.

A more accurate method that is apparently widely used within the real-time

community is the Adams-Bashforth second order algorithm. This algorithm

uses both the current frame's derivative, and the previous frame's derivative.

Unfortunately, numerical C recipes for the Adams-Bashforth algorithm are not

commercially available, and the Euler method is not suitable for the reasons

discussed above.

The problem with using the Runge-Kutta algorithm for real-time work

stems from the fact that the Runge-Kutta assumes that a derivative can be

taken at any instant in between time steps. However, in a real-time environ

ment, the data might not be ready for sub-time step evaluation. To deal with

this complication, we implement a modification of the Runge-Kutta algorithm

which is compatible with real-time inputs. In our implementation we approxi

mate the sub-time step derivatives by using the most recent control data.

7.1.4 Numerical Recipes in C

The numerical recipes package provides a simple fourth-order Runge-Kutta

function which carries out one classical Runge-Kutta step on a set of n dif

ferential equations. Therefore, we input the values of the independent state

variables, and we get out the new values which are stepped by a stepsize

of At. The function also requires as input a function derivs that states

the differential equations in a particular format. The function declaration is

shown in Figure 7.4. Given values for the variables x[l. .n] and their deriva-

70



void rk4(float x[], float dxdt[], int n, float t, float At,

float xout[], void (*derivs) (float, float [], float []))

Figure 7.4: Numerical Recipes fourth-order Runge-Kutta function

tives dxdt [1. .n] known at t, this function uses the fourth-order Runge-Kutta

method to advance the solution over an interval At and return the incremented

variables as xout[l. .n]. The user supplies derivs(x,t,dxdt) which returns

derivatives dxdt at t.

7.2 Development System

The first build of the hardware-in-the-loop simulation framework would be more

accurately described as a software-in-the-loop simulation framework. The two

halves of the framework: the controller vs. the simulator, both executed on

a Linux operating system and communicated via network. The UDP socket

interface was chosen as the network connection type because it implements a

simple transfer of data without handshaking routines or re-send stipulations

that would be absent on the actual helicopter.

7.2.1 Controller

The control law presented in Section 2.2.2 is the algorithm that is implemented

in this build. This control law is realized using a simple Giotto program and

the initial platform implementation. Since we are using the initial platform

implementation, the controller is contained in one computer and a light weight

data processor is included.

71



Giotto Program

As presented in Chapter 5, realizing a control law by writing a Giotto program

requires writing the task functions, sensor and actuator ports, and drivers in

a host language, here the C language. Each of these bits of code can then be

combined by the Giotto semantics to formulate a whole program that executes

as desired. We will now take a more in depth view of each component that

makes up the Giotto program.

Sensor Port. The sensor port is where data enters the control process. Our

implementation uses a static variable to allow for initialization procedures

to be run only once. These initializations open for reading the circular

buffer containing the sensor data which is sitting in shared memory space.

Next, the sensor port code calls read-sensor-buffer and stores the re

ceived data at the local memory address provided to the sensor port

function as an argument.

Drivers. The drivers connect the sensor ports to the input ports of tasks. They

also connect the output ports of tasks to the input ports of later tasks,

or to actuator ports. Therefore, a driver function is needed to join the

sensor port described above, to the input port of the control task. The

driver could perform some minimal data transformation, however since it

logically executes in zero time, it is best to keep the driver responsibili

ties to a minimum. In our code, the drivers simply throughput data by

copying it from their input to their output arguments.

Tasks. The tasks are the functions that Giotto will schedule. In the first

build there was one Giotto task, the control task. The input ports of

the control task were connected to the output from the sensor by the

throughput driver. The control task first computes the current desired

trajectory, yref(t), discussed in Section 2.2.2. The desired trajectory is

based on the current iteration of the control loop since the maneuver we

72



demonstrate is an upward spiraling square motion. This trajectory is

then used by the control law shown in equation( 2.11) which outputs the

control directive. This control command is stored at the output argument

of the control function.

Actuator Port. The actuator port in our Giotto program is connected to the

output of the control task through a throughput driver. The actuator

port also uses a static variable to allow for singular initialization, this

time of the network socket. Then the actuator port sends the control

directive directly over the network to the simulation process.

The Giotto program code ties all of these C functions together, and allows

for the description of the task schedule. The Giotto code for the first build is

displayed in Figure 7.5.

UAV Platform

The missing piece of the controller process at this point, is how the sensor

data ends up in the shared memory circular buffer where the sensor port of

the Giotto program reads from. This function is accomplished through the

use of the UAV platform. Recall from Section 6.2.2 that the data processor is

designed to be as lean as possible so that it will not bias the Giotto compiler's

count of available CPU time for scheduling Giotto tasks. For this reason, the

data formatting is not done inside of the data processor. Instead separate data

formatting C functions are provided as a library to the control programmer to

call inside of the functions scheduled by Giotto.

Here, we construct the data processor described in Section 6.2.2 as a server

process that simply waits for sensor data to be sent over the network and then

immediately places that data in shared memory space. This data processor

first initializes each of the network sockets (one for GPS data and one for INS

73



// Sensor ports

sensor

c_input sensor_inputs uses c_get_sensor_inputs;

// Actuator port

actuator

c_output actuator_outputs uses c_send_actuator_outputs;

// Task output ports

output

c_output control_outputs := c_zero;

// Task declarations

task control(c_input control.inputs) output (control.outputs) {

schedule c_control_task(control_inputs, control.outputs)

}

// Driver declarations

// Input driver for control task

driver control_driver(sensor_inputs) output (c.input control.inputs) {

if c.trueO then c_inputs_to_inputs(sensor_inputs, control.inputs)

}

// Actuator driver

driver actuator.driver(control.outputs) output (c.output outputs) {

if c.trueO then c.outputs.to.outputs(control.outputs, outputs)

}

// Mode declarations

start normal {

mode normalO period 100 -C

actfreq 1 do actuator.outputs(actuator.driver);

taskfreq 1 do control(control.driver);

}

}

Figure 7.5: Giotto code implementing the helicopter control laws

74



data) and each of the shared memory circular buffers. It then uses the poll

function in order to read data from either socket as soon as it becomes ready.

That data is then copied to the appropriate shared memory space.

7.2.2 Simulator

The first simulator build made use of the 18 state dynamical model covered in

Section 7.1.1 and of the modified numerical recipes fourth-order Runge-Kutta

function introduced in Section 7.1.4. The main elements of the simulator are

five separate processes that communicate with each other via shared memory.

These elements are:

• Plant process - computes solution to dynamical model ODE's.

• Server process - listens for incoming control directives.

• GPS process - outputs data to controller with format and rate of GPS

card.

• INS process - outputs data to controller with format and rate of INS

card.

• Display process - outputs data to separate display computer.

We also built a couple of supporting libraries. The astute reader may notice that

these libraries are also used by the controller's C functions and data processor

described in Section 7.2.1.

• Circular buffer library - implements shared memory as well.

• Network UDP sockets library.

75



Control Computer

UDP

Server GPS INS

Process Process Process

Shared
Mem

Plant

Process

Plant

Outputs
Shared

Mem.

Simulation Computer

Figure 7.6: Block diagram of simulator processes

This section will focus only on the five main processes and leave the detailed

implementation of the supporting libraries to the imagination. While reading

through the remainder of this section, refer to Figure 7.6 for the road map of

the interconnecting structure.

Plant Process

The plant process communicates only via shared memory and does not send or

receive any data via the UDP network sockets. Figure 7.6 displays the plant

process as sandwiched in between the server process and the INS and GPS

processes, each of which communicates via network with the control computer

as well as via shared memory with the plant process. Therefore, the first task of

the plant process is to use the circular buffer library to initialize its connection

to both its input buffer and its output buffer.

After the initialization phase, the plant process enters an infinite loop that

repeats every TIME-STEP in which its main responsibilities are fulfilled:

76



1. The inputs from the controller are copied into local memory from the

shared buffer space utilizing the circular buffer library. If there is no data

in the shared memory buffer, then the control directives are set to 0 for

this time step.

2. The main plant process now calls a supporting plant function that takes as

input the control directives and updates the state variable using numerical

recipes in C by one TIME-STEP.

This supporting plant function keeps an internal static version of the

state. The internal state is made up of the expected 18 elements, and

concatenated with the 4 control inputs. The concatenated 22 element

array then contains all of the information necessary to formulate the ODE:

dx/dt = /(x, t). The details of the exact ODE are written according to

the numerical recipes standard in the function derivs as explained in

Section 7.1.4. As covered in Section 7.1.3 the Runge-Kutta modified real

time solution uses the same 4 control inputs from the initial point in time

throughout the calculation. The updated 18 element state is returned by

the supporting plant function through its second argument.

3. The main plant process then writes the updated 18 element state into its

output shared memory buffer using again the circular buffer library.

4. Finally, the process sleeps for one TIME-STEP, through the use of the

POSIX compliant nanosecond command.

Notice that since the main calculations take place in a separate supporting

function, the timing of this loop is fairly accurate. Of course, since this is not

running on a real-time operating system, timing analysis is close to impossible.

77



Server Process

The plant server process receives data from the control computer over the

network, using UDP sockets, and places that data into shared memory so that

the plant process, described above, can retrieve the data. The data in question

here are the four control directives that the control computer outputs. The

program structure is as follows:

1. First the server's output buffer, the shared memory block between the

plant's server and the plant process, is initialized using the circular buffer

library.

2. Next, a UDP server type socket is initialized using the network UDP

sockets library.

3. After initializations, the server process enters its infinite loop.

4. Within the loop, the first call is a read from the UDP socket. This read

is a blocking call, so the server process timing is dictated by the control

computer's outputs. This point is the main reason that the plant process

and the server process are separate: the plant process must iterate every

TIME-STEP while the server process iterates whenever data is available

from the controller.

5. Finally, the loop ends with a call to write the inputs from the previous

UDP read into the shared memory space.

GPS Process

Instead of sending the controller the raw state vector, we'd like to send an exact

replica of the real GPS card's outputs. This desire incorporates two main goals:

1. Sending the data at the exact times that the GPS card would send data.

78



2. Sending the same types of data (i.e. velocity vs. position) with the same

formats (i.e. coordinate frame choice) that the GPS card would send.

The types and formats of this data might differ from the data provided

within the state variable of the dynamical model.

The first goal above is the main motivator for providing a GPS process that is

separate from the plant process itself. With the use of a separate process, the

data transfer timing can be independent of the TIME-STEP used to solve the

equations of the dynamical model. The correct GPS data types and formats

can be calculated using the most recently updated state vector.

The GPS process first needs to initialize its input and output spaces. The

input to the GPS process is the updated state vector that is waiting in shared

memory after being calculated by the plant process. The output space is the

UDP client socket that will send information to the control computer. After

initializations, the main loop is entered:

1. First, the shared memory space is read to acquire the latest updated state

vector.

2. Next the state vector is used to compute the exact data type and format

of the GPS card that is being modeled.

3. The GPS output data is then send over the UDP sockets to the control

computer.

4. Lastly, the GPS process uses nanosleep to delay before the next period

of the loop begins. The delay chosen should correspond to the period of

the actual GPS card in the configuration that it will be used, and not

to the other simulator processes. In this step, a random but bounded

additional time delay could be added to further emulate the function of

the real GPS card.

79



INS Process

The INS process is functionally identical to the GPS process described in Sec

tion 7.2.2. The only difference is that in this case the data types, formats, and

timing of the INS, not the GPS, are to be emulated.

Display Process

In order to properly view the working combination of the Giotto controller,

platform realization, and simulation process, the motion of the simulated heli

copter is communicated via network to a graphical flight display program where

a 3-D helicopter performs on screen. Figure 7.1 displays a screen shot of this

GUI.

The simulator needs a separate process to send the necessary data to the

display computer at a rate bounded by the display computer. This display

process is very similar to the GPS and INS processes. They all initialize the

same type of input and output spaces: the shared memory containing the

latest updated state vector and a UDP socket this time communicating with

the display computer. Within the main loop the display process reads from the

shared memory, sends the data needed by the display computer over the UDP

socket, and sleeps until the begin time of its next period.

7.2.3 Using the Development System

The development system did go through many iterations, but was finalized as

discussed throughout this section. To run the system, each process must be

started individually:

Controller side On the control side the previously compiled Giotto program

80



is run on the e-machine. The data processor must also be started on the

same computer with a call to its main.

Simulator side On the simulator side all of the mentioned processes: the

server, GPS, INS, plant, and display, must be started on the same com

puter.

Display computer The display GUI on the display computer must be started

before the simulator has begun for the most robust results.

7.3 Fined Hardware-in-the-Loop System

After completing the development system, the next research effort was to port

the controller process and platform implementation to the computer which will

fly on the helicopter and run a real-time operating system. This control com

puter will then be the flnal embedded control system and is the hardware that is

'in-the-loop' within the simulation framework. As discussed in Section 6.3 the

simulator process also needs to run on a real-time operating system. Therefore,

both pieces of the hardware-in-the-loop simulation framework, the control sys

tem and the simulation system, have been ported to the flight capable hardware

running a real-time operating system shown in Figure 7.2. The hardware-in-

the-loop simulator can be used to examine the comparative performance of the

second platform implementation as well as alternative control algorithms. In

addition, the chosen Giotto controller and platform realization that reside on

one or more flight computers can be flown on the physical helicopter with only

sensor and actuator suite specific alterations.

In this section we discuss only the changes from the development system

that were needed to re-build the hardware-in-the-loop simulator and control

system on a real-time operating system. In fact most of the processes, tasks,

and libraries we were able to reuse almost entirely. The reader should assume

81



the same basic structure and coding for this final system as for the development

system, except for the changes mentioned in the sections below.

7.3.1 Real-Time Operating System Configuration

The real-time operating system VxWorks was chosen for use in this project due

to its relatively wide-spread industrial use and competent customer support.

VxWorks falls into the class of operating systems which require the use of sepa

rate development and target computers. The target computer is the computer

that will boot the VxWorks image and run the real-time programs. The de

velopment computer is where the VxWorks image resides (and can be altered

and recompiled) and where the real-time code is written. The target computer

therefore boots the VxWorks image residing on the development computer over

the network upon startup.

In our case there are two identical target computers (Figure 7.2) and one

development computer housing one VxWorks image. One of the target com

puters is used as the simulator while the other is used as the controller. The

development computer, meanwhile, stores the code used to run both the con

troller and the simulator, and through the use of a GUI, the user can selectively

download that code. Also within the GUI there are shells which allow the user

to run the code on the target computers.

Adding components, such as a high speed serial card, to the target computer

requires a VxWorks driver. This driver is basically a set of patches for the

VxWorks image. In this project we wish to utilize a high speed serial line

between the control and simulation computers because this is the same mode

of communication which will be used between the physical helicopter UAV and

the embedded control computer. This addition of the high speed serial card

and driver proved to be difficult but ultimately not impossible. The serial

connections discussed in the rest of this section refer to these high speed serial

82



lines.

If VxWorks is the real time operating system that runs on the target com

puters, then what is Tornado? Tornado is the software system that runs on the

development computer and allows the user to write programs, download them,

and run them on the target computer. Within tornado there is a very specific

file system setup that must be correctly configured [Win99]:

• A project consists of a group of source code and include code files and

binaries that make up one cohesive application. A project can be compiled

to a single object file and downloaded to a target computer.

• A toolchain is a set of cross-development tools used for building for a

specific target processor. Each project is associated with one toolchain.

The toolchains are based on GNU.

• A workspace is a grouping of one or more projects that allows for asso

ciating related applications. Every project must be built and maintained

inside of a workspace.

In our case, two projects are needed. One will be compiled and downloaded

onto the control computer target, the other onto the simulation computer tar

get. However, some files are used by both sides: the communication libraries

(UDP and serial), the include files that specify the types of the data that is

sent from one computer to the other, and the circular buffer shared memory

library. In these cases, we have set up the projects so that they both point to

the same files. However, the simulator specific and controller specific code is

kept separate in the two different projects.

83



7.3.2 Changes Needed for Real-Time System

Communication

Besides the difference in operating systems and hardware, the most major

change between the development system described in Section 7.2 and the final

real-time system was the communication scheme between the control computer

and the simulation computer. Instead of using a UDP connection written for

Linux, we wanted the two computers to interact through the high speed se

rial lines that the physical actuators on the helicopter would use. Configuring

these serial cards and the VxWorks compatible software to run them was more

difficult than expected.

A new library for serial communications was written to replace the UDP

socket library used on the Linux development system. Unfortunately, VxWorks

does not support a read command that blocks until the specified number of

bytes has been read. It also, by default, translates new line characters sent

over the serial into two characters: new line and carriage return. These two

obstructions were overcome in the serial communication library.

Another major change necessary was the communication between tasks in

ternally on each computer. In the Linux development system, this communi

cation was handled by setting up shared memory in the circular buffer library.

With VxWorks, any address can be accessed by any task (which is not the case

in Linux or Unix), so a global variable inherently sits in 'shared memory'. This

fact simplified the circular buffer library's creation of shared memory quite a

bit.

Finally, the UDP socket library remained relatively intact. Instead of being

used for communication between the simulator and the controller, in this version

the socket library is only used for communication between the simulator and

the display program.

84



Timing

The Giotto language would ideally run identically on any computing platform,

therefore making the switch between Linux and VxWorks transparent. Unfor

tunately the current Giotto compiler and e-machine has only been developed

for Linux at this point in time. Therefore, we needed to write a program that

would function identically to the Linux Giotto program.

Timing in tasks other than in the Giotto program W2is altered. In the devel

opment system we used fairly inexact methods such as embedding a nanosleep

statement within a loop so that the function of that loop would run at about the

correct frequency. For example, the GPS function discussed in Section 7.2.2

completed several tasks requiring variable amounts of time, and then called

nanosleep for the exact amount of time desired to create the correct frequency.

This does not accurately create the correct frequency due to the time needed

to complete the proceeding tasks. In the real-time system we correct these

inaccuracies by using both a GPS-main function and a GPS function:

GPS-main This function handles initializing the input and output spaces for

the GSP function. It then spawns the GPS function. Finally it enters

an infinite loop where it sends a semaphore message to the GPS function

and then uses nanosleep to delay for the correct amount of time. Since

no other computations are done within this loop, the semaphore is sent

at regular intervals and the delay time is therefore much more accurate.

Furthermore, this task can be assigned a high priority so that its timing

will not be altered by other task's preempting it.

GPS This function enters a loop and then waits on the semaphore sent by

GPS-main. Upon receiving the semaphore it completes the same steps

one, two, and three as the GPS function in the development system,

utilizing serial instead of UDP sockets.

85



A similar method was also used for the INS and plant processes.

7.3.3 Sensors

In the real-time system we incorporated realistic data types. This included

changes to both halves of the system, the HIL simulator and the Giotto con

troller.

Sensors on Simulator Side

The sensor processes on the simulator, GPS and INS, were discussed as part of

the development system in Section 7.2.2. In that description we concentrated

on the timing of the sensor processes. In the real-time system we incorporated

the correct data types to be output from the sensor processes. Therefore we

achieved both goals for the GPS and INS processes, independent and realistic

timing, and correct output data.

The GPS outputs the positions: and 2:5 in spacial coordinates, both

in the flight setup and in our real-time HIL simulator.

The DQI-INS offers many modes of operation. In fact this instrument in

corporates a Kalman filter so the outputs of the DQI-INS are already updated

with GPS data. Therefore, the first generation flight code could take the veloc

ity data from the DQI-INS and use it without updating with another Kalman

filter. The Kalman filter used in the flrst generation controller system was only

to obtain and update position estimates. Again, we use the same data types for

the simulated INS to output as the DQI-INS output in the flight setup. Those

are: the pre-updated velocities in spacial coordinates, Us, Vs, Ws; roll rate, pitch

rate, and yaw rate, p, q, and r; and roll, pitch, and yaw, ©,

86



Sensors on Controller Side

The position controller shown in equation( 2.11) uses the velocities in body

coordinates, uj,, uj,, the roll, pitch, and yaw, <&, ©, and the positions in

body coordinates, x^, yb, Zb. For this controller we need to implement a Kalman

filter on the controller side in order to accurately obtain the positions. To run

the velocity controller shown in equation( 8.2), the positions are not needed for

control. Therefore, to simply run this controller we do not need an additional

Kalman filter, since its inputs are updated by the DQI-INS, and similarly by

our HIL simulator. However, in most cases we wish to do position control and

need to know accurately what position the helicopter is at.

There are two main stages of the Kalman filter used for position estimation.

The first is the estimation step, when the DQI-INS data is available but the

GPS data is not available. The second stage is the update step, when the GPS

data becomes available it is used to update the position estimate since it is a

more accurate sensor.

Estimation Step In this step the position is estimated from the data output

by the DQI-INS and several of the matrices for the update step are computed.

The task starts by reading in the spacial velocities from the DQI-INS, Vg =

[us Us ly^,]. Then the new position estimate is computed:

Xnew = Xoid + Vg *time - step

Also Ppre is updated:

P pre ~ Ppos ~l~ Qd

87



Update Step In this step the main Kalman equations are calculated and the

updated position is calculated using both the predicted position estimates and

the position data output from the GPS.

First, we calculate K:

-1K —Ppref ' (Ppre d" I^d)

Next we calculate P pos-

Ppos = Ppre • (I - K)

Finally we calculate the updated position:

^new ~ Xold "h K • (xqpS ^old)

These two steps are computed inside the fusion Giotto task.

7.3.4 Final Simulation System and Future Work

The final real-time control and simulation system is described in this chapter.

It strives to achieves the goals for a second generation helicopter UAV software

system stated in Section 3.4. The use of Giotto for the controller establishes the

time-based structure we chose to utilize. The use of the UAV platform outlined

in Section 6.2.2 and described in detail in Section 7.2.1 helps to achieve the

second goal of modularity. Meanwhile the controller software runs on a real

time operating system and on flight ready hardware. Therefore, as per the

reason for using a hardware-in-the-loop simulator, the new embedded software

system is only a few steps away from fiight.

88



In addition to readying the controller software for flight, the hardware-in-

the-loop simulator can now be used to evaluate and explore embedded software

implementations. For example, how much does jitter in a standard controller

really degrade control performance? These types of questions cannot be an

swered with uncertain and dangerous flight tests. Another example would be

to compare the alternative UAV platform designs presented in this disserta

tion with respect to their control performances. Multi-modal and multi-vehicle

flight can also begin to be explored using this framework.

Adding Complex Control Laws

In the future, the low level control laws that were used in this work may be

used as a basis for more complex, higher level controllers. Of greatest interest

would be the addition of a regression learning controller. The draw of this

controller is that it allows for aggressive maneuvers without requiring an all

encompassing, highly accurate nonlinear model. Instead this controller learns

the control parameters by using flight test data and a method that relies on

the Bellman equation and Bayesian regression. Adding this controller into the

Giotto control framework should be a simple operation since it was developed

to work with the low level control law currently in use.

89



Chapter 8

Experimental Results

Numerous test flights have been performed by 'flying' our Giotto and UAV

platform embedded control system on the hardware-in-the-loop simulator.

8.1 Velocity Controller Performance

In one series of test flights we conflgured the control task, which runs from

within the Giotto program (Section 7.2.1), to instruct the triangular flight

pattern shown in Figure 8.1. The control laws used for this test run require

the reference, or desired states, be the velocities in body coordinates (using

the North, East, Down conflguration) and the heading. This control law is

identical to the one shown in equation( 2.11) except that it commands velocity

and leaves out the position portions:

Yrefi^) —(^re/j ^^re/) ^re/5 ^re/) (^-1)

90



Figure 8.1: Velocity controller flight pattern

Ky^y

KqQ Ky^y

~ Kyj^yj

Ur^f = —

The triangular pattern consisted of a repetition of the following modes of

flight:

Takeoflf : Flight in the forward and upwards directions at a 45 degree angle,

(recall that upwards velocity is negative in this coordinate system).

Flight : Flight in the backwards direction with no heading change.

Landing : Flight in the forwards and downwards directions at a 45 degree

angle.

The desired velocities and heading references are displayed in Figure 8.2. The

next figure(8.3), displays the actual velocities and heading output by the hardware-

in-the-loop simulator during a real-time test flight. By comparing the figures,

one can conclude that the simulated helicopter follows very closely the desired ,

91



references. This result attests to the accuracy of our embedded control system

in implementing the control laws and to the usefulness of the hardware-in-the-

loop simulator.

1.5

5» 0.5

S -0.5

•1.5

Desired Outputs

Forward Takeoff Mode Backward Flight Mode
Forward Landing
Mode

Time

•vel(u)

•vel(v)

vel(w)

-heailing

Figure 8.2: Desired velocities and heading

The next four figures take a closer look at the triangular test flight results.

This flight pattern calls for the helicopter to always have a desired sideways ve

locity and heading of zero. On the other hand, the desired velocity downwards

is first negative, then zero, then positive as the helicopter lands. The forward

velocity also undergoes change, starting positive, then turning to negative dur

ing the backwards flight, and resuming positive during the landing.

Figure 8.5 displays both this changing desired forward velocity, and the

92



1.5

? 0.5

S -0.5

•1.5

Simulated UAV Outputs

A1 >1—

L
1

I r
Forward Takeoff Mode 1 Backward Right Mode

1 Forward Landing
J Mode

M *j *

v/

Time

•vel{u)

"vel(v)

vel(w)

"heading

Figure 8.3: Output velocities and heading from HIL simulator

actual forward velocity output by the HIL simulator. Here we can see that the

system response is fairly accurate in terms of the final value and the damping.

Figure 8.6 displays the changing desired downwards velocity as compared to

the actual downwards velocity. This response is less accurate with respect to

the final value, but exhibits a shorter rise time.

The two remaining Figures, 8.4and 8.7 display the actual sideways velocity

or heading with a desired velocity and heading of zero. Both of these variables

exhibit peaking directly after the helicopter switches flight modes. However,

the changes in heading are of a much smaller magnitude than the changes in

sideways velocity.

93



These data only begin to illuminate the possible utility of the hardware-
in-the-loop simulator. For starters, flight mode switching anomalies can easily
be compared between competing controllers. Furthermore, without too much

difficulty, this simulation framework could be put to work simulating multiple
helicopters flying in formation.

0.1

0.08

0.06

0.04

0.02

-0.06

•0.08

VelocitySideways

1

A ft 1
\ M i

A \ - /1 j
l\ 1 ^ 1

r\l

1/ ^\J

1/ !
V V I

Forward Takeoff

.ja

V

Backward Flight Mode
^

Forward Landing |
^ Mode . 1

Time

•vel desired

'vel output

Figure 8.4: Sideways velocity: desired vs. HIL simulator output

8.2 Kalman Filter Performance

Figures 8.8, 8.9, 8.10, display in detail the performance ofour KalmanFiltering

of the position data. As described in Section 7.3.3 the Kalman filter is used to

94



Forward Takeoff

Mode
4 Ml

Velocity Forward

Backward Flight Mode

Time

Forward Landing
Mode

vel desired

vel output

Figure 8.5: Forward velocity: desired vs. HIL simulator output

predict the position data from the INS every time step and update the position

data with the GPS measurement when available. Each of these figures clearly

displays the drifting of the INS position estimation and the GPS correction

points at which the estimated position returns to the accurate plant position.

8.3 Position Controller Performance

We also tested the full position controller shown in equation( 2.11). This test

run therefore uses the Kalman filter functions as part of the Giotto style control

95



0.6

0.4

O -0.2
Forward Takeoff

Mode

Velocity Down

Backward Right Mode

Time

^

Forward Landing
Mode

•vel desired

•vel odtpul

Figure 8.6: Downwards velocity: desired vs. HIL simulator output

program. In this testing scenario the desired trajectory was a square pattern

as shown in Figure 8.11:

1. Take off: Upwards movement, negative change in z.

2. Forward flight: positive change in x.

3. 90 degree Turn: positive change in heading.

4. Forward flight: positive change in y.

This pattern, minus the take-off, was repeated to form a square flight formation.

The test results shown in Figures 8.12 8.13 display close position following and

96



0.015

]8 0

-0.01

-0.015

stability.

Forward Takeoff

Mode

Heading

K

Backward Flight Mode

Time

Forward Landing
Mode

Figure 8.7: Heading: desired vs. HIL simulator output

97

•heading desired

•heading outpul



Kalman RItsr Perfomiance for x direction Position Estimates

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure 8.8: True x position vs. estimated x position

98

Esbmated x

Plant X



s 0.02S

0.02

o 0.015

Kalman RIter Performance for y Position Estimates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure 8.9: True y position vs. estimated y position

99

Estimated y

Plant y



Kalman HIter Performance In z Position Extimates

«8v.0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

-0.7

Tlnw

Figure 8.10: True z position vs. estimated z position

100

Estimated z

Plant z



Figure 8.11: Position controller flight pattern

101



Plant Positions

Take Off Mode Foiward Fli0fitMode TumSOdeg. Rigftt Foiward Fligftt Mode

Time

Figure 8.12: Positions and heading of the HILS helicopter

102

plant X

plant y

plant z

plant heaifing



Desired Positions

TatoOHMode Foiwatd Right Moda TumSOdeg. Righl Foiwaid Right Mode

Time

Figure 8.13: Desired positions and heading

103

- desired X

- desired y

desired z

-desired heading



Chapter 9

Conclusion

In this dissertation, we presented a methodology for the design of embedded

controllers, and a hardware-in-the-loop simulation framework to test the fin

ished product. These two proposals, the controller design and the simulator,

both work to explore the integration of control laws and their software imple

mentations.

As discussed, the controller design's use of time-based control provides a

relatively simple and verifiable connection between the control algorithms and

their realizations. The high level programming language, Giotto, then guaran

tees the time-based subsystem interactions. We also used the tools of platform-

based design to allow the Giotto controller application to function isolated from

the lower level system details and yet receive enough information about the

important parameters of the lower layers of abstraction to prevent costly re

designs. In addition to providing the appropriate layers of abstraction, this

methodology allows integration of legacy code and "foreign" subsystems.

The hardware-in-the-loop simulator helps to explore the connection between

the control laws and their implementations by providing an environment to

test the final embedded controller implementations. Instead of simply testing

104



the control algorithms, a hardware-in-the-loop simulator tests the embedded

control system by running it in conjunction with a simulated environment.

It can provide safe, reliable, and most importantly, repeatable and controlled

testing for embedded control systems that cannot be achieved by using the

'real' environment.

To present how our design methodology can be applied, we have discussed

two re-designs of the control system of a helicopter based UAV. We have built

one of these designs and described that build in detail along with the detailed

description of our hardware-in-the-loop simulator for the helicopter UAV. We

also presented the experimental results from 'flying' the embedded controller

on the simulator. This design goes a long way towards meeting the goals for

our second generation helicopter control system:

1. The use of platform-based design allows us to build a bridge between

the time-based controller application and the non-time-based sensors and

actuators.

2. A time-based controller eliminates the timing irregularities present in

first generation system. Further, the Giotto compiler ensures that the

controller application meets its timing requirements.

3. Our platform-based design achieves a high degree of modularity. For

example, to substitute a different sensor suite in our first redesign requires

only changes to the data processor and the data formatting library. The

data processor would require a different sensor initialization routine and

a new circular buffer; the formatting library would need a new format

conversion routine. However, no part of the controller application would

need to be changed.

Though our case study contains many details that are specific to our he

licopter system, our methodology is widely applicable. We believe that the

105



combination of time-based control and platform-based design can be generally

applied to automation control systems, for which legacy software, indepen

dently engineered subsystems, and strict reliability and timing requirements all

play a crucial role.

106



Bibliography

[ABE"^99] K.-E. Arzen, B. Bernhardsson, J. Eker, A. Cervin, P. Persson,
K. Nilsson, and L. Sha. Integrated control and scheduling. Inter

nal report TFRT-7582, Department of Automatic Control, Lund

Institute of Technology, August 1999.

[Bla76] J. Blazewicz. Scheduling dependent tasks with different arrival

times to meet deadlines. In E. Gelembe and H. Beilner, editors,

Proceedings of the International Workshop on Modelling and Per

formance Evaluation of Computer Systems, pages 57-65, October

1976.

[BLMSV98] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli.

Scheduling for embedded real-time systems. IEEE Design and Test

of Computers, January-March 1998.

[CSB90] H. Ghetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of

real-time tasks under precedence constraints. Real-Time Systems,

2(3):181-194, September 1990.

[HHKOla] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded con

trol systems development with Giotto. In Proc. of the Intl. Work

shop on Languages, Compilers, and Tools for Embedded Systems

(LCTES '01), pages 64-72, August 2001.

[HHKOlb] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-

triggered language for embedded programming. In Proc. of the

107



1st Intl Workshop on Embedded Software (EMSOFT '01)^ LNCS

2211, pages 166-184. Springer-Verlag, October 2001.

[KHOl] C.M. Kirsch and T.A. Henzinger. The embedded machine. Tech

nical report, University of California, Berkeley, 2001.

[KLMSOl] T.J. Koo, J. Liebman, C. Ma, and S. Sastry. Hierarchical ap

proach for design of multi-vehicle multi-modal embedded software.

In Proceedings of the First International Workshop on Embedded

Software, October 2001.

[KooOO] T. J. Koo. Hybrid System Design and Embedded Controller Syn

thesis for Multi-Modal Control PhD thesis. Department of Electri

cal Engineering and Computer Sciences, University of California,

Berkeley, California, 2000.

[Kop97] H. Kopetz. Real-time systems: design principles for distributed

embedded applications. Kluwer, 1997.

[Kop98] H. Kopetz. Elementary versus composite interfaces in distributed

real-time systems. In The Fourth International Symposium on

Autonomous Decentralized Systems, 1998.

[KPSOl] T.J. Koo, G. Pappas, and S. Sastry. Mode switching synthesis for

reachability specifications. In Lecture Notes In Computer Science,

Hybrid Systems: Computation and Control. Springer Verlag, 2001.

[KS98] T.J. Koo and S. Sastry. Output tracking control design of a he

licopter model based on approximate linearization. In Proc. 37th

Conference on Decision and Control, pages 3635-3640, December

1998.

[KSHP02] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree. A

Giotto-based helicopter control system (draft), 2002.

108



[KSS'̂ QS] T.J. Koo, D.H. Shim, 0. Shakernia, B. Sinopoli, F. Hoffmann,

and S. Sastry. Hierarchical hybrid system design on berkeley uav.

Submitted to the International Aerial Robotics Competition, Uni

versity of California at Berkeley, August 1998.

[Led99] J.A. Ledin. Hardware-in-the-loop simulation. Embedded Systems

Programming, 12(2):42-60, February 1999.

[LH95] J.W.S. Liu and R. Ha. Methods for validating real-time con

straints. Journal of Systems and Software, 30(1-2):85-98, July-

August 1995.

[LMW95] Y.T.S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture

modeling and path analysis for real-time software. In Proceedings

of the 16th RTSS, pages 97-108. IEEE Press, 1995.

[LTS99] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability

specifications for hybrid systems. Automatica, 35(3), March 1999.

[MLS94] R. M. Murray, Z. Li, and S. Shankar Sastry. A Mathematical

Introduction to Robotic Manipulation. CRC Press, 1994.

[MTK99] B. Mettler, M.B. Tischler, and T. Kanade. System identification

of small-size unmanned helicopter dynmaics. American Helicopter

Society 55'̂ ^ Forum, May 1999.

[num92] Numerical recipesin C: The art ofscientific computing. Cambridge

University Press, 1992.

[San02] A. Sangiovanni-Vincentelli. Defining platform-based design.

EEDesign of EETimes, February 2002.

[ShiOO] D.H. Shim. Hierarchical Flight Control System Synthesis for

Rotorcraft-based UAVs. PhD thesis, UC Berkeley, December 2000.

[SKHS98] D.H. Shim, T.J. Koo, F. Hoffmann, and S. Sastry. A compre

hensive study of control design for an autonomous helicopter. In

109



Proc. 37th Conference on Decision and Control, pages 3653-3658,

December 1998.

[SSOl] M.A.A. Sanvido and W. Schaufelberger. Design of a framework

for hardware-in-the-loop simulation and its application to a model

helicopter. In Proc. of the 4th Intl. Eurosim Congress, June 2001.

[Win99] Tornado getting started guide, 2.0. WindRiver Systems, April

1999.

110


	Copyright notice 2002
	ERL-02-16

