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Abstract. In this paper we present a complete solution to 3-D motion estimation
and segmentationof arbitrarily many moving objects seen in twoperspective views.
We adopt a geometric approach to the problem that exploits the algebraic and
geometric properties of the so-called multibodyepipolar constraint and its associated
multibody fundamental matrix, which are natural genersilizations of the epipolar
constraint and of the fundamentail matrix to multiple moving objects. We derive
a rank condition on the data that allows to estimate the number of independently
moving objects as well as linearly solve for the multibody fundamental matrix. We
prove that the epipolesof each independent motion lie exactly in the intersection of
the left null space of the multibody fundamental matrix with the so-called Veronese
surface. We then show that individual epipoles and epipolar lines can be uniformly
and efficiently computed by using a novel polynomial factorization technique. Given
the epipoles and epipolar lines, the estimation of individual fundamental matrices
becomes a linear problem. Then, motion and feature point segmentation is auto
matically obtained from either the epipoles and epipolar lines or the individual
fundamental matrices. We demonstrate the proposed approach bysegmenting a real
image sequence.
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1. Introduction

Motion is one of the most important cues for segmenting an image
sequence into different objects. Classical approaches to 2-D motion
segmentation try to separate the image flow into different regions either
by looking for flow discontinuities [18], while imposing some regularity
conditions [2], or by fitting a mixture ofprobabilistic models [11, 22].
The latter is usually done using an iterative process that alternates
between segmentation and motion estimates using the Expectation-
Maximization (EM) algorithm [5]. Alternative approaches are based
on local features that incorporate spatial and temporal motion in
formation. Similar features are grouped together using, for example,
normalized cuts [16] or the eigenvectors ofa similarity matrix [23].

3-D motion segmentation and estimation based on 2-D imagery is a
more recent problem and variousspecial cases have been analyzed using
a geometric approach: multiple points moving linearly with constant
speed [8, 15] or in a conic section [1], multiple moving objects seen
by an orthographic camera [4, 12], self-calibration from multiple mo
tions [7, 9], or two-object segmentation from two perspective views [24].
Alternative probabilistic approaches to 3-D motion segmentation are
based on model selection techniques [19, 12] or combine normalized
cuts with a mixture of probabilistic models [6].

In this paper we consider the problem of estimating and segmenting
the motion of an unknown number of rigidly moving objects from a set
of feature points seen in two perspective views. Due to the generality of
the problem, we develop new algebraic and geometric techniques that
generalize the well-known epipolar geometry to multiple motions.

In section 2 we introduce the multibody epipolar constraint as a
geometric relationship between the motion of the objects and the image
points that is satisfied by all the image points, regardless of the body
to which they belong. The multibody epipolar constraint defines the
so-called multibody fundamental matrix, which is a generalization of the
fundamental matrix to multiple bodies. Section 3 derives a rank condi
tion on the image measurements that allows to estimate the number of
motions as well as linearly solve for the multibody fundamental matrix,
after embedding all the image points in a higher-dimensional space.
In Section 4 we prove that the epipoles of each independent motion
lie exactly in the intersection of the left null space of the multibody
fundamental matrix with the so-called Veronese surface.

A complete solution and an algorithm for segmentation and estima
tion of multiple motions is presented in Section 5, where we show that
individual epipoles and epipolar lines can be uniformly and efficiently
computed using a novel polynomial factorization technique introduced



Two-View Multibody Structure from Motion 3

in this paper. Given the epipoles and the epipolax lines, the estimation
of the individual fundamental matrices becomes a simple linear prob
lem. Then, motion and feature point segmentation is automatically
obtained from either the epipoles and epipolar lines or the individ
ual fundamental matrices. We demonstrate the proposed approach to
segment a real image sequence in Section 6.

Even though the polynomial factorization technique introduced in
this paper is algebraically equivalent to the factorization of symmetric
tensors, we avoid the use of tensorial notation throughout the paper,
because algorithms based on polynomial factorization are computation
ally more straightforward and better established. As a consequence, this
paper requires little background beyond conventionallinear algebra and
polynomial algebra.

2. Two-view multibody structure from motion, multibody
epipolar constraint and multibody fundamentsd matrix

2.1. Two-view multibody structure from motion problem

Consider two images of a scene containing an unknown number n of
independent and rigidly moving objects. The motion of each object
relative to the camera between the two frames is described by the
fundamental matrbc F, € associated to the motion of object
2 = 1,..., n. We assume that the motions of the objects are such that
all the fundamental matrices are distinct and different from zero, and
hence the relative translation between the twoimageframes is non-zero.

The image of a point G with respect to image frame Ik is
denoted as G IP^, for j = 1,..., iV and k = 1,2. In order to avoid
degenerate cases, we will assume that the image points are in general
position in 3-D space, i.e. they do not all lie in any critical surface, for
example. We will drop the superscript when we refer to a generic image
pair (aji,a;2). Also, we will always usethe homogeneous representation^
X= [x^y,z]'̂ G to refer to an arbitrary (image) point in IP^.

We define the multibody structure from motion problem as follows:

Problem 1 (Multibody structure from motion problem).
Given a collection of imagepairs corresponding to an un
known numberof independentand rigidly moving objects, estimate the
number of independent motions n, the fundamental matrices
and the object to which each image pair belongs.

In this paper we will treat as since we will not useany projective entity.
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2.2. The multibody epipolar constraint

Given an image pair (0:1,052) corresponding to the moving object,
we know that the image pair and the associated fundamental matrix
Ft 6 satisfy the so-called epipolar constraint [14]

x^FiXi = 0. (1)
If we do not know the motion associated to the image pair (x1,052),
then we know that thereexists an object i such that x^FiXi = 0. Thus,
the following constraint must be satisfiedby the number of objects, the
relative motions and the image pair, regardless of the object to which
the image pair belongs

L(Xi,X2) = n (®2 =0 (2)

We call this constraint the multibody epipolar constraint^ since it is a
natural generalization of the epipolar constraint valid for n = 1. The
main difference is that the multibody epipolar constraint is defined for
an arbitrary number of objects, which is typically unknown (e.g., traffic
surveillance). Furthermore, even if n is known, the algebraic structure
of the constraint is neither bihnear in the image points nor linear in
the fundamental matrices as illustrated in the following example.

Example 1 (Two rigid body motions). Imagine the simplest scenario of a
scene containing only two independently movingobjects as shown in Figure 1.

{R2.T2)

(Fi,Ti)

Figure 1. Two views of two independently moving objects, with two different
rotations and translations: {Ri,Ti) and (/?2,T2) relative to the camera frame.

In this case, both image pairs (xj,®^) ^J^d (xf,®!) satisfy the equation

(xjFiXi) (x^F2Xi) = 0

for Fi = Tii?i and F2 = T2R2-^ This equation is no longer bilinear but
rather bi-quadratic in the two images Xi and X2 of any point q on one of

^ In this paper, we use u to denote the 3x3 skew symmetric matrix associated
to a vector u € K® such that uu = u x v for all u 6
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these objects. Furthermore, the equation is no longer linear in Fi or F2 but
rather bilinear in (^1,^2). However, if enough number of image pairs {xi,X2)
are given, we can still recover some information about the two fundamental
matrices Fi and F2 from such equations, in spite of the fact that we do not
know the object or motion to which each image pair belongs. This special case
(n = 2) has been studied in [24]. In this paper we provide a general solution
for an arbitrary number of motions n. •

2.3. The multibody fundamental matrix

The multibody epipolax constraint allows to convert the multibody
structure from motion problem (Problem 1) into that of solving for
the number of independent motions n and the fundamental matrices

from the nonlinear equation (2). A standard technique used in
algebra to render a nonlinear problem into a linear one is to find an
"embedding" that lifts the problem into a higher-dimensional space. In
this case, we notice that the multibody epipolar constraint defines a
homogeneous polynomial of degree n in either xi or X2- For example,
if we let Xi = then equation (2) viewed as a function of
Xi can be written as a linear combination of the following monomials
{x",...,Zi). It is readily seen that there are a total of

M„^("+2) =(!L±3|IL±^ (3)
different monomials, thus the dimension of the space of homogeneous
polynomials in 3 variables with real coefficients, Rn, is M„. Therefore,
we can define the following embedding (or lifting) from IP^ into ]pJ^n-i.

DEFINITION 1 (Veronese map). The Veronese map of degree n is
defined as : IP^ —♦

: [x,y,2]^ 1-^ (4)

where x^ is a monomial of theform with 0 < ni, 722,713 < n,
and721+722+713 = n, and thex^ 's are ordered in the degree-lexicographic
order.

Thanks to the Veronese map [10], we can convert the multibody
epipolar constraint (2) into a bilinear expression in i/n(cci) and Un{x2)
as stated by the following proposition.

PROPOSITION 1 (The bilinear multibody epipolar constraint). The
multibody epipolar constraint (2) can be written in bilinear form as

l^n{X2) Fun{xi) = 0, (5)
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where F € is a matrix whose entries are symmetric multilin
ear functions of degree n on the entries of the fundamental matrices

{Fi)U-

Proof Let = FiXi 6 for z = 1,..., n. Then, the multibody epipo-
lax constraint L{xi,X2) = is a homogeneous polynomial of
degree n in X2 = [a^2)2/2>^2]^j i-e.

Hxi,X2) = ,712,7133^2'2/2 ^4^ = ^ajxi = i/„(x2)^a,

where a G is the vector of coefficients. Prom the properties of poly
nomial multiplication, each aj is a symmetric multilinear function of
(£1,..., in), i.e. it ishnear ineach £» anda/(£i,..., £n)=a/(£<7(i)»
for all (7 e 6nj where 6„ is the permutation group of n elements. Since
each li is linear in aji, each aj is indeed a homogeneous pol3aiomial of
degree n in aji, i.e. aj = fjun{xi), where each entry of // € R^" is a
symmetric multilinear function of the entries of the Fj's. Letting

^ —1/71,0,0 »/7l-l,l,0 >••• >/o,o,7il^ ^ ^

we obtain

L(a;i,a;2) = i'n{x2)'̂ Fun{xi) = 0.

We call the matrix F the multibody fundamental matrix since it is a
natural generalization of the fundamental matrix to the case of multiple
moving objects. Since equation (5) clearly resembles the bilinear form
of the epipolar constraint for a single rigid body motion, we will refer
to both equations (2) and (5) as the multibody epipolar constraint.

REMARK 1 (Multibody fundamental tensor). The multibody funda
mental matrix is a matrix representation of the symmetric tensor prod
uct of all the fundamental matrices

<766„

where 6n is the permutation group of n elements and <8> represents the
tensor product.

Although the multibody fundamental matrix F seemsa complicated
mixture of all the individual fundamental matrices Fi,...,F„, it is
still possible to recover all the individual fundamental matrices from
F (alone), under some mild conditions (e.g., the Fj's are distinct). The
rest of this paper is devoted to providing a constructive proof for this.
We will show how to recover n and F from data, and {FjjJLj from F.
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3. Estimation of the number of independent motions n
smd of the multibody fundamental matrix F

Notice that, by definition, the multibody fundamental matrix F de
pends explicitly on the number of independent motions n. Therefore,
even though the multibody epipolar constraint (5) is linear in F, we
cannot use it to estimate F without knowing n in advance. It turns
out that one can use the multibody epipolar constraint to derive a
rank constraint on the image measurements that allows to compute n
explicitly. Given n, the estimation of F becomes a linear problem.

Let us first rewrite the multibody epipolar constraint (5) as

K(®2) ® = 0, (7)
where / € M "is the stack of the columns of F and (8) represents the
Kronecker product. Then, given acollection of image pairs {(®i, a4)}jLi,
the vector / satisfies the system of linear equations

Anf =
(Vn(xl) ®Un(xl))

(i/„(a;^) <8) ))
/ = 0. (8)

In order to determine / uniquely (up to scale) from (8), we must have
that

rank(yl„) = - 1.
The above rank condition on the matrix An provides an effective crite
rion to determine the number ofindependent motions n from the given
image pairs, as stated by the following Theorem.

THEOREM 1(Number of independent motions). Let {{x{^x^2}f=i
a collection of image pairs corresponding to 3-Dpoints in general con
figuration and undergoing an unknown number n of distinct rigid body
motions with nonzero translation. Let Ai 6 be the matrix de
fined in (8), but computed using the Veronese map i/i of degree i > 1.
Then, if the number of image pairs is big enough (N > - 1 when
n is known) and at least 8 points correspond to each motion, we have

> Mf —1, if i < n,
rank{Ai) ^= Mf - 1, if i —n, (9)

< Mf —1, if i > n.

Therefore, the number of independent motions n is given by

n = min{z : rank(^i) = Mf —1}. (10)
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Proof. Since each fundamental matrix F, has rank 2, the polynomial
Pi = x^FiXi is irreducible over the real field R. Let Zj be the set of
(®i)®2) that satisfy x^FiX\ = 0. Then due to the irreducibility ofpi,
any poljoiomial p in a;i and X2 that vanishes on the entire set Zi must
be of the form p = pih, whereh is somepolynomial. Hence if Fi,..., F„
are distinct, a polynomial which vanishes on the set UjLjZi must be of
the form p = piP2 •••Pnh for some h. Therefore, the only polynomial
of minimal degree that vanishes on the same set is

P=P1P2 •"Pn= (®2FiXi) {x2F2X\^ •••(x^F„a;i) . (11)
Sincethe entries of yn{^2) ® ^-re exactly the independent mono
mials of p (as we will show below), this implies that if the number of
data points per motion is at least 8 and N > —1, then:

1. There is no polynomial of degree i <n whose coefficients are in the
null space of Ai, i.e. rank(i4i) = > Mf -I for i < n.

2. There is a unique polynomialof degreen, namelyp, with coefficients
in the null space of An, i.e. rank(i4„) = —1.

3. There is more than one poljmomial of degreei>n (one for each in
dependent choice of the (2-n)-degree polynomial h) with coefficients
in the null space of Ai, i.e. rank(i4i) < Mf —1 for i > n.

The rest of the proof is to show that the entries of i/n(aJ2) <S> i^n(®i)
are exactly the independent monomials in the polynomial p, which
we do by induction. Since the claim is obvious for n = 1, we assume
that it is true for n and prove it for n -t-1. Let xi = {xi,yi,zi) and
®2 = (3^2,2/2,22). Then the entries of Un{x2) O t'n(®i) are of the form
(3^2 with mi + m2 + ma = ni -f- 712 + na =
while the entries of aj2 (8>a;i are of the form {x2y^2^2){'̂ ^\'i^i^i) with
71 + 72 + ^3 = 3i + 32 + is = L Thus a basis for the product of these
monomials is given by the entries of i/„+i(x2) 0 Un+i{xi). •

The significance of Theorem 1 is that the number of independent
motions can now be determined incrementally using equation (10).
Once the number n of motions is found, the multibody fundamental
matrix F is simply the 1-D null space of the corresponding matrix An,
which can be linearly obtained. Nevertheless, in order for this scheme
to work, the minimum number of image pairs needed is N" > —1.
For n = 1,2,3,4, the minimum N is 8,35,99.225, respectively. If n is
large, N growsapproximately in the order of 0{n'^) - a price to pay for
working with a linear representation of Problem 1. In Section 5.5 we will
discuss many variations to the general scheme that will dramatically
reduce the number of data points required, especially for large n.

n.
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4. Muitibody epipolar geometry

In this section, we study the relationships between the muitibody fun
damental matrix F and the epipoles ei,..., e„ associated to the fun
damental matrices Fi,..., Fn- The relationships between epipoles and
epipolar lines will be studied in the next section, where we will show
how they can be computed from the muitibody fundamental matrix F.

First of all, recall that the epipole associated to the motion in
the second image is defined as the left kernel of the rank-2 fundamental
matrix Ff, that is

e Fi = 0. (12)
Hence, the following polynomial (in x) is zero for any et, i = 1,..., n

(ejFix^ (elF2X^ •••(efF„a;) = Funix) =0. (13)
We call the vector Vni^i) the embedded epipole associated to the
motion. Since i^nix) as a vector spans the entire when x ranges
over IP^ (or we have

u„{eifF = 0. (14)
Therefore, the embedded epipoles lie on the left null space
of F while the epipoles lie on the left null space of
Hence, the rank of F is bounded depending on the number of distinct
(pairwise linearly independent) epipoles as stated by Lemmas 1 and 2.

LEMMA 1 (Null space of F when the epipoles are distinct). Let F be
the muitibody fundamental matrix generated by the fundamental ma
trices Fi,..., F„ with pairwise linearly independent epipoles ei,..., en.
Then the (left) null space of F ^ coniains at least the n
linearly independent vectors

i/n(ei)GE^", z= l,...,n. (15)
Therefore the rank of the muitibody fundamental matrix F is bounded
by

(16)rank{F) < (Mn —n).

Proof. We only need to show that if the ej's are distinct, then the
t'n(ei)'s are linearly independent. If we let Cj = [a:^, yj, i = 1,..., n,
then we only need to prove the rank of the following matrix

x"-'

jH-l
n-1.

Zl

2 2/2 ^2 Z2

i^n(ei)'̂

•II

i^n(e2)^
=

Fn(en)^_ -n-1 n—1,
Vn

^2 bTI X (17)

This is simply because the Mn monomials in i/n (x) are lineeirly independent.
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is ex£ictly n. Since the ej's are distinct, we can assume without loss
of generality that are already distinct eind that Zi ^ 0.^
Then, after dividing the row of U by zf and letting ti = Xi/zi, we
can extract the following Van Der Monde sub-matrix of U

V =

'j.n—1 iTi—2
ti Ti
+n—\ j.n—2
to to

*n—1 +n—2

(18)

Since det(V) = ni<j('̂ t ~ Van Der Monde matrix V has rankn
if and only if ti,..., are distinct. Hence rank(C/) = rank(V) = n, •

Even though we know that the linearly independent vectors ^'n(et)'s
lie on the left null space of F, we do not know if the n-dimensional
subspace spanned by them will be exactly the left null space of F, i.e.
we do not know if rank(F) = M„ —n. Simulations confirm that this is
true when all the epipoles are distinct.

Now, if one of the epipoles is repeated, then one would expect that
the dimension of the null space of F decreases. However, this is not the
case: the null space of F is actually enlarged by higher-order derivatives
of the Veronese map as stated by the following Lemma.

LEMMA 2 (Null space of F when one epipole is repeated). Let F be
the multibody fundamental matrix generated by the fundamental matri
ces Fi,... ,Fn with epipoles ei,..., e„. Let ei be repeated k times, i.e.
ei = ••• = Efc, and let the other n —k epipoles be distinct. Then the
rank of the multibody fundamental matrix F is bounded by

rank(F) < Mn —M^-i - (n - A:). (19)

Proof. When A: = 2, ei = e2 is a "repeated root" of i/n{x)^F as a
polynomial (matrix) in a; = [x, y,z]"^. Hence we have

dx
= 0,

x=ei

diynjxf
dy x=ei

= 0,
dz

= 0.
®=ei

Notice that the Jacobian of the Veronese map Dun{x) is full rank for
all X € because Dun{x)'̂ Dun{x) ^ x'^xl^^s- Thus, the vectors
dun(ei) dunjei) dt/n(ei]

3x ' ' Sz are linearly independent, because they are the

This assumption is not always satisfied, e.g., for n = 3 motions with epipoles
along the X, Y and Z eixis. However, as long as the e^'s are distinct, one can always
find a non-singular linear transformation e, Lsi on that makes the assumption
true. Furthermore, this linear trmisformation induces a linear transformation on the
lifted space R^^" that preserves the rank of the matrix U.
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columns of Dt'n(ei) and ei ^ 0. In addition, their span contains
because

ni/„(ic) = Dun{x)x =
dun{x) dl/n{3c)

dx dy dz

Hence rank(F) < Mn - Mi - (n - 1) = M„ - 3 - (n - 1). Now if
fc > 2, one should consider the {k —lY^ order partial derivatives of
z/„(x) evaluated at ei. There is a total of Mfc_i such partial derivatives,
which give rise to Mk-i hnearly independent vectors in the (left) null
space of F. Similar to the case k = 2, one can show that the embedded
epipole is in the span of these higher-order partials. •

Example 2 (Two repeated epipoles). In the two-body problem, if Fi and
F2 have the same (left) epipole, i.e. Fi = TRi and F2 = Ti22, then the rank
of the two-body fundamental matrix F is M2 - Mi —(2 —2) = 6- 3 = 3
instead of M2 - 2 = 4. •

Since the null space of F is enlarged by higher-order derivatives of
the Veronese map evaluated at repeated epipoles, in order to identify
the embedded epipoles from the left null space of F we will need
to exploit the algebraic structure of the Veronese map. Let us denote
the image of the real projective space under the Veronese map of
degree n as i/„(P^).® The following theorem establishes a key relation
ship between the null space of F and the epipoles of each fundamental
matrix.

THEOREM 2 (Veronese null space of multibody fundamental matrix).
The intersection of the left null space of the multibody fundamental
matrix F, Null{F), with the Veronese surface z^n(P^) Is exactly

X, Vx G (20)

Null{F) n I/n(P') = {i^n(eO}?=l. (21)

Proof. Let x G P^ be a vector whose Veronese map is in the left null
space of F. We then have

Un{x)^F = 0 i'n(®)^Fi/„(y) = OjVy GP^. (22)
Since F is a multibody fundamental matrix,

f„(x)^Fi/„(y) =Yl {x^FiV^ .
t=l

This means for this x,

n

ll(x'^Fiy) = 0, Vyep2 (23)
i=l

This is the so-called (real) Veronese surface in Algebraic Geometry [10].
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, n, then the set of y that satisfy the above
equation is simply the union of n 2-dimensional subspaces in which
will never fill the entire space P^. Hence we must have x^Fi = 0 for
some i. Therefore x is one of the epipoles. •

The significance of Theorem 2 is that, in spite of the fact that
repeated epipoles may enlarge the null space of F, and that we do not
know if the dimension of the null space equals n for distinct epipoles,
one may always find the epipoles exactly by intersecting the left null
space of F with the Veronese surface i^nCP^), as illustrated in Figure 2.

Null(F)

Figure 2. The intersection of i/n(IP^) and Null(i^) is exactly n points representing
the Veronese map of the n epipoles, repeated or not.

The question is now how to compute the intersection of Null(F)
with t'„(P^) in practice. One possible approach, explored in [24] for
n = 2 and generalized in [21] to n > 2, consists of determining a vector
V G P" such that Bv G z/n(P^)» where 5 is a matrix whose columns
form a basis for the (left) null spaceof F. Finding v, hence the epipoles,
is equivalent to solving for the roots of polynomials of degreen in n —1
variables. Although this is feasible for n = 2 and even for n = 3, it is
computationally formidable for n > 3.

In the next section, we take a completely different approach that
combines the multibody epipolsir geometry developed so far with a
novel polynomial factorization technique. In essence, we will show that
the epipoles (and also the epipolar lines) can be computed by solving
a polynomial of degree n in one variable plus one linear system in n
variables. Given the epipoles and the epipolar lines, the computation of
individual fundamental matrices becomes a linear problem. Therefore,
there exists a closed form solution to Problem 1 for n < 4.
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5. Multibody motion estimation and segmentation

Given the multibody fundamental matrix F and the number of inde
pendent motions n, we are now interested in recovering the motion
parameters (or fundamental matrices) and the segmentation of the
image points. In this section we show how to solve these two problems
from the epipoles of each fundamental matrix and the epipolar lines
associated to each image point. The estimation of epipoles and epipolar
Hnes will be based on the factorization of a given homogeneous poly
nomial of degree n in 3 variables with real coefficients into n distinct
polynomials of degree 1 also with real coefficients. Once the epipoles
and the epipolar lines have been estimated, the estimation of individual
fundamental matrices becomes a simple linear problem from which the
segmentation of the image points is automatically obtained.

We will first describe how to solve the polynomial factorization prob
lem in Section 5.1, and then dive into the details of motion estimation
(Sections 5.2 and 5.3) and segmentation (Section 5.4). We conclude
with an algorithm for multibody structure from motion in Section 5.5.

5.1. Homogeneous polynomial factorization

Let be a collection of n distinct vectors in and let Pn(2c) be
the homogeneous polynomial of degree n in x = [x,y, given by

Pn(x)=(t\x){ilx)' ••{ilx)
-(hix+h2y+^uz){i2ix->ri22y+h^z) •••{^n\^+ ^n2y-^^nzz) (24)
=Eani,7i2,n3 ^ a^I/„(x).

where a € R " is the vector of coefficients of the polynomial Pn(®)-

REMARK 2 (Symmetric multilinear tensor). The vectora GR^" is a
vector representation for the symmetric tensor product of all the vectors
£i,£25 " • i^n €

^ ® ® •*S> ^a{n)i (25)
treOn

where ©„ Is the permutation group of n elements and (8) represents the
tensor product of vectors.

Given the vector of coefficients a G R " of the polynomial Pn{x),
we would like to compute the set of vectors up to scale. To this
end, we consider the last n + 1 coefficients of pn{x)^ which define the
following homogeneous polynomial of degree n in y and z

n

Z ao,n2,n3y"= = Y[{.ti2V + taz). (26)
1=1
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Letting w = yjz we have that

n (^122/ + ^i3z) =0 ^ JJ {£i2W + ^t3) = 0,
i=l i=l

hence the n roots of the univariate polynomial

qn{w) = flo.n.ow" + + •••+ ao.o.n (27)

are exactly Wi = —^13/^12j for i = 1,... ,n. Therefore, after dividing a
by ao,n,o (if nonzero), we obtain the last two entries of each £i as

(ii2 , £i3) = (I , -Wi), i = (28)

If £{2 = 0 for some i, then some of the leading coefficients of Qniw) are
zero and we cannot proceed as before, because qn{w) has less than n
roots. Morespecifically, assumethat the first r <n coefficients of qn{w)
are zero and divide a by the (r + l)-st coefficient. In this case, we can
choose {£i2,£i3) = (0,1), for i = 1,... ,r, and obtain {(^i2,^i3)}?=„_r+i
from the n - r roots of qn(w) by using equation (28). Finally, if all the
coefficients of qn{w) are equal to zero, we set (^12,^x3) = (0,0), for all
i = 1,... ,n.

REMARK 3 (Solvability of roots of univariate polynomial). It is well-
known from Abstract Algebra (in particular from Galois's theory) [13]
that there is no closed-form solution for the roots of univariate poly
nomials of degree n > 5. Hence, there is no closed-form solution to
homogeneous polynomial factorization for n > 5 either. Since one am
always find the roots of a univariate polynomial numerically using effi
cient polynomial time algorithms [17], we will consider this problem as
"solved".

We are left with the computation of the coefficients of the variable
X of each factor of Pn(®)) i-e. For that, we consider the n
coefficients ni,n2,n2 of Pn{x). We notice that these coefficients are lin
ear functions of the unknowns {^ti}?=i, given that we already know
{(^z2,^i3}F=i- Therefore, we can solve for in from the linear system

' ^11' <^l,n-l,0 *

[Vi V2 v„]
^21 ^^1,71-2,1

: =

. ^nl . . Ol,0,71-1 .

(29)

where V, G K" are the coefficients of the following homogeneous poly
nomial of degree n —1 in y and z

1-1

9i{x) = n (^^22/ + hsz) n (^^-22/ •
fc=l k=i+l

(30)
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In order for the linear system in (29) to have a unique solution, the
column vectors (in the matrix on the left hand side) must be
linearly independent. It is shown in [20] that this is indeed the case if
and only if the vectors {(^t2>^t3)}"=i are pairwise linearly independent.
This latter condition is always satisfied, except for some degenerate
cases described in Remark 4 below. In those degenerate cases, as long
as the original polynomial Pn(x) has n distinct factors, one can always
perform an invertible linear transformation

X Lx, L e (31)

that induces a linear transformation on the vector of coefficients a i->

Ta,T e guch that the newvectors ^i3)}"=i are pairwise
linearly independent. A typical choice for such L is of the form

L =

1 t t

0 1 t

0 0 1

1)3x3

where t G K can always be chosen so that the new polynomial qni'w)
in (27) has distinct roots. Werefer interested readers to [20] for further
details on the solution of these degenerate cases.

REMARK 4 (Degenerate cases). There are essentially three cases in
whichthe vectors{(^i2)^i3)}"=i pairwise linearly independent:

1. The original polynomial Pn{x) is such that the polynomial qn{yj)
has repeated roots, e.g., Pn(x) = {2x+ y + ^z){x + y + Zz).

2. The polynomial qniw) associated to some factorable Pn{x), e.g.,
Pn{x) = {x + z)z, has more than one zero leading coefficients. In
this case we have = (0? 1) /o?' more than one i.

3. The original polynomial pn{x) is not factorable. This happens, for
example, when the vector of coefficients a is corrupted by noise.
In this case the polynomial qn{w) may have complex roots, e.g.,
Pn(x) = x"^ + y^ yz z"^, and one could "project" these complex
roots onto their real parts. This typically introduces repeated real
roots in the resulting polynomial, e.g., after "projection" the above
polynomial Pn{x) is effectively converted to x^ + y"^ yz +

We conclude that the homogeneous polynomial factorization problem
can be completely solved from the roots of a univariate polynomial
of degree n and the solution to a linear system in n variables.® This
factorization technique will be used repeatedly in the following sections
in the computation of the epipoles and epipolar lines associated to the
multibody structure from motion problem.

®In fact, the problem admits a unique upto n —1scales asdemonstrated in [20].
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5.2. Estimation of epipolar lines and epipoles

Given a point si in the first image frame, the epipolax lines associated
to it are defined as = FiX\ G i = 1,... ,n. Prom the epipolar
constraint, we know that one of such lines passes through the corre
sponding point in the second frame ojq, i.e. there exists an i such that
x^i-i = 0. Let F be the multibody fundamental matrix. We have that

i=l i=l

»«• II

L(xuX2) =l^n(X2fFUniXl) =H [x^FiX^ =]\{xlii), (32)

represents

(33)

from which we conclude that thevector i = Fun{xi) G
the coefficients of the homogeneous polynomial in x

g(x) = {X^ii)(x '̂l2) ••• = I'nixft

We call the vector I the multibody epipolar line associated to Xi. Notice
that £ is a vector representation of the symmetric tensor product of all
the epipolax fines ,..., and it is in general not the Veronese map
(or lifting) i/„(£t) of any particular epipolar fine £t,2 = 1,..., n.

Prom i, we can compute the individual epipolax fines associ
ated to any image point xi using the polynomialfactorization technique
given in Section 5.1. In essence, the multibody fundamental matrix F
allows us to "transfer" a point aji in the first image to a set of epipolax
fines in the second image. This is exactly the multibody version of the
conventional "epipolax transfer" that maps a point in the first image to
an epipolax fine in the second image. The multibody epipolar transfer
process can be described by the sequence of maps

Veronese , . Epipolar Transfer 17 / \ Polynomial Factorization r/, m
' * Pn\Xi) I > TVnyXi) 1 >

which is illustrated geometrically in Pigure 3.

h f.ei/
F

/
•

•

f **

Figure 3. The multibody fundamental matrix F maps each point x\ in the first
image to n epipolar lines £1,... which pass through the n epipoles ei,... ,c„
respectively. Furthermore, one of these epipolar lines passes through X2
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Given a set of epipolar lines, we now describe how to compute
the epipoles. Recall that the (left) epipole associated to each raiik-2
fundamental matrix Fi € is defined as the vector e, G lying
in the (left) null space of Fi, that is e, satisfies that ejFi = 0. Now let
£ GR^ be an arbitrary epipolar line associated to some image point in
the first frame. Then there exists an i such that eji = 0. Therefore,
every epipolar line I has to satisfy the following polynomial constraint

Kt) = (ei^)(e2 •••(4^) = = 0, (34)

regardless of the motion to which it is associated. We call the vector
e GR^" the multibody epipole associated to the n motions. As before,
e is a vector representation of the symmetric tensor product of the
individual epipoles ei,..., Cn and it is in general different from any of
the embedded epipoles i/n(ei), i —1,..., n.

Given a collection of m > Mn —1 epipolar lines (which can
be computed from the multibody epipolar transfer described before),
we can obtain the multibody epipole e G R^" as the solution of the
linear system

BnC = e = 0. (35)

•m\T

In order for equation (35) to have a unique solution (up to scale), we
will need to replace n by the number of distinct epipoles ng, as stated
by the following proposition:

PROPOSITION 2 (Number of distinct epipoles). Assume that we are
given a collection of epipolar lines corresponding to 3-D points
in general configuration and undergoing n distinct rigid body motions
with nonzero translation. Then, if the number of epipolar lines m is at
least Mn —1, then we have

rank{Bi)
> Mi —1, if i < Tig,

= Mi - 1, if i = rig,

< Mi —I, if i > Tig.

Therefore, the number of distinct epipoles rig < n is given by

rig = min{z : rank{Bi) = Mj —1}.

Proof Similar to the proof of Theorem 1.

(36)

(37)
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Once the number of distinct epipoles, ne, has been computed, the
vector e € Mn^ can be obtained from the linear system = 0. Once
e has been computed, the individual epipoles can be computed
from e using the factorization technique of Section 5.1. We illustrate the
computation of the epipoles in Figure 4. Each epipole ej corresponds
to the intersection of the epipolar lines associated to the motion.
The polynomial factorization process performs all such intersections
simultaneously without knowing the segmentation of the epipolar lines.

h

/eiN

\ ^1/
LZ

fx y

Figure 4- When n objects move independently in front of a fixed camera, the epipo
lar lines associated to image pairs form Ue groups and intersect respectively at rie
distinct epipoles. Hereepipolar linesand epipoles are drawn in the secondimageI2.

5.3. Recovery of individual fundamental matrices

Given the epipolar lines and the epipoles, we show now how to recover
each one of the individual fundamental matrices To avoid
degenerate cases, we assume that all the epipoles are distinct, i.e.

Ue = n.

Let Fi = [fl /?] 6 the fundamental matrix associated to
motion i, with columns /J, /J, /f GR^. We know from Section 5.2 that,
given xi = \xi,yi,zi]'^ G thevector Fun{xi) G represents the
coefficients of the following homogeneous polynomial in x

g{x) = (x^ifUi +fjyi -b /?2i)) •.. -f flyi + .
Therefore, given the multibody fundamental matrix F, one can esti

mate any linear combination of the columns of the fundamental matrix
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Fi up to a scale, i.e. we can get vectors satisfying

= ifi^i + fhi + fhi)^ Ai GE, 2= 1,...,n.
These vectors are nothing but the epipolar lines associated to the
multibody epipolar line Fi/„(2Ci), which can be computed using the
polynomial factorization technique of Section 5.1 as described in Sec
tion 5.2. Notice that, in particular, we can obtain the three colunms
of Fi up to scale by choosing xi = [1,0,0]^, x\ = [0,1,0]^ and
x\ = [0,0,1]^, respectively. However:

1. We do not know the fundamental matrix to which the recovered

epipolar lines belong;

2. The recovered epipolar lines, hence the columns of each Fi, are
obtained up to scale only. Hence, we do not know the relative scales
between the columns of the same fundamental matrix.

The first problem is easily solvable: if a recovered epipolar line
£ G corresponds to a linear combination of columns of the fun
damental matrix Fi, then it must be perpendicular to the previously
computed epipolar line Cf, i.e. we must have eji = 0. As for the
second problem, for each i let be the epipolar line associated to
xPi that is perpendicular to ej, for j = 1,... ,7n. Since the Xj's can
be chosen arbitrarily, we choose the first three to be x\ =• [1,0,0]^,
Xi = [0,1,0]^ and icf = [0,0,1]^ to form a simple basis. Then for
every jcj = [a^,2/i, j > 1, there exist unknown scales A^ GMsuch
that

>H^i = + fiVi + fhi 3 > 4,

= (Ai4)a^i + (A?^,-)l/i + (A- '̂)2^, j > 4.

Multiplying both sides by i^, we obtain

o=ei((\^e!)x{ +{xUM + , j>4 (38)
where A-,Af,Aj are the only unknowns. Therefore, the fundamental
matrices are given by

' " • (39)Fi = [fl ffl = A?£?
where A|, A^ and canbeobtained as the solution to the linear system

§[xUl pUi
A?
A?

= 0. (40)
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We have given a constructive proof for the following statement:

THEOREM 3 (Factorization of the multibody fundamental matrix).
Let F € jg ^^g multibody fundamental matrix associated to
fundamental matrices {Fi G If the n epipoles are distinct,
then the matrices can be uniquely determined (up to a scale).

5.4. 3-D Motion segmentation

The 3-D motion segmentation problem refers to the problem of assign
ing each image pair to the motion it corresponds. This
can be easily done from either the epipoles and epipolar lines

or from the fundamental matrices as follows.

1. Motion segmentation from the epipoles and epipolar lines: Given
an image pair {xi,X2), the factorization of ^ = Fun(xi) gives n
epipolar hnes. One of these lines, say i, passes through X2, i.e.
i^X2 = 0.Thepair (xi, 0:2) isassigned to the i^^ motion if = 0.

2. Motion segmentation from the fundamental matrices: The image
pair (xi,X2) is assigned to the i^^ motion if x^FiXi = 0.

Figure 5 illustrates how a particular image pair, say (xi,X2), which
belongs to the i^^ motion, i —1,..., n is successfully segmented.

(aJi,X2) € i^^ motion

Segmentation —0, or x^FiXi = 0

£k € R G ^
Multibody epipolar constraint x^ik = •••{e'̂ £) =

{£u...,£neR^}

Polynomial factorization •••{x^£n)

FUnixi) €

Epipolar transfer |

Veronese map | [rr, y, [• ••, .. .]^
Xi € R^

Figure 5. Transformation diagram associated to tlie segmentation of an image pair
(xi,X2) in the presence of n motions.

In the presence of noise, (xi,X2) is assigned to the motion i that
minimizes (ejef or {x^FiXi)^, respectively.



Two-View Multibody Structure from Motion 21

5.5. Multibody structure from motion algorithm

We are now reeidy to present a complete algorithm for multibody mo
tion estimation and segmentation from two perspective views.

Algorithm 1 (Multibody structure from motion algorithm).
Given a collection of image pairs points undergoing n
different motions, recover the number of independent motions n and
the fundamental matrix Fi associated to motion i as follows:

1. Number of motions. Compute the number of independent mo
tions n from the rank connstraint in (10), using the Veronese map
of degree i = 1,2,... ,n applied to the image points {(aJi,

2. Multibody fundamental matrix. Compute the multibody fun
damental matrix F as the solution of the linear system Anf = 0
in (8), using the Veronese map of degree n.

3. Epipolar transfer. Pick iV > M„ - 1vectors {x{ € with
a:} = [1,0,0]^, xf = [0,1,0]^ and ajf = [0,0,1]^, and compute their
corresponding epipolar lines using the factorization

algorithm of Section 5.1 apphed to the vectors Fi/n{x{) G

4. Multibody epipole. Use the epipolar lines ^
mate the multibody epipole e as coefficients of the polynomial h{£.)
in (34) by solving the system B„e = 0 in (35).

5. Individuad epipoles. Use the pol3momial factorization algorithm
of Section 5.1 to compute the individual epipoles from the
multibody epipole e €

6. Individual fundamented matrices. For each j, choose k{i) such
that e[= 0 , i.e. assign each epipolar line to its motion. Then
use equations (39) and (40) to obtain each fundamental matrix F,
from the epipolar lines assigned to epipole i.

7. Features segmentation by motion. Assign image pair {x{,x^)
to motion i if = 0 or if x^FiXi = 0.

One of the main drawbacks of Algorithm 1 is that it needs a lot of
image pairs in order to compute the multibody fundamental matrix,
which often makes it impractical for large n (See Remark 5 below). In
practice, one can significantly reduce the data requirements by incor-
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porating partial knowledge about the motion or segmentation of the
objects with minor changes in the general algorithm. We discuss a few
of such possible variations to Algorithm 1 below.

Multiple linearly moving objects. In many practical situations,
the motion of the objects can be well approximated by a linear motion,
i.e. there is only translation but no rotation. In this case, the epipolar
constraint reduces to = 0 or efx^Xi = 0, where e, € repre
sents the epipole associated to the motion, i = 1,..., n. Therefore,
the vector t —X2X1 6 is an epipolar line satisfying the equation

ffW = (eT£)(e2^)'--(en^) = 0. (41)

Therefore, given a set of image pairs {(®2'®i)}j^i points undergo
ing n distinct linear motions ei,..., e„ G E^, one can use the set of

epipolar lines j = 1,..., iV to estimate the epipoles Si using
Steps 4 and 5 of Algorithm 1. Notice that the epipoles are recovered
directly using polynomial factorization without estimating the multi-
body fundamental matrix F first. Furthermore, given the epipoles the
fundamental matrix is trivially obtained as F, = ej. The segmentation
of the image points is then obtained from Step 7 of Algorithm 1. We
conclude that if the motions are linear, weonly need N = —1 image
pairs versus N = —1 needed in the general case. So when n is large,
the number of image pairs needed grows as O(n^) for the linear motion
case versus 0{n'̂ ) for the general case. In other words, the number of
feature points that need to be tracked on each object grows linearly in
the number of independent motions. For instance, when n = 10, one
only needs to track 7 points on each object, which is a mild requirement
given that the case n = 10 occurs rather rarely in most applications.

Constant motions. In meiny vision and control applications, the
motion of the objects in the scene changes slowly relative to the sam
pling rate. Thus, if the image sampling rate is even, we may assume
that for a number of image frames, say m, the motion of each object
between consecutive pairs of images is the same. Hence all the feature
points corresponding to the m—1 image pairs in between can be used to
estimate the same multibody fundamental matrix. For example, when
m = 5 and n = 4, we only need to track (M4 —l)/4 = 225/4 « 57
image points between each of the 4 consecutive ])airs of images instead
of 255. That is about 57/4 15 features on each object on each image
frame, which is rather feasible to do in practice. In general if m = 0(n),
O(n^) feature points per object need to be tracked in eacli image. For
example, when m = n -I-1 = 6, one needs to track about 18 points on
each object, which is not so demanding given the nature of the problem.
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Internal structure of the multibody fundamental matrix. The
onlystep ofAlgorithm 1 that requires 0{ri^) image pairs is the estima
tion of the multibody fundamental matrix F. Step 2 requires a lot of
data points, because F is estimated linearly without taking into account
the rich internal (algebraic) structure of F (e.g., rank(F) < Mn —n).
In the future, we expect to be able to reduce the number of image pairs
needed by considering constraints among entries of F, in the same spirit
that the well-known 8-point algorithm for n = 1 can be reduced to 7
points if the algebraic property det(F) = 0 is used.

REMARK 5 (Comments about the algorithm).

1. Repeated epipoles. If two individual fundamental matrices share
the same (left) epipoles, we cannot segment the epipolar lines as
described in Step 6 of Algorithm 1. In this case, one can consider the
right epipoles (in the first imageframe) instead, since it is extremely
rare that two motions give rise to the same left and right epipoles. ^

2. Repeated roots. If the polynomial qniiij) in (27) has repeated
roots or more than one of its leading coefficient is zero, then a
linear transformation (31) must he pre-applied to the polynomial
Pn(®) beforefactoring it in Steps 3 and 5 of Algorithm 1.

3. Algebraic solvability. The only nonlinear part of Algorithm 1 is
to solvefor the roots of univariate polynomials of degree n in Steps
3 and 5. Therefore, the multibody structure from motion problem
is algebraically solvable (i.e. there is closed-form solution) if and
only if the number of motions isn <4 (see [13]). When n > 5, the
above algorithm must rely on a numerical solution for the roots of
those polynomials.

4. Computational complexity. In terms of data, Algorithm 1 re
quires O(n^) image pairs to estimate the multibody fundamental
matrix F associated to the n motions. In terms of numerical com
putation, it needs to factor 0{n) polynomials^ and hence solve for
the roots of 0{n) univariate polynomials of degree n.^ As for the
rest of computation, which can be well approximated by the most
costly Steps 1 and 2, the complexity is about 0{n^).

^ This happens only when the rotation axes of the two motions are equal to each
other and parsdiel to the translation direction.

®One needs about Mn —1 ss O(n^) epipolar lines to compute the epipoles and
fundamental matrices, which can be obtained from 0{n) polynomial factorizations
since each one generates n epipoleir lines. Hence it is not necessary to compute the
epipolsu" lines for aXi N = —1 ss 0{n*) image pairs in Step 3.

®The numerical complexity of solving for the roots for an n"* order polynomial
in one variable is polynomial in n for a given error bound, see [17].
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5. Special motions. Algorithm 1 works for distinct motions with
nonzero translation. Future research is needed for special motions,
e.g., pure rotation or repeated epipoles parallel to the rotation axis.

6. Noise sensitivity. Algorithm 1 gives a purely algebraic solution
to the multibody structure from motion problem. Future research
will need to address the sensitivity of the algorithm to noise in the
image measurements. Since the polynomial factorization in Steps
3 and 5 is very robust to noise [20], one should pay attention to
Step 2, which is sensitive to noise, because it does not exploit the
algebraic structure of the multibody fundamental matrix F.

7. Optimality. Notice that linearly solvingfor the multibody funda
mental matrix through the Veronese embedding is sub-optimal from
a statistic point of view. We refer interested readers to [21J for a
derivation of the optimal function for the estimation of F.

At the end of our theoretical development, Table I summarizes our
results with a comparison of the geometric entities associated to two
views of 1 rigid body motion and two views of n rigid body motions.

Table I. Comparison between the geometry for two views of 1 rigid body motion
and that for n rigid body motions.

Comparison of 2 views of 1 body 2 views of n bodies

An image pair Xi,X2 G l^n{Xl),Unix2) € E^"

Epipolar constraint X2FX1 = 0 '̂ n{X2)'̂ FUniXi) = 0

Fundamental matrix F e F 6 EAf,.xM,.

Linear estimation from

N image pairs

' X2<S)x\'
X2 0 Xi

X2 0Xi^

f = o

"l^n{xl) ^ Un{x\) '
l^nixl) <S> l^nixj)

II

o

Epipole c^F = 0 UniefF = 0

Epipolar lines t = Fsci € E^ i = FUr,{Xi) 6 E^^"

Epipolar line & point = 0

o
II

H

Epipolar line & epipole e^l = 0 = 0
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6. Segmentation results

We tested the proposed approach by segmenting a real image sequence
with n = 3 moving objects: a truck, a car and a box. Figure 6 shows
two frames of the sequence with the tracked features superimposed. We
used the algorithm in [3] to track a total of = 173 point features:
44 for the truck, 48 for the car and 81 for the box. Figure 6 plots the
segmentation of the image points obtained using Algorithm 1. Notice
that the obtained segmentation has no mismatches.

(a) First image frame (b) Second image frame

Figure 6. A motion sequence with a truck, a car and a box. Tracked features are
marked as follows: "o" for the truck, for the car zmd "a" for the box.

Figure 7. Motion segmentation results. Each image pair is assigned to the fun
damental matrix for which the algebraic error is minimized. The first 44 points
correspond to the truck, the next 48 to the car, and the last 81 to the box. The
correct segmentation is obtained.
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7. Discussions, conclusions and future work

This paper has presented a complete algebraic characterization of the
multibody structure from motion problem from two perspective views.
We provided a general solution based on a clear geometric interpreta
tion of the algebraic properties of the so-called multibody fundamental
matrix. We have proven that the multibody structure from motion
problem is algebraically equivalent to the factorization of homogeneous
polynomials, and provided a novel solution to the latter problem with
polynomial time complexity. The rest of the algorithm is based mostly
on linear techniques and hence it is also polynomial time. The algo
rithm proposed here provides a principled solution to the problem and
paves the way to a more systematic study of its many variations, which
account for different practical scenarios and conditions.

The internal algebraic structure of the multibody fundamental is
not taken into account in the current approach. Besides, our discussion
has also suggested that the use of multiple images may also reduce the
amount of feature points needed from each image (pair). We expect
to investigate these issues further in the future and the outcome could
likely be an algorithm which requires much less image data than the
current linear one.

On the other hand, the paper only focuses on the algebraic and ge
ometric aspects of the multibody structure from motion problem, thus
the current solution is purely algebraic. Issues such as the effect of noise
and numerical errors have not been systematically studied. Due to the
large sizeof matrices and data associated, algorithmsfor the multibody
structure from motion problem becomemore sensitive to particular nu
merical implementations, especially in the estimation of the multibody
fundamental matrix. Although preliminary simulations and experimen
tal results are encouraging, we currently conducting more tests on
different synthetic data sets and real images. A more complete report
on such issues and proposals for better numerical approaches will be
presented in future papers.
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