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Abstract

We consider how to choose the reproduction rates in a one-dimensional contact process on a
finite set to maximize the growth rate ofthe extinction time with the population size. The constraints
are an upper bound on the average reproduction rate, and that the rate profile must be piecewise
constant. We show that the optimum growth rate is achieved by a rate profile with at most two rates,
and we characterize the solution in terms ofa ^'spatial correlation length" ofthe supercritical process.
We examine the analogous problem for the simpler biased voter model, for which we completely
characterize the optimum profile. The contact process proofs make use ofa planar-graph duality in
the graphical representation, due to Durrett and Schonmann.

1 Introduction

The contact process (CP) on the one-dimensional integer lattice is the Markov process with state
space 2^ andtransition rates

q{A,A\{j}) = l ifjeA,

q{A,Au{j}) = X\An{j- hj + l}\ ifj i A.

Here | • | denotes cardinality. For this process and all others described in this paper, if A and B are
subsets of Z such that \AAB\ > 1, then q{A,B) = 0. In words, each integer is either occupied by
a member of some population or vacant; occupied sites become vacant at rate 1, while vacant sites
become occupied at rate Atimes the number ofoccupied neighbors. See Liggett [1,2] for a construction
of the process, additional information about it, and a proof of its phase transition: if = {0}, then
there exists Ac G (0, oo) such that if A > Ac, then P{^t 0 for all <) > 0, while if A < Ac, then
P{^t 7^ 0 for all t) = 0. We consider thecontact process ona finite segment; let be theMarkov chain
with state space 2^^ ^1 and transition rates given by (1) for A C N) and j G{1, •.., N},
with (^Q = N}. In the finite case, for all A,

ajs/ —inf{l > 0 : = 0} < oo a.s.



Durrett and Liu [3] and Durrett and Schonmann [4] show, via the following theorem, that the phase
transition appears in the finite process in the limit as N —* oo. Here 71 and 72 are deterministic
fimctions of A that are defined in the next section.

Theorem 1 ([3,4)) IfX < Ac then as N 00,

(^N 1

logiV 71(A)

in probability. IfX > Ac then as N -* 00,

log ON
N

in probability.

72(A)

In words, on grows logarithmically with N when A < Ac and exponentially with N when A > Ac.
When A —Ac, Durrett,Schonmann, and Tanaka [5] showthat ajq growspolynomially with iV,but the
correctpoweris unknown. We do not studythe criticalprocess here. Instead, we explore the following
design question ensuing from thisphenomenological result. Suppose onecanvarythe reproduction rate
fi"om pointto point. How should thisbedone to maximize theasymptotic rateofgrowth of (Tjv withN1

We restrict ourattention to piecewise-constant rateprofiles. Thatis, aprofile {K, A, a) consists of
K rates Ai, A2,..., Xk, along with nonnegative constants ai,..., a/f, such that SjLi = 1- To
construct the process of size AT, we let io = 0 and for j e K}, we let ij = LS=i ockN\.
Throughout weassume that N is sufficiently large that ij_i < ij for all j € {1,. •., K}. Our contact
process isthen the Markov chain with state space 2^^-and transition rates

q{A, i4\{j}) = 1, if je A

q{A, A U{j}) = X{j -l)\An {j - 1}| + X{j + 1)|>1 D{j + 1}|, if j ^ A,

for j e {1,..., N}y where (here and below) A(A;) = A^ wherem satisfies im-i <k<im.
We generalize Theorem 1 to these piecewise-homogeneous processes in Theorems 3 through 5.

We then consider the optimization problem mentioned above. A simple coupling argument [2, p. 34]
shows that increasing a Ajincr easesthe asymptotic growth rateof withN. We consider theproblem
of choosing the profile to maximize this growth rate subject to an upper bound on the average rate.
Specifically, we consider the following optimization problem.

maximize hmiiifN-*oo{log E{aN))/N
over K, A, a

subject to J2f=i Aj- < Ao + 77
Xj > Ao for all j e K}.

Here Ao > 0 and 77 > 0 are the data of the problem. We view Aq as the intrinsic rate endowed to each
point, and 77 as the additional rate that we distribute over the points as we choose. We will prove that
as long as 77 > 0, the maximum growth rate is exponential, and we write R*{Xq, tj) for the maximum
achievable exponent, that is, for the supremum of lim inf(logE[(T}\f])/N overthe set of feasible profiles.

In the context of population-growth models, our optimization problem can be described as follows.
Considera populationthat liveson {1,..., AT} whosepresenceis desirableand that evolvesas a contact



process. The members of this population reproduce at a nominal rate Aq, and we are providedwith an
amoimtrj of "fertilizer" that we distribute over the points N}. Placingan amount e offertilizer
at a point increases by e the reproduction rateofmembers of the population who occupythat point. How
then should the fertilizer be distributed to maximize the longevity of the population?

The optimization problem also arises in other contexts in which the contact process can be used.
Consider, for example, the following caricature of a special kind of commimication network, called a
wireless sensor network. In order to track a vehicle moving in the 2-D plane, we drop an array of N
radio-equipped sensors in a line near the vehicle. Each sensor detects a signal emitted by the vehicle and
uses it to estimate the vehicle's bearing relative to the sensor. Periodically, the sensor broadcasts this
information to a basestation, which uses the information received from all of the sensors to triangulate
the position of the vehicle. The nodes broadcast asynchronously.

Occasionally, the signal received by a sensor becomes too noisy for the sensor to make a meaning-
fiil estimate of the vehicle's bearing. We assume that once this occurs, the sensor is unable to reacquire
the signal on its own. We assume, however, that a broadcast by one of the neighboring nodes contains
enough information about the vehicle's position for the node to reacquire the signal and continue track
ing the vehicle. If we assume that a broadcast enables only one of the broadcasting node's neighbors
to reacquire the signal, which would be the case if they used directed antennae, then we can model the
randomness using a contact process, where the state refers to the set of nodes that are currently tracking
the vehicle. Eventually, then, the network will reach the state in which every node has lost the target;
the network designer seeks to maximize the time until this happens. Increasing a node's broadcast rate
increases the power it consumes while it tracks the vehicle. Networks of this sort are typically power
limited [6], so a rate constraint is a natural one. We arrive at our optimization problem.

Oursolutionto the optimizationproblemis as follows. WeexpressR*(Aq, 77) in termsofthe concave
hull of 72(A) from Theorem 1, and we show that the optimum exponent is achieved by a profile with
K = 2. We are unable to characterize the optimum profile further due to difficulty in characterizing
72. This difficulty is exemplified by a scaling theory conjecture combined with numerical simulations
of critical exponents suggesting that 72(A) might have an inflectionpoint to the right of Ac. Section 4
contains additional details. We also consider the analogous optimization problem for the simpler biased
voter model. For this process we provide a complete solution, which is given in Section 5.

Other interacting particle systems lend themselves to questions of this sort. In the context of the
Ising model, consider a fixed volume of N magnetic materials, with varying magnetic strengths. These
materials are combined in some way, then magnetized to store one bit of information. If the total volume
of the materials is one, how should one arrange the materials within, say, the unit cube to maximize the
time until the magnetization is lost?

Similar questions for two-dimensional site percolation have been studied by Carlson and Doyle
[7, 8] in the context ofpower laws in complex systems. Robert, Carlson, and Doyle [9] consider, in the
same context, the effect ofdesign on a simple epidemic model in which infection spreads between three
cells. There is a significant amount of work on the infinite contact process with inhomogeneous rates
[2, p. 131]. Most of this work considers models in which the rates are random, and we are not aware of
any work on the finite process.

The remainder of the paper is organized as follows. Section 2 contains the required background on
the contact process, including the graphical construction and its planar-graph duality that is key to the
later proofs. Section 3 describes the biased voter model. Section 4 contains our main results, which
are the hitting time asymptotics and the solution to the optimization problemfor the contact process.



Section 5 contains the analogous results for the biased voter model. Sections 6 and 7 contain the proofs
of thecontact process results and biased voter model results, respectively.

2 Contact Process Preliminaries

The functions 71 and 72 mentioned in the introduction are defined interms of the infinite process. For
more information about the following definitions and for proofs of the assertions see Liggett [2]. Let

be the contact process on Z withinitial stateA. Thefunction 71 is defined as

71 (A) =- ^ j logP ^0)
The existence of the limit is proven using subadditivity: the process has at least one occupied point
whenever it is alive, so

which implies

7^ 0) > 5^ 0)i'(d°' # 0)-
Thus —log •?(?( 0) issubadditive in t, which implies [2, Theorem B22] that

-ilogP(d°'̂ 0)
converges to its infimum, whichis positive if A< Ac. In particular,

7^ 0) < exp(-7ii).

Let

= iiif{£ > 0 : = 0}.

The function 72 is defined as

72(A) =- lim -i logP <00) .
N—*oo ly \ /

This limitalsoexists for all Aby subadditivity, but it is positive if A> Ac.
Later we will use a third limiting function. Let rt = sup and letR —supf>o n. Then

73(A) = - lim - logP(P > n)
n—*00 n

exists, again by subadditivity, for all Aand it ispositive ifA< Ac. We often omit the explicit dependence
of these limits on A.

The key to theproofof Theorem 1is thegraphical representation of thecontact process. Since we
will make heavy use of it, we review it here.

Thehomogeneous contact process with a deterministic initial state canbe constructed graphically
from a countable number of Poisson processes: one with rate 1 and two with rate A for each n. The
vertical axis in this representation represents time while the horizontal axis represents space. We draw



0-L

Figure 1: The graphical representation of the contact process.

(1) 5's above n at the arrival times of the rate-1 process, (2) arrows from n to n - 1 at the arrival
times of the first rate-A process, and (3) arrows from n to n + 1 at the arrival times of the second rate-A
process. Figure 1shows a sample realization. The ^'s represent potential deaths and the arrows represent
potential births.

We say there is a contact processpath from (i, s) to (j, t) if one can travel from {i, s) to (j, i) by
combinations of (1) moving up while directly over integers without passing through a 6, and (2) moving
horizontally from one integer to a neighboring one through an arrow. The bold line in Figure 1 is an
exampleofa valid contactprocesspath from (0,0) to (1, t). Weconstructthe contactprocess by setting

= {j €:Z : there is a contact processpath from (i, 0) to (j, t) for some A}.

In this paper, the graphical representation derives its utility from the notion of dual paths, due to
Durrett and Schonmann [4]. Motivated by duality in percolation, we say there is a dual path from (i, s)
to (j, t) if one can travel from (i, s) to {j, t) while observingthe following rules:

1. The path may move upward over half integers but not through a right arrow.

2. The path may move downward over half integers but not through a left arrow.

3. The path may move horizontally from a half integer to the next lowest half integer only through
5's.

4. The path may move horizontally to the right between half-integer points without restriction.

The dotted line in Figure 1 is an example of a valid dual path from (4.5,0) to (0.5,0). That this
is the appropriate way of defining dual paths can be seen by constructing the contact process from a
sequence of increasingly-fine oriented percolations, and then allowing it to inherittheir dual path rules
[4]. Or one can verify Proposition 2 in Durrett and Schonmann [4].

Proposition 1 There is a dual pathfrom {N + 1/2,0) to (1/2,0) in (-oo, oo) x (0,T) ifand only if
there is nocontactprocess pathfrom (n, 0) to (m,T) for aline {1,..., TV} andall meZ.



We omit the proofbut note that dual paths are defined so that acontact process path from (n,0) to
{nijT) and a dual path from {N + 1/2,0) to (1/2,0) in (—oo, oo) x (0,T) can never intersect, and
the boundary ofthe set ofspace-time points for which there isa contact process path from a point in
{1,..., N} X{0} isa valid dual path. The prooffollows quickly from these observations.

Bytaking T —» ooinProposition 1we obtain a useful corollary,

{CP =0for some f| ={3 adual path firom {N +1/2,0) to (1/2,0) in (-co, oo) x(0, oo)},
(3)

which implies

iV^So h -PCfoere is adual path from {N +1/2,0) to (1/2,0) in (-oo, oo) x(0, oo)) =-72.
(f)Since we will be dealing with inhomogeneous processes, we note that we can construct aprocess if'

inwhich point n has a lower reproduction rate. A' < A, using the graphical representation by thinning
the Poisson process ofarrows leading from n with retention probability A'/A. Since removing arrows
firom the graphical representation does not create new contact process paths, we have if C ^f for all
t>0.

3 The Biased Voter Model

The biased voter model issimilar tothe contact process except that the rate ofapoint transitioning from
state 1to 0 is equal to the number ofneighbors instate 0, rather than constant. More precisely, it is the
Markov chain with state space and transition rates

9(>1,^\0}) = \{AA) n {j -1, j +1}| if j e A
g{A, AU{j}) = A|>1 n {j - l,i + 1}| ifj ^ A,

for J € {1,..., N}. A point instate 1with two neighbors instate 1cannot change states, sowe can
construct the biased voter model on{1,..., N} with initial state {1,..,, N} using two random walks:
Let Lf bea random walk on{1,2,...} that moves to the left at rate Aand moves to the right at rate 1
with Lq = 1. Let Rt bea random walk on{... ,N —1,N} that moves tothe right at rate Aand moves
to the left at rate 1, with Rq = N. If we use to denote the finite biased voter model at time t and
define ajv as before then we have

Cf = {Lt,...,Rt} forf<aiv (5)

and o"7v = inf{t: Rt < Lt}. Similar to the contact process, Lt and Rt can be constructed graphically
from Poisson processes. WeconstructLfby placingarrowsat rate Afrom n to n - 1 and arrowsat rate
1 fi:om n to n -h1 for n > 2. Point 1 is sumlarexceptthat we omitthe arrows directed toward 0. Then
Lt starts at (1,0) and evolves in time bymoving upward and following each arrow. We canconstruct
Rt similarly.

Forthe biased votermodel, wecanstatetheanalogue ofTheorem 1without resorting to definitions
involving the process on Z.



Theorem 2 ([3]) IfX < 1 then as N —* oo,

CTN 1

in probability. IfX > 1 then as AT —> oo,

N 2(1 - A)

logCTjV
N

log(A)

in probability.

4 Contact Process Results

Our first step is to generalize Theorem 1 to piecewise-homogeneous processes. The case in which the
entire process is subcritical is immediate; we provide it for completeness.

Theorem 3 Let{K,A, a) bea profile such thatXj < Xcfor all j G{1,..., iif}. Then

<^N J
logiV 7i(max(Ai,...,A/i-))

in probability as N —* oo.

In the subcritical case, each partition dies before spreading very far into its neighboring partitions,
so the partitions essentially evolve independently, and is determined by the extinction times of the
partitionswith the maximumrate. In the supercritical case, the partitions interact in a significantway.

Theorem4 Let{K,A, a) bea profile such thatXj > Xcfor all j G{1,..., AT}. Then

3=1

in probability as N oo. and

logJS[<T7v] ^ ^
Ji >2^"i72(Aj).

3=1

The proof essentially shows that the process dies out only when all of the individual partitions die
out simultaneously. The chance that partition j evolving in isolation dies out in a short time interval is
exp(-Qj72(Aj)Ar + o{N)). Overshort timescales, the partitions are nearlyindependent, so the chance
that the entire process dies out in ashort time interval is exp(- J2f=i f^jl2{Xj)N + o{N)). It then
follows that the hitting time is exp(52jLi ocj'y2{Xj)N + o{N)).

Our result about mixed profiles is incomplete. To state it, we require additional notation. Let F be
the set of indices j such that ij separates supercritical and nonsupercritical partitions,

F = {j £ {1,..., K —1} : {Xj AXj+i) < Ac < (Aj VAj+i)}.



I ' 2 ' ' 4 '5' ' 7 ' 8 '

Ci = {1}, C2 = {2}, Ca = {3}, C4 = {4,5}. Cs = {6}. Ce = {7,8}, C7 = {9,10},
Di = {1}, D2 = {3}, Ds = {6}, D4 = {9,10}

Figure 2: A sample mixed profile. The supercritical partitions have their index placed above the line.
The subcritical, below.

Now M = |F| + 1is the number of"aggregate partitions," sets ofpartitions that are connected, en
tirely supercritical ornot, andmaximal inthatadding another partition either makes thesetunconnected,
or mixed. We denote these aggregate partitions byCj forj € 1,..., M:

ai = {l,...,infFU{A:}}
Cj = {sup Cj-i + 1,..., inf{A: GF : fc > supCj-i} U{iif}}.

Let L be the number of aggregate partitions that are supercritical, so L = \M/2] if Ai > Ac,
otherwise L = [M/2J. We call aCjconsisting ofsupercritical partitions an island^ and aCj-consisti ng
ofnonsupercritical partitions asea. Let Dj for j € {1,..., L} denote the islands, which are the Cj 's
with even orodd indices depending on whether Ai < Acor Ai > Ac, respectively. Figure 2 shows an
example. Throughout,we interpretan emptysum as zero.

Theorem 5 Let (FT, A, a) be a profile. Then

—— < ma-.

^ i6{l L)^1̂ (E 1-' 1- 0.

J=1 i&Dj

for all e > 0 as N 00. and

^i€Dj

L

liminf > max Q:i72(Aj)
N^oo N - i6{l L) I ^

\i^Dj

91 10

The difficulty is determining when the seas isolate the islands intoseparate processes. The lower
and upper bounds in Theorem 5 correspond to two possible answers to this question, "always" and
"never." If the islands are isolated then the extinction time of the process is just the extinction time of
its longest-living island, giving an exponent of (llieOj "t72(Ai)). If the population can
spread from oneisland to another, a process wecallcolonizing, then theprocess diesoutonly when all



of the islands die out simultaneously. By the discussion following Theorem 4, this gives an exponent of

We conjecture that the correct answer is "sometimes"; whether a sea prevents two islands from
colonizing depends on their sizes and reproduction rates. To support this conjecture, consider the time
the process takes to spread across a homogeneous subcritical region ofwidth N. Bramson, Durrett, and
Schonmann [10] prove the following.

Proposition 2 Consider a modified subcritical contactprocess on Z, in which = {0} ond 0 is
alwaysoccupied. Let An = iui{t > 0 : N E ^t}. AsN —* oo.

logAjv ...
73(A)

in probability.

The intuition behind the result is that each time point 0 spreads to point 1, the process started with
only {1} occupied spreads to N before becoming extinct with probability exp(—73(A)iV + o{N))f and
in an intervaloflengthT, the numberofchances for this to occur is proportionalto T. For the piecewise-
homogeneous process, weshow thatthechance of theprocess started with only{1} occupied spreading
to Nbefore becoming extinct is exp(— Ylf=i ^nd thereby prove the following.

Proposition3 Let{K, A, a) bea profile such that Xj < Xcfor all j € {1,•••, K}. For each N, let
be thepiecewise-homogeneous contact process modifiedso that 1 is always occupied, and let

An = inf{i > 0 : iV e If'}.

Then as N —* oo,

log A// ...

3=1

in probability.

Considera profile with if = 3, oii > 0 for z G {1,2,3}, and Ai > Ac, A3 > Ac, but A2 < Ac.
Theorem 1 gives the extinction times ofthe supercritical partitions when they evolve in isolation, namely
exp(ai72(Ai)Ar + o{N)) and exp(Q:372(A3)7V + o{N)). Proposition 2 gives the time until there is a
contact process path across the subcritical region, namelyexp(Q;273(A2)iV + o{N)).

If ck273(A2) > max(ai72(Ai), a372(A3)), then the chance that one of the supercritical partitions
ever colonizes tends to zero as AT —» 00. In this case, we conjecture that the exponent for the extinction
time of the entire process is max(ai72(Ai), a372(A3)).

If Q:273(A2) < niin(ai72(Ai), a372(A3)), then if one of the supercritical partitions dies out, the
other partition has infinitely many chances (in the limit) to restart it by colonizing. In this case we
expect the population to die out only when both partitions die out simultaneously, giving the exponent
Q!172(Ai) + Q:372(A3).

If min(Q:i72(Ai), a372(A3)) < a273(A2) < max(Q:i72(Ai), a372(A3)), then when the partition
with exponent max(Q:i72(Ai),a372(A3)) dies out, with probability approaching 1, the other will die
out beforecolonizing. In this casewe expectthe exponent to be max(ai72(Ai), a372(A3)).



Q:i72(Ai) = 2, a273(A2) = 1, a:372(A3) = 2,
af473(A4) + 0:573(^5) = 3, a672(A6) = 4,

Q!773(A7) + a873(A8) = 5, a972(A9) + Q!io72(Aio) = 3.

Figure 3: Sample exponents.

UsingTheorem 4 and Proposition 3, wecanextend thisreasoning to processes withmorethanthree
partitions. Weillustrate the ideawithan example. Consider againtheprocess in Figure 2. Suppose, for
the sake of discussion, that the equations in Figure3 hold. Thenourconjecture is that the first and third
partitions will colonize to each other, so that the first and third will effectively act as a single island.
This island will colonize across thesea{4,5},aswill the sixth partition, so{1,3,6} will effectively act
as a single island. Although thisisland cancolonize across thesea{7,8}, the island {9,10} cannot, so
we conjecture that the exponent for thisprofile is Q:i72(Ai) + a372(A3) + a672(A6). We hope that the
reader can see how to extend the conjecture to an arbitrary profile.

Since we can resolve the optimization problemwithoutknowing the validity of this conjecture, we
willnot investigate it further. Let72°(A) denote theconcave hullof72(A) on [Aq, 00), i.e.,forx > Aq,{n n

^ Q!j72(Aj): ^ ajXj = xand Aj > Aq for j = 1,...,n
i=i 3=1

where the supremum is over n, a, and A.

Theorem 6 i2*(Ao, r}) = 72°(Ao + r)). Furthermore, i2*(Ao, 77) is achieved byaprofile with K = 2.

The sufficiency of profiles with two rates follows from Caratheodory's Theorem [11, p. 155] and
some continuity arguments. Clearly at least two rates are required in the case that Xq + tj < Ac, since
then the constraint forbids us firom making the entireprocess supercritical, so the optimum exponent is
approached by making part of the process supercritical, and leaving the rest at Aq. If 72 is concave on
[Ac, 00), then multiple partitions are required only if Aq < Ac andAq + 77 is sufficiently small. More
precisely, if72 isconcave on [Ac, 00)andAq > Ac, then 72° = 72 on(Aq, 00) soR*{Xo, rj) = 72(Ao+77),
and an optimumprofilewouldconsistof a singlepartitionwithrate Aq+77. And if Aq < Ac, therewould
exist A* > Acsuch that

and so if Ao + 77 > A*, an optimumprofile would consist of a single partition with rate Aq + 77, and if
Aq + 77 < A*, then an optimumprofilewould consist oftwopartitions, one with rate A* and another with
rate Aq.

Onemightexpect 72to be concave on (Ac, 00) sinceit is nondecreasing anddepends on Aprimarily
through a comparison to the death rate, which is 1. Thus we expect the effect of increasing Aby A to
diminish as Aincreases. Indeed, 72 increases at mostlogarithmically: if allpoints in {1,..., JV} dieout
before reproducing, then < 00 so

10



which gives 72(A) < log(l + 2A). Butweare unable toprove that 72 is concave on [Ac, 00); in fact we
suspect that it is not.

Scalingtheorypredicts that the contactprocess has a natural length of scale, L±{\), that tends to
infinity as a power as A Ac,

logZ,x(A) _
ii" log(A - Ae) ^^

for some a > 0 [12]. We have expressed the convergence in the logarithmic sense but in reality the
nature of the convergence is unclear. Accurate but nonrigorous simulations place a, assuming it exists,
at 1.09681 [13] and 1.09684 [14]. The natural way of defining L± mathematically for the supercritical
process is the following. Let ux be the upper invariant measure of the homogeneous process on Z with
rate A, and let

CA(n,m) = i/xiA :ne Aand me A) —ux{A \n e Af.

Assmning Cx{n^m) ^0 exponentially as m —n —» 00, we define

(Z,j.(A))-' =- Urn i log Ca(0. n) (8)
n—*oo n

The link to 72 is due to Durrett, Schonmann, and Tanaka [12], who show that for all n > 0 and A > 0,

CA(0,n) < exp(-72(A)n). (9)

If (7) and (8) hold with a > 1, then (9) would imply that 72 is not concave near Ac. We are unable to
resolve this issue, but note that even if72 is not concave near Ac, we do not expect it to have more than
one inflection point to the right of Ac, and a single inflection point would not alter the solution to the
optimization problem much over the concave case. Thus we conjecture the following.

Conjecture 1 There exists Acj > Ac such that 72 is convex on [Ac, Acj] and concave on [Acj, cx>). If
Ao > Ac2, then R*{XQ,r)) = 72(Ao + rj) and R*{Xo,7}) is achieved by the profile (1, Aq + rj, 1). If
Aq < Ac2 then R* is achieved by a profile withat most twopartitions, at most one ofwhose rate is not
Ao-

Being unable to validate this conjecture, we cannot assert that two partitions are required only when
Ao < Ac and A0+7 is sufficiently small, and in this case that at most one ofthe partitions is supercritical.
However, for the simpler biased voter model, to which we tum next, we can make such an assertion.

5 Biased Voter Model Results

Again we consider piecewise-homogeneous processes. Our definition of a profile remains the same, but
now given the profile (AT, A, a), we consider the Markov chain with initial state {1,... ,iV} and
transition rates

(,(.4,A\{j}) = |(Z\.4) n {j - l,j + 1}| ifj € A

q{A, A U 0'}) = A(j - l)|Aln {j - 1}| + A(j + 1)|.4 n {j + 1}| if j i A.

II



Wecan construct this process fromtwo random walks by modifying the constmction used for the ho
mogeneous process. Let Lt be a random walk on N, starting at 1, with transition rates

g(n,n-t-1) = 1

Ai if 2 < n < ii
, A2 if-f 1 < n < 12

9(n,n- 1) =

Aif if iKir + 1 < n

and let Rt be a randomwalk on , JV - 1, iNT}, startingat iV,with transitionrates

q{n,n —1) = 1

' Ai if n <

q{n, n -I-1) = <
X2 if ii -f 1 < n < 12

^ Xj{ ifixi- +l<n<N —1

Then we can construct by (5) as with the homogeneous process. In the sequel we refer to this as the
edge construction of the piecewise-homogeneous biased voter model.

Theorem 7 If{K, A, a) is aprofile suchthat Xj < 1for all j 6 {1,..., K}, then

K

N 2(1 - Xj)

inprobability as N 00. IfXj > 1for all j e {1,..., if}, then

logapf ,
— ^2^Q!jlog(Aj)

j=i

in probability as N —* 00, and

log£[cr;(,] ^ ^
Jf

j=l

Theorem 8 Theorem 5 holdsfor thebiasedvoter model ifwereplace Ac with 1 and 72(A) with log"^ A.

Determining the correct exponents for mixed profiles should be relatively easy for the biased voter
model. We do not explore this here because our interest in the biased voter model is its solution to the
optimization problem.

Theorem 9 For the biased voter model, //Aq > 1, then i?*(Ao, 77) = log(Ao + 77) is achieved by the
profile (1, Ao -f 77,1). IfX^ < 1, let Ai be the uniquesolution to

1- ^ =log Ai
that is greater than 1. If Xq-^-t] > Ai, then again R*{XQ,'q) = log(Ao -t- 77). If Xq-\- q < Ai, then
R*{Xo, 77) = 77/Ai is achievedby theprofile (2, (Ai, Aq), (a, 1 - a)), wherea = rj/{X\ —Aq).

12



6 Proofs of Contact Process Results

Theorem 3 follows from two simple couplings.

Proof of Theorem 3. Consider the homogeneous process on {1,... ,i\r} with reproduction rate
A = max(Ai,..., A/^-), and call its extinction time a//. The piecewise-homogeneous process can
be coupled to this homogeneous process such that ajv < as described in Section 2. Then
ajq/XogN —» 1/71(A) by Theorem 1, which shows the upper bound. For the lower boimd, choose
j £ argmax{Ai,..., Ai<-} and couple the piecewise-homogeneous process to the homogeneous pro
cess on{ij_i,..., ij} formed byforbidding births tooccur from ij-i toij-i +1 andfrom ij +1 to ij in
the piecewise-homogeneous process. Let denote the extinction time of this homogeneous process.
Then < ctn, and

<TjV L_ _A <p f <
(A)logiV 71(A) W)-')VlogAT 71(A)

<p( ^ .
- ij-i) 71(A)

-\.p(
Vlog(ij - ij-i

(A) 2)

-1) log AT ' 2)
•

We tum to the more interesting supercritical case. Theorems 4 and 5 are proved as a sequence of
lemmas. First we define some events. Borrowing from Durrett and Schonmann [4], we write a —♦ 6 for
"there is a dual path from a to 6 in the graphical representation." Some of these events require that the
graphical representation be constmcted for both positive and negative time.

An =

Ajf =
Bn =

-On —

Cn =

Cjf =

{{N + 1/2,0) —+ (1/2,0) in (-00,00) x [0,oo)}

{(iV-h1/2,0) ^ (1/2,0) in (-00,00) x [0,r]}
{{N -h 1/2,0) -> (1/2,0) in (1/2, N + 1/2] x [0,00)}

{{N + 1/2,0) (1/2,0) in [1/2, N + 1/2] x [0,T]}

{{N -h 1/2,0) —» (1/2, t) in [1/2, JV + 1/2] x (—00,00) for some t}

{{N + 1/2,0) ^ (1/2, t) in [1/2, IV + 1/2] x [-r,r]for some £}

{(iV -t-1/2, s) —> (1/2, £) in [1/2, iV-|-1/2] x [-T,T] for some s andt}

The scheme here is that the B events have both endpoints of the dual path fixed, while the C events
have only one endpoint fixedand the D eventshave both free. When a superscript appears, it constrains
the path vertically. Observe that Bjf c C Djf and Bjf C A^. Note also that the B events depend
on the birth arrows from N to N + 1 and from 1 to 0, but not from IV 1 to iV or from 0 to 1. The
C events depend on the birth arrows between N and iV -1-1 in both directions, but not on the arrows
between 0 and 1. The D events are independent of all birth arrows between N and iV -1-1 and between
0 and 1. Note that Ajf appeared inProposition 1, while An appeared in its corollary (4).

All of these events refer to the homogeneous process on Z. We will also find it convenient to use the
B,C , and D events in thecontext of thepiecewise-homogeneous process on {1,..., N}. When doing

13



so, we place a tilde above the event (e.g. Bn) and we add arrows between N and iV + 1 at rate A^- and
between0 and 1 at rate Ai to the graphicalrepresentation, since the B and C eventsuse them.

Lemma 1 There existfunctions /Lifc(A), ^^(A), and Uk{X), which arepositive on (Ac, oo), such that

jim -llogPO
-ilogP(i

Theproofof thislemma is essentially thesame as thatof Lemma 1in Durrett andSchonmann [4]. We
provide a condensed version for completeness.

Proof Consider (a). Let „ = {(m +1/2,0) -» (n +1/2,0) in (-00,00) x [0,fc]}. Then
positively correlated by Harris' inequality [15]

(see also [3]), so

But = P{A\i) so ifwe let = —log P{A^) then we see that a^v issubadditive, which
proves all of (a) except that Uk{X) > 0 if A> Ac. Theconvergence in parts(b)and(c) areproved sim
ilarly, although they donotrequire Harris' inequality since B^ and Bm+n,n are independent as they
depend ondisjoint parts of the graphical representation. All of the limits are positive since 72(A) > 0
on (Ac, 00) and A% c A^, B^ c An,and Bn C An. •

We wish to show thatM= 72- We first show thatpk P and i/jt —» 72 as A; —> 00. Theargument
is fi-om Durrett andSchonmann [4],who attribute it to J. Chayes andL. Chayes.

Lemma 2 Ask-* 00, Pk{X) —* p{X) and Uk{X) —* 72(A) on [0,00).

Proof Note thatpk{X) is decreasing in k andpk{X) > p{X) forall k. Fixe > 0 andnote that for
all sufficiently large N, we have

exp(-(/i(A) 4- e)N) < P{Bn).

Now B^ t Bn as fc —» 00 so P{B^) t P{Bn) thus

exp(-(/i(A) -t- e)N) < Urn P{B^)
k—*oo

< lim exp{-pk{X)N)
fc—»oo

<exp (^l^pkiX)^ .
This implies

p{X) + e> lim pk{X).
fc—>00

This shows that pk —* Mi the other is the same. •

Toshowthat p{X) = 72(A) on [0,00), it suffices to show

14
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Lemma 3 fikW - i/fc(A) on [0, oo).

Proof. Note thatfik ^ ^k- Suppose that threeevents occur: {thereisno arrow fromN to N-\-l
during [0, k]}, and{there is noarrow from 1 to 0 during [0, A:]}. Fixa dual path P from {N + 1/2,0)
to (1/2,0), and without loss of generality, suppose that P is simple. Consider moving along P from
{N + 1/2,0) to (1/2,0). Let S denote the point at which it crosses {N + 1/2} x [0, k] for the last
time, and let T denote the pointat whichit crosses {1/2} x [0, k] for the firsttime. Then moving from
{N + 1/2,0) to S along {N + 1/2} x [0, fc), then S to T along P, then from T to (1/2,0) along
{1/2} X [0, k] shows thatthere is a dual pathfrom {N + 1/2,0) to (1/2,0) in [1/2,N + 1/2] x [0, k].
Thus, occurs. Since the three events are positively correlated by Harris' inequality,

g-2Afcp(^^) < )

n > fJ'k'

Corollary 1

lim — logP(PAr) =-72.
N—*oo I\

Lemma 4

p(bS')
^^oo-pimiT ^

Proof We will show that ifBn\B^^ occurs, then the process on Zwith initial state {1,..., N}
must die out, but not before living at least time units, i.e., < oo. To see that
^{i,...,N} ^ implies ^4;^, then a|)ply (3). To see that N"^ < suppose Bn
and occur. We will show that Bj^ must occur as well. There isa dual path. Pi, from
(N + 1/2,0) to (1/2,0) in [1/2, AT + 1/2] x [0,oo). By Proposition 1 there is also a dual path, P2,
from (N + 1/2,0) to (1/2,0) in (—00,00) x [0, We may assiraie without loss of generality that
Pi and P2 are simple. IfPi or P2 is contained in [1/2, N + 1/2] x [0, N^], then clearly B^^ occurs,
so suppose Pi extends above N'̂ and P2 extends either to the right of A^ + 1/2 or to the left of 1/2.
Considermoving along Pi from {N + 1/2,0) to (1/2,0) and let pi and p2 be the space-time points of
the first and last times that the path intersects [1/2,AT 4- 1/2] x {N^}. Let ^i denote the partof Pi
between {N + 1/2,0) andpi andlet S2denote thepartof Pi between p2 and (1/2,0). Figure 4 shows
an example.

Now Si and P2 must intersect, since they both originateat (AT -i-1/2,0). Let pa be the space-time
point of the last time that they intersect when one moves along P2. Similarly, 82 and P2 must intersect,
since they both end at (1/2,0). Let p4 be the space-timepoint of the first time they intersect when one
moves along P2. Between points paand p4, P2 must lieentirely in [1/2, A/ -I-1/2] x [0, A^^], somoving
from (AT + 1/2,0) to pa along Si, then pa to p4 along P2, thenp4 to (1/2,0) along 82 exhibits a dual
path from {N+ 1/2,0) to (1/2,0) in [1/2, TV -H 1/2] x [0, Ar2], which implies Bjj . Thus

Bnn {t(i "> < N^} c sjy"

15



N*m

Figure 4: Sample dual paths for the proof of Lemma 4.

So

C < t''--") < oo}.
It isknown [2,Theorem 2.30] that there exist constants C,c e (0,oo) such that forall Z C Z,

P(t <T^<oo)< Ce'̂ K

Thus

So for all sufficiently large JV,

0< 1-

Corollary 2

-c7V2P{Bn\B^) <Ce

^ ^ Cexp(-eN^)
P{Bn) ~ exp(-(72 +c)i\r)

0.

Inwords, Corollaries 1and 2 saythat thechance that theprocess dies outbefore growing outside its
original interval decays with thesame exponent as thechance thattheprocess dies out at all. Thenext
lemma shows how touse this fact tobound thehitting time ofthe piecewise-homogeneous process.

Lemma 5 Let{K, A, a) beaprofile such thatXj > Xcfor all j e K}. Thenfor all c > 0,

log tTjV
N

K

>X^"i72(Aj) +cI -•O.
j=i

16



Proof. By comparing our process to a modified one in which at times /c 6 N, all nodes are
made to be occupied if any of them are, we see that for alH > 0,

PicN >t)< P{<tn >

Amodification ofProposition 1shows that Bj^ implies ojv ^ so

J'(<rjv >t) <(l - f

Now occurs if there isa dual path from (ij +1/2,0) to (ij-i +1/2,0) in [ij-i +1/2, ij + 1/2] x
[0, {ij - for each j€ {1,..., K}. Applying Corollary 2 to each partition, andnoting that the
dual paths across distinct partitions are independent, we have

1 ^li^^ —logP ^ (10)
j=i

Thus for all sufficiently large N,

P{(7N >t)< ^1 -exp aj72(Aj) +e/2j iVjj . (11)
Taking t=exp ^ (Aj) +J^ ^implies the result, since then the right-hand side converges
to zero. O

Lemma 6

Jimllogi'(<)=-7s.
Proof Since C , we see that

For the upper bound, let

TN = m{{s e l-N^,N^+l] : (iV+l/2,s) (1/2,t) in (1/2, iV+l/2]x [-7^3,7^3-1-1] for some*).

Here and throughout, m(-) denotes Lebesgue measure. By Tonelli's theorem,

rN^+l

E[Tn] = / P((7V + l/2,s) (1/2, t) in [1/2,7V-h 1/2] x [-7V3,7V3-h 1] for some t)ds.
J-N^

Durrett and Schonmann [4, Lenuna 4] show that if

Gn = {(7V + 1/2,0) —»(1/2,i) € R XR for some t},

17



then

Urn — logP(Giv) = -72.
N—*oo I\

Fix € > 0. Then for sufficientlylarge iV,

P{Gn) < exp(-(72 - e)N).

SinceP{Gn) upperboundsthe integrand, this implies

< {2N^ + 1) exp(-(72 - e)N), (12)

Define

Un = inf{s :s = or{N + 1/2,s) (1/2,t) in [1/2, N + 1/2] x [-N^, N^] for some t},

where the infimum isover s 6 [—iV^, iV^j. Then C/)v is independent ofthe arrows fi*om iV H-1 to so
the event that there areno arrows firom N + lto N during [C/^v, i7iv+i]is independent of Un and has
probability exp(-A). If 17^^ < andthere are noarrows from iV + 1 to iV during [Un,Un+i], then
Tn > 1, so by Markov's inequality and (12),

exp{-X)P{UN < N^) < {2N^ + 1) exp(-(72 - e)N)

But P{Un <N^) =P(Dn^^ »so the previous inequality implies

limsup i logP <-72.
N^oo ^ ^7

•

The technique of relatingevents like Gn and using expectations and Tonelli's theorem will
be used several times below. Having provided the complete argument in the previous proof, we will
include less detail in the sequel.

Lemma 7

J=1

Proof. Since c the lower bound follows from (10). Forthe upperbound, define

Pn,3 —{(b+ 1/2,s) —» (ij_i + 1/2,t) in [ij-i + l/2,ij-|- 1/2] x [-N^,N^] for some s and t}.

Forall sufficiently large AT, < {ij - for all j 6 {1,..., AT}, so by Lemma 6,

for all j. Since the Pjvj,j € {1,..., if} are independent, and

C Pi D^j,
j=i

18



we have
K

limsup i logP <- ^aj72(Aj).
N-*oo ^ ^ ^ ^

•

We can complete the proof of Theorem 4once we show that ^ logP(C7v) -> -EjLiQ!i72(Aj).
To relate P{Cn) to P(Cjtf^) we must generalize to inhomogeneous processes on Nthe fact used in
Lemma 4 that for the homogeneousprocess on Z, P(t < < oo) < Cexp{—et) for all Z C Z. We
will apply our bound to a sequence of piecewise-homogeneous processes, and we require the same C
and €to work for each one. Toaccomplish this, we prove the bound for a general class ofinhomogeneous
processes. Let be the contact process on N with = Z and with transition rates

q{A,A\{j}) = lifje A

^^^2)|An{2}| ifj^AJ = l '

for >1 C N and j € N, where 6i, Or :N —» [0, oo). Let

= inf{t > 0 : If = 0}.

Lemma 8 For all X > Ac, there exists positive constants C and S such that for all inhomogeneous
contact processes on N such that min(0L(z), > Afor all i eN, all Z C N, and all t > 0,

P{t <f^< oo) < Cexp(—<5t).

Proof We use a restart argument modeled after the one in Durrett [16, p. 1032].
We can couple |f toahomogeneous process ^f onNwith rate Aby thinning the Poisson processes

in the graphical representation. Let ^ denote the contact process on [7,00) starting with {j}
infected, constructed from the graphical representation of (^f )t>o restricted to [7,00) x [s,00).

Letxo = inf Z, To = 0, andT\ = inf{t > 0 : = 0}. IfTi < 00and^ 0, letx\ = inf .
If Ti <00 and = 0, let xi = 1. Then let T2 = inf{t > Ti : = 0}» and repeatthe procedure
until we find a point (x/,, Tf) such that survives forever. Such a point exists with probability 1,

T •

since each Q *' ' has some probability p > 0 of surviving forever [3].
On < 00,Tl > f^, so t < < 00implies t <Tl. There exists positive constants C and<5,

independent of Ol and Or, so that conditioned on L > I, Xi = Ti —Ti_i, z = 1,..., Zare i.i.d. with

P{Xi >t) = P{t < t\t < 00) < Cexp(-<5t),

where

T = inf{t > 0 : = 0},

and the exponential bound is from Section 3 of Durrett and Liu [3]. Then there exists k > 0 such that
0(k) = £?[exp(KXi)] < (X), and e > 0 such that e~'̂ <f>{KY < 1. Then for all t > 0,

P{Tl >t)< P{L > [etj) + P{X, + . •• > t)
<(l-p)L^iJ+e-«t0(«)Le«J.
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Lemma 9

P
lim —

w-oo P{Cn)
®=1,

Proof. Construct Cjv and from thegraphical representation of an inhomogeneous process on
(C«)t>0» "1 which points N} inherit their reproduction rates from the piecewise-homogeneous

process, andthepoints in {N +1, iV + 2,...} reproduce at rate Xk- Note that werequire thegraphical
representation inbothpositive andnegative time. Onthisgraphical representation, define thefollowing
four events for all m and n such that N >m>n>

•Bin = {(m + 1/2,0) -»(n - 1/2,0) in (1/2, N +1/2) x [0, oo)}
B^,„ = {(m-11/2,0) (n - 1/2,0) in [1/2, N +1/2) x (-oo, 0]}
•Bin = {(m + 1/2,0) (n - 1/2,0)in [1/2, N + 1/2] x [0, JV^]}
Bin = {(">+1/2,0) (n - 1/2,0) in [1/2, N + 1/2] x [-AT^, 0]}

For m > n = 1, we allow the path to end at an arbitrarytime. That is,

~ 0) —» (1/2,s) in [1/2, N + 1/2] x [0, oo) for some s},

and similarly for the other three events. Let

T- = inf{«>0:|/" "•'=0},

where denotes ffStart ed in state A. For any 1< n < m< iV, if „ occurs and {f^ < iV^}, then
a modification of the argument used in Lemma 4 shows that must also occur. Thus

<n\^S,nC{iV2<f-<00}.

So by the previous lemma, there exists C > 0 and <5 > 0 so that for all N, m, and n such that
\ <n <m < N,

B (Bi„\Fin) < Cexp(-iAr2) (13)
Letif bethecontact process onNconstructed from the graphical representation obtained byrefiecting
the portion of the original graphical representation that lies below t = 0 about the t = 0 axis, then
reversing thedirection of all of the arrows. Observe that there is a dual path from (i, s) to {j,t) in the
graphical representation of Sf if and only if there is a dual path from (i, -s) to {j,-t) in [1/2, oo) x
(-00,0] inthe original graphical representation. Thus the argument leading up to(13) also shows that

< Cexp{-6N^).

Now suppose thatCn occurs, andletP beany simple dual path from (N+l/2,0) to (1/2} x (-oo, oo)
in [1/2, N + 1/2] X(—oo, oo). Without loss ofgenerality we can assume that P intersects [1/2, N +
1/2] X{0} only athalf-integers. Let xi +1/2, X2 +1/2,..., xm-i + 1/2 bethose half-integers, inthe
order in which it reaches them. Thus xi= N. Letxm = 0. Again without loss of generality, we can
assume that xj > X2 > ••• > xm- Since P mustlive entirely above or below t = 0 between Xi+ 1/2
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and Xi+i + 1/2, either or must occur for each i = 1,..., M - 1. If occurs

whenever ndoes and occurs whenever „ does, then also occurs, so Cn\C{1^ implies
that there exist m and n such that 1 < n < m < N, and £?m,n\-^m,n ^m,n\^m,n occur. Thus

P(Cn\Cn'') <2iV2c7exp(-(5Ar2).
The result then follows as in the proof ofLemma 4. •

Corollary 3

iviSoh^ ~S
j=i

Lemma 10 Let{K^ A, a) beaprofile such thatXj > Xcfor all j £ {1,•••, K). Thenfor all c > 0,

as N ^ oo. and

log£?[(T//] ^
3=1

Proof We proceed as in Lemma 6ofDurrett and Schonmann [4]. Write 7 = Ylf=i ^jl2{Xj). By
Tonelli's theorem, for all sufficiently large TV,

£7[m({s G [0,T+ 1] : (TV + 1/2, s) —> (1/2, f) in [1/2, TV + 1/2] x (-00,00) for somet})]
rT+l

= I P((TV + 1/2, s) —» (l/2,t) in [1/2, TV + 1/2] x (—00,00) for some t) ds (15)
Jo

< (T + 1) exp (- (7 - e/2) TV).

If there exists s, t 6 [0, T] such that (TV + 1/2, s) —> (1/2, f) in [1/2, TV + 1/2] x [0,T], and there are
no arrows from TV + 1 to TV during [s, s + 1], then the measure in (15) is at least 1, so

P{{N + 1/2, s) —> (1/2, t) in [1/2, TV + 1/2] x [0, r]f or some s and i)

< e''̂ '̂ (T + 1)exp (-(7 - e/2)TV),

which implies

PWn <T)< e>"'(T + 1) exp(-(7 - e/2)Ar),
since ctn <T implies the existence of such a path. Substituting T = exp((7 —£)TV) shows (14). To
show convergence of expectations, note that

E[aN] = E[aNl{cri^ < exp((7 - €)TV))] + EIonHctn > exp((7 - €)TV))]
> exp((7 - e)TV)P(crAr > exp((7 - e)N)).
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From this it follows that

N^oo N ~ '

For the upper bound, write
roo

EI(Tn] = / P{(TN > t) dt.
Jo

Then, using (11), we have for all suflBciently large iV,

EWn] <exp((7 +€)N) + /" (1 - exp(-(7 +e/2)N)Y^^^~'̂ dt.
Jexp{{'r+€)N)

If we write0{N) for 1 - exp(-(7 + e/2)N)y thenthe integral evaluates to

which converges to zero as TV —♦ oo. •

The proofs of Theorems 5 and 6 make use of the following fact.

Lemma 11 72(A) is continuousfrom therighton [0,00).

Proof. If0 < A < Ac, then

p =(X)^ <j\fp =00^ =0,

so < 00) = 1 forallN and 72(A) = 0. This proves the conclusion on (0, Ac). To verify it
at Ac, note that Durrett, Schonmann, and Tanaka [5] show that

. ,(A-Ac)(i/5)
lim inf — > 0,

-MAc 72(A)

which implies that 72(A) J. 0 as A J. Ac. To prove the conclusion on (Ac, 00), write for the
event in the graphical representation with rate A, and note that if A2 > Ai, then Bj^^(Ai) and
Pjv^(^2) can be coupled by constructing B^^(X2) from the graphical representation ofBjy^(Ai) along
with additional arrows with rate A2 - Ai. Then

0<P(Bf(M)) - p(Bfl'M) <1- exp (2(Ai - AjjJV').
SO P{B^^{X)) is continuous. Define

MA) =-ilogP(sjy'(A)).
Then ///(A) is continuous in Afor fixed TV, and by subadditivity,

/n(A) > 72(A).
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Note thatboth /jv and 72 are nondecreasing. Now fix A> Ac and e > 0. Choose N so that /;v(A) <
72(A) + e/2. Then choose <5 such that forall0 € [A, A+ <5], /^(0) < /;v(A) + e/2. Then

72(^) < fN{&) < 72(A) + €.

•

ProofofTheorem 5. The lowerboimdin probabilityand expectationcan be proven by coupling the
process to the all-supercritical process consisting ofone of the supercritical islands with a maximal hit
ting time exponent and then applying Theorem 4. We omit the details of this procedure and concentrate
on the upper boimds.

Let C denote the indices of the nonsupercritical partitions. Choose A > Ac such that 72(A) < e/2,
and let be the extinction time ofthe all-supercritical process obtained by making all of the partitions
in C supercritical with rate A. By coupling that process to the original one so that on < we have

< E^n], and

^fT >S^ +A <p ^ ,
\ 3^C J \ HC

- ^ \ '̂ iT2(Aj) -I- Q:j72(A) + e/2 j .
\ Hc j€C J

Applying Theorem 4 completes the proof. •

ProofofTheorem 6. Let Ao > 0 and 77 > 0, and let {K, A, a) be any feasible profile. By Theorem
5,

1 ^—log£;[(7yv] <^ ai72(Aj) <72 "(-^0 +^)-
i=i

Thus i?*(Ao,77) < 72°(Ao + 7?). Observe that 72°(Ao -f 7;) < 00 since 72(A) < log(l -I- 2A). By
Caratheodory's Theorem, [11, p. 155],73° is approached by profileswith two rates,

(2 2

72°(^) = sup <^Q:j72(Aj) :^CkiAj = x, and min(Ai, A2) > Aq
Ij=i i=i

Thus there exists sequences (aj, A^, fc € N, j = 1,2) such that > Ao for all kand j, and

2

^q^aJ < Ao+ 77 V/:, and (16)
j=i

2

;^Qj^72(Aj^) ^ 72°(Ao + 77), (17)
i=i
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as fc —♦ cxD. By considering subsequences, we can assume that and Aj are monotonic. If Aj Too as
fc —» CO, then

ocjl2{><j) < log(l + 2A}) 0.

So setting Xj = Ao for all k does not change (16) or(17). Thus we may assiune that the sequences Af
and A^ are bounded, in which case there is aconvergent subsequence of (aj, A^, fc € N, j = 1,2) that
convergesto ai, a2, Ai, A2. Since 72 is nondecreasing and right continuous,we have for any sequence
Xji * X,

limsup72(a;„) < 72(0;).
n—>00

Thus

7^(Ao + v)< ai72(Ai) + a272(A2).
It follows that i2*(Ao, 77) > 72(Ao + 77) and it is achieved by a profile with tworates. •

Wewill prove two more lemmasbefore proceedingwith the proof ofProposition3.

Lemma 12 Let be a piecewise-homogeneous contact process on {1,.. .,N} with for
which Xj < Xcforallj € {1,.. .,K}. Let R = supf>oSup^t^ and = inf{t > 0 : N e Then
for all P > 0,

i logP(ii >W) - ilogP(A'jv < =0.
Theresultalso holdsfor a homogeneous subcriticalcontactprocesson Z.

Proof Consider the piecewise-homogeneous process. For all /? > 0,

0<P(R>N)- P(,A'̂ < /3JV2) = P(pN^ < A'jv < oo)
< exp(-7i(max(Ai,....Xk))PN^)-

Consider the homogeneous process on {0} UN, ^f, withreproduction ratemin(Ai,..., A/^-) and initial
state {0}, and letR' = supi>oSup6. Then P{R > N) > P{R' > iV - 2), and - logP(i2' > N) is
subadditive, sinceby conditioning on the stateof whenN first becomes occupied, it follows that

P{R' >M-\-N)> P{R' > N)P{R' > M).

Thus if we let

e= ml ~\ogP{R'> N),
iV€N N ~ '

thenB > 73(min(Ai,..., A/<^)) >0, and forall sufficiently large TV,

P{R >N)> P{R' >N-2)> exp(-2C N - 2)),

in which case

0^1 P{ '̂n ^ ^ exp(-7i(max(Ai,..., Xk))PN^) „
P{R > TV) - exp(-20(TV - 2))
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This shows that for all /3 > 0,
P(R > N)

< 0N^) '

and the result for the piecewise-homogeneous process follows. The proof for the homogeneousprocess
is similar. •

Lemma 13 Let be a piecewise-homogeneous contactprocess on with = {2}for
which \j < Xcforall j G{1,..., K}. Let R = sup4>o sup and

Ajv = inf{t > 0 : there is a CPpathfrom (2,s) to {Nf) in [l,Ar] x [s,t] for some s > 0}.

Then

lim i IogP(ii >JV) - i IogP(AA, </3JV2) =0.
N—*oo iv iV

The result also holdsfor a homogeneous subcritical contactprocess on Z.

Proof By Tonelli's theorem, for any /? > 0,

E\m{{s G[0, pN'̂ + 1] : there isa CP path from (2, s) to (TV, t) for some t < PN^+ 1})]
rpN^+l

= I P(there is aCP path from (2, s) to (TV, t) for some t < PN^ -\-l) ds
Jo

V2+1

P{R > TV) ds

= iPN^ + 1)P{R> N).
'-t

If there isa contact process path from (2, s) to (TV, t) forsome s > 1and t < PN"^ +1 in [1, TV] x [s,t],
and thereare no (5's at 1 during [s —1,s], thenthe above measure is at leastone, so

e-^P{AN < PN^) < {PN^ + l)P{R > TV).

Since P(A'yy < PN^) < P{Apf < PN^), the previous equation and Lemma 12 give the result. •

ProofofProposition 3. For each j G {1,..., Ff}, let

= inf{f > 0 : 3 a CPpathfrom {ij-i + 2,s) to {ij,t) in [ij-i + 1,ij] x [s,t] forsome s > 0}.

Constmcting the jth partition from a homogeneous process on Z withrate Aj,andapplying Lemma 13
to the homogeneous process shows that

- ^ log P(Aj^ <TV^) =aj73(Aj). (18)
Let e > 0. For the piecewise-homogeneous process, using the notation from the previous Lemma,

K

P(An < N^) < n^(Ai, <
j=l
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Then (18) implies

P{An <N^) <exp ^^aj73(Aj) -e/^ Tvj . (19)
for all sufificiently large N, which implies,by Lemma 13,

P{R>iV) <exp aj73(Aj) -fi/2jiVj. (20)
Wecannowproceedas in Bramson, Durrett, andSchonmann [10]. LetTi, r2,..., be the timesat which
there arearrows from 1to 2, and letT{t) = sup{A; : Tk < t}. If there is a path from {1} x [0,t] to
{N} X[0, t] then there isa path from {2} x {Ti,..., to{N} x [0, <]. Then by the union bound,

<t)< P{Tit) >2\ct)+2Aetexp ^^a,73(Aj)-.
Substituting t—exp (̂SjLi ~c) gives the lower bound, since then the first term tends
to zero by the weak law of large numbers, and evidently the second term also tends to zero. Let

= inf{t > 0 : there isa CP path from {ij-i + 2,0) to{ij, t) in [ij-i + 1,ij] x [0, ij}.

Ifwe let

= {the CP on {ij-i + 1,..., ij} with initial state (ij-i + 2} eventually occupies ij},

then Lemma 12 implies

iv'i^oc^^ ^
and Lemma 13 implies

which when combined with (18) yields

JiSo h ^ =-Q;i73(Aj). (21)
There is a contact process path in the piecewise-homogeneous process from (1,0) to {N,T) for

some T < KN^+ if ifthe following occur: (a) point 1does not become vacant during [0,1], (b) there
is an arrow from 1to 2 at time s G [0,1],(c)there is a contact process pathfrom (2,s) to (ii, s +1) with
t < N^, (d) points ii and ii + 1 do not become vacant during [s + t, s + t + 1], (e) there is an arrow
from ii to ii + 1 at time u and an arrow from ii + 1 to ii + 2 at time v with s + t<u<v<s + f + l,
(f) there is a contact process path from (ii + 2, v) to (12, v + w) with w < that never moves left of
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ii +1, etc. Let e > 0. Using(21)to lowerboundthe probabilities of the contactprocess paths,we have
for some p > 0 and all sufficiently large N,

P{An <KN"^ +AT) >exp ^^Oj73(A,)+ ivj p'̂
Now partition the time interval [0, t] into subintervals oflength [0, KN^-\-K]. Each subinterval provides
an independent chance of finding a contact process path from 1 to TV, so

/ / / ^ \ ^^ imKN^+K)]
P{An >t)< f1-p^exp f-f̂ Q;j73(Aj) +e/2j N

Substituting t = exp((^jLj aj73(Aj) + €)N) and noting that the right-hand side converges to zero
completes the proof. •

7 Proofs of Biased Voter Model Results

The subcritical part ofTheorem 7 follows from the next lemma, which is a calculation about the average
drift of a random walk in an inhomogeneous environment.

Lemma 14 Let Xt be a random walk on Z with ATo = 1 and rates

g(n,n+ 1) = 1

I y\ \ ifn<l«("•"-1) =I A, ifn>2'
with sup„<2 A„ < 1. Let Tn = inf{f > 0 : A't = n}. Then

Tn 1

N ^ l~\2
in probability as N —* oo.

Proof. Let Sn = T„+i —r„. By a simple extension of the weak law of large numbers, it suffices to
show that

Urn B[S„| = (22)
n—•cx) 1 — A2

sup < 00. (23)
n>l

Let Yt be a random walk on Z with rates q{n,n —1) = X2 and g(n, n -I-1) = 1 and with Vq = 1- Let
Zt be a random walk on Z with Zq = 1 and with rates

1 -1- m{k<2 Xk
g(n,n+ 1) =

1 + SUPfc<2 Xk

1 + inffc<2 Xk
q(n, n - 1) = sup Xk

k<2 1 + sup^.<2 Xk
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Note that for eachstate Zfhas a largeraverage holding timeanda smallerdrift thaneitherXtoi Yt. Let

Un = inf{t > 0 : If = n}

Ki = Un+l - Un

Wn —inf{t :Z f = n + 1}- inf{t: Zt —n}.

Also define the events

An = {Xt = l forsome t e (T„,r„+i)}
Bn = {Yt = I forsome t e {Un, C/„+i)}

Then P{An) = P{Bn) for all n > 2, and

E[Sn] = ElSnl{A'n)] + E[Snl{An)]
^E[Vnl{B'^)]+ElSnl{An)]
= ElVn] - ElVnl{Bn)] + £7(5nl(A„)]

\E[Sn] - E[Vn]\ < E[Vnl{Bn)] + E[Snl{An)]

<2y/E[W^]P(Bn).
Now E\yn\ = 1/(1 —A2), E\Wi] < 00, and the optional stopping theorem applied tothe jump chain
of which is a discrete-time martingale, gives

which shows (22). To see (23), note that < E\W^\. •

Wewill also use the following elementary large deviations lemma.

Lemma 15 LetXt bea random walk onZ with ^0 = 0 and with rates q{n, n + 1) = Aandq{n, n -
I) = with A> /f. Thenfor every £ > 0 there is a6 > Qsuch that

P{Xt —(A —fj.)t < —et) < exp(—(5t).

for all t > 0.

Proof Let
f{e) = -de + e{X-ix)-X + Xe-^ - ^ + iie^.

Then /(O) = 0,and /'(O) = -€, sofix 0 > 0 such that f{6) < 0. If Vf and Zt are independent Poisson
processes withratesAand fi, thenXt is identically distributed to Yt - Zt, so by the Chemoffbound,

P{X{t) - (A - n)t < -et) < expi-Oet + e{X - fi)t)E[exp{-0Yt + dZt)]

< exp{-6et + e{X - n)t - Xt + Xte~^ - fitfite^)

= exp(/(0)t).
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Lemma 16 If{K^ A, a) isaprofile such that \j < 1for allj € {1,..., K}, then

K
<fN_ OCj
N ^ 2-uN ^2(1-A,)

in probability as N oo.

Proof Write 7for Ylf=i 2{i-x )- random walks in the edge construction of
the process. Then

i* =sup |l<j<if : ^
is the partition in which we expect Lt and Rt to meet. To pinpoint the location within j*^ choose fi to
satisfy

^ ^ OLk , fioLj' _ ^ otk (̂l-/3)aj* ^24)E"A; , P^j* _ ^
1- Afc 1- Aj. ~ , 4^ 1-

fc=i ^ fc=i-+i
Afe 1-Aj. '

and observe that the definition of j* forces p £ [0,1] and that both sides of this equationequal 7. We
expect Lt and Rt to meet around

M = ij'-i + \paj-N],

since the left-hand side of (24) is how long we expect Lt to take to reach M and the right-hand side of
(24) is how longweexpect Rt to take to reach M. Foreach j £ {1,..., if}, let = inf{t :L f = fy}
andletTj = inf{f : Rt = fy}. Also let5o = 0, and

S = inf{f :Lt = M}

T = inf{f :R t = M}.

Then

P(^<7-^)<i'(J<7-e)+p(|<7-€).
But

by Lemma 14. Similarly, P{T/N < 7 - e) —» 0. For the upper bound, modify Lt and Rt so that
at time S, Lt becomes a homogeneous random walk on Z with q{n,n - 1) = max(Ai,..., A/c) and
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g(n,n + 1) = 1,andat time T, Rt becomes a homogeneous random walk onZ with q{n, n —1) = 1
andg(n, n -f 1) = max(Ai,..., Xk)- These walks canbe coupled to theoriginal process so that

(Tpf < inf{t: R{t) < L{t)}.

Then

P̂ jy <7+«/2, i(i+«)W < +-P <7+«/2, R(y+c)N > .
The first two terms converge to zero as above. To see that the third and fourth terms also go to zero,
considerLt —Lt+s ~ Then {Lt)t>ois a homogeneous random walkwith positive drift, and

(̂iv ^/2»-t'(7+e)N < =P <7+e/2,L(^+g)jv-5 <0^
Since Lt and S are independent. Lemma 15 shows that there exists (5 > 0 such that

•P <7+̂ /%\'y+t)N-s <0^ <exp(-<5ciV/2).
•

Lemma 17 LetXt bea random walkonZ with Xq = -landratesq{n,n-\-l) = Xandq{n,n—1) = 1,
with A> 1. Let r„ = inf{t > 0 : Xf = n}. Thenfor all /3 > 0,

lim i log P{T-n =min(r_iv, To, PN^)) =- log A.
N—*oo I\

Proof Applying theoptional stopping theorem to thejumpchain of A~ '̂s which is a discrete-time
martingale, gives for all TV > 1,

P(r_N = min(T.w,ro))=
A^-r

It follows that

lim — logP{T-n = min(r_A^, To)) = - log A.
N—*oo Jy

Since

P{T.n = min(T_A,,To)) < P{T.n = imn{T.N,To),T.N < PN^) + P{mia{T-N,To) > PN%

it sufiicesto showthat P(min(r_//,ro) > ^ exp(—for some S > 0. But this is true since
for all sufficiently large N,

P(min(T_w,Po) > PJV') < P(To > PN^) < P(XgN^ < 0)
< exp(—

where the large deviations bound is from Lemma 15. •
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Lemma18 If{K^A, a) is a profile such thatXj > 1for all j G{1,•.., K}, then

p{^^>tccjlog(Xj)+e]^0
as N oofor all € > 0.

Proof Bycomparing the process to one that is reset to{1,, N} at times N^,2N^,..., if it is
still alive, we obtain

P((JN > t) < (1 -

Let Lt and Rt be the walks in the edge constructionof the original (nonrestarted) process. Let Tj =
inf{t :R t = ij} forj G{0,..., K}. Then

P(<rjv > t) < [1 - P(To <

But

P{To <N^)>P (Pj.i -Tj<^, for all J=1,..., ^=nf (ij-i -Tj < .
We canapplytheprevious lemma to boundthechance thataftervisiting ij, Rt visitsij_i beforevisiting
ij+ 1and before N'^fKtime units have elapsed,

P(Pj-i -Tj <^)>exp(-(aj logAj +t/2K)N),
for all j and all sufficiently large N. Thus

I II" ^ \

P{(Tn >t) < 1-exp 2j^
Taking t = exp(( aj logXj + e)N) gives the result. •

Following Durrett and Schonmann [4], we prove the lower bound using the following estimate of
the chance that a random walk makes an excursion against its drift. Our Lemma 19 is a generalization
of their result (5.1) to walks in piecewise-homogeneous environments.

Lemma 19 Let {K, X, a) be a profile such that Xj > 1for all j G {1,..., K}. For each > 0, there
exist positive constants C and 5 such that for all sufficiently large N, ifLt is the left edge in the edge
construction of thepiecewise-homogeneous biased voter model on {1,..., N} and m G {1,..., N}
and t < exp(/3JV),

\t l<a<t )

where k satisfies ik-i < m < ik-
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Proof. First we will find exponents that are uniform over N on the tail probabilities of the length
of an excursion ofLf firom 1, and the number ofexcursions that Lt makes from 1during a finite time
interval. Let 5o = 0, and for i > 1 let

Ui = inf{f > Si-i : Lt = 2}
Si = inf{f > Ui:Lt = 1}.

Durrett and Liu [3] show that if isa random walk on Nwith rates q{n, n +1) = 1and q(n, n - 1) =
min(Ai,..., Xk) withLq = 1,and

U = inf{t > 0 : Lj = 2}
S —inf{< > U :L[ = 1},

then thereexistspositive constants C and Sso that for all t > 0,

P{S >t)< Cexp{—6t).

This follows by first defining V = S —U so that

P{S >t)< P(U > t/2) + P{V > t/2).

We then observe that Uisexponentially distributed with mean 1, so P{U > t/2) < exp{-t/2). During
[U, S),Ltbehaves like arandom walk on Z, starting at2, which drifts to the left, so Lenuna 15 provides
anexponent tothe tail ofF. Durrett and Liu [3, p. 1171] supply additional details. Since Lt and Ljcan
be coupledso that Si < S, theirargiunent alsoshowsthat

P{Si > t) < Cexp{-6t).

If Ft is a Poisson process with rate 1, then for all € > 0 there exists <5 > 0 such that

P{Yt > (1 + €)t) < exp{—6t)

for all t > 0. Let T{t) = sup{n : Un < t}. Then T(t) <st Yt, soP(T(t) > 2t) < exp(-(Jt). Here and
below we redefine C and 5 from lineto lineto simplify the notation.

Using these facts, we will find C > 0 and (5 > 0 such that for all sufficiently large N and all
m €

Pf L, >m, S, <nA < jj (25)
/ j=l

To do this, form K independent random walks X},..., , the jth living on {ij_i + 1,..., ij}
with rate Xj ofmoving left and rate 1ofmoving right, and starting in state ij-i + 1attime 0. Using the
graphical construction described in Section 3, these walks canbe coupled to Lt so that if Lt reaches m
before time r, then X/ reaches ij before time r for all j < fc, and X^reaches m before time r. Then

P Ls >m, Si < <p( max TT Pf max X^ =
Vo<s<Si } Vo<s<;v2 ^ \o<s<N2 ® y
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Fix j G{1,..., jK"} and let Mbe the number oftimes that x( leaves ij-i -h 1before time JV^. Let 5
be the first time that X{ returns to ij-i + 1. Then there exists e> 0and 5 > 0such that for all N and
all I € {ij-i + 1,..., ij},

PI max Xl>n<PiM> 2N^) +2N^P (maxX} >
\0<s<N2 s - y - V / t - j

< exp{-6N^) +

ThereexistsC > 0 suchthat for all x > 1 andall j € {1,,K],

^3 ~ ^ /^\-x
A| - 1^ •

Thus

7'2/-t \ —(ti—i/s-i)

and

Then

and

Thus

P ( max Xs > m) <exp(—+ 2N^CXr.
\o<s<N2 5 - y - Fv j k

pf max Xi =u^ <exp{-5N^) +2N^CX';^°''̂ ~^\
\0<s<N2 S 3J - f\ / J

This establishes (25). Returning to Lt, let

An = {"St - 5t_i > for some 1 < i < r(exp(/?Ar))}

= {T{t) - T{t - N^) > 2N^}.

P{An) < P{T{exp{/3N)) > 2exp{PN)) + 2exp(/?Ar)P(5i > N^)
< C exp(—(5 exp(/3iV")) + C exp(/3iV —

<Cexp(-(5iV2), (26)

P(P^) < exp(-<5iV2). (27)

P( max Ls>m \ <P{An) +P(Pw) +2N'̂ P ( max Ls =m, 5i < )
Yt-l<5<t J \0<s<5i /

Applying the bounds (25), (26), and (27) completes the proof. •

Lemma 20 If{K, X, a) is a profile such thatXj > 1for all j G (1,..., K}, then

as N oofor all € > 0, and

log-^M .
jv ^

j=i
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Proof. We follow Durrett and Schomnann [4], If a 14 < T then there exists a t < T and a
m 6 {1,such that Lt = Rt = m. Write T = exp((^jLilog(Aj) —e)N) and fix
P> SjLi ^3 Then by the union bound and the previous lemma,

m N

Pi.TN <T)<-£'£P (, max >m\p (jmn^Rs <m)
t=l m=l ^ / \ - - /

<(T+1)N JJ +Cexp(-<5JV^)j ,
which gives the first result since the right-hand sideconverges to zero. Theproofthat (logE[<7iv]/iV)
converges is thesame as forthecontact process, with log"*" Ainplace of 72. •

Weomit the proofof Theorem 8 because it is essentially the sameas the proofof Theorem5 for the
contact process.

ProofofTheorem 9. Let {K, A, a) be any feasibleprofile. Theorem 8 showsthat

V
N-^oo N

and define

j:Xj>l J=1

where h{-) is the concave hull of (logx)"^ on (Ao,oo). Thus R*{Xo,7}) < h{Xo + rj). If Ao > 1, then
the concavity of log gives h{Xo + r)) = log(Ao + rf), so i2*(Ao, rf) = log(Ao + 77), since it is achieved
by the uniformprofile. If Aq < 1, then observe that there is a unique Ai > 1 that solves

1-^ =logAi,

^ Aq)/Ai Aq ^XAj
logx X > Ai •

Observe that / is concave on [Aq, 00) and /(x) > (logx)"*" for x > Aq. The latter claim is clear for
X > Ai and Aq < x < 1. Observing that /(x) —logx is nonincreasing on (1, Ai] and equal to 0 at
X= Ai shows it for (1, Ai].

Since / is concave and /(x) > (logx)""", we have /(x) > /i(x), so that R*{Xo,t}) < /(x). If
Aq + 77 > Ai, then the uniform profile has exponent log(Ao + 77) = /(Aq + 77), which implies that
^*(Ao, 77) = log(Ao + 77). If Ao + 77 < Ai,thensome simple algebra shows that theprofile stated in the
theorem is feasible and has exponent 77/Ai = /(Ao + 77), which implies that R*{Xo, 77) = 77/Ai. •
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