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Abstract

We consider how to choose the reproduction rates in a one-dimensional contact process on a
finite set to maximize the growth rate of the extinction time with the population size. The constraints
are an upper bound on the average reproduction rate, and that the rate profile must be piecewise
constant. We show that the optimum growth rate is achieved by a rate profile with at most two rates,
and we characterize the solution in terms of a “spatial correlation length” of the supercritical process.
We examine the analogous problem for the simpler biased voter model, for which we completely
characterize the optimum profile. The contact process proofs make use of a planar-graph duality in
the graphical representation, due to Durrett and Schonmann.

1 Introduction

The contact process (CP) on the one-dimensional integer lattice is the Markov process & with state
space 2Z and transition rates

q(A,A\{F}) =1 ifje 4,

QA AUGY = NANG - Li+1}] ifj ¢ A M

Here | - | denotes cardinality. For this process and all others described in this paper, if A and B are
subsets of Z such that |[AAB| > 1, then g(A, B) = 0. In words, each integer is either occupied by
a member of some population or vacant; occupied sites become vacant at rate 1, while vacant sites
become occupied at rate A times the number of occupied neighbors. See Liggett [1, 2] for a construction
of the process, additional information about it, and a proof of its phase transition: if § = {0}, then
there exists Ac € (0,00) such that if A > )\, then P(& # @ forall t) > 0, while if A < ), then
P(& # 0 for all t) = 0. We consider the contact process on a finite segment; let (/¥ be the Markov chain
with state space 2{1++N} and transition rates given by (1) for A ¢ {1,...,N}andj € {1,...,N},
with ¢ = {1,..., N}. In the finite case, for all A,

oy =inf{t >0: ¢ =0} < coas.
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Durrett and Liu [3] and Durrett and Schonmann [4] show, via the following theorem, that the phase
transition appears in the finite process in the limit as N — oco. Here v; and 7o are deterministic
functions of )\ that are defined in the next section.

Theorem 1 ([3,4]) Jf ) < A thenas N — oo,

ON 1
— ) —
logN  m(d)

in probability. If A > A then as N — oo,

loi;IN — 72(A)

in probability.

In words, on grows logarithmically with N when A < )\, and exponentially with N when XA > A..
When A = A, Durrett, Schonmann, and Tanaka [5] show that o grows polynomially with N, but the
correct power is unknown. We do not study the critical process here. Instead, we explore the following
design question ensuing from this phenomenological result. Suppose one can vary the reproduction rate
from point to point. How should this be done to maximize the asymptotic rate of growth of o)y with N?

We restrict our attention to piecewise-constant rate profiles. That is, a profile (K, ), @) consists of
K rates A1, A2, ..., Ak, along with nonnegative constants a;,...,ak, such that Z]’-;l a; = 1. To
construct the process of size N, we let ip = 0 and for j € {1,...,K}, we leti; = I_Z{__.l arN|.
Throughout we assume that N is sufficiently large that i;_; < i; forall j € {1,...,K}. Our contact
process is then the Markov chain with state space 2{1-+N} and transition rates

@A, AVGH =G -DIAN{G - 1H+AG+ DIAN{j+ 1}, if j ¢ A,

for j € {1,..., N}, where (here and below) A(k) = A, where m satisfies i1 < k < .

We generalize Theorem | to these piecewise-homogeneous processes in Theorems 3 through 5.
We then consider the optimization problem mentioned above. A simple coupling argument [2, p. 34]
shows that increasing a A;incr eases the asymptotic growth rate of oy with N. We consider the problem
of choosing the profile to maximize this growth rate subject to an upper bound on the average rate.
Specifically, we consider the following optimization problem.

maximize liminfy_(log E(on))/N
over K«
subject to ;f__l ajAj <A+

Aj 2 X forallje{1,...,K}.

)

Here A9 > 0 and 1 > 0 are the data of the problem. We view )g as the intrinsic rate endowed to each
point, and 7 as the additional rate that we distribute over the points as we choose. We will prove that
- as long as 77 > 0, the maximum growth rate is exponential, and we write R*(\g,7) for the maximum
achievable exponent, that is, for the supremum of lim inf (log E[on])/N over the set of feasible profiles.

In the context of population-growth models, our optimization problem can be described as follows.
Consider a population that lives on {1, ..., N} whose presence is desirable and that evolves as a contact
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process. The members of this population reproduce at a nominal rate g, and we are provided with an
amount 7 of “fertilizer” that we distribute over the points {1, ..., N}. Placing an amount ¢ of fertilizer
at a point increases by e the reproduction rate of members of the population who occupy that point. How
then should the fertilizer be distributed to maximize the longevity of the population?

The optimization problem also arises in other contexts in which the contact process can be used.
Consider, for example, the following caricature of a special kind of communication network, called a
wireless sensor network. In order to track a vehicle moving in the 2-D plane, we drop an array of N
radio-equipped sensors in a line near the vehicle. Each sensor detects a signal emitted by the vehicle and
uses it to estimate the vehicle’s bearing relative to the sensor. Periodically, the sensor broadcasts this
information to a basestation, which uses the information received from all of the sensors to triangulate
the position of the vehicle. The nodes broadcast asynchronously.

Occasionally, the signal received by a sensor becomes too noisy for the sensor to make a meaning-
ful estimate of the vehicle’s bearing. We assume that once this occurs, the sensor is unable to reacquire
the signal on its own. We assume, however, that a broadcast by one of the neighboring nodes contains
enough information about the vehicle’s position for the node to reacquire the signal and continue track-
ing the vehicle. If we assume that a broadcast enables only one of the broadcasting node’s neighbors
to reacquire the signal, which would be the case if they used directed antennae, then we can model the
randomness using a contact process, where the state refers to the set of nodes that are currently tracking
the vehicle. Eventually, then, the network will reach the state in which every node has lost the target;
the network designer seeks to maximize the time until this happens. Increasing a node’s broadcast rate
increases the power it consumes while it tracks the vehicle. Networks of this sort are typically power
limited [6], so a rate constraint is a natural one. We arrive at our optimization problem.

Our solution to the optimization problem is as follows. We express R*(\g, 77) in terms of the concave
hull of 45()\) from Theorem 1, and we show that the optimum exponent is achieved by a profile with
K = 2. We are unable to characterize the optimum profile further due to difficulty in characterizing
v2. This difficulty is exemplified by a scaling theory conjecture combined with numerical simulations
of critical exponents suggesting that -y (A) might have an inflection point to the right of A.. Section 4
contains additional details. We also consider the analogous optimization problem for the simpler biased
voter model. For this process we provide a complete solution, which is given in Section 5.

Other interacting particle systems lend themselves to questions of this sort. In the context of the
Ising model, consider a fixed volume of N magnetic materials, with varying magnetic strengths. These
materials are combined in some way, then magnetized to store one bit of information. If the total volume
of the materials is one, how should one arrange the materials within, say, the unit cube to maximize the
time until the magnetization is lost?

Similar questions for two-dimensional site percolation have been studied by Carlson and Doyle
[7, 8] in the context of power laws in complex systems. Robert, Carlson, and Doyle [9] consider, in the
same context, the effect of design on a simple epidemic model in which infection spreads between three
cells. There is a significant amount of work on the infinite contact process with inhomogeneous rates
{2, p. 131]. Most of this work considers models in which the rates are random, and we are not aware of
any work on the finite process.

The remainder of the paper is organized as follows. Section 2 contains the required background on
the contact process, including the graphical construction and its planar-graph duality that is key to the
later proofs. Section 3 describes the biased voter model. Section 4 contains our main results, which
are the hitting time asymptotics and the solution to the optimization problem for the contact process.



Section 5 contains the analogous results for the biased voter model. Sections 6 and 7 contain the proofs
of the contact process results and biased voter model results, respectively.

2 Contact Process Preliminaries

The functions ~; and 2 mentioned in the introduction are defined in terms of the infinite process. For
more information about the following definitions and for proofs of the assertions see Liggett [2]. Let
(& )e>0 be the contact process on Z with initial state A. The function 7; is defined as

1(N) = - lim -logP (6 #0).

The existence of the limit is proven using subadditivity: the process has at least one occupied point
whenever it is alive, so

PED # 016l £ 0) > Pl 2 0),
which implies

P #0) > P(el® £ 0) Pl £ 0).
Thus — log P(Et{o} # 0) is subadditive in ¢, which implies [2, Theorem B22] that

- log P % 0)
converges to its infimum, which is positive if A < A.. In particular,

P #0) < exp(-mt).
Let
=inf{t > 0:¢8 = 0).
The function 7, is defined as

1
12(A) = - J}foloo N log P (T{l'""N} < oo) .

This limit also exists for all A by.subadditivity, but it is positive if A > ).
Later we will use a third limiting function. Let r, = sup 5{0} and let R = sup;>q 7. Then

1Y) = - lim ~log P(R > n)

exists, again by subadditivity, for all A andit is positive if A\ < A.. We often omit the explicit dependence
of these limits on ).

The key to the proof of Theorem 1 is the graphical representation of the contact process. Since we
will make heavy use of it, we review it here.

The homogeneous contact process with a deterministic initial state can be constructed graphically
from a countable number of Poisson processes: one with rate 1 and two with rate ) for each n. The
vertical axis in this representation represents time while the horizontal axis represents space. We draw
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Figure 1: The graphical representation of the contact process.

(1) d’s above n at the arrival times of the rate-1 process, (2) arrows from n to n — 1 at the arrival
times of the first rate-\ process, and (3) arrows from n to n + 1 at the arrival times of the second rate-\
process. Figure 1 shows a sample realization. The 4’s represent potential deaths and the arrows represent
potential births.

We say there is a contact process path from (%, s) to (7, ) if one can travel from (i, s) to (4,%) by
combinations of (1) moving up while directly over integers without passing through a J, and (2) moving
horizontally from one integer to a neighboring one through an arrow. The bold line in Figure 1 is an
example of a valid contact process path from (0, 0) to (1,¢). We construct the contact process by setting

&8 = {j € Z : there is a contact process path from (i, 0) to (5, t) for some i € A}.

In this paper, the graphical representation derives its utility from the notion of dual paths, due to
Durrett and Schonmann [4]. Motivated by duality in percolation, we say there is a dual path from (%, s)
to (j, ) if one can travel from (¢, s) to (j, t) while observing the following rules:

1. The path may move upward over half integers but not through a right arrow.
2. The path may move downward over half integers but not through a left arrow.

3. The path may move horizontally from a half integer to the next lowest half integer only through
d’s.
4. The path may move horizontally to the right between half-integer points without restriction.
The dotted line in Figure 1 is an example of a valid dual path from (4.5,0) to (0.5,0). That this
is the appropriate way of defining dual paths can be seen by constructing the contact process from a

sequence of increasingly-fine oriented percolations, and then allowing it to inherit their dual path rules
[4]. Or one can verify Proposition 2 in Durrett and Schonmann [4].

Proposition 1 There is a dual path from (N + 1/2,0) to (1/2,0) in (—o0, 00) x (0, T) if and only if
there is no contact process path from (n,0) to (m,T) foralin € {1,...,N} andall m € Z.



We omit the proof but note that dual paths are defined so that a contact process path from (n, 0) to
(m,T) and a dual path from (N + 1/2,0) to (1/2,0) in (=00, %0) x (0, T) can never intersect, and
the boundary of the set of space-time points for which there is a contact process path from a point in
{1,...,N} x {0} is a valid dual path. The proof follows quickly from these observations.

By taking T — oo in Proposition 1 we obtain a useful corollary,

{ét{l""'N} = ( for some t} = {3 a dual path from (N + 1/2,0) to (1/2,0) in (—o0, 00) x (0, 00)},

3
which implies

1
Nlim N log P(there is a dual path from (N + 1/2,0) to (1/2,0) in (—00, 00) x (0,00)) = —72.
—00
@
Since we will be dealing with inhomogeneous processes, we note that we can construct a process éf
in which point n has a lower reproduction rate, A’ < ), using the graphical representation by thinning
the Poisson process of arrows leading from n with retention probability A’/). Since removing arrows

from the graphical representatien does not create new contact process paths, we have Ef C &£ forall
t>0.

3 The Biased Voter Model

The biased voter model is similar to the contact process except that the rate of a point transitioning from
state 1 to 0 is equal to the number of neighbors in state 0, rather than constant. More precisely, it is the
Markov chain with state space 2{1+¥} and transition rates

a(A, A =Z\AN{7-1,j+1}| ifje 4,
94, AU =XNAN{i -1+ 1} ifj¢ A4,

for j € {1,...,N}. A point in state 1 with two neighbors in state 1 cannot change states, so we can
construct the biased voter model on {1, ..., N'} with initial state {1,..., N} using two random walks:
Let L; be a random walk on {1,2,...} that moves to the left at rate A and moves to the right at rate 1
with Lo = 1. Let R; be a random walk on {..., N — 1, N'} that moves to the right at rate A and moves
to the left at rate 1, with Ry = N. If we use CtN to denote the finite biased voter model at time ¢ and
define oy as before then we have

¢V ={Li,...,R} fort<on (5)

and o = inf{t : R, < L;}. Similar to the contact process, L; and R; can be constructed graphically
from Poisson processes. We construct Lsby placing arrows at rate ) from 7 to n — 1 and arrows at rate
1 from n to n + 1 for n > 2. Point 1 is similar except that we omit the arrows directed toward 0. Then
Ly starts at (1,0) and evolves in time by moving upward and following each arrow. We can construct
R; similarly.

For the biased voter model, we can state the analogue of Theorem 1 without resorting to definitions
involving the process on Z.



Theorem 2 ([3]) If A < 1thenas N — oo,

ov ,_ 1
N T 31-n

in probability. If A > 1 then as N — oo,

logon

— log(A)

in probability.

4 Contact Process Results

Our first step is to generalize Theorem 1 to piecewise-homogeneous processes. The case in which the
entire process is subcritical is immediate; we provide it for completeness.

Theorem 3 Let (K, A\, @) be a profile such that \j < A forall j € {1,...,K}. Then

oN_ _, 1
logN  m(max(Ay,...,Ak))

in probability as N — oo.

In the subcritical case, each partition dies before spreading very far into its neighboring partitions,
so the partitions essentially evolve independently, and o is determined by the extinction times of the
partitions with the maximum rate. In the supercritical case, the partitions interact in a significant way.

Theorem 4 Let (K, \, ) be a profile such that \j > A forall j € {1,...,K}. Then

K
logo
OEIN _, > aim(X)

N =
in probability as N — oo, and
K
log Efon]
—-TV— - ;aj'yz(/\j).

The proof essentially shows that the process dies out only when all of the individual partitions die
out simultaneously. The chance that partition j evolving in isolation dies out in a short time interval is
exp(—a;v2(A;)N + o(N)). Over short time scales, the partitions are nearly independent, so the chance
that the entire process dies out in a short time interval is exp(— Zj‘;l a;j¥2(A;)N + o(N)). It then
follows that the hitting time is e:»cp(2§(=1 ajy2(A;)N + o(N)).

Our result about mixed profiles is incomplete. To state it, we require additional notation. Let F be
the set of indices j such that i; separates supercritical and nonsupercritical partitions,

F={j€ {1,...,K—1}:(/\j/\/\j+1)$/\c< (/\jV)\j+1)}.



L1 L 3 1 11 6 | | 91 10 4
T 5 1 4 151 T g T 1 |
C1={1},C2 = {2}, C3 = {3}, Cs = {4,5}, Cs = {6}, Cs = {7,8}, Cy = {9, 10},
D, = {1}, Dy = {3}, D3 = {6}, Dy = {9, 10}

Figure 2: A sample mixed profile. The supercritical partitions have their index placed above the line.
The subcritical, below.

Now M = |F| + 1 is the number of “aggregate partitions,” sets of partitions that are connected, en-
tirely supercritical or not, and maximal in that adding another partition either makes the set unconnected,
or mixed. We denote these aggregate partitions by C; forj € 1,..., M:

Ci={1,...,inf FU{K}}
Cj={supCj-1+1,...,inf{lk € F: k > supC;_1} U {K}}.
Let L be the number of aggregate partitions that are supercritical, so L = [M/2] if A; > A,
otherwise L = | M/2]. We call a C; consisting of supercritical partitions an island, and a C;consisti ng
of nonsupercritical partitions a sea. Let D; for j € {1,..., L} denote the islands, which are the Cj’s

with even or odd indices depending on whether A; < Acor A; > A, respectively. Figure 2 shows an
example. Throughout, we interpret an empty sum as zero.

Theorem § Let (K, A, o) be a profile. Then

logoy
P ( N el (Z 0"’72(’\')) - f) -0,

i€D;

L
logo
P( fv" >zza,-~,2(x,-)+e) -0,

j=1 ieDj

Joralle > 0as N — oo, and

. log Elo]
— s . .
lminf =1—=2> mex esz ain2(X)

. log Elon] _ ZL: O
ll{lnf;lop—T' = E a;7a( i)-
i=1 tGDj

The difficulty is determining when the seas isolate the islands into separate processes. The lower
and upper bounds in Theorem 5 correspond to two possible answers to this question, “always” and
“never.” If the islands are isolated then the extinction time of the process is just the extinction time of
its longest-living island, giving an exponent of max;e;, ., L) (Zie D; a;72(X;) ). If the population can
spread from one island to another, a process we call colonizing, then the process dies out only when all



of the islands die out simultaneously. By the discussion following Theorem 4, this gives an exponent of

JI'J=1 (EieDj ai’72()\i))-

We conjecture that the correct answer is “sometimes”; whether a sea prevents two islands from
colonizing depends on their sizes and reproduction rates. To support this conjecture, consider the time
the process takes to spread across a homogeneous subcritical region of width N. Bramson, Durrett, and
Schonmann [10] prove the following.

Proposition 2 Consider a modified subcritical contact process on Z, &,, in which €y = {0} and 0 is
always occupied. Let Ay = inf{t >0: N € £,}. As N — oo,

log Ay
N

— 73())
in probability.

The intuition behind the result is that each time point 0 spreads to point 1, the process started with
only {1} occupied spreads to N before becoming extinct with probability exp(—73(A)N + o(N)), and
in an interval of length T', the number of chances for this to occur is proportional to T". For the piecewise-
homogeneous process, we show that the chance of the process started with only {1} occupied spreading
to N before becoming extinct is exp(— 2?:1 a;j¥3(Aj)N + o(N)), and thereby prove the following.

Proposition 3 Let (K, A\, ) be a profile such that A\j < Ac forall j € {1,...,K}. For each N, let EtN
be the piecewise-homogeneous contact process modified so that 1 is always occupied, and let

Ay =inf{t>0:N e &M}

Thenas N — oo, K
logNAN =3 asm0y)
j=1

in probability.

Consider a profile with K = 3, a; > 0 fori € {1,2,3}, and A} > A, A3 > A, but A2 < A
Theorem 1 gives the extinction times of the supercritical partitions when they evolve in isolation, namely
exp(a172(A1)N + o(N)) and exp(asy2(A3)N + o(N)). Proposition 2 gives the time until there is a
contact process path across the subcritical region, namely exp(a2y3(A2)N + o(N)).

If azya(A2) > max(aiy2(M), @3v2(A3)), then the chance that one of the supercritical partitions
ever colonizes tends to zero as N — oo. In this case, we conjecture that the exponent for the extinction
time of the entire process is max(c1v2(A1), azy2(A3)).

If agy3(A2) < min(oyvy2(A1), azy2(A3)), then if one of the supercritical partitions dies out, the
other partition has infinitely many chances (in the limit) to restart it by colonizing. In this case we
expect the population to die out only when both partitions die out simultaneously, giving the exponent
a172(A1) + azy2(A3).

If min(a172(A1), @372(A3)) < a2y3(A2) < max(a1v2(A1), a3v2(A3)), then when the partition
with exponent max(ajv2(A1), a3v2(A3)) dies out, with probability approaching 1, the other will die
out before colonizing. In this case we expect the exponent to be max(a;v2(A1), azy2(A3)).
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ary2(A1) = 2, a273(A2) = 1, azye(A3) = 2,
aq73(Aq) + a573(As) = 3, ag2(X6) = 4,
a7y3(A7) + agy3(As) = 5, ag2(A9) + ca072(A10) = 3.

Figure 3: Sample exponents.

Using Theorem 4 and Proposition 3, we can extend this reasoning to processes with more than three
partitions. We illustrate the idea with an example. Consider again the process in Figure 2. Suppose, for
the sake of discussion, that the equations in Figure 3 hold. Then our conjecture is that the first and third
partitions will colonize to each other, so that the first and third will effectively act as a single island.
This island will colonize across the sea {4, 5}, as will the sixth partition, so {1, 3, 6} will effectively act
as a single island. Although this island can colonize across the sea {7, 8}, the island {9, 10} cannot, so
we conjecture that the exponent for this profile is a3 12(A1) + a3y2(A3) + agy2(As). We hope that the
reader can see how to extend the conjecture to an arbitrary profile.

Since we can resolve the optimization problem without knowing the validity of this conjecture, we
will not investigate it further. Let 43°()) denote the concave hull of 72(A) on [Ag, 00), i.e., for z > Ay,

n n
'?é\°(a:) = sup {Zaj')’Q()\j) : Zaj)\,- =zand A\j > N forj=1,... ,n} ,
=1 =1

where the supremum is over n, , and \.
Theorem 6 R*(),n) = ﬁ;‘“(/\o + ). Furthermore, R*()g,n) is achieved by a profile with K = 2.

The sufficiency of profiles with two rates follows from Carathéodory’s Theorem [11, p. 155] and
some continuity arguments. Clearly at least two rates are required in the case that A\g + 7 < ), since
then the constraint forbids us from making the entire process supercritical, so the optimum exponent is
approached by making part of the process supercritical, and leaving the rest at Ag. If v, is concave on
[Ae, 00), then multiple partitions are required only if Ag < A. and Mg + 7 is sufficiently small. More
precisely, if 72 is concave on [A¢, 00) and Mg > A, then 92° = 4, on (Mg, 00) 50 R*(A0, 1) = 12(Ao+7),
and an optimum profile would consist of a single partition with rate Ao +7. And if Ap < A, there would

exist A* > . such that .
oy = J AT ifa<ay
%) { 2() AR, ©

and so if Ag + 7 > A*, an optimum profile would consist of a single partition with rate Ag + 7, and if
Ao+7 < A*, then an optimum profile would consist of two partitions, one with rate A* and another with
rate Ag.

One might expect 7, to be concave on (A, 00) since it is nondecreasing and depends on A primarily
through a comparison to the death rate, which is 1. Thus we expect the effect of increasing A by A to
diminish as A increases. Indeed, -y, increases at most logarithmically: if all points in {1, ..., N’} die out
before reproducing, then 7{1++N} < oo so

P(T{l,...,N} < oo) > (1_'_12A)N,
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which gives y2(A) < log(1 + 2A). But we are unable to prove that -y, is concave on [, 00); in fact we
suspect that it is not.
Scaling theory predicts that the contact process has a natural length of scale, L, ()), that tends to
infinity as a poweras A — A,
log Li(A) _
Amohe Tog(h — Ae) @
for some a > 0 [12]. We have expressed the convergence in the logarithmic sense but in reality the
nature of the convergence is unclear. Accurate but nonrigorous simulations place o, assuming it exists,
at 1.09681 [13] and 1.09684 [14]. The natural way of defining L mathematically for the supercritical
process is the following. Let vy, be the upper invariant measure of the homogeneous process on Z with

rate ), and let
Ca(n,m)=vy(A:ne€ Aandm € A) —v\(A:n € A)>

Assuming C)(n,m) — 0 exponentially as m — n — oo, we define
“1_ e 1
(Lr(A)™" = - lim ~logCx(0,n) ®
The link to <y, is due to Durrett, Schonmann, and Tanaka [12], who show that foralln > O0and A > 0,

Cx(0,n) < exp(—72(A)n). ®)

If (7) and (8) hold with & > 1, then (9) would imply that v, is not concave near A\.. We are unable to
resolve this issue, but note that even if -y, is not concave near A, we do not expect it to have more than
one inflection point to the right of A, and a single infiection point would not alter the solution to the
optimization problem much over the concave case. Thus we conjecture the following.

Conjecture 1 There exists Ao, > A such that o is convex on [A¢, A,] and concave on [Ac,,00). If
A0 2 Acy then R*(Xg,m) = Y2(ho + n) and R*(Xo, n) is achieved by the profile (1,0 + n,1). If
Ao < A, then R* is achieved by a profile with at most two partitions, at most one of whose rate is not

Ao

Being unable to validate this conjecture, we cannot assert that two partitions are required only when
Ap < Ac and Ag+7 is sufficiently small, and in this case that at most one of the partitions is supercritical.
However, for the simpler biased voter model, to which we turn next, we can make such an assertion.

S5 Biased Voter Model Results

Again we consider piecewise-homogeneous processes. Our definition of a profile remains the same, but
now given the profile (K, A, ), we consider the Markov chain ¢}V with initial state {1,..., N} and
transition rates

aqAAGD =I(Z\AN{j-1,j+1}| ifj€ A
q(AAUGH =AG-DIAN{ -1+ AG+ DIAN{j +1}] ifj ¢ A.
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We can construct this process from two random walks by modifying the construction used for the ho-
mogeneous process. Let L; be a random walk on N, starting at 1, with transition rates

g(n,n+1)=1

A1 if2<n<q

A2 ifi3+1<n<iy
q(nin_l); . )

Ak ifigr +1<n
and let R; be a random walk on {..., N — 1, N}, starting at N, with transition rates

gln,n—-1)=1

M ifn<i
Ao ifyp+1<n<iy
gln,n+1)=< .
A ifigr +1<n<N-1

Then we can construct (/¥ by (5) as with the homogeneous process. In the sequel we refer to this as the
edge construction of the piecewise-homogeneous biased voter model.

Theorem 7 If (K, ), o) is a profile such that \; < 1forall j € {1,...,K}, then

K
¥ s
—_— am—
N pct 2(1-X;)

in probability as N — oco. If A\; > 1 forall j € {1,...,K}, then

logon

K
— Z ajlog();)
i=1

in probability as N — oo, and

log Elon] _ 5
_.N— d ; Q4 log()\j).

Theorem 8 Theorem 5 holds for the biased voter model if we replace A, with 1 and y2(\) with log™t A

Determining the correct exponents for mixed profiles should be relatively easy for the biased voter
model. We do not explore this here because our interest in the biased voter model is its solution to the
optimization problem.

Theorem 9 For the biased voter model, if \g > 1, then R*(\g,n) = log(Xo + n) is achieved by the
profile (1, Ao + 1, 1). If Ao < 1, let Ay be the unique solution to

Ao
1- 'X; —-lOg/\l

that is greater than 1. If Ao + 1 2 A1, then again R*(Xg,n) = log(ho +n). If Mo+ 71 < Ay, then
R*(Xo,m) = 1/ A1 is achieved by the profile (2, (A1, Xo), (@, 1 ~ @)), where o = 11/(A\1 — Xo).

12



6 Proofs of Contact Process Results

Theorem 3 follows from two simple couplings.

Proof of Theorem 3. Consider the homogeneous process on {1,..., N} with reproduction rate
A = max(Ay,...,Ax), and call its extinction time &y. The piecewise-homogeneous process can
be coupled to this homogeneous process such that oy < Ty, as described in Section 2. Then
on/log N — 1/m(A) by Theorem 1, which shows the upper bound. For the lower bound, choose
Jj € argmax{);,...,Ax} and couple the piecewise-homogeneous process to the homogeneous pro-
cesson {i;_1,...,i;} formed by forbidding births to occur from ¢;_; to i;_1 +1 and from ¢; + 1 to i; in
the piecewise-homogeneous process. Let g denote the extinction time of this homogeneous process.
Then gy < on, and

ON 1 aN 1 )
Pl <c———¢|]<P(= < -
(xogzv "M E)— <logN n
aN 1 E)
<P — -=
- (IOg(zj_"j-l) nA) 2

N IN €
- - ) =0
P (log(ij —ij-1) logN > 2)

O

We turn to the more interesting supercritical case. Theorems 4 and 5 are proved as a sequence of
lemmas. First we define some events. Borrowing from Durrett and Schonmann [4], we write ¢ — b for
“there is a dual path from a to b in the graphical representation.” Some of these events require that the
graphical representation be constructed for both positive and negative time.

An = {(N +1/2,0) - (1/2,0) in (—00,00) x [0,00)}

A = {(N +1/2,0) — (1/2,0) in (=00, 0) x [0, T]}

By = {(N +1/2,0) = (1/2,0) in {1/2, N + 1/2] x [0,00)}

BY = {(N +1/2,0) - (1/2,0) in [1/2, N +1/2] x [0, T]}
Cn={(N+1/2,0) - (1/2,t) in [1/2, N + 1/2] x (—00, 00) for some t}
Ch = {(N+1/2,0) - (1/2,t) in [1/2, N 4+ 1/2] x [-T, T)f or some £}

DY = {(N +1/2,8) = (1/2,t) in [1/2, N + 1/2] x [T, T) for some s and t}

The scheme here is that the B events have both endpoints of the dual path fixed, while the C events
have only one endpoint fixed and the D events have both free. When a superscript appears, it constrains
the path vertically. Observe that BY, C C%, C D% and B, C A%, Note also that the B events depend
on the birth arrows from N to N + 1 and from 1 to 0, but not from NV + 1 to N or from 0 to 1. The
C events depend on the birth arrows between N and N + 1 in both directions, but not on the arrows
between 0 and 1. The D events are independent of all birth arrows between N and N + 1 and between
0 and 1. Note that A%, appeared in Proposition 1, while Ay appeared in its corollary (4).

All of these events refer to the homogeneous process on Z. We will also find it convenient to use the
B,C , and D events in the context of the piecewise-homogeneous process on {1, ..., N}. When doing

13



so0, we place a tilde above the event (e.g. BN) and we add arrows between N and N + 1 at rate Ax and
between 0 and 1 at rate A; to the graphical representation, since the B and C events use them.

Lemma 1 There exist functions pur()), u()), and v (X), which are positive on ()., 00), such that

Jim 5 o8 P(AR) = () and P(A) < exp(- (V) @
Jim 3 log P(BY) = i(\) and P(BY) < exp(-ms(AN) ®)
Jim -5 08 P(BN) = u(N) and P(By) < exp(~4()N) ©

The proof of this lemma is essentially the same as that of Lemma 1 in Durrett and Schonmann [4]. We
provide a condensed version for completeness.

Proof. Consider (a). Let A%, = {(m + 1/2,0) = (n + 1/2,0) in (—00,00) x [0,%]}. Then
Afy 0 Al v © A%,y and A and A%, v are positively correlated by Harris® inequality [15]
(see also [3]), so

P(Afr4n) 2 P(AR N Afgonn) 2 P(AR)P(ASg wn)-

But P(A%,, NN) = P(Ak)soifweletay = —log P(AL,) then we see that ay is subadditive, which
proves all of (a) except that v,(A) > 0if A > A.. The convergence in parts (b) and (c) are proved sim-
ilarly, although they do not require Harris’ inequality since By and Bjs4n,n are independent as they
depend on disjoint parts of the graphical representation. All of the limits are positive since y2(\) > 0
on (A, 00) and A%, C Ay, BY, € Ay, and By C Ap. o

We wish to show that . = 5. We first show that s — p and v — 72 as k — oco. The argument
is from Durrett and Schonmann [4], who attribute it to J. Chayes and L. Chayes.
Lemma 2 4s k — oo, px(A) — p(A) and vg(A) — 72()) on [0, 00).

Proof. Note that uux()) is decreasing in k and px()) > u(X) for all k. Fix € > 0 and note that for
all sufficiently large IV, we have

exp(—(u(A) + €)N) < P(By).
Now Bf; T By as k — oo so P(BY) 1 P(By) thus
exp(—(u(A) + €)N) < Jm P(BY)
< lm exp(—pe(A)N)

< exp (— (klilgo Mk('\)) N) -

pA) +e2 lHm pe(h).
—00
This shows that g; — u; the other is the same. m]

This implies

To show that p(A\) = ~2()) on [0, 0), it suffices to show

14



Lemma 3 pi(X) = vi()) on [0, 00).

Proof. Note that y1, > vy Suppose that three events occur: A%,, {there is no arrow from N to N +1
during [0, ]}, and {there is no arrow from 1 to 0 during [0, k}}. Fix a dual path P from (N + 1/2,0)
to (1/2,0), and without loss of generality, suppose that P is simple. Consider moving along P from
(N +1/2,0) to (1/2,0). Let S denote the point at which it crosses {N + 1/2} x [0, k] for the last
time, and let T' denote the point at which it crosses {1/2} x [0, k] for the first time. Then moving from
(N +1/2,0) to S along {N + 1/2} x [0, k], then S to T along P, then from T to (1/2,0) along
{1/2} x [0, k] shows that there is a dual path from (N + 1/2,0) to (1/2,0) in [1/2, N + 1/2] x [0, k).
Thus, B}“\, occurs. Since the three events are positively correlated by Harris’ inequality,

e~k p(Ak) < P(Bf)

Vk 2 [-
a
Corollary 1 .
im_ - log P(BN) =~
Lemma 4
P (2)
lim ——=*=1.
N—oo P(BN)

Proof. We will show that if BN\Bﬁ2 occurs, then the process on Z with initial state {1,..., N}
must die out, but not before living at least N2 time units, i.e., N 2 <« 7N} < 0. To see that
7{l-:N} < oo, note that By implies Ay, then apply (3). To see that N2 < 7{1-+N} suppose By
and 7{1--N} < N2 occur. We will show that Bﬁ must occur as well. There is a dual path, Py, from
(N +1/2,0) to (1/2,0) in [1/2, N + 1/2] x [0, 00). By Proposition 1 there is also a dual path, P,
from (N + 1/2,0) to (1/2,0) in (—o0, 00) x [0, N2]. We may assume without loss of generality that
Py and P, are simple. If P, or P; is contained in [1/2, N + 1/2] x [0, N?], then clearly BN~ occurs,
so suppose Py extends above N2 and P; extends either to the right of N + 1/2 or to the left of 1/2.
Consider moving along P; from (N + 1/2,0) to (1/2,0) and let p; and p, be the space-time points of
the first and last times that the path intersects [1/2, N + 1/2] x {N?}. Let S) denote the part of P,
between (N + 1/2,0) and p; and let Sz denote the part of P; between p; and (1/2,0). Figure 4 shows
an example.

Now S; and P, must intersect, since they both originate at (N + 1/2,0). Let p3 be the space-time
point of the last time that they intersect when one moves along P,. Similarly, S5 and P> must intersect,
since they both end at (1/2,0). Let p4 be the space-time point of the first time they intersect when one
moves along P,. Between points p3 and p4, P> must lie entirely in [1/2, N + 1/2] x [0, N2], so moving
from (N + 1/2,0) to p3 along Sj, then p3 to ps along P, then p4 to (1/2, 0) along S exhibits a dual
path from (N +1/2,0) to (1/2,0) in [1/2, N + 1/2] x [0, N2], which implies BY . Thus

By n {riN < N?} c BY®
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n N+i2

Figure 4: Sample dual paths for the proof of Lemma 4.
So ,
BN\BY c {N?% < 71N} < o0},
It is known [2, Theorem 2.30] that there exist constants C, ¢ € (0, co) such that for all Z C Z,
Pt < 1% < 0) < Ce™.

Thus
P (BN\Bﬁz) < Ce~M,

So for all sufficiently large N,

P(BY') _ Cexp(-en?)
R 7 B e s T

Corollary 2

- jim, gyloeP (BY) =

In words, Corollaries 1 and 2 say that the chance that the process dies out before growing outside its
original interval decays with the same exponent as the chance that the process dies out at all. The next
lemma shows how to use this fact to bound the hitting time of the piecewise-homogeneous process.

Lemma 5 Let (K, A\, a) be a profile such that A\j > A forall j € {1,...,K)}. Then for all ¢ > 0,

K
logon
P ( N Zaj’)'?.(/\j)-i-é) — 0.

Jj=1
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Proof. By comparing our process to a modified one in which at times kN2, k € N, all nodes are
made to be occupied if any of them are, we see that for all £ > 0,

P(on > t) < P(on > N2)lw2),
A modification of Proposition 1 shows that BY” implies oy < N? so
~N2 lﬁz]
Plony > 1) < (1—P(BN )) .
Now Bﬁz occurs if there is a dual path from (3; + 1/2,0) to (4j-1 +1/2,0) in [i;_1 + 1/2,4; + 1/2] x

[0, (i — 4;-1)?] for each je {1,...,K}. Applying Corollary 2 to each partition, and noting that the
dual paths across distinct partitions are independent, we have

K
P 1 SN2
l}wgf N log P (BN ) > - j;aj')Q(Aj). (10)

Thus for all sufficiently large N,

K L¢/N?)
Plon >t) < (1 — exp (— (Z ajiv2(j) + e/2) N)) . (11)
i=1

Taking t = exp ((Z;il a;72(A5) +N) ) implies the result, since then the right-hand side converges
to zero. D

Lemma 6 1
im — N3\ _
A}lm N log P (DN ) = —v.

Proof. Since BN® ¢ DN°, we see that
.. 1 N3
adl > —o,
lﬁng N log P (DN ) 2 =Y
For the upper bound, let
Ty =m({s € [-N3,N3+1]: (N+1/2,5) = (1/2,t) in [1/2, N+1/2] x [~ N3, N3+1] for some t).
Here and throughout, m(-) denotes Lebesgue measure. By Tonelli’s theorem,
N3+1
E[Tw] = / P((N +1/2,5) — (1/2,2) in [1/2, N + 1/2] x [N, N3 + 1] for some t) ds.
—-N83
Durrett and Schonmann [4, Lemma 4] show that if

Gy = {(N +1/2,0) — (1/2,t) € R x R for some t},
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then 1

Jim - log P(GN) = —7,.
Fix € > 0. Then for sufficiently large N,

P(GN) < exp(=(72 - €)N).
Since P(G y) upper bounds the integrand, this implies

E[Tn] < (2N° + 1) exp(~(72 — ¢)N). (12)
Define
Un =inf{s:s = N3or (N +1/2,5) — (1/2,t) in [1/2, N + 1/2] x [-N?3, N¥| for some ¢},

where the infimum is over s € [~ N3, N3|. Then Uy is independent of the arrows from N + 1 to N, so
the event that there are no arrows from N + 1 to N during [Uy, Un41]is independent of Uy and has
probability exp(—A). If Uy < N3, and there are no arrows from N + 1 to N during [Un, Un1], then
TN = 1, so by Markov’s inequality and (12),

exp(-A\)P(Un < N3) < (2N® + 1) exp(—(12 — €)N)

But P(Uy < N3) = P ( D}?), so the previous inequality implies
N

] 1
lim sup —

msu SlogP (D) < —m.

D

The technique of relating events like Gy and D%a using expectations and Tonelli’s theorem will
be used several times below. Having provided the complete argument in the previous proof, we will
include less detail in the sequel.

Lemma 7 K
. 1 -Nz
A}.l_l’noo N log P (CN ) = - ; a;jya(Aj).
Proof. Since Bﬁz C é‘ﬁz, the lower bound follows from (10). For the upper bound, define
D}V": = {(i+ 1/2,8) = (ij_1 + 1/2,t) in [ij-1 + 1/2,4;4+ 1/2] x [-N?, N?| for some s and t}.
For all sufficiently large N, N2 < (4i; — 4j-;)3 forall j € {1,..., K}, so by Lemma 6,
. 1 N2
- Y < — .
lxnggop a;N log P (DN'J) < —12(%)
for all j. Since the Dﬁ‘zj, j €{1,..., K} are independent, and
= N2 X 2
CN" < [ D,
J=1
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we have K
h){;: 18Up logP (CN ) <- Z ajv2(Aj).

D

We can complete the proof of Theorem 4 once we show that & log P(Cn) — — ZJ’.‘;I ajy2(Aj).

To relate P(C) to P(C',Q,’z) we must generalize to inhomogeneous processes on N the fact used in
Lemma 4 that for the homogeneous process on Z, P(t < 7% < o0) < Cexp(—et) forall Z C Z. We
will apply our bound to a sequence of piecewise-homogeneous processes, and we require the same C
and € to work for each one. To accomplish this, we prove the bound for a general class of inhomogeneous
processes. Let étz be the contact process on N with §Z = Z and with transition rates

a(4,A\{j}) =1ifje A
. Or(G - DIAN{i -1} +0LG+DAN{j+1} ifj¢Aj#1
A AU = i . ,
a4 AU = { XA o ifj ¢ A,j=1
for Ac Nand j € N, where 81,,0r :N — [0, 00). Let
Z = inf{t >0: £ = 0).
Lemma 8 For all A > )., there exists positive constants C and 6 such that for all inhomogeneous
contact processes on N such that min(01,(i),0r(3)) > A foralli € N, all Z C N, and allt > 0,
P(t < 7% < 00) < Cexp(-6t).
Proof. We use a restart argument modeled after the one in Durrett [16, p. 1032].
We can couple £ to a homogeneous process £Z on N with rate A by thinning the Poisson processes
in the graphical representation. Let ((” )t> denote the contact process on [, 00) starting with {5}
infected, constructed from the graphical representatlon of (£Z)¢>0 restricted to [_7 00) X [s, 00).
Letzp =inf Z,Tp =0,and T; = inf{t > 0: “’°’ =0}.1fTh < ooand{T #0,letz) = mf§Tl
If 77 < oo and {T =0,letzy = 1. ThenletTp = 1nf{t >T: ¢ - (@}, and repeat the procedure

until we find a pomt (zr,TL) such that (“"T" survives forever. Such a point exists with probability 1,
since each (f‘ ' has some probability p > 0 of surviving forever [3].

On#Z < 00, Ty > 72,50t < 72 < 0 implies ¢ < Tr. There exists positive constants C' and 4,
independent of 8, and @, so that conditionedon L > |, X; =T; — T;_,,i = 1,...,l are i.i.d. with

P(X; >t) = Pt < 7|7 < 00) < Cexp(—6t),
where
T=inf{t > 0:¢° =0},

and the exponential bound is from Section 3 of Durrett and Liu [3]. Then there exists & > 0 such that
¢(x) = Elexp(kX;)] < 0o, and € > 0 such that e *¢(k)¢ < 1. Then forall ¢t > 0,

P(Ty >t) < P(L> |et])+ P(Xy +-- 'X[etj >t)
< (1 - p)le] + e*tg(m)let).

19



Lemma 9
P(o¥)
lim ——~ =1.
N-o P(Cn)
Proof. Construct Cy and CN from the graphical representation of an inhomogeneous process on
N, (&)po, in which points {1, ..., N} inherit their reproduction rates from the piecewise-homogeneous
process, and the points in {N + 1 N +2,...} reproduce at rate Ax. Note that we require the graphical

representation in both positive and negative time. On this graphical representation, define the following
four events forallm and nsuchthat N >m >n > 1,

Ef .= {(m+1/2,0) - (n—1/2,0) in [1/2, N + 1/2] x [0,00)}
Emn={(m+1/2,0) > (n—1/2,0)in [1/2, N + 1/2] x (00, 0]}
Ff o ={(m+1/2,0) > (n-1/2,0)in [1/2,N + 1/2] x [0, N?]}
Frn={(m+1/2,0) > (n-1/2,0)in [1/2, N + 1/2] x [-N2,0]}

For m > n = 1, we allow the path to end at an arbitrary time. That is,
El 1= {(m+1/2,0) > (1/2,s) in [1/2,N + 1/2] x [0, c0) for some s},
and similarly for the other three events. Let
T = inf{t > 0: g™ =},

where £ denotes £;start ed in state A. Forany 1 < n <m < N, if E}, , occurs and {7 < N2}, then
a modification of the argument used in Lemma 4 shows that F"‘ must also occur. Thus

E} \Fit, C{N?<i" < o0}

So by the previous lemma, there exists C > 0 and § > 0 so that for all N, m, and n such that
1<n<m<N,
P (Eq 2\Fgq) < Cexp(—éN?) (13)

Let E, be the contact process on N constructed from the graphical representation obtained by reflecting
the portion of the original graphical representation that lies below ¢ = 0 about the ¢ = 0 axis, then
reversing the direction of all of the arrows. Observe that there is a dual path from (3, s) to (5, t) in the
graphical representation of Z; if and only if there is a dual path from (i, —s) to (4, —t) in [1/2, 00) x
(=00, 0] in the original graphical representation. Thus the argument leading up to (13) also shows that

P(Eg 2\Fmn) < Cexp(—6N?).

Now suppose that Cy occurs, and let P be any simple dual path from (N +1/2,0) to {1/2} x (—o0, 00)
in [1/2, N +1/2] x (—00, 00). Without loss of generality we can assume that P intersects [1/2, N +
1/2] x {0} only at half-integers. Let z; + 1/2, 22+ 1/2, ..., z3-1 + 1/2 be those half-integers, in the
order in which it reaches them. Thus z;j= N. Let zp = 0. Again without loss of generality, we can
assume that 1 > z2 > -+ > z). Since P must live entirely above or below ¢ = 0 between z;+ 1/2
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and z;41 + 1/2, either E:,“:,‘z',+ 1+1 0T E;,zﬁ ,+1 mustoccur foreachi =1,...,M - 1. If F,'n"m occurs

whenever E; |, does and Fy m occurs whenever Ep, , does, then C’,Q,’ * also occurs, so C:'N\C'ﬁ ? implies
that there exist m and n such that 1 <n <m < N,and Ef, \F}  or Ef \F}_ occur. Thus

P (C*N\éﬁ,’z) < 2N2C exp(—-6N?).
The result then follows as in the proof of Lemma 4. o

Corollary 3
K
3 1 ~ — I -
Jim — log P (CN) = ,; ar(;).

Lemma 10 Let (K, )\, a) be a profile such that A\j > A forall j € {1,...,K}. Then forall e > 0,

« .
P (10%:” <Y aim) - 6) -0 (14)

i=1

as N — oo, and

K
bg—?v[ﬂ!l - Z a;jv2(A;)-
=1

Proof. We proceed as in Lemma 6 of Durrett and Schonmann [4]. Write v = Z;;l a;y2(A;). By
Tonelli’s theorem, for all sufficiently large N,
Em({s€[0,T+1]: (N +1/2,s) = (1/2,t) in [1/2,N + 1/2] x (—00, 00) for some ¢})]
= /0T+1 P((N +1/2,s) — (1/2,t) in [1/2,N +1/2] x (=00, c0) for some t) ds (15)
S(T+exp(-(y-¢/2)N).

If there exists s,t € [0, T] such that (N +1/2,s) — (1/2,t) in [1/2, N + 1/2] x [0, T}, and there are
no arrows from NV + 1 to N during [s, s + 1], then the measure in (15) is at least 1, so
P((N +1/2,s) — (1/2,t)in [1/2, N +1/2] x [0, T|f or some s and t)
< M (T +1)exp (- (v —€¢/2) N),
which implies
Plony <T) < (T + 1) exp(—(vy — €/2)N),

since oy < T implies the existence of such a path. Substituting T = exp((y — ¢)N) shows (14). To
show convergence of expectations, note that

Elon] = Elon1(on < exp((y — €)N))] + Elon1(on > exp((7 — €)N)))
> exp((y — €)N)P(on > exp((y — €)N)).
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From this it follows that log B
lim inf ~2—17N1 low] >
N—ooo N

For the upper bound, write

Elon] = /0 " Plon > 1) dt.

Then, using (11), we have for all sufficiently large N,

oo}

Blow Sew((y+ oM+ [ (- exp(~(r+/2N) "

If we write (V) for 1 — exp(—(<y + ¢/2)N), then the integral evaluates to

N2

o(N)~! - 2 507) - O(N)=P((r+aN)/N?

which converges to zero as N — co.

The proofs of Theorems 5 and 6 make use of the following fact.
Lemma 11 2(A) is continuous from the right on [0, co).

Proof 1f 0 < A < A, then

P (T{l,...,N} - 00) < NP (T{O} = 00) =0,

so P(r{l-+N} « 00) = 1 for all N and 72(A) = 0. This proves the conclusion on [0, A.). To verify it

at A, note that Durrett, Schonmann, and Tanaka [5] show that

(A = 2c)3/5)
—_— >0,
Alde 12(A)

which implies that 72(A) | 0 as A | Ac. To prove the conclusion on (), 00), write BN2 (A) for the
event BN2 in the graphical representation with rate )\, and note that if A, > ), then BN (A1) and
BN ()\2) can be coupled by constructing BN (A2) from the graphical representation of BN (A1) along

with additional arrows with rate s — A;. Then
0<P (Bﬁ’(,\l)) -P (Bﬁ’()\z)) < 1—exp (20 - A)N?),
so P(BN*())) is continuous. Define
v = -3 log P (BY'(%).
Then fn(A) is continuous in A for fixed N, and by subadditivity,
IN(A) 2 72(N).
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Note that both fy and 7 are nondecreasing. Now fix A > A; and € > 0. Choose N so that fx()\) <
Y2(A) + €/2. Then choose d such that for all @ € [\, A + 6], fn(8) < fn(A) + €/2. Then

72(0) < fn(8) < 12(N) +e.

(0

Proof of Theorem 5. The lower bound in probability and expectation can be proven by coupling the
process to the all-supercritical process consisting of one of the supercritical islands with a maximal hit-
ting time exponent and then applying Theorem 4. We omit the details of this procedure and concentrate
on the upper bounds.

Let C' denote the indices of the nonsupercritical partitions. Choose A > ). such that y2(\) < €/2,
and let &y be the extinction time of the all-supercritical process obtained by making all of the partitions
in C supercritical with rate . By coupling that process to the original one so that oy < T, we have
Elon] < E[on], and

logon logGn
p ( N Zaj’)‘2(/\j)+€) SP( N Zaﬂz(r\j)'*"-)

je¢c j¢c

<P (logaN > Za,'yz()\ )+ Za,'yg()\) + 6/2)

j¢c jec

Applying Theorem 4 completes the proof. O

Proof of Theorem 6. Let Ag > 0 and > 0, and let (K, A, @) be any feasible profile. By Theorem
5,

K
N .
liminf - log Elow] < ,Z_:l ai92(X) < 43°(o + ).

Thus R*(Xo,n) < ’y%m()\o + 7). Observe that 43°(Xo + 1) < oo since 12(A) < log(l + 2)\). By
Carathéodory’s Theorem, [11, p. 155], 4 72 is approached by profiles with two rates,

2
”‘“(x) = sup {Za]’)'g(/\ ZaiAj =z, and min(\;, Ag) > ,\0} .
=1

ij=1

Thus there exists sequences (o¥, \¥, k € N, j = 1,2) such that /\;? > Xp forall k and 7, and

373
Za")\" < Xo+n Vk, and (16)
j=1
2
> afn() = %°(0 + 1), 17)
Jj=1
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as k — oo. By considering subsequences, we can assume that a;? and /\;? are monotonic. If z\}‘ T oo as
k — oo, then
do+7
Ak
j

afya (M) < log(1 + 2)¥) — 0.

So setting /\g? = )p for all k does not change (16) or (17). Thus we may assume that the sequences A%

and A% are bounded, in which case there is a convergent subsequence of (of, M5,k € N, j = 1,2) that
converges to i, a2, A1, A2. Since 72 is nondecreasing and right continuous, we have for any sequence
Tn — T,

lim sup y2(z») < y2(z).
n—oo

Thus
320X +1) < e172(M) + azva(A2).

It follows that R*(Xo,7) > 42(Ao + n) and it is achieved by a profile with two rates. o

We will prove two more lemmas before proceeding with the proof of Proposition 3.

Lemma 12 Let £ be a piecewise-homogeneous contact process on {1,..., N} with &Y = {2} for
which A\j < Acforallj € {1,...,K}. Let R = sup;5qsup & and Aly = inf{t > 0: N € £}. Then
forall 3 >0,

1 1
im — >N)-= v < BN?) = 0.
A}l_r.nm N log P(R > N) N log P(Ay <AN*)=0
The result also holds for a homogeneous subcritical contact process on Z.
Proof. Consider the piecewise-homogeneous process. For all 8 > 0,

0 < P(R> N) - P(Ay < AN?%) = P(BN? < Aly < o0)
< exp(—vyi(max(y, ..., Ak))BN?).
Consider the homogeneous process on {0} U N, &, with reproduction rate min()y, . .., Ax) and initial
state {0}, and let R’ = sup,5qsup&. Then P(R > N) > P(R' > N — 2),and —log P(R' > N) is
subadditive, since by conditioning on the state of § when N first becomes occupied, it follows that

P(R'2 M+ N)2P(R' > N)P(R > M).

Thus if we let 1
= i -—— ! >
6 ug N log P(R' > N),

then @ > y3(min(Ay,...,Ax)) > 0, and for all sufficiently large N,
P(R> N)2 P(R 2 N—2)> exp(-20 N - 2)),

in which case

0<1- PBy< AN?) _ exp(=m(max(Xy, ..., Ak))BN?)

Sl-=PBr>nN < exp(=20(N - 2)) =0
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This shows that forall 5 > 0,
lim P(E 2 N)
N—-oo P(A'N < ﬁNz) ’

and the result for the piecewise-homogeneous process follows. The proof for the homogeneous process
is similar. O

Lemma 13 Let & be a piecewise-homogeneous contact process on {1,..., N} with &Y = {2} for
which Aj < Acforall j € {1,...,K}. Let R = sup;»q sup &l and

Ay = inf{t > 0 : there is a CP path from (2, s) to (N, t) in [1, N] x [s, ] for some s > 0}.

Then 1 1
im — >N) - — Ay < BN?) =0.
A}l_r’ncoNlogP(R_N) NlogP(AN <BN*)=0

The result also holds for a homogeneous subcritical contact process on Z.
Proof. By Tonelli’s theorem, for any 8 > 0,
E[m({s € [0,8N? + 1] : there is a CP path from (2, ) to (N, t) for some t < N2 + 1})]

BN241
= / P(there is a CP path from (2, 5) to (N, t) for some t < N2 + 1) ds
0

BN2+1
< / P(R> N)ds
0
= (BN?+1)P(R 2 N).

If there is a contact process path from (2, s) to (N, t) forsome s > 1andt < AN?+1in [1,N] x [s, 1],
and there are no §’s at 1 during [s — 1, s|, then the above measure is at least one, so

e 'P(Ay < BN?) < (BN +1)P(R 2 N).
Since P(A’N < BN 2) < P(A N < BN 2), the previous equation and Lemma 12 give the result. O
Proof of Proposition 3. For gach j€{l,...,K}let
A{V = inf{t > 0: 3 a CP path from (i;_; + 2, s) to (¢;,¢) in [i;_1 + 1,4;] x [s,t] for some s > 0}.

Constructing the jth partition from a homogeneous process on Z with rate );, and applying Lemma 13
to the homogeneous process shows that

1

— Jim_—log P(A%; < N?) = ajy()))- (18)

Let ¢ > 0. For the piecewise-homogeneous process, using the notation from the previous Lemma,
-~ K .
P(Ay < N?) < [[ P(A) < N%).
j=1
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Then (18) implies

=1

K
P(An < N?) < exp (— (Z a1(N) - e/4) N) - (19)

for all sufficiently large N, which implies, by Lemma 13,

: K
P(R> N) <exp (— (Zaj'm(z\j) - 6/2) N) . (20)

i=1

We can now proceed as in Bramson, Durrett, and Schonmann [10]. Let T}, 73, . . . , be the times at which
there are arrows from 1 to 2, and let T'(t) = sup{k : T < t}. If there is a path from {1} x [0,#] to
{N} x [0, ¢] then there is a path from {2} x {T3,...,Try} to {N} x [0,¢]. Then by the union bound,

K
P(An <t) < P(T(t) > 2)Act) + 2Actexp (— (Z a;y3(A;) — e/2) N) .

=1

Substituting £ = exp ((2;;1 a;v3(A;) - e) N ) gives the lower bound, since then the first term tends
to zero by the weak law of large numbers, and evidently the second term also tends to zero. Let

A, = inf{t > 0 : there is a CP path from (4j-1+2,0) to (i;,¢) in [i;-1 + 1,%;] x [0,¢]}.
If we let
A{v = {the CP on {i;_; + 1,...,1;} with initial state {i;_; + 2} eventually occupiesi;},

then Lemma 12 implies
. 1 j 2 1 1
- < N4y - — Jy =
Is}l—lgo a;N log P(Ayy < N°) a;N log P(4y) =0,
and Lemma 13 implies
. 1 AJ 2 1 :
- < N2y — Iy =
o a;N log P(A < N7) a;N log P(4}) =0,

which when combined with (18) yields
.1 j
A}l_rgo N log P(A), < N?) = —ajv3())). ¥3))

There is a contact process path in the piecewise-homogeneous process from (1,0) to (N, T) for
some T < KN? + K if the following occur: (a) point 1 does not become vacant during [0, 1], (b) there
is an arrow from 1 to 2 attime s € [0, 1], (c) there is a contact process path from (2, s) to (i), s +t) with
t < N2, (d) points 4; and i) + 1 do not become vacant during [s + t,5 + ¢ + 1], (e) there is an arrow
from i; to 43 + 1 at time w and an arrow from i; + 1 to¢; +2attime v withs+t <u <v <s+t+1,
(f) there is a contact process path from (i1 + 2, v) to (42, v + w) with w < N? that never moves left of
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i3 + 1, etc. Let € > 0. Using (21) to lower bound the probabilities of the contact process paths, we have
for some p > 0 and all sufficiently large N,

=1

K
P(AnN < KN?+ K) > exp (— (Z ajva(Aj) + e/2) N) pX

Now partition the time interval [0, £} into subintervals of length [0, K N2+ K]. Each subinterval provides
an independent chance of finding a contact process path from 1 to N, so

K [t/ (KN?+K))
P(An>1t) < (1 - pXexp (-— (Z a;jv3(As) + 6/2) N)) .

j=1

Substituting ¢ = exp((Zﬁil a;13(Aj) + €)N) and noting that the right-hand side converges to zero
completes the proof. m]

7 Proofs of Biased Voter Model Results

The subcritical part of Theorem 7 follows from the next lemma, which is a calculation about the average
drift of a random walk in an inhomogeneous environment.
Lemma 14 Let X; be a random walk on Z with Xo = 1 and rates

gn,n+1)=1

_J A ifn<l
q(’"'?n_l)—{/\z 1fn22 ’

Withsupp<o An < 1. Let T, = inf{t > 0: X; = n}. Then

Tn 1
—_—
N 1- X

in probability as N — o0.

Proof. Let S, = T,,4+1 — T),. By a simple extension of the weak law of large numbers, it suffices to
show that

. 1

i BlS =15 2
sup E[S?] < oco. (23)
n>1

Let Y; be a random walk on Z with rates g(n,n — 1) = Az and g(n,n + 1) = 1 and with Yp = 1. Let
Z; be a random walk on Z with Zy = 1 and with rates

1+ infk52 Ak

1+ Supksz Ak

1+ infres Ak
g(n,n-1) =sup \pm——==—
( ) k<2 1+Ssupg<g Ak

g(n,n+1)=
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Note that for each state Zshas a larger average holding time and a smaller drift than either X;or Y;. Let
Up=inf{t >0:Y; =n}
Vn = Un+1 - Un
Wy =inf{t:Z;=n+1} —inf{t: Z, = n}.

Also define the events

Apn = {X; =1 for some t € (T, Tn41)}
B, = {Y; = 1 forsome t € (Up, Upn41)}

Then P(A,) = P(B,,) foralln > 2, and

E[Sn] = E[Snl(A;)] + E[Snl(An)]
= E[an(chl)] + E[Snl(An)]
= E[Va] - E[an(Bn)] + E[Sn1(An)]
IE[Sn] - E[Vn“ < E[an(Bn)] + E[Snl(An)]

< 24/ E[W2|P(B,).

Now E[V,] = 1/(1 - A2), E[WE] < 00, and the optional stopping theorem applied to the jump chain
of z\;’ (t), which is a discrete-time martingale, gives

Al-1
P(B,) = -2
(Bn) Fromy
which shows (22). To see (23), note that E[S2] < E[W2]. u]

We will also use the following elementary large deviations lemma.

Lemma 15 Let X; be a random walk on Z with Xo = 0 and with rates g(n,n + 1) = Aand g(n,n —
1) = p with A > p. Then for every € > 0 there is a § > 0 such that

P(X; — (A~ p)t < —et) < exp(—0t).
Jorallt > 0.

Proof. Let
f(6)=—60e+6(A—p)=A+re~® — p+ ped.

Then f(0) = 0, and f'(0) = —¢, so fix 6 > 0 such that f(8) < 0. If Y; and Z; are independent Poisson
processes with rates A and y, then X; is identically distributed to Y; — Z;, so by the Chernoff bound,

P(X(t) = (A — p)t < —et) < exp(—0et + 8() — p)t)Elexp(~0Y; + 62;))
< exp(—0et + 8(X — p)t — At + Ae™® — ut + uted)
= exp(f(0)t).
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Lemma 16 If (K, A, ) is a profile such that \; < 1 forall j € {1,..., K}, then

K
N _Y
N_’;za—,\,-)

in probability as N — 0.

Proof. Write ~ for ZK:I 5(1—'2\—:5 Let L; and R; be the random walks in the edge construction of

the process. Then
j=1
. . (273
* = <j<K:
J sup{l_y_ kE—II_Ak<7}

is the partition in which we expect L, and R; to meet. To pinpoint the location within j*, choose 3 to
satisfy

j* =1 K
JZ ay, Baj o + (1 - B)ay-

T— T1-a T TN T T

(24)
k=1

and observe that the definition of j* forces 8 € [0, 1] and that both sides of this equation equal 7. We
expect L; and R; to meet around
M =ije_1 + [Bej-NT,

since the left-hand side of (24) is how long we expect L; to take to reach M and the right-hand side of
(24) is how long we expect R; to take to reach M. Foreach j € {1,...,K}, let S; = inf{t :L ; = i;}
and let T; = inf{t : R, = i;}. Alsolet Sp = 0, and

S =inf{t :L , = M}
T=inf{t:R;=M}.

Then

But

by Lemma 14. Similarly, P(T/N < v — ¢) — 0. For the upper bound, modify L; and R; so that
at time S, L; becomes a homogeneous random walk on Z with g(n,n — 1) = max(}y, ..., Ax) and
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g(n,n + 1) = 1, and at time T, R; becomes a homogeneous random walk on Z with g(n,n — 1) = 1
and g(n,n + 1) = max(A,, ..., Ax). These walks can be coupled to the original process so that

on <inf{t: R(t) < L(t)}.
Then

ON S T
P(W>'Y+€) SP(N>7+€/2)+P(N>7+€/2)+

NS
The first two terms converge to zero as above. To see that the third and fourth terms also go to zero,
consider Ly = Ly; 5 — M. Then (L;):>0 is a homogeneous random walk with positive drift, and

S T
P (N < '7+€/2,L(,7+¢)N < M) + P (— < 'y+e/2,R(,,+£)N > M) .

S S ~
P(F <r+e/nLosan < M) =P (5 <vte/aTan-s < 0)
Since I, and S are independent, Lemma 15 shows that there exists § > 0 such that
P (% <v+ 6/2,~L(.,+¢)N_s < O) < exp(—8eN/2).

o

Lemma 17 Let X; be a random walk on Z with Xo = —1 and rates q(n,n+1) = Aand g(n,n—1) = 1,
with A > 1. Let T, = inf{t > 0: X; = n}. Thenforall B > 0,

lim — log P(T_n = min(T-y, Ty, BN?)) = — log A.
N—=oo N

Proof. Applying the optional stopping theorem to the jump chain of A~%¢, which is a discrete-time
martingale, gives forall N > 1,

. A-1
P(T_N = mln(T_N,TO)) = /\N_—].
It follows that )
h}if:w N log P(T_n = min(T_y,Tp)) = — log \.
Since

P(T-y = min(T_p,Tp)) < P(T_y = min(T-n,Tp), T-n < BN?) + P(min(T_n, To) > BN?),

it suffices to show that P(min(7- x, Tp) > BN?) < exp(—N?) for some & > 0. But this is true since
for all sufficiently large NV,

P(min(T_n,Tp) > BN?) < P(Ty > BN?%) < P(Xgp2 < 0)
< exp(-6N?),

where the large deviations bound is from Lemma 15. ]
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Lemma 18 If (K, ), @) is a profile such that A\; > 1 forall j € {1,...,K}, then

K
logon
P ( = >Zajlog(Aj)+e) -0

j=1

as N - oo foralle > 0.

Proof. By comparing the process to one that is reset to {1,..., N} at times N2,2N2,.., if it is
still alive, we obtain

P(on > t) < [L - P(on < N2)|lwz),

Let L; and R; be the walks in the edge construction of the original (nonrestarted) process. Let T; =
inf{t :R ¢ =i;} forj € {0,...,K}. Then

P(on > t) < [1 - P(Tp < N2)|\wel,
But
2

N S N?
P(T0<N2)ZP(TJ'_1—T,-< —, forallj:l,...,K) =HP(?I}-1—T,~< 7)
i=1

We can apply the previous lemma to bound the chance that after visiting 4;, R; visits 4;_; before visiting
i;+ 1and before N2/K time units have elapsed,

2

p (Tj-: -T< NY) > exp(—(a;log A; + ¢/2K)N),

for all j and all sufficiently large N. Thus

K Lzl
Ploy >t) < [1 — exp (— (Eaj log A\j+ %) N):I .
j=1

Taking t = exp((Z;’-"=1 ajlog A;j + €)N) gives the result. m]

Following Durrett and Schonmann [4], we prove the lower bound using the following estimate of
the chance that a random walk makes an excursion against its drift. Our Lemma 19 is a generalization
of their result (5.1) to walks in piecewise-homogeneous environments.

Lemma 19 Let (K, A, ) be a profile such that A; > 1 forall j € {1,...,K}. For each 3 > 0, there
exist positive constants C and & such that for all sufficiently large N, if L, is the left edge in the edge
construction of the piecewise-homogeneous biased voter model on {1,...,N} and m € {1,...,N}
andt < exp(BN),

t—1<s<t

k-1
P ( max L, > 'm) < CN2K+2) m=bo) T il oy gemd?,
=1

where k satisfies i1 < m < i.
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Proof. First we will find exponents that are uniform over N on the tail probabilities of the length
of an excursion of L; from 1, and the number of excursions that L, makes from 1 during a finite time
interval. Let Sp = 0, and fori > 1 let

Ui=inf{t>S;_;:L; = 2}
Si=inf{t > U;:L,=1}.
Durrett and Liu [3] show that if L} is a random walk on N with rates g(n,n + 1) = 1 and g(n,n — 1) =
min(Ay, ..., k) with L = 1, and
U=inf{t>0:L, =2}
S=inf{t>U:L}=1},

then there exists positive constants C and § so that for all ¢ > 0,
P(S > t) < Cexp(—dt).
This follows by first defining V = S — U so that
P(S>t) < P(U>t/2)+ P(V > t/2).

We then observe that U is exponentially distributed with mean 1, so P(U > t/2) < exp(—t/2). During
[U, 8), L¢ behaves like a random walk on Z, starting at 2, which drifts to the left, so Lemma 15 provides
an exponent to the tail of V. Durrett and Liu [3, p. 1171) supply additional details. Since L; and Lican

be coupled so that S; < 3, their argument also shows that

P(S; > t) < Cexp(-6t).
If Y} is a Poisson process with rate 1, then for all € > 0 there exists § > 0 such that
P(Y: > (1 + ¢€)t) < exp(—4t)

forallz > 0. Let T'(t) = sup{n : Up < t}. Then T(t) <g Y, s0 P(T(t) > 2t) < exp(—4t). Here and
below we redefine C' and § from line to line to simplify the notation.

Using these facts, we will find C > 0 and 6 > 0 such that for all sufficiently large N and all
me€ {1,...,N},

k-1
2 2K y —(m—ix_,) —o;N -6N?
P(OgassglLszm,SlsN)SCN A Hl)\j T+ cemNV, (25)
; =

To do this, form K independent random walks X}, ..., XX, the jth living on {H-1+1,...,14;}
with rate A; of moving left and rate 1 of moving right, and starting in state -1 + 1 at time 0. Using the
graphical construction described in Section 3, these walks can be coupled to L, so that if L, reaches m
before time T, then X{ reaches i; before time 7 forall j < k, and X, t" reaches m before time 7. Then

k-1
P( max LSZm,SISNZ) SP( max szm)HP( max X3=ij).
0<s<8) 0<s<N? o1 0<s<N2?
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Fix j € {1,...,K} and let M be the number of times that X7 leaves ij—1 + 1 before time N2. Let S

be the first time that X’ returns to ¢;—3 + 1. Then there exists ¢ > 0 and § > 0 such that for all N and
alll € {3;_1 + 1,. ,z,}

P ( max X7 > z) < P(M >2N?) +2N%P (maxxg' > z)
0<s<N? <8

A2 - )
< exp(—6N?) +2N? "
AL

7 .
f] =
There exists C > 0 such that forallz > 1andallj € {1,...,K},
)\j—l _
’\f — < C)\j z,
Thus

P ( max X > m) < exp(=6N?) + 2N2CA; -0,
0<s<N2

and

i=i;) < N?) + 2n2Cx; NP,
P(oggalcvz)( z,) exp(—0N*) + (o}

This establishes (25). Returning to L;, let

Ay = {S; — S;—1 > N2 for some 1 < i < T(exp(8N))}
BY = {T(t) - T(t - N?) > 2N?}.

Then
P(An) < P(T(exp(BN)) 2 2exp(BN)) + 2exp(BN)P(S; > N?)

< Cexp(—dexp(BN)) + Cexp(BN — 6N?)

< Cexp(—6N?), (26)
and

P(Bj) < exp(—éN?). @7
Thus
P (t Iilgx< L > m) < P(An) + P(BY) + 2N?P ( m?él Ly =m,5 < Nz)

Applying the bounds (25), (26), and (27) completes the proof. A m]

Lemma 20 If (K, A, ) is a profile such that \; > 1 forall j € {1,...,K}, then

K

logon

P (—]V—- < Zaj log()\j) - 6) -0
j=1

as N — oo foralle > 0, and

log E[azv] Z
ajlog Aj.
j=1
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. Proof. We follow Durrett and Schonmann [4]. If oy < T then there exists a ¢ < T and a
m € {l,...,N} such that Ly = R; = m. Write T = exp((Zjil ajlog(A;) — €)N) and fix
B> X | a;log();). Then by the union bound and the previous lemma,

[Tl N
P(aNsT)SZZP( ma.xtL,Zm)P( min R,,Sm)

-1<s< -1<8<
=1 m=1 t—-1<s< t—-1<s<t

K
<(T+1)N (CN‘“‘+4 [Ix5*"+c exp(—6N2)) ,
i=1

which gives the first result since the right-hand side converges to zero. The proof that (log E[on]/N)
converges is the same as for the contact process, with log™* ) in place of .. O

We omit the proof of Theorem 8 because it is essentially the same as the proof of Theorem 5 for the
contact process.

Proof of Theorem 9. Let (K, A, ) be any feasible profile. Theorem 8 shows that

K
.. log Elon]
l}\xlxi}gf —N < j.,\Z.>1 ajlogh; = ; a;(log A))* < h(Xo +7),
Aj =

where h(-) is the concave hull of (log z)* on [Ag, ©0). Thus R*(Xg,n) < h(Xo +%). If Ag > 1, then
the concavity of log gives h(Ag + 1) = log(Ao + 1), so R*(Ag,7n) = log(Ae + 1), since it is achieved
by the uniform profile. If Ag < 1, then observe that there is a unique A; > 1 that solves

A
1- /\—‘1’ =log A,

and define

_f@=2)/\ <z
f(x)_{loga: >\ '

Observe that f is concave on {Ag,00) and f(z) > (logz)* for x > Ag. The latter claim is clear for
z > A and A < z < 1. Observing that f(x) — logz is nonincreasing on [1, A1] and equal to 0 at
x = A; shows it for (1, );].

Since f is concave and f(x) > (logz)*, we have f(z) > h(z), so that R*(Xo,7) < f(z). If
Ao + 1 2> Ay, then the uniform profile has exponent log(A\o + ) = (Ao + 1), which implies that
R*(Xg,n) = log(Ao + 7). If Ao + 7 < A, then some simple algebra shows that the profile stated in the
theorem is feasible and has exponent n/A; = f(Ao + 1), which implies that R*(\g,7) = n/A1. o
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