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Abstract

Responsible Frameworks for Heterogeneous Modeling and Design of Embedded

Systems

by

Jie Liu

Doctor ofPhilosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Edward A. Lee, Chair

This dissertation studies modeling and design frameworks for heterogeneous em

bedded systems. Heterogeneity, in the sense that components in a system have diverse

interaction styles, complicates embedded system design and challenges understandability,

composability, and scalability of models. Hierarchical heterogeneous modeling approaches

tame the design complexity by hierarchically composing semantically different modeling

frameworks. Frameworks are softwzure zu-chitectures that define component ontology and

interaction styles. Formal frameworks for embedded software make programming models

and software architectures reusable.

Embedded systems that engage the real world need to be reactive. This disserta

tion focuses onstudying reactivity and its composition in different frameworks. It introduces

the reactor model as an abstract operational semantics to capture interactions among com-



ponents and frameworks. Within a framework, a component execution is a precise reaction

if all the prerequisites for the reaction are satisfied before it is being triggered. A framework

that only triggers precise reactions is a responsible framework. Precise reactions and re

sponsible frameworksallow us to capture compositionality of reactions, answering questions

such as how a composition of a framework and components can be treated as an atomic

component at a higher level. This compositionality is key for hierarchically composing

heterogeneous models.

Precise reactions and responsibleframeworks are discussed for timed models. Hav

inga notion of time helps designers define timely reactions. But it also brings challenges to

timed frameworks to precisely determine the triggering time. In terms of modeling mixed-

signal and hybrid systems, the challenge is how to precisely control the progression of

modeling time. We present techniques for a responsible continuous-time framework to have

compositional precise reactivity. These techniques involve optimistic look-ahead execution

and possible rollback.

We further study precise reaction and responsible frameworks for priority-based

run-time embedded software. A timed multitasking(TM) modelofcomputationis proposed

for programming reactive real-time embedded software. This model brings time determinism

to the programming model level. We sketch a responsible run-time system that preserves

the timing semantics of TM models.

Professor Edward A. Lee

Dissertation Committee Chair
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Chapter 1

Introduction

The main objective of this dissertation is to describe techniques that will help

modeling and design of real-time distributed embedded systems that engage the real world.

Embedded systems are computer systems that are embedded in other devices, which makes

them not first and foremost computers. Alarge class ofthese systems interact directly with

the real world and withother embedded systems. Examples are automatic control systems

(as in automobiles, airplanes, and industrial plants), test and measurement instruments, op

tical network switches, office equipment, smart home appliances, intelligent toys, and so on.

These systems need to take physical inputs, react in real-time, and produce outputs at the

right time. The reactive nature and time criticality make computing in embedded systems

significantly difierent from computing in traditional data-processing and transaction-based

computer systems, which typically interact with humans and emphasize total throughput

and average performance.

Embedded systems are usually highly customized, since the systems are intended



only to perform a limited set of tasks, rather than target all possible applications. Thus,

when designing such systems, designers must consider constraints on the physical envi

ronment, I/O devices, power consumption, code size, etc., which are typically not well

characterized by mainstream computer sciences. As a consequence, themajority ofcurrent

embedded systems are designed in a hand-crafted manner, which makes designing embed

ded systems more like an art than an engineering discipline. Typically, designers pick a

hardware platform/architecture by guessing whether it will be sufficient for the system,

choose or not choose an operating system based on intuitions of the complexity of soft

ware tasks, develop code using assembly or some customized high-level language (like C)

in order to have a better estimation of timing, and tweak the scheduling algorithms (like

the priorities of the tasks), until the system seems to work. Such a design methodology is

very time-consuming, fragile, and unscalable. Aslight change ofhardware platform, a small

addition of functionality, a minor miss-estimation of the working conditions, or even a bug

fixing, may break the whole system, and force a complete redesign from the beginning.

As embedded systems become ubiquitous with increasinglycomplicated function

ality and networked communications, no single designer can manage a complete design cycle

with the time-to-market pressure. The whole system needs to be decomposed into small

pieces, and many designers have to work together. However, how to decompose a system

and how to compose the components to achieve desired functional and timingpropertieseu-e

big challenges for systemdesigners. Usually, due to the lack of system-level understanding

between domain experts and software engineers, the system integration cost at the end of

a project become very high.



Embedded systems usually consist of heterogeneous components. Typically, there

may be hydraulicand/or mechanical parts, analog circuits for sensors and actuators, com

munication circuits, application specific digital circuits, micro-processors and/or micro

controllers, memories, and embedded software. These components interact with very dif

ferent styles, which leads the designers of these components to have very different ways of

thinking. In a sense, a key challenge ofsystem-level design ofembedded systems is how to

integrate all these ways of thinking.

My thesis works on modeling anddesign issues ofembedded systems, particularly,

those systems that engage the physical world, have multiple modes of operation, involve

networked interactions, and react in real-time. The long term objective of this work is two

folds:

• toenrich computer sciences with heterogeneous modeling techniques, their interacting

semantics, and programming models, and

• to make state-of-the-art computer science theories andsoftware engineering techniques

accessible to embedded system designers by providing computer-aided modeling and

design frameworks that allows domain experts to easily prototype ideas, reuse pre

vious designs, and generate hardware and software implementations from high-level

specifications.

In this thesis, the approach to managing heterogeneous models is a component-

based one. Asystem isan aggregation ofinteracting components, and each component may

be decomposed further into smaller components with possibly different interaction styles.

The thesis studies reactivity properties in component-based frameworks. An abstract se-



mantics model, called the reactor model, is introduced to cover a wide variety of models

of computation. New concepts - precise reaction and responsible frameworks - are intro

duced to systematically define reactivity and its composition. The concepts are applied

in both timed and untimed models. After studying precise reactions in real-time systems,

I propose a new programming model for priority-driven multitasking embedded software.

This programming model makes time explicit and resource management transparent to

programmers.

1.1 Heterogeneity in Embedded System Modeling

The word "heterogeneity" referred to in this thesis is at the modeling level, rather

than at the implementation level. For example, although the interaction among mechanical

components and that among analog circuits are very different physically, as long as they

both can be modeledas ordinary differential equations, there is no heterogeneity. Thus, the

heterogeneity at the modeling level is in the sense ofcomponent interaction styles, logically

or mathematically.

Thke an engine control system as an example, shown in Figure 1.1. A cylinder of

an internal combustion engine has four working phases: intake (I), compress (C), explode

(E), and exhaust (H). The engine generates torque that drives the power train and the car

body. Depending on the car body dynamics, the fuel and air supply, and the spark signal

timing, the engine works at different speeds, and thus makes phase transitions at various

time instances. The job of the engine controller is to control the fuel and air supplies as

well as the spark signal timing, corresponding to the drivers demand etnd available sensor



information from the engine and the car body.
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Figure 1.1: An engine control system

When designing the engine controller, one wants to quickly validate the control

algorithms before considering the implementation details. So, one may startwith modeling

anH simulating the entire system, including the engine and car dynamics, at a high level

of abstraction. The engine and the car body are mechanical systems, which are naturally

modeled using differential equations. The four phases of the engine can be modeled as a

finite statemachine, with a more detailed continuous dynamics for theengine ineach ofthe

phases. While all the mechanical parts interact in a continuous-time style, the embedded

controller, which may be implemented by some hardware and software, works discretely.

In particular, sensor information and driver's demands may arrive through some kind of

network. The controller receives this information, computes the control law, controls the

air and fuel valves, and produces spark signals, discretely. So, we want to use a model

that is suitable for handling discrete events for the network and the controller. Within the

discrete controller, the control algorithms may be implemented as software, and there may

be multiple software tasks sharing the same CPU and other resources. And, the real-time



scheduling policy may greatly affect the closed-loop performance.

In this not so complicated example, we have seen both continuous-time models and

several quite different discrete models - finite state machines, discrete events, and real-time

scheduling. All these models have distinct characteristics interms of what the components

are and how those components interact. At an abstract level, we view components as

mathematical objects rather than physical devices, and call these characteristics tnodels of

computation (MoC).

There are many useful models of computation for designing embedded systems.

Ihble 1 isextended from [43], in which Lee has an insightful discussion ofseveral ofthem.

I will define some of them more precisely in later chapters.

Notice that many ofthemodels inthetable have various abstraction oftime. Some

are continuous, like CT, DE, and PDM; some are discrete, like DT and SR; some abstract

time away, as in Kahn's process networks and commimicating sequential processes. The

different notions of time make programming for embedded systems significantly different

from programming in desktop, enterprise, and Internet applications.

A natural question to ask, after realizing the diversity of models of computation

and heterogeneity of system modeling, is how to use these models coherently in system

designs. Our approach is a component-based one. In particular, we use hierarchies to

integrate different models and keep models clean at each level.



l^ble 1.1: Briefe on Models of Computation

MoC Brief Possible Applications

Asynchronous
Message Passing
(e.g. Kahn's Pro
cess Networks)

Processes interact by
channels (e.g. FIFO
queues) that can buffer
messages.

May be used for loosely coupled dis
tributed agents, data-centric algorithms,
like signal processing, system identifica
tion, and streaming data application, etc.

Continuous-Time

(CT)
Functional and storage
components communi
cate with continuous

waveforms.

Physical environment, analog circuits, and
continuous control laws, etc.

Discrete Events

(DE)
Components communi
cate via signals that
carry events placed in
time, which is continu
ous and globally known.

Digital circuits, communication network,
queuing systems, and embedded software
at the 1/0 level, etc.

Discrete Time

(DT)
Global notion of time,
periodical discretized.
Every signal has a value
at every clock tick.

Periodically sampled data systems and
cycle-accurate modeling.

Finite State Ma

chines (FSM)
States and transitions

among them. Transi
tions Eu-e triggered by
events.

Operational modes and control sequences.

Priority-Driven
Multitasking
(PDM)

Software tasks sharing
resources. Tcisks may
be preempted.

Embedded software modeled at the oper
ating system level.

Synchronous
Message Passing
(e.g. Communi
cating Sequential
Processes)

Processes rendezvous,
communicating in
atomic instantaneous

actions.

Concurrent processes accessing critical
sections, resource management, etc.

Synchronous/ Re
active (S/R)

Global clock triggers
computations that are
conceptually simultane
ous and instantaneous.

SiguEkls may have well-
defined empty value.

High-level modeling for reactive real-time
hardware and software.



1.2 Component-Based Design in Embedded Software

The principle ofcomponent-based design is essential to engineering and has ex

isted long before the invention of computers. It advocates designing components to fit a

wide range of applications, and building applications by assembling standard components

together with a small number of application-specific components. We have seen this in

mechanical engineering over centuries, where a wide variety of standard components has

been defined internationally. We have also seen these in electronics, especially in the per

sonal computer (PC) industry, where many components such as processors, memories, disk

drives, and extension boards are standardized and highly interchangeable.

Components encapsulate expertise and induce certainformal properties. Component-

based design achieves the system qualities by inheriting the expertise, shortens the design

cycles by reusing building blocks, and reduces system cost by mass production. Modu-

Izu-ization and software reuse are always the main themes of software engineering. How

ever, unlike mechanical systems and electronics hardware, which primarily have only one

interaction style among components (force/acceleration for mechanical components, and

current/voltages for electronics), softwgure components csin interact in much more abstract

forms and diversestyles. Thus, it is not immediatelyobvious how to definea software com

ponent or to capture their interactions. Over the years, there have been many attempts to

definereusable components in software engineering. Examples includesubroutines, objects,

software services, and frameworks.



1.2.1 Subroutines

Subroutines are probably the most commontype of reusable software component.

A subroutine is a finite computation that processes (a predefined type of) input data and

produces results. A big problem with subroutines is the weak management ofinternal

states and the lack ofencapsulation. There could easily be unspecified requirements and/or

side effects.

1.2.2 Objects

Object orientation improves onsubroutines by introducing well-defined boundaries

and encapsulation of states and behaviors. In [9], the Object Management Group (OMG)

defines an object in object-oriented design as:

An entity with a well-defined boundavy and identity that encapsulates state and

behavior. State is represented by attributes and relationships; behavior is represented by

operations, methods, and state machines.

Object orientation matches well with system decomposition in many problem do

mains, and raises the abstraction of programming by advocating object encapsulation and

class hierarchies. However, the basic object model only offers one mechanism ofcomponent

interactions —method calls. A method call immediately transfers the flow of control from

one object toanother. It is up to the programmers to manage concurrency and persistence.

This issue becomes more cumbersome for multi-threading programs and distributed ob

ject models, like Common Object Request Broker Architecture (CORBA) and Distributed

Component Object Model (DOOM). In these models, the only primitives - synchronous
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and asynchronous method calls —make it very hard toreason about flows ofcontrol, order

of events, and deadlock in distributed object-oriented systems.

1.2.3 Services

Software services me abstractions of one or more objects or procedures that to

gether perform some functions. The main goal ofbuilding software services isreuse. Services

have a well-defined interface, and are composable with other services to build higher-level

systems. This seemingly small step from object orientation introduces a paradigm shift in

reusing software components, in the following senses:

• Software services usually impose programming models. For example, the CORBA

event service [57], Ninja [23], and JavaSpaces [19] all impose an event-driven pro

gramming model. Thus, interactionamongcomponents becomes a first-level concern.

• Software services are usually distributed, and concurrency issues become explicit.

• Software services are active processes rather than passive subroutines or methods.

Servicestypically never terminate. They wait for requests, perform their computation,

and produce replies.

However, service-based programming leaves the integration of services completely

to programmers, and it is weak at managing resources when the service is used by many

clients. As a consequence, it is hard to analyze real-time performance of service-based

systems.
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1.2.4 Framework

In system design communities, the term "framework" generally refers to software

architectures that integrate components. Ralph Johnson defines frameworks in the object-

oriented programming context [37] as:

a reusable design expressed as a set of abstract classes and the way their instances

collaborate.

We use this term in a broader sense, which does not necessarily tie to object ori

entation and "classes." In this thesis, a framework is a software architecture that imposes

a set of constraints on the interactions of components, provides a set of services that com

ponents may use, and may induce a set ofbenefits (e.g. formal properties) for the system.

Amodel ofcomputation can be implemented asa framework, so are many ad hoc software

architectures. A "good" framework makes software architectures and programming models

reusable (as opposite tosimply making code reusable). By solving meta-level problems, like

communication styles, scheduling, flow ofcontrol, and resource management, good frame

works allow designers to focus on the development of individual components, which are

typically small and easy to manage.

Many software frameworks have been developed over years. Agha s actor model

[1] is a framework. It defines distributed components (called actors) and their communi

cation styles - unstructured event passing. Pree's framelet [59] model is a framework. It

defines components as objects with call-back functions, and the framework provides real

time scheduling services. Stewart's port-based object (PBO) model [69] is anther example

of frameworks. It defines components as port-based objects interacting through buffers
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of length one, and schedules the execution of the components. The open control plat

form (OCP) [80] is a framework that provides a component model, and extends real-time

scheduling techniques toa distributed system using a real-time CORBA [64] and its event

service [58]. There are also many commercial frameworks. Sometimes, designers use frame

works without even reahzing that. For example, Simulink [29] isa modeling andsimulation

environment for continuous-time dynamic systems with discrete events. Like many other

timed frameworks, Simulink has a specific way of controlling the execution of components

(i.e. blocks) and a specific way of modeling time.

1.3 Hierarchical Heterogeneity

In many component-based design frameworks, hierarchy refers to the containment

relation, where as in object-orientation, hierarchy refers to the inheritance relation. In

a containment relation, an aggregation of components can be treated as a (composite)

component at a higher level. In general, hierarchies help manage thecomplexity ofa model

by information hiding — to make the aggregation details invisible from the outside and

thus a model can be more modularized and understzmdable.

A framework, together with components contained by it, can be a component ofa

bigger framework. If these frameworks represent heterogeneous models ofcomputation, the

approach is called hierarchical heterogeneity. An example of modeling the engine control

system in the hierarchical heterogeneous approach isshown in Figure 1.2. The top-level isa

discrete event (DE) model, where a discrete controller interacts with a discrete abstraction

of the car model. Inside the controller, a priority-drivenmultitasking model is used to model
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multiple software tasks. The discrete car model is internally implemented by a continuous

dynamics of the engine model and the car body model. The engine is further modeled as

a finite state machine (FSM), and within each state, there is a continuous-time subsystem

modeling the engine working in that phase. In this hierarchical heterogeneous approach, the

model of computation withineach layer is well-defined. The interface among layers can be

taken careofbythe frameworks designers, instead ofbycomponent designers. Ifwe cansolve

the framework integration problem, component designers can work within their familiar

frameworks, and designs become highly manageable and understandable. So, the challenge

remains to study and implement frameworks that support hierarchical heterogeneity.

W'/ carnxxM

RTOS C taskfl )

Figure 1.2: A hierarchical model for the engine control system

1.4 Thesis Outline

The remainder of this dissertation starts in Chapter 2 with an introduction of the

reactor model, which is an abstract operational semantics model that targets the study of
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reactivity £ind its compositionality. A distinctive feature of this model is the separation

ofcomponents and frameworks. Components exist in a framework, communicate with one

another through the framework, and react to the triggers sent by the framework. Such

a component is called a reactor. Within the reactor model, we develop the concepts of

reactions, precise reactions, responsible triggers, and responsible frameworks to formally

study reactivity across models of computation. A core concept - precise reaction - states

that the reaction solely depends on the triggers sent by the framework. A responsible

framework can guarantee that all executions within it are precise reactions. We compare

somemodels of computation for responsibleness, and argue that someare responsible, while

some are not.

The precise reaction problem may seem trivial for atomic reactors, which are re

actors with a single thread of control and finite firings. However, since a reactor can be

implemented by a framework conteuning multiple other actors, and the framework may ex

ecute these components concurrently, it is not trivial to make a concurrent reaction precise.

Chapter 3 studies the compositionality of reactions. A composite reactor implemented by

a responsible framework can easily achieve compositional precise reactions. This allows

hierarchical composition of models of computation to have a well-defined semantics. It also

becomes possible to precisely integrate concurrent models, like dataflow models, discrete-

event models, and continuous-time models, with sequential models like state machines.

The notion of time is very important for embedded systems interacting with the

real world. Chapter 4 focuses on a particular class of frameworks which have a continuous

notion of time. It shows how having a notion of time helps in defining precise reaction



15

points. It presents techniques to implement responsible continuous-time frameworks and

to rnakp a continuous-time framework precisely reactive. This study provides a semantic

insight to model andsimulate two particularly useful models that integrate bothcontinuous

and discrete dynamics - the mixed-signal model and the hybrid system model.

Chapter 5studies theprecise reaction andresponsible frameworks issue inpriority-

based multitasking real-time programs. It shows that having the notion ofprecise reaction

fan avoid the priority inversion problem. With the precise reaction property, the response

time of a component is much easier to analyze and control. I also present a real-time

programming model, called timed midtitasking (TM), which integrates the concept ofprecise

reaction with priority-based scheduling and preemptive execution. Areal-time responsible

framework can help embedded software to achieve precise mode switches and both time-

and value-determinism.

1.4.1 Contribution

In summary, thisdissertation makes the following primary contributions:

• introducing the reactor model and characterizing precise reaction and responsible

frameworks;

• analyzing the advantages of responsible frameworks in the context of compositional

reactivity and hierarchical heterogeneous design;

• studying the timed precise reaction problem and the integration of tuned models and

presenting the implementation of timed responsible frameworks;
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proposing &real-time programming model that allows run-time resource management

and prioritized precise reactions.
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Chapter 2

Reactors and Frameworks

In this chapter, we present the basic structure ofour component model - aciorsy

frameworksy and the interaction among them. This architecture, called the reactor modely

clearly distinguishes the activities among actors and frameworks in terms ofcomputationsy

communicatioriy and control.

Thereactor model isan abstract operational semantics model for component-based

computation. Afundamental distinction of this model is the concept of frameworks. Ac

tors reside in frameworks and interact with other actors through frameworks. Frameworks

control theexecution ofactors by sending them triggers. An actor defines a set ofpartially

ordered computation and communication. Aframework gives the semantics of communi

cations and defines a set ofpartial order relations on communication and controls. When

triggered by a framework, the execution of an actor is constrained by the conjunction of

the two sets of partial ordering relations.

An actor is reactivcy thus called a reactory if the triggered execution is finite.
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Therefore, a reaction gJways finishes in a finite amoiuit of time. However, this does not

necessarily mean that a response has been fully completed. For example, a reaction may

not be completed because of lack of enough inputs. Intuitively, a reaction is precise, if

it completes the desired computation and reaches a quiescent state. If a framework only

triggers an actor when the actor canperform a precise reaction, then the framework is said

to be responsible. A framework may need actors' cooperationto be responsible.

2.1 Model Structure

In this section, we introduce the basic entities of the reactor model - actors,

connections, and frameworks.

2.1.1 Actors, Connections, and Frameworks

An actor A, as depicted in Figure 2.1, has a set of variables, denoted by X. We

write A.X if distinguishing of actors is needed. Variables contain values, which encapsulate

arbitraury data. We denote the set of values by V. Among the variables, some are called

interface variables, or ports, and partitioned into a set of input ports, P, and a set of output

ports, Q. Other variablesaure internal variables, S. That is, POQ = 0, PDS = 0, QDS = 0,

and P U Q U 5 = Jf.

An evaluation of a vairiable is a function that gives the vadue contaiined by a

variable, i.e. ax - X V. By definition, J- 6 V, where ± is the empty value. A variable

evaduating to X means that there is no meaningful vadue in that vauriable. We write [X —)• V]

for the set of all functions mapping X to V. Thus, ax ^[X V], whicli is also called the
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Figure 2.1: A framework that contains one actor.

state of an actor.

Let's look at an example. AddMultiply is an actor that computes the sum and

product of two numbers. The actor has two input ports and two output ports, as shown in

Figure 2.2.

I AddMultiply
product

I i

Figure 2.2: An AddMultiply actor that reads two inputs and produces their sum and
product.

It has variables a and b as inputs, variables sum and product as outputs, and no

internal variables. I.e.

AddMultiply.P = {a,b}

AddMultiply.Q = {sum, product}

AddMultiply.5 = 0
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An actor iscontrolled by aframework. We write A€ M, ifthe actor Ais controlled

by the framework M. Aframework can control many actors. We define M.Actors to be

the set of all actors controlled by M, i.e. M.Actors = {A\A € M}.

A fraunework has a set of variables, called framework variables, denoted by M.Z.

We similarly define the evaluation offramework variables az Z V and the set ofall

possible evaluations [Z —f V].

Actors in the same framework can be composed by connecting their ports. For

example, Figure 2.3 shows the output ofanactor Aconnecting to the input of anactor B,

withina framework M. A connection is called a channel. A channel c is simply a pair of

ports. We write c= (9 p) GA.Q x B.P for a channel thatconnect output port qofactor

A to port p ofactor B. Achannel defines a setofcommunication variables, Zc C M.Z.

actor A

channel: c

actor B

framework: M

Figure 2.3: Composing two actors.

The aggregation of a frsunework, M, the actors under its control, M.Actors,

and the connections among these actors M.Connections, is called a composite, 0 =

(M,M.Actors, M.Connections).
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2.1.2 Operations

Over the framework variables, actor variables, and their evaluations, we define a

set ofoperations, Oper. Within the set Oper, some operations are performed bythe actors

and some are performed by the framework. And, operations may be ordered.

Some operations capture the dataflow aspect of the computing. These operations

deal with how to compute new data and send data around. These operations typically

change the evaluation ofsome variables. Other operations do not directly change the value

in any variables, but they affect the order among other operations. This is the control

flow 2^pect of the computing, which deals with when (instead of how) computation and

mmmuniratinn happen. In the reactor model, control flow only takes place between actors

and frameworks, through sets of control-flow operations.

Dataflow Operations

Among the operations performed by an actor A, some serve for computing new

data from old data. These are called computational operations, A.Comp. Each element of

A.Comp is a partial function / : >V] [X —>• V] satisfying:

f{(^)[P] — € [A ^ V^], (2-1)

where is the projection of function o onP CZ X. That is, the operations in Gomp can

only change the values in internal variables and output ports, and must leave the values in

input variables unchsmged. We write (yi,y2) = for ^ computation that uses

the values of variables xi,X2y and xa, and changes the values of variables yi and y2.

For example, for the AddMultiply actor, there may be two computational opera-
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tions: sum = add(a,b) and product = multiply(a,b).

Ports of an actor are the communication interface to other actors through its

framework. The value in an input port can only be changed by the framework, while

the value in an output port can only be changed by the actor. Thus, we define a set of

communication operations for actor A with its framework M, called il.Comm, including:

• A set of read operations, denoted by A.Read. We write read_p € A.Read for an

operation that reads from input port p. And, read_p : [Z V] ({p} V] x

—> V], which changes the value inan input port p £ P based on the state ofthe

framework, and may change the state of the framework. Strictly speaking, a read

operation onp can only access and change values in the framework variables that are

connected to p, i.e. let ZpC M.Z be set offramework vsiriables for channels that do

not connect to p, then read_p should satisfy,

read.p(a)[z.] = ct[z.],Vct £[ZV]. (2.2)

• A set of write operations, denoted by A.Write. We write write_q £ A.Write for an

operation that writes through output port q. The writeoperation cannot change the

values in q, nor gmy frsunework variables for channels that do not connect to q. So,

write-q: [{q} V] x [Z V][Z -y V] satisfies:

write.q(a)[2.] = a[z,.],Va £[Z -¥ V]. (2.3)

The exact behaviors of read and write operations are determined by the framework.

• The set of communication operations, A.Comm = A.Read UA.Write.
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For the AddMultiply actor, there may be four communicationoperations: read_a,

read_b, write_sun», and write_product.

Coiitrol-flow Operations

A framework M controls the activities of actors by a set of control operations,

M.Ctrl = U A.Ctrl, where A.Ctrl are the control operations for actor A ^ M. A key
A<gM

for the reactor model is that the activities of actors are always triggered by frameworks.

For any interesting framework M containing an actor A, there is at least one element

A.trigger GA.Ctrl. Thus, the set M.Ctrl is never empty. The contents ofM.Ctrl may

be enriched to enhance the capability of a framework. When to issue a control operation

to an actor is a key issue for a framework. We will discuss more about triggers in section

2.2.3, and about other control operations when we introduce them.

A framework also provides a set of callback operations, M.Clbk = U A.Clbk,
A^M

which the actors in it may use to affect the activities of the framework . The set A.Clbk

tia5i at least oneelement A.f inish_trigger, that actor A can use to indicate that it has no

more operations to perform for a trigger, trigger.

As shown in Figure 2.4, the operations that an actor A can perform are exactly

the computation, communication, and callback operations, i.e.

A.Oper = A.Comp UA.Comm UA.Clbk

And the operation that a framework M csm perform are M.Oper = M.Ctrl. Recall that

these are all the operations that can be performed inside a composite, so

Oper = M.Ctrl U< (J A.Oper >
J
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A.Ctrl A.Clbk

A.Re^d A.Coinp A.Write

acton A

framework: M

Figure 2.4: Setsof operations between actors and frameworks.

2.1.3 Ordering among Operations

We use an ordering relation -<C Oper x Oper to model the causality among

operations. For /,5 € Oper, we say / preceeds g, denoted by / X 5, if the operation /

must be performed before the operation g. With this relation, the set Oper is a partially

ordered set.

Partially Ordered Sets

Definition 2.1. For a {ground) set F, a relation F x F is called a strict partial order

relation if it satisfies {for any fig^h^ F);

• Irreflexive: f f;

• Anti-symmetric: if f •<g, then g f;

Transitive: if f < g-,g < h, then f -<h.
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We also write g f for f ^ g. A set witha partial order relation, (r,-<), is called

a pariicdly ordered set (or, poset for short). This relation is so called, because in a poset,

there may exist elements / and g, such that neither f -< g nor g f • These elements are

incomparable., denoted by /||p. If a.11 elements in the ground set are comparable, then the

set is called a totally ordered set, or a chain. In a poset T, we sayg covers f, denoted by

f<g,iif^g andthere isno such element heV, s.t. f ^ h ^ g. The partial order relation

is the transitive closure of the covering relations.

Posets can be visuztlly represented by Hasse diagrams. In a Hasse diagram, as

depicted in Figmre 2.5, nodes represent elements in a set, and arrows represent ordering

relations. An arrow is drawn from node / to node g if f <g in the set. For example, in

Figure 2.5, a -< c, 6 ^ e, but c||d.

a • • b

c % d

e; ;>

Vg

Figure 2.5: A Hasse diagram for a partially ordered set.

Synchronization point

Definition 2.2. For a poset (F, -<), an element weV is called a synchronization point

of r if for any / GF, / 7^ in, either f <w or vX f.
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For example, in the poset shown in Figure 2.5, the node 5 is a synchronization

point. Obviously, synchronization points may not exist for arbitrary posets. But, if they do

exist, they give a total order toa subset of the poset. It is easy toshow that the following

property holds:

Proposition 2.1. Let W be a set ofsynchronization points of (F,-(), then is a

chain, where •<' is the projection of ^ onW.

Compatibility of partial ordering relations

The union and transitive closure of two sets of psirtial ordering relations on the

same ground set may not define a poset. It is not hard to conceive that, there may be a

conflict such that f ^ g in one ordering relation and5 -< / in another ordering relation. In

order to define compatibilityof posets, we introduce refinements of posets.

Definition 2.3. Let •< and •<' be two partial order relations on the same ground set F.

Then, refines •< if •<(K'.

Definition 2.4. Two partialorder relations are compatible if they have a common refine

ment.

For two compatible partisd order relations -< and•<' ona ground setF, (F,Closure

Ux')) is a poset, where Closure is the operator for transitive closure.

Two incompatible partial order relations may be made compatible by removing

elements from the ground set, which, appau-ently, also removes element pairs from the re

lations. However, in general, there may not exist a minimum set of elements, such that

removing them from the ground set can malce two incompatible relations compatible. For
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example, for ground set F = {a,6,c,d} shown in Figure 2.6, preci = {(a,6), (6,c)}, and

preca = {(c,d), (d,a)}, removing either a or c from F will make preci and preca compati

ble. However, neither {a} nor {c} contains the other.

# a

• d

-• prec,

- prec2

Figmre 2.6: The union of two incompatible partial orders.

Indexing Operations

The set of all operations Oper is a poset, and we assume some basic ordering

relations on it. For example, in order to distinguish different executions of an operation

with the same name, we assign index numbers to these operations so that each execution

of the operation is a distinct element in Oper. For any operation with name f, we use

f.i and f_j to denote the and the execution of f. Thus, if i < j G N, then

f_i •< f_j. We denote this partial ordering by This relation applies to allcomputation,

communication, and control operations. In particular, for actor A with input port p and
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output port q, trigger trigger, and i < j 6 N,

i4.trigger_i -< i4.trigger_j

j4.read_p_i -< >l.read_p_j

A.write_q_i -< j4.write_q_j

Now, we can write down the full sets of operations for the AddMultiply actor:

AddMultiply.Comm = {read_a_i,read_b_i,write_sum_i,write-product_i,i € N}

AddMultiply.Comp = {sum = adcLi(a,b),product = multiply_i(a,b),i GN}

AddMultiply.Clbk = {finishJL, i € N}

The control-operation set, which can only be used by a framework, could be:

AddMultiply.Ctrl = (triggerJL, i G N}

2.2 Execution

The execution of an actor is a set of operations. For reactive executions, this set

of operation is finite. The execution of actors not only depends on the computation defined

by the actor designer, but also depends on the semantics and ordering relations that a

framework imposes on communication and control.

2.2.1 Firing Sets

A firing set of actor A, denoted as A.fire, is simply a partially ordered subset of

computation and communication performed by A, i.e. A.fire C A.Comp UA.Comm. It
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is the set of desired operations and their causality orders that the designer would like the

actor to perform. In the reactor model, the execution ofa firing set must be triggered by

the framework. We writeA.fire|r for a firing set triggered by r. The ordering relation •<a\^

among elements ofA.fire|r defines theorder that the operations should be performed.

A firing set A.fire|r is (designed to be) reactive if it contains finite operations.

And,

Definition 2.5. An actor is reactive, or is a reactor, if its firing sets are reactive for all

triggers.

So, a firing setdefines a desired setofoperations that theactor performs when it is

triggered. For a reactor, this set ofoperations is at most finite. The partial order relations

within a firing set should at least be compatible with the indexing relations among read,

write, and computational operations. An actor designer may add further ordering relations

depending on the algorithms that the actor implements.

For example, a firing set ofAddMultiply for the trigger, rJcfrom the framework

could be:

AddMultiply.f ire|rji = {
readji_k,

read.b^,

sum = add_k(a, b),
product = multiply-k(a,b),
vrite-sumJc,

write-productJc,

}

Obviously, this firing setisfinite for all triggers, and thus theactor AddMultiply is

a reactor. And one possible ordering relation ^xddMuitipiy on set may be the transitive
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closure of:

read-aJc -< read_b_k

read-bJc -< sum = addJE(a, b)

sum = add_k(a,b) -< product = multiply-k(a, b)

product =multiply-k(a,b) •< write-SumJc

write-SumJc -< write_productJc

which essentially defines a chain. A Hasse diagram ofthis partialordering relation, isshown

in Figure 2.7.

A read_a_k

read_b_k

sum = add_k(a, b)

product = multiply_k(a, b)

write_sum_k

write_product_k

Figure 2.7: An ordering of operations in AddMultiply.f ire.

If the firing set is totally ordered, we also write the firing set using a conventional

imperative language syntax (with denoting sequencing ofoperations). Noticing that the

firing sets are essentially the same for all triggers, we omit the indexing on operations, and

have.



AddMultiply.fire = {
read-a;

read.b;

sum = add(a,b);
product = multiply(a,b);
writejBum;

write-product;

}
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The total order sometimes over-specifies the relations among operations. Suppose

that the AddMultiply is implemented using hardware; forcing theoperations to be totally

ordered may not be the best choice. As depicted in Figure 2.8, the (transitive closure of

the) following ordering relations, denoted by -<AddMultiply» exhibit the minimum causality

constraints among operations in AddMultiply. Any ordering relations of these operations

that refine ^iddMuitipiy is a valid implementation. This specification allows many parallel

implementation choices.

read^-k -< sum = add.k(a, b)

read-b-k •< sum = addJr(a, b)

read_aJc -< product = multiply_k(a, b)

readJjJc X product = multiply-k(a,b)

sum = add-k(a, b) X write-sum-k

product = multiplyi(a,b) X write-productJc

A firing set of an actor by no means has to be finite. For example, an actor,

InfIniteAddMultiply, with the same variable and operation sets as AddMultiply, may



read a k read b k

sum o add k(a, b) product = multiply_k(a, b)

write sum k wr i t e_product_k

Figure 2.8: Another ordering of operations in AddMultiply.fire.

have a firing set like:

InfiniteAddMultiply.fireltriggori) = {
for(k = 0;true; k + +) {

read.aJc;

read.bJc;

sum = addJc(a,b);
product = multiplyJc(a,b);
write-SumJc;

write_productJt;

}
}
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So, InfiniteAddMultiply is not a reactor.

The execution of a firing set starts with a trigger. If an actor is reactive and the

execution of the firingset completes, the reactor sends a finish callback to the framework.

However, depending on the status of the framework, a firing may not always be completed

after it is triggered. If it does complete, we call the firing set, together with its trigger and

finish operations, a complete reaction.

Definition 2.6. A (complete) reaction of an actor A with respect to a trigger r G

M.Ctrl>i and a firing set A.firejr is a partially ordered set A.fire|r = {r} UA.fire|r U

{finish_r} satisfying,
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A. A.fire|r is reactive;

B. for fi9 e A.fireir, f ^ g inA.firejr if and only iff < 9 inA.fire|r;

C. V/G A.fireir, r-;/;

D. V/ € A.firejr,/ -< finish_r.

Since neither r nor finish-r belongs to A.firejr, adding conditions C and D in

definition 2.6 does not introduce conflicts with condition B, and thus A.firejr is indeed a

poset. The partial order relation defined in A.firejr is denoted by

notation, for any operation / GA.firejr, we also write / for the trigger r, and / for the

corresponding finish operation f inish_r.

From the ordering defined inDefinition 2.6, a complete reaction always has a shape

Figure 2.9, where all execution starts with the trigger, and stop at the finish. Theas in

operations trigger and finish are synchronization points of A.firejr.

• trigger

A.firel,rtgger

finish

Figure 2.9: The shape of a complete reaction.

Whether a reaction can complete within a framework depends onthesemantics of
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communication £tnd the triggering rules.

2.2.2 Communications

Communication Semantics

A framework provides communication semantics for read and write operations.

The semantics are achieved by the help of framework variables, whichessentiallyrecord the

communication states.

A A

A.CtrI A.CIbk B.Ctrl B.CIbk

1 ^ ' ! ^ i

1q channel: c
; ]

^ i
j actor A —

i
{ 1

actor B 1

i i

frannework: M

Figure 2.10: Composing two actors.

For example, suppose a channel c = (9 p) in Figure 2.10, (which is essentially a

redraw of Figure 2.3,) implements a shared memory, such that a write operation performed

on port q overrides the old value in the memory, and the reader always reads the latest

value. Then, we need one framework variable, Zc —{z} for the channel. Suppose a{q) = v

whenwrite_q is performed, then the result of the operation is a{z) = u. If a read operation

read.p is performed beforeany other write operations on q, then a{p) = v after the reading.

For another example, suppose c = (g -w p) in Figure 2.10 implements a first-in-
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first-out (FIFO) queue ofsize K, then we have Zc = 2:[1], 2(2],z[K —1]}. The FIFO

queue semantics is enforced by the following partial functions:

• write_q(a) = a': ifA: = 0and <t(2[0]) = X, or, fc > 0, a{z\k^ = X, and ©"(zf/:—1]) ^ X,

and <j{q) = v, then u'{z[k]) = u, where a'{z[k]) is theevaluation ofz[k] after thewrite

operation is performed;

• read_p(<T) = a'', if <t(2[0]) = v ^ X, then <t'(p) = u, and for k > 0,<t'(2[A: —1]) =

cr(z[fc]), and (/{zlK]) = X. That is, the values inside the queue are shifted to the

front.

Ideally, this should implement a queue, such that for 0 < A; < X, if (T{z[k]) 5^ X,

then <r(2[A: —1]) / X. Obviously, extra constraints need to be imposed on the order ofread

and write operations so that the queuedoes not overfiow or underflow.

Communication Orders

The constraints on communication may be imposed by a framework in forms of

partial order relations on the read and write operations. Suppose in Figure 2.10, Zc =

{2:[0], 2(1], z[2]} implements a FIFO queue ofsize three, actor Awrites three values ina row

when it is triggered, and actor B reads one value a time when it is triggered. Their firing

sets are shown in Table 2.1 and Table 2.2.

Then, in orderfor the communication channel to behave like a FIFOqueue without

overfiow or underflow, the k^^ writing to port q should be performed earlier than the k^^

reading from port p, and the k+ 3'"'' writing to port qshould be later than the k^^ reading
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Table 2,1: The firing set of an actor that performs three write operations when fired.

A.fire|r.i = {
q = value;

write_q_(3(i —1) + 1)
write_q_(3(i —1) + 2)
writejq_{3(i —1) + 3)

Table 2.2: The firing set of an actor that performs one read operations when fired.

B.firelr'.j = {

}

read_p-j;

firom port p. This can be expressed as the following partial order relations: VA; € N,

>l.write_q_k -< S.read_p_k (2.4)

jB.read-p-k -< Awrite.q_(k + 3). (2.5)

Obviously, we need cooperations between the framework and the actors to satisfy

these communication orders. The contributions of the framework are the triggers, and the

contributions of actors are the contents of their firing sets. The cooperation is refiected in

triggering rules.

2.2.3 Triggers

A firamework can only issue triggers based on its own activities and the observable

activities of actors, which are their communication operations and callback operations. A
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trigger may also depend on the states of the framework, (but not the states of actors),

which canbe expressed as a predicate on framework variables. In general, a trigger r may

be conditionally activated by anoperation and a predicates. A triggering rule for r isa pair

(y,p(<rz)), also written as:

g^T, (2.6)

where,

gGM.Ctrl U< [J (A.Comm UA.Clbk) >,
l/ldM J

is an operation that is observable by the framework M; and p{<7z) is a predicate on the

values ofvariables in Z. The interpretation is that after the operation g is performed, the

predicate p{az) will be evaluated on the current state of the framework. Ifthe evaluation

is true, then the trigger r is performed immediately, i.e. g<r.

Notice that, a trigger may be activated by more than one rule. In this case, we

write:

r= {{gu Pi{<^z)),{92, P2{crz)),

Ifany one of these rules is satisfied, then r is activated. Also notice that an operation gmay

activate multiple triggers. These triggers must be incomparable, such that for any r among

them, g<r. In essence, triggering rules define a set of (conditioned) ordering relations -^r

on operations.

Sometimes, an singleton initial operation Init is needed for a framework to start

all the activities in it. This initial operation isa framework operation, andactors may built

their triggering rules using it. For example, ifan actor Ais triggered at the beginning of



the execution without any preconditions, then the actor may have a triggering rule:

» . ^ true j ^ . AInit >A.trigger_l.

Static Scheduling

In some models, the triggers are simply unconditioned on finish callbacks from

another reactor. That is, the triggering rules may look like:

A.finish.j B.triggerJ.

38

for some actor A^B ^ M, (possibly A = B) and some indices i andj. If all triggering rules

in the framework have this form, then the fr£imework is called statically scheduled.

A static schedule may be sequential, which can be represented as a list of reactors,

SequentialSchedule = {Ay A^AzThe meaning of this list is the following

triggering rules:

— . ^ true , ^ .
Init VAi.trigger

Ai.finish Ai+i-trigger

If actors are repeated in this list, then corresponding indices can be added to trigger and

finish operations.

If there are multiple lists of sequential schedules in parallel, or a finish operation

can activate multiple triggers, then a static schedule can have more complex structures.

In these cases, a list is not sufficient for representing the schedule. And we will keep the

triggering rule representations.
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2.3 Precise Reactions and Responsible Frameworks

2.3.1 Composite Execution

Summarizing the discussions in the last section, for a composite 0 = (M,A, C),

there are the following sets of partial orderingrelations that constrain the operationswithin

it:

• -<o • operation index orders;

• -<A\r' re£w:tion orders, imposed by firing sets and reactions ofactors;

• communication orders, imposed by frameworks

• -<r: triggering rules, imposed by frameworks in cooperation with actors.

The execution of a composite 0 is well-defined if all of the above partial ordering

relations 8u:e compatible, i.e. there exist a meodmum groimd set and a common refinement

that refines all the partialorderrelations. In this case, we say that the actorsare compatible

with the framework, and define the firing set of 0 to be the maximum subset of the union

of reactor and framework operations.

More precisely, we define an execution of 0 be.

B.exec C |A.fire|r|
reR,A<sM

satisfying:

[1. 1Ordering relations; -<= Closure ( Xo U-<m O-<R U 1
\ reR,A<sM J

[2. ] Trimming rules: if / -< 5 and / ^ B.exec, then g ^ B.exec
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where R is the set ofall triggers activated bythe triggering rules during the execution. We

denote by 0.EXEC the set for all executions of0. Since all elements in 0.EXEC satisfy the

above two rules, the union ofany two elements also belongs to 0.EXEC. We define thefiring

set of0, 0.fire, to be the union ofallelements in 0.EXEX. That is, 0.fire G0.EXEC, and

if exec G 0.EXEC then exec C 0.fire.

If the four sets of ordering relations introduces confiicts, then the set of actors is

not compatible with the framework, and the firing of 0 is not well-defined. In fact, for an

incompatible composition ofactors and a framework, there may not exist a unique way to

remove a subset from the union of operations to make the firing set a poset. That is, it

may not be precisely defined by the set ofordering relations which element is in the firing

set and which element is not.

Even when the composite execution is well-defined, it is not necessarily true that

a reaction of an individual reactor is completed in the composite execution. An incomplete

reaction forces the designer to understandwhere exactly the reactionstopswithina reaction,

and how to resume the reaction later. This violation of information hiding not only brings

difficulty in the understandability of a model, but also destroys the compositionality of

actors and models of computation.

For example, suppose we have the following triggering rules

Schedule = {A-¥ B -¥ B A} (2.7)

for the system shown in Figure 2.10, where the actor A performs three writes in its firing

set and actor B performs one read in its firing set, as shown in Table 2.1 and Table 2.2.

Also, suppose that we have a FIFO queue communication with buffer size 3, and use the



communication constraints in (2.4).

A.trigger_1 ^
I

A.write_ci_1 i
A.write_q_2 ^
A.write_q_3 ^

A.ftnish_1 ^

A.trigger_2 ^

A.write_q_4 X B.read_p_3
A.write_q_5 X
A.write_q_6 ^

A.finish_2 ^

Figure 2.11: An execution trace of the example.

Then, the poset of oeprations in this composite can be represented by Figure

2.11. In the figure, the solid arrows shows the ordering relations imposed by the firing

sets of actor A and B, and the dashed arrows show the ordering relations imposed by the

framework, including triggering rules andcommunication constraints. The circles represent

some operations that are not performed under this particular schedule. It is obvious that

actor A cannot finish its second reaction, since B.read_p_3 is not performed. Unless we

know exactly the content of actor A, it is imposible to know where exactly the execution

stops. For this reason, we define precise reactions asa property for composable reactivities.

B.trigger_1

^ B.read_p_1
^ B.finish.l

4 B.trigger_2
^ B.read_p_2

B.tinish_2

41
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2.3.2 Precise Reactions

A reaction is activated by a trigger. If a trigger is "smart" enough to summarize

all the prerequisites for an actor to complete its reaction, then the reaction can always be

completed in the composite execution.

Definition 2.7. For a composite 0 = (M, A, C), actor A G A, and a trigger r G 0.fire,

the reaction A.firejr is precise if "if GA.fire|r, Vff ^ A.fire|r, g f ^ g A trigger

for a precise reaction is called a responsible trigger.

Definition 2.8. The state of an actor A, when the finish operation is performed, is called

a quiescent state of A. By definition, the state of A is abo quiescent if it has never been

triggered.

Figure 2.12 illustrates the shape of a precise reaction activated by a responsible

trigger.

A responsible trigger guarantees that all the preconditions for an actor to finish

the firing have been satisfied. In terms of the partial ordering relations among operations,

this means that for any / G A.firejr, g ^ A.fire|r, and g < f, adding the relation g ^ r

does not create any conflicts in the .execution of the composite. The concept of precise

reaction guarantees that a reaction, once triggered, can be finished within the composite

execution. And when it finishes, it is at a quiescent state. So, we have.

Proposition 2.2. For a composite 0 = (M, A, C) and actor A G A, if r € B.fire is a

responsible trigger, then A.fire|r Q B.fire.

The proof is straightforward by the definitions of precise reaction and responsible
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I
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A.fireL
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quiescent state ^ r

Figure 2.12: The shape ofa precise reaction. Note that there can be causality relations
pointing out ofthe firing set, but all the prerequisites ofthe firing are summarized by the
trigger.

trigger. By these definitions, in our previous example, B.fire|trigger-i and B.fireltriggor_2

are precise reactions, but A.f ire|trigger_2 is not. The actor A, at the end ofthe composite

execution is not at a quiescent state.

2.3.3 Responsible Frameworks

Since triggers are operations ofa firamework, the responsibleness oftriggers reflects

certain properties of frameworks. We define.

Definition 2.9. Aframework is responsible if it requires all triggering rules to be respon

sible and it respects these triggering rules.

That is, the execution witliin a responsible framework consists solely of precise

reactions, as shown in Figure 2.13.
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Figure2.13: The execution withina responsible framework consists onlyofprecise reactions.

Responsible frameworks gives many useful properties. For example, let 0 be a

composite with a responsible framework and precise reswitors. We have the following prop

erties,

Properties;

[1. ] Whenever the framework stops sending triggers, all reactors will settle at their

quiescent states within finite operations.

[2. ] 0 is deadlocked only if the framework cannot send more triggers. So, deadlocks can

be detected by monitoring triggering rules.

[3. ] Even when 0 deadlocks, all reactors are at their quiescent states.
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The proofs are all straightforward. So, a responsible framework can easily control

the progress of execution by sending and holding triggers. And it can detect deadlocks by

monitoring triggers.

2.3.4 Atomicity

For a composition of reactors, there is a stronger notion than precise reactions,

called atomic reactions.

Definition 2.10. A reaction A.fire|r with callback is atomic, if it is precise, and

V/ € A.fireir, Vp ^ A.firelr, f^g^L^g.

So, the atomicity of a reaction states that not only all the prerequisites have been

satisfied before the reaction, but also, once the reaction is started, all other activities within

the composite can wait until the reaction has finished. We will see that, for responsible

frameworks, precise reactions are compatible with atomic reactions.

Theorem2.1. Under a responsible framework, precise reactions are compatible with atomic

reactions.

Proof. Let 0 = (M, A, C) be a composite with a responsible framework M. Let AGA, r

be a (responsible) trigger for A.f ire|r» and 3/ € A.firelr, 9^ Oper, and g^ A.fire|r, s.t.

f ^g. We want to show that adding r^g does not create any conflicts in the execution

of 0.

Since all theactivities ina responsible framework are precise reactions, and / X5,

there must exist A' e A and r', s.t. g € A'.firelr'. By the definition of firing sets, it is

*Recall that r is the finish operation for reactor A.f ire|r corresponding to trigger r.
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sufficient to show that adding r -< r' does not create any conflicts. Suppose to the contrary

this is not true, then 3h € Oper s.t. r' h -K r, 3s shown in Figure 2.14. Since the

framework M is responsible, h-Kr^h-^r=^h~^f. But r' is responsible, and / so

f ^r' ^ h. Thus, the existence ofh creates a conflict in Oper. By contradiction , r-< g

should not create any conflict. ^

• r

f }
A.fireL •^

t

^ A'.firel^

Figure 2.14: Proofof Theorem 2.1. Adding operation h creates a contradiction.

During the proof of Theorem 2.1, we actually showed a slightly stronger result,

which is that we can always start triggering a reactor after the flnish of another reaction.

So, we have.

Corollary 2.1. The execution ofreactors in a responsible framework can be sequentialized.

Thesequentializable execution makes responsible frameworks very easy to under

stand, in the sense that a complete reaction can be abstracted into one operation without
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affecting the overall execution of a composite. This property also provides a semantics

foimdation for information hiding and component refinements in component-based designs.

An abstract atomic operation at a high level can be refined into a composite execution as

long as the composite execution is a precise reaction that hats the same prerequisites (i.e.

triggering rules) as the atomic operation.

2.4 Examples of Untimed Frameworks

In this section, we give some examples offrameworks. These frameworks arecalled

untimed to distinguish themselves from timed frameworks, which have a notion oftune. We

will discuss timed frameworks in Chapter 4.

2.4.1 Communicating Sequential Processes (CSP) Frameworks

In the CSP model of computation [32], each component is a process. A process is

a conceptually unbounded sequence ofoperations. Thecommunications between processes

are atomic exchange of data, called rendezvous. We consider a simple CSP model, where

each rendezvous only involves two processes.

In theory, a CSP framework, CSP, can have actors with an unbounded firing set,

like the Inf initeAddMultiply actor insection 2.2. Areactor Acan bemade into an infinite

sequential process, ifthe firing set A.fire|r has totally ordered operations w.r.t. all triggers,

and the framework adopts the following triggering rules for all A € M:

initial trigger: Init A.trigger_l (2.8)

self-trigger: A.f inishJc A.trigger_(k + 1),for fc > 1. (2.9)
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Thus, a CSP framework triggers a reactor whenever its last reaction is finished,

regardless whether the new reaction can becompleted. In thissense, CSP frsuneworks are

not responsible.

The communication on each channel has a shared variable semantics. That is,

for each conununication channel c = {q p)»9 € A.Q,p G B.P, there is one framework

variable Zc, such that write-q will assign a{q) to Zc^ and read_p will assign (t{zc) to p.

The rendezvous style of communication also requires ordering relations on corresponding

read and writeoperations. Suppose actors A and B in Figure 2.3 communicate via atomic

rendezvous. Then the framework imposes the following constraints to implement atomic

rendezvous: for G N,

• A.write_q_k < B.read_p_k;

• VA./ G A.Oper, (A./ A.write.q_k) (A./ X B.read_p_k), (A.write.q_k

A./) =J>- (B.read-p-k •< A.f).

• \fB.g G B.Oper, (B.p B.read-p_k) =» {B.g -< A.write_q_k), (B.read-pJc •<

B.g) (A.write_q_k -< B.g).

Visually, Figmre 2.15 shows a communicationsection in CSP models.

In summary, for a frsunework CSP with actors A eind connections C, wehave the

following ordering relations:

• Initialization: VA G A, Init A.trigger.l;

• Sequential processes: VA GA,Vf,g GA.Oper, either f -< g^ ox g -< J\

• Self-triggering rules: A.finishJc A.trigger_(k -f- l),for A: > 1;
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Figure 2.15: Ordering relation ofrendezvous commimication.

• Rendezvous communication: as shown above.

A CSP composite may deadlock, depending on the connections of ports and or

dering relations inside each actor. And when it deadlocks, the actors may not at their

quiescent states. This deadlock is identified by observing confiicts when composing partial

orders. I.e. 3f,g GOper, s.t. / -< and g ^ f-

2.4.2 Process Network (PN) Frameworks

Ina process network model of computation [39], as in CSP models, components are

processes. But, unlike CSP models, the communication style on each channel has a FIFO

queue semantics. That is, for each channel c= (g ^ p), there is a (potentially infinite) set

offramework variables Zc = {zi,i GN}. The writing to port q will assign the value to
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the variable in Zc] the reading from port q will return the value ofthe k^^ variable

in Zc The communication requires that writing to a variable preceeds, but not necessarily

immediately preceeds, the corresponding reading from it, as shown in Figure 2.16.

A A
/ •

/

// '•
/ a.\ /..

write_q_k # j I # d

'' ' i
i i ' I

C # I 1 # readp k
1 I / 1 : I

\ ' I \ ' i
\ • i \ • I

Figure 2.16: Ordering relation of FIFO queue communications.

Together with the irresponsible triggering strategy shown in (2.8) and (2.9), we

have the following ordering relations for a PN framework PN with actors A and connections

C:

• Initialization: Vi4 € A, Init A.trigger.l;

Sequential processes: VA G A,V/,5 GA.Oper, either f ^ g, or g -< f]

Self-triggering rules: A.finishJc A.trigger_(k + l),for A; > 1;

FIFO communication: for A,B G A, 9 G A.Q,p G S.P, and c = (9 p) € C,
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^.write.qJc -< 5.read_p_k, VA; G N.

2.4.3 Dataflow (DF) Frameworks

Indataflow with flring [46], components are reactors with finite firing sets, and the

rnTnTniinira.t.inn channels are FIFO queues. A reactor A may have one or more firing rules,

each having the form ofa predicate on framework variables associated with the channels

connected to the input ports ofthe actor, i.e. p(Z^g^p)), for p EA.P and any port q. These

firing rules precisely specify the requirements for the actor to finish the execution of one

firing. That is, ifthe one the rules is satisfied, and the actor is triggered accordingly, then

the actor can always execute to the finish of the firing set. Thus, DF frameworks are

responsible.

For example. Figure 2.17 shows a Select actor, with ports inputO, inputl,

control, and output. For the simplicity ofrepresentation, we call the channel connected to

inputO the channel inputO, and so on. Depending on the value, true or false, of the first

variable in the control channel, the actor transfers the first value of the inputl or inputO

to the output channel.

InputO I

output

inputl Select

control t
Figure 2.17: A Select actor in dataflow models.
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We also assiime that the framework shifts the contents in the variables to the front

when the first variable is read by the consumer of the channel. The firing rules in this case

is

po : {(^{Zcontroi) == false) A{aizinpuio) -L) (2-10)

Pi ' {(^izcontroi) == frue) A{a{zinpua) 7^ -L) (2-11)

where, Zcontrol is the first variable in channel control, Zinputo is the first variable in channel

inputO, and Zinpuii is the first variable inchemnel inputl. These firing rules map cleanly to

the triggering rules in the reactor model. For example,

Po,
g—^VF

pi.
9 —>rT

where po and pi are the predicates in (2.10) and (2.11), and g is any write or finish

operation observed by the framework. Thecorresponding firing sets (omitting the indices)

are:

and.

Select.fire|rp = {
read-control;

read-inputO;

output = a(inputO);
write^utput;

}

Select.firejrT = {
read_control;

read-input1;

output = a(inputl);
write-output;
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2.4.4 Synchronous Dataflow (SDF) Framework

The synchronous dataflow model [45] is a special case ofdataflow models. The

actors in this model are so regular that the number of reads and writes in each firing is

fixed and known for all triggers. For example, the AddMultiply actor is a SDF actor, but

the Select actor is not.

Because ofthis regularity, each SDF actor only have one firing rule, and thefiring

rule depends totally on the non-emptiness of framework variables. As a consequence, a SDF

composite can be statically scheduled, such that the triggering of one actor only depends

on the finishing of the actor proceeds it in the schedule [45]. We have met a SDF model in

section 2.2.2 with two actor, one performing three writes in its firing and one performing

one read in its firing. In general, for a SDF composite Qsdf = (SDF, A,C), a sequential

schedule ofa SDF model^ is SDFSchedule = {Ai A2 ^ A3 -¥ ... i4„}, where Aj

refer to an actor in A. Note that depending on the number of reads and writes for each

actor, an actor may appear multiple times in S. The sequence S is called one iteration of

an SDF model. For each iteration, the triggering rule ofthe SDF model may look like:

Ai.f inish Af+i.trigger

And this rule simply repeats for more iterations.

^For simplicity, we assume the firing of actors is sequentialized. In general, the schedules are pMtially
ordered sets rather than sequences. For multiple CPU scenarios, the partial ordering can be exploited to
introduce parallelism in the execution.
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2.5 Implementation

In this section, we briefly discuss the implementation of the reactor model in the

Ptolemy II software environment. In Ptolemy II, each model of computation is imple

mented as a domain, and a director controls the component interaction in that domain.

Ptolemy II models can be hierarchical, where different models of computations are nested

through composite actors. However, the reactor model we discussed in this chapter does

not support hierarchy yet. We will study hierarchical frameworks in Chapter 3. Thus, the

implementation discussed in this section only covers "flat" models in Ptolemy II.

In Ptolemy II, the basic building blocks are atomic actors, which are reactors

that have totally ordered flring sets. Actors have ports, which can connect to other ports

through relations. Relations do not have semantic properties other than keeping track of

connections. The communication mechanisms among ports are provided by directors and

implemented as receivers. In the Ptolemy II model, receivers always reside in input ports.

Receivers may implement rendezvous points, FIFO queues, buffers, or proxies to a global

queue.

Actors are executable. As shown in Figure 2.18, there are seven methods in the

Executable interface:

• preinitialize(): performs structursd and pre-type-resolution initiaUzation. This

method is called exactly once at the beginning of an execution.

• initialize(): performs scheduling- and type-dependent initialization. This method

is called once at the beginning of an execution. It may be called agsdn to reset an

actor to its initisd state.
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Figure 2.18: Ptolemy II execution.

• prefire(): returns true if the fire() method can successfully finish.

• f ire(): performs the fire function without updating persistent states.

• postfire(): updates states, and return true if the actor can be further fired. This

method is designed for models that use fixed-point iterations.

• vrapup(): releases resource and wrap up. This method is called exactly once at the

end of an execution.

• stopFireO: interrupts the firing and requests that the actor to return the flow of

control to the director.

The reactor model captures the structural and execution properties ofPtolemy II

models in the following senses:

• Ptolcjny actors are reactors. Inparticular, they are reactors that have at least two fir

ing sets: f ire() and postfire(). In Ptolemy II, ports are objects instead of variables.
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• Directors, Receivers, and Relations implement a framework. Receivers are frame

work variables, and their evaluations and zissignments are performed through get()

and put() methods. Relations capture theconnections among ports. Directors issue

triggers to actors, by calling their execution methods.

• The prefire() method helps directors to provide precise triggers. In Ptolemy II, the

f ire() and postf ire() methods are called only iftheprefire() method returns true,

i.e. the actor can successfully proceed for one iteration. Responsible frameworks can

use these methods to achieve responsible triggers. There are also ways to hide these

preconditions for irresponsible frameworks. Typically, the hiding is performed by

receivers that may always inform an actor that thereare enough input data.

2.6 Related Work

A distinctive semantic characteristic of embedded software is reactivity. A pioneer

work in this area is the study of reactive systems in the formalism of statecharts [27],

[28] and its variants [78]. The statecharts model uses hierarchical finite state machines to

formulate reactive systems. The transitions among states are triggered by input events,

and transitions are always atomic. For every triggering event, the system has exactly one

transition to take, from a well-defined state to another. Although the statecharts model is

a big step of improvement from traditional fiat state machines, in terms ofhierarchy and
^Ptolemy II ports can be multiports, meaning thatone port can contciin many channels. FVom thereactor

model point of view, they are simply many ports.
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some concurreiicy, it lacks the notioii ofabstraction to handle large-scale designs and may

not be intuitive to model computational intensive systems.

Synchronous languages, like Esterel [7], Lustre [26], Signal [25], and Argos [54],

malfft the synchrony assumption in the modeling of reactive systems. The synchrony as

sumption states that all reactions take no time toexecute. This extrenie abstraction allows

designers to separate functional properties &om timing concerns. However, it also brings

semantic subtitles like zero-delayed feedback loops, which requires the introduction of non-

strict" components'̂ and fixed-point semantics to make a model well-defined. The reactive

modules formalism [2] also takes the synchronous assumption ofreactivity, and focuses on

nondeterminism and verifiability. One advantage ofsynchronous languages is that they can

be compiled into sequential programs, such that the concurrency at the modeling level are

compiled away. On the other side, it introduces difficulties when used in distributed sys

tems. Although many work has been done on distributing synchronous models [6], using

these models at large-scale multitasking systems remains challenging.

The reactor model presented in this chapter is greatly influenced by event struc

ture [82] and the dataflow process model [46]. Winskel's event structure inspires the idea

of using partially ordered sets and precedence relations to capture concurrent actions in

a system. The dependency-based action refinements [62] implies the feasibility ofmodel

ing compositional action semantics using event structures. In a sense, a precise reaction

is refined to a composition of individual actions in a firing set. The dataflow model with

firing inspires mp to study the significance of firing rules. In dataflow models, like SDF [45],

DDF [12], and the Moses' actor model [36], the firing rules are restricted to be patterns in
non-strict component does not require all the inputs to be present to produce outputs.
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terms ofthe presence ofdata. As will beseen in later chapters, we relaxed this restriction

in reactor models to include time and physical events whicli are closer to the interaction

with the real world.
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Chapter 3

Compositional Precise Reaction

As discussed in the last chapter, reactors and frameworks can implement models

ofcomputation. Hierarchical heterogeneity requires that a composite itself be anactor and

be controlled by a higher-level framework. This chapter claims that an open composite is

an actor but compositional reactions may not always be precise. Responsible frameworks

help reactivize composite actors.

3.1 Composite Actor

Recall that a composite, © = (M, A,C), is anaggregation ofa framework M, the

actors A controlled by theframework, andtheconnections C among theactors. Abstracting

the activities of actors and frameworks into partially ordered operations allow us to treat a

composite as an actor.
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3.1.1 Open Composite

An open composite extends a composite 0 = (Af, A,C) with ports. These ports

are called composite ports^ which are variables of O. These ports also introduce additional

connections, which require more framework variables for the additional communication

channels. A framework withinan open composite is called an open framework.

Figure 3.1 shows anopen composite 12 with two components A and B. It has an

open framework O, three composite ports, p^, P2j a-nd q2, four channels, ci = {pi pi))

C2 = (p2 P2)} ~ (91 Pz)> and 04 = (92 92)' four sets of framework variables

^cij ^C2) ^C3J and Zc^.

wr

p,
Control^ Callback^ Controlg Callbackg

actor. A
Pi c. P3 1P2

acton B ^

open framework: O

:V

Figure 3.1: An open composite with two actors.

All these framework variables and the variables of actor A and B are the internal
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variables of So,

a.S = AXUB-XuZc,

n.P = {pi,P2}

n.Q = {92}

Ail the operations of 0, A, and B are operations on these internal variables of

ft, and thus they belong to fl.Comp. Notice that the control-flow operations between

the framework O and the actors are also parts of the computational operations of even

though they do not change the evaluation of any variables. So, in general, we have the

following proposition:

Proposition 3.1. An open composite is an actor, and thus is called a composite actor.

Being anactor, anopen composite can beput into a framework. Thus, a composite

actor involves twoframeworks, as shown in Figure3.2. The oneoutside the composite actor

is called the composite actor's executive framework. The executive framework controls the

composite actor. The one inside the composite actor is called the composite actor s local

framework. The local framework controls the actors contained by the composite actor. This

formalism hides the operations inside a composite actor from other actors in the executive

framework. A composite actor will be triggered by its executive framework, and in response

to that, it consumes inputs, invokes its local framework for reactions, and produces outputs.

Obviously, when the two frameworks arenot thesame, we obtain hierarchical heterogeneity.
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write_q2

Figure 3.2: Acomposite actor can have a local framework and an executive framework.

3.1.2 Boundary Operations

In orderfor a composite actor to communicate with its executive framework, read

and write operations must be defined on composite ports. Since these operations happen at

the boundaries ofcomposite actors, we call them boundary operations. Boundary operations

need to be integrated with other operations of the local framework.

When a composite actor f2 performs a read on its port p, it communicates with

the executive framework and may change the evaluation of variablep. The value in p must

be transferred to the channel that connects the inside of this port to an input port of an

inside actor. For example, in Figme 3.2, after read_p, the value in p must be transferred

to one of the variables in Zcj, so that actor A can use it later. We call this operation

transferInpu't^) : [{p} —>• V] [{p} V] x [0.2 V^]. This operation is an internal

operation for ft, and is performed by the local framework.



63

Similarly, after some inside actors, say B in Figure 3.1, performing a write op

eration, the value in the framework variable on the channel from the output of B and

port QtippHr to be transferred to the composite output port q. We call this operation

"transferOu'tputjq^: [O.Z —> V] —[{9} ^ V^] x [O.Z —> V], and it is also performed by

the local framework. A writejq operation can then be performed to emit the value to the

executive framework.

How to order these boundary operations with local and executive framework trig

gers is critical for integrating models, and sometimes could be framework/application de

pendent. One way of doing it, which certainly is not the only way, is to transfer the inputs

at the beginning of a reaction of the composite actor, and transfer output after the internal

execution has "settled". In this case, we have the ordering relation in the firing set of a

compositeactor that is shown in Figure 3.3.

However, defining thesettlement ofa composite execution may not be easy. De

pending on the framework activities, the transferOutput part of the firing set, and thus the

finish operation ofthecomposite actor, may not always bereachable. In some cases, even

these operations are reachable in finite steps, or the framework inserts •transferOutput

operations at some point of the execution, the internal actors' reaction may not be precise

within the composite reaction.

3.2 Compositional Precise Reaction

As we know from chapter 2, depending on the triggering rules, the firing set of a

composite actor with respect to a trigger may not be finite, even though all internal actors
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Figure 3.3: A general structure of a composite firing.

are reactive. In addition, even the composite firing is finite, it is not necesssiriiy true that,

when the composite finishes firing, all the actors in it are at their quiescent states. Thus,

we chziracterize the following properties for compositional reaction.

Definition 3.1. An open composite 12 = (O, A, C) is reactive with respect to a trigger

r, if fl.fire|r is finite. The reaction is {compositionally) precise, if at the end of the

reaction, all the actors A € A are in quiescent states.

So, a reactive composite actor can be treated as a reactor by its executive fretme-

work, and a quiescent state of such a composite actor is the aggregation of all the quiescent

states of the actors contained in it.

The reactiveness of a composite actor may not be obvious, even when all the



actors are reactive and the local framework is responsible. For example, Figure 3.4 shows

a composite actor C connecting to an actor A within a dataflow framework DFl. The

composite actor also contains a dataflow framework DF2, and a reactor B.

composite actor C '

actor; A
Co P'i fcBJ C, Pi

actor: B
j q, c.

dataflow framework: DF2

dataflow framework: DFl

Figure 3.4: A composite actor containing a reactor and a dataflow framework.

Let the firing of reactor A perform one write operation and then finish, and the

reactor B first reacts to an inputat port pi and later reacts to inputs at p2- That is, B has

the following firing sets:

and for i > 1,

B.fire[triggsr.l —{
read_pi-l;

qi = o-(pi);
write_qi_l;



B.fire|trigger_i —{

}

read_p2-i;

qi = <y(P2);
write_qi-i;
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Let Actor A have an initial trigger Init A.triggeri, the composite actor C

have a triggering rule

zfcol^-L
A.finish.l —y C.trigger_l

and the triggering rules for reactor B are:

z[c\]^± .
9 y B.trigger.1

B.finish_(i - 1) B.trigger_i, for »> 1

where g is any operation observable by the framework DF2.

During the execution of this model, reactor A is first triggered and writes one

value to z[co], then the composite actor C is triggered. Suppose the boundary operations

shown in Figure 3.3 are taken, so the value of z[co] is transferred to z[ci] by performing a

read operation and a transferinput operation. Reactor B is then triggered and it reads

the value from z[ci] and writes it to both z[c2] and 2(03]. Since 2(02] is not empty now,

the reactor B can be triggered again. And the composite actor cankeep this loop without

reaching anend point. So, C isnot reactive. Afiring set for thecomposite actor C is shown

in Figure 3.5.

A non-reactive composite actormay be made reactive if its local framework inserts

a termination point into the infinite firing set to stop the execution ofthe internal model
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B.readjDi_1 • j I
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T
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Figure 3.5: An ordering relation for the firing set of composite actor C.
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and forces it to transfer outputs. This processes iscalled reactivization ofa composite actor.

Ingeneral, this "termination" of execution may lead the composite actor to a non-quiescent

state. However, if the framework is responsible and the actors are precisely reactive, then

it is relatively easy for the local framework to restrict the number of triggers for each actor

so that the total firing set of the composite actor is finite. And it guarantees that the

composite will reach a quiescent state when all the reactions to these triggers are finished.

Thus, a responsible framework can precisely reactivize a composite actor.

For example, the DF2 framework inthe previous example can restrict the number

of triggers for actor B to be one for each firing of composite actor C. By doing this, C

becomes reactive, and at the end of the reaction, reactor B is at its quiescent state. The

firing set with respect to C.trigger.l is shown in Figure 3.6

Notice that reactivization may not always be unique. For example, in the above
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Figure 3.6: A precisely reactive firing set of composite actor C.

model, triggering reactor B twice per firing of C can equally make composite actor C

reactive. A more systematic way may rely on the knowledge of the local framework and

actors under its control. For example, the framework can keep track on the output data

items produced, and, say, restricts the number ofoutput data to be at most (or at least)

one at each output port.

There are certain computational models whose precise reactivity can be well-

defined. For example, a synchronous datafiow (SDF) actor consumes a fixed amount of

data once triggered, and produces a fixed amount of data when it finishes. This property

makes a composition of SDF reactors under a SDF framework a SDF composite reactor.

Such a composite reactor can specify triggering rules that guarantee that there are at least
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enough input data for one internal SDF iteration. In other cases, thenotion oftime can be

used to define reactivity. We willdiscuss more on that in Chapter 4.

3.3 Modal Models

Some modeling techniques have the notion of operation modes and mode switch

ings. That is, the system operates in a certain configuration until some mode switching

event occurs, then the system enters another configuration. A different operation mode,

in terms of the reactor model, could be a different set of actors, connections, framework

variables, communication semantics, and triggering rules.

•A systematic way of constructing modal models is to hierarchically combine con

current models with state-machine-based sequential models [21]. The states in the state

machine represent operation modes, and the mode switching events trigger the state transi

tions. Thesecombinations are calledmodal models. Figure3.7shows an example of a modal

model, where at the top-level, the composite actor Co contains a state machine framework

FSM withtwo states, si and S2- Each of the states further contains a sub-composite actor

Ci and C2, which are called the refinements ofthestates. Ingeneral, theframeworks inside

refinements may not be of the same kind. The meaning of the model is that, when

FSM is at one of its states, the composite actor Co is functionally replaced by the refine

ment of that state. The transition from one state to another may depend on the values of

the input of Co as well as the output from the current refinement.
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framework: M, J j
composite actor: |

Figure 3.7: A modal model with tliree levels of hierarchy.

3.3.1 Precise Mode Switching

A key requirement ofbuilding modal models is to precisely define the mode switch

ing points. Mode switching may not be safe to perform at arbitrary execution points. Some

reactors may not exist after the mode switcliing, communication channels may change,

semantics of communication operations may vary, and the triggering rules may be different.

Suppose, in Figure 3.7, Co is triggered to execute and its current state is si, so

the refinement Ci is triggered to execute respectively. If Ci is not compositionally precisely

reactive, and an output at port e triggers a state transition to S2, then when the transition

is taken, it is not obvious what states the internal actors of Ci are in. Moreover, if later the
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finite state machine switches back &om S2 to state si, it is not clear what states Ci should

start with.

Ideally, a mode switching operation should be a synchronization point (as defined

in section 2.1.3) of the entire execution of the composite. Mode switchings should only be

performed when all the reactors are at their quiescent state in the current operation mode.

In this circumstance, there is a well-defined and consistent semantics of the framework

during the time that an reactor executes its firing set. For this reason, we introduce the

notion of precise mode switching.

Definition 3.2. A mode switching operation w is precise if all the reactions before w are

precise, i.e. if f -<w, then f_-<w.

Given the properties described in section 2.3.3, precise mode switching are rela

tively straightforward to achieve in responsible frameworks. The framework can hold its

triggers when receiving a mode switching event. Then all the reactors will eventually finish

execution and reach a quiescent state. At this point, the framework can perform the mode

switching. Notice that, since no more triggers are sent after the mode switching request, the

execution before the mode switching point is well-defined. Furthermore, if the refinement

of a state is compositionally precisely reactive, then the FSM composite actor, say Co in

the example, is also precisely reactive.

3.4 Implementation

In Ptolemy II, the compositional execution is achieved by the CompositeActor

and the Director classes. A composite actor is an actor that contains other actors. A
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composite actor can have a local director, which makes it opaque. An opaque composite

actor is executable. Thus, an opaque compositeactor involves two director, a local director

and an executive director, just like in our framework model.

As discussed in section 2.5, the Ptolemy II Executable interface has seven meth

ods. Anopaque composite actor implements these methods and delegates them to its local

director. The local director, depending on the model of computation it implements, may

implement these execution method differently. In general, in the fire () method ofthe com

posite actor, it first transfers inputs for all input ports, if there is any data in them, then

calls the fireO method of its local director, and after the director finishes its execution,

it transfers the data in its output ports to the outside model.

A key concept to achieve compositional execution is the notion of "iteration" for

a model of computation. An iteration is one compositional precise reaction that start with

trigger of the composite actor and finishes at a compositional quiescent state. Obviously,

as we shown in previous discussions, for an irresponsible framework, an iteration may not

be well-defined.

3.5 Related Work

Compositionality is a big challenge for modeling paradigm and languages. Some

models lose properties once composed. For example, a finite sequential processes canalways

executeto its end, but two finitesequential processes, composed under the CSP model, may

neverreach their end points, and thus deadlock. Composable models are useful in two ways:

top-down or bottom up. The topndown view of compositionality Ewlvocates modeling and
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design of a system through Tefinement. Asystem is first modeled at a high abstraction

level, typically with nondeterminism. Then, a module of a high level model is refined

into a more concrete implementation. Semantics studies, like structured programnung [83],

action refinement [76], assume-guarantee model checking [31], and interface theories [17], are

based on this point of view. Abottom-up approach advocates composing existing modules

into a larger-scale module, through the notion of containment. This has been practiced in

circuit design for many years. Diposet [33] is a semantics model to study concurrency and

containment relations in models of computation.

Many design languages support homogeneous compositionality. For example, a

composition of automata yields another automaton [67]; a composition of statechart mod

els yields another statechart [28]; a composition of reactive modules is another reactive

module [2], and so on.

Complex engineering systems are heterogeneous, and some design methodologies

advocate heterogeneous compositionality. One example is the globally asynchronous and

locally synchronous (GALS) approach, like implemented in POLIS [5] and distributed syn

chronous languages [6]. These approaches typically integrate two kinds of models, and they

have a fixed containment relation. A more aggressive approach is taken by systems like

Ptolemy Classic [11], Ptolemy II [44], and El Greco [13], which advocate the integration

of multiple sequential and concurrent models. The work presented in this chapter follows

the hierarchical heterogeneous modeling approach and focuses on the compositionality of

reactivity.
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Chapter 4

Timed Responsible Frameworks

In this chapter, we focus on frameworks that have a continuous notion of time.

In particular, we study continuous-time models, discrete-event models, and the interaction

among them, and with some untimed models.

4.1 Time

Time in the physical world iscontinuous andevolves at a constant rate. Embedded

systems with timing constraints usually need to bemodeled ina timed framework to reflect

theirtiming behavior. Atimed framework isa framework with a notion oftime, represented

by a framework variable t £ Z. In this chapter, we consider theevaluation (T{t) € K, a real

number. With this variable, all operations are tagged with a value of t. We say that an

operation is performed at time r, if when the operation is performed, (T{t) = r. We define

T : Oper —)• Mto be the function that gives the time stamp of an operation.

Although time in the physical world only increases, it is not necessary to be so in
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modeling frameworks. The value oft can only besetby the framework though anoperation

setTime : R —> [{t} —> K], which set a value v e Mto the variable t. The value oft can

beobserved by both the framework and the actors, and actors can build its triggering rules

and change their firing set based on the evaluation.

The notion of time loosely sequentializes the operations in a timed model. If an

operation f isperformed at t = ti, and operation g is performed at t = ^2 ^ then f g-

Only when <i = <2? there may be parallelism between the two operations. Two operations

f\\g only if T{f) = T{g) and neither f ^g nov g ^ f.

4.2 Continuous-Time Frameworks

A continuous-time (CT) framework models continuous dynamic systems that can

be represented by ordinary differential equations (ODEs).

4.2.1 Conceptual View

DDE-based continuous-time models can be expressed as

X = F{x^u,t) (4.1)

y = G(x,u,t) (4.2)

x(io) = xq (4.3)

where,

• t G K, <> <0 is continuous time;

• X : M —»• R" is the n-dimensional state trajectory;
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• u : IR K"* is the m-dimensional input signal;

• y : K K' is the /-dimensional output signal;

• X= dxIdt\s the derivative of x w.r.t. t\

• xq € M" is the initial state.

We call F the right-hand side (RHS) of the ODE, and G the output map. We as

sumethat F is globally Lipschitz continuous on x forany boundedand piecewise-continuous

input u, such that, by the existence and uniqueness theorems of DDEs (see e.g. [70]), for

any // € IR,t/ > to, there is a unique trajectory x on [to,tf] satisfying the system dynamics

(4.1) and initial condition (4.3) for that input u, except on finitely many discontinuous

points. Such an ODE system is called well-formed. We only consider well-formed ODE

systems in this dissertation.

A set of ODEs can be built using components as shown in Figure 4.1. Conceptually,

components in this framework communicate via (piecewise-)continuous waveforms, which

are functions on a closed interval of K. The components are piecewise-continuous maps

from input waveforms to output waveforms. A special component, the integrator, makes a

feedback loop an ODE. The output of the integrator is the state trajectory x, and the input

of the integrator is the derivative x. The functions F and G can consist of a feed-forward

composition of components that implement the piecewise-continuous maps. High-order

ODEs may involve multiple integrators connected in serial or parallel.

Strictly speaking, the conceptual view of differential systems does not fit in our

actor and framework concepts. In this model, variables change their values continuously.
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Figure4.1: A component-based construction of ODEs.

and concepts of read and write operations do not apply. To build continuous-time frame

works in computers, time must be discretized into discrete instants, and ODEs must be

solved numerically at these time instants. Nevertheless, the implementation ofa CT frame

work should stay as close as possible to the conceptual semantics of the CT models. For

example, the continuous notions of time and waveforms make it proper to ask for the value

ofany signal at any time instant. Thecontinuous-time framework should be able to find it

computationally.

4.2.2 Operational View

The execution of a continuous-time model involves solving the ODEs numerically.

A widely used class of algorithms, called time-marching algorithms^ discretize the contin

uous time line into an increasing sequence of time instants, and numerically computes the

state variable values at these time instants in that increasing order. The discretization of

time usually refiects the speed and accuracy trade-offs of a numerical algorithm, and is

determined based on the error tolerance of the solutions and the "order" of the algorithm^.

'Different classes of numerical algorithms may define "order" differently. But roughly, an ODE solution
algorithm has order n if the numerical error e = 0{h"), whereh is the step size.
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To compute the values of state variables at eacli time instant, the right-hand side

of the ODE needs to be evaluated with different x and u values. For exsunple, the simplest

ODE solver is possibly the forward Euler (FE) algorithm,

x{t+ h) = x{t) + h •F{x(<), u(t), t), (4.4)

where t is the last time instant where the solution is computed, so x{t) and F{x,u,t) are

known; h is the integration stepsize; andx{t + h) is the to-be-computed value oix a.t t + h.

This algorithm can be achieved by making the integrator implement (4.4), and

scheduling the components in Figure 4.1 by sending triggers properly. More precisely, an

integrator, FEIntegrator, which implements the FE algorithm, has the following variables:

FEIntegrator.P = {input}

FEIntegrator.Q = {x}

F EIntegrator.S = {lastTimelnstant}^

the firing set for time to:

and for any t > to.

FEIntegrator.fire|to = {
X = xo;

lastTimelnstant = o{t);
write_x;

}

FEIntegrator.fire|t = {
read-input;

h = <T(t) —lastTimelnstant;
lastTimelnstant = cr(t);
X = X + h ♦ input;

write_x;

}
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The scheduling resembles a data-drivenstyle, where the triggers are sent to actors

according to their data-dependency order, using integrators to break the feedback loops.

For example,

ODESchedule = {Integrator —^u-¥ F{x^u)} (4.5)

is a proper schedule for the system in Figure 4.1 for the FE algorithm.

Under this ODE solver, the communication chsinnels between the ports represent

the values of the continuous waveforms at a particular time. A framework variable for a

channel is a buffer of size one.

Multi-iteration algorithms

More advanced ODEsolvers may require firing the integrators and the actors that

build the RHS of (4.1) multiple times at several intermediate time instants for a single

integration step. For example, a 2"'̂ order Runge-Kutta method (RK2) [66] has the form.

ko = F{x^u,t) (4-6)

fci = F̂ x +f^ko,u{t +f^),t +̂ ^ (4.7)
/ 3h , 3/i, 3h\ oxk-i = F\x +—ki,u{t +—),t +—j (4.8)

x{t + h) = x{t) + h •

This algorithm requires that the framework iterate the scliedule like (4.5) four

times before the integrator can complete the computation of x{t + h). During the four

iterations, the value of t needs to be increased accordingly, and the integrator needs to
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implement different firing functions, (4.6) - (4.9) accordingly. As a consequence, there are

several intermediate values appear in the framework variables.

Algorithms like FB and RK2 are called explicit sdgorithms, which have a fixed

number of iterations for each time instant. There are also implicit algorithms, which reduce

the ODEs to a set of algebraic equations, and rely on fixed-point or Newton iterations

to find the solution. For certain ODE problems, implicit algorithms may provide better

numerical stability, and thus allow larger step sizes [20]. Choosing what ODE algorithm to

use is largely application dependent.

An example of implicit algorithms is the backward Euler (BE) algorithm,

x{t + h) = x{t) -H h ' F{x{t -I- h), u{t + h), t + h) (4.10)

Obviously, this isanalgebraic equation, which involves computing F{x{t+h),u{t+h), t+h)

without knowing x{t + h). A fixed-point iteration to solve this algebraic equation starts

with a guess of x{t + h), say xo{t + h) = x(t), then iterates

x/k+i(< + h) = x{t) + h•F{xk{t + h)Mt + h),t + h), for A; > 0 (4.11)

until for some m, ||xm+i(t + h) —Xm{t + h)|| ^ €, where e is a small positive number that

measures the convergence of the sequence {xk{t + h)}A>05 II • II is some norm. If the

sequence converges, then x{t + h) = Xm+i {t + h) isthenumerical solution ofx at time t -H h.

Fixed-point iterations (and Newton iterations) may not converge for arbitrary

step size h. However, the contraction mapping theorems [10] implies that if the trajectory

is continuous on [t,t + /t], and h is small enough, then the fixed-point iteration always

converges. Computationally, this implies that we start with a guessed step size, and an
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upper bound for the number ofiterations, M. If the fixed-point iteration does not converge

in up to M iterations, then we reduce the step size, say by half, and try again, until the

process converges. The convergence can be observed by the framework by looking at the

values in firamework variables that represent the states of the ODE system.

Fixed-point semantics

For a continuous-time firamework, both explicit and implicit ODE solvers should

be thought of in terms of fixed-point semantics. The framework starts with a known state

of the ODE system, it performs a finite (either known or unknown) number of scheduled

firing of actors, and reaches a fixed-point, which gives the state of the ODE system at the

new time instant. During the scheduled firing of the actors, the values of the framework

variables and the actor variables may be inconsistent, the value of the time variable may

increase or decrease, and their values may not be used by the rest ofthe system (e.g. the

output map). For this reason, we introduce an operation for a CT framework to indicate the

successful resolution of the state at a time instant - stateResolved. This is a framework

operation, and actors (e.g. those that construct the output map) can build triggering rules

using it.

After the state values at time t + h have resolved, the output valuey can be com

puted by triggering the reactors that construct the output map Gin their data-dependency

order. After that, thecomputation at time <-1- /i has completed. We introduce an operation

commit to indicate the finishing on the computation at one time instant. The framework

can then advance time to the next step, and repeat the ODE solution process again.

So, ingeneral, the operations in a CT framework may look like Figure 4.2, where
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Figure 4.2: Illustrating the fixed-point semantics of CT frameworks.

stateResolved and commit at each time instant are synchronization points for this model.

There is a discrete set of time points {<o» •••, t,t + h, ...t/}, and the values of x at these time

points are computed by the ODE solvers. In the process of solving the ODE and producing

the output, there may be some partially ordered operations, but the stateResolved and

the commit operations are always in a total order.
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4.2.3 Hybrid Components in CT Frameworks

A timed event (or, event for short) is a tuple e = (t, u) € T x where T C K

is the set of time stamps, and V is the set of values. The time stamps make timed events

totally comparable. For e = (t,u) and e' = (t',u'), we say e < e' ift < r'.

Asetofevents is discrete ifthey are ordered isomorphic to a (subset) ofintegers^.

This TTipans that there is an 1-1 and onto function that maps the events to the subset of

the integers, and the mapping preserves the ordering relation among the events.

Some continuous-time frameworks embrace discrete events on a subset of commu

nication channels^. A communication channel that represents discrete events will have an

empty value at all but those event times. That is, let E be a set of discrete events on a

channel c = {p sJid Te be the set of time stamps for those events, then Zc -i- only

when a(t) € Te- These events may trigger components that only reacts to events, rather

than involves in the computation of continuous-time waveforms.

A discrete actor is an actor that only has discrete events at its input and output

channels. The firing ofa discrete actor is triggered by the presence ofan input event. A

precisely reactive discrete actor isa discrete actor whose firing set is finite and the presence

ofany input event is a responsible trigger. That is, the reaction does not have to wait for

more than one input event.

Discrete actors are special cases of hybrid actors, which are actors that may have

both continuous and discrete inputs and outputs. Hybrid actors fundamentally increase

the expressiveness ofODGs. For example, they can be used to model discontinuous inputs,

'This definition is due to W.T. Chang (42].
^These frameworks are better called mixed-signal frameworks. But forconsistency reasons, wekeep calling

them continuous-time frameworks.
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discontinuities on the RHS ofODE, A/D and D/A converters, andevent detectors.

Since a discrete event isdefined byboth a timestampr and a value v =

which may depend on the state and the input at r, it is important to determine both of

them in a continuous-time firamework. An event generator, E, is a reactor that has con

tinuous waveform input and discrete event output. An event generator implements the

function 7(a;(T),u(T),r), and is triggered only when time is equal to the event time, by the

stateResolved operation.

In a continuous-time framework, there are two ways to define the time stamp of

an event:

• One way is to give the time stamps t directly. Events of this type are called timed

events. Atriggering rule of an event generator EG that produces this type of event

can be written as,

stateResolved ^ EG.trigger

• Another way is togive a predicate /3(x,u,t) == 0 on the value of the state variables,

the input variables, and time. We assume /3(-) to be continuous on its arguments. For

example, anevent e can bedefined as occuring whenever the state trajectory crosses

zero, i.e. x == 0. Events of this type axe called state events. Atriggering rule of an

event generator EG' that produces this type ofevent can be written as,

j3(x,ii,f)==0 I .
StateResolved ^ >EG'.trigger

It is the responsibility of the framework to trigger sucli reactors at the correct

time, no matter how they specify the rules.
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Reactors that respond to discrete events are relatively easy to handle. The write

operation ofanevent is anobservable operation to the framework. And a discrete actor D

pan be triggered by that write operation. I.e. the triggering rule may look like,

write_q D.trigger

for some output port q.

Sometimes, a hybrid actor may decide to produce a discrete event in the future

time. This can be achieved by allowing discrete actors to register their triggering rules

dynamically during the execution. For example, a discrete actor D that is expected to be

triggered at time t' > t, can register a triggering rule,

—t'
stateResolved y D.trigger.

4.2.4 Responsible Continuous-Time Frameworks

A CT framework controls the progression of time. A responsible continuous-time

framework not only needs to keep the computational results close to the real solution ofa

CT model in termsofacceptable numerical errors, but also needs to trigger the hybridactors

according to the rules theyspecify. In general, to achieve correct computation ofcontinuous-

timemodels, a responsible CT framework must control the modeling timeaccording to the

following three issues:

(A.) Numerical performance: The numerical errors of ODE solvers significantly de

pends on the choice of step sizes. Although choosing smaller step sizes always im

proves accuracy, it may elongate the computational time. So, how to choose the step
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sizes to achieve maximum computation speed subject to tolerable numerical errors

must be considered.

(B.) Unsmoothness: Numerical ODE solvers assume a certain order of smoothness on

the RHS function F. If this assumption is broken, then the numerical algorithm

should not cross the non-smooth point in one step. For example, if
r

1 : t > 1
F{x,Ujt) = i

-1 : t<l

then the numerical algorithm should not cross the time instant 1 in one step.

(C.) Event generation: Event generators need to be triggered at specified time instants.

Timed event generators are easy to handle, since the framework can examine the

rules to adjust the increase of time instant so that no events Eu-e missed. State events

are much harder, since the framework cannot predict exactly when a predicate that

involves the state of the ODE is true.

To implement responsible CT frameworks, we define the concept of breakpoints.

Definition 4.1. A breakpoint in a continuous-time model is a time instant when the

right-hand side F of the ODE or the output map G are not sufficiently smooth.

The "suflSciency" of smoothness may depend on the ODE solvers used. By the

nature of ODE problems, breakpoints should not be crossed in one integration step. In fact,

the values of the state v£triables may not be well-defined at these points. The numerical

algorithms should instead compute the left and right limits of the state values.

Depending on whether a breakpoint is known before the modeling time reaches

that instant, we classify predictable and unpredictable breakpoints. All unsmooth points
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that explicitly depend on time are predictable breakpoints, while the unsmooth points that

depend on the values of the state variables are unpredictable.

Predictable breakpoints are easy to handle. They can be stored in a table by the

framework. Before the framework chooses the next integration step size, it can look at

the table and possibly reduce the step size to make sure that no predictable breakpoints is

crossed inthis step. Unpredictable breakpoint can only bedetected after anintegration step

has finished. Actors, whose behaviors depend on unpredictable breakpoint, may register

predicates, like /3{x,u,t) == 0, to the framework. After a tentative numerical integration

step, the framework can examine these predicates, and see whether any predicate is true.

Ifso, an unpredictable breakpoint is found. It may also check ifany predicate has changed

sign in this step. Typically, by the continuity of function /?(•) on x, this change of sign

mpans there is an unpredictable breakpoint that has just been crossed by the integration

step. Thus, the result at t + h is not valid. The framework should roll back to time t,

reduce the step size tosome h' (probably by examining the property ofPi*)), and start the

integration from t to <+ h' again.

Strictly speaking, there is always a risk of missing unpredictable breakpoints if

j3{x^u,t) crosses zero twice in one integration step. Restricting the rate of change of (3{')

may reduce the risk. Specifying high numerical accuracy requirements, which essentially

reduce general step sizes, may also help.



4.3 Discrete-Event Frameworks

A discrete-event framework has a continuous notion of time but only discrete ac

tors. Since there are no continuous waveforms, no ODE solvers and fixed-point semantics

are needed. Conceptually, a discrete actor responds to a set ofdiscrete-event inputs and

produces a set ofdiscrete events as outputs. These events are time stamped, so the frame

work knows exactly when to trigger reactors to process the (next) events. The reactors are

required to be causal, which roughly means that time stamps of output events should be

no earlier in time than the corresponding input events. This requirement, although intu

itive, has profound semantics implication on the existence and uniqueness of"behaviors" of

discrete event systems. A formal discussion of this causality is given in [42]. We will only

use the intuitive definition in this dissertation, and restrict all actors to be causal in our

discussion.

4.3.1 Operational View

Recall that a discrete reactor is conceptually triggered by time-stamped input

events. It has a precise reaction for any input. That is, it does not wait for another input

once an input is available. As shown in Figure 4.3, suppose an output port g of a DE

reactor D is connected to an input portp'of a reactor D', then the triggering rules of D'

may simply be,

write_q D'.trigger.p'. (4.12)

Suppose that the reactor D' implements a timedelay, which delays its inputevents

by time duration Sand produces the same value. That is, if the reactor D' is triggered by
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reactor D^^ reactor. D' ^ reactor. D

i i

framework: DE

Figure 4.3: Three reactors in a DE framework.

the rule (4.12) at time t, and it reads a value v from the channel (g p')» should

assign v to port g', and do a write.q' at time t + S. This can be achieved by allowing

reactor D' to register for a trigger at the time it wishes to produce an output. We use the

syntax:

fireAt(D', r + 5)

for this registration, which registers the following triggering rule with the framework,

setTime(T + 5) D'.trigger_q',

so that it can be triggered again when time reaches t + 6. In response to that trigger, it

can perform write.q', and reactor D" can be triggered accordingly. So, suppose that the

minimum interval between two successive events produced by D is greater than the time

delay <J, then D' may have the following firing sets'*: for trigger D'.trigger_p',
"A general time delay reactor may need to implement a queue to locally store the timed events to be

produced.



O'.fire|trigger_p' ~ {
read_p';
q' = «^(p');
T = a(t)
fireAt(D',T + 5);

}

and for trigger D'.trigger_q',

D'.fire|trtoger_9' —{
writejq;
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Thismechanism ofregistering a triggering rule in the future to trigger the reactor

itself is called self-triggering. It is also a useful mechanism for source reactors, which are

reactors that have noinput port, like D in Figure 4.3, Source reactors have no inputevents

to trigger them, but by using self-triggers, they can be triggered according to the progression

oftime. For example, suppose reactor Dimplements a Poisson processes. At the beginning

of the execution, it can request a trigger trigger.to,

Init trigger-to-

In response to that trigger, it computes a Poisson-distributed random time value

ti at which it produces the next output. It then registers a self-triggering rule:

setTime(ti) yD.trigger.q

to emit the output at time ti from port sind at the same time register a self-trigger at

the next random time.

So, the job ofa DE framework is to iteratively look at all the triggering rules

and find the smallest value r it should assign to the time variable, and trigger all reactors
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that are activated at time r. We also introduce a coinmit operation in the DE framework

to indicate the completion of activities at a specific time. Because of the causality of all

reactors, after the commit operation at r, no timed event earlier than r can occur. The

framework can then increase the time variable value to the next smallest value, and repeat

the triggering process.

4.3.2 Precise-Reactive CT Composite

Discrete event reactorsmay be implemented compositionally. In particular, it can

be implemented by an open composite with a continuous-time framework. The situation

is not trivial, since time in the CT framework conceptually progresses continuously. As a

composite actor, the CT composite actor is only triggered by theDE framework at discrete

time instants. Furthermore, the CT composite actor should be reactive and causal to obey

the discrete event semantics, which implies that time in the CT framework should always

be ahead of the DE framework time, and the CT time should not progress beyond the time

stamp of the "next" input event.

More precisely, let's consider the configuration shown in Figure 4.4, where a CT

composite actor iscontrolled by a DE framework. So, there are two time variables involved,

td for the DE framework and U for the CT framework. We have the following theorem.

Theorem 4.1. Lei C be a CT composite actor with time variable <c- orderfor C to be

a causal discrete-event reactor, whenever C is triggered by the DE framework, thefollowing

relation must hold:

(4-13)
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Figure 4.4: A CT composite actor inside a DE framework.

Proof. By contradiction. Suppose on the contrary, when C is triggered and a{td) > cr(tc).

Let (T{td) —o-{tc] = By the continuous-time semantics of the CT framework, it will

start execute from tc continuously. It is possible that, for some e < <5, an event generator

produces an output, which is also an output of C, at a{tc)+€ < cr(trf). Then, the composite

actor C is not a causal DE reactor. ^

Theorem 4.1 indicates that when a CT composite actor is controlled by a DE

framework, the CT composite must run ahead of the DE time. This optimistic execution

has further implications. There are two cases when the composite actor C is triggered by

an input event, a{tc) = (j{id) ot a{tc) > o{td). The situation o{tc) = <r{td) is desirable,

which means that the input event makes effect at the time it happens. Now, the question

is how far in advance should the CT composite actor execute, or, in other words, is a CT
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composite actor reactive!

Suppose that when C is triggered, we have cr(ic) = a(<d) = r. The reactiveness

of discrete reactors seems to imply that the CT composite actor should execute until it

generates an output event. However, this may not always bepossible. What if there is no

more discrete events for output? Futher more, even if it generates an output o = (t ,u)

at time G{tc) = r' = r + e for some positive c, and requests a self-trigger at r' to the DE

framework, what if the next input event for C is earlier than t e. That is, the next time

C is triggered, it finds that the time value of the DE framework <j{td) = t" < t', which

means that theoptimistic execution last time was partly wrong. Thus, the CT framework

should not blindly execute until generating anoutput event. It should restrict theoptimistic

execution to a certain length, andcheck with the outside DEframework for the next input.

And if the input event time, say at r", is earlier than the stop time r' of the optimistic

execution, the CT framework should roll back part ofitslast execution, tot", and recompute

the trajectory after t". The amount of look-ahead execution is an application-dependent

design parameter. A section of interaction between CT and DE frameworks is shown in

Figure 4.5.

In summary, a precise-reactive CT framework needs to perform optimistic execu

tion and support rollback.

4.4 Timed Precise Mode Switching

The notion of time naturally provides a set of synchronization points in timed

models. These points are the commit operations at a particular time instants. These
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Figure 4.5: A situation that requires the CT framework to roll back its optimistic execution
within a DE framework.

synchronization points make mode switching in timed model relatively ezisy to be defined

precisely.

Modeswitching in timed modelscan be defined in terms of the valueof the timed

variable. Of course, in continuous-time frameworks, it can also be defined in terms of the

values of continuous waveforms, like state events. The framework can activate all the triggers

before the mode switching time, and make sure that it performs the conmiit operation at

the mode switching time. Then, the mode switching can take place.

One situation that needs additional attention is the "zero delay" semantics of the

mode switching operation. Conceptually, mode switching takes no time. At the mode

switching time t, all operations before r are finished. However, the mode switching may

activate triggers at exactly time t again. So, time cannot be advanced immediately after

the modeswitching. One way of looking at this is the r~ —r —t"^ interpretation. That is,

the conrmit operation before the mode switching only completes the operations up to t~ ;

the mode switching happens at time r; and the new starting time is t+. Although r~, t,
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and take the same value, they indicate an ordering relation among operations.

4.5 Implementation

We implement the CT and DE frameworks as corresponding domains inPtolemy

II. A detailed documentation of these implementation can be found in [34] and [52]. We

only highlight some of the features in the implementation that reflects the discussions in

this chapter.

• CT domain scheduling. The CT domain in Ptolemy II implements a responsible

CT framework. It allows the existence of discrete signals and hybrid actors. The

scheduling for a CT model is based on clustering. Amodel is clustered into a contin

uous part and a discrete part. The boundary between the two parts are hybrid actors,

like event generators and waveform generators. Asignal type system, discussed inthe

next bullet, performs this clustering. In the continuous part, the actors are further

partitioned into the state transition actors, which implement the F function in the

ODE 4.1, and the output actors, which implement the output map G in 4.2. Initial

conditions of the ODE are parameters of the integrators. Within each partition, we

use a demand-driven topological sort algorithm to schedule the actors. The state

transitionactors are all the actors whose outputs are needed by the integrators. The

topological sort starts with the input ports ofthe integrators, and backtracks tosource

actors or the outputs ofintegrators. The output actors are all actors that are needed

by the sink actors, like plotters. The topological sort starts with the sink actors, and

backtracks to source actors or integrators. Actors in the discrete cluster are scheduled
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in a data-driven manner. These discrete actors cannot introduce delays from their

inputs to their outputs, and there cannot be feedback. If these features are needed, a

DE composite actor can be used.

Signal type system. When a continuous-time system contain discrete components,

the signals at the boundaries have to be converted accordingly. For example, the

output of event generators should connect to the input of discrete actors, and the

output of waveform generators should connect to continuous actors. In addition,

many components can be used in both continuous and discrete parts of a CT system.

For example, a Scale actor can be used to scale a waveform by a factor, or it can

scale all the event values in a set of discrete events. In order to properly cluster actors

into continuous and discrete parts and schedule them accordingly, we develop a signal

type system.

The signal type system resolves the signal type for each port in a CT system. The

possible types are UNRESOLVED, CONTINUOUS, DISCRETE, and NOT-A-TYPE, forming a

lattice in Figure 4.6. A type that is lower in the lattice is more specific than the type

that is higher in the lattice. This means that the type UNRESOLVED can be resolved

to either CONTINUOUS or DISCRETE, and the types CONTINUOUS or DISCRETE can be

resolved to NOT-A-TYPE.

Some components have fixed signal types at their ports. For example, an inte

grator has a CONTINUOUS input and a CONTINUOUS output; a periodic sampler has

CONTINUOUS inputs 2tnd DISCRETE outputs; a zero-order-hold actor has DISCRETE in

puts and CONTINUOUS outputs, and many actors only works for DISCRETE inputs and
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UNRESOLVED

CONTINUOUS DISCRETE

NOT-A-TYPE

Figure 4.6: The signal type lattice for mixed-signal continuous-time models.

outputs. But for actors that can be used in both continuous and discrete clusters,

their signal types are UNRESOLVED. The role of the signal type system is to resolve all

the UNRESOLVED types by converting them to either CONTINUOUS or DISCRETE. And

the rules are simple:

—Ifa port p is connected to another port q with a more specific type, then the

type of p is resolved to the type of the port q.

—Ifa port p of type CONTINUOUS is connected to a port qof type DISCRETE, then

both of them are resolved to NOT-A-TYPE.

—Unless otherwise specified, the types ofthe input ports and output ports ofan

actor are the same.

At the end ofthe signal-type resolution, ifany port is oftype UNRESOLVED or NOT-A-TYPE,

then the topology ofthesystem is illegal, and theexecution is denied.

*Step size control mechanisnis. The CT domain in Ptolemy II controls the pro

gression of time by the three mechanisms discussed in section 4.2.4. The step size
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control mechanisms are achieved by the fireAtO method in the Director class and

a CTStepSizeControlActor interface. Actors can use fireAtO method to register

predictable breakpoint, the CTDirector will make sure that the entire system is exe

cuted on that time instant- Actors that can only affect step sizes after the new CT

states has been resolved should implement the CTStepSizeControlActor interface.

These actors includes integrators, which controls the numerical accuracy and conver

gence, and state event generators, which produces unpredictable breakpoints. After

resolving the states, the CTDirector will query these actors for the successfulness of

the last step. If any of these actors disagree the resolved states, either because of

intolerable numerical error or missing of events, the director will recompute the last

step with a smaller step size. The smaller step size is also obtained by asking these

step size control actors.

4.6 Mixed-Signal and Hybrid System Modeling

The compositional precise reactivity of CT and DE frameworks allow us to build

models that hierarchically compose continuous and discrete dynamics. This section gives

the modeling structiure for such systems, as well as some examples built in Ptolemy II.

4.6.1 Mixed-Signal Models

A mixed-signal systemcan be built by hierarchically composing CT and DE mod

els. For example, Figure 4.7 shows a scenario where a DE model is embedded in a CT

system. This is a natural model forsystems like computer-based control application, where



discrete controllers are embedded within continuous plants. An event generator produces

discrete events that trigger the execution of the DE subsystem. The response, another set

of events, is fed through the waveform generator and converted back to waveforms.

waveform

generator

jLL

!g(x, u)

JL-
generator

Figure 4.7: A DE compositeactor inside a CT model.

Figure 4.8 shows a scenario where a CT model isembedded in a DEsystem. Thisis

a natural model for systems like mixed-signal circuits and micro-electromechanical (MEM)

devices. These systems have large portion of discrete parts and typically provide a discrete

interface to larger applications. Event generators and waveform generators are used again

at the boundaries of these models.

waveform

generator • ^ generator '

Figure 4.8: A CT composite actor inside a DE model.
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4.6.2 Mixed-Signal Examples

Controller with time delay

This example models a discrete controller that controls a continuous plant, as

shown in Figure 4.9. The control algorithm is simply a proportional feedback controller.

Presumably the controller is implemented in software and it introduces a computational

delay from the receiving of input samples to the production of the control values. Depending

on whether there are other software tasks running, this delay may vary from sample to

sample.
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Figure 4.9: A Ptolemy II model for a control system with time delay.

The model has two levels of hierarchy, a CT top-level containing a DE composite

actor. A TransferPunction actor® is used to model the differential equations. The output

'This is a syntactic sugar for high order differential equations. Internally, it is built using integrators,
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ofthat actor isperiodically sampled and fed into thediscrete controller. Inside the discrete

controller, the control law is applied. The event also triggers a random number generator,

and a variable delay actor, which delays its input events by theamount oftime indicated by

thevalue ofthesecond input. We model thedelay asa random number that takes two values

0.05 and 0.1 with equal probability, 50%. One execution trace is shown in Figure 4.10.
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Figure 4.10: The execution result for the model in Figure4.9.

Micro-accelerometer

Sigma-delta (S/A) modulation [14], also called pulse density modulation^ isa Bang-

Bang controlled over sampling A/D conversion technology. An analog input isover sampled

N times fsister than the requested digital output frequency, and quantized to one bit, ±1.

The quantized value is fed back to the analog part, as well as accumulated by a digital

accumulator. For every N samples, the converter produces the digital output and reset

adders, and scale actors.



the accumulator. Due to its robustness, 2/A modulated A/D converters have been ex

tensively developed. Recently, this technique has been applied to micro-electromechanical

accelerometers to reduce noise, enhance stability, and improve sensing range [49].

Figure4.11 illustratesthe physical structure ofa S/A modulated micro-accelerometer.

The three beams and the gaps between them create a structure that convert acceleration

at the vertical direction to changes of capacitance. By sampling and accumulating the

capacitance, a digital representation of the acceleration can be computed.

Figure 4.11: A physical structure illustrating a micro-accelerometer.

Figure 4.12 shows a model for the modulated micro-accelerometer. A CT compos

ite actor, CTSubsystem, is used to model the capacitance dynamics of the accelerometer,

which issimplified to 2"^^ order ODE. The sensing signal is sampled by the periodic sampler,

filtered by a lead compensator (FIR filter), and fed to an one-bit quantizer. A delay actor

is used to model the time delay introduced by filtering and quantization. The outputs of

the quantizer are fed back to the analog part. The quantized signal is filtered again by the

moving average (MA) filter, and accumulated. A digital clock, whicli produces a trigger

every N sampling period, triggers the accumulator to produce the digital output, as well



as resets the accumulator.
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Figure 4.12: A Ptolemy II model for E/A modulated accelerometer.
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Figure 4.13 shows an execution result of the model for a sine wave acceleration

input. The upper plot in the figure shows the discrete signals. The dense events, with values

±1, are the quantization result. The speurse events are the final output ofthe accumulator,

i.e. the digital outputs, and as expected, they have a sinsoidal shape. The lower plot shows

the continuous signals, where the low frequency sine wave is the acceleration input, the high

frequency waveform is the analog sensing signal, and the square wave is the zero-order hold

of the feedback from the digital part.
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Figure 4.13: An execution result for the model shown in Figure 4.12.
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4.6.3 Hybrid System Modeling

A hybrid system is a modal model that consists of finite state machines and

continuous-time models, as shown in Figure 4.14, where each state is refined into another

CT composite actor. Notice that by adopting the event generation facilities in CT models,

a CT subsystem that refines an FSM state can produce discrete events as their outputs, like

the port e in the figure. State mswihine transition triggers can be built using these events,

as well as continuous signals from the inside and the outside domains.
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Figure 4.14: Ahybrid system is a modal model with hierarcliies ofFSM and CT.

Hybrid System Example: Sticky Point Masses

This example shows a hybrid system with two states. As shown in Figure4.15,

there are two point masses on a frictioiiless surface with two springs attaching them to

fixed walls.

'/////« yt/iii\

Figure 4.15: A sticky point mass system.
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Let yi{t) denote the right edge of the left mass at time f, and 2/2(0 denote the

left edge of the right mass at time t. Let pi and P2 denote the neutral positions (i.e.

the equilibrium points) of the two masses, so the force is zero. For an ideal spring and

frictionless surface, the force at time t on the mass isproportional topi - yi{t) for the left

mass and P2 —yiit) for the right mass, assuming the force is positive to the right. Let the

spring constants be ki and ^2, and the masses be mi and m2. Then, by Newton's law, we

have

yi{t) = ki(pi-yi{t))/mi (4.14)

y2{t) = fc2(p2-1/2(<))A«2 (4-15)

Now, giving initial positions other than the equilibrium points, the point masses

oscillate. The distance between the two wails is small enough that the two point masses

may collide. The point masses are sticky. And, when they collide, the situation changes.

With the masses stuck together, they behave as a single object with mass mi + m2. This

single object is pulled in opposite directions by two springs. While the masses are stuck

together, yi{t) = y2{t).

Let y{t) = yi{t) = 2/2(<)j the dynamics axe now given by:

X̂ fciPi + k2P2 - (fei + k2)y{t)
' (mi + m2)

We also assume the stickiness decays exponentially after the collision, such that

eventually the pulling force between the two springs is bigenough to pull the point masses

apart. This gives the two point masses a new setof initial positions and speeds, and they

oscillate freely until they collide again.
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The system model, as shown in Figure 4.16, has three levels of hierarchy - CT,

FSM, and CT.The top level is a continuous-time model withtwo actors, a composite actor,

SPM dynamics, which outputs the position of the two point masses, and a plotter that

simply plots the trajectories. The composite actor is a finite state machine with two modes.

Apart and Together.
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Figure 4.16: A Ptolemy II model for the sticky point mass system.

In the Apart state, there are two ODEs modeling two independently oscillating

point masses, as in (4.14) and (4.15). An event detector, implemented by subtracting one

position from the other and detecting the zero crossing, is used to generate the collision
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event, c. This event will trigger a FSM transition from the Apart state to theTogether

state. Besides transferring the point mass position, the actions on the transition set the

velocity of the stuck point mass based on law of conservation of momentum:

vimi + V2Tn2

mi + m2
V = (4.17)

where ui ztnd V2 are the velocities of the point masses before the collision, and v is the

velocity of the stuck point mass, after the collision.

In theTogether state, there is one differential equation implementing (4.16), and

another first orderdifferential equation modeling the exponentially decaying stickiness. An

expression computes thepulling force between thetwo springs. The trigger on thetransition

from theTogether state to the Apart state compares the pulling force to thestickiness. If

the pulling force is bigger than the stickiness, then the transition is taken. The positions

and velocities of the two separated point masses are equal to those before the separation.

An execution result is shown in Figure 4.17.
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Figure 4.17: An execution result of the sticky point mass model.



109

4.7 Related Work

Modeling and simulation of timedsystems was oneof the firstapplications of com

puter systems. The work presented in thischapter is greatly influenced by circuit (analog,

digital, and mixed-signal) simulation technologies, discrete event simulation technologies,

control system simulation technologies, and hybrid system theories.

Early computer simulation tools typically deal with a single model of computa

tion and application domain. For example, SPICE [77] is particularly tuned for analog

circuit simulation, VHDL [3] and Verilog [73] simulators are timed for digital circuits, and

Simulink® vl.O is designed for simulating continuous control systems. Heterogeneous sys

tems, like mixed-signal circuits, micro-electromechanic systems (MEMS), and computer

control systems, have boosted the theory and practice of integrating continuous and dis

crete modeling and simulations [65], [56], [74], in particular, mechanisms for event detec

tion [55] and step-size controls [38]. Early tools, like SPLICE [63], only perform a coarse

event prediction and cannot handle tight feedback among continuous and discrete parts

of a circuit. Hybrid system modeling tools like SHIFT [IB] and Teja also simply perform

coarse-grained event prediction. Saber [15] and itssuccessive VHDL-AMS [24] and Verilog-

AMS [35] simulator VeriasHDL [16] have very sophisticated step-size control mechanisms

and handle much complicated circuits. Later versions of Simulink [29] also implemented

event detection mechanisms to support the existence ofdiscrete blocks, including finite state

machines.

^Simulink is a software package of The Mathworks, Inc.
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Chapter 5

Real-Time Responsible

Frameworks

The ultimate goalof designing embedded systems is to deploy them into the phys

ical world and let them function. This chapter discusses frameworks that interact directly

with the physical world. Such frameworks are called run-time frameworks in contrast to

design-time frameworks that at most only have simulated physical world models. A run

time framework needs to operate with respect to the physical time, respond and produce

physical events, and manage the computation and communication resources withinthe em

bedded system. While design-time frameworks may freely adjust the notion of time and

events to achieve computational efficiency, a run-time framework needs to strictly respect

the law ofphysics in the real world. In cases where reactivity cannot becompletely fulfilled,

it may sacrifice precise reactions of some components for obtaining timely reaction of some

other components. A common way to specify criticality of reactions is to assign priorities
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to softwaxe components. However, blindly applying priority-driven execution may intro

duce many problems, including priority inversion. In thischapter, we formulate prioritized

precise reaction and responsible run-time framework to solve the priority inversion prob

lem. After introducing the concepts of timedeterminism, value determinism, and real-time

responsible frameworks, we propose a real-time model ofcomputation —timed multitask

ing (TM), which makes time explicit at the programming level and leverages a real-time

responsible frsimework toachieve deterministic timing behavior ofembedded software tasks.

5.1 Run-Time Composite Actor

The real world is a framework with its laws of physics. In the physical framework,

time, called the real time, iscontinuous andflows at a constant rate independent ofanything

else^. The physical framework is like a conceptual continuous-time framework discussed in

section 4.2.1, where components (here called physical processes) do not need triggers. They

evolve continuously and concurrently with respect to the time continuum.

An entire embedded system in the physical world can be viewed as an actor,

namely a run-time actor^ which is "managed" by the physical framework. All operations

within the rim-time actor are stamped by a vsdue of real time. The triggers and inputs of

a run-time actor are typically obtained from sensors; and its outputs are made available

to the physical world by actuators. A run-time actor may be a composite actor, with a

run-time framework sis its local framework.

For a run-time actor, it is important to distinguish data I/O from triggering of

*We do not consider the relativity effects.
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reactions. Not all data acquisition triggers immediate reactions. A trigger creates a thread

of execution in the run-time actor, while data inputs do not.

5.1.1 Physical Data I/O

The physical world changes continuously. In order for the embedded system to

respond and control the physical processes, some states of the physical world must be

acquired by theembedded system, discretely. Similarly, discrete outputs from theembedded

system need to beconverted to physical activities. These jobs areperformed by sensors and

actuators, as shown in Figiure 5.1.

Irl

\

1 task

run-time framework

run-time composite actor

pliysical processes:

physical framework

actuator

Figure 5.1: The physical world £is a framework.

Following [41], we define two kinds of semantics for the I/O data between the

embedded system and the physical world— event semantics and state semantics.

• Event semantics requires that the receiver of the data process every event exactly

once. The loss of a single event may lead to a misunderstanding between senders and

receivers. If there is a mismatch between the production and consumption rates of

events, a blocking mechanism or a queuing mechanism may be introduced to force
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synchronization.

• State semantics reflects the current state of the physical world. It is reasonable to

only keep the most recent samples of physical states. The rate mismatch between

senders and receivers can be solved by preserving and/or overwriting data samples.

State data are usually seen in control-oriented real-time systems, where controllers

only deal with the latest state of plants.

5.1.2 Run-Time Triggers

Conceptually, computing ina run-time embedded system never terminates. This

infinite computing can be segmented into an (infinite) aggregation offinite computation.

We view these pieces of finite computation as reactions, and the starting point of each

reaction is a trigger. These triggers may ormay not directly associate with physical events.

We classify three kinds of triggers for a run-time composite actor.

• Self-triggered. Self-triggered embedded software has a single thread of control, typi

cally implemented asan infinite outer loop. Once it starts execution, it repeats some

computation and communication activities over and over again. Sensor information is

pulled from sensors to internal actors. Timing properties of reactions totally depend

on the operations performed within the loop, and may differ significantly from time

to time.

• Time-triggered. Timed-triggered embedded software starts its reaction in response

to some (predefined) clock signals. All other sensor information may be pulled from

sensors in order not to block the reaction. Time-triggered models have the advantage
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that all triggers are predictable interms oftime, and reactions potentially have precise

starting times, so that timing analysis may be easy.

• Event-triggered. Event-triggered embedded software responds to changes in some

physical variables. There are mjister events that trigger responses, and other sensor

information may bepulled. Physical events may sometimes behighly unpredictable. It

may be that a second trigger comes before the reaction ofthe first trigger isfinished.

But in many cases, the physical dynamics actually guarantees that certain kinds

of events do not repeat beyond a particular frequency. Understanding the physical

dynamics and choosing what physical event to use as triggers is a important design

decision to make for event-triggered systems.

Self-triggered embedded software does not need interrupts of any kind, but it

also suffers slow reaction to some events and non-predictable response time. Both time-

triggered and event-triggered execution requires interrupts to the system. Time-triggered

execution sacrifices promptness of response in favor of predictable timing behavior, while

event-triggered execution takes another choice.

5.1.3 Run-Time Frameworks

The internals of a run-time composite actor may be an aggregation of software

components and a framework that schedules their execution. Following the real-time pro

gramming communities, we call these software components tasks. The framework that

manages these tasks is a run-time framework. In most embedded systems, the run-time

framework is implemented as a real-time operating system (RTOS).
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Although time-triggered and event-triggered run-time composite actors can be

viewed as reactors &om the outside, their internal reactions are seldom sequential. Some

internal tasks may have a long execution time and a late deadline to finish, while some

other tasks may have to be finished promptly.

It is worthwhile to emphasize that digital embedded systems only interact with

the physical world at some discrete time instants. From the physical efiect point ofview,

only those discrete inputs and outputs afiect the computation and the physical dynamics.

The operations inside the framework, and their ordering are not visible by other physical

processes. This information hiding gives run-time frameworks the fiexibility to arrange

internal actor's operations based on reactivity constraints, as long as it preserves timing

properties of its I/O operations.

For example, an embedded controller shown in Figure 5.2 has two tasks: the

controller task computes control outputs, and the supervisor task monitors thecontrol

algorithm and updates the controller's parameters.

supervisor

controller

embedded controller

Figure 5.2: Two tasks in a controller.

Suppose that the controller is triggered by periodic samples, say every 2ms, and
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for each sampling input, the controller produces an output with a (fixed) delay, say 1ms.

The supervisor task isonly triggered once in a while, e.g. every second, and it takes much

more time to compute a new set ofparameters to update the control algorithm. Since both

tasks are implemented on the sameembedded system, they sharethe computing resources.

It is unacceptable that once the supervisor task is stsurted, the controller stop producing

any output for a long time. A better strategy is shown in Figure 5.3, where the controller

taskpreempts the long runsupervisor task. In the figure, each box represents the execution

of a task. The shaded parts in the supervisor task indicate that its execution is preempted

by the controller task.

controller • p • • • •
supervisor

t t+1 t+2 t+10 time

Figure 5.3: Timing diagram of a controller with two tasks.

Preempting long-running tasks to grant resources to a more "important" task

is a powerful concept. It may provide better reactivity than nonpreemptive execution. In

practice, manyreal-time operatingsystems support preemptive execution oftasks. However,

preemptivity also brings another level ofcomplexity to real-time progrsunming. It may mstke

real-time programs hard to understand, analyze, and maintain.
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Resource Management

Typical embedded systems usually only have limited resoiurces for its multiple

tasks. These resources include computing resources, like CPU and memory, and commu

nication resources, like buses, networks, and physical I/O. Sometimes, resources may be

simply logical. For example, a critical data section can be viewed as a resource. At any

time, there is at most one task that is allowed to write to it.

In order to understand the preemptive execution of tasks, we need to further

characterize the preemptability ofresources. Some resources are arbitrarily preemptabley to

a certain granularity. After granting theresource toa task, it can be taken back at any time

without waiting for the task to complete. A typical example ofpreemptable resources is

the CPU resource. Some resources may not be arbitrarily preemptable. Once the resource

isoccupied, itsuse cannot be interrupted until the task actively release it. During the time

that a task is using the resource, the resource is nonpreemptable. For example, a shared

communication medium is nonpreemptable during the time that a task is sending a packet.

Managing multiple resources is not trivial. For example, a task A may first need

resource a, and before releasing a, need resource 6. Another task B may first need resoiurce

6, and before releasing it, need resource a. Without carefully managing their execution, it

may occur that each reactor occupies one resource and waits for the other resource a

typical deadlock situation.

Some resources may be preemptable for some tasks, but none preemptable for

another set of tasks. We call them partially preemptable resource. For example, writing

to a critical data section is nonpreemptable for tasks that share the same data section but
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preemptable for other tasks. This partial preemptability may introduce priority inversion

problems, which will be discussed further in the next section.

5.2 Real-Time Computing; Common Practice

A common practice of embedded systems programming is to adjust priorities

among the tasks to fulfill timing constraints. Intuitively, priorities represent the relative

importance oftasks at run time. Resources should first be granted to high priority tasks

in order for it to produce faster response. Priorities can be assigned to tasks statically at

design time, or they may be dynamically assigned at run time.

Real-Time Scheduling

How to assign priorities to multiple tasks is the real-time scheduling problem and

has been an active research area for more than 20 years, starting with the seminal work by

Liu and Layland [50]. The goad ofreal-time scheduling is to come up with a set of priority

assignment rules to fulfill timing requirements.

Real-time scheduling algorithms typically make some assumptions on tasks and

resources. Forexample, Liu and Layland's original work makes the following assumptions:

• a single and arbitrarily preemptabe resource (CPU);

• independent tasks;

• fixed and known task execution time;

• periodic task triggers;
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• run-ability constraints —i.e. each task must becompleted before receiving the next

trigger.

Under these assumptions, they derived rate-monotonic scheduling (RMS) and

earliest-deadline-first (EDF) algorithms. These algorithms are shown to be optimal (in

terms of CPU utilization) for static and dynamic priority assignments. Further work inthis

area developed more sophisticated timing analysis theories and have relaxed many assump

tions in their algorithms [48], [4], [75] [68], [79]. However, most of them still rely on tasks'

worst case execution time (WCET) and arbitrary preemptability. Optimal scheduling for

multiple resources has also been shown to be NP-complete [8].

In reality, many of these assumptions in scheduling theories do not hold. Tasks

may require multiple resources to execute, and they can be strongly coupled. Priority-based

real-time programming can be very subtle. One problem example is the priority inversion

phenomena.

Priority Inversion

The intuition ofassigning priorities to tasks is toprioritize resource utilization and

obtain fast response for more critical tasks. However, because of the partial preemptability

of some resources, blindly following the priority assignment and triggering high priority

tasks may cause problems. The priority inversion problem breaks the independent task

assumption such that a high priority task may be preempted by low priority tasks indefi

nitely.

Consider the following situation where there are four tasks. A, B, C, and D with
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decreasing priorities, i.e Ahas the highest priority, while D has the lowest one. Tasks Aand

D share a critic£tl data section s. Suppose at some time instant, D is the only eligible task,

and starts to execute. During its execution, it grabs a lock on s and writes to it. Suppose

now that the task A is triggered. Since s is locked by £>, the execution of A is blocked.

Mean while, task B, which does not require resource s, may be triggered. From the view

point oftask B, B's writing to s is merely some CPU, bus, and memory operations, thus it

ispreemptable. So, B may preempt D and startexecuting, which inturnpreempts task A.

In fact, B and C can be alternatively triggered, and their executions can preempt D from

releasing s for an arbitrarily long time. The result is that A is blocked for an arbitrarily

long time, even though A has a higher priority than B and C, and A does not share a

critical section with B and C.

Priority inversion problems are usually solved by the priority inheritance and

priority ceiling protocols [60]. The basic ideas of these protocols are to look into the

content of each tasks, stnalyze shared critical data sections at compile time, and for each

data section, find the highest priority task that may access it. Call this highest priority

value TT. Then, if a lower priority task enters this section, the priority of the task inherits tt,

so that no teisk of priority lower than tt C2in preempt it. When the task leaves the critical

section, its priority dropsback to its normal value. Priority inheritance and priority ceiling

protocols successfully solve the priority inversion problem. And by adding a constraint that

all tasksneed to grabresources in the same order, it also solves the deadlock problem caused

by cross waiting for resources. Thus, these protocols are widely implemented in real-time

operating systems, like VxWorks [81], QNX [40], andresource kernel [61]. Onthe downside.
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the priority inheritance protocol may be hard to implement, and it adds run-time overhead

to monitor priorities and critical data sections. So, some light-weight real-time kernels omit

them and ask softwaxe designers to take care ofavoiding the priority inversion and deadlock

problems themselves.

More Pitfalls

Using priorities as the only tuning factor and brute-force applying priority-driven

preemptive run-time rules without considering the status of other tasks introduce many

problems. Besides priority inversion problems, other pitfalls exist when the assumptions of

real-time scheduling theories do not hold.

• Preemptive executions, especially withstatic priority assignment, are fundamentally

fragile. Timing behavior of tzisks may be very sensitive to the task triggering time

and the accuracy ofWCET estimation. An early arrivedhigher prioritytask can have

a domino effect and make all subsequent low priority tasks miss their deadlines.

• Chasing fast response may not be optimal. Some hard-real-time algorithms may have

strict requirements on the output time. An optimal result may only be achieved by

emitting the output at a particular time. Early outputs may result in a sub-optimal

(maybe even disastrous) result, as well as lateoutputs. This isparticular the case for

multimedia applications and some control systems.

• The results from schedulability analysis may not be very useful. The typical answer

from schedulability analysis is the worst case response time between the triggering

and the finish of the task. This value is required to be less than the deadline to
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pass the schedulability test. However, schedulability analysis does not tell how often

the worst case response time is met, what distribution it has, and what happens if

it is bigger than the deadline. In many applications, missing a deadline occasionally

may not cause catastrophic results. Schedulability theories are no longer applicable

in these cases.

• The worst case execution time may not be the best representation of the execution

time ofa task. It could bemuch larger than the average execution time. And byusing

WCET for scheduling analysis, the real-time schedule could be very conservative. As

a consequence, the resources are not best utilized.

An example illustrating these pitfalls is the situation called Rechard s anomalies

described in [22]. It shows that for a particular set of (precedence-)dependent tasks and an

optimal schedule, adding more processors, decreasing task execution times, or reducing the

number ofprecedence constraints will all increase the overall response time.

5.3 Real-Time Responsible Frameworks

Two things make real-time programs different from non-real-time programs; one is

prioritized execution and the other is the sensitivity of timing behavior. Of course, the first

factor is merely an operational decision to achieve the latter. This section studies precise

reactions in prioritized execution, and defines real-time responsible frameworks in terms of

time determinism.
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5.3.1 Prioritized Reactors

Whether or not an operation shouldbe performed at run time may dependon two

factors, which essentially impose psirtial ordering relations among operations:

• Data dependency: A reactor may require inputs from the physical world or results

from other operations. Thesedependencies impose ordering relations such that some

communication and computation mustbe performed before some others, as discussed

in Chapter 2. In a run-time framework, some physical inputsare unpredictable. They

aie controllable by neither the framework nor any reactors. Waiting on these inputs

may take arbitrarily long time.

• Resource dependency: Reactors need computational and communication resources

to execute. For example, in a single CPU system, all the teisks must share the same

CPU, which essentially sequentialize all theexecutions. In a multi-CPU ordistributed

system, the communication resource, either the bus or the network, must also be

shared by some tasks. Choosing what operation to perform is a decision made by a

framework. As stated before, resources can be preemptable, partially preemptable,

or nonpreemptable. Arbitrarily preemptable resources impose no constraints on the

operations that need them, while nonpreemptable resources impose ordering relations

like the first occupant must release the resource before another occupant can get it.

We will see that partially preemptable resources may introduceconflicts in ordering

relations.

Granted with data and resources, a reactor can execute its firing set, which takes

time to finish. To bias resource allocation to fulfill timing constraints, priorities can be
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assigned to the firing set of a reactor. We consider a priority to be a natural number, such

that the smaller the number is, the higher priority it represents. We denote by 11: Oper -)•

N a function that gives the priorities of to operations. Assigning priority to a firing set

essentially assigns this number to all operations in that firing set. So, for /i,/2 € A.fire|r,

n(/i) = n(/2). Areactor, whose firing setsare assigned with priorities, iscalled a prioritized

reactor.

5.3.2 Prioritized Precise Reactions

Priorities define ordering relations for operations that share the same resource. For

example, let A and B be two reactors, competing for a preemptable resource. Let trigger

r, activated at time t, be a responsible trigger for reactor A in the data dependency sense

(as discussed in Chapter 2), and trigger r\ activated at t < t' < r(r), be a responsible

trigger for reactor B in a data dependency sense^. Also, assume that firing set A.fire|r has

priority tt/i, zind firing set B.fire|r' has priority ttb < t^a- Thus, reaction B.fire|r' has a

higher priority. Since all operations in a real-time execution are associated with real time

stamps, the time instant t' essentially p£irtitions the operations in A.fire|r into two subsets:

Ai and A2, such that V/ G Ai,T{f) < t' and V/ G A2,T{f) > t'. Then, the preemptive

execution, depicted in Figure 5.4, has the following ordering relation:

V/ G Ai and V/' GB.fire|r',/ -< /'

V5 € A2,/<9

Suppose that the resource shared by A.fire|r and B.fire|r' is not preemptable.

^Recall that r is the finish operation in A.fire|r.
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Figure 5.4: An ordering diagram for preemptive execution. The dashed arrows indicate
the ordering relation without the preemption. Numbers d and d' are the execution time of
reactor A and without preemption.

then the execution of B.firejr' cannot start before the finish of A.firejr- This ordering

relation, shown in Figure 5.5, can be written as:

V/'GB.firelr',r

Now we show that partially preemptable resources may introduce conflicts in the

execution order. Suppose reactor A and C needs resource a and 5, and reactor B needs

resource a only. Inaddition, suppose bis nonpreemptable for Aand C, but is preemptable

for B. Let priorities tt/i > ttb > and triggering time r(r) < T(r') < T{r"). As shown

in Figure 5.6, we get a set of ordering relations like:

since B.fireir' preempts A.f ire|r

^ r, since C.fire|r" preempts B.fire|r'

r -< r^, since resource 6 is not preemptable for A and C.
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, A.flrel^ r' ^ time = t'

time = t+d > t

B.flrel^

ri • time= t+d+d'

Figure 5.5: An ordering diagram for nonpreemptive execution.

Obviously, these indicate a conflict. So, we have.

Proposition 5.1. Partially preemptive resources may introduce conflict in prioritized re

actions.

Thus, in order to guarantee that a set of reactors are prioritized precise reactive,

the resources they use must either be disjoint, arbitrarily preemptable, or nonpreemptable,

but cannot be partially preemptable. This also implies the following corollary.

Corollary 5.1. In a single CPU system, resources should either be arbitrarily preemptive

or nonpreemptive to guarantee prioritized precise reactions.
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resource: a. b resource: a resource: a, b

Figure 5.6: An ordering diagram for partially preemptive execution that introduces a
conflict.

5.3.3 Time Determinism and Value Determinism

Although priorities order the operations within a run-time composite actor, they

do not directly determine the timing properties of reactions. A fundamental problem of

common real-time programming models is theisolation offunctionality and timing concerns.

It assumes that designers can first code the functionality of all tasks, and rely on later

priority timing to achieve timing properties.
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Timing should be considered as an intrinsic property for real-time algorithms.

When designing algorithms for embedded systems, designers usually expect that resultofthe

computation to make effect at certain time instants. The time instants are defined as either

absolute points or relative to some other events and reactions. To formally char2u:terize

the behavior of real-time actors, we introduce the concepts of time determinism and value

determinism.

A run-time composite actor can be viewed as a discrete-event system, which re

sponds to a set of (real-)timed events and produces a set of (real-)timed events. Since it is

not always possible to view the computation ofa run-timeactor as reactors, we characterize

their real-time behaviors in terms of inputs and outputs.

Intuitively, a composite actor should "produce right values at right time." These

"right value" and "right time" are denotational requirements imposed by the physical dy

namics and the algorithms, instead of the computing resource utilization and scheduling

strategies. In order to capture these intuitions, we introduce the following definitions.

Definition 5.1. Let A be a real-time actor, and, in response to a input signal I = {(<», Vt),i €

N}, A should conceptually produce outputs E = {{ti,Vi),i € N}. In reality, an execution of

A may produce outputs E' = {(tS,v{),i G N}. Then, the execution is called time deter

ministic if ti = t\,'ii. The execution is called value deterministic if Vf = vJ,Vi.

According to this definition, E is a. set of "desired" outputs that is defined de-

notationally by the physical constraints, and E' is the set of operational outputs, subject

to computing resources and task scheduhng. Ideally, an execution should be both time

and value deterministic, then the operational semantics is consistent with the denotational
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semantics. However, a real execution may only approximate the denotational semantics, in

thesense that it may sacrifice one ortwo aspects ofthedesired results. For example, intyp

ical best-effort execution models in RTOS, time determinism is probably always sacrificed.

But there are also other models that take diflferent trade-offs.

5.3.4 Real-Time Responsible Frameworks

The activity ofa run-time composite actor is a composition ofthe run-time frame

work and the reactors under its control. This inevitably requires that the value and tinung

constraints of the composite actor be transferred into the value and time constraints in

individual reactors and requirements on the framework.

In order to make timing properties part of the semantics of reactors, we give

each reactor time stamps for their triggers and corresponding finish operations. So, at the

programming model level, a real-time reaction is a reaction whose trigger and finish oper

ations are associated with time stamps, called the baseline and the deadline, respectively.

These time stamps are declarative properties of the reaction, and their values are typi

cally resolved from the physical constraints and the algorithms implemented. Arun-time

framework should allocate resources and triggers so that reactions are executed between

corresponding baselines and deadlines. Figure 5.7 shows that the reaction of an actor is

bounded by its baseline and deadline.

At run-time, depending on the resources and task priorities, these declared timing

constraints may not always befulfilled. We call a reaction real-time precise, ifthe real time

stamps of its trigger and finish coincide with the declared baseline and deadline. If the

outputs are produced just before the finish of the task, real-time precise reactions make
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Figure 5.7: A real-time reaction isbounded by its baseline and deadline.

time and value determinism of a program relatively easy to analyze. If all the executions

in a run-time framework are precise, in terms of data and resource dependencies, then

the timing constraint of the composite actor can be translated into the constraints on the

baseline and deadline of individual reactors.

The job ofa real-time responsible framework is to manage resources and triggers

such that each reactor fulfills its baseline and deadline. A real-time responsible framework

needs to interrupt at the output time and perform write operation for the composite

actor. These timed interrupts should have the highest priority and preempt any on going

tasks. Ideally, the reaction that produces the output should have finished by this time.

A responsible framework may enforce this by properly allocating resources and forcing

all component to complete by their deadlines. By the compositionality ofdeadlines, the

response time of the composite actor is guauranteed.

However, the real execution time may vary from reaction to reaction, and the

physical event may not happen exactly at the expected time. Thus, the baselines and

deadlines of some reactions may inevitably be violated. There are different approaches

to reconcile these problems. We describe two models in this section and introduce a new

programming model in the next section.
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Giotto

Giotto [30] is a time-triggered progreunming model, where each task has a well-

defined (usually periodic) starting time (baseline) and stopping time (deadline). So all

triggers are defined with respect to the real time. Between the starting time and the

stopping time, the execution of the task shares the resomrces with other tasks. But the

output are only produced when the deadline is reached. A Giotto scheduler, using an

estimated WCET of each task, makes sure that all tasks can finish before the deadline,

otherwise it will reject the set of tasks. So, if the WCET time is accurate or loose enough,

a Giotto program will always be time-and-value deterministic at run time.

Port-based object

The port-based object (PBO) [69] model is also time triggered. But unlike the

Giotto model, it only has time-triggered starting point, but does not have time-triggered

outputs. It uses shared variables and state semantic communications to solved the exe

cution time miss-matching. For example, there are three tasks shown in Figure 5.8 —

the sensor task, the computation task, and the actuator task. Suppose that all tasks are

triggered at lOHz, but there is a phsise difference. That is, the sensor task is triggered at

0,100ms, 200m6-,...; the computation task is triggered at 10ms, 110ms, 210ms,...; and the

actuator task is triggered at 70ms, 170ms, 270ms,....

The communication represented by the arcs are shaired variables. Ideally, the

sensor has 10ms to update its output, so that it can be used by the computation. The

computation task has 60ms to compute the actuation, so the output task can read a new
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sensor ! ! computation actuator

task I ^ 1 task ! I task

10Hz 10Hz 10Hz

phase: 0 phase: 10ms phase: 70ms

Figure 5.8: Three tasks in the PBO model.

value for every ICOms. However, ifthesensor task misses it 10ms deadline, the computation

taskwill use the sensor reading from the lastcycle. Similarly, if the computation task misses

it deadline, the actuator will simply repeat its last output. Thus, a PBO model is time

deterministic—since it always produces something at the output time. But it may not be

value deterministic.

5.4 Timed Multitasking Model of Computation

In this section, we introduce a real-time model of computation that embraces

the concepts of real-time precise reaction and real-time responsible frameworks. By using

tills programming model, designers think in terms of both functionalities and I/O time

requirements. These I/O timing requirements are preserved by a run-time system a

real-time responsible framework. Thus the execution is time-and-value deterministic, as

long as there are sufficient system resources. If there are not enough resources at run time,

it preserves time determinism.
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5.4.1 Programming Concepts

Thebasic concepts in thisprogramming model are reactors, resources, andoverrun

handlers. The data dependencies ina program ishandled by tasks and responsible triggers.

The resource dependencies ina program are handled by resource and schedulability analysis.

The possible misses of deadlines are handled by overrun handlers.

Reactors

The software components in this model are prioritized precise reactors, i.e. their

triggering rules allow them to perform a finite computation without further requirements.

Thecommunication among the reactors have the event semantics and are typically imple

mented by FIFO queues. The output side of a communication is never blocked on writing.

And a trigger is only activated when there are enough data to complete a reaction. Ifstate

semantics is needed by the application, the reactor developers need to code it within the

reactor code, like consuming all the inputs and using the last one.

The triggers are the baselines for the reactions. Triggers can be expressed in

terms of (possibly combinations of) real time, physical events, and internal operations.

Tasks have deadlines, expressed in terms ofabsolute real time. A trigger ofa reactor must

be responsible, so that once the execution of the task starts, it does not wait on further

unpredictable inputs.

By annotating the timing information, designers know exactly what time delays

their programs will introduce at run-time. And this delay will bepreserved at run time.
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Resources

A reactor may need one or more resoiurces —preemptable or nonpreemptable

to execute. In a TM program, these resources are annotated to the tasks to help schedu-

lability analysis. Following the discussion of prioritized precise reactions in section 5.3.2,

we treat the execution of a reactor to be preemptable only if all the resources it needs are

preemptable by all other reactors with overlapping resource requirements. So, reactions

are either arbitrarily preemptable or nonpreemptable. This essentially prevents partially

preemptable resources and avoids priority inversion problems.

A reaction has an execution time, which is the declared nonpreempted execution

time when all the resources required by the reaction are available. Thisexecution timemay

not necessarily betheworst case execution time, ifthetask can provide meaningful overrun

handlers.

Over-run Handling

Overrun handlers are nonpreemptable piece of codes that are triggered by the

run-time framework when the corresponding tasksare about to miss deadlines. Unlike the

Giotto model, the execution ofa .TM model is event triggered. In general, it is impossible

to guarantee that all deadlines of all tasks can be met. By having these overrun handlers,

the TM model can preserve time determinism when resources are not sufficient at run time.

Providing overrun handlers also gives the TM models the possibility of better

resource utilization than traditional WCET-based models. In many applications, the WCET

may be much longer than typical execution time. Real-time sclieduling based on WCET
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may lead to a very low resource utilization. The TMscheduling based on typical execution

time can improve resource utilization on the average cases, and the overrun handlers deal

with exceptional long executions.

In summary, the semantics of the model is that if there are enough resources at

run-time, then each reactor will be gratnted with the declared resources for at least the

declared execution time, before the deadline is reached. The output of the execution is

only made available to other tasks and the outside physical world when the deadline is

reached. This is also called faster-than-real-time computation in some literatures [71]. If

a task has not finished by the deadline, the task will be stopped and the overrun handler

will be triggered. Notice that this semantics does not directly specify the priorities ofany

tasks. Typically, there may be multiple priority assignment pohcies that can fulfill the

timing requirements. And for any feasible scheduling policy, theexecution result ofa model

is exactly the same, in terms of time and value determinism. In this sense, the TM model

is immune to scheduling policies.

5.4.2 Execution Model

The execution model ofTM programs is a stylized use of priority-based multitask

ing execution, as seen in most real-time kernels.

Through compilation, the reactors in the TM model are classified (and possibly

merged) into a set of preemptable and nonpreemptable tasks, depending on their resource

requirements and triggering rules, similar to the techniques described in [72]. A task may

be in oneof threestates: idle, ready, or active. A task is idle if it is not triggered. After

being triggered, a task is ready to execute, but may wait for resources. When there are
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resources available, a ready taskmay start executing andbecome an active task. Anactive

task may bepreempted by another ready task iftheready task has a higher priority and the

active task ispreemptable. Arun-time system typically manages three pools, corresponding

to the three states of the tasks, as shown in Figure 5.9.

idle

ready
trigger ,

finish

! resource

preempted available
\ I
\ /

active

/

Figure 5.9: Three tasks pools in typical RTOS kernels.

The triggering rules of the reactors Me the guards that bring tasks from the idle

pool to the ready pool. The predicates on the triggering rule tells the run-time framework

when these rules should be examined. At run time, some of these predicates, like those

regarding physical events, are implemented as interrupts for the run-time framework.

Thepriorities oftsisks in the ready pool andthe preemptiveness ofthe tasks inside

the active pool determine which task will be moved to the active pool. Typically, as long

as the tasks are in the ready pool, their priorities never change. The priorities may change

for each time a task is moved from the idle pool to the ready pool. Priorities can be

statically or dynamically assigned. Dynamic priority assignment usually introduces more

run-time overhead than static priority assignment.
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The run-time system for TM programs strictly obeys the deadlines for each task.

It keeps track ofthe deadlines for all tasks. And when thedeadline is reached, it asks the

taskto produce its outputs. If at the deadline time, the task isstillin the readyor active

pools, the run-time framework will terminate the task smd call its overrim handler. The

overrun handler'sexecution are nonpreemptable. A terminatedtask is put backto the idle

pool.

5.4.3 Implementation

The TM domain in Ptolemy II implements a very preliminary version ofthe timed

multitasking model ofcomputation. In this domain, actors (conceptually) execute as con

current threads in reaction to inputs. Actors need to be designed in the way that each

input event is a responsible trigger in the data dependency sense. Resources are assumed

to bearbitrarily preemptable and actors are statically assigned with priorities. An actor

specifies a executionTime, which is the amount oftime for the reaction tocomplete. Spec

ification of deadline and scheduling analysis have not been implemented, and we assume

that actors can always finish their execution within the specified execution time.

TheTMDirector provides an event dispatcher, which maintains a prioritized event

queue. The execution ofan actor is triggered by theevent dispatcher by invoking first its

prefireO method. The actor may begin execution ofa concurrent thread at this time.

Some time later, the director will invoke the fireO and postfire () methods of the actor

(unless prefireO returns false).

The current implementation only supports one shared resource, the CPU. At one

particular time, only one ofthe actors can get the resource and execute. Execution ofone
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actor may be preempted by another eligible actor with a higher priority input event. If

an actor is not preempted, then the amount oftime that elapses between prefireO and

fireO equals the declared executionTime. Ifit is preempted, then it equals the sum ofthe

executionTime and the execution times of the actors that preempt it. The current imple

mentation of the TM domain in Ptolemy II only simulates the execution ofa TM model of

computation, under ideal assumptions. An implementation ofa programming environment,

together with a run-time framework, that fully support real-time precise reactions is part

of futiure work.

5.5 Examples

We give two examples in this section to illustrate the use ofthe TM domain. The

first example is a simulated control system, where the controller is implemented in the

TM model. The second example shows a multitasking execution under the Java^^ virtual

machine (JVM)^. It uses thread schedulers within the JVM to approximate a TM run-time

environment.

5.5.1 Shared Resource Controllers

This example, as shown in Figure 5.10, shows two independent controllers sharing

the same computation resource.

The top level is a CT model, implementing two continuous dynamic systems,

^Java^^ is a trademark of Sun Microsystems, Inc.
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Figure 5.10: Two controllers sharing a computation resource.

Plant1 and Plant2, In this case, the Laplace transfer functions of both plants are,

+ s
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(5.1)

The sampling rates are different, so that the triggers ofthe two controllers are not perfectly

aligned.

Two discrete controllers, implemented in the TM domain, sharea resource — the

CPU. Due to the priorities of the tasks, and the execution policies, each controller may

introduce a delay in its reaction. So, the actual delay of a task may not be the execution

time it has specified, unless it has the highest priority and the execution is preemptive.

Thecontinuous plants have well adjusted parameters such that if the delay is too long, the
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Table 5.1: Experimental parameters for the shared resource controllers

plots priorityl priority2 preemptiveness

(a) high low preemptive

(b) low high preemptive

(c) high low nonpreemptive

(d) low high nonpreemptive

system becomes imstable.

The executions, whose parameters are listed in Thble 5.5.1, are shown in Figure

5.11. The results indicate the following observations:

• Real-time execution policies may have big impact ontheclosed-loop performance ofan

embedded system. Suppose that the execution times specified are the real execution

times ofa controller, then depending on the implementation, like priority assignment,

we actually get dramatically different results.

• Preemptive execution policies are not necessarily better than nonpreemtive execution.

Real-time systems have to beconsidered in terms ofoverall performance, rather than

sacrificing one control loop for the other.

• For a TM model, given that there eu-e enough resources for tasks to finish before

the specified execution time, then a TM run-time can guarantee that the run-time

behavior of the system is the same as the ones simulated. This is not true in general

real-time programs, where the output delay depends on the finish time of the task,

rather than the specified execution time.
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Figure 5.11: For preemptable executions, the control loop with low priority is unstable.
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5.5.2 Background Processes

This example, Figure 5.12 shows the use of preemptable and nonpreemptable tasks

in the TM domain. The model simply generates a noisy sine wave and performs spectrum

analysis using an FFT algorithm.
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Figure 5.12: Preemptable and nonpreemptable t£isks ina TM model.

Thereare two composite actors in the model. The one labeled signal generator

nonpreemptable task, and the other labeled FFT thread is a preemptable task. The

nonpreemptable task is executed in the event dispatdier tliread, while the preemptable task

is executed in aseparate thread. Both of these composite actors are internally implemented
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using the SDF model. In the example, the signal generator actor has priority 5 and

execution time 0.0001, which can basically be ignored. The FFT thread composite actor

has the execution time set to 0.25 seconds, and we explore the effect of its priority and the

JVM thread scheduling. The execution is preemptive

The execution results with simulated time are shown in Figure 5.13, where FFT

thread has a high priority, and in Figure 5.14, where FFT thread has a low priority. Re

member that the logging may beaffected by the FFT process, which contains a large chunk

of computation. It is obvious that when FFT thread has a low priority, it does not block

the logging process.

TimedPlotter —
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Figure 5.13: Execution result of the background process example, when FFT thread has a
high priority.
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23456789 10

Figure 5.14: Execution result of the background process example, when FFT thread has a
low priority.
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How to map the modeling time to real time in a run-time framework is the next

question. A correct run-time framework for thismodel should arrange system facilities such

as timers, locks and semaphores, and scheduling policies to produce exactly the same be

haviors at run time. There are possibly many choices to implement such a run-time system.

An obvious one is to build the run-time system on top of a hard-real-time operating system,

which gtlready provides high-accuracy timers, preemptive multitasking, and resource locks.

For resource-rich systems, where the computation power is cheap but the operating system

is not so "real-time", a faster-than-real-time strategy may be more applicable. Accurate

timing behavior can be achieved by the help of smart sensors and actuators.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation studies modelingand designof heterogeneous embedded systems.

The approach taken to tame heterogeneity in embedded systems is a component-based

hierarchical one. An embedded system is considered as an aggregation of components under

a framework. Frameworks can be hierarchically composed to combine different semantic

models. I focus on abstract semantic properties related to reactivity 2ind its composition.

The key issue I address in the dissertation is

what frameworks are "good"?

Given the reactive nature of embedded systems, a good framework should preserve the re

activity ofeach component, and make this reactivity composable. These ideas are captured

in the concepts of precise reactions and responsible frameworks.
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In Chapter 2,1 present the reactor model and define precise reactions, atomic re

actions, responsible triggers, and responsible firameworks. Thereactor model isan abstract

operational semantic model that uses partial order relations among operations to capture

computation, communication, and flow ofcontrol in component-based frameworks. Oper

ations may be grouped into reactions, which are triggered by the framework according to

some triggering rules. Areaction isprecise ifit can befinished completely ina compositional

execution. A responsible trigger, which summarizes all the preconditions for a reaction, can

always guarantee a precise reaction. A framework is responsible if it requires all triggering

rules to be responsible and triggers reactions accordingly. Responsible frameworks have

many good properties, like preservation of quiescent states, detectable deadlocks, and se-

quentializable execution. I also show that among commonly used frameworks, like CSP,

PN, and dataflow, some are responsible, while some are not.

In Chapter 3, I consider the compositionality of precise reactions. The goal is to

allow a composition ofactors ina framework to behave like an atomic actor ina higher level

model. I show that responsible frameworks help sichieve compositional precise reactions and

precise mode switching.

Embedded systems typically have a notion of time, and need to be modeled in

timed frameworks. Chapter 4 is devoted to responsible timed frameworks. In fact, the

notion of a continuous time helps define precise reactions. In the study of continuous-time

frameworks, I recognize the importance ofprecisely controlling the integration step sizes to

obtain responsible triggers to all continuous, discrete, and hybrid components. The study

yields simulation techniques for mixed-signal systems, which are compositions of CT and
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DEframeworks, and hybrid systems, which are compositions ofCT and FSM frameworks.

The results in these threechapters also provide insights to formally integrate modeling and

simulation tools. In [53], we have claimed that not all tools can be integrated in ad hoc

ways. Tools need to expose enough semantic information to be used by other tools. The

study inthese chapters indicates that this semantic information isexactly how aninvocation

of one tool can finish a precise reaction.

In Chapter 5, I further apply responsible frameworks to real-time systems, where

the reactions not only have a physical notion of time, but also have a notion ofpriority. I

show that irresponsible triggers in a priority based execution environment may introduce

the priority inversion problem. After analyzing time determinism and value determinism

in run-time frameworks, I proposed a timed multitasking (TM) model of computation for

real-time embedded software. This model has the notion of time and resources at the

programming level and relies on a responsible real-time framework to preserve it at run

time.

6.2 Future Work

6.2.1 Formal Semantics for Component-Based Design

Component-based approaches, with promising properties like coraposability, scal

ability, and reusability, have great potential in modeling and design technologies for em

bedded systems. To understand these promising properties, formal semantic models are

required. Among various recent achievements, interface theories [17] formalize component

interfaces and their refinements, and behavior type systems [47] formalize dynamic behavior
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of compoiieiits and frameworks into a type system. This work is a starting point towards

framework theories, which will formalize thedynamics and compositionality offrameworks.

6.2.2 Run-Time Frameworks

The studies of time determinism, value determinism, and real-time responsible

frameworks suggest that we can have better approaches to ensure timing properties in em

bedded software than the current RTOS-based methodologies. Essentially, from high-level

models, we can generate real-time frameworks that meet the specific timing and resource

constraints in the application. Furthermore, the ideaofrun-time frameworks should not be

limited by computer boundaries. A run-time framework may cross many distributed com

putation platforms andcommunication channels to achieve coordinations among large-scale

systems. The compositionality studied in this dissertation will help hierarchically manage

these frameworks to achieve further scalability and determinism [51]. Hierarchical run

time frameworks may be particularly useful in applications like distributed control systems,

sensor networks, and real-time information processing.

6.2.3 Software Synthesis for TM Models

A next step for the work on timed multitasking models is to synthesis run-time

software from TM specifications. Some ideas are highlighted in the following.

We only consider single processor platforms at this time. The software synthesis

has three steps — trigger analysis, resource analysis, and timing analysis.
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Trigger analysis

Thetrigger analysis steplooks at the triggering rules ofeach reactors. It separates

physical events, including timers, from internal triggers. It builds an interrupt table for

physical events and maps the interrupts to trigger predicates. It also builds a table ofwhat

operations should be monitored, together with the corresponding trigger predicates.

Resource analysis

The resource analysis step looks at the resource annotation on each reactor, and

analyzes the preemptability of its execution. The results of resource analysis are a set of

arbitrarily preemptable tasks and a set of nonpreemptable tasks. In addition, the overrun

handlers for the reactors are treated as nonpreemptable tasks.

Timing analysis

Thetiming analysis steplooks for a real-time scheduling policy, staticor dynamic,

to fulfill the timing requirement of the run-time composite actor, based on the execution

time and deadlines of individual reactors. In general, finding an optimal schedule may be

an NP-hard problem. However, since thesemantics ofthe model relies on the denotational

timing properties instead oftask execution times, a sub-optimal sclieduling isacceptable as

long as it fulfills the timing requirements.

Optimization

Further optimization may be performed to improve timing properties and reduce

run-time overhead. For example, it is desirable to merge strongly connected tasks. Strongly



150

connected tasks are a set ofpreemptive tasks that can be assigned the same priority, and

where only one ofthese tasks are triggered by external events. It is sometimes desirable to

split a task into smaller tasks to improve reactivity, since inthe TM model, the outputs are

only made available at the deadline time.

6.3 Final Words

=+§,

Thirty spokes meet at a nave;

Because of the hole we may use the wheel.

Clay is molded into a vessel;

Because of the hollow we may use the cup.

Walls are built to make a house;

Because of the emptiness we may use the room.

Therefore, what is present is used for profit;

But it is in absence that there is usefulness.

— Lao Zi, Dao De Jing,

dates uncertain. Speculations

ranges from 600 BC to 200 BC.



151

Bibliography

[1] Gul A. Agha. ACTORS: AModel of Concurrent Computation in Distributed Systems.

The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1986,

[2] Rajeev Alur and Thomas A. Henzinger, Reactive modules. Formal Methods in System

Design, 15:7-48, 1999.

[3] P. J. Ashenden. The Designers Guide to VHDL. Morgan Kaufmann Publishers, 1996.

[4] N. C. Audsley, A. Burns, M. Richardson,, and A. Wellings. Hard real-time scheduling:

The deadline monotonic approach. In Proceedings of IEEE Workshop on Real-Time

Operating Systems and Software, pages 133-137, May 1991.

[5] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-

Software Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic

Press, 1997.

[6] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In

J.C.M. Baeten and S. Mauw, editors, 10th International Conference on Concurrency

Theory (CONCUR'99), LNCS 1664, pages 162-177. Springer-Verlag, 1999.



152

[7] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,

semantics, implementation. Science of Computer Programming^ 19(2):87-152, Novem

ber 1992.

[8] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz. Schedulingimder resource

constraints - deterministic models. Annals of Operations Research, 7, 1986. Baltzer

Science Publishers.

[9] G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling Language: User's

Guide. Addison-Wesley, 1999.

[10] V. Bryant. Metric Spaces. Cambridge University Press, 1985.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for

simulating and prototyping heterogeneous systems. International Journalof Computer

Simulation, special issue on "Simulation Software Development,", 4:155-182, April

1994.

[12] Joseph T.Buck and Edward A. Lee. Scheduling dynamic dataflow graphs with bounded

memory using the token flow model. In Proceedings of IEEE International Conference

on Acoustics, Speech, and Signal Processing, pages 429-432, Minneapolis, MN, 1993.

[13] Joseph T. Buck and Radha Vaidyanathan. Heterogeneous modeling and simulation of

embedded systems in El Greco. In Proceedings of the Eighth International Workshop

on Hardware/Software Codesign (CODES'OO), pages 142—146, San Diego, OA, May

2000.



153

[14] James C. Candy. A use of limit cycle oscillations to obtain robust analog-to-digital

converters. IEEE Transaction on Communications^ COM-22(3):298—305, March 1974.

[15] Avant! Corporation. Saber, http://www.avanticorp.eom/product/l,1500,65,GO.html.

[16] Avant! Corporation. VeriasHDL: Language-independent, mixed-signal simulator.

http://www.avanticorp.eom/product/l,1500,73,00.html.

[17] Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based

design. In Proceedings of the First International Workshop on Embedded Software

(EMSOFT), Lecture Notes in Computer Science 2211. Springer-Verlag, 2001.

[18] Akash Deshpande, Aleks Gollu, and Pravin Varaiya. SHIFT: Aformalism and a pro

gramming language for dynamic networks ofhybrid automata. In Hybrid Systems V,

LNCS 1567, pages 113-133. Springer, 1997.

[19] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces: Principles, Patterns,

and Practive. Addison-Wesley, 1999.

[20] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.

Prentice-Hall, Englewood CliflFs, NJ, 1971.

[21] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with multiple

concurrency models. IEEE Transactions On Computer-aided Design Of Integrated

Circuits And Systems, 18(6):742-760, June 1999.

[22] R.L. Graham. Bounds on the performance ofscheduling algorithms. In Computer and

Job Scheduling Theory, pages 165-225. John Wiley and Sons, N.Y., 1976.



154

[23] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler,

N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao,

S. Ross, and B. Zhao. The Ninja architecture for robust internet-scale systems and

services. Computer Networks on Pervasive Computing, 35(4):473-497, 2000.

[24] IEEE 1076.1 Working Group. VHDL 1076.1-1999: Analog andmbced-signal extensions

to VHDL, 1999.

[25] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time

applications with Signal. Proceedings of the IEEE, 79(9):1321—1336, September 1991.

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Thesynchronous dataflow pro

gramming language Lustre. Proceedings of the IEEE, 79(9):1305—1320, September

1991.

[27] D. Harel and A. Pnueli. Onthe development ofreactive systems. In K. R. Apt, editor.

Logics and Models of Concurrent Systems, volume F-13 of NATO ASI Series, pages

477-498. Springer-Verlag, 1985.

[28] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal sememtics of

Statecheirts. In Proceedings of the Symposium on Logic in Computer Science, pages

54-64, June 1987.

[29] Thomas L. Harman andJames B. Dabney. Mastering Simulink 4- Prentice Hall, 2001.

[30] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded control systems develop

ment with Giotto. In Proceedings of Languages, Compilers, and Tools for Embedded

Systems (LCTES'Ol), June 2001.



155

[31] Thomas A. Henzinger, Shaz Qadeer, andSriramK.Rajamani. Decomposing refinement

proofe using assume-guarantee reasoning. In Proceedings of the lEEE/ACM Interna

tional Conference on Computer-aided Design (ICCAD), pages 245-252, 2000.

[32] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, April 1985.

[33] John Davis II. Order and Containment in Concurrent System Design. PhD thesis,

Department of EECS, University of California, Berkeley, September 2000.

[34] John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiaojun

Liu, Lukito Muliadi, Steve Neuendorfier, Jeff Tsay, Brian Vogel, and Yuhong Xiong.

PtolemyII: Heterogeneous conciurrent modeling and design in Java. Technical Memo

randum UCB/ERL MOl/12, EECS, University of California, Berkeley, March 2001.

[35] Open Verilog International. Verilog-AMS language reference manual 2.0, Jan 2000.

[36] J. Janneck. Syntax and semantics ofgraphs - An approach to the specifcation ofvisual

notationsfor discrete-event systems. PhD thesis, Institut fr Technische Inforniatik und

Kommunikationsnetze, ETH Zrich, Swaziland, June 2000.

[37] R. Johnson. Framework = (components -I- patterns). Communications of the ACMy

40(10):39-42, Oct. 1997.

[38] J.Vlach and A. Opal. Modern CAD methods for analysis of switched networks.

IEEE Transaction on Circuits and Systems-I: Fundamental Theory and Applications.,

44(8):759-762, 1997.



156

[39] G. Kahn. The semantics of a simple language for parallel programming. In IFIP

Congress 74. North-Holland PublishingCo., 1974.

[40] FVank Kolnick. The QNX 4 Real-time Operating System. Basis Computer Systems,

2000.

[41] Hermann Kopetz. Real-Time Systems : Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, 1997.

[42] Edward A. Lee. Modeling concurrent real-time processes using discrete events. Annals

of Software Engineering, 7:25-45, 1999.

[43] Edward A. Lee. What's athead for embedded software. IEEE Computer, 33(9):18-26,

Sept. 2000.

[44] Edward A. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL

MOl/11, University of California, Berkeley, March 2001.

[45] Edward A. Lee and David C. Messerschmitt. Synclironous data flow. Proceedings of

the IEEE, Sept. 1987.

[46] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of the

IEEE, 83(5):773-801, May 1995.

[47] Edward A. Lee and Yuhong Xiong. System-level types for component-based design. In

First Workshop on Embedded Software, EMSOFT2001, LNCS 2211. Springer-Verlag,

Oct. 2001.



157

[48] J.P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings ofIEEE Real-Time Systems

Symposium, pages 166-171, Dec. 1989.

[49] M. A. Lemkin. Micro Accelerometer Design with Digital Feedback Control. PhD thesis,

EECS, University of California, Berkeley, Dec. 1997.

[50] C. Liu and J.Layland. Scheduling algorithms for multiprogramming in ahard real-time

environment. Journal of the ACM, 10{1):46-61, Jan 1973.

[51] Jie Liu, Stan Jefferson, and Edward A. Lee. Motivating hierarchical run-time models

inmeasurement and control systems. In 2001 American Control Conference (ACC 01),

pages 3457-3462, Arlington, VA, June 2001.

[52] Jie Liu and Edward A. Lee. Acomponent-based approach to modeling and simulating

mixed-signal and hybrid systems, submitted to ACM Trans, on Modeling and Com

puter Simulation, Special Issue on Computer Automated Multi-Paradigm Modeling.

[53] Jie Liu, Biclieng Wu, Xiaojun Liu, and Edward A. Lee. Interoperation of heterogeneous

CAD tools in Ptolemy II. In Symposium on Design, Test, and Microfabrication of

MEMS/MOEMs, March 1999.

[54] F. Maraninchi. The Argos language: Graphical representation of automata and de

scription ofreactive systems. In IEEE Workshop on Visual Languages, oct 1991.

[55] C. Moler. Are we there yet? Zero crossing and event handling for differential equations.

In Matlab News and Notes: Simulink2 Special Edition, pages 16-17. The Mathworks

Inc., 1997.



158

[56] Pieter J. Mosterman. An overview of hybrid simulation phenomena and their support

by simulation packages. In Hybrid Systems: Computation and Control (HSCC99),

LNCS1569, pages 165-177. Springer, 1999.

[57] Object Management Group (CMC). CORBA event service specification, version

1.1. Document formal/01-03-01, http://www.omg.org/cgi-bin/doc7formal/2001-03-01,

March 2001.

[58] Carlos O'Ryan, Douglas C. Schmidt, and J. Russell Noseworthy. Patterns and perfor

mance of a CORBA event service for large-scale. International Journal of Computer

Systems Science and Engineering, CRL Publishing, 2001.

[59] A. Pasetti and W. Pree. Acomponent framework for satellite on-board software. In

IEEE/AIAA18th Digital Avionics Systems Conference (DASC'99), Saint Louis, MI,

Oct. 1999.

[60] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Ap

proach. Kluwer Academic Publishers, 1991.

[61] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shui Oikawa. Resource Kernels:

A resource-centric approach to real-time systems. In Proceedings of the SPIE/ACM

Conference on Multimedia Computing and Networking, Jan. 1998.

[62] Arend Rensink and Heike Wehrheim. Dependency-based action refinement. In P. Ruz-

icka, editor, MFCS'97 Mathematical Foundations of Computer Science, number 1295

in Lecture Notes in Computer Science. Springer, 1997.



159

[63] R. A. Saleh and A. R. Newton. Mixed-Mode Simulation. Kluwer Academic Publishers,

1990.

[64] Douglas C. Schmidt, David L. Levine, and Chris Cleeland. Architectures and patterns

for high-performance, real-time CORBA object request brokers. In Marvin Zelkowitz,

editor. Advances in Computers. Academic Press, 1999.

[65] S. Senturia. Cad challenges for microsensors, microactuators, and microsystems. Pro

ceedings of the lEEE^ 86(8):1611-1626, Augest 1998.

[66] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM

Journal on Scientific Computing^ 18(l):l-22, 1997.

[67] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company,

1997.

[68] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems.

Real-Time Systems Journal, 10(2):179-210, 1996.

[69] D. B. Stewart. Software components for real time. Embedded Systems Programming,

13(12):100-138, Dec. 2000.

[70] Morris Tenenbaum and Harry Pollard. Ordinary Differential Equations. Dover Pubns,

1982.

[71] David Tennenhouse. Proactive computing. Communications of the ACM, 43(5):43-50,

May 2000.



160

[72] F. Thoen, M. Cornero, G. Goossens, and H. De Man. Software synthesis for real-time

information processing systems. In ACM SIGPLAN }^oTkshop on LCT for Real-Tivfie

Systems^ La Jolla, OA, June 1995.

[73] D. E. Thomas. The Verilog Hardware Description Language. Kluwer Academic Pub

lishers, 1998.

[74] Michael Tiller. Introduction to Physical Modeling With Modelica. Kluwer Academic

Publishers, 2001.

[75] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analyzing fixed

priority hard real-time tasks. Real-Time Systems Journal., 6(3):133—151, 1994.

[76] Rob J. van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions

for concurrent systems. Acta Informatica, 37(4/5):229-327, 2001.

[77] Andrei Vladimirescu. The SPICE Book. John Wiley &Sons, 1993.

[78] M. von der Beeck. Acomparison of Statecharts variants. In Formal Techniques in

Real-Time and Fault-Tolerant Systems, September 1994.

[79] Yun Wang and Manas Saksena. Scheduling fixed-priority tasks with preemption tliresh-

old. In International Conference on Real-Time Computing Systems and Applications,

Dec. 1999.

[80] Linda Wills, Suresh Kannan, Sam Sander, Murat Guler, Bonnie Heck, J.V.R. Prasad,

Daniel Schrage, and George Vachtsevanos. An open platform for reconfigurable control.

IEEE Control Systems Magazine, pages 49-64, June 2001.



161

[81] Wind River Systems, Inc. VxWorks Programmer's Guide, 1997.

[82] Glynn Winskel. Event structures. In Advances in Peiri Nets, LNCS 255, pages 325-

392. Springer, 1986.

[83] N. Wirth. Program development by stepwise refinement. Communications of the ACM,

14{4):221-227, April 1971.


	Copyright notice 2001
	ERL-01-41

