
 

 

 

 

 

 

 

 

 

Copyright © 2001, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DONT CARE COMPUTATION IN MINIMIZING

EXTENDED FINITE STATE MACHINES

WITH PRESBURGER ARITHMETIC

by

Yunjian Jiang and Robert Brayton

Memorandum No. UCB/ERL MO1/35

7 December 2001



DONT CARE COMPUTATION IN MINIMIZING

EXTENDED FINITE STATE MACHINES

WITH PRESBURGER ARITHMETIC

by

Yunjian Jiang and Robert Brayton

Memorandum No. UCB/ERL MO1/35

7 December 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Don't Care Computation in Minimizing Extended Finite State Machines
with Presburger Arithmetic

Yunjian Jiang Robert Brayton
Department of Electrical Engineering andComputer Sciences

University ofCalifornia, Berkeley
{wjiang,brayton}@eecs.berkeley.edu

Abstract

This paper addresses the problem of generating logic don7
cares in minimizing an ExtendedFinite State Machines (EF-
SMs). EFSMs have been proposed to model control oriented
systems. A version of this, with thedataportion modeled by
Presburger arithmetic, has been used informal verification.
A structural representation of such EFSMs and an optimiza
tion scheme usingmulti-valued logic is proposed in thispa
per. It consists ofnew methods to transfer don 7cares through
the datapath and to generate logic don't caresfrom thedata
path. Potential applications are discussed andpreliminary re
sults validate the scheme on some reasonable examples.

1 Introduction

Extended Finite State Machines (EFSMs) have been studied
forsystem level design modeling andsynthesis [3,4], asa way
to raise abstraction levelsand captureboth hardwareand soft
wareissues. AnEFSM is a systemwitha finite statecontroller
interacting with anunbounded integer datapath [8]. Each tran
sition of the controlleris guarded by a predicate over the in
teger variables, andassociated with an action ftinction which
updates the new values of theinteger variables. Inallapplica
tions, smaller EFSMs are beneficial since they correspond to
lesscomplex systems to verify, morecompact codeto be gen
erated,andeasierinterpretation of timingspecifications. How
ever,minimizing an EFSMhas been little studied.

Often, the predicates and action functions of a design are
definable in Presburger arithmetic, a decidable subset of the
general Peano arithmetic innumber theory [9],excluding mul
tiplication. Presburger formulas consist ofnatural number con
stants,naturalnumbervariables, addition,equality, inequality
and first order logical connectives. Although studied exten
sively, theyhave beenapplied only recently, due to the intro
duction of efficienttools to analyze and check for satisfiability
[16]. In case the datapath can be expressed as a Presbiurger
formula, a reachability analysis can be performed on the ma
chine. This approach has be proposed and used in the formal

verification [7,20].
We focus on the minimization of the control logic parts of

EFSMs,with the data information used to assist the logic min
imization as needed. In this, we use a structural representa
tion with a multi-valued logic network combined with datap
ath constructs, such as predicates, multiplexers and data ex
pressions. Themain contribution of thispaperis in computing
logic don'tcares from thePresburger expressions andtransfer
ring don't cares throughthe datapath.

Other than the applications of EFSMs in formal verifica
tion,ourapproach canbe usedinsymbolic verification of tim
ing diagrams as discussed by Amon et al [1], andfor Esterel
compilation. In [13], we discussed using multi-valued logic
combinedwith datapath constructs as an intermediate repre
sentation foroptimization andcodegeneration fromEsterel. If
the data expressions used in Esterel are limited to Presburger
arithmetic, theapproach presented herecanbeusedto generate
more efficient implementation code.

In Section 2, we describe our framework of EFSM mini
mization and related research. Section 3 presents our method
of transferring logic don't caresthrough the datapath. Section
4 discusses the detail of computinglogic don't cares from Pres
burger inequality expressions. We give some results inSection
5 and conclude in Section 6.

2 Methodology and Related Work

To avoidthe state space explosion, we use a structural circuit
representation, called control-data networks, forEFSM mini
mization. A control-data network has control nodes and data
nodes interconnected with wires, or variables. There are two
types of variables: multi-valued variables with finite ranges
and data variables with unbounded ranges. There are four
typesof nodes: control, multiplexer, dataandpredicate nodes.
Theseare categorized according to theirinputand outputvari
ables types, as in Table 1. There is a directed edgefrom node
t to node j, if the function at node j syntactically dependson
the output variable at nodei. Thenetwork hasa setofprimary
inputs anda set of nodes designated as the outputs of the net-



work. There are also latches for both control and data variables

to model sequential behaviors.

node types operation input output

control logical MV MV

expression arithmetic data data

multiplexer assignment MV/data data

predicate predicate data MV

Table 1: Node types in a control data network

Having explicit multiplexers enables further logic minimiza
tion and datapath simplification. We define a multiplexer as

/ = fiyciVo,' •• yVn-i), where j/c is a MV-variable with n
values, 2/i, i 6 [0,n —1]are datainputs,and the output/ is as
signed to Pi if pc = i. Logic optimization heuristics like node
collapsing and elimination are generalized for multiplexers.

2.1 Multi-Valued Logic Networks

The part of the network that consists of control nodes are
represented as a multi-valued logic network. Each control
node in the network is a multi-valued function. In general,
a variable Xi is multi-valued and takes on values from the set
Pi = {0,1,..., \Pi\ —1}. A literal of a MV-variable x is as
sociated with a subset of values for that variable. A product
term or cube is a conjunction of literals and evaluates to 1 if
each of the literals evaluates to 1. A sum-of-products (SOP)
is the disjunction ofa set ofproduct terms and it evaluates to 1
ifany of the products evaluates to 1.

A set of optimization methods for such multi-valued logic
networks are implemented in MVSIS [11]. Algebraic meth
ods [10] includemethods for finding common sub-expressions,
semi-algebraic division, decomposing an MV-network, factor
ing an expression, and algebraic resubstitution. Node simpli
fication [12] uses a generalization ofcompatible observability
don't cares (CODC) to minimize the logic of a node in the net
work. This performs Boolean resubstitution as well. Elimina
tion merges a node into its fanouts. Resubstitution tries to sub
stitute existing nodes into larger nodes in order to save cubes
or literals. Also methods specifically tuned for multi-valued
logic, like pair decode and encoding [11], are used.

In this paper, new optimization schemes that incorporate
datapath information are introduced. We first extend the
CODC computation to consider different types of data nodes.
This is similar to the black box approach [14], but deals with
more cases. We then present methods to compute logic don't
cares from Presburger expressions. For the case where a set of
predicate nodes fans out to the MY logic, the combination of
the predicates that can't occur are used as don't cares to mini
mize the logic.

2.2 Related Work

The Polis project [3] uses EFSMs for intermediate represen
tation for synthesis and optimization. A high-level design
language, like Esterel [6], is interpreted into a circuit EFSM
representation, which is subsequently optimized and mapped
into hardware and/or software [4], depending on system con
straints. Binary Decision Diagrams (BDD) are used to rep
resent and optimize the control logic, while the datapath is
stored separately in a look-up table. The BDD optimizations
are tuned for low level hardware implementation, and the dat
apath information can not be utilized for optimization. Subse
quent research [2] included data expressions, but only as black
boxes.

Presburger arithmetic is adopted for its decidability, but the
best known procedure for deciding a Presburger expression is
triple exponential in the length of the formula [15]. There two
basic approaches for manipulating and checking the satisfia
bility of Presburger formulas; automata-based and polyhedra-
based. A good comparison of these is presented in [20].

Amon etal[l\ proposed a method to simplify a Presburger
expression in an application for symbolic timing verification.
This is the work most related to this paper. Given a set
of quantifier-free Presburger inequalities, the approach uses
a heuristic to collect predicate combinations that can't occur.
They are then presented as don't cares for a logic minimizer
[17]. There are two basic limitations: (a) The heuristic ex
amines the Presburger expressions and incrementally selects
logic combinations with the number of literals gradually in
creasing. It is computationally impossible to enumerate all
combinations, (b) Each potential combination is individually
check by an Presburger tool. Omega [16] for satisfiability. It is
computationally expensive to invoke such tools for each can
didate.

3 Transferring Don't Cares through
the Datapath

Compatible Observability Don't Cares (CODCs) are defined
as the set ofminteims, for an intermediate node in a logic net
work, that make the logic value of this node non-observable at
the primary outputs. This has been used as a powerful mech
anism in minimizing a multi-level logic network, as imple
mented in SIS [17].

Traditional methods for CODC computation have been gen
eralized for multi-valued logic networks [12]. Here we further
generalize it to incorporate datapath information. In the discus
sion that follows, the CODC set is defined in the logic domain
composed ofall intermediate MV-variables in the network.

For control nodes, where inputs and outputs are all MV vari
ables, the same multi-valued CODC computation [12] applies.
For a multiplexer / = fiPcyVoy" ,2/n-i)» let CODCf be



M2

Ml

Figure 1: Multiplexer Example

theCODC setcomputed for theoutput/. It is straight forward
that:

CODCyt = {ye¥^i)liCODCf
CODCy, = CODCf

For a predicate or data node / = /(j/i,... ,j/n). where all
inputsare data variablesand /:

CODCy^ = CODCf.

The method above does not look into the computation inside
a dataexpression. This is verysimilarto the "blackbox" ap
proach [14], except thattheuseof multiplexers produces addi
tional don't cares.

Amultiplexercanalsobe simplified using its CODC set. Let
X be the Boolean spaceof all intermediate MV-variables, and
Nc{X) be the functional mapping from X to the controlling
variable yc.

S = NciCODCf)

S is the set of "care" values for yc. Let M be the set of all
values that j/c can take. Then the data inputs associated with
values in {M\5} are not observable at primary outputs and
hence can be removed.

Figure 1 shows an example of the minimization with mul
tiplexers. Bold wiresindicate data variables. Multiplexers Ml
and M2 are controlled by MV-nodes C1 and C2 respectively.
The CODC set computedfor node Ml includesthe CODC set
passed fromnodeM2, plusthe set of minteims thatmakeMV-
node C2 select the value from input c. This CODC set is
passedto MV-node C1 and used for minimizing Cl.

4 Don't Care Generation From Pres-

burger Arithmetics

We use Presburger arithmetic to specify the computation of
data variables. Here we consider only the subset ofPresburger
withoutquantifications. Suppose we havea set of Presburger

C2

Figure2: PredicateExample

predicates {pi, •.. ,Pn}, which are driven, through some data
computation, by a set of natural numbers {ui,... jUm}-
We can define Presburger don't cares in the domain of
{pi,... ,p„} as the setofcombinations that can'toccur. This
canbecomputed byunifying {pi, -•• ,Pn} into inequality ex
pressions andsolving a linear algebraic equation. Thisis sent
to the fanouts of {pi,... ,Pn} as external don't cares, as illus
trated in Figure 2.

Example 1 Letpredicates {pi,P2>p3} be:

x<2, 2x 4-y > 9, y > 5

Normalizing theseintogreater-than comparisons results:

—X > -2, 2a 4-y > 9, y > 5

Multiply the three inequalities with vector {2,1,—1}. Multi
plying with a negative constant isdefined here ascomplemen
tationof the inequality, i.e. changing > to <. Thisresults:

—2a > -4, 2a 4-y > 9, —y > -5

The sumof these inequalitiesbecomes0 > 0, which is impos
sible. Since we treated —1 as complementation,the conclusion
is that logic combination P1P2P3 can never occur, hence is a
don't care for logic minimization. The goal of this computa
tionis therefore generating allpossible suchvectors thatresult
in an impossible inequality. This can be achieved by making
the left hand side zero, which means solving a set of linear
algebraic equations. Theother don't care for thisexample is
PlP2P3-

4.1 Problem Formulation

Since equality formulas canbe converted intoinequalities, we
onlyconsider inequalities here. Given a set ofpredicate nodes,
{piiP2> ••• »Pn}> expressed as inequalities ofunbounded nat
ural numbers, we normalize them into the following form:

AxdC



where A is the matrix ofcoefficients with n rows, x is the vec
tor of input integer variables, C is the vector of constants to
be compared against, and D represents the vector of compara
tors consisting of only > and >. Each row of A represent a
predicate. Wewant to finda vector Asuch that:

X'Ax = 0 (1)

where A' is the transpose of vector A. There are two cubes
associated witheachA: Cp = ••-pn. where

Pi =
{?!'

Pi,
not

if Ai > 0
ifAi < 0

nothing, if Aj = 0

and Cn = • • -Pn-

Definition 1 A set of inequalities. Ax D C, is domain inde
pendent, iff there is at least one comparator that does not in
clude equality.

Theorem 1 For each A computed by equation (I), the don't
care cube(s) associated with predicate - >Pn} is
DCx:

DCx •{
Cp,
Cn,
Cp,C„,

ifX'C > 0
ifX'C < 0
ifX'C = 0 and domain independent

Proof. (Sketch) The first case results in an inequality sum of
the form 0 > JV, where JV is a positive integer; the second
case results in an inequality sum of the form 0 < —JV. The
last case results in 0 > 0, which means the sub-domain bound
aries specified by the set of inequalities intersect at one Eu
clidean point. However the sub-domains have no intersection
because at least one of the sub-domains does not include this

point. Therefore there exists no Euclidean point that satisfies
all inequalities. •

The set of A vectors satisfying equation (1) is the set of so
lutions to the following:

A'A = 0

Let the null space of A' have dimension k and basis vectors
B = [&i, &2) •-•) whereeach bj is a n dimensional vector.
Then A is a linear combination of vectors in B. Let X = B -6.

Then:

X'C = e'B'C

Therefore the problem becomes, given the null space base vec
tors B and constant vector C. find all possible distinct sign
combinationsfor the A's. For each such A, if X'C > 0, Cp is
a don't care; if X'C < 0, C„ is a don't care; if X'C = 0, both
CpandCn aredon't cares if thesetof inequalities aredomain
independent.

Since Ais a function of the 0's, the real problem is to find a
proper set ofO's.

4.2 Branch and Bound

For the possible A's,we only care to findone for each distinct
sign combination. A sign can only be one of three: (-1,0, 1).
In thisapproach,wecreaten branching points,one foreachAj.
At eachbranchingpoint,we branchon the threepossiblesigns;
for each branch, we use a linear programming solver to test the
existence of d's that satisfies the constraints; if it succeeds, we
continue branching, otherwise backtrack. A don't care is found
if we successfully branch to a leaf An and obtain a complete
sign pattern.

Given B and C, each A is a function of 6, i.e. Aj =
F{(d). The set of constraints to be satisfied is initialized as
Constr{0) = 0. Figure 3 showsthe pseudocode for this pro
cedure.

BnB{i, sign.pattern)
if (i>n) compute-dontcarefsi^n^Mittern);

Constr(0) = Constr(0) U{i'<(0) = 0};
aign.pattern[i] = 0;
if(satisfied(Constr(d)) BnB(i+l, sign.pattem);
else back_track();

Constr(fl) = Constrffi) U {•Fi(fl) > 0);
aign^mtternli] = 1;
if (satisfied(Constr(d)) BnB(i+l, sign.pattem);
else back-track();

Constr(0) = Constr(5) U{F<(0) < 0};
aign.pattern[i] = -1;
if (satisfied(Constr(d)) BnB(i+l, sign.pattem);
else back.track();

End

Figure 3: Branch and Bound pseudo code

Non-orthogonal branching on {—1,0,1} produces better
binding. The result of the branch and bound is a set of don't
care cubes. A check is performed to test if the current sign pat
tern path is subsumed by existing don't care cubes. If it is, the
branching is preempted. Branching on {—1,1} wouldproduce
a set ofpure minterms.

In case of A'C7 = 0, we test the domain independence prop
erty by checking if there is at least one inequality. We create
a flag vector v according the inequality structure: a —1 for >
and <; a 1 for > and <, as shown below for Example I.

' > " ' -1 •
> u = -1

> -1

This flag vector is array-multiplied by the A vector. If there
is at least one —1 in the resulting vector, the inequality set is



domain independent. This takes care of complementation for
the negative entries in the Avector.

In Example 1, we have, as input, matrix equation:

"-10" > • -2 '
2 1 X > 9

0 1 > 5

Aftercomputing the null spaceof A', we obtainthe set of A's
as a linear combination of the null vectors B :

X = B9 =

2

1

-1

Oi

Forbranch and bound, we haveonly two choices for > 0
and6i < 0. This results in twosignpatterns for A: (2,1, -1)
and (—2, —1,1). For both A's we haveAC = 0, whichmeans
domain independenceneeds to be checked. We check the ar
ray multiplication of v and A, and apparently the result has at
least one —1 in it. Therefore, the don't care cubes P1P2P3 and
P1P2P3 are obtained as the final result.

4.3 Monte Carlo

Usingrandomsimulation, we generatea largenumberof nor
malizedvectors in the null space null{A'). These are used to
compute the vector6, whichare then tested on the constraint
A'C > 0. We record the set of distinct sign patterns without
invoking any linearprogranuningcomputation.

For each resulting minterm, we expand its logic space by re
moving a subset of literals; a larger don't carecubeis obtained
ifit still satisfies the constraints.

The branchand bound methodgeneratesthe completeset of
don't cares,but may require extensivecomputationon largeex
amples. TheMonte Carlomethod randomly computes a subset
ofdon't cares, but can be extremely fast on large examples.

4.4 Special Case

For the case where A is unimodular, we propose an efficient
method using multi-valued logic. We present it with an exam
ple found in [1].

Example 2 Let input matrix equation be asfollows:

a: • -1 0 0 0 1 0 • < • 160

b: -1 0 0 0 0 0 < -30

c: 1 -1 0 0 0 0 < 0

d: 0 0 -1 0 0 0 < 0

e: 0 0 1 -1 0 0 < 0

f -1 0 -1 0 1 0 X < 10

g: 0 1 0 1 0 -1 < -30

h: 0 0 0 -1 0 0 < -150

i: -1 0 0 0 1 0 < 150

j: 0 1 0 0 0 -1 < -180

k: 0 0 1 0 0 0 . < 150

where x is the vector ofinput data variables, and the letters on
the left are the names ofthe predicate inequalities.

Since A is unimodular, the goal is to compute the set of integer
A vectors composed of elements from {—1,0,1}, which can
reducethe matrix to constant zero. Let variables {a,... , A;}
represent the elements in this integer vector, each correspond
ingtoone of the 11 rows. Letliteral (0°, ,o^) represent the
elementa being (—1,1,0) respectively, as our encoding.

For each column, we create a satisfiability Boolean formulae
of variables {o,... , k}, whose encoding corresponds to the A
vectors that reduce the column to 0. For instance, the second
column produces the following equation:

f2 = cV/+cV/+cV/+cV/ +
cV/ + cV/+cV/

Here, a three-valued logic is used. Cube corresponds
to a set of minterms: o^O, 1,2)6^0,l,2}c^l}-"fe^0,1,2).
Each minterm corresponds to a A vector, one of them being
{0,0,1,0,0,0,1,0,0,0,0}.

If there are more than three non-zero elements in the col
umn, we need to generate C2 = 2 cubes for each pair of non
zero elements; C4 = 6 cubes for each subset of 4 non-zero
elements; and C| = 15 cubes for each subset of 6 non-zero
elements, and so on. The total number ofcubes to be produced
in this process is

n/2

where n is the number non-zero elements in the column. For
instance, the second column corresponds to equation:

d'e' f'k' + tfn'f'k" + dh'f'k' + d'e'^k' +
d\' f'k" + d'e'f'k' + dV/'ife' + d'e'fk' +
d'e'f'k'+J'e'f'k' +J'e'f'k'+d'e'f°k' +
d'k°e'f°+^k'e°f'

Producing theBoolean formulae can takeexponential time. As
a reasonable estimate, we consider up to 4 non-zero entries in
each vector.

We generate theequation for eachcolumn; the intersection
of theseequationsgivesall the vectorsin the nullspacethat we
consider: (Dueto space limits, theyare not listedindividually.)

/1/2/3/4/5/6

As a result, we obtain a three-valued function with 106 cubes.
At thispoint,we onlyneedto careabout the non-zeroelements
in the vectors. Therefore, we switch from three-valued logic to
binarylogic,by removingliteralswithvalue2, whichrepresent
the corresponding element not appearing in the vector.



Eachcubeinthe representation corresponds to a uniquesign
Asignpattern. Recall thateachsignpattern has a correspond
ingcomplement signpattern, as discussed for Cpand Cn-The
last step in to checkthesesignpatterns, alongwith their com
plements, on the constant vector C. For example, with dk,
AC = 150, which is feasible; with d'fe', AC = —150, which
implies 0 < —150 and results in a don't care.

Out of the 106 cubes, along with their complements, 21
cubespass the test. Makingthe cubesprimeand irredundant,
we have the set ofdon't cares as a final result;

af'k' + a'fk + a'i + d'fi' + d!k' +
eh'k' + e'hk + ghj' -1- g'h'j

Note that this is the same set of don't cares obtained in [1] by
repetitivelycalling the Presburgertool Omega. Yetour method
is simpler and deterministic, and we claim that this is the com
plete don't care set for this example.

5 Experimental Results

The multi-valued logic optimizations and extended datapath
don't cares are implemented in MVSIS [11]. The don't care
computation from Presburger expressionsare prototyped in the
Matlab system. We report our results first in the application of
minimizing Presburger expressions, and then in EFSM mini
mization.

5.1 Presburger Example

We apply both the branch and bound and the Monte Carlo
methods on Example 2. The branch and bound method pro
duces about 600 don't care cubes after around 30 minutes. Af

ter logic minimization they are reduced to the same don't care
set as presented in Section 4.4. The Monte Carlo method re-
tums a few don't care cubes within a couple of minutes if we
use 1000 random vectors in the null space.

5.2 EFSM Example

In this experiment, we use Esterel as a high-level specification
language to obtain our EFSMs. The Esterel compiler is used
to parse the input Esterel program and produce an intermedi
ate circuit representation called DC. We translate the DC for
mat into our intermediate control-data network representation
in BLIF-MV. As a back-end experiment, we also generate im
plementation C code after the optimization, which is described
in [13].

We use an Esterel example that has reasonable size and a
decent amount of interaction between control and data, which
is the emphasis of our techniques. This is an Esterel program
that drives a Lego Mindstorms Acrobot [5], which has a front
bumper and a rear wheel. The Acrobot performs a dancing

Table 2: LegoMindstorms AcrobotExample

origin MVSIS MVSIS-D

nodes 307 180 180

MUXs 73 39 39

PREDs 13 13 13

EXPRs 41 41 41

LATCHes 38 38 38

cubes 261 139 130

lits 529 320 303

code-size -
6695 6359

Table 3: Other examples

MVSIS

Examples lits size E-auto E-sort E-opt comb

eng-ctr 103 2393 2081 2809 2145 1895

instr-ctr 399 6695 60019 10057 2965 3259

mem-ctr 621 15380 51443 23256 5615 4924

pattern, holding the dance for a while and backing up when a
shock occurs on the bumper.

In Table 2, column origin shows the statistics translated
from the DC format; column MVSIS shows the results after
normal logic optimizations scripts from [11]; column MVSIS-
D shows the results that combine don't cares computed from
the datapath, nodes shows the total number of control and
data nodes of all types, code-size is the sizes of the bi
nary objects compiled with gcc -03, from the C code gener
ated from the network.

As shown, the pure datapath (predicates and expression) re
mains the same, but the number multiplexers are cut in half.
With don't cares from the datapath, the logic representation
(cubes and literals) are reduced fiirther, which is also shown in
the final compiled code size.

5.3 More Examples

We have experimented with other Esterel examples, such as
controllers in microprocessor designs and automobiles de
signs, etc. The minimization results are encouraging as com
pared with the Esterel compiler. Some of the examples are
shown in Table 3. Due to lack of interaction between data

and control, the data-path don't cares did not contribute signif
icantly in these minimizations.

The three examples consists of an electronic engine fuel
controller, an instruction decoder and a direct memory access
controller. The size of the examples ranges from 100 to 500
lines of Esterel source code. The two MVSIS columns show

the number of MV literals and the size of compiled branch
ing program generated from MDD representations. The three
columns in the middle show the binary size of the code gener
ated by the Esterel compiler.

E-auto shows the code generated from an automata repre-



sentation, which for large examples tend to blow up; E- sort
is the code from a binary circuit representation; E-opt is also
circuit code but optimized by an extension of SIS called Ba-
sicopt, which consists of binary combinational area opti
mizations, state encoding and latch removal. As shown, the
optimized circuit code is much smaller in size, and smaller
than the code generatedby MVSIS.This is because sequential
redundancy is introduced by the Esterel DC compiler, which
can be minimized away by powerful latch removal algorithms
[18, 19]. This cannot be achieved by MVSIS for its primi
tive sequential optimizationcapabilities. If we treat the opti
mized circuits after Has i copt as input, optimize further in
MVSIS and generate code, the results are shown in column
comb. In general, this producessmaller code, due to the ben
efits of multi-valued variables and the MDD-based branching
program.

We did not have time to compare execution speed. With
similar code size, MDD-based branching code executes faster
on average cases than circuit equation-based code generated
by Esterel,becausenot everyline of code is executed.

6 Conclusion

A new approach of minimizing EFSMs using multi-valued
logic and Presburger expressions is presented. We proposed
methods to evaluate and utilize multi-valued don't cares in a
generalcontroldatanetworkenvironment; we proposedmeth
ods to computelogic don't cares from Presburgerexpressions,
which do not invoke any computationally expensive arith
metic satisfiability checking. Preliminary results are encour
aging in applications of Presburger expression simplification
and EFSM minimization. We believe the overall approach is
applicable to problems in synthesis and formal verification of
embedded systems.

Inour experimentswithEFSMexamplesgeneratedfromEs
terel programs, Presburger predicates do not appear in large
amounts and with overlapping variable support sets. We need
to study more EFSM applications where this paradigm do ap
pear and the techniquesdescribed in this paper can bring sig
nificant benefits.

Future research includes devising heuristics to explore the
solution space of potential don't cares for large Presburger ex
amples, and applying this to code generation in MVSIS. Se
quential minimizations like latch removal are very important
for circuits generated from high-level languages, which we
should incorporate as well. Also we would like to incorporate
formal verification algorithms to validate the minimization re
sults.

Acknowledgement

The authors would like to acknowledge Max Chiodo from Ca
denceBerkeleyLabs, for providingan intermediateformatand
its parser from EsterelDC; also HongjingZou for prototyping
the don't care generationmethod from Presburger. We would
like to thank Ellen Sentovich and Michael Kishinevsky for pro
vidingthe Esterelexamples. Weare grateful for the supportof
the SRC under contract 683.004 and the California Micro pro
gramand industrial sponsors, Fujitsu,Cadence, Motorola and
Synopsys.

References

[1] T. Amon, G. Borriello, and J. Liu. Making complex timing
relationships readable; Presburgerformulasimplification using
don't cares. InProc. oftheDesignAutomation Conf, June 1998.

[2] F.Balarinand M.Chiodo. Software synthesis forcomplex reac
tive embedded systems. In Proc. ofthe Intl. Conf on Computer
Design, Oct. 1999.

[3] P. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sen
tovich, K. Suzuki, and B.Tabbara. Hardware-Software Co-
Design of Embedded Systems: ThePolis Approach. Kluwer
Academic Press, 1997.

[4] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, A. L. Sangiovanni-Wncentelli, E. M. Sentovich,
and K. Suzuki. Synthesis of software programs for embedded
control applications. IEEE "Dans. Comput.-Aided DesignInte
grated Circuits, 18(6):834—49, June 1999.

[5] G. Berry. A dancing legomindstorms acrobot progranuned in
esterel. TechnicalReport, 2000.

[6] G. Berryand G. Gonthier. The Esterel synchronous program
minglanguage: Design, semantics, implementation. Science of
ComputerProgramming, 1992.

[7] T. Bultan, R. Gerber, and W.Pugh. Symbolic model checking
of infinitestate programs using Presburgerarithmetic. In Proc.
of the Computer-Aided Verification Conf, 1997.

[8] K. T. Cheng and A. Krishnakumar. Automatic functional test
generation using the extended finite state machine model. In
Proc.of theDesigpAutomation Conf, June 1993.

[9] H. B. Enderton. A MathematicalIntroduction to Logic. Aca
demic Press, 1972.

[10] M. Gaoand R. K. Brayton. Semi-algebraic methods formulti
valuedlogic. In Proc. ofthe Intl. Workshop on LogicSynthesis,
May. 2000.

[11] M. Gao,J. Jiang,Y.Jiang,Y. Li, S. Singha, and R. K. Brayton.
MVSIS. In Proc. ofthe Intl. Workshop on LogicSynthesis,May.
2001.

[12] Y. Jiangand R. K. Brayton. Don't caresand multi-valued logic
network minimization. In Proc. ofthe Intl. Conf on Computer-
Aided Design, Nov. 2000.

[13] Y. Jiang and R. K. Brayton. Logicoptimization and code gen
eration for embedded control applications. In Proc. ofthe Intl.
Symposium on Hardware/Software Co-Design, Apr.2001.

[14] T. H. Liu, K. Sajid, A. Aziz, and V. Singhal. (Optimizing de
signscontainingblack boxes. InProc. ofthe DesignAutomation
Conf, June 1997.



2pn

[15] D. Oppen. A 2^ upper bound on the complexity of Pres-
burger arithmetic, the Journal of Computer and System Sci
ences, 16(3);323-32. July 1978.

[16] W. Pugh and et at. The Omega project,
http://www.cs.umd.edu/proj ects/omega.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-\^ncentelli. SIS: A System for Sequential
Circuit Synthesis. Technical Report UCB/ERL M92/41, Elec
tronics Research Laboratory,Univ. of California, Berkeley, CA
94720, May 1992.

[18] E. M. Sentovich, H. Toma, and G. Berry. Latch optimization
in circuitsgenerated from high-level descriptions. In Proc. of
the Intl. Conf on Computer-Aided Design, pages 428-35, Nov.
1996.

[19] E. M. Sentovich, H. Toma, and 0. Berry. Efficient latch opti
mizationusing exclusivesets. InProc. oftheDesign Automation
Conf, pages 8-11, June 1997.

[20] T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison
of presburger engines for EFSM reachability. In Proc. of the
Computer-Aided Verification Conf, 1998.


	Copyright notice 2001
	ERL-01-35

