Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A NEW LOOK AT THE GENERALIZED
DISTRIBUTIVE LAW

by

Payam Pakzad, Venkat Anantharam

Memorandum No. UCB/ERL M01/32

10 June 2001

A NEW LOOK AT THE GENERALIZED
DISTRIBUTIVE LAW

by

Payam Pakzad and Venkat Anantharam

Memorandum No. UCB/ERL M01/32

10 June 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A New Look at the Generalized Distributive Law*

Payam Pakzad (payamp@eecs.berkeley.edu)
Venkat Anantharam (ananth@eecs.berkeley.edu)

June 2001
Berkeley, California

Abstract

In this paper we develop a measure-theoretic version of the Junction
Tree algorithm to compute the marginalizations of a product function. We
reformulate the problem in a measure-theoretic framework, where the de-
sired marginalizations are viewed as conditional expectations of a product
function given certain o-fields. We generalize the notions of independence
and junction trees at the level of these o-fields and produce algorithms
to find or comstruct a junction tree on a given set of o—fields. By tak-
ing advantage of structures at the atomic level of the sample space, our
marginalization algorithm is capable of producing solutions far less com-
plex than GDL-type algorithms (see [1]). Our forrpalism reduces to the
old GDL as a special case, and any GDL marginalization problem can be
reexamined with our framework for possible savings in complexity.

1 Introduction

Local message-passing algorithms on graphs have enjoyed much attention in the
recent years, mainly due to their success in decoding applications. A general
framework for these algorithms was introduced by Shafer and Shenoy in [10].
This general framework is widely known as the Junction Tree algorithm in the
Artificial Intelligence community. Aji and McEliece (1] gave an equivalent, (and
for our purposes, slightly more convenient) framework known as the Generalized
Distributive Law (GDL). Viterbi algorithm, BCJR (3], Belief Propagation (9],
FFT over a finite field, and Turbo (7] and LDPC [6] decoding algorithms are
amongst implementations of the Junction Tree algorithm or GDL!.

Given a marginalization problem, GDL makes use of the distributivity of the
‘product’ operation over ‘summation’ in an underlying semiring to reduce the
complexity of the required calculations. In many cases this translates to sub-
stantial savings, but as we shall see in this paper, sometimes there is just more

*This work was supported by grants (ONR/MURI) N00014-1-0637, (NSF) ECS-9873086
and (EPRI/DOD) EPRI-W08333-04

1Throughout this paper we will use both names - GDL, and the Junction Tree algorithm-
interchangeably, but will use the GDL notation from (1} to show connections with this work.

structure in the local functions than GDL can efficiently handle. In particular,
GDL relies solely on the notion of variables. Any structure at a finer level than
that of variables will be ignored by GDL. We illustrate these limitations in the
following simple example:

Example 1. Let X and Y be arbitrary real functions on {1, - ,n}. Let u(3,)
be a fixed real weight function for i,j € {1,--- ,n}, given by an n x n matrix M
with p(i,5) = M; ;. We would like to calculate the weighted average of X -Y:
E =371, X5 X@Y (GG 5).

The general GDL-type algorithm (assuming no structure on the weight func-
tion p) will suggest the following:

E=3_ X)) Y@k,

i=1 Jj=1

requiring n(n + 1) multiplications and (n — 1)(n + 1) additions. But this is not
always the simplest way to calculate E.
Consider a ‘luckiest’ case when the matrix M hasrank 1, i.e. the weight func-
tion (i,) factorizes as f(i)-fa(j). In this case E = (X0, X(0)f1(0)) (S0ey Y (1) f20)),
requiring only 2n + 1 multiplications and 2n — 2 additions.
Suppose next that u(z,) does not factorize as above, but the matrix M has
_a low rank of 2, so that u(z,) = f1(3)f2(4) + 91(2)g2(7). Then we can compute
E as follows:

E= (ij(i)fl @) D_YH6) + (O X®)a (@) (DY (5)g2(9)
i=1 j=1 i=1

=1

This requires 4n + 2 multiplications and 4n — 4 additions.
Next suppose that the fixed weight matrix M is sparse, for example with
u(i,3) =mié(i+ j—n—1). Then

E= im,-X(i)Y(n +1-1),
i=1

requiring only 2n multiplications and n — 1 additions.

From this example it is evident that there are families of marginalization
problems for which the GDL treatment is insufficient to produce the best method
of calculation.

In this paper we introduce a probability-theoretic framework which elimi-
nates the explicit use of ‘variables’ to represent the states of the data. Specifi-
cally, we replace GDL’s concept of ‘local domains’ with o-fields in an appropri-
ate sample-space. We also replace GDL’s ‘local kernels’ with random variables
measurable with respect to those o-fields. The marginalization problem is then,
naturally, replaced by taking the conditional expectation given a o-field. As
we shall see, this representation has the flexibility and natural tool (in form of

a measure function on the sample-space) to capture both full and partial in-
dependencies between the marginalizable functions. Our formalism reduces to
the old GDL as a special case, and any GDL marginalization problem can be
reexamined with our framework for possible savings in complexity.

Although our results are generalizable to any arbitrary semifield®, in order
to avoid abstract distractions, we focus on the sum-product algebra.

Here is an outline of this paper. In Section 2 we review the GDL algorithm.
In Section 3 we present the necessary concepts from the probability theory. In
Section 4 we give a probabilistic version of the marginalization problem that
we address in this paper, and introduce the probabilistic junction trees and the
message-passing algorithm on them. We further produce an algorithm to find
2 junction tree on a given collection of o-fields. Just as is the case with the
ordinary GDL, junction trees do not always exist. In Section 5 we discuss a
method to expand the problem in a minimal way so to be able to construct a
junction tree (much like the process of moralization and triangulation). Some
examples and applications are given in Section 6, and in Section 7 we discuss
our results.

2 GDL Algorithm

_Definition 1. A (commutative) semiring R is a set with operations + and X
such that both + and x are commutative and associative and have identity
elements in R (0 and 1 respectively), and x is distributive over +.

Let {z;, - ,Za} be variables taking values in sets {Aj,--- ;An} respec-
tively. Let {Si,---,Sm} be a collection of subsets of {1,---,n}, and for
ie{l,--- M} leta; : As, — R be a function of zs,, taking value in
some semiring R. The “Marginalize a Product Function” (MPF) problem is to
find, for one or more of the indicesi=1,---, M, the S;-marginalization of the
product of the oy’s, i.e.

M

Bizs) & D (ai(-'ﬂs.))
1

IS"EASf i=

In the language of GDL, a;’s are called the local kernels, and the variable lists
zs, are called the local domains.

The GDL algorithm gives a message passing solution when the sets {S1,- -+ ,SM}
can be organized into a junction tree. A junction tree is a graph-theoretic tree
with nodes corresponding to {S1, -, Sm}, and with the property that the sub-
graph on the nodes that contain any variable z; is connected. An equivalent

24 gemifield is an algebraic structure with addition and multiplication, both of which are
commutative and associative and have identity element. Further, multiplication is distributive
over addition, and every nonzero element has a multiplicative inverse. Such useful algebras
as the sum-product and the max-sum are examples of semifields (see [2]).

condition is that if 4, B and C are subsets of {1,--- ,M} such that A and B
A

are separated by S on the graph, then S4 N Sg € Sc where Sa = ;¢4 Si- As

we will see in Section 4 our definition of a junction tree will resemble this latter

definition.

Suppose G is a junction tree on nodes {1,- -+ , M} with local kernels {a;, - - - ,am}.
Let {E;,:--,Er} be a message-passing schedule, viz. the ‘message’ function
along the (directed) edge (z,) of the graph is updated at time ¢t iff (7,) € E;.

The following asynchronous message-passing algorithm (GDL) will solve the
MPF problem:

Algorithm 1. At each time t and for all pairs (i,) of neighboring nodes in the
graph let the ‘message’ from i to j be a function y.ﬁ,j : As;ns; — R. Initialize
all ‘message’ functions to 1. At each timet€ {1,---,T}, if the edge (i,j) € E,
then update the message from node i to j as follows

I‘l':,j(zsinsj) = Z ai(zs,) H I-‘:,_il (zsuns,) (1)
Tsins; EAsg\sj kka;zg'i

where (k adj i) means that node k is adjacent to i on the tree.

This algorithm will converge in finite time, at which time we have:

M
ai(zs;) H pri(zsins,) = Bi(zs) = D (Hai(ISi))

k adj i zs‘cEAs‘g i=1

Proof. See [1]. m]

3 Probabilistic Preliminaries

First we review some notions from probability theory. Throughout this paper
we focus on discrete sample spaces, i.e. the case when the sample space is finite
or countably infinite.

Let (2, M) be a discrete measurable space, i.e. § is a finite or countable
set and M is a o-field on Q. Let p : M — (—o00,00) be a signed measure
on (2,M), ie. u(@) = 0 and for any sequence {A4;}$2, of disjoint sets in
M, U7 Ai)) = TP u(A:). (As a matter of notation, we usually write
p(A1, Az, -, Ap) for p(A1NA20---NA,).) Then we call (2, M, 1) a measure
space. If (2, M, p) is a measure space and {Fi,--- , Far} are sub o-fields of M,
then we call (, {F,--- ,Fum}, 1) a collection of measure spaces.

Let 7,G and H be sub o-fields of M.

Atoms of a o-field: We define the set of atoms of F to be the collection of the
minimal nonempty measurable sets in F w.r.t. inclusion:

AF) 2 {feF : f#0, andVgeF, fnge {0 f}}

Augmentation of o-fields: We denote by F V G the span of F and G, i.e. the
smallest o-field containing both F and G. For a set A of indices, we write Fa
for ;e Fir With Fp £ {0,9}, the trivial o-field on . Note that the atoms of
F VG are all in the form f N g for some f € A(F) and g € A(G).

Conditional Independence: We say F is conditionally independent of G given H
or FILG|H w.rt. p when for any atom h of K,

e ifu(h) =0thenVfe€ F,g€G, u(f,g,h)=0
o if p(h) #0then Vf € F,g € G, plf,9,h)u(h) = p(f, R)p(g,h).

When the underlying measure is obvious from the context, we omit the ex-
plicit mention of it.

Independence: We say F is independent of Gor FI G wurt. p when
FUG|{0,9}

Note that these definitions are consistent with the usual definitions of inde-
pendence when p is a probability function.

Conditional Measure: Although it is not essential for our discussion, we define
the conditional measure as a partially defined function pl) MxM-—
(—00,00), defined as:

p(alb) = M defined for nonzero-measure b

1(b)
Ezpectation and Conditional Ezpectation: Let F and G be a o-fields with atoms

AF) = { f,-}::_l and A(G) = {g,-}:;l respectively. A partially-defined random
variable X in F is a partially-defined function on €, where for each r in the
range of X, X ~(r) is measurable in . We write X € F, and denote by Ax(F)
the subset of A(F) = {fi};, Where X is defined.

Assuming p(S2) # 0, the ezpectation of X is defined as
1
E(X] £ - X(f)ulf)
1(§2) ,e;x:m
= Y X(Nu(f19)

JEAX(F)

Then we define the conditional ezpectation of X given G, as a partially-
defined random variable Y in G, with Ay(¢) = {g € A(G) : wlg) # 0}, as

follows:

E[X|G](9) = —(1—) Z X(f)u(g, f) for each atom g € Ay(G)
M3 JEAX(F)
= Y X(felflg) for g € Ay(G)
JEAX(F)

The signed Conditional Independence relation satisfies certain properties
(inference rules) that we will state in the next theorem. See (9] and [5] for
discussion of inference rules for the case when g is a probability function®.

Theorem 3.1. Let F,G, X,Y be o-fields. Then the following properties hold:

FLG|X = GLF|X Symmetry (2a)
FUGVX|Y = FLG |y & FuX|Y Decomposition
(2b)
FUG|X & FLY|GVX = FLGVY|X Contraction (2c)
FLG|X & FVGLY|X = FLGVY|X (2d)
FUG|X & FVXLY|G = FULGVY|X (2e)

FlLgvy|x

FVYLG|x (2)

FUGVX|Y & FVGLY|X =>{

Proof. Let f,g,z, and y be arbitrary atoms of F,G, X and) respectively. The
proofs below consider all possible cases for the value of the i on these atoms.

(22): Symmetry is obvious, since fNg=gN f.

(2b): If p(y) = O, then p(f,g,2,y) = 0 and if u(y) # O, then u(f,g,z,y) =
p(f,v)e(g, z,y)/u(y) for all choices of f, g and z in F,G and X respectively. In
particular, choosing z = Q or g = will yield the desired results.

(2¢):

e u(z) = 0. Then from FIL G | X, we get p(g,z) = 0 for all g. Then from
FULY |QVX we get p(f,9,z,y) =0 for all f and y, and so we are done.

e u(z) # 0and u(g,z) =0. Then from FIU Yy |QVX we get u(f,9,2,9) =0
for all f and y, and so u(f, 9,2, y)p(z) = p(f,z)p(g, z,y) = 0 and we are
done.

3Note that the signed Conditional Independence relation satisfies symmetry, decomposition
and contraction, but in general weak union does not hold. So the signed C.I. relation is not
a semi-graphoid.

e ;(z) # 0 and p(g,z) # 0.Then from FULY |GV X we get

u(f, 9,7z, y) = p(f, 9, 2)(9, =, y)/ (9, T) (3)

Also from FIL G | X we have p(f,g,7)/1(9, %) = p(f,2)/p(z). Replacing
‘tihis into (3) we obtain p(f,9,2,%) = (9,2, ¥)u(f,z)/p(z) and we are
one.
(2d):

e p(z) = 0. Then from FVGU Y| X, we get u(f,g,z,y) =0 for all f,g
and y, and so we are done.

e pu(z) # 0 and pu(z,y) =0. Then from FVGLY | ¥ we get p(f,9,7,9) =

u(f, 9,2z, y)/p(z) = 0 for all f, g and y, and in particular p(g,z,y) =0
and so we have the desired equality u(f, g, z,y)/p(z) = p(f,2)u(g,z,y) =

0.
o u(z) # 0 and p(z,y) # 0. We have
p(f,9,z) = p(f,z)p(g,)/ p(z) since FILG|X (4)
p(f,9,7,9) = p(f, 9, D)z,)/ plz) since FVGLY|X (5)

(g, 2)/p(z) = p(g,7,y)/p(z,y) since, by (2b), GLY | X (6)
Replacing (6) into (4) and then into (5) we obtain

p(f, 9, 2,y) = p(f, z)u(g, =, y)/u(z).

e p(z) = 0 and p(g) = 0. Then from FV ALY |G, we get p(f,9,2,y) =0
and we are done.

e u(z) = 0 and p(g) # 0. From FI G | X we have p(f,g,z) = 0. Then
from FV X LY |G, plf.9,7.y) = p(f,9,2)u(v,9)/p(g) = 0 and we are
done.

e u(z) # 0 and p(g) = 0. Then from FV X UL Y|G, we get both
u(f,9,x,y) =0 and p(g,z,y) = 0, so the desired equality hold:

“(f? g'm:y) = /‘(fa a:)p.(g, z, y)/p(x) =0.

e u(z) # 0 and p(g) # 0. Then from Fv ALY | G, we get p(f,9,2,9) =
p(f,9,7)1(g, ¥)/p(g). Also from FILG | X we have

’J'(ft g, .'L‘) = P(fi z)p(gr Z)/}L(.’B).

So we obtain the equality u(f,g,2,y) = u(f, 2)p(g, z)p(9,y)/(1(g)1(2))-
Finally, decomposition applied to FVX 1L Y |g yields p(g, z)p(g, y)/1(9) =

(g, ,y). So we have proved p(f, 9,,y) = p(f, z)u(g, z,y)/p(z) and this
completes the proof.

(2f):
e p(z) =0. Then from FVGILY | X, we have p(f,g,z,y) = 0 and we are
done.

e u(z) # 0 and p(z,y) = 0. Then from FVGL Y | X we have pu(f, g,2,) =
u(f, g, z)u(z, y)/p(z) and so p(f,g,z,y) = 0. Also after applying (2b) to
the above, we have u(f,z,y) = p(f,z)u(z, y)/u(c) = 0 and p(g,z,y) =
(g, z)1(z,y)/p(z) = 0. So we have the equality u(f,9,2,9)p(z) =
u(f,z,y)p(g,z) = p(f,z)p(g,2,y) = 0 and we are done.

e u(z) # 0 and p(z,y) # 0. Then also pu(y) # O or else from F I GV
X | Y we would have p(z,y) = 0. Then from F U GV X|Y we get
u(fr g, z,y) = p(f,v)u(g, z,v)/1(y), and also after (2b) to the above, we

get pu(f,z,y)/p(z,y) = p(f,y)/e(y). Replacing the latter equation into
the former we obtain

p(f. 9.2, 9) = plg, z,v)u(f, z,v)/p(z, y) (7)

But from FVG1 Y | X and by (2b) we have both u(f,z,y)/u(z,y) =

p(f,z)/p(z) and plg,z,y)/w(z,y) = plg,z)/p(z). Replacing each of
these into (7) we obtain

"‘(fa 9.z, y) = P(gaz: y)l"(f! z)/p(:z:)

and
w(f.g,2,9) = p(f, z,v)p(g, z)/p(z)

and we are done.

4 Probabilistic MPF and Junction Trees

We now formulate a probabilistic version of the MPF problem and introduce
the corresponding concept of junction trees. The rest of this paper will analyze
properties of these junction trees and describe a probabilistic GDL algorithm
to solve this MPF problem.

Throughout this paper, let (Q,{F1,:--,Fum},) be a collection of measure
spaces, and let {X,,---,Xpm} be a collection of partially defined random vari-
ables with X; € F;.

Probabilistic MPF Problem: For one or morei € {1,--- ,M}, find E[HJ X;|F],
the conditional expectation of the product given F;.

A GDL MPF problem in the format described in Section 2 can be represented
as a probabilistic MPF problem usually in more than one way, depending on

the choice of assignment of GDL’s local kernels as either a random variable,
or a factor of the measure function; either way, the product will be the same.
Specifically, a marginalization Ezsge Ase (Hfil ag(xs‘)) can be viewed as a
weighted average of the product of a; ' for j€Jc{1,--, M} with the measure
function p(z(1,.. M}) = [lxese @k(zs,) for any subset J of {1,---,M}. Our
sample space {2 is then the product space Af;,.... M) = Ay X --- X Ay. For
each j € J, we view a; as a random variable measurable in a o-field whose
atoms are the hyper-planar subsets of 2 in which the coordinates corresponding
to the elements of S; are constant. In other words, each atom of this o-field
corresponds to a possible choice of zs, € As;. Denoting each atom by its
corresponding element zs; then, we have

M
B[xiFles) = o X ([Testzs)) = =ites,)

In most applications, for a family of MPF problems the local kernels can
be categorized as either fized or arbitrary. For example, in an LDPC decoding
problem, the code itself is fixed, so the local kernels at the check-nodes are
fixed; we only receive new observations and try to find the most likely codeword
given each observation set. As another example, when finding the Hadamard
. transform 2:,.-.- Zu T, (-1)=¥% f(=, - - - ,Zn) of an arbitrary function f, the
functions (—1)%¥ are fixed. Typically, we want to assign (some of) the fixed
kernels as the measure function, and the arbitrary kernels as the marginalizable
random variables; this way, once a junction tree has been found for one problem,
it can be used to marginalize the product of any arbitrary collection of random
variables measurable in the same o-fields. See Section 6 for more examples.

4.1 Junction Trees

As in the case of the old GDL, junction trees are defined to capture the under-
lying independencies in the marginalizable functions. Given the above problem
setup we define junction trees as follows:

Definition 2. Let G be a tree with nodes {1,--- , M}. We say subsets A and
B of {1,--- ,M} are separated by a node i if Vz € A,y € B, the path from z
to y contains i. Then we call G a Junction Tree if vA,B c {1,--- ,M} and
i€ {1,---,M} st. i separates A and B on the tree we have F4ll Fp |.7~',-.

Lemma 4.1. Suppose there exists a junction tree with nodes corresponding to
o-fields {F1,--+ ,Fm}. Then if f is a zero measure atom of any of the F;i's,
and g C f is measurable in Vf_f_l F;, then u(g) =0.

Proof. Node i vacuously separates the empty subset of {1,--- ,M} from
{1,--- ,MN{i}. Thus {0,Q} 1L V,M=1 Fj | Fi. Thus by the definition of con-

i
ditional independence, whenever f € A(F;) has zero measure, all its subsets
measurable in Vgl F; also have measure zero. O

9

Lemma 4.2. Let 7y, F2 and F3 be o-fields such that F, L F3 | Fa. Then for
any partially-defined random variable X € F,, the following equality holds:

E[E [X| 7] |J-'s] = E[X |53

Proof. Let Y = E[X Ifg] Then Ay(F) = {b € A(F) : p(d) # 0} and
for b € Ay(F2), Y(b) = —(5; Y acax(F) X (a)p(a, b). Then, for any nonzero-
measure atom ¢ € A(Fz),

E [E[X|.Fg] |f3] (c) = E[Y|.7-'3] (©)
> Y(ube)

”(c) bEAY(F2)

1 2 p.() > X(a)u(a,b)p(d,c)

K (c) beAr(F) '\ seax(F)

> > X(a)u(a,be) since Fy AL F3 | Fo
() bEAY(F2)a€AX(F1)

Y. X(@ Y. Habyo)

(a€Ax(F1) be Ay (F3)
1

1 Y X(euleo)
#(c) a€Ax(F1)

=E[X |}'3])]

where we have used the fact that 7, I F3 l Fa, 80 3 ¢ Ay (¥) ula,bc) =
2bcA(r) #la,b,c) = p(a, c). 0

Lemma 4.3. Let {F1, - ,Fi} and F be o-fields such that {Fy,--- ,Fi} are
mautually conditionally independent given F. For eachi=1,-..,l, let X; be a
partially-defined random variable in F;. Then:

E[ﬂ X;
i=1

Proof. We shall proceed by induction. The. statement is vacuous for | = 1.
For | = 2, let Y = E[X,X,|F]. Then Ay(F) = {f € A(F) : u(f) # 0}.
Also note that XX is a partially-defined random variable in F, V Fp with
AX;X; (f1 V.Fz) = Ax, (fl V]:z) n.Ax, (A sz), and that any atom of F; VF,
can be written as aNb for a € A(F1) and b € A(F2). Then for any f € Ay(F)
we have:

| 7]

10

1
Y(f)= ;(f—) Z X1(a)X2(b)p(a, b, f)

(anb)EAx, x5 (F1VF2)
a€F, bEF2

1 (. Npd, f)
= — Xy(a) X (=2

26 ae.szl(}'x)beAxZ,(.‘Fa) ’ (1)

1 1

= —= Xi(a)ul(a, f)—= Xa(b)u(b,)

p(f) oe.AE:(.ﬁ) 1 1) be.ag,:(fz) ’

= E[X:1|F] (NE[X2| F](f)

where we have used the fact that 73 1L F; | F, so ES&‘I‘%%M = p(a,b,).
For | > 2 assume inductively that the equality holds for I — 1. Then:

E[]iIX; .7-'] = E[Xlli[x,'lf]

= E[xlly-‘]E[f[x,-lf] since F AL \'/.'F | F
=2

=2

l
= HE[X,-|.7-‘] by induction hypothesis
i=1

4.2 Probabilistic Junction Tree Algorithm

Suppose G is a junction tree with o—fields {F1, -+ ,Fm}, as defined above,
and let {X1,--,Xm} be random variables with X; € F;. Then the follow-
ing asynchronous message-passing algorithm will solve the probabilistic MPF
problem:

Algorithm 2. For each edge (3, j) on the graph, define a ‘message’ Y; ; from
node i to j as a partially-defined random variable measurable in F;.
For eachi=1,--- , M define the set of neighbors of i as:

N; = {k : (i,k) an edge in the tree},
and for each edge (i,) in the tree, define:
N;,; = Ni\{7}

Initialize all the messages to 1. For each edge (i,j) in the tree, update the
message Y ; (asynchronously) as:

Yi.j=E[-Xi II Yk,ilfj] (8)
kEN..;

11

This algorithm will converge in finite time, at which time we have:

E[ﬁX,- .'F.] =X H Yi

j=1 kEN;

Proof. The scheduling theorem 3.1 in [1] also holds here, using Lemmas 4.2 and
4.3 above. For completeness we will include that proof here.

We will show that if E; is the schedule for activation of the nodes, (i.e. a
directed edge (4,) € E; iff node i updates its message to its neighbor, j at time
t) then the message from a node i to a neighboring node j is:

Yis(t) = E| Il)xk|f,-], ©)
kEK; ;(t

where Kj; ;(t) is a subset of the nodes defined recursively by:

] ift=0,
K; ;) = { Ki(t-1) if (i,5) € Et,
{i}Uien, , K1a(t = 1) if (3,5) € B,
We will prove this by induction on t. Case t = 0 is clear from the initial-

ization. Now let ¢ > 0 and assume that (9) above holds for ¢t — 1. We can also
assume that the (7, j) € F; so the message Y; ; is being updated at time ¢. Then:

Yis(t) = E[X; 1I Yk.ilfj]

T lEN,; :
=E[x: [T B[] X«%]|%] by induction
B lGN.‘.j. kEK, i(t~1)

—E[E] [x5

lEN;,; k€K i (t-1)

.7-',] by J.T. property and Lemma 4.3

=e[x I II X7 by J.T. property and Lemma 4.2
LEN; ; k€K1, i(t—1)
= E[[T x] by definition of K; ;(t)
kekis ()

Indeed Kj ;(t) above is the set of all the nodes whose ‘information’ has
reached the edge (3, j) by time ¢. Similarly, with J;(2) & {1} Ujen, Kii(t), Ji(2)
is the collection of all the nodes whose ‘information’ has reached a node i by
time ¢. It is natural to think of a message trellis up to time ¢, which is an
M x t directed graph, where for any #,5 € {1,--- ,M} and n < ¢, i(n) is always
connected to i(n+ 1), and i(n) is connected to j(n+ 1) iff (i, j) € E,. It follows
that we will have J;(t) = {1,--- , M} when there is a path from every the initial

12

node (i.e. at ¢t = 0) in the trellis to the node i(t). Then, since the tree has finite
diameter, any infinite schedule that activates all the edges infinitely many times
has a finite sub-schedule, say of length ¢ such that J;(to) = {1,---, M} for all
i. At that time we have:

E[x: [] Gaw| =] =[x [[B[[T X|#||A] bvo
JEN; JEN; k€K;,:(to)
s I T xfslls] ity
=[x] II x|
FEN: k€K;i(to)
e[[x|#] by defn. of Ji(t)
“ke€Ji(ta)
M
= B[] x|
k=1

4.3 Representation and Complexity

In this section we discuss the complexity of representation of a junction tree
and the implementation of our algorithm.

Let G be a junction tree with o-fields {F3, - -- , Fum}, as defined above, and
let {X;,:--,Xm]} be arbitrary random variables with X; € F;. Denote by g¢;
the number of atoms of the o-field F;, so ¢ = JA(F3)l.

It can be seen that, in general, the sample space 2 can have as many as
I, ¢: elements and thus full representation of o-fields and the measure func-
tion requires exponentially large storage resources. Fortunately, however, a full
representation is not required. Along each edge (¢,7) on the tree, Algorithm 2
only requires local computation of E [X |.7-',] for a random variable X € F;. This
only requires a g; x g; table of the joint measures of the atoms of F; and F;. For
an arbitrary edge (,3), let A(F:) = {a1,---,aq,} and A(F;) = {b1,-- 1 bgs}
be the sets of atoms of F; and F;. Define W(i,j) to be the g; x g; matrix
with (r,s) entry equal to p(as|bs); note that from Lemma 4.1, (possibly after
trivial simplification of the problem by eliminating the zero measure events,)
no atom of F; can have measure 0, so p(ar|bs) is defined for all atoms of F;.
Then once a junction tree has been found, we need only keep 2(M — 1) such
matrices (corresponding to the (M — 1) edges of the tree) to fully represent the
algorithm, for a total of 23, an edge %95 Storage units.

The arithmetic complexity of the algorithm depends on even a smaller quan-
tity, namely the total number of nonzero elements of the W (i, j) matrices. Let
nz(i,) denote the number of nonzero entries of the matrix W (i,7) (note that

13

nz(i,j) = nz(j,i)). Let X be an arbitrary random variable in F;. Then
Qi
E[X|F;](5) = D X(ar)u(ar|bs)
r=1

= E X (ar)ﬂ(a-r Ibs)

r:u(arlb,s)#0

requiring nz(4,j) multiplications and nz(i,j) — g; additions. Note that the
measures are assumed to be fixed, and only the X;’s are allowed to be arbi-
trary random variables measurable in the F;’s. So it makes sense to exclude
multiplications and additions by the 0’s from the algorithm.

For each (directed) edge (i,7) in G define x(%,7) = 2nz(i,j) — g; to be the
edge complezity, i.e. the number of additions and multiplications required for
computing E[X; |f',] . From the Algorithm 2, calculating the conditional expec-
tation given a single o-field F; with the most efficient schedule, requires updating
of the messages from the leaves towards the node i. Each edge is activated in
one direction, and at each non-leaf node ! the messages need to be multiplied to
update the message from ! to its neighbor in the direction of 7. This requires,
for each edge (k, 1), an additional ¢; multiplications. Thus the grand total arith-
metic operations needed to calculate E[HJ X;|7] is 2 (k1) an edge 2Rz (K, 1).

Note that nz(k,!) can be upper-bounded by gigq:, corresponding to carrying
" out muitiplications and additions for the events of measure zero.

The complexity of the full algorithm, in which E[J]; X;|%:] is calculated
foralli=1,...,M, can also be found using similar ideas. For each node k,
let d(k) denote the number of the neighbors of k on the tree. Then for each
directed edge (k,1), the d(k) — 1 messages from other neighbors of k must be
multiplied by X (requiring (d(k) — 1)gx multiplications) and then the condi-
tional expectation given F; be taken (requiring x(k,l) operations). So the total
number of operations required for the full algorithm is

> 2nz(k]) - g+ (d(k) - gk

(k,!) a dir. edge
M
= Y (nz(kD) +d(k)a) - D 2d(k)ax
(k,l) a dir. edge k=1
M
= Y dnz(k,)+) (d(k)? - 2d(k))g
(k,!) an edge k=1

As noted in [1], it is possible to produce all the products of d(k) — 1 of
d(k) messages going into node k in a more efficient way. In this case, the total
arithmetic complexity of the complete algorithm will be 3° ;. /) an eage 422(k, 1) +

O(T L, d(k)ge).

14

4.4 Existence of Junction Trees

Definition 8. A Valid Partition of {1,-- , M}\{i} with respect to & node i is
a partition {py,--,p} of {1,--+ , MN{i} (ie. UM, p; ={1,--- ,M}\{i} and
pi Np; = 0 for i # j) such that Fp,’s are mutua.lfy conditionally independent,
given F;.

Definition 4. Let P = {p1,---,pi} be any partition of {1,--- ,MN\{i}. A
tree with nodes {1, , M} is called compatible with partition P at node i if its
subtrees hanging from i correspond to the elements of P.

Lemma 4.4. Vi € {1,--- ,M}, there is a Finest Valid Partition w.r.t. i, which
we shall denote by P;, such that every other valid partition w.r.t. i is a coars-
ening of P;. Further, if p is an element of P; and p is the disjoint union of
nonempty sets e; and ez, then Fe, I Fe, | Fi.

Proof. Suppose A = {p1,---,m} and B = {q1,- ,gm} are valid partitions
w.r.t. node i. Now construct another partition, C = {pNg:p€ A& q € B}.
We claim that C is also a valid partition w.r.t. i, (finer than both A and B):
To see this, we need to show that for eachd=pnNq€C, Fagll Fae | F;. Using
simple manipulations like Fp, = Fpn(quge) = Fpng V Fpnge we get:

Fprg V Fpnge AL Fpe |'7:*'
j:pnq \% }-pcnq.”. -pr'lqc A\ .chnqc | .7'-, = fpn,,_lL fpnqe I .7:; by (2b)

And finally, the last two relations and (2d) imply that Fpng L Fpeu(pngs) | 75
and hence Fpng L Fipng)e | Fi. So a finest valid partition w.r.t. i exists, whose
atoms are the intersections of atoms of all the valid partitions w.r.t. i.

Now suppose p is an element of P; and p is the disjoint union of nonempty
sets e, and ez, and Fe, L Fe, | Fi. We also have Fe, V Fe, AL Fpe | 7i. Then
from the last two relations and by (2d) we get Fe, 1L Fpe V Fe, | F;, and hence
Fe, L Fes F:. Then e; and e; would be elements in a finer valid partition
which is a contradiction. a

Lemma 4.5. Given {Fy, -+ ,Fum}, a tree with nodes {1,--- , M} is e junction
tree iff at each node i it is compatible with some valid partition of {1,--- , M} {3}
w.r.t. i,

Proof. Immediate from the definitions. 0

Lemma 4.6. Let d be a subset of {1,---,M} and let & be its complement in
{1,--- ,M}. Suppose there exist t € d andi € d such that Fgll Fg |.7-'; and
Fall Far |.7-', Let G be any junction tree on d and G’ any junction tree on
d'. Then the tree obtained by connecting G and G’ by adding an edge between
t and i is a junction tree on {1,--- ,M} (see Figure 1)

15

Figure 1: Augmenting Junction Trees; Lemma 4.6

Proof. Let z be any node that separates A and B on the resultant tree. We will
show that Fa 1l Fp | F. and hence we have a junction tree.

Let A; = And,A; = And’,B; = BNd and B, = BNd' and WLOG suppose
xz € d. Then at least one of A, and B, must be empty, or else z would not
separate A and B. Suppose Az = 0.

First suppose z = t. Then we have:
Fa, L FB, | Fi by J.T. property on G
Fa, NV Fp AL Fp, | R since A;UB; Cdand B C &

So by (2d) we have F4, L Fg, V Fg, | F, ie. F4lL Fp | F; and we are done.
- Next Suppose z € d\{t}. Then we must also have that z separates A; from
B; U {t} (assuming that B> is nonempty, which is no loss of generality.) Then:

Fa, AL Fp, VF, | Fz (10)

Fa, VFV Fp A Fp, | F: since AAUBU{z}Cdand BoCd (11)
We will show that F4, Il Fp, V FB, V F; | F; and hence F4 . Fp I.’Fx.

Let x, 7, &, $1 and f3; be arbitrary atoms of F;, 3, F 4, FB, and Fp, respectively.

e Case p(x) = p(t) = 0. Then from (11) we have that u(e, 81, 52, X, 7) = 0,
and so we are done.

e Case p(x) =0 and u(7) # 0. Then from (11) we have p(e, 61, B2, X,

T)=
u(a, By, x, T)p(B2, 7)/u(7). But from (10), p(e, B1,x, 7) = 0 since p(x) =
0. Thus p(a, B, B2,x,7) = 0 and we are done.

o Case u(x) # 0 and p(7) = 0. Then from (11) we have that u(e, 81, B2, X, 7) =
B(B1, B2, X, T) = 0, and so we have the equality p(e, B1, B2, X, T)(x) =
pula, x) (B, B2, x, 7) = 0 and we are done.

e Case u(x) # 0 and p(7) # 0. Then from (11),
“"(a) Bl!ﬁZ! X T) = [“(a’ ﬂla X T)“(ﬁ?r T)/#(T))

16

and from (10), w(a, B1, X, 7) = ple, x)u(B1, x, 7)/1(x). Replacing the lat-
ter into the former, we obtain

P(a» 51! 52: X» T) = P(aa X)“(ﬁl ' Xy T)p(ﬁm 7)/(“(X)“(T))'
But by (11), #(B1, X, 7)e(B2, 7)/ (1) = p(Br, B2, X, 7), S0
p(ai ﬁla ﬂZ) X T) = p(a, X)u(ﬁlv ﬁ?: X T)/“(X)

and we are done.

‘We now state our main theorem on the existence of junction trees:

Theorem 4.7. Given a set of o-fields {F,,--- ,Fm}, if there ezists a junction
tree on {1,--- , M}, then for every i € {1,--- ,M} there ezists a junction tree
compatible with P;, the finest valid partition w.r.t. 3.

Notice that Theorem 4.7 and Lemma 4.6 effectively give an algorithm to find
a junction tree, when one exists, as we shall describe in Section 4.5.

Proof. The claim is trivial for M < 3. We will prove the theorem for M > 3 by
" induction:

Let P = {c1,--,a} with Ujo,¢j = {1,---,MN\{i} and ¢; Ncx = O for
j # k. Let G be a junction tree. Let Q@ = {dy, - ,dn} be the partition of
{1,---, M}\{i} compatible with G. Let d = d; be an arbitrary element of Q,
and let @ = J,,;di U{i}. Lett=N; U d be the node in d that is neighbor
to i in tree G. By Lemmas 4.4 and 4.5 above, d is the union of some of ck’s.
WLOG assume that d = UkK=1 cx where K <1, and also assume that ¢ € ck.

Then from the junction tree property, we have

Fill Fa | Fe (12)

Since G is a junction tree, the subtree on d is also a junction tree. Now
|d] < M, and so by induction hypothesis there exists a junction tree on d
compatible with P}, the finest valid partition w.r.t. ¢ of d\{t}.

Now we claim that R = {ck\{t} : 1 <k< K} is a valid partition of
d\{t} w.r.t. t. To see this, let ¢ = cx for some arbitrary k = 1,.--, K, and
let ¢ = d\{c}, so F4 = F.V F. But one of c and ¢’ contains t. Then by the
properties of valid partition w.r.t. i, we have:

FNFLFs|Fi o FlFoVFE|F

also, FlLF. Vv Fo | F. since t separates i from d on G

Then by (2f) followed by (2b), the last relations imply that 7. AL Fer | Fi
and we are done.

17

Next we show that forall k € {1,.-. , K —1} (so that ¢ & cx), cx is an element
of P!. If not, then there exists a ¢ = ¢; € R, with ¢ € c, s.t. c is the disjoint
union of some subsets €; and ez and F,, I F, [Fe. Also Fe, V Fe, L F; | Fi
so by (2d) we get T, \L Fe, V i | Fi. We also have F, V F, IL F;, | F; since
e; U ey = c and ¢ belongs to another set in the finest valid partition w.r.t. <.
From the last two relations and by (2f) followed by (2b) we get ., \L Fe, | Fi.
But by Lemma 4.4, c € P; cannot be so decomposed, so {e1,e2} = {c,0} and
we have proved the claim.

So we have shown, by induction, that there exists a junction tree, Ga on
d, where node t has at least K — 1 neighbors with subtrees corresponding to
¢k, 1 <k < K —1. Now we modify the original junction tree, G in K + 1 steps
to get trees H, Hy,---, Hg_, as follows:

First we form H by replacing the subtree in G on d, with G4 above, con-
necting i to t with an edge. By Lemma 4.6, H is a junction tree on {1,.-- ,M}.

Let Hy be the subtree of H after removing the subtrees around t on ¢k, 1 <
k < K — 1. Then Hj is also a junction tree. For each j =1,--- ,K —1 let L;
be the subtree of H on c;, and let z; be the node on ¢; that was connected to ¢
in H. Then at each step j =1,--- , K — 1 we form H; by joining H;_; and L;
by adding the edge between i and z; (see Figure 2.)

H = H, =D ... =D Hy.a
Ly

Figure 2: Transformation of Junction Trees

We now show inductively that each H; is a junction tree. By induction

hypothesis H;_; is a junction tree. At the same time, L;, being a subtree of a
Jjunction tree, is also a junction tree. Further F, L 7., Vv Fy i;i cr |.7-',-, since
c; is a set in a valid partition w.r.t. i.
Also, F; \L F, V For V;’.;i ¢r | Fz,, since on the junction tree H, node z;
separates ¢; from cx U d’ Ui;i ¢ . Then by Lemma 4.6, each H; is a junction
tree (Note that Hy_, is a junction tree on {1,--- ,M}.)

Next we perform the same transformation on Hg_,, starting with other

neighbors of i. The resulting tree will be a junction tree, and will be compatible
with P;.]

18

4.5 Algorithm to Find a Junction Tree

We will now produce an algorithm to find a junction tree when one exists.
Given a set of o-fields {#1,--- ,Fu},

Algorithm 3. Pick any node i € {1,--- ,M} as the root.
e If M = 2 then the single edge (1,2) is a junction tree. Stop.

o Find the finest valid partition of {1,--- , M}\{i} w.r.t. i, P, = {c1,--- ,c1}
(see notes below).

e For j=1tol

e Findanodet€ c; s.t. Fill F,, | Fi. If no such node ezists, then stop;
no junction tree ezists.

e Find a junction tree on c; with node t as root. Attach this tree, by adding
edge (i,t).

e End For

Note: In the general case of the signed conditional independence, we know
of no better way to find the finest valid partition than an exhaustive search in
an exponential subset of all the partitions. In the case of unsigned measures,
- however, we can show that when a junction tree exists, the finest valid partition
coincides with the finest pairwise partition, which can be found in polynomial
time.

Proof. At each iteration, t is chosen so F; AL 7, | F:. But we also had .Fc§ AL
Fe Vv Fe I F;. By (2e) the last two relations imply Fc; L F; V Fes | Fi. But we
also have F; 1L F; V Fe: | Fi. So by Lemma 4.6 we have a _]unctlon tree at each

step. Also, from Theorem 4.7 if the algorithm fails, then there is no junction
tree. a

5 Construction of Junction Tree - Lifting

In the previous section we gave an algorithm to find a junction tree, when one
exists. In this section we deal with the case when Algorithm 3 declares that no
junction tree exists for the given set of o-fields. In particular, we would like to
modify the o-fields in some minimal sense, so as to ensure that we can construct
a junction tree.

Definition 5. Let (2, {F1,---,Fum}, 1) be a collection of measure spaces. We
call another collection of measure spaces (', {F}, -+ ,Fp-}, ') a lifting of
(% {F1,--- , Fum},p) if there are maps, f : @' — Qando : {1,--- , M} —
{1,--- ,M} such that:

e u’ is consistent with x under the map f, i.e.
VAE Fu... M) wA)=p(f1(4)).

19

e Foralli=1,---,M, fis (f;(i),}})-measumble, ie.
VA€ F, fTHA) € Fopy

where for A € Q, f~1(A) = {' e : f(v) € A}.

In words, up to some renaming of the elements, each o-field F; is a sub-
o-field of some F, (namely, 7, ;) and this F} is obtained from F; by splitting
some of the atoms.

We now describe the connection of the above concept with our problem.

Let (S, {F],--- ,Fip}, #t') be a lifting of (2, {F1,---, Fm}, p) with lifting
maps f : — Quand o : {1,---,M} — {1,---,M} as described in
Definition 5. Let G’ be a junction tree on {1, .- -, M’} corresponding to o-fields
{F},--- ,Fip}. We will construct a junction tree G” from G’ such that the
running Algorithm 2 on G” will produce the desired conditional expectations
at appropriate nodes.

For each i = 1,---, M, let G; be the o-field on ' with atoms A(G;) =
{f~%(a) : @ € A(F:)}, and let Y; € G; be the random variable with Y;(f~1(a)) =
X;i(a) for all e € A(F;); so that up to a renaming of the atoms and elements,
(R, F;, 1) and (¥, G;, ') are the same measure space and X; and Y; are the same
_ random variable. Let G be a tree with nodes {1,--- ,M', M'+1,--. ,M'+ M},
- with corresponding o-fields {7, - ,Fjs, G}, ,G)} and random variables
{1,---,1,Y4,--- ,Yn},~ which is generated by starting with G’ and adding
edges (j, M’ + o(j)) for each j =1,--- ,M’. In words, G” is a graph obtained
from G’ by adding and attaching each node with o-felds G; for i = 1,--- | M
(which are in turn equivalent to the original F;'s,) to the node whose o-field
contains that G;. Then by Lemma 4.6, G” is a junction tree and hence running
Algorithm 2 on G” will produce E[Hg1 Yi|G;] at the node labelled (M’ +0(5))
for each § = 1,--- , M. But these are equivalent to E[Hf‘:1 X,-IJ-}] for j =
1,--- , M and we have thus solved the probabilistic MPF problem.

So we only need to establish how to lift a certain collection of o-fields to
create the required independencies and form a junction tree.

Suppose we have three o-fields, 1, 72 and F3, and we would like to lift the
measure space (Q, {Fy, Fa, F3}, p) into (U, {F}, F}, F5}, 1) in a way to have
the independence F; AL F3 | F3. Let a; € A(Fy), cx € A(F2) and b; € A(F3)
be arbitrary atoms. For each ck, let Ax be the matrix with (7,) entry equal
to u(a;, b, cx). Then p(cx) = O iff the sum of entries of Ay is zero. However
we cannot have a nonzero matrix with zero sum of entries. If this is the case,
we can decompose the matrix into sum of two matrices with nonzero sum of
entries. This corresponds to splitting atom cj in a way that the new atoms have
nonzero measure.

Next for each such matrix, Ay with nonzero sum of entries, the independence
condition corresponding to c; is exactly the condition that A, is rank-one. If,
however, Aj is not rank-one, we can split cx using an optimal decomposition

20

of Ax as the sum of say g rank-one matrices so that none of the matrices are
zero-sum.* This corresponds to splitting the atom cj into ¢ atoms, {c%,--- ,ck}
where each of ck’s render F; and F3 independent. cf’s are then atoms of 3.

5.1 Algorithm to Construct a Junction Tree
Combining the above ideas with the Algorithm 3 we obtain:
Algorithm 4. Pick any node i € {1, , M} as the root.
e If M = 2 then the single edge (1,2) is a junction tree. Stop.
e Find ansf valid partition of {1,--- ,MN\{i} wr.t i, Pi={e1, - ,a}.

For j=1tol

e Findanodet€cj st FilF | Fi. If no such node ezists, then pick
anyt € c;. Lift F; by splitting some of its atoms as discussed above
so to have F; L Fo, l F: (see notes below).

Find a junction tree on c; with node t as root. Attach this tree, by adding

°
edge (i,).
o End For

The resulting collection (¥, {F},- -, Fap 1, ') 18 a lifting of the original collec-
tion with M' = M, and the tree generated by this algorithm is a junction tree
corresponding to this lifted collection of o-fields.

In many cases, however, it is possible to achieve a less complex junction tree
algorithm by allowing M' to exceed M. The following optional steps can be used
for possible reduction of complezity:

e For each edge (i,7) in the resultant junction tree,

) Create a o-field G j) that renders F; and F; independent, i.e. F; Al
F; I Gi,j)- This can be done by starting with F(e q) and applying
the rank-one decomposition techniques in the previous section.

) Insert a new node in the tree corresponding to G(; j), between i and j.

e End For

4This can always be done with g = rank(Ax) if Ax is not zero-sum. Obviously rank(Ag)
is also a lower bound for g. An optimal decomposition, however, not only aims to minimize
g, but also involves minimizing the number of nonzero entries of the decomposing matrices,
as discussed in Section 4.3.

5 Although any valid partition will work, in general finer partitions should result in better
and less complex algorithms (see Section 4.3).

21

Notes: In general, the size of the § space can grow multiplicatively with each
‘lifting,’ so the full representation of the measure spaces require exponentially
large storage resources. However, as mentioned in Section 4.3, a full description
of the algorithm requires storing only the W (i, j) matrices of the conditional
measures of the atoms of the neighboring o-fields. In fact, a careful reader may
have noticed that we have not completely specified the lifting maps as defined in
Definition 5 on the entire collection of measure spaces. In fact once the lifting has
been done on a subset of the o-fields (so to create the desired independencies),
there is a unique way to update the measure function on the entire sample
space that ensures that previous relations still hold. Such extension, however,
is unnecessary since by the consistency of the measures in a lifting, the matrices
of conditional measures along other edges of the tree remain the same.

6 Examples

In this section we consider a few examples where GDL-based algorithms are
applicable. We will work out the details of the process of making a junction
tree, and compare the complexity of the message-passing algorithm with GDL.

Our Example 1 at the beginning of this paper can be generalized as follows:

- Example 2. Let A;, i = 1,--- ,M be finite sets of size ¢, and for each
i=1,-.-, M, let X; be a real function on A;. Let u be a real (weight) function
on A; x Az x - x Ap. We would like to compute the weighted average of the
product of X;'s,i.e. E =3 4 Xi(a1)Xz(az) - Xp(am)p(ar, - ,anm).
Suppose that the weight function is in the following form:

M M
ulag, - ,apm) = Hfi(ai) + Hgi(ai)
i=1 i=1

As long as the weight function p is not in product form, the most efficient
GDL algorithm will prescribe

E= 3 Xi@): Y Xulam)u(er, - am)

a1€A; aMEANM

requiring O(n™) additions and multiplications, corresponding to the following

junction tree.

1 Xia) Xu-tlaw) Xplat (@)

Figure 3: GDL Junction Tree

22

Now, Let Q be the product space 4; x Az x - -+ X Ay with signed measure
4, and for i = 1,--- , M, let F; be the o-field containing the planes a; = c, so
Xi € F;. Let Fo = {0,92} be the trivial o-field. Then the problem is to find
the conditional expectation of the product of the X;’s given Fo.
The best junction tree is obtained by lifting the space so that given Fg all other
o-fields are mutually conditionally independent. To do this, we split the atom
 of Fy into two atoms 2, and ;. In effect, for each element (a,,---,ap) of
Q, the new space §’ has two elements (a;,--- ,ap) N and (ay,--- ,apm) NQ2.
The new weight function is defined on ' as p’((ay, -+ ,8},)NY) = ngl fi(aq)

and p'((a1, -+ ,am) N Q) = [T, gi(as).

Then there is a star-shaped junction tree on {0,--- , M} with node 0 at the
center. The message passing algorithm on this tree is:

E = E[[] X:| %] (@)
= B[] x:|7) @) + B[[] X:| 73] (22)

M M
= [IBlx|7)@) + [[EX:| 7] (22)

i=1
M M

=] > Xi(ai)fias) +] > Xi(a:)gi(a:)
i=1a;€A; i=1a,€EA;

Note that this requires only O(Mn) additions and multiplications.

In the next example we show that Pearl’s treatment of the belief propagation
algorithm in the case of a node with disjunctive interaction or noisy-or-gate
causation ([9], section 4.3.2) can be viewed as a special case of our algorithm:

Example 3. Bayesian Network with Disjunctive Interaction. Let the
binary inputs U = (Uy,Us, - -+ ,Un) be the parents of the binary node X in the
Bayesian network of Figure 4, interacting on X through a noisy-or-gate.

Figure 4: Bayesian Network of Example 3

This means that there are parameters g1, -+ ,gn € (0,1] so that
P(x=0{U)=[] &
€T
Px=1|0)=1-[] &
€T,

23

A g
where T, = {i : Ui=1}.

Normal moralization and triangulation technique applied to this graph will
give a single clique with all the variables. However, because of the structure in
the problem, a better solution exists.

Let Fx,F1, -+ ,Fn be the o-fields generated by the (independent) variables
Z,uy,- - ,Un respectively. All variables are binary so each of the o-fields has pre-
cisely two atoms. In our framework, let the ‘random variables’ be (the function)
1 € Fx, and 7x(w;) = P(U; = w;) € F; for i = 1,--- ,n, with the underlying
joint measure on z,u,- - ,un defined to be p(z,uy,--- ,up) =P(X =z |U =
(u1,--+ ,un)). Then F;’s are not mutually conditionally independent given Fx,
however the following simple lifting of space will create the independence: Let
a variable 2’ be defined to take value in 0, 1,2, where the event {z' = 0} corre-
sponds to {z = 0}, and {z’ = 1} U {z' = 2} correspond to {z = 1}. Extend the
measure as follows:

[lier, s ifa'=0
p’(:z:',‘ll.l' . ﬂl-n) = —HieT,. g ifz' =1
1 ifz' =2

Then we see that in this lifted spaces, the o-fields F; (generated by variables
u; respectively) are mutually conditionally independent given Fy. (the o-field

. generated by variable z’.) Then we have a junction tree in the shape of a star,
with F. corresponding to the central node. The junction tree algorithm will
calculate the following marginalized random variable at the node corresponding
to Fiy:

H?=1 (P(U, =0)+P{U;=1) q,-) ifz'=0
ﬂ(wl) =(- H?:l (P(U,‘ =0) + P(U; = 1) qi) ifz' =1
1 ifz' =2
Then the belief at X is the function

H?=1 (P(U‘i=0)+P(Ui=1)Qi) ifz=0

BEL(z) = {1 -, (P(U: =0) + P(U; = 1) g) ifz=1

where we have merged the atoms 2z’ = 1 and z’ = 2 of F¥, to get back z = 1.
This is essentially the same as Equation (4.57) in [9).

Example 4. Hadamard Transform. Let z,,-- - , T, be binary variables and
let f(z1, -+ ,zn) be a real function of the z’s. The Hadamard transform of f is
defined as n
g(yla"' |yn) = z H(_l)z‘y‘f(zla"' :zn)
Z1, ,Tn =1
where y;, - - - , yn are binary variables.
Since our framework is particularly useful when the underlying functions are
structured, we consider the case when f is a symmetric function of z1, - - , Zn,

24

i.e. f depends only on the sum of the z;’s. Then it is easy to verify
Claim: When f is symmetric, then its Hadamard transform, g is also a sym-
metric function.

We now set up the problem in our framework. Let 2 be {0,1}*® with
elements w = (Z1,°** ,Tn,¥1,** ,¥n). Let F and G be the o-fields in which
respectively f and g are measurable; in our case of symmetric f and g, A(F) =
{ox for k=0, ,n} = {{w : T,z =k} for k=0,---,n} and A(G) =
{Brfork=0,--- ,n}={{w : T;yi=k}fork=0,---,n}.

Next we note that all the factors involving terms (—1)*% can be summarized
as a signed measure u on F V G as follows:

plos)= > (-)Zemw
uEa,-nﬁk

= Z (_l)z‘m.-
wy, zi=j,
E.vy-'=k

P (=1)E =1

(11 » 'zu):z,‘ 3i=j

Note that p can be stored in a (n + 1) x (n + 1) table.
~ Now we have a junction tree with only two nodes, corresponding to F and
G, and the marginalization is done as follows:

o(Bx) = E[f]9]
= z flaj)ulaj, Br)

=0

where f(aj) = f((z1,-+ %) : ;7 = j) and g(B) = g((¥1,* 1) :
Z" Ui = k)-)

This requires only n additions and (n + 1) multiplications for each of (n+1)
possible values of g.

We have created a Matlab library containing the necessary functions to set
up a general marginalization problem and create a junction tree. The following
examples are processed using that code.

Example 5. Probabilistic State Machine. Consider the Bayesian network
depicted in Figure 5, where u;, s; and y; denote inputs, hidden states and the
outputs of a chain of length n. Let m be the memory of the state machine, so
that each state s;41 can be taken to be (wi_m+1,--* , %)

The problem of finding the maximum-likelihood input symbols is solved
by using the BCJR algorithm (3], which is an implementation of GDL algo-
rithm on the junction tree obtained by moralization and triangulation of the
above Bayesian network. The local functions are P(so), P(u;), P(y§lui, s;) and
P(s;|ui=1,5i-1)- At each stage i, a message-update involves marginalizing a

25

(9) (=)
ol 1o

Figure 5: Bayesian Network for a Probabilistic State Machine

function f(u;—m, - ,u;) over u;_,,. So in case of binary inputs and outputs,
the BCJR algorithm will require about (57 2™) additions and multiplications.

Now consider a case when the output of the state machine depends on the
input and state in a simple, but non-product form. For the purposes of this
example, we have chosen the output y; to be the outcome of an ‘OR’ gate on
the state s; and input u;, passed through a binary symmetric channel, i.e.

P(yilui, s:) = (1 — p)Uws = ViZoti-j) +p- Lyi # Vimoui—j)

_ where ‘V’ indicates a logical ‘OR’, and 1(-) is the indicator function.

We formed the Q space as {0,1}", with elements w = (up,--- ,un—1). Then
each functions P(y;|u;, s;) is measurable in a g-field F;, with two atoms {w :
Vitoti—; = 0} and {w : VILou;—; = 1}. Since we like to calculate the posterior
probabilities on each input u;, we also include o—fields G; each with two atoms
{w:u; =0} and {w:u; =1}.

We then run our algorithm to create a junction tree on the F;'s and the G;’s,
lifting the space whenever needed. The result is a chain consisting of the F’s
with each G hanging from its corresponding F; (see Figure 6).

We have run the algorithm on different values of n and m. Table 1 compares
the complexity of the message-passing algorithm on the probabilistic junction
tree and the normal GDL (BCJR) algorithm. To count for the final marginaliza-
tion at the atoms of the original o-fields, we have used 5nz as the (approximate)
arithmetic complexity of our algorithm, where nz = E(i,j) an edge "2(% 7) is the
total number of nonzero elements in the tables of pairwise joint measure along
the edges of the tree (see Section 4.3).

The details of the case n = 12,m = 6 have been portrayed in Figure 6.
The numbers underneath each F; shows the number of atoms of F} v G/ after
lifting has been done. Note that with our setup, originally Fy V G has 2 atoms,
and all other F; V G;’s have 3 atoms. The numbers under the brackets denote
nz(, j), the number of nonzero elements in the matrix of joint measures between
the atoms of adjacent nodes; As mentioned before, the number of operations
required in the computation of the message from one node to an adjacent node
is proportional to this number.

26

(n,m)

05 0.6 Jon Taos [0 | aen Ja,s Jawe JaLn | azs | aze Jazn

"z 95 130 123 107 133 186 119 147 217 129 159 230
GDLops | 1440 2880 5760 1600 3200 6400 1760 3520 7040 1920 3840 7680
PGDLops | 475 60 61S 535 665 90 595 735 108 645 795 1150

Table 1: Comparison between complexity of GDL and probabilistic GDL. Here
nz denotes the total number of nonzero entries in the tables of pairwise joint
measures. For a chain of length n and memory m, GDL algorithm requires about
5n 2™ arithmetic operations, while PGDL requires about 5 nz operations.

——m————
- -~

G W J VY) VY W) WG X W W L GG S
4 6

8 10 12 14 14 29 29 24 7

Figure 6: Junction Tree Crea.téd for Chain of Length 12 and Memory 6

Example 6. CH-ASIA. Our last example is CH-ASIA from [5], pp. 110-111.
The chain graph of Figure 7 describes the dependencies between the variables.
Thus the problem is to marginalize P(S, A,L,T, B, E,D,C, X), which is the

Figure 7: Graph of CH-ASIA Example

product of the following functions: P(S),P(A),P(L|S),P(T|A),P(B|S),l(E =
LVT),P(X|E),f(C,D,B),g(C, B, E) and h(B, E).

Again we set up measurable spaces, with o-fields corresponding to each of
the above functions. We then ran the lifting algorithm to find a junction tree in
form of a chain, as in the previous example. This time, however, due to lack of
structure at the level of the marginalizable functions, (i.e. the aforementioned

27

"’
-’

-,
T

conditional probabilities,) the algorithm produced exactly 2 junction tree that
one could obtain by the process of moralization and triangulation at the level
of original variables. In other words, all liftings were done by addition of one or
more ‘whole’ orthogonal directions (i.e. GDL variables) of the 2 space to the
o—fields. After reconverting o-fields to ‘variables’, the junction tree we obtained
was the following:

(DDA~ TAESS-CSED-CRED-(BEO-(XE D

Figure 8: Junction Tree for CH-ASIA Example

In this case, our algorithm has reduced to GDL.

7 Discussion

In this paper we have developed a measure-theoretic version of the junction tree
algorithm. We have generalized the notions of independence and junction tree
at the level of o-fields, and have produced algorithms to find or construct a
junction tree on a given set of o-fields. By taking advantage of structures at
_ the atomic level of sample space €2, our marginalization algorithm is capable of
producing solutions far less complex than GDL-type algorithms. The cost of
generating a junction tree, however, is exponential in the size of the problem,
as is the size of any complete representation of the sample space . Once a
junction tree has been constructed, however, the algorithm will only depend
on the joint measure of the atoms of adjacent pairs of o—fields on the tree.
This means that an ‘algorithm’ which was build by considering an Q space with
myriads of elements, can be stored compactly and efficiently.

Using our framework, the tradeoff between the construction complexity of
junction trees and the overall complexity of the marginalization algorithm can be
made with an appropriate choice for the representation of the measurable spaces;
at one extreme, one considers the complete sample space, taking advantage of all
the possible structures, and at the other, one represents the sample space with
independent variables (i.e. orthogonal directions), in which case our framework
reduces to GDL, both in concept and implementation.

The validity of this theory for the signed measures is of enormous conve-
nience; it allows for introduction of atoms of negative weight in order to create
independencies. It also greatly simplifies the task of lifting, as now it can be
done by taking the singular value decomposition of a matrix. In contrast, the
problem of finding a positive rank-one decomposition of a positive matrix (which
would arise if one confined the problem to the positive measures functions) is a
very hard problem (See [4]).

28

References

[1] SM. Aji and R.J. McEliece, “The Generalized Distributive Law,” IEEE
Trans. Inform. Theory 46 (no. 2), March 2000, pp.325-343.

[2] F. Baccelli, G. Cohen, G.J. Olsder and J.P. Quadrat, Synchronization and
Linearity, New York : Wiley, 1992.

[3] L.R. Bahl, J. Cocke, F. Jelinek and J.Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory
IT-20, March 1974, pp.284-287.

[4] J.E. Cohen and U.G. Rothblum, “Nonnegative Ranks, Decompositions,
and Factorization of Nonnegative Matrices,” Linear Algebra Appl. 190,
1993, pp.149-168.

[5] R.G. Cowell, A.P. Dawid, S.L. Lauritzen and D.J. Spiegelhalter, Probabilis-
tic Networks and Expert Systems, New York: Springer-Verlag, 1999.

[6] D.J.C. MacKay and R.M. Neal, “Good Codes Based on Very Sparse Matri-
ces,” Cryptography and Coding, 5th IMA conference, Proceedings, pp.100-
111, Berlin: Springer-Verlag, 1995

[7] R.J. McEliece, D.J.C. MacKay and J.F. Cheng, “Turbo Decoding as an
Instance of Pearl’s ‘Belief Propagation’ Algorithm,” IEEE Journal on Se-
lected Areas in Communications, 16 (no. 2), Feb. 1998, pp.140-152.

[8] P.Pakzad and V. Anantharam, “Conditional Independence for Signed Mea-
sures,” In preparation.

[9] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, San Mateo, CA: Morgan Kaufmann, 1988.

[10] G.R. Shafer and P.P. Shenoy, “Probability Propagation,” Ann. Math. Art.
Intel., 2, 1990, pp.327-352.

29

	Copyright notice 2001
	ERL-01-32

