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Abstract

In this paper we develop a measure-theoretic version ofthe Junction
Tree algorithm tocompute the marginalizations ofaproduct function. We
reformulate theproblem ina measure-theoretic framework, where the de
sired marginalizations are viewed as conditional expectations of a product
function given certain o-fields. We generalize the notions of independence
and junction trees at the level of these e-fields and produce algorithms
to find or construct a junction tree on a given set ofcr-fields. By tak
ing advantage of structures at the atomic level ofthe sample space, our
marginalization algorithm is capable of producing solutions far less com
plex than GDL-type algorithms (see [1]). Our formalism reduces to the
old GDL as a special case, and any GDL marginalization problem can be
reexamined with om framework for possible savings in complexity.

1 Introduction

Local message-passing algorithms on graphs have enjoyed much attention in the
recent years, mainly due to their success in decoding applications. Apn^^al
framework for these algorithms was introduced by Shafer and Shenoy in [10].
This general framework is widely known as the Junction TVee algorithm in the
Artificial Intelligence community. Aji and McEIiece [1] gave an equivalent, (a^
for our purposes, slightly more convenient) framework known as the Generali^
Distributive Law (GDL). Viterbi algorithm, BCJR (3], Belief Propaption [9],
FFT over a finite field, and Turbo [7] and LDPC (6| decoding algorithms are
amongst implementations of the Junction Tree algorithm or GDL .

Given a marginalization problem, GDL makes use of the distrihutivity of the
'product' operation over 'summation' in an underlying semiring to reduce the
complexity of the required calculations. In many cases this translat^ to sub
stantial savings, but as we shall see in this paper, sometimes there isjust more

•This work was supported by grants (ONR/MURI) N00014-1-0637, (NSF) ECS-9873086
and (EPRI/DOD) EPRI-W08333-04 . , .l

^Throughout this paper we wUI use both names - GDL, and the Junction Tree algonthm-
interchangeably, but will use the GDL notation from (1) toshow connections with this work.



structure in the local functions than GDL can efficiently handle. In particular,
GDL relies solely on the notion of variables. Anystructure at a finer level than
that of variables will be ignored by GDL. We illustrate these limitations in the
following simple example;

Example 1. Let X and Y be arbitrary realfunctions on {1,••• ,n}. Let
be a fixed real weight function for i,j £ {1| ••• ,n}, given by an n x n matrix M
with = Mi j. We would like to calculate the weighted average of X -Y:

The general GDL-type algorithm (assuming no structure on the weight func
tion fj) will suggest the following:

E=Y;x{i)f2YUMi.}),
*=i

requiring n{n-\-1) multipUcations and (n —l)(n-f-1) additions. But this is not
always the simplest way to calculate E.

Consider a 'luckiest' case when the matrix M has rank 1, i.e. the weight func
tion/x(i, j) factorizes as /i(i)/2(i). In thiscase E={ X(i)/i(i)) ( Y{j)f2(J)).
requiring only 2n-\-\ multiplications and 2n —2 additions.

Suppose next that /z(i, j) does not factorize as above, but the matrix M has
a low rank of 2, so that /i(i, j) = fi{i)f2{j) + 9i{i)92U)- Then we can compute
E as follows:

i=l j=l »=1 j=l

This requires 4n 2 multiplications and 4n —4 additions.
Next suppose that the fixed weight matrix M is sparse, for example with

+ j - n —1). Then

n

t=l

requiring only 2n multiplications and n —1 additions.

FVom this example it is evident that there are families of marginalization
problems for which the GDL treatment is insufficient to produce the best method
of calculation.

In this paper we introduce a probability-theoretic framework which elimi
nates the explicit use of 'variables' to represent the states of the data. Specifi
cally, we replace GDL's concept of 'local domains' with a-fields in an appropri
ate sample-space. We also replace GDL's 'local kernels' with random variables
measurable with respect to those <T-fields. The marginalization problem is then,
naturally, replaced by taking the conditional expectation given a a-field. As
we shall see, this representation has the flexibility and natural tool (in form of



a measure function on the sample-space) to capture both full and partial in
dependencies between the marginalizable functions. Our formalism reduces to
the old GDL as a special case, and any GDL marginalization problem can be
reexamined with our framework for possiblesavings in complexity.

Although our results are generalizable to any arbitrary semifiel(P, in order
to avoid abstract distractions, we focus on the sum-product algebra.

Here is an outline of this paper. In Section 2 we review the GDL algorithm.
In Section 3 we present the necessary concepts from the probability theory. In
Section 4 we give a probabilistic version of the marginalization problem that
we address in this paper, and introduce theprobabilistic junction trees and the
message-passing algorithm on them. We further produce an algorithm to find
a junction tree on a given collection of c-fields. Just as is the case with the
ordinary GDL, junction trees do not always exist. In Section 5 we discuss a
method to expand the problem in a minimal way so to be able to construct a
junction tree (much like the process of moralization and triangulation). Some
examples and applications are given in Section 6, and in Section 7 we discuss
our results.

2 GDL Algorithm

Definition 1. A (commutative) semiring His a set with operations + and x
such that both + and x are commutative and associative and have identity
elements in (0 and 1 respectively), and x is distributive over +.

Let - ,a;n} be variables taking values in sets {Ai, --,i4n} respec
tively. Let {5i,- - ,5m} be a collection of subsets of {1, ••• ,n}, and for
i G{I,-** ,M}, let Qi : As, —• Hbe a function of xs,, taking value in
some semiring R. The "Marginalize a Product Function" (MPF) problem is to
find, for one or more of the indices i = 1, •••,M, the 5<-marginalization of the
product of the ck '̂s, i.e.

M

{3i{xsJ=

In the language of GDL, Qi's are called the local kernels, and the variable Usts
xs, are called the local domains.

The GDL algorithm gives amessage passing solution when the sets {5i, ••,5m}
can be organized into a junction tree. Ajunction tree is a graph-theoretic tree
with nodes corresponding to{5i, •••,5m}. and with the property that the sub
graph on the nodes that contain any variable Xi is connected. An equivalent

2A semifield isanalgebraic structure with addition and multiplication, both ofwhich are
commutative and associative and have identity element. Further, multiplication is ^stributive
over addition, and every nonzero element has a multiplicative inverse. Such useful algebras
asthesum-product and themax-sum are examples ofsemifields (see 12]).



condition is that MAy B and C are subsets of {!,••• , M} such that A and B
are separated by 5 on the graph, then Sa^Sb ^ Sc where Sa = Ute>i^
we will see in Section 4 our definition of a junction tree will resemble this latter
definition.

Suppose G is a junction tree onnodes{!,••• ,M} with localkernels {oi, ••• , cum}-
Let {Ely'-' ,Et} be a message-passing schedulcy viz. the 'message' function
along the (directed) edge (iyj) of the graph is updated at time t iff (iyj) G Et.
The following asynchronous message-passing algorithm (GDL) will solve the
MPF problem:

Algorithm 1. At each time t and for all pairs {iyj) of neighboring nodes in the
graph let the 'message' from i to j be a function fjt\j : AsiCiSj —* R- Initialize
all 'message' functions to 1. At each time t € {1, ••• .T}, if the edge (iyj) € Et
then update the message from node i to j as follows

lAyji^SinSi) = ocii^Sy) n (1)

where {k adj i) means that node k is adjacent to i on the tree.

This algorithm will converge in finite time, at which time we have:

M

"ii^Si) JJ )=Pi{xSi)= (n ))
^ &dj t Xge^A^e t=l

Proof. See [1]. •

3 Probabilistic Preliminaries

First we review some notions from probability theory. Throughout this paper
we focus on discrete sample spaces, i.e. the case when the sample space is finite
or countably infinite.

Let (fl, Al) be a discrete measurable spacCy i.e. is a finite or countable
set and AA is a o-field on Let fx : A4 —» (-co, oo) be a signed measure
on (J2,A4), i.e. /i(0) = 0 and for any sequence of disjoint sets in

~ IZr' ^ matter of notation, we usually write
p-{Aiy A2y •' - yAn) for pi{Ai 0^420•••n.A„).) Then we call (QyAAyn) a measure
space. If (n. Myfi) is a. measure spaceand {Tiy •• ,Tm) are sub a-fields of My
then we call (fl, {.Fi, ••• a collection of measure spaces.

Let Py Q and H be sub <T-fields of M.



Atoms of a a-field: We define the set of atoms of ^ tobe the collection ofthe
minimal nonempty measurable sets in ^ w.r.t. inclusion:

^(:F)= {/€^ : /^0. andVpe:F, /np€{0,/}}

Augmentation ofcr-fields: We denote by ^ the span of T and i.e. the
smallest cr-field containing both T and Q. For a set Aof indices, we write Ta
for -^0 = {0.^^}. the trivial «T-field on Note that the atoms of
Ty Qare all in the form /Hp for some / € AiJ") and g € A{Q).

Conditional Independence: We say T is conditionally independent of Qgiven H
or ^_1L QITt w.r.t. \i when for any atom hof H,

• if fi{h) = 0 then V/ € .F, 5 G /i(/,9^h) = 0

• iffi{h) ^ 0then ^f £ ^F^g ^ G, h)fi{h) = /x(/,h)fj.{g,h).
When the underl)ring measure is obvious firom the context, we omit the ex

plicit mention of it.

Independence: We say is independent of ^ or F" JL ^ w.r.t. p when
TILG\{%^}.

Note that these definitions are consistent with the usual definitions ofinde
pendence when /X isa probability function.

Conditional Measure: Although it is not essential for our discussion, we define
the conditional measure as a partially defined function /x(-l-) : M x- M —*
(-00,00), defined as:

„/a|6) ^ defined for nonzero-measure 6
|x(b)

Expectation and Conditional Expectation: Let and Pbe aa-fields with atoms
and AiG) = respectively. Apartially-defined random

variable X inlF is a partially-defined function on Q, where for each r in the
range of X, X~^(r) is measurable in F". We write XGF,and denote by Ax\F^)
the subset ofA{T) = where X is defined.
Assuming /x(n) 0, the expectation ofX isdefined as

EM = Y,
' fiAxm

fBAxiy")

Then we define the conditional expectation of X given as a partially-
defined random variable Y in G, with Ay{G) = {5 € ^4(6?) : p.{g) 0}, as



follows:

E[X1^] (ff) =-K f) 9^ Ay {Q)
f€Ax{^

= X{f)Mg) foigeAvig)
feAxin

The signed Conditional Independence relation satisfies certain properties
(inference rules) that we will state in the next theorem. See (9) and [5] for
discussion of inference rules for the case when is a probability function^.

Theorem 3.1. Let Q, X^y he a-fields. Then the following properties hold:

j'Mg 1^ =» gJLT\X
j^jLg 13^ .^31^13^ &

pjig & p.^y\gyx =>
pjig

f

=1

>

pjig \X & j^\/xjLy\g

j^±g vx \y & .FV^JL3'| ^

Symmetry (2a)

TJLX \y Decomposition
(2b)

J^^LQy y \X Contraction (2c)
J'JLGwylX (2d)
^ALGvylX (2e)

[T^Lgyy\x
(2f)

Proof. Let /, p, x, and y be arbitrary atoms of P, X and y respectively. The
proofs below consider all possible cases for the value of the y. on these atoms.

(2a): Symmetry is obvious, since / H p = p D /.

(2b): If y{y) = 0, then y{f,g,x,y) = 0 and if y{y) ^ 0, then y{f,g,x,y) =
pifty)9'(9t^ty)/p{y) for afl choices of /,p and x in and X respectively. In
particular, choosing x = Q or g = 0. will yield the desired results.

(2c):

• y{x) = 0. Then from T}Lg \X, we get y{g,x) = 0 for all g. Then from
.FJL 3^ I^ VA:' we get //(/, p,x,y) = 0 for all / and y, and so we are done.

• fi{x) ^ 0and y{g,x) = 0. Then from !F^Ly \gyX we get y{f,g,x,y) = 0
for all / and y, and so /z(/, p,x, y)/z(x) = y{f,x)fj,{g,x,y) = 0 and we are
done.

^Note that the signed Conditional Independence relation satisfies symmetry, decomposition
and contraction, but in general wecJc union does not hold. So the signed C.I. relation is not
a semi-graphoid.



• ii{x) 7^ 0 and //(p, x) ^ O.Then from \QyX we get

m(/. p. y) = /^(/'9^ y)//*(5, ®) (3)

Also from J^SLQ \X we have ^i{ft9,x)/fj,{g,x) = fx{f,x)/fi{x). Replacing
this into (3) we obtain fJiift9,x,y) = and we are
done.

(2d):

• n{x) = 0. Then from .FV ^ JL | X, we get ii{f,9,x,y) = 0 for all /,p
and y, and so we are done.

• y.{x) 7^ 0 and ^.{x^y) = 0. Then from .Fv|X we get fi{f,9y^iV) —
fi{f, y, x)ti{x, y)/ti{x) = 0for all /, yand y, and in particular /i(y, s, y) = 0
andsowe have the desired equality /i(/, y,x,y)//i(x) = /i(/, x)M(yi a:, y) =
0.

• /i(x) ^ 0 and /i(x,y) ^ 0. We have

m(/,fl,a:) = m(/,a;)Ai(5.a;)/M(®) since J^JLg\X (4)
M 5, aJ, y) = /'(Z. y. a;)/z(x, y)//x(x) since .F V5JL ^ | AT (5)

/i(y. a;)/A4(x) = A4(y, x, y)/^t{x, y) since, by (2b), ^JL ^ | Af (6)
Replacing (6) into (4) and then into (5) we obtain

M9,x,y) = ti{f,x)ti{9,x,y)ffx{x).

(2e):

• /i(x) = 0and M = 0. Then from TV XJiy \Q, we get M9y3:,y) = 0
and we are done.

• /x(x) = 0 and /i(y) 7^ 0. Prom .FJL ^ | A' we have //(/.y,®) = 0. Then
from TV XJLy\g, = M/.y.a;)M(y,y)My) = oand we are
done.

• fi{x) 7^ 0 and /z(y) = 0. Then from VAT JL 3^ [6?. we get both
^(/,y,a:,y) = 0 and fJL{9,x,y) = 0, so the desired equality hold:

At(/,y.a;,y) = ii{f,x)fx{9,x,y)(9.{x) = 0.

• /i(x) 7^ 0and /x(y) 7^ 0. Then from TV X±y | we get ti{fy9.x,y) =
M(/.y.a;)/x(y,y)//x(y). Also from :FJL6? | A' we have

M/.y.a;) = /i(/,x)/i(y,x)//x(x).

So we obtain the equality M(/,y,x,y) = M(/.a:)^(y,a;)Ai(y,y)/(/x(y)/i(x)).
Finally, decomposition applied to TVA'JL 3^ yields //(y, x)fx{9ty)ly-is) —
yi9t X, y). So we have proved fi{f, y, x, y) = y{f^x)p,{9, x, y)//i(x) and this
completes the proof.



(2f):

< /t{x) = 0. Then from ^ VSJL J' [X, we have y{S,g,x,y) = 0 and we are
done.

• /i(a7) ^ 0and /i(x, y) = 0. Then from .FV^JL^ |Xwe have /i(/, y, x, y) =
fM{f,9jX)fi{x,y)/ti{x) and so = 0. Also after applying (2b) to
the above, we have /i(/,x,y) = n{fyx)fj.{x,y)/fi{x) = 0 and At(y,x,y) =
ti{9,x)fJL{x,y)/fjL{x) = 0. So we have the equality m(/. Pi 2:, y)/i(x) =
/z(/,x,y)/i(y,x) = fJi{f,x)fi{9,x,y) = 0 and we are done.

• /i(x) ^ 0 and fi{x,y) ^ 0. Then also /i(y) 0 or else from ^ AL QV
A* I3^ we would have /x(x,y) = 0. Then from .F JL ^ V-T | 3^ we get
Kf^9^x,y) = M(/,y)M(p.aJ,y)//z(y), and also after (2b) to the above, we
get tJi{fyX,y)/nix,y) = fi{f^y)/Ky)- Replacing the latter equation into
the former we obtain

9. y) = .a;, y)/x(/, X, y)//i(x, y) (7)

But from ^ V^ JL 3^ I and by (2b) we have both /i(/, x,y)/pt{x, y) =
/i(/,x)//i(x) and /x(y, x,y)/;x(x,y) = ^(y,x)/|i(x). Replacing each of
these into (7) we obtain

tJt{f.9yX,y) = f^i9yX,y)fM{f,x)/fi{x)

and

M/iy.a^,y) = Af(/,x,y)/z(y,x)//i(x)

and we are done.

4 Probabilistic MPF and Junction Trees

We now formulate a probabilistic version of the MPF problem and introduce
the corresponding concept of junction trees. The rest of this paper will analyze
properties of these junction trees and describe a probabilistic GDL algorithm
to solve this MPF problem.

Throughout this paper, let (fl, {Fi,-- - ,Fm},/z) be a collection of measure
spaces, and let {3Ci, ••• , Xjvf} be a collection of partially defined random vari
ables with Xi £ J^i.

Probabilistic MPF Problem: For one ormore iG{l,---,M}, find £[13^. Xj|Fi],
the conditional expectation of the product given Fi.

A GDL MPF problem in the format described in Section 2 can be represented
as a probabilistic MPF problem usually in more than one way, depending on

8



the choice of assignment of GDL's local kernels as either a random variable,
or a factor of the measure function; either way, the product will be the same.
Specifically, a marginalization can be viewed as a

weighted average oftheproduct ofQj'sfor j e J C {1, ••• ,Af} with the measure
function ,Af}) = subset J of {I,-- - ,M}. Our
sample space f2 is then the product space = j4i x ••• x Am. For
eadi j € •/, we view a^- as a random variable measurable in a o-field whose
atoms are the hyper-planarsubsetsof in which the coordinates corresponding
to the elements of Sj are constant. In other words, each atom of this a-field
corresponds to a possible choice of xs^ € ^4^^. Denoting each atom by its
corresponding element xs^ then, we have

1 ^ \ 1

t r'X j / xs<?€Asc '
» «

In most applications, for a family of MPF problems the local kernels can
be categorized as either fixed or arbitraTy. For example, in an LDPC decoding
problem, the code itself is fixed, so the local kernels at the check-nodes are
fixed; we only receive new observations and try to find the most likely codeword
given each observation set. As another example, when finding the Hadamard
transform .x„ •••,x„) of an arbitrary function /, the
functions are fix^. Typically, we want to assign (some of) the fixed
kernels as the measure function, and the arbitrary kernels as the marginalizable
random variables; this way, once a junction tree has been found for one problem,
it can beused to marginalize theproduct ofany arbitrary collection ofrandom
variables measurable in the same cr-fields. See Section 6 for more examples.

4.1 Junction Trees

As in the case ofthe old GDL, junction trees aredefined to capture the under
lying independencies in the marginalizable functions. Given the above problem
setup we define junction trees as follows;

Definition 2. Let G be a tree with nodes {1, •• ,M}. We say subsets A and
jB of {1, ••• ,M} are separated by a node zifVx € A, y GS, the path from x
to y contains z. Then we call G a Junction Tree ifVA, B C {1, ••• ,Af} and
zG{1, •••,M} s.t. zseparates Aand Bon the tree we have JL.Fb j
Lemma 4.1. Suppose there exists a junction tree with nodes corresponding to
a-fields {Ti, •••, }• Then if f is a zero measure atom of any of the :Fi's,
and gCf is measurable inVi^i = 0.
Proof. Node z vacuously separates the empty subset of {1, ••,Af} from
{1, •. •,Af}\{z}. Thus {0, fi} IL V^i ^3 I Thus by the definition of con-
ditional independence, whenever f GA^Pi) has zero measure, all its subsets
measurable in have measure zero. ^



Lemma 4.2. Let o,n<i ^3 be c-fields such that JL | ^2> Then for
any partially-defined random variable X € thefollovnng equality holds:

E[E[jr|̂ 2]|:F3] =e[x|:F3]

Proof. Let r = E[X|:F2]. Then Ay(^2) = {6 € Aip2) : p{b) 0} and
for 6 e Ay(^2), Yifi) = Then, for any nonzero-
measure atom c e A(^3),

b[e[j:|j^2]|̂ 3](c) =E[y|j3](c)
=;i|5 E n%(b.c)

b€Ay(J^2)

= E E X(a)Ma.b)Mb,c)
' 1>€Ay(^2) ' a^Ax{Ti)

=-n E E sinceJ^iJLJTalJi
6e>4y(J=2)a€>4x(J^i)

= E E "(a-i-c)
' o6>lx(^i) b€Ay(J^2)

' o6Ax(^i)

= E[X|J^3](c)

where we have used the fact that ^1 _1L ^3 | ^2. so ^^eA^ (Y) ~
I^be^CFa) ^{a. b, c) = /i(o, c). •

Lemma 4.3. Let {P\y'" and T be a-fields such that ,Pi} are
mutually conditionally independent given T. For each z = 1, ••• ,Z, let Xi be a
partially-defined random variable in Pi. Then:

i=l t=l

Proof. We shall proceed by induction. The statement is vacuous for Z = 1,
For I = 2, let Y= EJA-iXjI^-]. Then Ayir) = {/ e A{r) : /x(/) # 0}.
Also note that X1X2 is a partiaUy-defined random variable in Pi V P2 with
AxiX2 ^^2) = Axi (^1V P2) n Axa (^1V p2)., and that any atom of Pi VP2
can be written as a n 6 for a GA{Pi) and b GA(p2). Then for any f GAy(P)
we have:

10



Y(f)=-^ •£ Xi{a)X:>(bMa,b,f)
^ ianb)£AxiX2i^i-^^^^

a€^i ,bG^2

1 't—\ V / _\xr /L\ M(®>/)/'(^»/)
=^ E E ^1(^)^2(6)——

=:Jn X,(aMa./)^ E ^»(%(»./)^^^KeAx,{J^x) b€Ax2i:F2)
= e[Xi|^](/)e[X2|:f](/)

where we have used thefact that JL ^2 ] so ~
ForZ> 2 assume inductively that the equality holds for Z—1. Then:

t=i *=2
I '

since JL ^ | ^
t=2 *=2

I

by induction hypothesis
t=i

4.2 Probabilistic Junction Tree Algorithm
Suppose G is a junction tree with cr-fields {^i, -• as defined above,
and let {Xi, •••,Xm} be random variables with X< € Then the foU^
ing asynchronous message-passing algorithm will solve the probabilistic MPh
problem:

Algorithm 2. For each edge (i,j) on the graph, define a 'message'Yij from
node i to j as a paHially-defined random variable measurable in J^j.
For each i = 1,••• ,M define the set ofneighbors ofi as:

Ni = {k : (i, k) an edge in the tree),

andfor each edge {i,j) in the tree, define:

Nij = iVAli)

Initialize all the messages to 1. For each edge {i,j) in the tree, update the
message Yij (asynchronously) as:

yij =E[Xi n
fceN.j

11



This algorithm will converge in finite time, at which time we have:

M

j=i keNi

Proof. The scheduling theorem 3.1 in [1] also holds here, using Lemmas 4.2and
4.3 above. For completeness we will include that proof here.

We will show that if St is the schedule for activation of the nodes, (i.e. a
directed edge (i, j) € Et iffnode i updates its message to its neighbor, j at time
t) then the message from a node i to a neighboring node j is;

k€Ki,j(t)

where Kij{t) is a subset of the nodes defined recursively by

KiAt) =

0 if t = 0,

We will prove this by induction on t. Case t = 0 is clear from the initial
ization. Now let t > 0 and assume that (9) above holds for t —1. We can also
assume that the {i,j) € Et so the message is being updated at time t. Then:

=e[x, nE[ n j by induction

=E[^E[A'i JJ J][ [-^j] by J.T. property and Lemma 4.3

=E[Xi J] H by J.T. property and Lemma 4.2

=e[ JJ by definition of Kij{t)
keKijit)

Indeed Kij{t) above is the set of all the nodes whose 'information' has
reached the edge (ij) by time t. Similarly, with Ji{t) = {i}Uj€Ni
is the collection of all the nodes whose 'information' has reached a node i by
time t. It is natural to think of a message trellis up to time t, which is an
M Xf directed graph, where for any i, j € {1, • • , M} and n < t, i(n) is always
connected to i(n-|-1), and i{n) is connected to 1) iff{i,j) G E„. It follows
that we will have Ji{t) = {1, ••• , M} when there is a path from every the initial
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node (i.e. at t = 0) in the trellis to the node i(t). Then, since the tree has finite
diameter, any infinite schedule that activates all the edges infinitely many times
has a finite sub-schedule, say of length to such that J»(to) = {li ••• > for ^
i. At that time we have:

eu n n n
3€Ni j€Ni keKjAto)

.E[B|x.n n
j€Nik€KjAto)

=E[Xin n
j€Ni keKi,i(to)

=e[ Yl by defii. of J^(^)
k€Ji(to)

M

=E[n^'N

4.3 Representation and Complexity
In this section we discuss the complexity of representation of a junction tree
and the implementation of our algorithm.

Let G be a junction tree with a-fields {.Fi, ••• , ss defined above, and
let {Xi, - - ,Xm} be arbitrary random variables with Xi € Denote by qi
the number of atoms of the cr-field Fi, so Qi = l^^CFi)].

It can be seen that, in general, the sample space Q, can have as many as
Qi elements and thus full representation of o--fields and the measure func

tion requires exponentially large storage resources. Fortunately, however, a full
representation is not required. Along each edge {i,j) on the tree. Algorithm 2
only requires local computation of E[X|Fii] for a random variable XGJ'j. This
only requires a gf xqj table of the joint measures of the atoms of Fi and T,. For
an arbitrary edge (i,j), let ^(Fi) = {ui, ** jOg,} and .A(Fj) =
be the sets of atoms of Ft and Fj. Define W{i,j) to be the qi x qj matrix
with (r, s) entry equal to ^(ar|̂ s)i note that from Lemma 4.1, (possibly after
trivial simplification of the problem by eliminating the zero measure events,)
no atom of Fj can have measure 0, so n{ar\ba) is defined for all atoms of Fj.
Then once a junction tree has been found, we need only keep 2{M —1) such
matrices (corresponding to the (M - 1) edges of the tree) to fully represent the
algorithm, for a total of253(ij) an edge QiQj storage units.

Thearithmetic complexity ofthe algorithm depends oneven a smaller quan
tity, namely the total number of nonzero elements of the W{i,j) matrices. Let
nz(ij) denote the number of nonzero entries of the matrbc W{iJ) (note that

13



nz{i^j) = nz(j,i)). Let X be an arbitrary random variable in Then

9i

r=l

= X) X{ar)fi{ar\bs)
r:/i(arl6,)?40

requiring nz(itj) multiplications and nz{i,j) —qj additions. Note that the
measures are assumed to be fixed, and only the XiS are allowed to be arbi
trary random variables measurable in the So it makes sense to exclude
multiplications and additions by the O's from the algorithm.

For each (directed) edge (i, j) in G define xihJ) = 2nz{i,j) —qj to be the
edge complexity^ i.e. the number of additions and multiplications required for
computing E[X<|.Fj]. Prom the Algorithm 2, calculating the conditional expec
tation given a single a-field with the most efficient schedule, requires updating
of the messages from the leaves towards the node i. Each edge is activated in
one direction, and at each non-leaf node I the messages need to be multiplied to
update the message from I to its neighbor in the direction of i. This requires,
for each edge (A:, 1), an additional qi multiplications. Thus the grand total arith
metic operations needed tocalculate ^3\^i\ is E(fc.O an edge 2nz(fc, /)•

Note that nz{k,l) can be upper-bounded by qkqi, corresponding to carr)ring
out multiplications and additions for the events of measure zero.

The complexity of the full algorithm, in which E[I][j. A'jj.Fi] is calculated
for all i = 1, •• • , M, can also be found using similar ideas. For each node k,
let d{k) denote the number of the neighbors of k on the tree. Then for each
directed edge (/c, Z), the d{k) —1 messages from other neighbors of k must be
multiplied by Xk (requiring {d{k) —l)qk multiplications) and then the condi
tional expectation given Ti be tsdcen (requiring operations). So the total
number of operations required for the fuU algorithm is

^ 2nz{k, I)-qi + {d{k) - 1)?^
(,k,l) a dir. edge

M

= ^ {2nz{k, I) -H d{k)qk) - ^ 2d{k)qk
(k,l) a dir. edge /e=l

M

= ^ 4nz(A, I) -H 5^(d(A:)2 - 2d{k))qk
{k,l) an edge A:=l

As noted in [1], it is possible to produce all the products of d{k) —1 of
d{k) messages going into node A: in a more efficient way. In this case, the total
arithmetic complexity ofthecomplete algorithm will be Yl{k i) an edge 4n2(A:, I)
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4.4 Existence of Junction Trees

Definition 3. A Valid Partitionof {1, ••• ,M}\{i} with respect to a node i is
apartition {pi, ••*,pi} of {1, •••iM}\{i} (i.e. U^i Pi ={1'''" >
Pi npj = 0 for f j) such that :Fp/s are mutually conditionally independent,
given ^i.

Definition 4. Let P = {pi,- - ,Pt} be any partition of {I,- - A
tree with nodes {1, ••• ,M} is called compatible with partition P at node i ifits
subtrees hanging from i correspond to the elements ofP.

Lemma 4.4. Vi G{1, ••• ,M}, there is aFinest Valid Partition w.r.t i, which
we shall denote hy Pi, such that every other valid partition w.r.t. i is a coars
ening of Pi. Further, ifp is an element of Pi and p is the disjoint union of
nonempty sets ei and 62, then |

Proof. Suppose A = {pi, -- ,Pi} and B = {gi. -- ,qm} are vaUd partitions
w.r.t. node i. Now construct another partition, C = {pH q :p € A q £ B}.
We Haim that C is also a valid partition w.r.t. t, (finer than both Aand B):
To see this, we need toshow that for each d= pHq £ C, PdJLPd® | Pt- Using
simple manipulations like Pp = Ppn(9U9=) = ^pnqV -^png® we get:

Ppng VPpng« -U- Ppc jPi
Ppng VPpcng-U-Ppng" VPpeng<= I Ppng-ll-Ppng= I by (2b)

And finally, the last two relations and (2d) imply that Ppng-ll-Ppeu(png®) |
and hence Ppn,-IL ^^(png)" | ^i- So a finest vaUd partition w.r.t. i exists, whose
atoms are the intersections ofatoms ofall the valid partitions w.r.t. i.

Now suppose p is an element ofPi and p is the disjoint union of nonempty
sets ei and 62, and Te, iL Pej | We also have Pe^ VPe, iL Ppe [Pi. Then
from the last two relations and by (2d) we get Pgj -ILPpc VPg, | Pi, and hence

_lj_ | pj. Then ei and 62 would be elements in a finer valid partition
which is a contradiction.

Lemma 4.5. Given {Pi, •••,Pm}, tree with nodes {l,y ,M} is ajunction
tree iffateach node iitis compatible with some valid partition of{1, •*•,A/}\{i}
w.r.t. i.

Proof. Immediate from the definitions. ^
Lemma 4.6. Let d he a subset 0/ {1, ••• ,M} and let d' be its complement in
{1,• •• ,M}. Suppose there exist t £dand i £ d' such that PjJLPj' | Pt and
Pd JL Pd' IPi. Let G be any junction tree on d and G' any junction tree on
d'. Then the tree obtained by connecting G and G' by adding an edge between
t and i is a junction tree on {1, ••• ,M} (see Figure 1.)
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VT

Figure 1: Augmenting Junction Trees; Lemma 4.6

Proof. Let x be any node that separates A and B on the resultant tree. We wUl
show that P'A-iLP'B \ and hence we have a junction tree.
Let Ai= Ar\d,A2 = Ar\d\Bi = Br\d and B2 = Bnd' and WLOG suppose
X ^ d. Then at least one of A2 and B2 must be empty, or else x would not
separate A and B. Suppose A2 = 0.

First suppose x = t. Then we have:

I by J.T. property on G
J'Ai Vf'Bi Jh !Fb2 I since A\ UB\ Cd and B2 C d'

So by (2d) we have VTb^ | he. Ta^^b \ and we are done.
Next Suppose x G d\{t}. Then we must also have that x separates Ai from

LI {t} (assuming that B2 is nonempty, which is no loss of generality.) Then:

TA^JLTB^yTt\J'x (10)
J^Ai VJ^x VP^Bi JhJ^B2 I since AiUBi U{x} C d and B2 C d' (11)

We will show that Tai-^^Bi VTb2 ^t\^x and hence P'a-^^b | ^x-
Let X,T,a, /?! and be arbitrary atoms of ^Bx and Tb2 respectively.

• Cose /z(x) = /^(t) = 0. Then from (11) we have that /x(q, /3i,/?2, "t) = 0,
and so we are done.

• Cose fx{x) = 0 and fj,{T) 0. Then from (11) we have /i(a,)Si,j^,x,7') =
M(Q!./3i,XiT)Mi32,T)//i(T). But from (10), /i(Q!,/?i,x,T) = 0 since /i(x) =
0. Thus /z(q,)3i,/?2, X» ''•) = 0 and we are done.

• Case fj,{x) ¥" 0 and fx{r) = 0. Then from (11) wehave that //(a, fii, /?2, Xi''')
= 0, and so we have the equality =

fx{a,x)p{0ixp2x X."^) = 0 and we are done.

• Case fj,{x) 4- 0 and ^(r) ^ 0. Then from (11),

pioc,0i,02,X^T) = p{o^^Pi,X,r)fjt{l32,r)/fi{r),

16



and from (10), /i(a,A,X,'r) = tiix)- Replacing the lat
ter into the former, we obtain

= At(Q=.

But by (11), At(/3i,X,T);i()^.7-)//i(r) = ^^{Pu^,X.T)^ so

/^(a, A, /%. X, "t) = ii{oL, x)Ai(A, As, X. ''•)/m(x)

and we are done.

•

We now state our main theorem on the existence of junction trees:

Theorem 4.7. Given a set oftr-fields {Ti, ••• , J'm}, if there exists a junction
tree on {1, ••• ,M}, then for every i € {1, ••• ,M} there exists a junction tree
compatible with Pi, thefinest valid partition w.r.t. i.

Notice that Theorem 4.7 andLemma 4.6 effectively give an algorithm to find
a junction tree, when one exists, as we shall describe in Section 4.5.

Proof. The claim is trivial for M< 3. We will prove the theorem for M> 3by
induction:

Let Pi = {ci, ••• ,Ci} with Uj=i " {^i *"" thd}\{i} and Cj- n Cfc = 0 for
j ^ k. Let G be a junction tree. Let Q = {di, ••• ,dn} be the partition of
{1, •••,M}\{i} compatible with G. Let d= dj be an arbitrary element of Q,
and let d' = (Jfc# U{i}. Let t = iVi Udbe the node in dthat is neighbor
to i in tree G. By Lemmas 4.4 and 4.5 above, d is the union ofsome of Cfc's.
WLOG assume thatd= Ui£=i Cfc where K < I, and also assume that t € cjf.

Then from the junction tree property, we have

PiJLPdl^t (12)

Since G is a junction tree, the subtree on d is also a junction tree. Now
|d| < M, and so by induction hypothesis there exists a junction tree on d
compatible with P/, the finest valid partition w.r.t. t of d\{t}.

Now we claim that H={cfc\{t} I < k < K] is a. valid partition of
d\{f} w.r.t. t. To see this, let c = Ck for some arbitrary k = l, --,K, and
let c' = d\{c}, so Td = ^c- But one of c and c' contains t. Then by the
properties of valid partition w.r.t. i, we have:

PcVPtJLPc'|P"t or Pc-U-Pc'VPi |Pi

also, PiJL PcVPc' I since t separates i from d on G

Then by (2f) followed by (2b), the last relations imply that Pc JL Pc' | Pt
and we are done.
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Next weshow that for all k € {1,••• —1} (so that t ^ Cfc), Cfc is an element
of P/. If not, then there exists a c = cjt 6 P, with f ^ c, s.t. c is the disjoint
union ofsome subsets ei and 62 and Pei -U- Pea | Also Pei VPej-lLPi |>^t
so by (2d) we get Pci -U- ^ | have Pei VPea -U- Pt | Pi since
ci U62 = c and t belongs to another set in the finest valid partition w.r.t. i.
FVom the last two relations and by (2f) followed by (2b) we get PeiiLPca | Pt-
But by Lemma 4.4, c € Pt cannot be so decomposed, so {61,62} = {c,0} and
we have proved the claim.

So we have shown, by induction, that there exists a junction tree, Gd on
d, where node t has at least K —1 neighbors with subtrees corresponding to
Cfc, 1 < k < K —1. Now we modify the original junction tree, G in A" +1 steps
to get trees H, Ho,- • •, as follows:

First we form H by replacing the subtree in G on d, with Gd above, con
necting i to t with an edge. By Lemma 4.6, H is a junction tree on {1, ••• , M}.

Let Hq be the subtree of H after removing the subtrees around ton Ck, 1 <
k < K —I. Then Hq is also a junction tree. For each j = 1, ••• , iif —1 let Lj-
be the subtree of H on Cj, and let Xj be the node on Cj that was connected to t
in H. Then at each step j = 1, ••• , iif —1 we form Hj by joining Hj-i and hj
by adding the edge between i and Xj (see Figure 2.)

H Ho H,.i

Figure 2: Transformation of Junction Trees

We now show inductively that each Hj- is a junction tree. By induction
h3rpothesis H^-i is a junction tree. At the same time, Lj-, being a subtree of a
junction tree, is also a junction tree. Further Pc^. JLPc^ VPd' Vr=i \P*» since
Cj is a set in a valid partition w.r.t. i.
Also, Pcj. JL Pcjf VPd'Vr=i^ IPcj» since on the junction tree H, node Xj
separates Cj fi-om cjc Ud'U^~J Cr . Then by Lemma 4.6, each Hj is a junction
tree (Note that H/f_i is a junction tree on (1, ••• ,M}.)

Next we perform the same transformation on H/e-i, starting with other
neighbors of i. The resulting tree will be a junction tree, and will be compatible
with Pi. •
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4.5 Algorithm to Find a Junction Tree

We will now produce an algoritlun to find a junction tree when one exists.
Given a set of cr-fields

Algorithm 3. Pick any node i € {1, ••• , M} as the root.

• If M = 2 then the single edge (1,2) is a junction tree. Stop.

• Find thefinest validpartition o/ {1, ••• , M}\{i} ta.r.f. x, Pi = {ci, ••• , c/}
(see notes below).

• For j=l to I

• Find a node t € Cj s.t PiJLPc, | Pt- If no sudi node exists, then stop;
no junction tree exists.

• Find a junction tree on Cj with node t as root. Attach this tree, byadding
edge (x, £).

• End For

Note: In the general case of the signed conditional independence, we know
of no better way to find the finest valid partition than an exhaustive search in
an exponential subset of all the partitions. In the case of unsigned measures,
however, we can show that when a junction tree exists, the finest valid partition
coincides with the finest pairwise partition, which can be found in polynomial
time.

Proof. At each iteration, t is chosen so PiJL | Pit- But we also had Pcj dL
PtVP'cj IP<. By (2e) the last two relations imply Pcj-U-Pt VPcj | Pt- But we
also have JL Pi VTc". | Pi- So by Lemma 4.6 we have a junction tree at each
step. Also, from Theorem 4.7 if the algorithm fails, then there is no junction
tree. ^

5 Construction of Junction Tree - Lifting

In the previous section we gave an algorithm to find a junction tree, when one
exists. In this section we deal with the case when Algorithm 3 declares that no
junction tree exists for the given set of a-fields. In particular, we would like to
modify the cr-fields in some minimalsense, so as to ensure that wecan construct
a junction tree.

Definition 5. Let {Q, {Pi, ••• ,Pm}, m) be a collection of measure spaces. We
call another collection of measure spaces (^1^{P^,••• ,pAf'},/x') a lifting of
(fl,{Pi, ••• ,Pm}.Ai) if there are maps, / ; fl' —• anda : {1, ••• , M} —>
{1, ••• ,M} such that:

• p.' is consistent with p. under the map /, i.e.
VAe P{i.....M}. mU) =
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• Foralli = l, -- / is J^i)-measuroble, i.e.
VAe:F<, r''{A)eK{i)-

where for i4 € f~^{A) = {w' € : /(w') € X}.

In words, up to some renaming of the elements, each a-field .Fi is a sub-
a-field of some (namely, F^(<)) and this Fj is obtained from F, by splitting
some of the atoms.

We now describe the connection of the above concept with our problem.

Let (n', {F(, ••• , p!) be a lifting of (fl,{Fi, •• ,Fm},p) with lifting
maps / ; fl' —» n and a : {I,- - ,M} —» {!,••• ,M} as described in
Definition 5. Let G' be a junction tree on {1, ••• , M'} corresponding to <T-fields
{Fj, ••• ,F]^/}. We will construct a junction tree G" from G' such that the
running Algorithm 2 on G" will produce the desired conditional expectations
at appropriate nodes.

For each i = 1, ••• , M, let be the (T-field on Q' with atoms A{Qi) =
{/~^(o) : a € v4(F<)}, andlet Yi^Qibe the random variable with ^^(/"^(a)) =
Xi(o) for all a 6 .4(F<); so that up to a renaming of the atoms and elements,
(n, Fi, p) and (fl', ^i, p') are the same measure space and Xi and li are the same
random variable. Let G'' be a tree with nodes {1, ••• , M', M' + l, •• , M'+M},
- with corresponding cr-fields {FJ, ••• ,Fj^,, , ••• , G'm } and random variables
{!,••• - .Vm}- which is generated by starting with G' and adding
edges (j, M' + cr{j)) for each j = 1, ••• ,M'. In words, G" is a graph obtained
fi*om G' by adding and attaching each node with a-fields ^i for i = 1, ••• , M
(which are in turn equivalent to the original Fi's,) to the node whose o-field
contains that Qi. Then by Lemma 4.6, G" is a junction tree and hence running
Algorithm 2on G" will produce E[nili at the node labelled {M'+a{j))
for each j = 1, ••• , M. But these are equivalent to i ~
1, ••• ,M and we have thus solved the probabilistic MPF problem.

So we only need to establish how to lift a certain collection of a-fields to
create the required independencies and form a junction tree.

Suppose we have three a-fields, Fi, F2 and F3, and we would like to lift the
measure space (fl, {Fi,F2,F3},;i) into (fl', {Fi,F2,F3},|i') in a way to have
the independence Fi JI F3 | F2. Let G.4(Fi), Ck € ^(F2) and bj G-4(F3)
be arbitrary atoms. For each Cfc, let Ak be the matrix with (i,j) entry equal
to p{ai,bj,Ck). Then p{ck) = 0 iff the sum of entries of Ak is zero. However
we cannot have a nonzero matrix with zero sum of entries. If this is the case,
we can decompose the matrix into sum of two matrices with nonzero sum of
entries. This corresponds to splitting atom Ck in a way that the new atoms have
nonzero measure.

Next for each such matrix, Ak with nonzero sum of entries, the independence
condition corresponding to Ck is exactly the condition that Ak is rank-one. If,
however, Ak is not rank-one, we can split Ck using an optimal decomposition
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of Ak as the sum of say q rank-one matrices so that none of the matrices are
zero-sum."* This corresponds tosplitting the atom cjt into qatoms, {c{, ••• ,cj}
where ofcj '̂s render and ^3 independent, cj '̂s are then atoms of .^2-

5.1 Algorithm to Construct a Junction Tree
Combining the above ideas with the Algorithm 3 we obtain:

Algorithm 4. Pick any node i € {1,••• ,M} as the root.

• If M = 2 then the single edge (1,2) is a junction tree. Stop.

• Find an^ valid partition of{1, ••• w.r.t. i, Pi = {ci, ••• ,Ci}.

• For j=l to I

• Find a node t GCj s.t. PiMPcj | Uno such node exists, then pick
any t€Cj. Lift Pt hy splitting some of its atoms as discussed above
so to have PiJLPcj 1 (see notes below).

• Find ajunction tree on Cj with node t as root. Attach this tree, by adding
edge{i,t).

• End For

The resulting collection (fi', wa lifting of the original collec
tion with M' = M, and the tree generated by this algorithm is a junction tree
corresponding to this lifted collection ofa-fields.

In many oases, however, it ispossible to achieve a less complex junction tree
algorithm by allovnng M' to exceed M. The following opUonal steps can be used
for possible reduction of complexity:

• For each edge {i,j) in the resultant junction tree,

• Create a o-field G(i,j) that renders Pi and Pj independent, i.e. Pi JJ-
I starting with .F{0,n} and applying

the rank-one decomposition techniques in the previous section.

• Insert a new node in the tree corresponding to G(i,j), between i andj.

• End For

^This can always be done with q= rank{Ak) if Ak is not zero-sum. Obviously rank(Ak)
is also a lower bound for q. Anoptimal decomposition, however, not only aims to minimize
q, but involves minimizing the number of nonzero entries of the decomposing matrices,
as discussed in Section 4.3. , . u

^Although any valid partition will work, ingeneral finer partitions should result in better
and lesscomplex algorithms (see Section 4.3).
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Notes: In general, the sizeof the fl spacecan growmultiplicatively with each
'lifting/ so the full representation of the measure spaces require exponentially
largestorage resources. However, as mentioned in Section 4.3, a fulldescription
of the algorithm requires storing only the W(i,j) matrices of the conditional
measures of the atoms of the neighboring or-fields. In fact, a careful reader may
have noticed that we have not completely specified the lifting maps as defined in
Definition 5 on the entire collection of measure spaces. In fact once the lifting has
been done on a subset of the cr-fields (so to create the desired independencies),
there is a unique way to update the measure function on the entire sample
space that ensures that previous relations still hold. Such extension, however,
is unnecessary since by the consistency of the measures in a lifting, the matrices
of conditional measures along other edges of the tree remain the same.

6 Examples

In this section we consider a few examples where GDL-based algorithms are
applicable. We will work out the details of the process of making a junction
tree, and compare the complexity of the message-passing algorithm with GDL.

Our Example 1 at the beginning of this paper can be generalized as follows:

Example 2. Let Ai, i = I,- - ,M be finite sets of size q, and for each
z = 1, ••• , M, let Xi be a real function on Ai. Let be a real (weight) function
on >li X^2 X ••• XAm- We would like to compute the weighted average of the
product ofXi% i.e. = Ea,€A, ^i('^i)^2(a2) •••-'̂ M(aM)M(ai. ••• .aw)-
Suppose that the weight function is in the following form:

M M

/z(ai, •••,ttAf) = /i(Ot) + J^5»(®i)
t=l t=l

As long as the weight function is not in product form, the most efficient
GDL algorithm will prescribe

-^Af(aM)/i(ai, ••• ,OAf)

requiring O(n^) additions and multiplications, corresponding to the following
junction tree.

• •

1 Xj(ai) Xm.iiau.i) X^iau)/! (a)

Figure 3: GDL Junction Tree

>-C Ui ttu
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Now, Let n be the product space Ai x A2 ^ with signed measure
fly and for I = 1, • •• , M, let J^i be the cr-field containing the planes o< = c, so
Xi ^ Ti. Let To = {0, be the trivial c-field. Then the problem is to find
the conditional expectation of the product of the Xj's given Tq.
The best junction tree is obtained by lifting the space so that given Tq all other
a-fields are mutually conditionally independent. To do this, we split the atom
Q. of Tq into two atoms fii and ^2- effect, for each element (ai, ••• ,ajv#) of
Qy the new space £1' has two elements (ai, ••• , ojif)n ili and (oi, ••• ,o^f) D^2 •
The new weight function is defined on as /i'((ai, ••• ,aj^)nf2i) —nt=i
and fi'iiaiy' •• ,om) n Qi) = Hili W-

Then there is a star-shaped junction tree on {0,••• ,M} with node 0 at the
center. The message passing algorithm on this tree is:

£; =E[]][Xi|:Fo](J^)

M M

=nE[Xii^](ni)+nE[-^'i^o] (^2)
t=i t=i

M M

=li E XiMfiM+n E Xi{(li)9i{Qd)
t=l0i6i4< *=1 o,€j4i

Note that this requires only 0{Mn) additions and multiplications.

In the nextexample we show that Pearl's treatmentofthe belief propagation
algorithm in the case of a node with disjunctive interaction or noisy-or-gate
causation ([9], section 4.3.2) can be viewed as a special case ofour algorithm:
Example 3. Bayesian Network with Disjunctive Interaction. Let the
binary inputs 17 = (C/i, C/2, ••• ,Un) be the parents ofthe binary node X in the
Bayesian network of Figure 4, interacting on X through a noisy-or-gate.

Figure 4: Bayesian Network of Example 3

This means that there are parameters gi, *19n € (0,1] so that

p(:v = 01 a) = J]
ieTu

=11!/)=1 - n
t€T„
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where Tu = {« : Ui = 1}.
Normal moralization and triangulation technique applied to this graph will

give a single clique with all the variables. However, because of the structure in
the problem, a better solution exists.

Let Jxi ^1. ••• . be the o-fieldsgenerated by the (independent) variables
a;, til, ••• , tin respectively. Allvariables are binaryso eachof the cr-fields has pre
cisely two atoms. In our framework, let the 'randomvariables' be (the function)
1 £ Tx, and irxiui) = P{Ui = Ui) £ Pi for i = I,-, n, with the underlying
joint measure on a;,iii, "• tUn defined to be ^t(a;, iti, ••• , ti„) = P{X =x\U =
(til, ••• ,Un)). Then FiS are not mutually conditionally independent given Px^
however the following simple lifting of space will create the independence: Let
a variable x' be defined to take value in 0,1,2, where the event {x' = 0} corre
sponds to {x = 0}, and {x' = 1}U{x' = 2} correspond to {x = 1}. Ebctend the
measure as follows:

^'(x',tii,. - ,ti„) = •«
nt6T„ if = 0
-ni€T„9< ifa:' = l
1 if a;' = 2

Then we see that in this lifted spaces, the <j-fields P^ (generated by variables
Ui respectively) are mutually conditionally independent given P^' (the a-field
generated by variable x'.) Then we have a junction tree in the shape of a star,
with P'x' corresponding to the central node. The junction tree algorithm will
calculate the following marginalized random vau-iable at the node corresponding
to P'x' •

'nr=i(m=o)+m = i)?i) ifx'=o
= •! - nr=i {p(Ui=0)+p(Ui = 1) if i'=1

1 if x' = 2

Then the belief aX X is the function

BEL(i) =!="'> + =!)«<) ^=0
li -nr=i =0)+p(Ui=1)ft) if =:=1

where we have merged the atoms x' = 1 and x' = 2 of P^, to get back x = 1.
This is essentially the same as Equation (4.57) in [9].

Example 4. Hadamard Transform. Let xi, •• • , x„ be binary variables and
let f(xi, ••• , x„) be a real function of the x's. The Hadamard transform of / Is
defined as

n

ff(yi, -,yn)= ^ ••
il, " ,I„ i=l

where yi, • • • , yn are binary variables.
Since our framework is particularly useful when the underlying functions are

structured, we consider the case when / is a symmetric function of xi, •• • ,x„.
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i.e. / depends only on the sum of the Xi*s. Then it is easy to verify
Claim: When / is symmetric, then its Hadamard transform, g is also a sym
metric function.

We now set up the problem in our framework. Let Q be {0,1}^ with
elements u = (aJi,*** iJCn,yi,"* ,2/n)« Let T and Q be the a—fields in which
respectively / and g are measurable; in our case of S3rmmetric / and y, =
{ajfc for A: = 0, ••• ,n} = {{w : a;< = A;} for A: = 0,• • ,n} and A{Q) =
{/3fc for A: = 0,••• ,n} = {{w : = fc} for A: = 0, ••• ,n}.
Next we note that all the factors involving terms can be summarized
as a signed measure /x on .F V ^ as follows:

l'{aj,0k)=

= E (-1)^''""
EiVi=*

E (-1)^'-"
i®n).Ei

Note that fi can be stored in a (n -I-1) x (n -I-1) table.
Now we have a junction tree with only two nodes, corresponding to and

Q, and the marginaJization is done as follows:

9(A) = E[/|e]
n

j=0

where /(%•) = /((xi, -- ,a:„) : = j) and g{Pk) = y((yii"" yVn) '

This requires only n additions and (n-f1) multiplications for each of (n 1)
possible values of g.

We have created a Matlab library containing the necessary functions to set
up a general marginalization problem and create a junction tree. The following
examples are processed using that code.

Bxample 5. Probabilistic State Machine. Consider the Bayesisin network
depicted in Figure 5, where aJid yi denote inputs, hidden states and the
outputs of a chain of length n. Let m be the memory of the state machine, so
that each state S{+i can be taken to be (uj-m+it" ' •^)-

The problem of finding the maximum-likelihood input symbols is solved
by using the BCJR algorithm [3], which is an implementation of GDL algo
rithm on the junction tree obtained by moralization and triangulation of the
above Bayesian network. The local functions are P(so),P(ut), PCy®|wi» 5<) and
P{si\ui-i,Si-i). At each stage i, a message-update involves marginalizing a
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Figure 5: Bayesian Network for a Probabilistic State Machine

function - •• ,Ui) over Ui-m- So in case of binary inputs and outputs,
the BCJR algorithm wiU require about (5n 2"*) additions and multiplications.

Now consider a case when the output of the state machine depends on the
input and state in a simple, but non-product form. For the purposes of this
example, we have chosen the output yi to be the outcome of an 'OR' gate on
the state Si and input ttt, passed through a binary symmetric channel, i.e.

= (1 -p)l(yi = + P • HVi /

where 'V indicates a logical 'OR', and !(•) is the indicator function.
We formed the Cl space as {0,1}'', with elements uj = (uq, ••• Then
each functions P{yi\ui,Si) is measurable in a a-field Pi, with two atoms {lj :
y^QUi-j —0} and {w : = !}• Since we Uke to calculate the posterior
probabilities on each input Uj, we also include cr-fields Qi each with two atoms
{<jj :Ui = 0} and {a;: tt,- = 1}.

We then run our algorithm to create a junction tree on the PiS and the ^t's,
lifting the space whenever needed. The result is a chain consisting of the P'iS
with each Q'i hanging from its corresponding P'̂ (see Figure 6).

We have run the algorithm on different valuesof n and m. Table 1 compares
the complexity of the message-passing algorithm on the probabilistic junction
tree and the normal GDL (BCJR) algorithm. To count for the final marginaliza-
tion at the atoms ofthe original <T-fields, we have usedbnz as the (approximate)
arithmetic complexity of our algorithm, where nz = ^
total number of nonzero elements in the tables of pairwisejoint measure along
the edges of the tree (see Section 4.3).

The details of the case n = 12,m = 6 have been portrayed in Figure 6.
The numbers underneath each P[ shows the number of atoms of P[ VQ\ after
lifting has been done. Note that with our setup, originally P^ VQo has 2 atoms,
and all other Pi V ^^'s have 3 atoms. The numbers under the brackets denote
nz{i,j), the number of nonzeroelements in the matrix ofjoint measures between
the atoms of adjacent nodes; As mentioned before, the number of operations
required in the computation of the message from one node to an adjacent node
is proportional to this number.
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(n.m) (9.5) 1 (9.6) 1 (9.7) 1 (10.5) (10.6) (10.7) (U.3) (11.6) 1 (11.7) 1 (12.5) 1 (12.6) (12.7)

nz
95 150 123 107 133 186 119 147 217 129 159 230

GDL ops 1440 2880 5760 1600 3200 6400 1760 3520 7040 1920 3840 7680

PGDL ops 475 650 615 535 665 930 595 735 loss 645 795 1150

Table 1: Comparison between complexity of GDL and probabilistic GDL. Here
nz denotes the total number of nonzero entries in the tables of pairwise joint
measures. For a chain of length n and memory m, GDL algorithm requires about
5 n 2"* arithmetic operations, while PGDL requires about 5 nz operations.

4 6 8 10 12 14 14 29 29 24 7

Figure 6; Junction IVee Created for Chain of Length 12 and Memory 6

Example 6. CH-ASIA. Our last example is CH-ASIA from [5], pp. 110-111.
The chain graph of Figme 7 describes the dependencies between the variables.
Thus the problem is to marginalize P(5, C,X), which is the

Figure 7: Graph of CH-ASIA Example

product of the following functions: P(5),P(A),P(L|5),P(riA),P(B|5),l(E =
LvT),P(X|E),/(C,AB),p(C,P,P) and MB,P).

Again we set up measurable spaces, with a-fields corresponding to each of
the above functions. We then ran the lifting algorithm to find a junction tree in
form of a chain, as in the previous example. This time, however, due to lack of
structure at the level of the marginalizable functions, (i.e. the aforementioned
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conditional probabilities,) the algorithm produced exactly a junction tree that
one could obtain by the process of moraUzation and triangulation at the level
of original variables. In other words, all liftings were done by addition of one or
more 'whole' orthogonal directions (i.e. GDL variables) of the Q, space to the
o"—fields. After reconverting a—fields to 'variables', the junction tree weobtained
was the following:

Figure 8: Junction TVee for CH-ASIA Example

In this case, our algorithm has reduced to GDL.

7 Discussion

In this paper we have developed a measure-theoretic version of the junction tree
algorithm. We have generalized the notions of independence and junction tree
at the level of a-fields, and have produced algorithms to find or construct a
junction tree on a given set of cr-fields. By taking advantage of structures at
the atomic level of sample space fl, our marginalization algorithm is capable of
producing solutions far less complex than GDL-type algorithms. The cost of
generating a junction tree, however, is exponential in the size of the problem,
as is the size of any complete representation of the sample space fl. Once a
junction tree has been constructed, however, the algorithm will only depend
on the joint measure of the atoms of adjacent pairs of <T-fields on the tree.
This means that an 'algorithm' which was build by considering an Q. space with
myriads of elements, can be stored compactly and efficiently.

Using our fi-amework, the tradeoff between the construction complexity of
junction trees and the overall complexity of the marginalization algorithm can be
made with an appropriate choicefor the representation of the measurable spaces;
at one extreme, one considers the complete sample space, taking advantage of all
the possible structures, and at the other, one represents the sample space with
independent variables (i.e. orthogonal directions), in which case our framework
reduces to GDL, both in concept and implementation.

The validity of this theory for the signed measures is of enormous conve
nience; it allows for introduction of atoms of negative weight in order to create
independencies. It also greatly simplifies the task of lifting, as now it can be
done by taking the singular value decomposition of a matrix. In contrast, the
problem of findinga positiverank-onedecomposition of a positive matrix (which
would arise if one confined the problem to the positive measures functions) is a
very hard problem (See (4]).
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