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Abstract

Weconsider the problem ofmaximum distanceseparable (n, fc, n—fc-hl) erasurecodeconstruction in a source-
channel coding framework and present an achievable rate-distortion region for this problem using information
theoretic techniques. The region so obtained has the following interpretation : the reception of any k channel
symbols at the decoder leads to a reconstruction quality commensurate with the reception ofk source symbols;
more interestingly, the reception of m > fc channel symbols leads to a strictly superior quality. Thus, in this
source-channel coding framework, the role of conventional "parity bits" takes on an interesting interpretation.
When the charmel is as bad as advertised, i.e. when only a freiction k/n of the packets arrive intact, the parity
bits play the conventional role of aiding the full recovery of k information packets. When the channel is better
than advertised, however, while conventional parity information is wasted, in our framework they "moonlight"
in aiding to strictly improve the reconstructed source quality.

In the special case of a Gaussian source, we have the following interesting result: when any k packets ar
rive, our solution leads to a source reconstruction whose distortion exactly matches the information-theoretic
distortion-rate performance of a Gaussian source corresponding to the rate associated with k packets; with the
reception of m > fc packets, the reconstructed quality is strictly better, with the improvement being asymptot
ically linear in the number of packets received.

Keywords : Source-Channel Codes, Maximum Distance Separable (MDS) codes.

1 Introduction

With the explosive growth of packet switched networks like the Internet, the transmission of information over

unreliable channels has received considerable attention lately. Such networks can be efficiently modeled as packet

erasure channels. An information sequence is encoded into a large number 2) of packets and transmitted over

the network. The network randomly erases some of the packets and transmits the rest of them errorlessly. Current

data transfer protocols such as User Datagram Protocol (UDP) assume such a model for the packet switched
networks. Erasure Channel Codes [1], which enable reconstruction at the decoder with the reception ofa subset of
the packets transmitted, offer a solution to transmission over such channels.

An (n,k,d) erasure channel code [1] refers to a construction where k user symbols belonging to a finite field
are encoded into n channel symbols (also belonging to the same finite field) such that with the reception of any
{n —d + 1) of the n channel symbols, the original k user symbols can be recovered. Channel codes for which
d = n —k + 1, i.e., the k user symbols can be recovered when any k channel symbols are received, are referred to



as Maximum Distance Separable (MDS) codes [1|. Reed Solomon Codes are a popular class of codes that possess

this property.

This problem has also been studied in the name of multiple description source coding in the hterature [2,

3] where an information-theoretic treatment of the achievable rate region hsis been quantified and constructive

approaches using scalar quantizers have been proposed. Some protocols that have been considered in the literature

for transmission of multimedia information over packet networks have used MDS codes. In [4] a priority-based robust

transmission algorithm is suggested for lossy-packet based networks. Information content with higher priority is

encoded using lower rate MDS codes while those with lower priority is encoded using a corresponding higher rate

code. Algorithms for image and video transmission systems have been proposed in [5, 6, 7] that use progressive

source coding techniques concatenated with MDS codes.
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Figure 1: Maximum distance separable {n,k,n —k +1) quantization code: A source is encoded into n descriptions
or packets and transmitted over n errorless channels which are equally likely to breakdown. The decoder would
like to reconstruct with the availability of any m> k packets of information.

The construction of such codes has traditionally been considered in a discrete finite field setting. In this work,

we present a new approach based on random binning arguments that extends these concepts into the source symbol

domain. We consider direct mappings from the source symbol space to the erasure channel sjrmbol space. While in

this paper we undertake an information-theoretic analysis of the problem, the actual construction of such encoders

and decoders based on group codes, inspired by these arguments, are of great interest and is a part of our ongoing

work.

Our motivation stems from the following simple observation. Consider an information source, X, to be transmit

ted over n distinct channels each with transmission rate R bits/sample such that only one of these is guaranteed to

reach the destination. One way of transmitting such a source is to construct a codebook, say C, with rate-distortion

[8] performance with a rate of R bits/sample, i.e. attainingdistortion D{R) that lies on the rate-distortion function

of the source. A bitstream characterizing the index of the codeword from this codebook used for quantizing the

source JX, can be encoded for transmission over the n channels using a conventional (n, l,n) MDS code which is a

repetition code. All the n streams in such a system will be identical and the reception of any one of the n channels



would enable the decoder to reconstruct the source with a distortion D{R) which is the rate-distortion function of
the source X. It is important to note that with the reception of any of the remaining (n - 1) packets, there is no
improvement in performance.

Now consider the following alternate scenario. Here we generate n independent codebooks, say Ci, C2,.. •C„ each
with the rate-distortion performance. The source is independently quantized using each of these codebooks. The
quantized codeword index of the codebook is transmitted over the channel. In this scenario, when any one
of the n ^haT^"pls is active, the decoded quality is identical to that in the first scenario. However, as the number of
received packets increases, the decoded quality gets better because of the gain due tomultiple independent looks at
the source with independent quantizers! Thus, in this case the "parity" contributes to the decoded reconstruction
fidelity unlike the first scenario. We have thus constructed an (n, l,n) "symbol" code as opposed toa "bit" code.
Based on this motivation, we generalize these ideas to prove the existence of (n, fc, n —fc -I-1) symbol codes in
the following sections that strictly outperform the (n, fc,n - + 1) "bit" code (see Figure 1).

Akey point to note in this problem is that there is an inherent uncertainty at the encoder about which packets
have reached the decoder. This calls for a coding firamework which deals with uncertainty at theencoder about the
information available at the decoder. In [9], an information theoretic analysis ofthe problem of separate encoding
of correlated distributed sources was studied. A class of coding techniques was developed based on group codes
for this problem in a practical and constructive setting in [10]. In the above problem, the goal is to encode a set
of multiple correlated distributed sources independently while still exploiting the joint correlation assuming the
knowledge of the joint statistics. The encoder of each source sends only a carefully designed partial information
such that allthesources ofinterest canbereconstructed with the availability ofsuch partial information from allthe
sources at the joint decoder. In this paper we apply some of these techniques to the problem of the (n, k,n —k+l)
maximum distance-separable quantization code.

Akey result of this paper suggests that using such an (n, n- A: +1) maximum distance separable quantization
code, it is possible to encode a unit variance i.i.d. Gaussian source into n packets with each packet containing R
bits/sample such that the reconstruction fidelity with the reception of any {k +r) packets for 0< r < (n —A:) is
given by

k ^•|>j
22fcfi(A;-|-r)-r'

Note that when r = 0, which is on the rate-distortion function of the corresponding Gaussian
source! Further, in the limit of high rate and large number of packets,

Dk+r ^ kJL- (2)
Dk k + r'

Infact, for the specific case of a Gaussian source, we conjecture that the rate region obtained in this work isthe
absolute best and proving the converse theorem is a part ofour ongoing work.

Though in this paper we restrict our attention to this problem, a bigger goal is to integrate such codes with
different rates to build an efficient transmission protocol similar to [4, 5] where we have the flexibility oftuning the
achievable reconstruction fidelity with the reception ofany number ofpackets and this a partofour ongoing work.



2 Problem Formulation

2.1 Notation and Definitions

We first state some basic notation, definitions and properties that we will use in the sequel. Let Jj = {1,2,..., /

Let |5| denote the cardinality of a set S. Bold-faced letters denote vectors. The elements of an /-vector are

denoted as Xj = [xii, Xi2,...,Xii]. For any subset S of Ii, let a collection of /-sequence of vectors be denoted

by xs = {xij,Xi2,... ,Xi|g|}. Upper case letters denote random variables/vectors. Let H{.) and /(.;.) denote
Shannon entropy and mutual information as given in [8]. Let Xi^i = 1,2,... be a sequence of independent

identically distributed {i.i.d.) discrete random variablesdrawn according to some known probability mass function

for random variable X q{x) whose alphabet takes values in X. We axe given a reconstruction alphabet X, with

a bounded distortion measure d : x .V —» K"*" s.t d(-, •) < dmax- The distortion measure on /-sequences in A'' x
is defined by the average per-symbol distortion

1 - ^,c/(x, x) = y^ d{xi,Xi). (3)
1=1

We shall now briefly summarizethe notion of strong typicality [8, 11] for discrete valued random variables. Let

{Zi, Z2,..., Zk} denote a finite collection of discrete random variables with alphabets in x Z2... x 2it, with
some fixed joint distribution p{zi, 22, •••»for (21,22* •••»^fc) £ Zi x Z2 x ... x. Zk- Let S denote an arbitrary

ordered subset of Jfc and let Zs = {Zii,Zi2,...,Zi^} for S = {ii,i2,• ••,im}, = l-^]. Consider / independent

copies of Zs' Then,

I

[Z5 = Zij, Zjj, ..., Zj|̂ l] —Jl^ P{Zs,i ~ 2^2,1, •.., 2i|s|»t}» ^ik ^ ^ik'
i=l

For a given as € Zs'̂ , let for all bs e Zs, N{bs]as) be the number of indices i eli such that as,i = 65- By the
law of large numbers [8], for any S CXk and for aR bs ^ Zs,

iiV(6s;as)^p(6s) (5)

and

1 1 '-y log p{Zs,U Zs,2, .••,Zs,l) = -y ^ log ^(^5,,) H{Zs). (6)
^ ^ i=l

Convergence inequations (5) and (6) takes place simultaneously with probability one for all the 2'̂ subsets S CXk.
The set Te{Zi,Z2,..., Zk) of strongly e-typical /-sequences (zi, Z2,..., Zfc) is defined by

X'e{Zi, Z2,. .•,Zk) —'̂ Zi, Z2,. .., Zfc €2| X̂2 X... XZk jN(bs;zs) -p(bs) <eybseZsySClA (7)

Let Te{Zs) denote the restriction of T« to the coordinates of S. Some of the important properties of Te are given

below. There exists a 5(e) 0 as e ^ 0, such that for sufficiently large /, and any e —♦ 0,

P{Te{Zs)}>l-e,WSCXk, (8)

2i(H(Zs)-s) < \T^{Zs)\ < (9)

2-imzs)+S) < < 2-'(H(Zs)-5) Vzs e TeiZs). (10)



2.2 Problem Statement

We now formulate the {n,k,n-k+ l) code achievable region problem. We are given an information source Xwith
probability function The goal is to find n encoding functions of the source where each is a mapping
from the source s3niibol space to a bit stream (description or packet of information) at a rate of R bits/symbol.
These bitstreams are transmitted over n independent channels such that any decoder which has access to any

m> k ofthem should be able to get some reconstruction ofthe source with a fidelity criterion given by Dm- Let
M= {J : J C IJ| > k}. Amaximum distance separable quantization code, (/, 0, Afc, A^+i,..., An) is defined
by a set of n encoding functions

{1,2,(11)

and a set of decoding functions

Gj;(g){l,2 e}-.;?' VJsM (12)
J

where denotes the Cartesian product and \fk<h<n

Ah =\e\d(X,Gj (Fi,(X),F,(X),(X)))) VJ CM,|J| =A, J={ii.tj....,i^}. (13)
Note: For this code, I denotes the block-length in encoding, ©denotes the size of the index setwith rate j log ©
of each packet or description, and Am denotes the reconstruction distortion when any m packets are received.
Note also that we have inherently assumed symmetry in the encoding functions in the sense that for a given |J|
the decoded quality depends only on |J| and not on which |J| bitstreams are used for decoding. The latter case
only makes the problem notationally cumbersome and moreover is not of much interest. Henceforth, we will be
assuming symmetry in the problem.

Atuple {R, Dk, Dk+i,. ..,Dn) Is said to be achievable iffor arbitrary u>0 there exists, for sufficiently large I,
a code (/, ©, Afc, A^+i,..., A„) with

© < andAh<Dh + iy Wh = k,k + 1 n. (14)

Let TZ{Dk,Dk+i,-" ,Dn) be the set of achievable rates R for the distortion tuple Dk,Dk+i, •--,Dn- The goal
is to determine this rate region. In other words, for a given R, the goal is to optimize the fidelity criteria D =
[Dk, Dk+i,. for sufficiently large L

2.3 Summary of results

We now summarize the main result of this work. Let the source X be as given above. Let p{x,yi,y2, -••il/n) he

a probability mass function which defines the random variables X,Y\,Y2, ---,Yn, where Yi has some alphabet
such that

p(a^,2/i,y2,--.»yn) = g(ic), (15)

and Yi,Y2, ... ,Yn are identically distributed (assuming symmetry in the problem) and conditionally independent
given X implying

n

p{x,yi,y2,.---,yn) = 9(2:) fjpt(yi|x). (16)
t=i



Random variables Vi, l2j • ••>in are associated with codewords that are transmitted on channels 1,2,...,n. The

main result ofthiswork states that ifthetransmission rateR on each channel isgiven by {i? : R > ;Yj)} then
with the reception of any m>k packets distortion Am can be attained, if Yi,y2» •••>in are chosen appropriately.

Stating more formally, let A{Dky -Djfc+i, •••>Dn) be the set of all probability mass functions p(a:,yi, 2/2? •••»2/n) as

givenabovesuch that there exists a set of functions fj : j —* X,WJ c M such that, V/i 6 {A:, fc+1,..., n},

E [d{X, fj{Yi,, y,,,...,y;,))] < Dh, VJ C M such that IJ| = /i, J = {ii, t2,..., ih}. (17)

Now corresponding to a p(.) e A{Dk,Dk+i, •.., Dn), let

K<''>(Dt,Dfc+i = (18)

for any J C M such that |J| —k,Yj = y, ,^3,... ,1^^ and J = •••>u}- Note that yi,y2,...,yn are

identically distributed. Let

1V(Dt,Dk+u---,Dr,)= U n<''\Dk,Dk+u...,D„) (19)
p^A(,Dk,Dk+i,...,Dn)

Theorem : TZ*{Dk,Dk+i,'.• ,Dn) QR'iDkiDk+i,. ,Dn) Wk<i<n

Remarks: The rate region is given by R > ^I{X]Yi,Y2,.. .,Yk) since the y's are identically distributed. This
key result says that we can achieve the rate region given in equation (18) which is the same as the case when X

is jointly quantized to y, y2,..., y*; and the bitstream characterizing the quantizer index is broken into k packets

with rate R bits/sample. It is rather interesting to note that we can achieve this while receivingany k packets and

maintaining the same distortion and further, the reconstruction distortion is monotone decreasing function of the

number of any received packets.

3 An Example of a Gaussian Source

Although we restrict ourselves in this paper to the discrete alphabet case, the bounds presented here can be

generalized to the case of a Gaussian source using techniques of [12]. We now take the example of a (3,2,2) code

construction for a Gaussian source and consider the rate-distortion tuples attainable.

Consider a Gaussian source X distributed as N{0,1). Define random variables Yi^i = 1,2,3, given by

Yi=X + qi, (20)

where the g '̂s are i.i.d. and are distributed^ as JV(0, •^). With the availability ofany two descriptions ii,i2 € X3,
we will be able to recover the corresponding random variables Yi^, Yi^ and the reconstruction fidelity is given by

the Linear Minimum Mean Square Estimate (LMMSE) of X. The expected distortion with the availabilityof any

two descriptions (using standard Wiener estimation) is given by

0-2 -2. 1
"q _ 15 _ ^

a2+2 ^ + 2 16
'In this example, we have chosen the vari£tnce of qi as 2/15 to have integer rates of transmission.

(21)



The rate of transmission of each of the descriptions (packets) is given by

Hence, R is given by

«=5ll°g^ +
Thus, it can be seen that when any two descriptions get through (together contributing 2 bits/sample of

information), theobserved distortion is which lies on the rate-distortion function ofthe unit-variance Gaussian
source encoded at 2bits/sample {D{R) = 2~^^). What isinteresting isthat when all thethree packets are received,

2

we get a distortion that equals 5^ = Thus the "parity" ends up contributing to the decoded quaHty !
In general, for an n-packet system, with each packet transmitted at a rate of R bits/sample, the achievable

distortions with the availability of any (fc -I- r) packets of information, can be shown to be given as follows:

= 22fc«(fc-}-r)-r'

for 0 < r < (n —Jk). Note that with the availability of any k packets we are operating on the rate-distortion
function with the distortion given by 2~2*=^. The reconstruction distortion monotonically decreases as a function

of the number of received packets. Further, the ratio of the distortion with the reception of any m > k packets to

that corresponding to the reception of any k packets is given by

jL i)2kR JU
— « - (25)

22kR 7fi ^ (jfi —k) m

in the limit of high rate and large number of packets.

4 Proof of Theorem

We now proceed with the outline ofthe proof ofthe main theorem. Thekey concepts involved in the achievability
of the rate region are as follows: we independently construct n quantizers and encode the source independently
using these quantizers. Each quantizer codebook is partitioned into bins and each encoder sends only the index
of the bin containing the quantized outcome. The sizes of these bins are designed such that with the reception

of such indices from any k channels say, (ii,i2i •••i^/c)» it will be possible to recover the index of the quantized
outcomes of the corresponding codebooks (ii, •••»^k)' The quantizers are designed suchthat the distortion with

the recovery of any k quantized outcomes is at Dk- Similarly with the reception of any m {k < m < n) packets,

it will be possible to recover m indices of codewords in the corresponding quantizer codebooks which results in a

distortion of Dm, that is strictly lower than Dk-

4.1 Encoder and Decoder

Random Coding : Let /-vectors (Yi(l), Yi(2),..., Yi(2''^ )), for someR', be drawn independently and according

to a uniform distribution over the set Te{Yi) of e-typical Yi /-vectors. Call this codebook Ci. Generate similar

codebooks C,- for each Y,, i = 2,3,..., n.

Random Binning : Let ^ where 7 will be specified later. Prom the codebook Ci extract ^



codewords independently and with replacement and assign them to a bin say Bu. Repeat this for a total of 2''^
bins. Similar 2^-^ random bins are constructed for all Vi, i = 2,3,..., n (see Figure 2).

Encoding : Given an X € A:'', find a codeword Yi from the codebook Cu'ii £ In such that (X, Yi,Y2, ...,Y„)

are e-jointly typical. If successful, let ji denote the index of the codeword Yj in Cj. If not, let ji = 0 Vi Gin- For

2= 1,2,..., n define indexti(Yi) to be transmitted overthe channel i as follows. If the Z-sequence Yi corresponding

to the non-zero ji Taelongs to at least one of the corresponding 2'-^ bins, let ti(Yi) equals the least index of a bin

containing this /-sequence. Otherwise or if ji = 0, set /i(Yi) = 0. Index ti(Yi) is sent over the channel i.

Decoding : The decoder receives some m > k packets of information from some m channels. From the received

m packets, it takes some k of them and then searches the corresponding bins (bins with index ti„ in codebook Ci„

Vu € Ik) to obtain a fc-tuple ji^Ji^,. ..ji^ of indices such that Yi(jii), Y^jiJ,..., Yfc(jifc) are c-jointly typical
/-sequences. If there exists more than one such tuple, the decoder declares error and usesthe reconstruction vector

X as any arbitrary kG XK

Random Random Random Random

Code Code • • • Code Code

1 2 n—1 n

\ \\ \
BIN 1 BIN 1

• • •

BIN 1 1BIN 1

BIN 2 BIN 2 BIN 2 BIN 2

• • • •

• • •

BIN 2"Li BIN 2"Li BIN 2"^-l BIN 2"Li

BIN 2'^ BIN 2"^ BIN 2"^ BIN 2"*

Figure 2: Random code construction: n independent random codebooks are constructed each with 2'^ codewords.
Each codebook is randomly partitioned into 2'^ bins each with 2'̂ ^^ codewords.

Let us make a small observation here. Assume that it is possible to guarantee that the corresponding codebook

indices jij, jij,. ..ji^ indices can be recovered when some k out ofn packets sure received. Then ifm > A: packets
are received the corresponding codebook indices ••'Jim recovered exactly. Thiscan be seen by

repeatedly decoding the m codebook indices in sets of fc at a time. We thus need to ensure that whenever some k
packets get through the corresponding codebook indices canbe recovered perfectly with very high probability and
this would ensure with very high probability that m> k indices can be decoded correctly in the event that 7n> k

indices are received.



4.2 Analysis of error events

Let us define the foUowing error events which can lead to a decoding error E at the decoder.
Error Events:

1. Eq: does not belong to Te{X).

2. Ei: There exists no indices (ji, ••-jn) such that (X, Yi(ji), Y202)j •••YnOn)) jointly typical.

3. E2: Not all channel indices U are greater than zero.

4. Ez' For some set of kreceived indices {tij, tta >•••> }> there exist another set of /-vectors {Yi^ (jij), Yij Oij)*
..., YifcOiJ} that are c-jointly typical and belong to the same corresponding bins.

E = U^_o Ei and the probability oferror is bounded above by :
3

P{E)<YlP{Ei) (26)
i=0

Bounding P{Eo): By the well known property of typical sets (equation (8)), P{Eo) —» 0, as / is made sufficiently
large.

Bounding P{Ei): For any arbitrary randomly and independently chosen sequences (X, Yj,Y2,. ••jY„) £ X x
y} X X... XX, the probability T that they are e-jointly typical isgiven by :

which follows firom the property of typical sets and the constants Sx,YuY2,...,Y„,^x,SYi are chosen according to
equation (9). Thus P{Ei) can be bounded as

(28)

Using the standard inequality [8] (1 - y)" < e-" ", V0 < y < 1, and n > 0, we can conclude that P{Ei) -• 0
when „

nR'>f^ H[Yi) - H{Yi,Yi, ...Y„\X)- S' (29)
t=l

where 5' = ^x,yi,y2,...Y'n "1" ^x + ^vi "b^Y2 + •••+ Sy„ However, {Yi, 12, •.•iIn} are conditionally independent given
X implies that

H{YuY',,...Y„\X) =j2H{Yi\X) (30)
t=l

Since S' can be chosen to be arbitrarily small, from equations (29) and (30) it follows that

n-R'> f^{H{Yi) - H{Yi\X)) =^/(X;^) =n•I{X;Yh) Wh eIn (31)
t=l i=l

Hence R' > I{X;Yh) V/i € In would suffice.

Bounding P{E2): To prove P{E2) -» 0 we will show that P(ti(Yi) > 0) 1. By symmetry it will follow that
P{ti{Yi) > 0) ^ 1 Vi = 1,2,...,n. Since the intersection ofa finite number of sets of probability 1 is a set



with probability 1 it will follow that PiE^) —» 1 as / is made sufSciently large. The probability of finding a Yi in
codebook Ci that is e-jointly typical with the given X tends to one for the chosen codebook size. Hence, it would

sufiice to show that

G = P[ti(Yi)>0|Yi G Ci,(X,Yi) G T,{X,Yi)]-^l (32)

Consider Q = 1 —G. Let A denote the event that [Yi G Ci, (X, Yi) G Te{X,Yi)], Then

Q = PlYi,^Yul<j<N\A] (33)

where N = ^- 2'"^ = 2'"^ '̂''"'*^ is the total number ofYi selected for all bins and Yi^ is the such selected Yi.
Thus, Q= (P[Yii ^ Yili4])^. This is because each Yi^. has the same chance of equaling Yi. Since the cardinality
ofCi is 2'" '̂, the desired probability Q = (1 - Using the inequality logz < (2- 1) we get

log <5 < = -2'"^ (34)

Hence if 7 > 0, logQ ^ -00. Equivalently, Q —* 0 as desired.

Bounding PiEs): We will now find a bound on PiEs) using a constraint on R which guarantees with high
probability that there is a unique set of /-vectors with one from each bin (whose index is received fi:om the encoder)
which are e-jointly typical. Let be the k indices received corresponding to channels 11,22 ••-ifc € In-
Then the probability (P) that one or more fc-tuple of /-vectors other than those used by the encoder are jointly
typical is bounded by

p < (e' - 1) •PiYl,Yr„... Y-, GT,{Yi,,Yi,,...,Yi,)) (35)

where Y*. is a randomly chosen vector from Te{Yi.). The second term on the right hand side ofequation (35) is
bounded by

,...Yi, )+6y,^ )

>Y-J,. ..,Y*^ GTe{Yi^, Yia, •••, )] <^HHiYi^)-SY.^) 2'(W(^i2)-«Vij)

where ,Yi^ ,...Xik' defined as before and let 6" = ,Yi^,...,Yi^ + +^Yi^ +... 4- •Thus
we have,

p < . 2^mYi„Yi2<-yik)-JiiYi,)-HiYi^)...-HiYi,)+5") (37)

Thus, P —♦ 0 if

*:(H'+7) + .. .ycj - - »(«,) -... - h{y,,) + s" < k.R (38)

and using the fact that

531{X-, Yh) - 2 +^^yj) =nx-, Yj), (39)
h€J hGJ

we essentially obtained the condition mentioned in equation (18). This argument thus shows that P(p3) *0 for
/ sufficiently large. Now for the case when the number ofchannel indices received m > fc, we can similarly argue
that with high probability we can recover all the corresponding m codebook indices.

We will now argue that the expected distortion is asymptotically unaffected. Let d be the observed distortion
over the m channels. We note that EidlE*"} < D + el by the construction [11] of Te where 1 is the vector of (m)
ones and D = [Dk, Dk+i, •••, Dn)- Hence,

P(d) < P(P'=)(D + el)+ P{E) •l.dmax (40)

10



where dmax is the maximum value of the bounded distortion measure d and denotes complementation. Since
the expected distortion ofthis construction process is as desired we conclude that from amongst the ensemble of
encoder-decoder sets there exists atleast oneset ofencoders-decoders for which the attained distortion is as desired.

Q. E. D.

5 Conclusion and Future Work

We thus have provided aninformation theoretic achievable rate region for the problem of{n,k,n —k 1) maxi
mum distance sepsurable quantization code. The decoder starts decoding with the reception ofany k packets. The
reception of any of the remaining packets contributes to the improvements in the reconstruction fidelity. We also
considered an example of Gaussian distribution where with such a code we are operating on the rate-distortion
function with the reception of any k packets and further, as the number of received packets increases, there is
a monotone increasing gain in the reconstruction fideHty. Ongoing and future work includes actual construction
of such (n, fc, n —fc -t-1) quantization codes based on group codes [1] such as trellis codes and lattice codes and
integration of such codes with diflferent rates to build an efficient protocol for the packet erasure networks.
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