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Abstract

Analysis and Design of Current-Commutating CMOS Mixers

by

Emmanouil Terrovitis

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert G. Meyer, Chair

The recent advances in low-cost CMOS fabrication processes have rendered them appro-
priate for the realization of high-frequency analog communication circuits, traditionally
implemented in more expensive technologies such as bipolar or Gallium Arsenide. These
CMOS implementations have the significant advantage that they can be more easily inte-
grated with the low frequency analog and digital circuitry. The demand for short design
cycles imposes the need for fast optimization of the high-frequency analog circuit blocks.
Such a circuit, present in the front end of any communication system, is the mixer which
performs frequency translation of the carrier signals. Because one of its inputs is the strong
local oscillator signal, its operating point is periodically-time-varying. As a result, the anal-
ysis of its operation is considerably more complicated than that of the linear time-invariant
blocks. The subject of this thesis is to analyze the operation of one commonly used class

of mixers, those which employ a switching transistor pair to commutate the signal current.



The object.ive is to provide results in a form that can be applied by Radio Frequency circuit
designers to systematically optimize their designs. .
In the first part of this thesis the mixing operation is described and practical mixer
nonidealities and related performance metrics are introduced. Several mixer topologies in
CMOS technology are discussed and the current-commutating CMOS mixers, for which
the results of this research apply, are emphasized. In the second part an analysis of the
nonidealities which define the mixer dynamic range, namely the noise and the nonlinearity,
is performed. The contribution of every internal and external noise source to the output
noise is calculated and the mixer noise performance is predicted. The noise performance
of a CMOS inductively degenerated transconductance stage is investigated in depth. Con-
sequently, the nonlinearities of the CMOS transconductance stages are analyzed. These
results are applicable besides mixers to other blocks that employ transconductance stages,
such as low noise amplifiers and power amplifiers. Finally, the nonlinearity of the switching
pair is investigated. In all cases the results are provided in terms of simplified analytical
expressions or graphs of normalized parameters. A simple transistor model with continuous
derivatives of any order in all operating regions is adopted and compared with more so-
phisticated simulator models. In the third part, the design of some single -balanced active

mixers is presented as a demonstration of the application of the theoretical results derived

ﬂ@{‘m ﬁ LW‘/LL

Professor Robert G. Meyg
Dissertation Committge Chair

in this thesis.
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Chapter 1

Introduction

1.1 Motivation

The large market demand for new communication services motivates research to-
wards a higher degree of integration in communication devices. Examples of these services
include wireless applications such as cellular and cordless phones, pagers, wireless computer
networks, (LANs and WANS), satellite communications, GPS systems, and wired commu-
nications such as cable TV, cable modems and XDSL modems. A high degree of integration
of mass-produced communication devices is desirable because integration increases portabil-
ity, functionality and reliability. It also reduces production cost and can lead to significant
power savings which translates to longer operation time for portable devices. The integra-
tion of the logic circuitry and the analog low-frequency circuitry is routinely implemented
today and imposes few challenges. A significant research effort is currently being conducted
in industry and uﬁiversities to increase the degree of integration of the high frequency — or

radio frequency (RF) — analog circuitry of the wireless systems which has been tradition-



ally realized with high performance discrete active and passive components. The transition
from discrete to integrated solutions involves significant changes in the system architecture
and the structure of the circuit blocks.

Continuous scaling of CMOS technologies, mainly driven by the computer and the
digital circuit industry, has enabled the realization of high-frequency analog circuits which
have previously been realized mostly in GaAs or bipolar technologies. CMOS processes
require fewer processing steps and are inexpensive when compared to other technologies.
They offer the potential for a higher degree of integration since they are the technologies
of choice for the digital and baseband analog circuitry. It remains a challenge for system
engineers and circuit designers to integrate the analog RF part using CMOS technologies
together with the baseband circuitry, while eliminating as many as possible of the high-
quality discrete components. In particular, it is a challenge to accomplish this task in a
power efficient way. |

The multitude of different applications imposes different specifications on the ana-
log circuit blocks while the fabrication technologies continuously improve. Circuit designers
are often called on to redesign circuit blocks in new technologies and for a different set of
specifications. The need for rapid time-to-market calls for a short design cycle. Therefore
a better understanding of the RF block operation which will facilitate a systematic opti-
mization is desirable. The mixer is an essential RF block of every communication system.
In this thesis we investigate the operation and the nonidealities of a commonly used mixer

topology implemented in CMOS technology.
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Figure 1.1: Simplified heterodyne transceiver architecture.

1.2 Mixers

In a communication system we desire to transfer a low-frequency signal from one
geographic location to an other. This task is accomplished more conveniently if the low-
frequency signal is translated to some higher frequency, called the carrier frequency. The
circuit block that performs this task is the mixer, which essentially multiplies its input with
a periodic signal supplied by another circuit block, the local oscillator (LO).

Fig. 1.1 shows a typical transceiver of a wireless system. In the transmitter side,
the baseband signal is modulated to the carrier frequency in two mixer stages and after
filtering it is transmitted to the air by the antenna. The signal is received by the antenna
of the receiver, amplified by a low-noise amplifier (LNA), and translated to baseband again

in two stages. Notice that many filters are used in several locations in both the receiver
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Figure 1.2: Simplified homodyne transceiver architecture.

and the transmitter, to reject undesired out-of-band signals and the image signals before
every mixer. The concept of the image will be explained further in the next chapter. The
receiver architecture of Fig. 1.1 is known as heterodyne or superheterodyne and because of
the high-quality passive image-rejection filters required it is mostly appropriate for discrete
component implementation. Several other architectures are investigated for implementation
in integrated technology. For example in the direct-conversion transceivers shown in Fig. 1.2
a single mixer performs the frequency translation, but these receivers face other challenges
such DC offsets [27, 68]. The Weaver architecture [100, 72] and low-IF receivers which
employ complex polyphase filters at low frequencies are other alternatives [12, 11].

Since mixers perform frequency translation, they are not linear-time-invariant

(LTI) systems. As we shall see they do not operate with a fixed operating point and



for this reason they are not as easy to analyze as other analog circuits such as amplifiers.
For this reason designers usually have limited insight into the mixer operation and rely
heavily on simulation or empirical approaches.

Mixer simulation on the other hand can be a difficult task. Traditional SPICE-type
circuit simulators can only simulate some mixer performance characteristics such as gain and
nonlinearity indirectly through transient analysis. SpectreRF [88] is a new simulator which is
capable of efficiently simulating gain, noise and nonlinearity of periodically-driven circuits
such as mixers. Although this simulator greatly facilitates the task of the designer, the
simulations can still be time and memory consuming. In addition, simulations (especially
of nonlinearity) can be unreliable if the transistor model is non physical (if for example it
contains discontinuities in the transition from one region of operation to an other) as we

shall see in chapter 6.

1.3 Research Goals

This thesis intends to facilitate the design of current - commutating CMOS mixers.
It presents an analysis of the mixer operation and concentrates on the nonidealities that
limit its performance. It aims to provide intuition by identifying the dependence of the
performance on the design parameters. Simplified expressions and graphs of normalized
parameters are derived from which one can obtain an approximate quantitative prediction
of the performance. Using the results provided here, a designer can obtain a close to
optimal design, without having to perform a large number of simulations. Furthermore the

designer can easily decide on the fitness of a particular CMOS process for a particular set



of specifications.

1.4 Previously Published Related Work

Noise analysis of single-transistor bipolar mixers has been presented in [63, 54, 55].
The problem of noise prediction in mixers in general and bipolar current-commutating
mixers in particular has been examined in [32, 31]. The intermodulation generated by
a bipolar mixer switching pair has been examined in [56, 31]. Passive CMOS mixers on
SOI technology have been examined in [39]. Several papers such as (83, 48, 49] and books
[50] have been written by the microwave design community on single-device high-frequency
mixers. The above publications contain interesting techniques some of which were adopted
by the analysis of active CMOS mixers presented here. Some of the results described in this
dissertation have also been published in [89, 90]. A more recent paper [52] concentrates on

the flicker noise of low-power and low-voltage CMOS mixers.

1.5 Thesis Organization

Chapter 2 describes in abstract and theoretical terms the mixing operation and the nonide-
alities of a practical mixer. It introduces the performance metrics used to characterize

mixers.

Chapter 3 presents several mixer topologies that can be implemented in CMOS processes
and discusses their advantages and disadvantages. It introduces the class of current-
commutating CMOS mixers for which the analysis presented in the following chapters

applies.



Chapter 4 presents a noise analysis of current-commutating CMOS mixers. The contri-
bution of all internal and external noise sources to the output noise is calculated.
The noise figure of some simple mixer structures is estimated by computing only a
few parameters or by reading them from provided normalized graphs. Simple explicit
formulas for the thermal and flicker noise introduced by a switching pair are derived,
and the upper frequency limit of validity of the analysis is examined. Although capac-
itive effects are neglected, the results are applicable up to the GHz frequency range
for modern submicron CMOS technologies. The deviation of the device characteris-
tics from the ideal square law is taken into account and the analysis is verified with

measurements.

Chapter 5 is a noise analysis of a CMOS inductively degenerated, conjugately matched
transconductance stage. These stages can be used in active mixers when the input is
provided off chip. A more sophisticated transistor noise model is adopted here than
used in chapter 4. The results of this chapter can be applied directly to the design of

LNAs.

Chapter 6 presents an analysis of the nonlinearity of CMOS transconductance stages used
in active mixers. Expressions are derived for the degenerated single-ended common-
source, common-gate and differential-pair stages. The single-ended common-source
stage is examined in depth and several approximations are made in order to provide
both quantitative and intuitive results. The body-effect nonlinearity is shown to
be significant for large degeneration and the degeneration impedance above which

the body-effect nonlinearity dominates, is derived. The output third-order intercept



point is investigated for inductive and resistive degeneration, with and without a

source matching restriction.

In Chapter 7 the nonlinearity behavior of the CMOS current-switching transistor pair is
investigated. By treating the mixer as a periodically-time-varying weakly-nonlinear
circuit we study the distortion-causing mechanisms and we predict the mixer dis-
tortion performance. Normalized graphs are provided from which the designer can
readily estimate the mixer nonlinearity for particular process and design parameters.
A simple CMOS transistor model appropriate for our calculations, which also takes
into account deviation from the square law, is adopted. The significance of a physical
transistor model for reliable distortion simulation is demonstrated. The predictions

of our analysis are compared with simulation results and with experimental data.

Chapter 8 presents four different single-balanced active mixer designs. Implementation
details about the mixer core and the on-chip LO buffer are discussed. It is demon-
strated how the design parameters affect the conversion gain, the noise figure and the

nonlinearity. Predicted performance characteristics are compared with measurements.
Chapter 9 concludes the thesis and identifies topics for future research.

Appendix A is a qualitative discussion on the implications of the time-varying - or cyclo-
stationary — nature of the noise generated by mixers. The usual noise performance
metric, the noise figure considers only the time-average of the noise power and dis-
cards the time variation. We show that in the majority of the practical cases the

mixer noise figure is sufficient to provide an accurate noise performance prediction of
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the overall system, but we identify cases in which the time variation is significant.

Appendix B is a derivation from first principles of the concept of the time-varying (and
time-invariant) Volterra series. It is the basis for the analysis performed in chapters

6 and 7.

Appendix C is a discussion on flicker noise generated by CMOS devices. In chapter 4
we calculate the transfer function of the flicker noise from where it is generated to
the output, but the flicker noise device model is not well established. The generating
mechanisms and a model of flicker noise in MOSFETS has been a subject of contro-
versy. We present an overview of the theories in this field and we identify the need for
theoretical and experimental study of flicker noise of CMOS devices with time varying

operating point.
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Chapter 2

Mixer Fundamentals

2.1 Introduction

In this chapter we describe in abstract terms the operation and the nonidealities
of mixers and we introduce the metrics which characterize their performance. The concepts
presented in this chapter are general, independent of topology.

A mixer is a circuit block with three ports, the input port, the local-oscillator
(LO) port, and the output port as shown in Fig. 2.1. This symbol for the mixer has already
been used in Fig. 1.1 and Fig. 1.2. In the literature an ideal mixer is usually 2 multiplier
whose output equals the product of the input with a sinusoidal LO waveform. The output

spectrum in this case is the input spectrum shifted by the LO frequency.
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Figure 2.1: Mixer symbol.
2.2 Mixer Linear Operation

In a practical mixer, the input signal is usually small, such that it causes only a
small perturbation to the current and voltage waveforms of the circuit — similarly to the
input signal of an amplifier which causes only a small perturbation around the operating
point. The LO signal is a strong periodic waveform such that it largely determines the
current and voltage waveforms. In this thesis we call the voltages and the currents in the
mixer in the absence of input signal the periodically time-varying operating point. We shall
see next that for small input signals the input-output relation of a mixer is linear. A mixer
is a linear-periodically-time-varying (LPTV) system and such systems provide frequency

translation.

2.2.1 Low Frequency

Let us consider first the low-frequency case in which the mixer is a memoryless
system. The output is a function of the instantaneous values of the input signal z(t) and
LO signal w(t)

y(t) = F(z(t), w(t)) (2.1)
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and since z(t) is small a first-order Taylor expansion provides

y(t) = po(t) + P (t)z(t). (2.2)

Waveform p,(t) is the output without an input signal present, does not contain signal infor-
mation and will be omitted below. The mixer performs frequency translation by multiplying
its input signal z(t) with a periodic waveform p; (¢). Waveform p; (t) is determined by the
LO waveform and the mixer implementation. Since multiplication in the time domain is

convolution in the frequency domain, the spectrum of the output signal y(t) is given by

+o00
Y(f)= Y. paX(f+nfro) (2.3)

n=—00

where X (f) is the spectrum of the input signal and p1,, are the Fourier coefficients of p; (®)-
The output spectrum consists of copies of the input spectrum shifted in frequency to integer
multiples of the LO frequency and weighted by different coefficients. These coefficients are

called conversion gains.

2.2.2 High Frequency

Let us now examine frequency conversion at high frequencies. We will assume for
simplicity that the input signal is a single tone in complex representation e ft. Such a
tone is not a physical waveform, but the response of the system to a physical input such
as a sinusoid can be found as the response to a sum of single tones, and we will follow this
approach even when we consider nonlinearities below. The mixing operation is ideally linear
and is accurately described by the periodically time-varying transfer function Py(t, f), which

is similar to the periodic gain p;(t) at low frequencies, but also depends on the frequency
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of the input signal. For a proof see [107], or appendix B and discard the nonlinear terms.

The transfer function of a linear-time-invariant (LTI) system is defined as

&2/t _y [TTT] - Py ()2t ey

meaning that the response of an LTI system to e/2™/t is P;(f)e?"/*. Similarly the transfer

function of an LPTV system such as the mixer is defined as follows

2t — P(t, f)e’?mIt (2.5)

As in the low frequency case, in the frequency domain convolution provides the output

spectrum

Y(f)= +Z°° P, o(f)ed?r(f+nirolt (2.6)

n=-—oo

which is similar to relation (2.3), but here the conversion gains p; , have been replaced by
the conversion transfer functions Py (f), the Fourier components of Pi(t, f).

Observe that a mixer transfers a signal from a single frequency band to several
output frequency bands. Similarly the signal at one output band originates from multiple
input frequency bands. These multiple frequency bands at the input and the output are
called sidebands, image bands or images.

Practical mixers are usually used for frequency translation by one LO frequency
multiple because in this mode they usually provide the highest conversion gain and the rest
of the output components are often removed by filtering. If the output signal frequency is
lower than the input signal frequency, the mixer is said to perform downconversion while
in the opposite (;ase it is said to perform upconversion. Transmitters generally employ

upconverters while receivers employ downconverters, (although there are some receivers,
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such as broadband cable TV tuners and instrumentation equipment front-ends that first

upconvert the signal and then downconvert it).

2.2.3 Conversion Gain

As introduced in the previous section, the conversion gain can be defined as the
ratio of the magnitude of the output signal in the output frequency band over the magnitude
of the input signal. So far we have .not specified what physical quantities the input and
output signals represent. If they are both voltages one can define the voltage conversion

gain similarly to the voltage gain of an amplifier

Ge.= Vout and Gc(dB) =20 loglo(vout
Vin Vin

) (2.7)
where V;, is the amplitude of the input signal considered sinusoidal and Vpy; is the amplitude
of the output signal when all the out-of-band components are eliminated. Other similar
definitions are possible, for example if the input is voltage and the output is current, the
conversion transconductance can be used.

Microwave and RF designers usually consider the input and output signals to
be power rather than voltage or current. The mixer input and output ports have some
finite impedance, the source providing the signal to the input port has a finite impedance
and the mixer delivers power to a load impedance. We will consider here that the source
and load impedances are specified by the application, but the designer can use impedance
transformation networks between the mixer ports and these impedances, and in fact the

transformation networks can be considered part of the mixer. Similarly to the amplifier

case [62, p. 606] several power gain definitions are possible, but the most commonly used
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Figure 2.2: The input signal and its image appear at the mixer output.

is the following.

The Power Conversion Gain is the ratio of the power delivered to the load when
the power of all out of band components is excluded, over the available power of the source.
It depends on both the input and the output impedance transformation networks. This
definition is also fitted to the way the mixer gain is measured in the lab, where the power
delivered to the load (i.e. the 509 input impedance of the spectrum analyzer) is measured
and the available power of the source (i.e. signal generator) is known. The Power Conversion
Gain is maximized when both the input and the output are conjugately matched (but section
2.7 contains a more accurate discussion of this issue).

Very often the output signal is weaker than the input signal which translates to
a negative conversion gain when expressed in dB. The term Conversion Loss is then used

which equals the conversion gain in dB without the negative sign.
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2.3 Image Problem

We saw that frequency translation from several input bands or image bands ap-
pears at a single output frequency. This effect usually causes problems. Images that are
located far away from the input signal band in the frequency domain are easily filtered
and do not represent a problem. However, in a downconverter employed in a heterodyne
receiver, where the output is obtained at frequency f;r and the input signal is frequency
frr = fLo + f1F, the signal in the image band fiym = fLo — fIF is also translated to frr,
as shown in Fig. 2.2 (we are considering real, not complex signals here). Either one of the
input frequency bands can be used for the useful frequency translation. When the input
signal is at fro + frr it is said that low-side injection is used, while when it is at fro — fir
the term high-side injection is used. The spectrum usually contains undesired information
or noise at the image frequency which contaminates the output.

Filters are often used before the mixer to eliminate this image. The input signal
and its image are in distance 2f;r and filtering becomes harder when a low fIF is used.
The image problem disappears when direct conversion or zero IF architecture is used.
Finally, the image problem can be eliminated with image rejection mixers which employ
phase shifters as shown in Fig. 2.3, with appropriate system architectures which employ
an arrangement of several mixers, such as the Weaver architecture [100, 72}, shown in
Fig. 2.4. A different architecture that solves the image problem employs low IF frequency
and complex polyphase filters [13, 12]. Since image cancellation is in practice limited by
imperfect device matching, these techniques are often used in combination with some mild

filtering which enhances the image rejection.
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2.4 Port-to-Port Isolation

The only useful signal transfer in the mixer is from the input signal band of the
input port to the output signal band of the output port. Any other power transfer is parasitic
and is possibly detrimental. An example of a mixer with bad port-to-port isolation is the
single-diode mixer in which all three ports share the two diode terminals. In this case
isolation is provided exclusively by filtering.

Leakage of even a small amount of the strong LO signal to the output acts as an

interferer for the circuits following the mixer, while LO leakage to the input port in a receiver
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Figure 2.4: The Weaver architecture.

can reach the antenna and be transmitted causing problems to other users. Furthermore
LO leakage to the input port, essentially squares the LO signal and creates DC offsets at
the output which are a significant problem in direct conversion applications. Leakage of
the input or output to the LO port can disturb the LO operation. Direct leakage from the
input to the output port at the input signal band can pass DC components generated by
nonlinearities before the mixer to the output which as mentioned cause problems in direct
conversion receivers.

For these reasons, the specifications of the mixer often require that the isolation
between two specified ports is higher than a certain ratio expressed in dB. In traditional
discrete-component transceiver implementations, filters have been used to satisfy the iso-
lation requirements. In modern integrated solutions however, high-frequency filtering is
not easily implemented and besides the frequency spacing between the different frequency
bands can be small or zero. For example in direct downconversion the LO and input signals
are indistinguishable in frequency. Therefore balanced structures performing cancellation

of the unwanted signals are extensively used (often in combination with some filtering).
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2.5 Single-Balanced and Double-Balanced Mixers

Single-balanced mixers are mixers whose topology has the inherent ability to reject
either one of the LO signal or input signal at the output. Double-balanced mixers reject
both the LO and input component at the output. Port isolation through cancellation is
desirable particularly in integrated solutions, as mentioned in the previous paragraph. In
practice however the rejection of the undesired signals in balanced structures is limited
by the several factors such as imperfect device matching, parasitic capacitances, coupling
through the substrate and the package parasitics. One significant advantage of the balanced
structures which reject the LO component at the output is that they also cancel or heavily
suppress any noise coming from the LO port, which can otherwise significantly deteriorate

the mixer noise performance.

2.6 LO Power Requirement

The amount of power required to the LO port of the mixer is often a concern and
usually it is desirable that the mixer can operate properly with a relatively low amount of

power delivered to the LO port.

2.7 Input, Output and LO Port Impedances

Since the mixer is a periodically time-varying circuit, in the general case the in-
put, output and LO port impedances are periodically-time-varying, in a manner similar to

the periodically-time-varying transfer function examined earlier in section 2.2. If a single-
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frequency test current-signal I(t) = I,e>™/* is applied to such an impedance Z(t, f), voltage

components at all frequencies f + nfro will be generated
n=+00
V) =20, f) - It) =1, S Zu(f)e? +nirok, (2.8)
n=—oo
Of these voltage components the one that is at the same frequency as the input test signal is
measured when we determine the input impedance with an instrument such as the network
analyzer. Then, the measured value is Zo(f) or the time-average of Z(t, f).

If we model the input signal source with a sinusoidal voltage source at frequency f
in series with a constant source impedance, the current flowing through the voltage source
will have components at all frequencies f + nfro. However, only the current component at
the same frequency as the voltage excitation absorbs source power. This current component
is determined by the time-average input source impedance, and therefore the power delivered
from the source to the mixer is maximized when the source is conjugately matched to the
time-average mixer input impedance.

Let us now model the mixer output with a voltage source whose value equals the
output voltage without load, in series with a periodically-time-varying output impedance.
A time-invariant load is connected to this output. If the mixer input is at frequency f,
the mixer output voltage source contains components at all frequencies f +nfLo. Assume
for example that the power delivered to the load at frequency f + fro is desired. Now
power from the output voltage source at frequency f + fLo is maximized when the load
is conjugately matched to the time-average output impedance. However, power at the
frequency f+ fro is delivered to the load from other combinations of frequency components

of output voltage source and output impedance and it is not exactly accurate to consider
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that matching the load to the time-average output impedance provides maximum power
delivery to the load. In practical mixers however matching the load to the time-average
output impedance usually provides very close to maximum power delivery.

Similar considerations hold for matching the LO port impedance. If the LO source
is a single-frequency sinusoidal voltage source in series with a constant impedance, then
matching the time-average LO port impedance to the LO source provides exactly maximum

LO power transfer, otherwise the above matching provides close to optimal power transfer.

2.8 Input Return Loss

It is usually desirable that the impedance of the input port of the mixer is matched
to the source, in order to eliminate reflections to the source. In a receiver, such reflections
can reach the antenna and be retransmitted causing problems to other users. To avoid signal
loss and noise, a lossless matching network is often used. Usually the input impedance of the
mixer is made real such that the matching condition also satisfies the conjugate matching
condition which provides maximum power transfer and maximum mixer gain. A metric for

the reflection is the input return loss defined in dB as
RL = —20log|T'|dB (2.9)

where I is the input reflection coefficient defined as

Zin — Z
P = Zin_ “o 2_1
Zin+ Z, (2.10)

and Z;, and Z, are the mixer input impedance and source impedance (usually considered

50 Q in discrete component implementations) respectively. In the general case that the
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input impedance is time-varying, Z;, represents the time-average as mentioned in section
2.7.

A different metric to express the reflections from the input is the standing wave
ratio (SWR) (or voltage standing wave ratio) (VSWR), which is defined as the ratio of
the maximum to the minimum voltage amplitude on a transmission line with characteristic

impedance Z, terminated with Z;;. It can be shown to be equal to

_1+0|

SWR=1"1r

(2.11)

Similar considerations hold for the LO port where reflections can disturb the LO
operation and the reflection coefficient, input return loss, and standing wave ratio are defined
similarly. Unlike the input port, in many cases a lossy matching network can be used at the
LO port, since some LO signal loss and some noise can usually be tolerated (for example
noise is rejected in double-balanced structures). If however a lossless matching network is
used and the input impedance is made real, reflection elimination also provides maximum

LO power transfer which is in many cases desirable.

2.9 Noise

It is a fundamental property of the electronic devices to generate noise of several
kinds, such as thermal, shot and flicker [61]. The noise introduced by the mixer (and every
block in a receiver) is a concern because it can mask a weak desired signal. The mixing
function is inherently noisy, because while it transfers signal only from the input band to
the output, it transfers noise from multiple frequency bands. The mixer is a significant

noise contributor in most communication systems.
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2.9.1 Mixer Noise Figure

The Noise Figure (NF) is a metric of the degradation of the signal to noise ratio

(SNR) in the mixer, and is defined [18, 2] as

SNR at the input in the input signal band

NF = SNR at the output in the output signal band

(2.12)

The input signal is considered provided by a source with an impedance containing a finite
real part. The noise present at the input is then considered thermal noise of the source
impedance. If the signal band is very narrow, the conversion gain and noise-power spectral
density (PSD) in the input and output signal bands are almost flat. In this case the NF

defined in (2.12) equals the following quantity which is also known as spot NF

NF =22 (2.13)

In this expression

S, is the total output noise per unit bandwidth including the contribution from the source

impedance at all frequencies, and

So1 is the part of the output noise per unit bandwidth due to the noise generated by the

source impedance only in the input frequency band.

According to the IEEE definition the source impedance temperature is always 290°K (even
when the temperature of the circuit is different) [2]. The NF depends on the source
impedance and a resistive impedance of 50 € is used by convention when RF block specifi-

cations are given.
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2.9.2 Single-Sideband and Double-Sideband Mixer NF

In heterodyne receivers the mixer image band is not part of the input signal band
and therefore the image does not contribute to S;. This is called the Single-Sideband
NF. In direct-conversion receivers however the image band is part of the input signal band
and contributes to S,; and in this case the NF is called Double-Sideband. Assuming equal
conversion gain from both sidebands and that source noise level is equal in the two sidebands,
one can easily see that for the same mixer the single-sideband NF is 3dB higher than the
double-sideband NF. This statement assumes that the source impedance contributes equal
amount of output noise to S, in both cases which is the case if filters are not present at
the input. If however an input filter is employed which rejects the source noise outside the
signal band, the difference is lower than 3 dB, but it approaches 3 dB if the noise generated

inside the mixer dominates the output noise.

2.9.3 NF of an LTI Block

The NF is defined similarly for most communication circuit blocks such as LNAs
and filters, and there the definition is even simpler since there is not a noise frequency-
translation issue. A noisy linear time-invariant two-port (one input and one output port)
can be represented with the equivalent input voltage and current noise generators preceding
the noiseless network as shown in Fig. 2.5 [70]. The two generators are in general correlated
and for this reason the voltage noise generator is partitioned into two voltage sources, one
uncorrelated and one fully correlated with the current generator. Let us denote the current

noise generator with I,, the uncorrelated part of the voltage noise generator with V;, and its
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Figure 2.5: Equivalent representation of a noisy LTI twoport.

correlated part with I, Zcor where Zeor = Reor + jXcor is called the correlation impedance.
Also let Z; = R, + jX, represent the source impedance and Gp, R, be related with the

power spectral densities of I, and V; as follows
I2/Af = 4kTG, (2.14)

VZ/Af = 4kTR, (2.15)

where k is Boltzman’s constant and T is the absolute temperature. It can be shown (4, 98]

that the NF can be given as

NFz, =1+ By Cn | Zeor + Zs|? (2.16)
Rs ' R,

It can also be shown that the source impedance Zs op; = R;,opt + 7 Xs,0pt Which provides the
minimum noise figure is
R,

R opt = ot RZ, (2.17)
n

Xs’opt == —Xcor (2-18)

and the minimum noise figure is given by

NFimin = 1+ 2GnReor +2y/GnRn + (GnReor)? (2.19)
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Figure 2.6: Transforming the source impedance to the optimal for noise figure value.

For a different source impedance the NF is

G
NFgz, = NFpin + 722 \Zs — Zs opt)? (2.20)
S

From equation (2.16) we can see that if the NF is known for one source impedance
value it is not generally possible to find its value for a different source impedance, as one
has one equation and needs to solve for the quantities R, Gn and Zeor- 1f however one
of the two independent input noise generators is negligible it is poséible to find the NF
for a different source impedance. For example if G, is negligible then (NFz, — 1)R; is a
constant, while if R, is negligible (NFz, — 1)G; is a constant where G5 = Rs/ |Zs|? is the
source conductance.

Usually the designer has no control over the source impedance, for example the
source impedance of the testing equipment is almost always 50€2, and in discrete component
implementation the implied input and output impedance of the RF blocks is also 509Q. The
discrete filters have their specified in-band and out-of-band attenuation only if they are
terminated to a 50Q impedance at the input and the output. The designer however can
use a lossless impedance transformation network to transform the 50Q (or any other lossy

source impedance) to the optimal source impedance as shown in Fig. 2.6. Since the NF
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is the ratio of the input over the output SNR and the SNR is the same before and after
the lossless impedance transformation network, the NF of the noisy two-port for source
impedance equal to the output impedance of the matching network, is equal to the NF of
the combination of the impedance transformation network and the noisy two-port for the
source impedance of 50€2.

The mixer NF depends on the source impedance not only in the signal-band but
also in all image bands that contribute output noise. Assuming that the noise behavior
of the mixer does not depend heavily on the value of the out-of-band terminations, one
could make similar considerations for the mixer as the ones made for the LTI blocks in
this section. The latter assumption is often true if for example the mixer is preceded with
a band-pass filter, or when the noise generated inside the mixer is much higher than the
noise contribution of the source. One can then represent the mixer with a noiseless block
preceded by two in-band input noise generators similarly to the LTI blocks. The role of
the in-band source impedance would be similar and the optimal in-band source-impedance
could be found. Under these assumptions the mixers can be treated indistinguishably from

the LTI blocks in the next paragraph dealing with the NF of a system of cascaded blocks.

2.9.4 Noise Figure of a Cascade of RF Blocks

The NF of a system of cascaded blocks [18] is

NF,-1 NF;-1

NF,;; = NF
tot 1+ 3 G.Co

(2.21)

where NF, and G; are the NF and gain of the i-th block in the chain, and the input is

connected to the 1-st block. This expression shows that the contribution of the NF of
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each block to the total NF is essentially suppressed by the gain of all the previous blocks.
Therefore, the LNA NF usually dominates the receiver NF, with the first mixer being the
second highest contributor. Equation (2.21) assumes input-output matching of all blocks
to a common impedance level (usually 50 £2). This equation can be generalized as follows

[68]

NF NF:
NFtOt,Zs = NF].,Z, + 2,Zout1 + 3,Zout2 4. (2.22)
Gav,l Gav,l Gav,z

where

Zin,i
Zini + Zout,i-1

2
Rout,i-—l Au,i (2.23)

Gav,i = Rout:
k)

is the available gain of the i-th block, the ratio of the available power at its output

over the available output power at its input.
A, ; is the voltage gain of the i — th block without output load,
Zin; is the input impedance of the i — th block and Ry, ; is its real part,
Zoyt,i is the output impedance of the ¢ — th block and Ryt ; is its real part,
Zs = Zoutp is the source impedance and Routo = R; is its real part, and
the second index in the NF denotes the source impedance for which it is defined.

It is useful to know that the NF of a passive network equals its loss. This is true
even when the input and output impedances of the network are different and the input is
not matched to the source impedance as long as the loss is defined similarly to the available

power gain above, the ratio of the available power of the source over the available output
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power. This property is useful for the noise figure of passive filters, and also passive mixers

as we shall see in the next chapter.

2.9.5 Cyclostationarity

There are two reasons why the noise generated in a mixer has periodically time-
varying statistics. First, the operating point of the devices changes periodically with time.
Second, the processing of the signa:l from the point at which noise is generated to the
output can be periodically time-varying [32]. A random process whose statistics are periodic
functions of time is called cyclostationary, and a complete description of such a process
requires a time-varying power spectral density (PSD) S(f,t) [21]. This is different from the
wide sense stationary (WSS) noise generated by a linear time-invariant circuit.

While introducing the NF as a metric for the noise performance of a mixer, we
should mention that it is sufficient for most practical cases but it is nbt a complete charac-
terization. Because of the cyclostationary nature of the noise, expressions (2.21) and (2.22)
may not be accurate under certain conditions. The implications of this issue are examined

in depth in appendix A.

2.10 Nonlinearity

The nonlinearity mechanisms and performance metrics of mixers are very similar
to those of time-invariant systems. Therefore we will present the nonlinearity theory for
the time-invariant case and we will extend the discussion to cover periodically time-varying

systems.
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2.10.1 Low-Frequency Nonlinearity

At low frequencies time-invariant systems are described in general by a nonlinear

relation between the input signal z and the output signal y.
y = F(z) (2.24)

For small input signals this relation can be linearized by taking a first-order Taylor expan-
sion. For larger signals the system becomes weakly nonlinear and is described better with
a power series which can be derived by keeping higher-order terms in the Taylor expansion.
Thus

y = bz + boz?® + by + - - - (2.25)

where the signal independent term has been omitted.

2.10.2 High-Frequency Nonlinearity

At high frequencies the distortion characteristics of weakly nonlinear circuits can
be derived from Volterra series, which are similar to the power series, but their coefficients

depend on the frequency of the processed signal [104}, [101]. They have the form

y = B1(fa) 0« + Ba(fa, fo) 0 2% + Bs(fa, for fe) 0 2 + - -+ (2.26)

The operation o, is often called Kronecker product and acts as follows. If the signal z is a sum
of k single complex tones at frequencies fi, f2,. .., fk, the term z™ contains output tones at
all frequencies f] + f5+ - + f;, where each f; can be any of fi, f2, ..., fr- The contribution
of each output tone is found by multiplying it with the n-th order Volterra coefficient

evaluated at frequencies f}, f3,...,f,. The single tones and the Volterra coefficients are
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complex quantities, but when the sum of the complex tones z represents a real signal, the
output complex tones always combine to give a real output signal. For example if the input
is the sum of two cosines

z = cos(27 f1t) + cos(27 fot) (2.27)

the third-order nonlinear term z3 contains
3
3 cos(27(2f) — f2)t) (2.28)

whose output contribution is
3
1 |B3(f1, f1, — f2)| cos(2m(2f1 — fo)t + LB3(f1, f1,—f2)) (2.29)

2.10.3 Weakly-Nonlinear Periodically-Time-Varying Systems

As we saw in section 2.2 a mixer is ideally an LPTV system. In practice however
mixers exhibit nonlinearities and they behave rather as weakly-nonlinear periodically-time-
varying systems. The input-output relation of such a system at low frequencies can be

described with a power-series with periodically time-varying coefficients
y = po(t) + p1(t)z + p2(t)z® + pa(t)z® + - - (2-30)

This expression can be derived from (2.1) similarly to (2.2) by keeping higher-order terms
in the Taylor expansion. Discarding the signal independent term of (2.30) and taking a

Fourier expansion of the time-varying coefficients we obtain the following expression

+00

y= 3 [pP1az +P2na® +pana® + - || einemfrot (2.31)

n=-00
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where fro is the LO frequency. When the input signal is real, for every complex term its
conjugate is also present in the sum, with which it combines to provide a real output. With

real input signal (2.31) becomes

Yy = PLoT+Ppaoz’ +p3eT +- -

+00
+3° 2Re {[p1nz + p2ac® + p3nz® + - ] e?mmiiot] (2.32)

n=1

If the input signal z is a cosine of frequency f, the magnitude of all the spurious responses
because of the nonlinearity and the frequency translation at frequencies nfro + kf can
be found. Similarly the response of the mixer to a sum of cosines, can be found. Since
multiplication with e/2™/Lot only performs frequency translation, most of the nonlinear-
ity performance metrics that describe the mixer can be derived from a usual time-invariant
power series similar to (2.25) which corresponds to the principal (or useful) frequency trans-
lation, usually by one LO multiple, i.e. b; = p;,;1. Notice that it is in general possible for b;
to be complex.

In appendix B we show how a weakly-nonlinear periodically-time-varying system
can be described at high frequency by a Volterra series with periodically time-varying co-

efficients

y = Pi(t, fa) 0 & + Pa(t, fa, f5) 0 2 + Pa(t, fa, fo fo) 02° + - (2.33)

and taking again a Fourier expansion of the coefficients

+00
y= Y [Punlfa) 03+ Ponlfar fo) 0 22 + Ponlfar fur fe) 0 5° + -] ePmi0t  (234)

n=-—00
As with low frequencies, time-invariant Volterra series similar to (2.26) that de-

scribe intermodulation in the frequency band of interest can be extracted by taking the first
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Fourier coefficients of Py(t, fa), P2(t, fa, fb), and Ps(2, fa, fo, fc) Tespectively. Assume that

the nth time-varying Volterra coefficient has the following Fourier expansion

Bult,)= 3 Pun()e2mmiiot (2.35)

n=-—0oc

where a dot has replaced the frequency arguments. For a downconverter Py _;(.) must be
used if the input signal frequency f; is higher than f; 0, or its conjugate if f; is lower than
fro. For an upconverter Py 1(.) must be used when the output frequency is higher than
fro while the conjugate of Py _(.) must be used if the output frequency is lower than f10,

but the result is essentially the same if the input signal frequency is low compared to fLo.

1

2.10.4 Harmonic Distortion

When the input to a weakly nonlinear system described by a power series or a
Volterra series is a cosine £ = cos(2wft) then tones at frequencies nf are generated at
the output by the nonlinear term z". In particular if n = 2k is even, z" generates tones
at all frequencies (2k)f,(2(k — 1))f,...,0, while if n = 2k — 1 is odd, it contributes at
frequencies (2k —1)f,(2k—3)f,..., f. The DC contribution of the even-order terms creates
DC offsets which are a problem in direct conversion applications, while the contribution
at the fundamental of the odd-order distortion alters the gain of the linear input-output
relation. The n — th order Harmonic Distortion is defined as

_ Ampl. of output tone at freg. nf

HDn = Ampl. of output tone at fund. f

(2.36)

When HD,, is specified, the nonlinearites of order higher than n are neglected.

We mention that Pi(t, f1,...,fk) = Pe(t,=fi,...,—fx) and Pen(f1,..., fx) = Pe=a(=f1,..., = f2),
and the overline here denotes the complex conjugate.
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2.10.5 Third-Order Intermodulation

Consider first a weakly-nonlinear time-invariant circuit such as an amplifier de-
scribed by (2.25) whose input consists of two cosines of equal amplitude at frequencies f
and f2

T = Aocos(2m f1t) + Apcos(27 fat). (2.37)

Because of the third-order nonlinearity z° the output will contain undesired tones at fre-
quencies 2f; — f» and 2f, — f1 which are usually detrimental because they fall in the signal
band.

B=+ %Aﬁ cos(2m(2f1 — f2)t) + %Aﬁ cos(2m(2f2 — fi)t) + - (2.38)

The third-order intermodulation is defined as the ratio of the magnitudes of the undesired
output term over the desired linear term. Assuming low frequency, the power series (2.25)
provides

IMy==

1 A2, (2.39)

3 |b3
b1

the same for both tones at frequencies 2f; — f2 and 2f2 — fi. At high frequencies, the output

tone at 2f; — fo for example is given by (2.29). The third-order intermodulation is given by

3
IMg—Z

Bs(f1, f1,—f2)

2
B () A; (2.40)

It is worth noticing that at high frequencies the two intermodulation terms have in gen-
eral different magnitudes while when there are no reactive effects they have always equal

magnitude.
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2.10.6 Third-Order Input Intercept Point (/IP;)

The third-order input intercept point is defined as the magnitude of the input
signal for which the intermodulation term at the output has the same magnitude as the
linear term assuming that nonlinearities of higher than third-order are negligible. According

to this definition, at low frequencies it is easy to find from the power series (2.25) that

4b
ZTIIpy = \/ §é (2.41)

and similarly at high frequencies the Volterra coefficients replace the power series coef-
ficients. At high frequencies where the two intermodulation tones might have different
magnitude, the larger of the two should be used in the specification of I1P;.

Usually the ITP; is expressed in terms of available power of the source, in dBm
units. If for example the variable z in power series (2.25) represents voltage and the input
is matched to the source impedance R

1 4

b
Py 11py = 2R3 2
S

b3

IIPy(dBm) = 1010y, (5{‘#) (2.42)

Fig. 2.7 shows how IIP; can be found from measurements in the region that
nonlinearities higher than third-order are negligible. In this region for every 1dB of increase
in the linear output term, the third-order term increases by 3dB. It is a simple geometry
exercise to show from this graph that

P outl — P, outd

IIPy = Py + 3

(2.43)

where P is the available source power, P,y is the power of the output linear term, and
P,.:3 is the power of the output intermodulation term. The value of the output linear term

when the input equals the ITP; is called Output Third-Order Intercept Point (OIF3).
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Figure 2.7: Graphical representation of IIP; and OIP;.

In a weakly nonlinear time-varying system such as a mixer, /M3 and the IIP; are
defined similarly, only the output band where the output linear and intermodulation terms

appear is different than the input frequency band.

2.10.7 Second-order Intermodulation

Second-order nonlinearity creates second-order intermodulation, i.e an input signal
similar to (2.37) creates output tones at frequencies f; — f2. The second-order intermod-
ulation tones may fall in the output signal band, or create slowly time-varying offsets and
disturb operation in direct conversion receivers. The second-order intermodulation and
Input Second—Order Intercept Point (I1P,) are defined similarly to the third-order quanti-

ties examined in the previous paragraph. Second-order intermodulation specifications are
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often provided to the mixer designers. Differential structures inherently reject the even-
order nonlinearities. Such rejection however is in practice limited by the imperfect device

matching.

© 2.10.8 IF/2 problem

It is possible that signal located at frequency fro % frr/2 appears at the output,
and this effect is caused mainly by the second-order nonlinearity. Therefore this parasitic
frequency translation is alleviated with differential structures.

One mechanism which is usually the dominant is through second-order harmonic
distortion which transfers this signal to frequency 2f70 £ frr which in turn is translated to
fIr, by the parasitic frequency translation by two LO multiples. Another possible scenario
is the following: a small amount of LO signal leaks to the input and through third-order
intermodulation distortion it creates a tone at fro % frr which is then transfered to frr
together with the signal. A third possibility is that this tone is downconverted to frr/2
and then transfered to fyr through second-order harmonic distortion of a subsequent non-
linearity. Specifications for the rejection of the fro % frr/2 frequency components are often

given to the designers.

2.10.9 1 dB Compression Point

As mentioned above, the odd-order nonlinearities can contribute components at
the frequency of the output linear term and effectively change the gain. If the gain increases
this phenomenon is called gein ezpansion while if it reduces it is called gain compression,

with the latter being more common in practice. A related metric is the I dB compression
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Figure 2.8: Graphical representation of the 1 dB compression point.

point defined as the value of the input signal for which the gain drops by 1dB and is
depicted in Fig. 2.8. It is easy to show that if gain compression is caused exclusively by the

third-order nonlinearity [68] the effective gain is given by
3. |
by + stA (2.44)

where A is the amplitude of the input sinusoidal tone. It is easy to find that the 1dB

compression point is given by

4
z_148 = 0.33 3

by

W (2.45)

Similarly to the IIP; the 1dB compression point is expressed in terms of the available power

of the source (P-14p). It is easy to see from (2.45) and (2.41) that

P_14p = Pr1p, — 9.6dB. (2.46)

More often than not however, the 1dB compression point is high, such that nonlinearities
higher than third-order contribute significantly, and expressions (2.45) and (2.46) are not

accurate.
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2.10.10 Blocking and Desensitization

An other case in which nonlinearities can effectively change the gain of a circuit
block is when the desired signal is weak but a strong undesirable signal is present at the

input [58]. Assume that the input is
z(t) = A1 cos(2m f1t) + Az cos(27 fot) (2.47)

and that the signal with amplitude A is the desired tone while the signal with amplitude A,
is the out-of-band blocker. The third-order term z3 contributes a component at frequency
f1 which together with the linear term provides the following tone at the fundamental
frequency

y(t) = (b1 + gb3A%)A1 cos(2m ft) (2.48)

If the blocker is large it can effectively alter and usually reduce the gain.
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Chapter 3

CMOS Mixer Topologies

3.1 Introduction

Any circuit in which the input-output relation can become periodically time-
varying by means of a periodically time-varying LO waveform can be used as a mixer.
As an example, any electronic device whose characteristic equation demonstrates nonlin-
earity can be used as a mixer, if the sum of the input and LO signals is processed by the
nonlinearity, since the intermodulation terms can be obtained as the desired output signal.
In this chapter we present structures which can be used as mixers in CMOS technology and
we introduce the class of the current-commutating CMOS mixers for which the analysis
presented in the following chapters applies.

It is often desirable that the RF blocks provide gain. In a receiver for example,
the signal at the antenna is possibly very weak and must be amplified significantly at the
end of the receiver chain, typically by 100 dB. According to their ability to provide gain,

mixers can be classified as active and passive. Active mixers are those whose topology can



42

Figure 3.1: A typical single-balanced current-commutating CMOS mixer.

potentially amplify the signal, while passive mixers always have loss (at least in terms of
power). A mixer which provides gain alleviates the gain requirements of the rest of the

blocks in the chain, and the noise requirements of the blocks following the mixer.

3.2 Active Mixer Configurations

The most commonly used active mixers in integrated form are the current-commutating
mixers. This section qualitatively discusses their operation and presents variations of these
structures. It also presents some other active mixer topologies that can be found in the

literature.

3.2.1 Current-Commutating Mixers

The current-commutating mixers [72, 37, 79, 105, 66, 60] employ switching pairs .

A single-balanced active CMOS mixer is shown in Fig. 3.1. It consists of a transconductance
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stage in this case a single transistor which transforms the input signal to current, and a
switching pair driven by the strong LO waveform which commutates the current signal
between the two output branches. If i5 is the small-signal at the output of the driver stage,
assuming ideal switching, during the first half of the LO period the small signal output
current is i; while during the other half it is —i;. This alternation in the sign of the output
signal provides the desired mixing effect. When one of the devices of the switching pair is
turned off, the other device is in the common-gate configuration and does not significantly
contribute noise or distortion, at least when capacitive effects are negligible. The structure
of Fig. 3.1 is single-balanced because ideally there is not direct feedthrough of the input
signal to the output (of course in practice the input signal feedthrough cancellation is
limited by device mismatch). If the output it taken single-ended neither the input nor the
LO components are rejected and this configuration is unbalanced. Usually the output is
obtained differentially because in addition to the balanced operation this way the conversion
gain is higher.

A typical double-balanced active mixer or Gilbert cell is shown in Fig. 3.2. This
circuit was originally designed with bipolar transistors [25] to operate as a precision mul-
tiplier, but it has been used widely as a mixer with the transistors driven by the strong
LO signal acting as switches. The operation principle as a mixer is the same in CMOS
technology. This mixer comprises a differential transconductance stage and two switching

pairs. The output current is

L=Ig—Ie= (01 -1I)-(I5-1I) (3.1)

where the above currents are defined in Fig. 3.2. The drains of the transistors of the two
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Io = Io1-Io2 = (I3-I)-(Is-1y)

20p

Figure 3.2: A typical double-balanced current-commutating CMOS mixer.

switching pairs are combined in such a way that the output ideally does not contain an
LO component, but in practice the LO rejection is limited by the device mismatch. From
(3.1), the output of the Gilbert cell is the difference of the output currents of two single-
balanced mixers, and therefore the results of an analysis carry over easily from the single
to the double-balanced case. The output is usually obtained differentially, if however it is
obtained single-ended the mixer preserves the double-balanced operation but the conversion
gain is only half.

An advantage of current-commutating mixers is the high port-to-port isolation.

Consider for example the mixers of Fig. 3.1 and Fig. 3.2. Leakage from LO to the input
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occurs through the gate-drain capacitance of the transconductance stage device. Assuminga
balanced LO waveform and only DC common-mode LO voltage, the potential of the drain
of the transconductance stage device moves at twice the LO frequency and the leakage
to the input at this frequency is not quite as severe problem as the leakage at the LO
frequency. Direct feedthrough from the input to the output is eliminated in both the single
and double-balanced structures and leakage from the LO to the output is eliminated in the
double-balanced. Finally, leakage from the output to the LO can occur through the gate-
drain capacitances of the devices of the switching pair, but in the double-balanced structure
this effect is also largely attenuated because of symmetry.

Let us now briefly compare the single-balanced mixer of Fig. 3.1 with the double-
balanced mixer of Fig. 3.2 assuming that the bias current of each side of the double-balanced
equals the bias current of the single-balanced, and let us assume that the transconductance
stage of the double-balanced consists of two stages identical to that of the single-balanced.
The two mixers have equal conversion gain, the Gilbert cell has better linearity since only
half the signal is processed by each side, while the single-balanced has better noise perfor-
mance since there are fewer devices to contribute noise. In addition, the Gilbert cell, being
a differential structure rejects the even-order nonlinearities.

Active or passive loads can be used to transform the output current to voltage, or

matching networks can be used to deliver maximum power to the mixer load.
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Figure 3.3: Narrow-band balun.

3.2.2 Passive Networks for Single-Ended to Differential (and inverse)

Conversion

Baluns or equivalent narrowband structures such as those shown in Fig. 3.3 and
Fig. 3.4 consisting of inductors and capacitors can be used to transform the input or LO

signal from single-ended to differential, or the output signal from differential to single-ended.

For the narrow-band balun in Fig. 3.3 it is useful to know that at the resonant

frequency w = 1/VLC

212, = (g)z (32)

and therefore this arrangement can also be used for impedance transformation and impedance
inversion. One should bear in mind however that the output voltage of this balun is gen-
erally unbalanced and a symmetric load with a center tap tied at the desirable voltage is
needed to make it balanced, as shown in Fig. 3.3.

The current combiner of Fig. 3.4(a), at the resonant frequency w = 1/v2LC

provides the current difference I, = I} — Io. It is interesting to examine the operation of



47

the current combiner when a finite impedance Z is connected in parallel with capacitor C
as shown in Fig. 3.4(b). It can be shown easily that the output impedance of the combiner
at the resonance frequency is

jwL

Z
Zout = Z + —2— (3.3)

and the current source at the output has the value

Z — 2jwlL
I, = (m) I — Iz (34)

The above relations suggest that for the proper operation of the current combiner, impedance
Z must be much higher than jwL. According to these relations, of all the combinations of
L and C that provide the correct resonance frequency, small values of L and large values
of C must be chosen. However practical, finite Q inductors have losses and the lower the
inductance value the lower the parallel resistance which represents these losses whose value
is QLw. The optimal value of the inductance is chosen as a compromise between these two
factors and usually relatively high inductance values provide a better combiner. It is worth
noticing that the current combiner approximately steps down impedance Z by a factor of
4, similarly to a lossless transformer balun.

An other interesting calculation is shown in Fig. 3.4(c). When an impedance exists

in parallel with the inductor on the left the equivalent output impedance is
Zouwt = Z + 2jwL (3.5)
and the equivalent output current source has the value

Z
I, = (m) Il -0 (36)
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(a) ®

% % L= Z+2Jle —h
¢ %} Z,=Z+2joL

Figure 3.4: Current combiner.

Usually in integrated implementations all on-chip signals and circuits are differen-
tial in order to achieve common-mode noise rejection and minimize even-order nonlinearities.
Often however these circuits need to interact with external discrete components that are

single-ended, such as filters. In these cases the above structures as well as transformer

baluns can be useful.
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Figure 3.5: Single-ended common-source transconductance stages.

3.2.3 Single-Ended Transconductance Stages

Besides the single-transistor common-source single-ended transconductance stage
shown in Fig. 3.1, several other can be used. Degeneration (which is series-series negative
feedback) can be used to linearize this stage at the price of gain reduction as shown in
Fig. 3.5. Resistive degeneration is appropriate for broadband applications but has the dis-
advantage that it introduces noise and that it consumes some voltage headroom. Inductive
degeneration has the advantages of being noiseless and not requiring voltage headroom. It
requires however large chip area, and is frequency dependent and therefore more appropriate
for narrow-band applications.

We must notice that a CMOS device which closely follows the square law does
not have odd-order nonlinearities and therefore has excellent M3 and gain compression
performance. A device fabricated in a modern sub-micron technology however exhibits short
channel effects wlhich generate some odd-order nonlinearity and in this case degeneration

can possibly improve the 7 M3 and the compression gain as we shall see in chapter 6. A bond-
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Figure 3.6: Single-ended common-gate transconductance stages.

wire inductance often represents inductive degeneration that cannot be avoided. Finally,
degeneration facilitates impedance matching to the signal source, since, as we shall see in
chapters 5 and 6, it creates a real part in the input impedance of this transconductance
stage.

A common-gate transconductance stage shown on the top of Fig. 3.6 can also
be used and has the advantage of easy and broadband matching to a real signal source

impedance. It requires a current source which, as shown in this figure, can be implemented
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Figure 3.7: Differential transconductance stages.

in several ways: (a) with an other CMOS transistor in saturation, (b) with a resistor of
higher value than the input impedance 1/gm, (c) with an inductor which exhibits high
impedance and operates as a choke, and (d) with a parallel LC tank at resonance. The
first two current sources have the disadvantage that they require some DC headroom, but
they are broadband. The resistive implementation offers low parasitic capacitance and at
high frequencies can be a better current source than the transistor in (2). Implementations
(c) and (d) do not consume headroom but they require large area for the on-chip inductor.
Finally (d) can be a good current source with high output impedance but, depending on

the quality factor (Q) of the inductor, is rather narrow-band.

3.2.4 Differential Transconductance Stages

Double-balanced mixers can use two single-ended transconductance stages such as
those described in the previous section. These stages require that the available input sig-

nal is perfectly differential, as is often the case in integrated implementations. Differential
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Figure 3.8: Single-ended to differential conversion with one common-source and one
common-gate device.

common-source stages such as this shown in the Gilbert cell of Fig. 3.2 and also in de-
generated form in Fig. 3.7 offer common-mode signal rejection. The curren.t source can be
implemented in all four ways demonstrated in Fig. 3.6 and discussed in the previous para-
graph. These stages can be used for single-ended to differential implementation if one side
is ac grounded, the parasitic impedance from the common-source node to ground however
makes the conversion imperfect, particularly at frequencies that the parasitic capacitances
are significant. An other advantage of these differential transconductance stages is that
they reject noise from the current source since it is a common mode signal.

Another circuit that performs single-ended to differential conversion is shown in
Fig. 3.8 which consists of one device in common-source and one in common-gate configura-
tion. Because of the body effect, the different bias scheme and the different parasitics, no
real matching exists between the two sides and one cannot expect to obtain fully differential
signal. This stage has the advantage of easy and broadband source impedance matching.
It was used in bip'olar from in [26] and in CMOS in [60]. In both cases it operates as a class

AB stage, and has high 1 dB compression point.
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Figure 3.9: A transformer replaces the transconductance stage.

3.2.5 Balun Use in the Transconductance Stage

As explained above, the differential transconductance stages presented can be used
for single-ended to differential conversion if one side is grounded, but the output signal is
not fully differential. For example one cannot expect to completely cancel the even-order
nonlinearity with these stages when the input signal is single-ended.

An on-chip balun is an efficient way to create a fully differential signal from a
single-ended one, which comes at the price of large chip area and significant signal power
loss, with 3 dB being a typical number.

A related structure is shown in Fig. 3.9 in which a balun does not just precede
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Figure 3.10: A current-reuse configuration.

a transconductance stage, but completely replaces it. Capacitors are used to tune out the
inductances of the balun. Since the balun also offers impedance transformation, it can
imitate the current sources that provide the signal for the switching pair. In addition, this

technique has a significant DC headroom advantage.

3.2.6 A Current-Reuse Configuration

A current reuse, Gilbert cell type mixer has been presented in [37] and is shown in
Fig. 3.10. It is essentially a Gilbert cell in which one of the two single-balanced mixers has
been implemented with PMOS devices. The bias voltage Vpras) is set by a feedback loop
in order for the NMOS current source to match the PMOS one. It is a double-balanced

mixer since it rejects both the direct feedthrough of the input signal and the LO component
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Figure 3.11: Single transistor mixers.

to the output. However, because it is not a differential structure it is not free of second-
order nonlinearities. Its advantage is that it offers higher gain than a single-balanced mixer
without increasing the power consumption. Its disadvantage is that because of the many

stacked devices the signal headroom is limited.

3.2.7 Single Transistor Active Mixers

This is the simplest form of an active mixer. The mixer of Fig. 3.11(a) has also
been used and analyzed in bipolar technologies [53, 54, 55]. The LO and input signals
are both injected to the gate of the transistor and the input and LO ports are isolated by
filtering. The output is the drain current. Due to the simplicity of this mixer the noise
figure, gain, linearity and frequency response are probably good. Its disadvantage is that
its port to port isolation is very bad and it requires high frequency filtering for isolation of
the input and LO ports. It cannot be easily used as a downconverter if the IF frequency is

low or zero.
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Another single transistor mixer is shown in Fig. 3.11(b). Here the input signal is
injected at the gate while the LO is injected at the source of the transistor, and therefore

the LO to input port isolation is much better than for the mixer of Fig. 3.11(a).

3.2.8 Dual-Gate Mixers

Dual-gate transistors have been traditionally used as mixers in GaAs technology.
They can also be implemented in CMOS technology as shown in Fig. 3.12. The source of
the upper device (M1) and the drain of the lower device (M2) can easily share the same
diffusion area in order to minimize the capacitance from that node to ground. The LO
signal is connected to the gate of M1 which operates in saturation and the input signal is
connected to the gate of M2 which primarily operates in the triode region. Mixing takes
place in M2 whose current depends on both LO and input signals according to the IV

relation of the CMOS transistor in saturation

I =k(Ves - Vr — Vps/2)Vps. 3.7)
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Figure 3.13: A back-gate mixer.

For large LO amplitude the lower device possibly enters the saturation region for a small
part of the period. A balanced version of this mixer has been presented in [77, 78]. The
LO to RF and LO to IF leakage of this structure happens at twice the LO frequency and
therefore the problem is mitigated. However, the input component at the output is not
rejected and this is not a double-balanced structure. The performance of these circuits does
not appear to have significant performance advantages over the active current commutating
mixers [77, 78, they require higher LO power and they probably have worse port-to-port

isolation.

3.2.9 Back-Gate Mixer

Such a mixer has been presented in [103] and is shown in Fig. 3.13. The LO signal
is injected from the body terminal. It achieves good performance in terms of gain, linearity
and noise. It has several advantages such that it operates with very low supply voltage,

it consumes very low power, it requires low LO power and it preserves a high conversion
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gain even at very high frequencies. On the downside it injects the LO signal to the well of
the PMOS devices and the LO component can easily couple to the substrate. Because the
three ports are linked directly through the parasitic capacitances of the device, the port to
port isolation is possibly a problem. In the balanced configuration presented in [103], the
LO to the substrate, and LO to input port leakage happens at twice the LO frequency and

is therefore alleviated.

3.3 Passive Mixers

3.3.1 Passive Switching Mixers

The most commonly used passive mixer is shown in Fig. 3.14 [74]. The transistors
act as switches and when they conduct they are in the triode region. The circuit is shown

in double-balanced form, but it can also be used in the unbalanced (single transistor passive
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Figure 3.15: Subsampling mixers.

mixer) or single-balanced form. Its advantage is that it demonstrates exceptional linearity,
while its disadvantage is the conversion loss which for ideal switching is 2/m or approximately
4dB, but because of nonidealities a loss of 6 to 7 dB is a typical value. It generally requires
higher LO power than active mixers. Its noise performance is good and its NF is almost
equal to the loss as discussed about the NF of lossy blocks in chapter 2. Because of the
conversion loss however, these mixers usually must be preceded or followed with amplifying

stages which degrade the system linearity and noise.

3.3.2 Sub-Sampling Mixers

A sampler can be used as a downconversion mixer, as shown in its simplest form
in Fig. 3.15(a). The circuit of Fig. 3.15(b) is similar, but provides output driving capabil-
ity. Differential structures are more usual in practice and have the advantage of rejecting

common mode noise, such as clock feedthrough. The high-frequency input signal must
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Figure 3.16: The spectrum at the input and the output of a sampling mixer.

be band-limited and the sampling frequency can be low, higher however than the signal
bandwidth. If the contents of the spectrum outside the signal band at the input have been
removed by filtering, the output contains non-overlapping copies of the input signal aliased
as shown in Fig. 3.16. With filtering one can obtain the original signal translated at low
frequencies. These mixers usually demonstrate excellent linearity but their noise perfor-
mance is poor since each sample is contaminated with noise folded from a large number
of sidebands and equals the sampling noise ¥T'/C. Notice that the value of the sampling
capacitor cannot be made arbitrarily large, since the settling time of the sampling circuit
must be very fast and using a very wide transistor to reduce the resistance of the switch
will introduce parasitic nonlinear capacitors and clock feed-through problems. The noise
figure of a sampling mixer has been examined in [15]. The sampling clock can run at a
much lower frequency than the LO of a non-sub-sampling mixer, but its jitter must be only

a small part of the period of the sampled RF signal. Therefore clock jitter requirements are
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Figure 3.17: A downconverting triode-region mixer.

probably about as hard to satisfy as those of a high frequency LO of a non-subsampling

mixer.

3.3.3 Mixers Using the Transistor in the Triode Region

Such mixers take advantage of the IV relation of the MOS transistor in the triode
region (3.7) in which the product of Vgs and Vps appears. They are also called potentio-
metric mixers in [45]). For example in [13] the circuit of Fig. 3.17 is used as a downconverter.
This is essentially the double-balanced passive mixer of Fig. 3.14, but the LO and signal
input have been exchanged. Despite the high LO amplitude that this circuit requires, the
conversion gain of the modulating part is much lower than one would obtain if one con-
nected the LO signal on the gates and completely switched on and off the transistors. The
output stage is used to amplify the low frequency output signal. However, as a result of

the fact that at the input of the amplifier the signal is heavily attenuated, the NF of this
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structure is very high.

An upconverter based on the same principle of operation has been presented in
[40] and is shown in Fig. 3.18. Feedback from the drain of M3 to the gate of M2 is used to
make M3 a very linear source-follower. Again the conversion loss is very high, the linearity

is good while the NF is expected to be very poor.
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Chapter 4

Noise in Current-Commutating

CMOS Mixers

4.1 Introduction

In this chapter we examine the noise performance of current-commutating active
CMOS mixers, neglecting capacitive effects. The results are applicable when the mixer
operates at moderate frequencies used at the IF stage of a receiver, or considering modern
submicron technologies and high bias current, at higher frequencies used at the RF front
end. A corresponding noise analysis of bipolar active mixers has been presented in [31].
The results of this chapter have also been presented in [89].

The simple single-balanced active mixer of Fig. 4.1(a) is examined, and the results
are also presented for the double-balanced circuit, the Gilbert cell. The analysis can be

readily adapted for variations of the above structures described in section 3.2.
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(a) (b)

Figure 4.1: (a) A simple single-balanced active CMOS mixer, and (b) The basic model of a
current commutating CMOS mixer

4.2 Transistor Model and Switching Pair Large-Signal Equa-

tions

The simple square-law MOSFET model is not accurate for modern short-channel

technologies, and a better approximation for the IV relation of a MOS transistor is [61]

(Vs — Vr)?

I=K .
1+ 6(Vgs — Vr)

(4.1)

In (4.1), I is the drain current, Vgs is the gate-source voltage, and Vr is the threshold
voltage of the device. Parameter K depends on the technology and the size of the device,
and is proportional to the channel width. Parameter § models to a first order the source
series resistance, mobility degradation due to the vertical field, and velocity saturation
due to the lateral field in short-channel devices. It depends on the channel length and is

independent of the body effect.
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Fig. 4.1(b) shows the basic model of a current-commutating CMOS mixer. Since
a large AC drive is applied to the switching pair, the bias of M1 and M2 is not fixed but
varies periodically with time. When a differential voltage greater than a certain value V;
is applied between the gates of the two transistors, one of them switches off. When the
absolute value of the instantaneous LO voltage V.o is lower than V, the current of the
driver stage is shared between the two devices. In this case it is desirable to find the drain
current of each transistor for a given LO voltage and driver stage bias current. We will
assume that the output conductance of the devices can be neglected and therefore M3 can
be modeled with an ideal current source Ig. We will also assume that the load of M1 and
M2 is such that they remain in saturation during the part of the LO period that they are
on.

The large-signal behavior of the switching pair is described by the system of two

equations

(Ves1 — Vr)? (Ves2 — Vr)?
K =171 4.2
"1+ 0(Vgs: — Vr) 1+0(Vesz—Vr) ° (4.2)

Vas1 — Vas2 = Vio (4.3)

where K, is the K parameter of M1, M2 and Vg1, Vgse are the gate-source voltages of

M1, M2. If we normalize I'g and Vi as follows

02
Jg = X Ig (4.4)
Uo=6Vio (4.5)

and also let

U, =60(Vgs1 — Vr) Uz =6(Vgs1 — Vr) (4.6)
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(4.2) and (4.3) become:

Ut U3 _
T30, Tir0; P (47)
Up-Uz=ULo. (4.8)

Equations (4.7) and (4.8) can be transformed to one nonlinear equation with U, as
the unknown, which can be solved rapidly with an iterative numerical method. Considering

a positive Vzo, the desired value of U, lies between ULo and

ew=%+ %+h (4.9)

which is the value of U; when the whole bias current passes through M1. With the trans-
formation of (4.4) and (4.5), the normalized current of each transistor can be found in terms

of Jg and ULo, independent of the technology parameters. For M1 for example:

2 2
iﬁ: Ui
1+,

(4.10)

The transconductance of each transistor will be needed below and can be calculated as the
derivative of I with respect to Vgs from (4.1), or in normalized form as the derivative of J1
with U from (4.10).

It is worth noticing that no specific value of Vr is needed to calculate the drain
current of M1 and M?2. The behavior of the switching pair is independent of Vr and
therefore to a first order independent of the body effect and the common-mode LO voltage.
This observation allows us to omit the small-signal body transconductance below.

In the following analysis, some performance parameters of the switching pair will
be given in terms of the normalized bias current Jp and LO amplitude U, = 8V,, V, being

the real LO amplitude. The subthreshold conduction of the transistors has been neglected



68

and therefore if the devices operate at very low current density, the prediction will be
inaccurate, especially for low LO amplitude where the transistors do not act as switches

and their behavior depends on their I-V characteristics.

4.3 Deterministic Signal Processing

If capacitive effects are ignored, the single balanced mixer of Fig. 4.1 is a function
of the instantaneous LO voltage Vo(t) and the current at the output of the driver stage

I3 = Ip + 15, Ip being the bias current and is the small-signal current
In =15 — I = F(Vpo(t), I +1is). (4.11)

Since i, is small, a first-order Taylor expansion gives:

d p
I = F(VLo(t), Ig) + E[;F(VLO(t)a Ig)s (4.12)
or
Ioy = po(t) + p1(2) - 4. (4°13)

Both pg(t) and p;(t) are periodic waveforms, depicted in Fig. 4.2. As can be seen from
(3.1) and (4.13), in a double-balanced structure with perfect device matching, po(t) is
eliminated. During the time interval A, when the LO voltage is between V; and —V,, and
both transistors are on, po(t) and p; (t) depend on Vi o(t), I, and the I-V characteristics of
the transistors. The small-signal current in each branch is determined by current division,

and one can see that

_ 9m (t) — gm2 (t)
(D) = gm1(t) + gma(t) (4.14)
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Figure 4.2: Waveforms po(t) and p;(t)

where gm1(£) and gma(t) represent the instantaneous small-signal transconductances of M1
and M2. According to (4.13), a signal component z(t) of i,(t) is multiplied by the waveform

p1(t), and therefore the frequency spectrum of the corresponding output is

= S pin- X(f - nf10) (4.15)

n=—00
where fro is the LO frequency, p1, are the Fourier components of p; (tj, and X(f) is the
frequency spectrum of z(t).

It is worth noticing that with good device matching p1(t) = —p1(t + Tro/2), TLo
being the LO period, and hence p; (t) has only odd-order frequency components. The same
observation can be made for pg(t). Usually the term for n = 1 or n = —1 is of interest,

corresponding to shifting up or down the input signal in the frequency domain by one
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multiple of the LO frequency, and in this case ¢ = |p;,1| = |p1,—-1| represents the conversion
gain of the switching pair alone. Since z(t) = gm3 - vin(t) where v;,(t) is the input voltage
signal at the gate of M3, and g3 is the transconductance of M3, the conversion gain of

the single-balanced mixer in transconductance form is

9c =C* gm3 (4.16)

For high LO amplitude, p;(t) approaches a square waveform and c approaches
2/pi. Fig. 4.3 shows ¢, evaluated numerically as a function of the normalized bias current
Jg and LO amplitude U,, for a sinusoidal LO waveform. Assuming V, > V, as it should

be for proper mixer operation, an estimate for ¢ can be obtained by approximating p;(t)
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with a straight line during A:

2 (sin(wAfLo) )
c= — | —————— 4.17
pi \ (7AfLo) (4.17)
where for sinusoidal LO waveform
wAfro = arcsin (E) (4.18)
Vo

and V is given by (4.9). Comparison with the numerically evaluated value of ¢ for sinusoidal
LO waveform shows that (4.17) is a good approximation for low values of U, introducing
error below 1dB if Uo < 0.7, while it overestimates ¢ for higher values of U,, introducing
error below 2dB if U, < 1.6 and below 3dB if U, < 3.2.

It is easy to observe that the conversion gain of the Gilbert cell is also given by
(4.16). If degeneration or an input matching network is used, the transconductance of the
driver stage is not gm,3, but can be calculated with linear circuit techniques and multiplied

with ¢ to provide the conversion gain.

4.4 Noise Analysis

Consider a device which with a fixed operating point produces shot or thermal
white noise. It can be shown [14] that if the operating point changes with time, the resulting
noise is still white, with a time- varying PSD given by the same formula as for the time-
invariant case, if we replace the value of the fixed resistor with the time-varying one for
thermal noise, and the value of the fixed current across the p-n junction by the time-varying
one for the shot noise.

We will use the fact that the PSD of the drain current thermal noise generated by
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a MOS transistor in saturation is

2 = 4kTygnm (4.19)

where gy, is the gate transconductance, k is Boltzman’s constant, T is the absolute temper-
ature, and +y is 2/3 for long channel transistors, but can be higher for short channel devices,
can depend on bias and can be affected by hot electron phenomena [84, 1, 102, 91, 36, 85].

In the following analysis we will calculate the time average noise at the output of

the mixer, and based on that we will evaluate the noise figure.

4.4.1 Noise from the Transconductance Stage

Consider the noise component n3(t) of i5(t), in Fig. 4.1(b). This is considered
to be WSS with PSD Sp3(f), and can represent noise generated in M3, or noise present
at the input of the mixer, and amplified by M3. The output noise component that n3(t)
contributes

Yng = n3(t) - p1(¢) (4.20)

is cyclostationary, and its time average PSD is:

8%(f) = > Ip1al? Sns(f = nfro)- (4.21)

n=-00

Assuming that n3(t) is white over the bandwidth of interest, Sn3(f) equals Np3, a constant

and
oo
S73(f) = Nns - Z |Pl,n|2 = alNp3 (4.22)
n=-o0
where
o0 1 o)
2 2
o= = — t))° dt 4.23
> Il = 7= [ (e (423)

n=-—oo
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Figure 4.4: Numerically evaluated average power o of waveform p; (®)

is the power of waveform p;(t). Equations (4.22) and (4.23) can be used to find the noise
contribution to the output without any assumptions about the LO waveform or amplitude.

For large LO amplitude, p;(f) approaches a square waveform and its power a
approaches 1. It is interesting to examine the contribution of every individual sideband in
the case of a square waveform. Noise from fro % fout, four being the output frequency,
accounts for 81% of the noise transferred to the output, from 3f10 % fout for 9%, and from
all higher order sidebands together for 10%. Parameter « is evaluated numerically and
given in Fig. 4.4 as a function of the normalized bias current Jg and LO amplitude U,, for
sinusoidal LO waveform. Similarly to the conversion gain of the switching pair c, if V, > V4,

an estimate for a can be obtained by approximating p;(¢) with a straight line during A:

a=1-5(Afo) (4.24)



74

where for sinusoidal LO waveform A fro can be obtained from (4.18). Comparison with the
numerically computed value of « in the case of sinusoidal LO waveform shows that (4.24)
introduces error smaller than 25% if U, < 0.8, while it overestimates a by less than 50% if
U, < 1.6, and by less than 70% if U, < 3.2.

For the single-balanced mixer, assuming that Np3 consists of the thermal noise
of M3, the input source resistance R, and the polysilicon gate resistance ry3, the noise

transferred to the output is
Spa(f) = o - 4kT (Rs + g3 + —7—> 923 (4.25)
gm3
while for the Gilbert cell
0 — 27 2
Sna(f) =0 4kT | R; + 2rg3 + 5— Im3- (426)
m3

If resistive degeneration is used, the noise at the output of the driver stage is white and
equation (4.21) applies. If inductive degeneration or an impedance matching network is
used, the gain of the driver stage is frequency dependent. The PSD of the noise at the
output of the driver stage at the frequencies of interest —fr0 £ fout,3fL0 £ fout, €tc.— can
be calculated with linear circuit techniques and the output noise at fout can be calculated
from (4.21). Because of the frequency selective gain of the driver stage, possibly only a few

sidebands need to be taken into account.

4.4.2 Thermal Noise Generated in the Switching Pair

We consider now thermal noise generated in M1 and M2 in Fig. 4.1, assuming

that they remain in saturation during the part of the period that they are on. Neglecting
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capacitive effects and the output conductance of the transistors, when M1 or M2 is off
the output current is determined by I3, and the switching pair does not contribute to the
output noise. For this reason when the LO amplitude is high, the noise contribution of the
s§vitching pair is usually lower than that of the driver stage. During the time interval A,
both M1 and M2 are on, and contribute to the output noise. The instantaneous noise PSD

at I is

1 9mi1 )2 1 ( gm?2 )2 ( gm1 ° 9m2 )
4kTy | — ( + =4kTy | ————— ). (4.27
7 (gml 1 + gm1/gm2 gm2 \1 + gm2/9gm1 T\ gm1 + gm2 (4.27)

Since the sum of I; and I equals I3, the amplitude of the noise component at the output

I,; is twice that at Ij, and the corresponding output noise PSD is:

52.5(F, 1) = 16Ty (——9’"‘ _gm?2 ) = 8kTvG(t) (4.28)
gm1 + 9m2
where
9ml " Gm2
G(t)=2 (———) 4.29
( ) 9m1 + gm2 ( )

is the small-signal transconductance of the whole differential pair, from Vo to Iy . This
time-varying PSD is flat in frequency since it represents white noise and is shown in Fig. 4.5.
The peak of S2,,(f,t) appears for Vo = 0 and is independent of the LO amplitude.
The higher the LO amplitude, the smaller the time interval A, and the lower the noise

contribution to the output. From (4.28) we obtain the time-average PSD at the output:

8212(f) = 8kTy (TTI,S / e G(t)dt) = 8kTYC (4.30)

where G is the time average of G(t). This expression can be used to calculate S2;5(f) with-

out any assumptions about the LO waveform or amplitude. However, the LO amplitude is
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Figure 4.5: Time-varying transconductance of the switching pair, and time-varying PSD of
the generated thermal noise

usually large and a further simplification is possible. Assuming sinusoidal V0 and changing

the variable of integration from ¢ to Vo we obtain:

1 Vz 1
G(Vio)

Vo J-v, VI=(Veo/Vo)?

If the LO amplitude V, is high, in the interval of integration Vo is much smaller than V,,

G=

dVio. (4.31)

and 1//1—= (Vo/V,)? ~ 1. In this case, since G(Vo) = dl1/dVL0, (4.31) provides:

1 Ve rdl, ol
G- /_ i ( de) aVio = =2. (4.32)

From (4.30) and (4.31) we obtain the contribution of the switching pair to the output noise

16kTy Ip

m2(f) = V.

(4.33)

A sinusoidal LO signal was assumed above, but such a restriction is not necessary. A

relation similar to (4.32) can be obtained directly from the definition of G), only with the
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Figure 4.6: Time-average transconductance of the switching pair versus LO amplitude

assumption of linear dependence of Vzo in ¢ during the time interval A, with slope A:

~_ 4 Ip
G=7 3 (4.34)

For sinusoidal LO waveform A = 20V 0/TLo and (4.32) results. Notice that no assumption
was made about the I-V characteristics of the transistors, and that (4.32)-(4.34) are inde-
pendent of the transistor dimensions. These expressions, with y = 1/ 2, can also be used for
the time-average transconductance and the collector shot noise of a bipolar switching pair.

We observe that the PSD at the output is proportional to the bias current Iz and
inversely proportional to the zero crossing slope of V0. As can be seen in (4.31), if for
moderate V, the slope of V,o(t) (proportional to /1 — (V1o/V,)? drops close to the ends
of A, equations (4.32)-(4.34) slightly underestimate the output noise. For smaller V,, G
and S2,,(f) approach the values that correspond to the fixed operating point of Vio =0,
and the above expressions overestimate the output noise, as demonstrated in Fig. 4.6. A
graph of (§/K;)G evaluated numerically as a function of Jp and U, is given in Fig. 4.7 for a

sinusoidal LO waveform. Comparison of the prediction of equation (4.32) with the computed

value of G for a sinusoidal LO waveform, shows that if V, > V; (4.32) underestimates G



78

107

104 1073 102 10°! 1 10

Figure 4.7: Numerically evaluated time-average transconductance of the switching pair

by less than 25% for all the values of U, shown in Fig. 4.7, with the error growing as V,
approaches V;. The output noise contribution of the two switching pairs of a Gilbert cell
is twice that calculated for the single- balanced mixer.

Lacking a commonly accepted expression for «y as a function of bias, a fixed value
was used above. In practice, the equations derived in this section can be used with the value
of ¥ which corresponds to the bias condition of Vi o = 0. This is a reasonable approximation

since the devices of the switching pair contribute the most noise for zero LO voltage.

4.4.3 Noise from the LO Port

Since the LO is a periodically time-varying circuit it is possible that the noise at

its output contains a cyclostationary component. It is inaccurate to time average its PSD
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and use it as if it were a WSS process, since the time-varying processing of this signal by the
mixer tracks exactly the time variation of the noise statistics. Except for the case of white
cyclostationary noise where time dependence of the PSD can be incorporated to the system
[32], the treatment of such a problem is complicated and described in [21]. Below we will
consider the simplified case at wh 198 i.ch the noise present at the LO port is stationary.
The results also apply to intrinsic noise of M1 and M2 which can be modeled with a time-
invariant stationary voltage-noise source in series with the gates, such as thermal noise of
the gate resistances and flicker noise discussed in section 5.5.

We assume that the LO voltage has a noise component nyo(t). This contributes

output noise:

ynLo = G(t)nLo(t) (4.35)

where G(t) is the time-varying transconductance of the switching pair defined in (4.29). If
nro(t) is WSS with PSD Snro(f), ynLo(t) is a cyclostationary process with time average

PSD

S20(f)= 3. |Gnl* Snro(f — nfLo) (4.36)

n=—oo

where G, are the Fourier coefficients of the waveform G(t).
If nyo(t) is also white with PSD Spro(f) = NLo, the noise contribution to the

output becomes

o0
S2o(f)=Nro- Y IGal* =G?-Nio (4.37)
n=-—00
where
oL ™ e
= G(t)“dt. (4.38)
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Figure 4.8: Numerically evaluated time-average square transconductance of the switching
pair

With some manipulation it can be shown that for LO amplitude fairly larger than Vz and

square law equations (6 = 0)

_ 1 1/2 43/2 1/2 ;3/2
G2~ 16 W—ZH)_ -=}- K Tp~ =4.64- K Iy~ (4.39)
V2 3 Mo Mo

where ) is as before the zero crossing slope of Vio(t). A plot of (0/K1)*G? as a function of
the normalized bias current Jg and LO amplitude U,, calculated numerically from (4.38)
is shown in Fig. 4.8, assuming a sinusoidal LO waveform. Comparison of this computed
value with the prediction of (4.39) derived for square law equations, shows that for V, > V¢,
(4.39) introduces error lower than 25% if U, < 0.8, while it overestimates G? by less than
50% if U, < 1.6, and less than 90% if U, < 3.2.

For the single balanced mixer, the white noise N1 o consists of the noise floor of the

LO output spectrum, represented by an equivalent noise resistance Rpp, and the thermal
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noise of the polysilicon gate resistance r4; of the transistors:

S210(f) = 4kT(Rro + 2rq1)G2. (4.40)

The noise floor of the LO can significantly increase the noise figure of the mixer, and filters
can be used to limit its effect. In a Gilbert cell the external noise present at the LO port is

rejected, and only the gate resistances contribute noise:

S210(f) = 4kT(4rn)G2. (4.41)

4.4.4 Mixer Noise Figure

Having calculated the noise contribution from the various sources to the output,
the noise figure of the mixer can be estimated. Consider that the load introduces output
noise which can be represented by an equivalent noise resistance Ry. The single sideband

(SSB) noise figure for the single-balanced mixer is

a  (13+Tggms)gmsa+2nG + (Rro + 2rq)G? + 7
(NF)ssp = 2t i ZoiF, L (4.42)
m.

and for the Gilbert cell is

2(y3 + 7g3gm3)gmaa + 4G + (4rq)G? + g7

(NF)SSB = czg?nsRs ’

+

«
5 (4.43)

where the quantities o, ¢, G, G are evaluated with the bias current of each switching pair,
and the symbols ) and 3 have been used for the noise factor y of M1 and M3 respectively.
If a band-pass filter is used at the input (which filters out noise from the source resistor
at frequencies outside the input signal band) the term a/c? in formulas (4.42) and (4.43)

becomes 1. If the useful signal is present in both sidebands around the LO frequency, the
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double sideband (DSB) noise figure is the appropriate noise performance metric. For the
single-balanced mixer and the Gilbert cell, this is half of the SSB noise figure given by
(4.42) and (4.43) respectively. As in the SSB case, if a band-pass filter is used at the input
to reject noise from the source resistor at frequencies outside the two input signal bands,
the first term ¢/(2¢%) becomes 1. Combaring the above equations and neglecting the noise
from the LO port, we observe that for equal conversion gain, the double-balanced structure

consumes twice the power of the single-balanced one and has a higher noise figure.

4.4.5 Flicker Noise Effects

In the above analysis the effect of flicker noise was neglected, but if the system
employs direct conversion this can be a limiting factor. Flicker noise from the driver stage
appears at the output around fro and all the odd-order harmonics, since, as discussed in
section 4.3, p1(¢) has only odd-order frequency components. If the PSD of flicker noise
is known at the output of the driver stage, the PSD at the output around fro can be
easily found from (4.21), since the conversion gain of the switching pair ¢ = |p;,1| has been
calculated in section 4.3.

To estimate the flicker noise contribution from the switching pair we need to know
the flicker noise behavior of MOS devices with time-varying operating point. A discussion
about the flicker noise generating mechanisms in MOSFETs and the case that the operating
points changes strongly with time is given in appendix C. Assuming that a usual time-
invariant flicker-noise voltage source in series with the gate is an appropriate model, from
(4.35) this noise is transferred to the output by multiplication with G(¢). It is easy to

see in Fig. 4.5 that the period of G(t) is Tro/2, and therefore it contains only even-order
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Figure 4.9: Measurement setup of a single-balanced mixer

harmonics of the LO frequency. This means that flicker noise from the switching pair will
appear at the output around DC, but not around fro. The PSD of the noise contribution
of each transistor to the output around DC can be easily found from (4.36) since G is
the time-average transconductance of the switching pair G, which has been calculated in

section 4.4.2.

4.5 Measurements

The SSB noise figure of a single-balanced mixer shown in Fig. 4.9, fabricated

in the Philips Qubic2 process, with minimum drawn length 0.8m, was measured at low
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frequencies. The drains of M1 and M2 were brought off chip. No attempt was made to
optimize its performance, the goal being to compare predictions with measurements. No
input matching was used that would improve conversion gain and lower the noise figure.
The measurements were taken with the noise figure meter HP8970A [82].

Baluns with a center tap were used to transform the differential output signal to
single-ended and the single-ended LO signal to differential. The series Ly — C; trap was
used to null the strong LO component at the output, that could saturate the noise figure
meter input and drive M1 and M2 to the triode region. A band-pass filter reduced the
noise floor of the LO signal. Care was taken to avoid introducing noise from the bias circuit.

The noise figure meter measures its own noise figure with a 50§ source impedance
during calibration and it uses this measurement to extract the noise figure of the device
under test (DUT). Therefore, the output impedance of the DUT must also be matched to
509, and inductor Ly and resistor Ry were used for this purpose. The board and balun
parasitics significantly affect the behavior of the output load. It was measured that the
trap resonance frequency is 72M Hz, used as LO frequency, and that an output parallel
RLC resonance appears at 19M Hz, used as IF, with an impedance close to 50§} across the
4M Hz bandwidth that HP8970A measures noise. The output impedance of M1 and M2 is
high in the bias condition of Fig. 4.9 and does not significantly affect the output impedance
of the circuit.

During the measurements, the need to characterize individual components of the
circuit arose. By connecting the gate of M2 to ground and the gate of M1 to a fixed bias, a

cascode linear amplifier was formed. Its gain and noise figure were measured with a 502 AC
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Figure 4.10: Extracted -y versus current density for a minimum channel length Qubic2 MOS
transistor

load at 19M Hz, and g,, and y of M3 as a function of bias were extracted. To characterize
the output load of Fig. 4.9, which was affected by the parasitics, this was used as a load of
the linear amplifier, and the gain and noise figure measurements were repeated. A second
estimate for 4 was obtained, which essentially coincided with the previous one. The effect
of gate resistance noise [67] was removed, and the result is shown in Fig. 4.10. Parameter v
was found to depend on the bias current, but not significantly on the drain or body voltage,
and therefore this measured value of «y versus bias current density was also used for the
transistors of the switching pair.

The I-V curve of M3 was measured and the parameters § = 0.669V ! and K =
7.9TmA/V? were extracted with curve fitting. These values were used to calculate the bias

condition and small-signal transconductances of the transistors. For the transistors of the
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Figure 4.11: Measured (dots) and predicted (solid line) noise figure and conversion gain of
the single-balanced mixer of Fig. 4.9, versus bias current

switching pair the value of y which corresponds to zero LO voltage was used. The predicted
(computed numerically) and measured values for the noise figure and conversion gain are
shown in Fig. 4.11, in which fairly good agreement is observed. It is worth noticing that
because of the noise of the switching pair, the optimum noise figure appears for lower current
than the optimum gain. The discrepancy is mainly because of the conversion gain prediction
and can be attributed to the fact that the LO amplitude applied to the switching pair can

be estimated but is not exactly known because of the losses in the band-pass filter, the
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Table 4.1: Parameters used in the calculation of noise figure for the mixer of Fig. 4.9.
V, =1V and Iz = 5.6mA.

[ Parameter | Numerically Evaluated | Closed-form Expression |
c 0.539 0.570 from (4.17), Vx=0.722V
2 0.590 0.658 from (4.29)
G 3.84 (mA/V) 3.57 (mA/V) from (4.32)
G? 32.7 (mA/V)? 39.1 (mA/V)? from (4.39)

Table 4.2: Noise contribution from individual components of the mixer of Fig. 4.9. V, = 1V
and Ig = 5.6mA.

Noise Contributors Additional Information | Output Noise Power (pA%/Hz) |
R; = 50 gms = 1.98mA/V 15.2
Ry = 276X2 59.6
M3, rgz = 3.3Q v3 = 1.72 135.6
M1-M2 7 = 1.36 (for Vo =0) 172.1
RLO = 509, Tgl = Tg2 = 6.692 34.1

balun and the connections, and also to the fact that the transistor model used is inaccurate
for low current density.

We will now elaborate on the calculation of the noise figure for one point of
Fig. 4.11, namely for V, = 1V and Ip = 5.6mA which corresponds to maximum conversion
gain. Table 4.1 shows the numerically computed value of the parameters needed in the
evaluation of the noise figure, together with the value resulting from approximate closed-
form expressions derived in this chapter. Table 4.2 shows the contribution of individual

components of the circuit to the output noise.

4.6 Upper Frequency Limit of the Analysis

To estimate the frequency range of validity of this noise analysis, it is necessary
to consider the most significant of the transistor capacitances. Let C; and C; represent

the gate-source capacitances of M1 and M2, and C; denote the total capacitance from the
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common source node to the ground, consisting of the source-body capacitances of M1 and
M2, and the drain-body capacitance of M3.

For this analysis to hold, reactive effects must not significantly alter the periodi-
cally varying operating point considered in section 4.2. It is shown next in section 4.6.1 that
assuming a sinusoidal LO waveform and DC common LO voltage, an approximate upper

LO frequency limit for this to hold is

I
2%(01 + C2 + Cb) ["';9' - (Vqsl - %52)]

fro1 =« (4.44)

where € is a small number (e.g. 0.2 or 0.3), Vy51 and Vi is the low-frequency gate-source
voltage of M1 for peak and zero LO voltage respectively, and the sum of t.he capacitances
is evaluated for zero LO voltage. It is interesting to observe that high LO amplitude
lowers this limit. Simulation with SpectreRF shows that (4.44) correctly predicts the LO
frequency at which the operating point departs from the low frequency behavior. Fig. 4.12
shows simulation results for the drain current of transistor M1 of the mixer of Fig. 4.9, for
Ig = 2.3mA and for three different LO amplitudes, at the LO frequency froi(er = 0.3).
The sum of the three capacitances was estimated from the available SPICE model to be
0.936pF. To avoid reactive effects at the output, the drains of M1 and M2 were connected
directly to the positive supply. In the three cases we observe approximately equal overshoot
above 2.3mA which is the peak value of I; at low frequencies, and therefore about equal
deviation from the corresponding low frequency waveforms.

In addition, the small-signal conductance represented by the capacitors Cy, C2
and Cp, must be ﬁuch lower than the sum of the conductances g, and gp,2. Otherwise,

the signal is lost in these capacitors while the switching pair contributes noise even if one
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Figure 4.12: Simulated drain current of M1 of the mixer of Fig. 4.9 over one LO period,
for three different LO amplitudes, and LO frequencies given by (4.44) with ¢; = 0.3. The
bias current is Ig = 2.3mA.

of the transistors is off. For a down-conversion mixer in which the signal and the image
frequencies are close to f10, a second approximate upper LO frequency limit is

fLo2 = & 9m1 + gm2
Lo 27(Cy + C2 + Cp)

(4.45)

where the sums of the capacitances and the conductances are considered constant and equal
to their values for Vzo(t) = 0, and € is again a small number (e.g. 0.2).

Simulation shows that for LO frequency below fro2, the conversion gain and the
noise figure are not significantly deteriorated by the change in operating point that occurs
after fro1, and that in some cases they improve. For fro higher than f1o2, the conversion
gain and noise figure gradually degrade. Fig. 4.13 shows simulation results versus fo, for

the conversion gain, noise figure and noise contribution of the switching pair of the mixer
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Figure 4.13: Noise figure, conversion gain and switching pair output noise contribution
versus frequency for the mixer of Fig. 4.9. Frequencies fro1 (X) with €; = 0.3, and fro2
(diamonds) with e; = 0.2 are shown.

of Fig. 4.9, for three different LO amplitudes, together with the frequencies fro1 (e1 = 0.3)
and fro2 (€2 = 0.2). The bias current is 2.3mA, the input signal frequency is 1.1f,0 and
the output signal frequency is 0.1f10. For simplicity the filters shown in Fig. 4.9 were
not included in simulation. Ideal baluns where employed and the output stage consisted
only of the balun. Since the output is obtained at low frequencies, reactive effects at the

output do not affect the conversion gain. We observe that for large LO amplitude the noise
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Figure 4.14: Switching pair noise versus bias current at high frequencies for the mixer of
Fig. 4.9. The bias currents related to the frequency limits f1.01 (X) with ¢; = 0.3, and fro2
(diamonds) with eo = 0.2 are shown. The dashed line corresponds to the noise of the two
transistors when their common source is ac grounded.

contribution of the switching pair does increase after fro1, but in this case the switching
pair is a minor contributor to the noise figure, which remains approximately constant up to
fro2. The slight noise increase at low frequencies is caused by flicker noise of the switching
pair appearing at baseband. Fig. 4.14 shows the noise generated by the switching pair
of the mixer of Fig. 4.9 versus bias current, for LO amplitude 1V and for three different
LO frequencies, 100M Hz, 300M Hz and 900M Hz. Observe that for high bias current the
noise coincides with the prediction of (4.33) while for very low bias current because of the
capacitance at the common-source node, this point becomes ac ground and each transistor
contributes noise 4kTyg,,, depicted with the top dashed line. The values of the bias currents
related to the frequency limits fro1 and fro2 are also shown.

Let us now examine the flicker noise contribution of devices M1 and M2 at high

frequencies. Fig. 4.15 shows the the transfer function from a voltage source in series with
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Figure 4.15: Transfer function for the flicker noise contribution of M1 and M2, versus bias
current at high frequencies for the mixer of Fig. 4.9. The bias currents related to the
frequency limits fro; (X) with ¢; = 0.3, and fro2 (diamonds) with ez = 0.2 are shown.

the gate of M1 or M2 to the mixer output current, versus bias current and for LO frequency
100M Hz, 300M Hz and 900M Hz. At high bias current we obtain the low-frequency pre-
diction of the time-average transconductance (4.32). At low bias current the capacitance
dominates the impedance of the common-source node which becomes an AC ground. In this
case the transfer function is the transconductance of the transistor g,,. The same transfer
function versus frequency is shown in Fig. 4.16 for a bias current I = 2.3mA and three
LO amplitudes 0.5V, 1V and 3V. The frequency limits fLo; and fros are also shown.
Similarly to Fig. 4.13 deviation from the low frequency behavior is observed approximately
after fLo2. We must note that when considering flicker noise there is no input signal close
to fLo as was the case when we considered a downconverter before. However fro2 is related
to time constant in the system and it is worth placing on these graphs. These graphs agree

qualitatively with these presented in [52].
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Figure 4.16: Flicker noise transfer function versus frequency for the mixer of Fig. 4.9.
Frequencies 101 (X) with €; = 0.3, and fro2 (diamonds) with ez = 0.2 are shown.

4.6.1 Proof of the Large-Signal High-Frequency Limit (4.44)

We derive here a limit for the frequency-independent operating-point assumption

used in the analysis. The high-frequency large-signal equation for the switching pair is

dV V dV;,,

Ip=h+L+C(V1)—_+ Co(Va) =~ + Cr(Ves)—— (4.46)

where V;,V,Vj, are the voltages across the capacitors C1,C2,Cp respectively. We assume
that the LO common voltage is constant with time, and equal to V7o, The voltages

V1,V2,Vps can be expressed as

Vio(t

Vi=Vioe+ 208 _y, (4.47)
Viol(t

Vo= Vioe - 298 _y, (4.48)

Vos = —Vs (4.49)
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where Vio(t) is the LO voltage and Vs the potential of the common source of M1 and M?2.

Using (4.47)-(4.49), (4.46) becomes
1 \%
Ip =Il+12+§(01 -0y %—(C1+02+Cb)d—dvti (4.50)

Of the two terms involving capacitances in this equation the last one is more significant
and the other one is neglected. We will now estimate the maximum value of the derivative
dV;/dt, assuming a sinusoidal V7o (). At frequeqcies that the reactive effects are negligible,
Vi(t) is a periodic waveform with frequency 2f10, high voltage appearing when the LO
voltage takes its peak value

Ve
‘/Sh = VLO,C -+ ?0 - I/gsl (4-51)

and low voltage appearing when the LO voltage is zero
Va=Vieo,e — Vgso (4.52)

where voltages Vys1 and Vi are the low-frequency gate-source voltages of M1 for Vio(t) =
Vo, and Vzo(t) = O respectively. Approximating V;(t) with a sinusoid, its maximum deriva-
tive is

dVs

1
maz—= = 27r(2fLO)§‘(Vsh_Vsl)

= 2nfi0 |2 ~ (Vgar = Vo) (459)

Capacitances C), Cs, are C), are voltage dependent, but we will make the approximation
that their sum is constant and equal to its value for Vo = 0. From (4.50), for low-frequency

behavior to hold, it must be
dv,
(C1+Ca+ Cb)d_ts < Ip, (4.54)

and using (4.53), (4.44) results.
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4.7 Conclusions

A systematic study of the noise generating mechanisms in current commutating
CMOS mixers has been completed, and analytical expressions for important parameters
have been derived. We can now comment on the effect of the design parameters on the
noise performance.

High bias current improves the driver stage transconductance and therefore the
conversion gain and noise figure, provided that the LO amplitude and the size of the tran-
sistors of the switching pair are such that complete commutation is performed. As seen
from (4.44) and (4.45) the use of high current density causes reactive effects to appear at
higher frequencies.

Large LO amplitude increases the conversion gain and reduces the noise contri-
bution of the switching pair and the LO port. After a certain value the conversion gain of
the switching pair reaches its maximum value 2/, the noise contribution of the switching
pair becomes negligible, and further increase does not reduce the noise figure considerably.
Large LO amplitude also allows operation at higher frequencies because complete current-
commutation can then be achieved with small channel width devices operating at high
current density.

Increasing the channel width of M1 and M2 is desirable up to the point that for
the given LO amplitude, ¢ approaches 2/m and relations (4.33) and (4.39) hold. Further
increase does not reduce the noise introduced by the switching pair as shown in (4.33),
and it even increases the noise coming from the LO port as seen in (4.39). In addition,

it introduces higher capacitances which cause high frequency deterioration in performance,
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and represent a larger load for the LO. Increasing the channel width of M3 is desirable
because this increases g,,3 and therefore the conversion gain and reduces the noise figure.
However, large channel width of M3 introduces parasitic capacitance which can degrade
the performance at high frequencies and can represent a large load for the circuit driving
the mixer.

Minimum channel length is preferred for the switching pair because increasing
this reduces the conversion gain. Longer channel length requires larger channel width for
operation with similar LO amplitude and bias current, which introduces higher parasitic
capacitances. Minimum channel length is also appropriate for the driver stage since this
maximizes the driver stage transconductance. However, for longer channel devices the noise
factor « of the transistors is closer to the ideal value of 2/3. Without an expression of v as

a function of channel length it is difficult to quantify this benefit.
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Chapter 5

Noise in Inductively Degenerated,
Conjugately Matched,

Transconductance Stages

5.1 Introduction

The input of the mixer is often provided off-chip, for example when an image re-
jection filter is used after the LNA. In these cases the input of the mixer must be matched
to 50Q to guarantee maximum power transfer and proper filter operation. This chapter
examines the noise performance of inductively degenerated conjugately matched transcon-
ductance stages, and also the noise performance of mixers which use such stages. We will
adopt a more accurate transistor noise model than we did before in chapter 4. Results of

the noise analysis of the transconductance stage can be directly applied to the design of
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Figure 5.1: A CMOS inductively degenerated common-source transconductance stage.

LNAs.

5.2 Input Impedance

Consider the inductively degenerated CMOS transconductance stage shown in
Fig. 5.1. The voltage source V, and the impedance Z, represent the Thevenin equivalent of
the circuitry connected to the gate of the transistor. Symbol g, represents the transcon-
ductance of the transistor, and Cy; its gate-source capacitance. Neglecting the body effect
and the effect of the gate-drain capacitance Cyq, we find (see also chapter 6) that the input

impedance at the transistor gate Z;, is given by

Zin = wTLs + ijs + (5.1)

JwCgs
where wr = gm/Cgs is the angular unity gain frequency of the transistor, and w is the

angular frequency of operation.

A more accurate expression which takes into account the body effect is

1 gmZs(1 — j‘-’-’CngZs)

Zin =25+ = - .
m * 7 jwCys JwCos(1 + XgmZs)

(5.2)
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where Z; = jwLj is the degenerating impedance, X = gmp /9m and gmp is the body transcon-
ductance. A typical value for x is 0.2.

Yet another expression which neglects the body effect but takes into account Cya

is
z wrLg + jwLs + jw_lcg—, (5 3)
in = —1 .
1 y 1 mZ
1+ (jwcgd + ZL) (wTLs + jwLg + 706 + J‘?-—LWCQ.')

where Z;, is the load impedance connected to the drain. In the mixer case Zf =~ 1 [(Gm,c +
Gmb,c) Where g c and gmp . are approximately the average gate and body transconductances
of one of the devices of the switching pair.

For low values of degeneration most commonly used in practice the body effect
has a negligible effect, and (5.3) provides a more accurate expression for Z;,. However, for

simplicity, the first approximation (5.1) will be adopted below.

5.3 Transconductance Gain

Let us now define the following gain for the transconductance stage of Fig. 5.1
(also used in chapter 6) which relates the output current amplitude to the available power

of the source

(RMS output current)?

GAIN; =
transe = svailable power of the source

(5.4)

Observe that GAINirgnsc as defined above has dimensions of conductance. The transcon-
ductance stage utilizes all the available power of the source when the input is conjugately
matched or, neglecting the losses in the bias circuit, the matching network and the connec-

tions, when Z, = Z;,. Neglecting Cyg and using expression (5.1) we can show (see chapter
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Figure 5.2: The model used in the noise analysis of the transconductance stage

6 for the derivation) that

1
G.AINtransc ~ %T' st (5-5)

Observe that GAI Niyqnsc depends on the wr but not on the device size. Taking into account

the finite quality factor Qp, of the degenerating inductor L, this expression becomes

wr 1 1

Ust (%‘QLL:'F].)?

GAINiranse =

(5.6)

which shows that even a low inductor Q does not appreciably change the prediction of (5.5).

5.4 Noise Analysis of the Transconductance Stage

We will assume that the transconductance stage of Fig. 5.1 is matched at the input.
We will adopt the model shown in Fig. 5.2. We model the noise behavior of the transistor
with the two noise current sources inq and i,y {108, 41, 73, 45]. The noise current ing
represents thermal noise of the channel while i,, represents noise of the channel coupled to
the gate through the distributed channel capacitance. Up to moderately high frequencies of

operation i,4 has negligible impact on the performance and for this reason it is not included
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in more traditional transistor noise models [61]. The two noise sources are correlated. Their

power spectral densities are given by

—; = 4KTYg4o (5.7)
B _ x5 (5.8)
N dg- .

Above gg, is the gate-drain conductance in triode, for the same Vs and zero Vps. Quantity
ddo is equal to gm for square law devices, but when short channel phenomena are present
it is higher than g, that is gs = gm/a where a = 0.8 is a typical value. Quantity
gq represents the gate conductance of the transistor, which in a more complete transistor
model, is connected between the gate and the source in parallel with Cys. In the frequency
of operation of our circuit this gate conductance has a negligible effect on the frequency
response. Therefore it is omitted from our model, but the noise source associated with it is

taken into account. It is given by expression [108, 41, 73, 45]

_ ("-’C’gs)2
gg - 5gdo (5'9)

Parameters v and é have the values 2/3 and 4/3 respectively for long channel devices but
are significantly higher for short channel devices. However § remains approximately twice
as high as 4 [45]). The correlation between the two noise sources is expressed in terms of
their correlation coefficient

(5.10)

When the noise current sources have the direction shown in Fig. 5.2 for long channel de-

vices it is shown in [108] that p = j0.395. Lacking information about its value for short
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channel devices we will use the same value. Nevertheless, it is commented in [108] that the
correlation terms have only a small effect in the noise performance of the circuit.
Using expression (5.1) and the fact that the input is conjugately matched, a linear

analysis of the circuit of Fig. 5.2 shows that the output noise current is given by

in = Tind + Ying, (5.11)
where
1
= ~3 (5.12)
and
1/ Z, ) 1 1 1 )
=_= 1) == - _ .
v 2 (jWLs * 2jwcgs (jWLs gm (5 13)
Therefore,
finl? = |2[2linal® + [ylPling|? + Re {22y"inai}, | (5.14)
or
lin)? = |51f'|2|'ind|2 + |y|2|ing|2 + Re {2zy*p} V Iind|2|ing|2 (5.15)

Using (5.12) and (5.13) we find that

0.395 gm

2zy*p} = - .
Re {2zy"p} 2 wCye (5.16)
Substituting now (5.7), (5.8), (5.12), (5.13) and (5.16) in (5.15) we obtain
1 [l _ KE ( 1 2) L)
KT Af ~ YGdo + 590 \2L2 +9,.) —0.79m, 3 (5.17)

The available noise power of the source is KT and the transconductance stage gain

is given by (5.5). Therefore the output noise current due to the source impedance denoted
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by |ins|? is given by

w2 1
__]'_M = GAINyansc = “L

5.18
KT Af w wkg (5.18)
The noise figure of the transconductance stage is
P2
NFyanse = 1+ —-'I.n|2
|ins]
w2, 0 1 9 v
= . — = -0. — 1
1+ 0 g+ 5= (g o) ~0T0my | (519
Now substituting g4, = gm/a we obtain
w 1 / éd o 1
NFyanse =1+ ’w;’)’z ['&' -0.79 -5—'_-)[- + -g:y' (1 + ?)] (5.20)
or
w
NFtransc =1+ —’)'f(z) (5-21)
wr

where z = gnwL; is the feedback factor and

o=z [b-om L+ & (1 3)|. 52)

Fig. 5.3 shows quantity f(z) as a function of the feedback factor z for §/y = 2 and several
values of ¢, and for a = 0.75 and several values of §/y. We observe that this quantity has a
flat minimum at approximately z = 0.5 for almost all the values of the parameters shown.
The optimal value of f(z) is always between 1 and 1.5. We can observe that without the
gate referred noise (i.e. § = 0) it is f(z) = z/a. An expression for the noise figure equivalent
to (5.21) is

NFyansc =1+

vf(z) (5.23)

1
\[GAI N, transc * Rin

where R;, = wrLjs is the real part of the input impedance Z;,. This expression shows that

N Fyransc is minimized for high GAINiransc and high R;y,.
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Figure 5.3: Quantity f(z) as a function of the feedback factor z, for several values of the
parameters o and §/7.

It is now clear from (5.21) that in order to minimize the noise figure one must
adhere to the following simple guidelines: a) Maximize the unity gain frequency of the input
device by choosing small width devices biased at a high current density, or equivalently a
high Vgs — Vi value. b) Pick a degenerating inductor such that the feedback factor gmwLs
is approximately 0.5 (or close, such that the value of f(z) is close to its minimum).

Although using very small width device increases wr and improves the noise figure,

it also increases the input impedance of the transconductance stage and makes it hard to
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match to the source. A high Q matching network is then required, which is harder to
implement, sensitive to the component tolerances, and tends to be lossy, thereby increasing
the noise figure. In particular, if ESD is used, more input signal is wasted on the lossy
components of the ESD when the input impedance of the transconductance stage is high.
From expression (5.1) we can find a parallel representation for Z;,, that is to calculate the
value of a resistance R, and a capacitance C, whose parallel combination equals Z;,. We
can then easily calculate that the gain loss and corresponding increase in the noise figure,

expressed in dB is equal to

1010g5 (Ri;%fpﬁ) (5.24)

where Rggp is the corresponding resistance in the parallel represenation of the ESD loading.
To minimize losses on the ESD it is desirable that Rgsp is much higher than R,. Under

the assumption

1
wCys

>> wklg (5.25)

which is usually satisfied, the quality factor of the input impedance is

1
Qin = R_e{Z:}_ ~ 2 (5.26)

where z is as defined before the feedback factor gmwLs. Then

- 2y 1\ , wr 1
R,p = Re{Zin} (1+Q7) = wrLg (1 + 2= -é_m—w- z2+ ;) (5.27)
and
~ Qh ( 1 )
Cp = Cys T+ an ~ Cgs 1+2)° (5.28)

It is worth noticing that for small values of z increasing Ls reduces Rp. Minimizing the

expression of R, we see that a minimum is obtained for a feedback factor z = 1, as also
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Figure 5.4: Normalized resistance R, of the parallel representation of Z;; as a function of
the feedback factor z.

shown in Fig. 5.4.

The input impedance R, can be reduced without harming the noise figure at the
expense of power consumption. Indeed by using a wider device biased at a higher bias
current such that wr remains the same, and reducing L such thét the feedback factor z
remains the same, from (5.27) R, will be lower because g,, will be larger. However, there
is a limit to how small on-chip inductance can be realized reliably which is usually close to
1nH. If a bond wire is used to realize this inductance the designer has no control over its
value.

Besides the high input impedance, when using a very small transistor, the substrate
resistance and the resistance of the gate polysilicon and the related contacts is divided by
only a small number of fingers and can have an impact on the noise figure.

A capacitor C4 can be connected between the gate and the source of the transistor
as in the transconductance stage of Fig. 5.5 to facilitate the input matching at the expense of

gain. In this case the gate noise source does not increase as would be the case if we attempted
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Figure 5.5: An inductively degenerated transconductance stage with added capacitance to
facilitate input matching.

to improve the input matching by increasing the size of the input device. However, the
introduction of C4 harms the noise figure by reducing wr. Similar analysis shows that the

output noise current is given by the above equations if we replace parameter § with

§ = (m) (5.29)

In this case the optimal value of the feedback factor is not 0.5 but can be found similarly.
From Fig. 5.3 we observe that lower values of § indeed reduce the value of f(z) and also
tend to lower the optimal value of the feedback factor z.

Longer than minimum length devices have a lower wr but also lower noise factors
4 and 8. Therefore, it is possible that longer devices can provide better noise figures, or
similar noise figures with lower input impedance. Since the values of the transistor noise
factors as a function of channel length are unknown we can address this question only
experimentally.

Some observations can be made on the above expressions of the noise figure. a)
When inductive degeneration is used, the correlation between the gate and drain noise

sources is such that it improves the noise figure. b) The noise figure depends almost pro-
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portionally on the ratio w/wy. ¢) The noise figure depends on wr but not on Cys. d)
Several noise sources that in practice degrade noise figure have been neglected in our anal-
ysis, for example the noise generated by the substrate resistance and amplified by the body
transconductance, the noise generated by the substrate resistance and directly coupled to
the output through the junction capacitance, the noise generated by the polysilicon resis-
tance and the contacts connected to the gate. e) Finally, we should mention that we have
adopted the power matching condition and not the noise matching. Therefore, in general
there exists a different source impedance for which the noise figure is lower than predicted

by the above analysis.

5.5 Effect of a Cascode Device

Usually a cascode device in common-gate configuration is connected to the output
of the transconductance stage as shown in Fig. 5.6. In the case of an LNA this device
provides reverse isolation and guarantees stability, while in the case of an active mixer this

device represents the transistors of the switching pair. A pole is formed at the frequency

_ 9me t+ Gmbc
wp = T

(5.30)
where gmc and gmsc are the gate and body transconductance of device M, and G, is the total
parasitic capacitance to ground (or some other low impedance node). Assuming that the
gate of M, is connected to a low impedance node, it is easy to see that the gate referred noise
of transistor M, adds directly to the output noise current of the transconductance stage.

However, unlike the transconductance stage examined in the previous section, the effect of

the gate referred current noise of the cascode transistor is usually small and will be neglected
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Figure 5.6: The cascode device of the transconductance stage.

here. (Indeed, observe in (5.13) that the gate referred noise of the transconductance stage
is multiplied with g, /wCys = wr/w, which is usually large.) It is now easy to see that the

contribution of the drain current of M, to the output current is equal to

(w/ wp)2

mm4kT7gdac (531)

where g4, is the transistor conductance in triode, for the same Vg, and zero Vy,.

5.6 Mixer Noise Figure

An accurate calculation of the noise figure of a mixer which uses an inductively
degenerated, conjugately matched transconductance stage would require consideration of
the noise contribution of the transconductance stage from all possible sidebands. However,
besides the complexity of the calculations required, the result depends on the out of band
characteristics of the input matching network which depends on the package and board
parasitics and is usually unknown during the design stage. In addition, the uncertainty in

the noise model of the MOS devices renders meaningless any attempt to very accurately
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predict the mixer noise figure. As an approximation we will take into account only the
image band and we will assume that it contributes an equal amount of noise as the signal
band.

We will adopt the low frequency expressions for the noise introduced by the switch-
ing pair derived in chapter 4. Indeed, we showed that if the conversion gain of the switching
pair is not degraded by frequency effects, these expressions are valid. High frequency noise
from the switching pair from the signal and the image band could be approximately in-
cluded in the calculations as described in the previous section in the discussion about the
cascode device.

Under these assumptions, similarly to equation (4.42), the mixer NF of a single
balanced mixer is given by

2(2? +12,¢%) +1Z, + 130 +i%,

2,02

211G + RoG? + 4/Ry,
GAI N, tra.mzcc2

NF =

~ 2NFiransc +4

(5.32)

where 32 is the noise generated by the transconductance stage at its output, 2, is the
noise generated by the source at the output of the transconductance stage, g is the noise
generated by the switching pair at the mixer output, % is the noise introduced by the LO
port at the mixer output, and %: is the noise introduced by the mixer load of equivalent
noise resistance R; at the mixer output. Resistor R;o represents the equivalent noise
resistor at the LO port. Parameter <y, represents the v noise factor of the transistors of the
switching pair, and parameter c is the conversion gain of the switching pair calculated in
chapter 4, usually slightly lower than 2/7.

An observation can be made on the above expression of the noise figure. A
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transconductance stage designed to have optimal noise figure when operating as an ampli-
fier does not necessarily provide optimal mixer noise figure because of the noise introduced
by the switching pair. To suppress this, GAINtgnsc must also be kept high. Therefore a
smaller value for the degenerating inductor is favored in the case of the mixer. Again, a
small size transconductance stage device operating at high wr is beneficial.

Let us now discuss the issue of the source impedance which provides optimal noise
performance in a mixer with a given transconductance stage. First, the mixer output noise
is a function of the source impedance at all the input bands, not only the input signal
band. For the sake of simplicity let us assume that the source termination impedance at
frequencies other than the signal band is insignificant, or as we considered above that only
the signal and its image band are significant and they are close in frequency such that the
source impedance in these two bands and the effect of source impedance in these two bands
to the mixer output noise is identical. In this case we observe that the optimal source

impedance for the mixer is in general different than that for the transconductance stage.



112

Chapter 6

Intermodulation Distortion in

CMOS Transconductance Stages

6.1 Introduction

The linearity performance of the CMOS transconductance stages is of major con-
cern in the design of transceiver blocks such as low-noise-amplifiers, active mixers and power
amplifiers. In this chapter we analyze the linearity performance of such stages.

The CMOS transistors used in the transconductance stage of active mixers demon-
strate fairly good linearity and are used often with little or no degeneration, in contrast
with the bipolar trahsconducta.nce stages which often require significant degeneration. In-
termodulation distortion analysis of bipolar transconductance stages has been presented
before in [17],{3]. Although the weakly nonlinear I-V relation of a bipolar device can be

relatively accurately approximated by a single one-dimensional power series, in the MOS
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case the drain current is generally strongly dependent not only on the gate-source voltage
but also on the source-body voltage through the body effect. In several practical cases,
the body-effect can dominate the nonlinearity and cannot be neglected. In [101] a two-
dimensional power series is suggested for the nonlinearity analysis of a MOS transistor,
which involves nine coefficients if nonlinearities up to third-order are considered. In our
analysis we will consider two one-dimensional power series, one for the drain-current as a
function of the effective gate-source voltage (the difference of the gate-source voltage minus
the threshold voltage), and one for the threshold voltage as a function of the source-body
voltage. As a result only six coefficients are involved and the final expressions are simpler
(although still quite involved). The nine coefficients of the two-dimensional power series are
not independent, but can be expressed in terms of the six coefficients of the two individual
one-dimensional power series we employ.

We first analyze the common-source transconductance stage, and then we apply

the same methodology to the common-gate transconductance stage and the differential pair.

6.2 Background and Analysis

Neglecting channel-length modulation, the I-V relation of the MOS transistor can
be approximately expressed as a function of the effective gate-source voltage VgsT = Vos—
Vr, where Vs is the gate-source voltage and Vr the threshold voltage of the device. Let
Vysts Vs and V; represent incremental values of Vgsr, Vgs and Vr respectively around
the operating point. If these perturbations are small enough that the I-V relation of the

transistor remains weakly nonlinear, the incremental value of the drain current Iy can be
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approximated by a third-order power series
Io = 1\ Vst + 02V2i + 93V (6.1)

The distortion characteristics of a voltage-driven common-source stage without degeneration
can be derived from the coefficients of this power series. The threshold voltage Vr depends
on the source voltage through the body effect and the incremental value V; can also be
approximated by a third-order power series as function of the variation of the source voltage
Vs

Vi = b1Vs + boV2 + b3V3. (6.2)

By inverting (6.1) we obtain
Vst = Vs = Ve = riIg + rol% + 131 (6.3)
and by using (6.2) in (6.3) we find
Vs = rilg + roI5 + 1313 + b1 Vs + bV + b3V2 (6.4)

Expressions for g;, r;, and b;, + = 1,2,3 are given in the Appendix. In the following
analysis (6.4) will be used to describe the nonlinearities of the transistor which generate
intermodulation distortion.

The following assumptions are adopted a) The gate-source capacitor Cgys is con-
stant for small perturbations of the gate-source voltage; this is a good approximation if the
device remains in strong inversion b) The nonlinear dependence on the source-body junc-
tion capacitance weak and this capacitance can be incorporated in a constant impedance
connected from tk;e source to ground c) Second-order effects that modify the threshold volt-

age such as Drain-Induced Barrier-Lowering can be neglected d) The output resistance of
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Figure 6.1: (a) A common-source transconductance stage, and (b) Equivalent circuit

the device is very high and can be neglected e) The gate-drain capacitance is small and
although its effect is possibly enhanced via the Miller effect, it can be neglected. The last
two assumptions are particularly valid when the transistor drain is a low-impedance node,
as is the case when a low impedance load is used, a cascode device is used in common-gate
configuration to provide isolation from the output to the input, or a switching pair is used

to commutate the output current of the transconductance stage in an active mixer.

6.3 Common-Source Transconductance Stage

A common-source transconductance stage is shown in Fig.6.1. Impedance Z; rep-
resents degeneration together with the source-body capacitance of the transistor and any
stray capacitance to ground. Impedance Z, and voltage V; represent the Thevenin equiv-
alent of the passive network in front of the transistor gate, including the input matching

network, the impedance of the bias circuitry, and the signal-source impedance. The follow-
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ing equations can be derived by inspection
Vi = K()Vgs + LaZs (6.5)

Vs = (jwcgsvgs +14)Z; (6.6)

where V; is the incremental value of the input voltage, and
K(w) =1+ jwCys(Z; + Z). 6.7)
We desire to express the output current I; as a Volterra series of the input voltage V;
Is = G1(wa) o V; + G2(wa, wp) © Vi* + Ga(wa, wp, we) 0 V- - (6.8)

From (6.5), (6.6) and (6.8) we can obtain expressions for Vs and V; as Volterra series of

V;i. Substituting these and (6.8) in (6.4) and equating terms of equal power of V; we obtain

61w) = i (©9)
Ga(wa, wp) = “Dloat o) [r2G1(wa) G1(ws) + b2 H (wa) H (wp)) (6.10)
Galumin ) = = pr—r oy PG WR)Ga(wa)Ga ) + boH (o) He) (w4

+ 273G (we) G2 (wh, we) + 2ba H (wq) P(wp + we) G2 (ws, wc)] (6.11)

where
A(w) =1 = b1jwCys Z;, (6.12)
jw

B =(l1+=—)2Z 6.13
(w) =( wr) s (6.13)

_ _ ijgSZs)
Pw) = (1 reel)z, (6.14)
D(w) =7 + blzs + 'ﬁs—(l - bleCgsZs) (6.15)

K(w)
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N(w) = D(W)K (w) = (r1 + (b1 + 1)Z;) + jwCys(r1(Zs + Zg) + b1ZsZ,) (6.16)
Hw)= ]1—3,% (6.17)

and wr = g1/Cys. Function H(w) is the transfer function from V; to V;. If the input signal

consists of two tones of equal amplitude. V;, at frequencies w; and ws,
Vi = Vipcos(wit) + Vipcos(wat) (6.18)

intermodulation products will be generated at frequencies 2w; — w2 and 2wy — w;. The
magnitude of the tone at 2w; — wy is proportional to G3(wy,w;, —wsz). Usually in an inter-

modulation test w; ~ ws ~ w, and by letting Aw = w; — w in this case we obtain

Gi(wy, w1, —w2) = G3(wo, Aw)

1
D(wo)N(Wo)zN(—wo) [Fr3(wo) + Fba(wo)

+ Fra(wo, Aw) + Fip(wo, Aw) + Frp(wo, Aw)) (6.19)

where
Fra(wo) = —T3A(wo)? A(—wo) (6.20)
Fys(wo) = —b3B(wo)* B(~wo) (6.21)
Fo(wo, Aw) = -z-rgA(wo)zA(-wo) [ D(Zw) + D(;wo)] 622)
2

Fya(wo, Aw) = (6.23)

3B w0 B(-w) [ e + Pioeel]

D(Aw) = D(2w,)

2A(w,)B(wo)
D(Aw)

(Bl A(—w0) + A B(-wo)P(20))| (624

Frp(wo, Aw) = %szz [ (B(~wo) + A(~w,) P(Aw,))

]
* D@wy)
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Evaluations of these expressions with typical parameters shows that the intermodulation is
usually dominated by F,, and Fp,, but F;, can also be significant. Considering only these

three terms, the intermodulation is given by

R
Sl o
where
r3(Aw, 2w,) = 13 — ? [ D(Zw) +5 (21%)] (6.26)

The quantity r5(Aw,2w,) depends on Z; and Z, at frequencies Aw and 2w, through the
second order interaction terms. In [3] it was demonstrated that in bipolar transconductance
stages it is possible to achieve cancellation of the third-order intermodulation without affect-
ing the gain and noise performance by selecting appropriate out-of-band terminations. Such
cancellation however is sensitive to process variations and requires nontrivial arrangements
of passive networks in order to set the out of band terminations to the desired value. In
many practical cases the input impedance transformation network and therefore impedance
Z,, depends on the package and board parasitics and is not exactly known during the de-
sign face. Often however, the value of the out-of-band terminations does not significantly
affect the intermodulation and simply approximating 4 (Aw, 2w,) with r3 = —g3/g} + 2-:?
or —g3/g} introduces only a small inaccuracy in the intermodulation prediction.

Better approximations can be derived from the following expression which results

from (6.26) by neglecting b;,

g3 , 2 9% ( 291Z3(A‘-'J) g1 Zs(zwo) )

’ PN e e
ra(Aw, 200) = =77 + 375 \ K(Bw) + 012:(8w) T K(2o) + 91 2+(2u00)

- (6.27)
g 3 g‘;’
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Assuming inductive degeneration Z, = jwLs, and that capacitor Cys does not have a

significant effect on the denominator of the terms in the parenthesis we obtain

2 2

' g3 295 2q1Lsw, 93, 295
pho~ 22 -~ =} = 6.28
3 g 3g1+4+2g0Lsw, 9 34 (6.28)

where in the second expression we have used the fact that Z;(Aw) = 0 and in the last
we have assumed that 2¢;Lsw, > 1. Assuming now resistive degeneration Z; = R; and
neglecting again Cg; we obtain

2
' g3 , 295 q1Rs
N s 6.29

3 9‘11 g% 1+g1R;s ( )

It is worth noticing here, that from (6.111), g3 for a MOS device is negative and therefore
there is no value of degeneration in a resistively degenerated common-source stage for
which the third-order intermodulation is nulled, as happens for a similar bipolar-transistor
common-emitter stage [57).

We mention that for modern technologies and minimum channel length devices
expressions (6.28) and (6.29) are usually dominated by —g—i‘}. For example, using (6.109)-
(6.111) we can see that —g3 is higher than 392? if 0VgsT > /(3) — 1 =0.73.

The following issues deserve a further discussion.

6.3.1 Body-Effect Nonlinearity

For small values of degeneration the term proportional to b3 in (6.25) is insignifi-
cant, while for very high values of degeneration it dominates the nonlinearity. The role of
the body effect is easier to visualize at frequencies where the effect of Cys is negligible. In
this case

Aw)=1, BW)=2Z, D(w)=N(w)=r1+ (b+1)Z,. (6.30)
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Then the transconductance is

1
G (w) = mz—; (631)

and the magnitudes of the two terms in the intermodulation expression (6.25) caused by

the nonlinearity in the gate and the body transconductance respectively are given by

§ I'rili(Aw12wo)| 2
4lry+ (b +1)Z° *°
3_  |bsZf| 2
4lri+ (b +1)Z2 %

IMS,gate = (6.32)

IM3 pody = (6.33)

In (6.32), r5(Aw, 2w,) is often approximately independent of the impedances Z; and Z; as
discussed above after equation (6.26). Increasing the value of the degeneration impedance,
we find that I M3 gqt decreases asymptotically with the cube of Z;(w), while I M3 pody asymp-
totically approaches a constant value. For high values of degeneration I M3 gqte vanishes
compared to I M3 pody, and further increasing Z;(w) reduces the gain but not the intermod-

ulation which remains constant

3 b
IM3,z,+00 = Z(T—:'l_)‘gv’% (6.34)

The value of Z; above which intermodulation is not reduced any more is given approximately

by equating M3 gate and 1 M3 pody

TI 1/3
lZs,liml = (i) (6.35)

where 7} can be approximated by r3, —gs/gf, (6.28) or (6.29). Considering r; = r3 and
using the expressions (6.109)-(6.114) given in section 6.6, one can calculate the feedback

factor

9 1/3
(1+6VgsT)* +1 ) (6.36)

2
im| =~ 2 V) | ———=—=
Iglzs,hml (¢ + s) (7 /‘-ﬁ_—_'*' Vs V(%ST(z + OVGST)2(1 T 0VGST)2
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Common values for this quantity are between 2 and 6. This value is higher for technologies
with high values of ¢, and it increases strongly as Vs increases or Vst decreases.

At frequencies that the effect of Cys is not negligible, (but still assuming that
b1wCys Zs tim K 1 O g1Z51im < (1 /b1)(wr/w,) which is usually satisfied), similar consider-
ations show that the value of Z;(w) at which the two intermodulation terms proportional

to 75 and b3 contribute equally is given by

i\ /3 1
|zs,um|=(§) = (6.37)

1+ (wo/wT)?

We observe that an operating point with high source voltage Vs is beneficial when the
body-effect nonlinearity dominates, because this reduces the value of the coefficients b;, by

and b3 as can be seen from relations (6.116)-(6.118).

6.3.2 Input Impedance

The input impedance looking towards the transistor gate Z;, as shown in Fig. 6.1

will be needed below. A small-signal analysis provides

1 917Z,(1 “jwcgsblzs)

Zin = s+ = - .
" * JWCgs chgs(l +blglzs)

(6.38)

Assuming that the degeneration impedance in the signal band is small enough to satisfy

2600l € goomr Va0 € o = oo (6.39
the input impedance Z;,(w,) becomes
Zin(wo) = Zs(wo) + jwolcgs + g;f:g‘g’:). (6.40)
Assuming inductive degeneration Z; = jwLs we have
Zin(wo) =~ wrLs + jwoLs + = L (6.41)
JwoCys
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while if the degeneration is resistive Z; = Rs; we have

1+91Rs

Z; ~R .
in (wo) s + jwngs

(6.42)

The input of the transconductance stage is often matched to the source using a lossless
passive network in order to achieve maximum power transfer or to eliminate reflections.
Neglecting the signal power loss in the bias circuit, impedance Zy(w,) in this case should

equal the conjugate of Z;,(w,) in the input signal band

Zg (wo) = Zin(wo) (6.43)

6.3.3 Third-Order Input and Output Intercept Points

The third-order input intercept point (IIP;) has been defined in chapter 2 as
the available power of the source at which the third-order intermodulation product at the
output equals the output linear term, assuming that nonlinearities higher than third-order
are negligible. Letting Z, = Ry + j X, considering a lossless input passive network and that

no significant signal power dissipation occurs in the bias circuitry, the IIP; is given by

1 |Gy

If the input is matched to the source, R, equals the real part of Z;;, which we have found
before in section 6.3.2.

A different metric for the nonlinearity is the Output Third-Order Intercept Point
Io1p;, defined here for the transconductance stage as the amplitude of the linear term of

the output current when the input signal power equals IIP3, assuming that nonlinearities



123

higher than third-order are negligible. It is given by

4|G3
N Pl bt § 6.4
ITorps 3G, (6.45)
Let us now define the following gain for the transconductance stage
RMS output current)?
GAINyanse = — P ) (6.46)

Auvailable power of the source

which has dimensions of conductance. Apparently the GAINignsc, IIP3 and Iprp3 are
related with the equation

I%IPQ' = 2 . GAINtransc N IIP3 (6-47)

Assuming that the input matching network and bias circuitry are lossless
GAINgransc = 4IG1|2R9' (648)

We established in the previous section that no linearity benefit is introduced by
increasing the degeneration impedance above a certain value at which the body-effect non-
linearity starts to dominate. We will assume here that the degeneration impedance is such
that the body-effect nonlinearity does not dominate. Then from (6.25), neglecting the body
effect nonlinearity, and assuming that conditions (6.39) are satisfied and therefore b; can

be neglected
1 |D(wo)l - |N("-’o)|2

I1Ps = 6R, 73(Aw,2w,) (6.49)
Under the same assumptions we can find easily
4_ |D(wo)l
2 ~Z el
I61p, = 37 (Aw, 2w,) (6.50)
1
G = (6.51)

N (wo)
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Ry

GAINtransc = 4m (6.52)

D(wo) =11 + Zs (6.53)
o= YT 1 4 §woCos(Zs + Zg) ‘

N(wo) = "'1(1 + j"-’ocgs(zs + Zg)) + Zs (6'54)

In the considered case that the body-effect nonlinearity does not dominate, there
exists a tradeoff between the IIP; and the transconductance value. That is, increasing
degeneration improves the I1P; but reduces the GAINyrqnsc. The Iorp, however has no
obvious dependence on the degeneration value. Let us now examine the following individual

cases.

Inductive Degeneration and Conjugate Matching

We assume here that the degenerating impedance is a lossy inductor Z; = jw,L;s+
R;. Assuming a lossless matching network and conjugate matching, using (6.41) and (6.43)

in (6.53) and (6.54)we obtain

N iQ+1
D(w,) ~ 1 (1 S e 1) (6.55)
and

N(wo) = 2jwoLs (-;"—;% + 1) (6.56)

where Q = w,Ls/R; is the quality factor of the degenerating inductor. If Q is relatively

high, D(w,) =~ 271, and N(w,) ~ 2jw,Ls. Now from (6.49)-(6.52) we obtain

[IP~2 T W

3 74 (Aw, 2w,) wr (wolLs) (6.57)

4 21‘1

~

2 — ———————————
To1p, = 3 ri(Aw,2w,) (6.58)
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GAINanse = er
Wo WoLs
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(6.59)

Approximating 4 (w,, Aw) with (6.28) and using (6.109)-(6.111) in (6.58) we obtain

8 (2 +8Vssr)*

2 2
I51p, = 3IB [(2 + 0VgsT)0VesT + 2/3)

(6.60)

Therefore, under conjugate matching conditions the Io;p, is largely independent of L, Cy;s,

and the input matching network. It is strongly dependent on the bias current Iz and for a

given bias current Ip it depends weakly on Vgsr, having a minimum for OVgsT =~ 0.46.

Inductive Degeneration and No Input Matching

Let us assume now that there is no conjugate matching restriction at the input

and that R, = 0 that is, the inductor is ideal. We can show that both I1P; and Ipsp, are

maximized when the imaginary part of Z,; cancels that of Z;,

1

X, = — woL
g woCys Wols
In this case
L
D(w,) =71 + =

N(w,) = Jwo/wr) (Rg + wrLs)

2
wT R;

4 L
I3, o [1 + w; 5]
9

4R,

GAIN, =
transc (wo /wT)g ( Rg + wr Ls)2

Both IIP; and Ipsp, are maximized for small Ry and large L,.

1 (9_)2 (Rg + wrL,)®

(6.61)

(6.62)
(6.63)

(6.64)

(6.65)

(6.66)
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Resistive Degeneration and Conjugate Matching

Considering now resistive degeneration and input matching, using (6.42) and (6.43)

in (6.53) we obtain

~ 2jw, [wr ]
D(w,) = 11 [ T (6.67)
N(wo) = ZjZ—;Rs (6.68)
4 1 (wo/“’T)aRs
IIP; = - 6.69
373 5 (Aw, 2w,) /T + 4(w,/wr)? (6.69)
4 2r; Wo/wT
I3p, =~ = 2 6.70
OIPs 374 (Aw, 2w,) /1 + 4(wo/wr ( )
1
GAINgransc = W (671)
(4] 8

The expression for IIP; is largely independent of the value of the degenerating
resistor. Comparing (6.58) and (6.70) we conclude that inductive degeneration provides a
much higher Output Third-Order Intercept Point than the resistive degeneration. A similar
conclusion has been reached in [17] for bipolar common-emitter stages.

Observe that at DC, expressions (6.70)-(6.69) approach zero while (6.71) ap-
proaches infinity. These however do not correspond to practical cases since the input

matching condition requires an infinitely high inductance in the input matching network.

6.3.4 Degenerating Quasi-square-law Devices

It is well known that a MOS device that closely follows the square low does not
exhibit third-order nonlinearity and therefore in this case degeneration will be detrimental
for both the gain and the third-order linearity. On the other hand it is also known that for

modern short channel devices degeneration does provides linearization benefit. In particular
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we expect that if the device exhibits low short-channel effects, as we increase the degener-
ation linearity will initia,ll& degrade, it will reach some worst value and it will eventually
improve for high degeneration values. We will attempt to answer here the question, when
is it beneficial to introduce degeneration.

We will consider the simple case of low frequency and resistive degeneration R;.
Assuming that the body effect nonlinearity does not dominate and can be neglected, using

equations derived earlier in this section we obtain

1

G = 6.72
Y7 14+ (b + )g1Rs (6.72)
1 293 (b1 +1)g1Rs
Gs = - 6.73
= T Br + Dar R [gs 0 1+ 0+ Dok (673)
Let us consider first that our figure of merit is the third-order input-intercept point
4Gy
Vip, == |=|. : 74
IIP; 3 G3‘ (6 7 )

We can show with some manipulation that IIP; improves monotonically as degeneration
increases only if —g1g3/¢2 > 2/3 or using (6.109)-(6.111), 8VgsT > /5/3 -1 =0.29. In
the opposite case the IIP; will initially decrease before it starts increasing monotonically,

obtaining its worse value when the feedback factor is

293 + 39193
bhh+1)gRs= —S—F7 6.75
(b1 +1)g1 R, 602 — 30195 (6.75)
This value of the feedback factor is always lower than 1/3.
When the figure of merit is the third-order output-intercept point
4G}
I3 ! (6.76)

IPs = 56;
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similarly degeneration introduces monotonic benefit only if —g;93/93 > 2 or using (6.109)-
(6.111), 8Vgsr > v3—1 = 0.73. Otherwise Iorp, obtains its lowest value when the feedback

factor is

292 + 9193

h+1DaR; =
(b + g Re 203 — 9193

(6.77)

This feedback factor is always lower than 1.
Let us now consider low frequency and inductive degeneration. Then considering

AwLg; =0
_ 1
1+ j(b1 + 1)g1woLs

1 g — 295 j(b1 + 1)g12woLs
1+ j(b + 1)91w0L3)4 g1 14 j(b1 +1)g12woLs

G,

(6.78)

G3 =

(6.79)

The third-order input-intercept point improves monotonically with degeneration only when
—0193/93 > 2.06 or 8Vgsr > 0.75. Otherwise Vjzps obtains its lowest value when the

feedback factor is

—(a+2)+ +2)? — 3a(7 - 4
(b1 + 1)gr1woLs = \/7 Cha) \/(012 a) a(7 - 4a) (6.80)
where
2
a=(1- 3—3‘;’;—3)2. (6.81)

This feedback factor is always lower than 0.47. Finally the third-order output intercept
point decreases monotonically with degeneration only if —g1g3/ g3 > 5.65 or OVgsT > 1.58.

In the opposite case a minimum appears when the degeneration factor is

\/—14—\/1 —a(5 — 4a) (682)
4a )

(bl + I)QIWLS =

This feedback factor is always lower than 0.71
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6.3.5 Distortion of Single Device in Common-Source Configuration

Lets us consider a single device in common source configuration without degener-
ation. It is well known that for high Vgs — Vr, the short channel effects tend to linearize
the device and therefore third-order npnlinearity linearity is good. It is also known that
CMOS devices for low Vgs — Vr do not exhibit high short channel phenomena. Therefore
one might claim that in this case the third-order nonlinearity must also be good, or that
as the value of Vgg — Vi increases the third-order nonlinearity first increases, reaches the
worst value and then it improves. Such reasoning however is false. For any given device, the
third-order linearity improves monotonically with Vgs — V. Indeed, both the third-order

input-intercept point

4q 4Vgst(2+ 0VesT)(1 + 0Ve 2
Viips = 3—9; = = X sz) (6.83)

and the output intercept point

3g3 - 36(1 + 6VgsT)?

Byps = (6.84)

are monotonically increasing functions of VgsT.

6.4 Common-Gate stage

A common-gate transconductance stage is shown in Fig. 6.2. From the circuit we
obtain the equations:

Vi = K()Vgo + Za(w) 14 (6.85)

Vs = Vi = (jwCysVys + 14) Zs (6.86)
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Z
l Iy = l Id(vgs’ Vo)
g & 0
| BT |
== | L \
S
S

Z Z,

V; V;
(a) (b)

Figure 6.2: A common-gate transconductance stage
We desire to find a Volterra series relating Iy with V;
Iy = Gi(we) o Vi + Gao(wa, wp) © Vi2 + G3(wa, wp, we) © Vi3 Tt (6.87)

From (6.85)-(6.87) Vs and V; can be expressed as a Volterra series of V; and substituting
in (6.4) one obtains again the expressions (6.9) - (6.11) and (6.19) - (6.24) where functions

A(w) and B(w) are now given by
Aw) = — 1+ 01(1 + jwCysZy)) (6.88)

B(w) = (1 + jwCysZy)11 (6}.89)

and the rest of the quantities are as defined in (6.14) - (6.17).

6.5 Differential Transconductance Stage

We consider now the general case of a differential MOS transconductance stage

with degeneration at high frequency, shown in Fig. 6.3. Impedance Z;(w) can represent a
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- V

/

gs2

(b)

Figure 6.3: (a) A differential pair transconductance stage, and (b) Equivalent circuit

passive impedance (often used instead of a current source), the parasitic output impedance
of a current source, or stray capacitance from this point to ground such as this included in
the II model of a spiral inductor. Finally, the network of Fig. 6.3 can include the parasitic
source-body capacitance and any stray capacitance form the transistor sources to ground,
if we apply a T to II transformation in the T formed by impedances Z;, Z; and Z;, combine

all the impedances from the sources to ground and then we apply a II to T' transformation.



From Fig. 6.3 we derive the equations
Vi— Vo= K(w)Vys1 + InZ;s
=V = Ve = K(w)Vgs2 + Lo Zs
Va—Ve = (jwCysVys1 + 1) Z;s
Vo — Ve = (jwCosVasa + Ia2) Zs

Ve= (jWCgs(Vqsl + Vgs2) + (Idl + Id2)) Ze
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(6.90)

(6.91)
(6.92)
(6.93)

(6.94)

where all the symbols used are defined in Fig. 6.3, and K(w) is defined in (6.7). It is

desirable to express the output currents Iy and Iy as a Volterra series of the input voltage

Vi:

Iy = G1(wa) o Vi + Ga(wa, ws) © V2 + G3(wa, whywe) 0 V3 -+ -

Ipp = —G1(wa) o V; + G2(Wa, wp) © V2 — G3(wa, wpywe) 0 V3 - -

(6.95)

(6.96)

Combining equations (6.90) - (6.96), quantities V¢, Vys1, V51 can be expressed as Volterra

series of V;. For example
Ve = T(wa + wp)G2(wa, ws) o V7

where

K(w) + 2jwCys Z,

Substituting these expressions in (6.4) we obtain:

Gi(w) = %%

1

_m [7’2G1 (wa)G’l ((-Ub) + b2H(wa)H(wb)]

G2(Waa wb) =

(6.97)

(6.98)

(6.99)

(6.100)
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G3(Wa, W, We) ~ D@ +1wb o) [r3G1(we)G1(wp)G1 (we) + b3 H (wa) H (wp) H (we)+
212G (wa) G2{wh, we) + 2bo H (wa ) Palws + wc)Gz(wb,wc)] (6.101)

These equations are similar to (6.9)-(6.11), but P(w) has been replaced by

Py(w) = P(w) (1 + ng)) (6.102)

and D(w) in G2(w,,wp) has been replaced by

Da(w) = D(w) + T(w) [K_tﬁ +by (1 - JLKC(%)] (6.103)

Functions A(w), B(w), P(w), D(w), N(w) are as defined before in (6.12)-(6.17). For two
closely spaced tones at frequencies w; and ws, we obtain again G3(wi, w1, —w2) from equa-
tions almost identical to (6.19) - (6.24), but now D(Aw), D(2w,), P(Aw), P(2w,) in (6.22)-
(6.24) must be replaced by Dg(Aw), Da(2w,), Py(Aw), Py(2w,) respectively.

If impedance Z; is zero, it is easy to see from the above equations that G and G3

are independent of the body effect.

6.5.1 Differential Pair at Low Frequencies without Degeneration

Let as consider now the simple case of a differential pair without degeneration at
low frequencies, biased with an ideal current source as shown in Fig. 6.4. Then the equations

developed so far can be simplified as

G1 =aq1 (6.104)
G, =0 (6.105)

2
Gs = (93 - 29—2) (6.106)
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lldl Idzl

k= -

Figure 6.4: A differential pair transconductance stage without degeneration at low frequency

Let us now contrast this differential pair with with a differential transconductance stage
consisting of two single transistors in common-source configuration with grounded sources.
Apparently the corresponding coefficients in this case are Gy = g;, G2 = g2 and G3 = g3.
Assuming that the same bias current is consumed in both cases, the transconductance
value is the same. The third-order coefficient however has always lower magnitude for the
transistors with grounded sources, since g3 is negative, as we can see from (6.111). This is
opposite from what happens in the corresponding comparison with bipolar devices, where
the third order nonlinearity coefficient is positive.

Using (6.109) - (6.111) in (6.106) we find that for the differential pair

2K 2
(N i — Y ! 107
37 T (1 +6Vast)? ( " Vest@ + WGST)) (6107

where Vgsr is the effective gate-source voltage of each device.
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6.6 Appendix: I — V curve power series

The I-V relation of a transistor in the strong inversion and saturation region can

be approximated by [61]

V2
= K—GST .108
I 1+ 0Vgst (6 )

where Vst = Vgg — Vo represents the effective gate-source voltage. With differentiation

we find the coefficients of the power series (6.1):

Vst - (2 + 6VgsT)

a=K 0+ 0Vosr)? (6.109)
1

=K A oVesr?® (6.110)

—b (6.111)

=K
98 (14 0Vgsr)*
In the above expressions we have assumed that Vst is at least 0.2V, such that the devices

are in the strong inversion. Inverting (6.1) one obtains the coefficients of (6.3).

S (6.112)

a

92
1‘2 == —— 6.113
g3 (6.113)

9% g

ra=2%2 _ 8 6.114
9% 4 (6.114)

The threshold voltage dependence on the source voltage can be approximated by

the well known expression [61]

Vo = Vo +7(Vé + Vs — V) (6.115)

where Vg is the threshold voltage when the source is tied to the body, v is the body effect

coefficient and ¢ is the surface potential. In fact, for small dimension devices the above
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expression is not exact [94] but some experimentation shows that it is a good approximation

if v and ¢ are treated as fitting parameters. A Taylor expansion provides the coefficients of

(6.2).
by = %m (6.116)
by = _%_—w _ ;st)?' - (6.117)
by = 11_6(¢—+1W (6.118)

Coefficient b is the ratio gm/gm, of the small-signal body transconductance over the small-

signal body transconductance and a typical value for it is 0.2.
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Chapter 7

Intermodulation Distortion of the

Switching Pair

7.1 Introduction

Having examined the nonlinearity of the CMOS transconductance stages in chap-
ter 6 we examine here the nonlinearity of the switching pair. Its nonlinearity imposes
problems, particularly when together with high linearity, high gain is required from the
mixer, since then the signal at the output of the transconductance stage is large. While the
exponential I-V characteristics of the bipolar transistor make the bipolar transistor switch-
ing pair arbitrarily linear at low frequency if the device base resistance is low [56](31], this
is not true for the CMOS switching pair which demonstrates significant nonlinearity even
at low frequencies.

The switching pair is treated as a weakly-nonlinear periodically-time-varying cir-
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cuit and time-varying power series are employed in the analysis. It will be shown that if the
capacitive effects are negligible, in the frequency band of interest the distortion behavior of
the switching pair can be described by a time-invariant power series which can be cascaded
with the power series of the transconductance stage to calculate the total distortion. The
methodology also applies to high frequencies, where time-varying Volterra series replace
the time-varying power series. Similar approaches have been used in [83] and [48] for the
distortion of diode mixers, and in [49] for the distortion of passive MESFET mixers. Time-
varying Volterra series have also been used in [106] for the analysis of MOS track and hold
sampling mixers. Our approach identifies the characteristics of a transistor model for a
reliable mixer distortion simulation.

A distortion study of a bipolar switching pair has been presented in [56] and
[31], but the method used was different from the one employed here. The behavior of the
bipolar switching pair was found to depend on only a few normalized variables, and transient
analysis was used to find their effect on the distortion. Using the methods described here for
fast evaluation of the CMOS switching pair distortion we also provide normalized graphs
from which one can predict the intermodulation for any given technology and operating

conditions. The analysis presented in this chapter has also been published in [90].

7.2 Transistor Model

The transistors of the CMOS switching pair operate in weak, moderate and strong
inversion. It will become apparent below that a model which ignores the subthreshold

region, or uses different equations to describe the different modes of operation, is inappro-
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priate for a distortion analysis of the switching pair. A model which describes all three
regions with a single analytical expression and therefore has continuous derivatives of any
order is needed. Furthermore, it must be simple enough for analytical calculations.
Continuous MOS transistor models have been presented in [93] and [94]. We will
use the same kind of smooth interpolation between the regions of operation. We will take
into account to a first order the deviation from the square law in strong inversion while we
will neglect second-order phenomena such as channel-length modulation, which complicate
the transistor model. As a result of the latter assumption we will neglect the distortion
introduced by the output impedance of the devices, assuming that a linear load dominates
the mixer output. The drain current I as a function of the gate-source voltage Vgs is

modeled in this chapter by

XZ
where
(Vgs=VYr)
X =2n¢p:In(1+¢e 2% ). (7.2)

Above, Vr is the threshold voltage, ¢; is the thermal voltage kT'/q, and K is a constant
depending on the technology and the transistor dimensions, proportional to the transistor
width. Parameter 8 approximately models source series resistance, mobility degradation
because of the vertical field, and short-channel effects such as velocity saturation [61]. For
an existing 0.8 um technology it was estimated to be 0.9V ~! and for a different 0.25 pm
technology it was found to be approximately 2.5V ~1. It is a function of the channel length
and is independent of the body effect. Parameter n determines the rate of exponential

increase of the drain current with the gate-source voltage in the subthreshold region, and
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also the size of the moderate inversion region. It takes values approximately between 1
and 2 and it decreases (approaching 1) because of the body effect when the source-body
voltage increases, while it tends to be higher when short-channel phenomena are present.
It is shown in [93] to depend slightly on Vgs, but for simplicity 5 will be considered here
a constant for a given channel length. The parameter corresponding to our parameter X
is referred to in the BSIM3 version 3 manual [94] as the effective Vgg — Vr voltage. Using
this model the analysis presented in [89] can also be performed while taking into account
the effect of weak and moderate inversion.

This model reduces to known expressions in strong and weak inversion. In strong
inversion where the exponential term dominates the argument of the logarithm in (7.2),

X =Vgg — Vr, and (7.1) becomes

(Vos — Vr)?

=K
I 1+68(Vgs — V)

(7.3)

the common I-V relation in saturation. In weak inversion, using the approximation In(1 +
z) = z for small z, we obtain

-Vip)

(VGS T
X =2n¢ie 1% (7.4)

and since X is small, 1 dominates in the denominator of (1), and it provides

(Vgs=Vr)

I=K(ng)e (7.5)

which is the exponential I-V relation of the transistor in weak inversion. In moderate
inversion equations (7.1) and (7.2) provide a smooth monotonic increase, interpolating
between equations (7.3) and (7.5). However, the proportionality constant of (7.5) is probably

inaccurate and the value of parameter n¢; that provides the correct exponential increase
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in weak inversion does not necessarily provide accurate moderate-inversion modeling. For
distortion prediction of the switching pair the moderate-inversion region is more significant
than the subthreshold and it is preferable to consider an 7 value that better models the
moderate inversion. Nevertheless, it will be shown that the value of 7 has only a minor

effect on the distortion prediction.

7.2.1 Derivatives of the Drain Current of a CMOS Transistor

If I = f(V) is the I-V relation of a transistor in saturation as given by (7.1) and

(7.2), with direct differentiation we find

fv=1fx-Xv (7.6)
fov = fxx - X¢ + fx - Xvv (7.7)
fvvv = fxxx - X +3(fxx - Xv - Xvv) + fx - Xvvv (7.8)
where
fx = KX(—i(f—g—?)ifl (7.9)
fxx =K (_IT%)_(F (7.10)
fxxx=K (1—;%)4 (7.11)

are the first three derivatives of f with respect to X,

1

Xv =177 (7.12)
1 1
Xvy = b (54512 (7.13)
_ 1 (s—s71)
Xyvy = — e s+ )3 (7.14)
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are the first three derivatives of X with respect to V, and

v-vp)
s=e " (7.15)

7.2.2 Comparison of the Simple Model with Spice Models

The I-V transistor curve in saturation and its first three derivatives with respect to
Vs obtained from this simple model were compared with the corresponding curves obtained
from the SPICE models BSIM3 version 3 and version 2, in Fig. 7.1 and Fig. 7.2 respec-
tively. The two SPICE models describe different technologies of channel length 0.25 um
and 0.8 um respectively. The parameters of the simple model were curve fitted to the I-V
curves obtained from SPICE. The derivatives of the simple model were derived analytically
(appendix), while those of the SPICE models were calculated numerically. As numerical
noise imposes problems in the evaluation of the second and third derivative with successive
differences, a more sophisticated method was used. For every value of Vgs a polynomial was
fitted to a number of points around this value and then the derivatives of the polynomial
were taken analytically [63].

As can be seen in Fig. 7.1, model BSIM3 version 3 provides smooth derivatives,
as one would expect from a physical model and the simple model is in close agreement
with it. In Fig. 7.2 we observe that the I-V curve and the first derivative generated with
the BSIM3 version 2 model coincide with those of the simple model. However, the use of
a different equation for the weak, moderate and strong inversion in the BSIM3 version 2
model becomes apparent in the second and third derivatives, where discontinuities appear

at the transitions. We will see below the effect of these discontinuities on the distortion
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Figure 7.1: The I-V curve and the first three derivatives for a quarter-micron CMOS tech-
nology. The solid line is the simple model and the dashed line is obtained from the BSIM3

version 3 model.

simulation of the switching pair.

7.3 Switching Pair Distortion at Low Frequencies

7.3.1 Low-Frequency Large-Signal Equations

Consider the single-balanced mixer of Fig. 7.3. The operating point of the tran-
sistors of the switching pair varies periodically with time. In the following analysis we need
to be able to find this operating point for a given bias current Ip and instantaneous local

oscillator voltage Vpo(t). The output conductance of the devices is neglected and the load
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Figure 7.2: The I-V curve and the first three derivatives for a 0.8 um CMOS technology.
The solid line is the simple model and the dashed line is obtained from the BSIM3 version2
model.

at the drains of M1 and M2 is assumed such they remain in saturation during the whole
LO period. This assumption is usually satisfied since if the transistors of the switching
pair enter the triode region, the common source node becomes a high impedance point and
performance is degraded because of reactive effects. If I = f(Vgs — V) is the I-V relation
of a transistor as given by (7.1) and (7.2), the large-signal behavior of the switching pair is

described by the following equations
fWM)+f(Va)=1Ip (7.16)

i-Va=Vpo (7.17)
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@a) )

Figure 7.3: (a) A simple single-balanced active CMOS mixer, and (b) The basic model of a
current commutating CMOS mixer

where Vi = Vgs1 — Vi, Vo = Vgsa — V7, and Vgs1 and Vg are the gate-source voltage
of M1 and M2 respectively. Substituting V5 from (7.17) to (7.16), we obtain one nonlinear
equation with V; as an unknown which can be solved rapidly with an iterative numerical
method.

From (7.17) and (7.16) we observe that the drain current of each transistor does
not depend on Vi, and therefore to the extent of validity of the transistor model used here,
the behavior of the switching pair is independent of the body effect and the common-mode
LO voltage. The same conclusion was reached in [89], but without taking into account the

subthreshold region of operation.

7.3.2 Distortion Calculations

At low frequencies the switching pair is a memoryless system. Neglecting the

output resistance of the transconductance stage, the output current defined as the difference
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of the drain currents of M1 and M2, is a function of the instantaneous values of the output

current of the transconductance stage and the LO voltage

Iy +101 = F(VLO(t)1IB + is) (7'18)

where I,;, Ig denote values without input signal present, and 4,1, 7; denote incremental

values. Since ig is small, a third-order Taylor expansion provides

. dF . 1d&F _, 1dF _,
ZOI—EE'ZS‘F'z'd—IB'f‘ZS +6E§'13 (719)
or
ior = p1(t) - is + P2(t) - is” + pa(t) - is° (7.20)

where p;(t), p2(t), p3(t) are periodic waveforms of which a typical shape is shown in
Fig. 7.4. The value of these waveforms is easily determined when one of the transistors is
off. For example, when M2 is off p;(t) = 1, and p2(t) = p3(t) = 0. When instantaneously
Vio(t) = 0, isy = 0, and py(t) = pa2(t) = p3(t) = 0, because of symmetry. When the
conductance of both M1 and M2 is significant, p; (t), p2(¢), p3(t) depend on the bias current

I, the LO voltage V10, and the device characteristics.
With some manipulation, waveforms p; (t), p2(t), p3(t) can be expressed in terms

of the derivatives of the I-V function f with respect to Vggs as follows

_fiv—faw
n(t) = Fv T fov (7.21)
_ favhivy = fivfovv
Pa(t) = (fiv + fov)3 (7.22)

(fivv + favv)(fiv favv — fav fivy)
(fiv + fav)?

favfivvv = fiv favvy
3(fiv + fav)?

p3(t) =

+ (7.23)
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Figure 7.4: Typical shape of waveforms p (t), p2(t) and p3(t).

The derivatives of f are denoted with the symbol f followed by an index, whose first
character (1 or 2) denotes the transistor (M1 or M2 respectively) and the number of V’s
following denotes the order of the derivative.

Without loss of generality, pi1(t), p2(t) and p3(t) can be considered odd functions

of time and can be expanded in a series of sinusoids. In this case (7.20) provides

o 0]
i1 = Y _[PLk - is + P2k - 6s” + Pa - is°) - sin(2wkfrot) (7.24)
k=1
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where p; ; is the kth coefficient of the waveform p;(t) in the series, and fro is the LO
frequency. The mixer is usually used for upconversion or downconversion by one LO multiple
and in this case the distortion behavior of the switching pair in the frequency band of interest

can be described by a time-invariant power series!

io1 = by ig + by - g% + by - i° (7.25)
where
pooPil o 1 /Tw .(8) sin(2 frot)dt (7.26)
i =Ty T Tro Jo Dbi\t)sin LO .

and Tpo is the LO period. If 75 consists of two tones of equal magnitude I; at two closely

spaced frequencies f; and fa
is = I3 cos(2mf1t) + I cos(2n fat) (7.27)

the generated third-order intermodulation is

_3bsp
IMy = 21 (7.28)

For high LO amplitude p; (¢) resembles a square waveform and b, approaches 2/.
Assuming that the time interval A (see Fig. 7.4), during which py(t) and p3(t) are non-
zero, is small compared to the whole period and that during this time the LO voltage is a
linear function of time with slope ), it can be shown that the coefficients by and b3 decrease
inversely proportional to the square of A. Indeed, for b3 for example, approximating the
sinusoid with its argument, (7.26) provides

_ 42 (Ve
T X2To% Jo

1Equation (7.25) as well as equation (7.36) below are 'loose’, in the sense that the left and right side refer
to the output and input frequency bands respectively.

bs p3(VLo)ViodVio (7.29)
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Figure 7.5: Comparison of prediction (solid line) and simulation (dashed line) using the
BSIM3 version 3 model, of the low-frequency intermodulation versus bias current for a

switching pair of the 0.25 um technology and channel width 100 ym. The LO amplitude is
1V.

where V,, is some LO cutoff voltage above which the conduction of one of the two devices
is insignificant and p3(t) is zero. Simulation with sinusoidal LO waveform of amplitude Vo
shows that indeed intermodulation asymptotically reduces proportionally to 1/V,2 for high
values of V, while it drops at a higher rate for moderate values of V,. For the rest of the
chapter the LO waveform will be considered sinusoidal and V, will denote its amplitude.
Fig. 7.5 and Fig. 7.6 show the quantity 0.75(b3/b1)(1 A)? (in dB, calculated as
20l0og10(IM3)) versus bias current simulated with SpectreRF using the BSIM3 version 3
and BSIM3 version 2 model respectively, and also as obtained from the simple model. This
quantity corresponds to the intermodulation value for I, equal to 1A, assuming that the

system remains weakly nonlinear. If for example I is 1 mA, one must subtract 120 dB from
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Figure 7.6: Comparison of prediction (solid line) and simulation (dashed line) using the

BSIM3 version 2 model, of the low-frequency intermodulation versus bias current for a

switching pair of the 0.8 pm technology and channel width 100 um. The LO amplitude is
1v.

the value read from these figures. The transistor width was in both cases equal to 100 um
and the LO amplitude was 1 V. The simulation result in Fig. 7.5 is a smooth curve, in very
close agreement with the prediction of the simple model. However the BSIM3 version 2
model used in Fig. 7.6 is inappropriate for distortion simulation of the switching pair, as
the discontinuities in the second and third derivatives of the I-V curve observed in Fig. 7.2
create large errors. Very high numerical accuracy is needed to reduce discontinuities in the
intermodulation curve versus bias current and obtain the curve of Fig. 7.6, and even then

the result shows large discrepancies from the simple model prediction. As we shall see, the

latter agrees well with measurements.

The intermodulation prediction is largely insensitive to the value of parameter 7¢;.
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Figure 7.7: Low-frequency intermodulation of a switching pair for different values of the
parameter 7¢;. The intermodulation value is almost insensitive to this parameter.

Fig. 7.7 shows predicted intermodulation as a function of bias for three different values of
nés, 26 mV, 38mV, and 50mV, versus bias. Instead of bias current we express here bias
in terms of V;/V, where V; is the LO voltage value sufficient to completely switch off one

of the two devices (neglecting the subthreshold conduction?), and has been found in [89]

_ Igh Ig\? I
=g+ (2}{1) + (7.30)

Ve 77

The conversion gain of the switching pair has been found approximately equal to

() |
by~ T (Arcsin(Vz/Vo) ) (7.31)

In [89] the subthreshold conduction was neglected and parameter normalization

was used to express the performance of the switching pair as a function of fewer independent

2Voltage Vi, is generally higher than V; because of the subthreshold conduction
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Figure 7.8: Normalized intermodulation for a fixed value of 6V, but three different values
of V,,05V,1Vand3V.

parameters. For this purpose, all currents were multiplied with 6%/ K, and all voltages were
multiplied with . Even though this normalization is not exact in the present analysis be-
cause the subthreshold region of operation is taken into account, we can conjecture that the
intermodulation can be approximately expressed in terms of similarly normalized quantities.
Evaluation of the intermodulation as described previously shows that indeed this is the case.
Fig. 7.8 shows the value of the quantity 0.75(b3/by)(K%/6*) versus Vz/V,, for 8V, = 1 and
for three different values of V,. We observe that the three curves approximately coincide
for moderate values of V;/V, which are most often used in practice, while they differ for
very low and very high values of V;;/V,. The agreement is better for higher LO amplitudes
because these correspond to higher bias currents in this graph and the subthreshold region

has a smaller effect. This observation allows us to give normalized intermodulation graphs.
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Figure 7.9: Normalized intermodulation versus V;/V,.

In order to reduce the range of the intermodulation values and improve the read-

ability of the normalized graphs we express intermodulation in terms of the quantity

3b3 K (Vob)*

45, 00 (1+V,0)% (732

The result is shown in Fig. 7.9 which was generated with n¢; = 36 mV and V, =1V. The

ratio b3/b; can be calculated from this graph.

7.3.3 Cascading the Driver Stage and the Switching Pair

Let us assume now that the nonlinearity of the transconductance stage is described

by a power series as follows

ig = Q1Vin + azv?n + agv?n (7.33)
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where v;, is the input voltage. Cascading the power series of the transconductance stage
with that of the switching pair, the output current can be related to the input voltage with

a new time-varying power series. Substituting (7.33) in (7.20) we obtain

o1 = alpl(t) * Vin
+ (a2p1(t) + a3pa()) - 03,
+ (azp1(t) + 2a1a2p2(t) + adps(t)) - v3,. (7.34)

Using the expansion of p; (t), p2(t) and p3(t) in a series of sinusoids as in (7.24) we obtain

[eo]

il = Z[alpl,k"vin
k=1
2 2
+ (@2p1,k + aiP2k) * Vi,

+ (a3p1,k + 20162?2,1: + a‘;’m,k) . ”?n]

- sin(27k f1). : (7.35)

If frequency translation by one LO multiple is of interest, the distortion performance can

be described by a time-invariant power series

Gol = C1-Vin +Co -V 4+ C3- V3, +... (7.36)
where
¢ =ah (7.37)
ca = agby + a?by (7.38)
c3 = azby + 2a1a2b7 + a?ba. (7.39)

Observe that these coefficients can be obtained directly by cascading the power series (7.33)

and (7.25).
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The total mixer third-order intermodulation is now given by

3C3 2 3 a3 ..o b3 27,2
_3cy2 3y B3 ooy, 7.40
IM3 4clen 4(01Vl + blalvm) ( )

where in the last expression Vj, is the amplitude of each input tone in the intermodulation
test and the second term on the right side of (7.39) has been neglected as small. The total
mixer intermodulation is approximately equal to the sum of the intermodulation values that

the driver stage and the switching pair would generate if the other stage were ideal.

7.3.4 Distortion of Differential Versus Single-Ended Output

A differential output was considered above for the single-balanced mixer of Fig. 7.3
but it can be shown that if the LO waveform is symmetric around zero the distortion
behavior is exactly identical if the output is taken single-ended. Assume that if I is taken

as output, the mixer distortion performance is described by a time-varying power series
i1 = qu(t) - vin + q2(t) - v2, + ga(t) - v, + ... (7.41)

and let us denote the Fourier coefficients of the waveform gx(t) by gxn. It is easy to see

that if the LO waveform is symmetric the relevant power series for I, is

) T T T
ir=aq(t+ %) Win + @2t + —g—o) 02, +ga(t+ —’2*9) N A (7.42)

and that the Fourier coefficients of the waveform gy (t+ %) are (—1)"g,n, where for frequency
translation by one LO multiple n = 1. The coefficients of the corresponding time-invariant
power-series for differential output are twice these for single-ended output, and the generated
distortion in the two cases is identical. A similar argument holds at high frequencies where

Volterra series replace the power series. A similar approach shows that the distortion of



156

Figure 7.10: The switching pair as considered in the high frequency analysis.

the Gilbert cell is identical if single-ended or differential output is obtained. In fact for the

Gilbert cell this statement can be shown true even if the LO waveform is not symmetric.

7.4 High Frequencies

7.4.1 Numerical Calculations

Time-varying Volterra series can be used at high frequencies to analyze the high-
frequency intermodulation performance of the switching pair. We will consider now the
effect of the gate-source capacitors of the transistors M1 and M2, C; and C; respectively,
and the total capacitance from the common source node to ground C; consisting of the
source-body capacitance of M1 and M2 and the drain-body capacitance of M3, as shown
in Fig 7.10. We will neglect the gate-drain capacitances and we will assume that the LO
voltage is perfectly sinusoidal, generated by an ideal voltage source while the common LO

voltage is a constant. Denoting again the I-V relation of a transistor with I = f(V), with
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no small signal present, the equation describing the switching pair at high frequencies is
Ig = f(V (V)+dQ +iQ +£Q (7.43)

8 =fN)+ (Vo) + 7@+ Q2+ 30 '

where Q1,Q2,Qs are the charges of the capacitors Cp, C2, Cp respectively, and V; = Vgg1 —

Vi, Vo = Vgsa — Vr as defined before. The capacitances satisfy

CL(Vh) = Ef,—% (7.44)
Ca(Va) = d‘f,f; (7.45)
Cy(VBs) = d‘ig; (7.46)

where Vgg is the body-source voltage of M1 and M2. Capacitance Cp is the sum of an area
and a sidewall junction capacitance and each of its components is given by an expression

of the form
Cj

(1-%2)"

where the symbols Cj,, ¢; and m; have the usual meaning. Capacitances C) and C; are

Cj= (7.47)

dependent on the region of operation and will be approximated with the expression

Cgssat — Cgsal
)

Ci(\1) = Cgsa + (
1+exp\ ™

(7.48)

which provides a smooth transition from the overlap capacitance in subthreshold Cgsy to
the capacitance value in saturation Cgssqe:. From (7.47) and (7.48), analytical expressions
for the derivatives of the capacitances with respect to their voltage arguments can be ob-
tained. From (7.43), (7.44)-(7.46) and expressing Vgs1, Vis2 and Vpg in terms of Vio(t)

and the common source potential Vg, we obtain

Ip = f(V1)+ f(V2)
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Vio avs

% (C-C) - (O + G+ ) (7.49)
Substituting

Vi = Vioe + 2 - Vs — Vi (7.50)

Va=V0io,c— % ~-Vs—Vr (7.51)

where Vo, is the common LO voltage considered constant, (7.49) becomes a nonlinear
differential equation with periodic boundary conditions which must be solved to find the
periodic steady-state operating point of the devices. This was accomplished by discretizing
(7.49), and solving for the vector of the values of Vg over one period, using a Newton-
Raphson method as described in [87). A software package for sparse matrix manipulation
[44) was employed. The body effect was neglected and the threshold voltage was considered
a constant. We will adopt this approximation for the rest of the analysis, and will comment
on the role of the body effect later.

When a small-signal current is(t) is present at the transconductance stage output,
voltages V4,V and Vpg will change to V) + v, Vo + v and Vg + v respectively. Taking a

third-order Taylor expansion of (7.43) and removing the large-signal part of the equation

we obtain
is = Gv+ Gyv?+ Gy
d 2 3
where
G = fiv+ fav (7.53)

Gy = %(f wv + favv) (7.54)



159

Gw = %(flVVV + favvv) (7.55)
C=Ci+Ca+Cy (7.56)

Cy= %(CIV + Cav + Chv) (7.57)
Cp = %(va + Covv + Covv) (7.58)

and Cyv, Civv, Cav, Cavv, Chv, and Chyv, denote the first and second derivatives of the
capacitances Cy, Cz and Cp, with respect to their voltage arguments in (7.44)-(7.46). The
incremental voltage v is related to the incremental current i; with a time-varying Volterra
series:

v= Hl(tafa) °is +H2(t,fa, fb) o ig + H3(t, faa fba fc) oii +... (759)

Substituting (7.59) into (7.52), equating terms of similar power of is, and using the usual

notation for is; as a sum of sinusoids [104] we obtain:

Gt fo)e™™ et + SICWH (1, fo)e?TheY = eitelet (7.60)

G(t)Ha(t, fa, fo)el> ot odt 4 %[C(t)Hz(t, far fo)e?2rUat o)) =

—Gu (O (t, fa) Hat, f)e et — (G, () HL (s, fo) (5, ) U] (761)

G(t)Ha(t, fa, fo, fo)eI2mUetfot )t 4 %{cu)ﬂa(t, Fas foy fo)el2TUetfot o)) —

—[(2Gs () H1(, fo)Ha(t, far I5) + Goo () Hi (2, fa) Hit, o) Hi(t, fo))ed2rlfatfotfelt)

~ 2 1C, LT Jo) ot Jor 70) + Con (@ Ha(t, ) H(t, o) (8, 1) 27+ 7.62)

where the bar above certain terms denotes as usual the average over all the terms that

result from all possible permutations of the frequency arguments [104]. These are linear
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differential equations with periodic boundary conditions and were solved as described in
[86] for the case of a periodic AC analysis, by discretizing them and solving one algebraic
sparse linear system of equations. Once the time-varying Volterra series that relates is with
v is known (coefficients H,, H2 and H3), it can be cascaded with the time-varying power

series which relates v with the output current ¢,;, whose coefficients are

di(t) = fiv(t) — fav(t) (7.63)
da(®) = & (v (®) = Favu (®) (7.64)
ds(t) = %(f wvv(t) = favvy (t) (7.65)

in order to relate i; with i5 as follows:

ioy = Pi(t, fa) 0 is + Pa(t, fa, fo) 0 i3 + Pa(t, fa, fo, fe) 045 + ... (7.66)

Above
Py(t, fa) = di(t)H(%, fa) (7.67)
Pa(t, far fo) = dr(£) Ha(t, fa, f1) + da(t) Hu (2, fa) Hi (2, fi) (7.68)

PS(t?fa, fbafc) = dl(t)H3(t’ fasfb:fc)

+ 2d2(t)H1 (t, fa)H2(t1 I fc)

+ d3()Ha (2, fo) Hi(t, fo) Hi (2, fe) (7.69)

As discussed in section 2.10.3, similarly with low frequencies, time-invariant Volterra
coefficients B1(fa), B2(fa, fb), and Bs(fa, fb, fc) that describe intermodulation in the fre-

quency band of interest can be extracted by taking the first Fourier coefficients of P (t, fa),

P2(ti fm fb)) and P3(t) fa’ fln fC) respectively.
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If i, consists of two tones of equal magnitude as in (7.27) where f; = fo = f; and
fs is the input signal frequency, the third-order intermodulation generated by the switching

pair can now be calculated as

3
IMs=7-

B;

.72
5| & (7.70)

where we have used the notation B; = Bj(fs) and By = B3(fs, fs, —fs)- It is easy to
see that to evaluate these coefficients we need Hi(¢, fs), Ha(t, fs, fs), Ha(t, fs, —fs), and
Hs(t, fs, fs»—fs). Hence we must solve (7.60) once, (7.61) twice and (7.62) once.

The total mixer distortion can be found by cascading the power series or Volterra
series that describes the transconductance stage with the time-invariant Volterra series de-
rived for the switching pair. Assuming that the Volterra series that describes the transcon-

ductance stage is

is = A1(fa) © Vin + A2(fa, o) 0 0 + As(fa, fo, fe) 0 v, (7.7)

the Volterra coefficients that describe the total mixer distortion are

Ci(fa) = Bi(fa)A1(fa) (7.72)

Ca(fa, f5) = B1(fa + fo)A2(fas fo) + Ba(fa, fo) A1(fa) A1(fo) (7.73)
Ca(fas fo, f) = Bilfa+ fo + fe)As(fas fo, fe) (7.74)

+ 2Ba(fa, fo + fe) A1(fa) A2(fos fe) (7.75)

+ B3(fa, for fe) A1(fa) A1(fo) A1 (fe) (7.76)

To calculate C3(f1, f1, —f2), besides B1(fs) and B3(fs, fs, — fs) we need Ba(fs,0) and Ba(—fs,2fs)
which implies that Hy(fs,0), Ha(—fs,2fs), H1(0) and H1(2fs) must also be calculated. Ap-

proximately, the second-order interaction can be neglected and the total mixer distortion
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Figure 7.11: High-frequency intermodulation prediction (solid line) and simulation with
spectreRF (dashed line) for a switching pair operating as a downconverter, versus bias

current and for several LO frequencies. The model corresponds to a 0.25 um technology,
the channel width is 100 ym, and the the LO amplitudeis 1 V.

can be given as the sum of the intermodulation generated by the transconductance stage
and the switching pair separately, in a similar fashion to equation (7.40) for the low fre-
quency case. It is worth noting however in the example of Fig. 7.20 below that when the
high-frequency switching-pair nonlinearity dominates the mixer distortion, the interaction
between the two stages partially improves linearity and the total mixer intermodulation is

lower than that of the switching pair alone. This behavior is not observed at low frequencies.

7.4.2 Results and Comments

Fig. 7.11 shows intermodulation for downconversion operation, as predicted with

the above method and as simulated with SpectreRF, versus bias current and for several
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Figure 7.12: High-frequency intermodulation versus LO amplitude, for a fixed bias current
and several LO frequencies.

values of the LO frequency. The quarter-micron technology whose BSIM3 version 3 model
is available was used, the channel width was 100 pm and the LO amplitude was 1 V. Similar
simulation with the BSIM3 version 2 model results in a high frequency intermodulation
curve with large discontinuities, caused by discontinuities in the derivatives of the gate-
source capacitance of this model.

Fig. 7.12 shows intermodulation for the same switching pair of the same 0.25 pm
technology, performing downconversion as a function of the LO amplitude for a fixed bias
current Ig = 8mA and several LO frequencies. We observe that contrary to the low-
frequency case where the intermodulation improves monotonically as the LO amplitude
increases, at high frequencies there exists an optimal value after which the intermodulation

increases. The same behavior is observed for upconversion and has also been reported for
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Figure 7.13: The third-order time-varying Volterra coefficient Ps(t, fs, fs, —fs) for fixed

LO frequency fro = 4GHz, bias current Iz = 8mA, and two different LO amplitudes
V,=08V and 2V.

bipolar transistor switching pairs in [56] and [31]. Because of the higher voltage swing
of the common-source node when the LO amplitude is high, higher current is injected by
the parasitic capacitances which accentuates the high frequency phenomena and alters the
periodic operating point of the devices. Fig. 7.13 shows the real part of the third order
time-varying Volterra coefficient P3(t, fs, fs, —fs) of an upconverter over one LO period,
for two different values of the LO amplitude 0.8V and 2V, and for the same bias current
8 mA and LO frequency 4 GHz (for upconversion the complex exponentials of (7.60)-(7.62)
approach one and the time-varying Volterra coefficients are mostly real).

Let us qualitatively comment on the role of the body effect. We have already es-
tablished in sectioﬁ 7.3.1 that at low frequencies the behavior of the switching pair is largely

insensitive to the body effect. Observe that in the I-V relation of the transistor, the sum
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Vs + Vi appears. Whenever because of a change in the LO voltage or the transconductance
stage current a change in Vs + Vr occurs, the change in Vs is smaller in the presence of body
effect than in the absence, because part of the variation in Vg + V7 is contributed by the
change in V7. Reduced Vs swing means that at high frequencies the body effect effectively
reduces the value of the capacitance connected to the common-source node approximately
by the quantity 1/(1 + b) where b is the ratio of the small-signal body transconductance
over the small-signal gate transconductance (although b depends on Vg, for simplicity it is
considered here a constant). A typical value for the quantity 1/(1 + b) is 0.9 and this mod-
ification to the capacitance value causes only a minor change to the distortion prediction.
However, it has been taken into account in the predicted curves shown in this chapter.
Finally let us comment on some assumptions adopted about the local oscillator.
The presence of a time-varying common LO voltage results in an additional voltage swing of
the common source node and enhances the reactive effects which a.ppez;.r at lower frequencies.
This was also verified experimentally. The assumption about the approximately sinusoidal
shape of the LO voltage waveform is usually realistic at high frequencies. In the case that
a tuned load LC buffer provides the LO signal, the LO waveform remains approximately
sinusoidal as long as the load capacitance is not dominated by the time-varying gate-source
capacitances. The presence of an output impedance of the local oscillator causes small
error in the predicted intermodulation value if the actual applied LO waveform amplitude

is considered in the prediction.
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7.4.3 High-Frequency Intermodulation in terms of Normalized Parame-

ters.

The calculation of the switching-pair intermodulation at high frequencies is very
fast when compared with the performance of a circuit simulator. It requires, however, the
use of numerical methods and is not easily applicable by a designer. For this reason we
will attempt to capture the intermodulation performance of the switching pair in graphs of
normalized variables.

Having the ability to rapidly evaluate the intermodulation of the switching pair,
we can experiment with the related parameters. Neglecting the terms involving deriva-
tives of the capacitances in (7.60)-(7.62) does not appreciably change the prediction, while
replacing all the time-varying capacitors by one of constant value Cj, from the common-
source node to ground causes only a small inaccuracy. Since for the largest part of the
LO period one of M1 and M2 is cut-off, a reasonable value for C;,; is the sum of the total
junction capacitance to ground, the gate-source capacitance of one of the two transistors
in saturation, and the gate-source overlap capacitance of the other transistor. To generate
the following graphs of normalized variables we will make the arbitrary but better than
the constant capacitance approximation that 0.25C;, is a gate-source capacitance depen-
dent on the transistor region of operation as in (7.48) and the rest 0.75C;,; is a constant
capacitance to ground. Fig. 7.14 shows intermodulation of a switching pair operating as a
downconverter versus LO frequency, for a fixed capacitor connected to the common source
node, for the simple model that arbitrarily breaks down Cj,; as just described, and for the

more complete model of voltage-dependent capacitors described in section 7.4.1. In this
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Figure 7.14: Comparison of the-high frequency intermodulation prediction using realistic
voltage-dependent capacitor models (solid line), a fixed-value capacitor connected from the
common-source node to ground (short dashed line), and the simple approximation in which

0.25C;,: is a gate-source capacitor and 0.75C; is a fixed capacitor to ground (long dashed
line).

simulation the quarter-micron technology was used, the channel width was 100 zm, the LO
amplitude was 1V, and several values of the bias current are shown. It is worth noticing in
this graph that for relatively high bias current the high frequency deterioration up to very
high frequencies is almost negligible.

Fig. 7.15 shows intermodulation of the switching pair operating as a downconverter
versus bias current for a fixed LO amplitude of 1V, for several values of the parameter
0, and for several values of the parameter CinfrLo, including the one that corresponds
to DC. We observe that the intermodulation at any given frequency can be viewed as
the sum of its value at low frequencies and a high-frequency component. In addition,

the high-frequency component does not significantly depend on parameter 6, and can be
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the high-frequency intermodulation

Is = KuW)?+ Kiu(Vs)?

+ (C1 = Co)V,omfro cos(2m frot)

d
LGt 62'2 +Cb) Z(i+W) (7.78)

Vosin(2rfrot) = V1 — V2 (7.79)

where u(z) is the step function which equals its argument if it is positive and is zero

otherwise. Equivalently

e = (@) ()
vz - \v) T\,

4 (C1 = C2) fLom cos(2mt’)

KV,
(C1+C2+Ch)fro @ (V1 Vz)
SV, @\, + A (7.80)
in2rty = A _ V2
sin(27t’) = V. "V, (7.81)

where the normalized time variable ¢ = tfro has also been introduced. It is now appar-
ent that the high-frequency part of the intermodulation can approximately be expressed
in terms of two parameters, Z = Ig/(K1V?) and Y = Ciotfro/(VoK1). Fig.7.16 shows
normalized intermodulation 3/4 (B3/B;) K?V,} for downconversion operation in terms of
the two parameters. These particular curves were obtained for LO amplitude 1 V, but
close agreement is observed if the calculations are repeated with a different one. The same
normalization can be shown to be valid for an upconverter. Letting f; =~ 0 we obtain the
corresponding graphs shown in Fig. 7.17. In these normalized graphs the body effect is
neglected, but can be approximately accounted for by reducing the capacitance value as

discussed previously in section 7.4.2.
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Figure 7.16: Normalized high-frequency intermodulation for a downconverter and square-
law devices.

7.5 Measurements

To experimentally verify the validity of our results, third-order input intercept
point (IIP;) measurements were taken from a single-balanced active CMOS mixer fabri-
cated in the Philips Qubic2 process. The measurement setup is shown in Fig. 7.18. The LO
frequency was 375 M Hz, the input signal consisted of two tones around 395 M Hz spaced
60 K Hz apart, and the output was obtained at 20 M Hz. The input was resistively matched
to 501.

The width of the transconductance stage transistor was 100 um, that of the switch-
ing pair devices was 200 ym while minimum channel length 0.8 um was used for all the

transistors. An I-V curve was obtained using the available SPICE model, and the param-
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Figure 7.17: Normalized high-frequency intermodulation for an upconverter and square-law
devices.

eters § = 0.94V -1, K = 10.4mA/V?, n¢: = 44mV were extracted with curve fitting for
a 100 um wide device. The capacitances were also estimated from the available SPICE
model and provided a total effective capacitance of approximately 0.8 pF, connected to the
common-source node. For the total mixer intermodulation prediction, the nonlinearity of
the transconductance stage was provided by a power series which can be easily derived from
the expressions given in the appendix.

Fig. 7.19 shows measurements and prediction of IIP; versus bias current for a
fixed LO amplitude of 1V. Very good agreement is observed. Also shown are the indi-
vidual contributions of the transconductance stage and the switching pair, as well as the

contribution that the switching pair would have at low frequencies. The switching pair
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Figure 7.18: Measurement setup.

nonlinearity dominates at high bias current. At low bias current, where the switching-pair
performance deteriorates compared to DC, the performance of the transconductance stage
is also poor, and as a result the total mixer intermodulation prediction is almost identical
with that at low frequencies.

The high frequency effects are better demonstrated in Fig. 7.20 where the bias
current is fixed at the low value of 1.5 mA and the LO amplitude is swept from 0.5V to 2V.
The individual contributions of the transconductance stage and the switching pair, together
with the total mixer IIP; at low frequencies, are shown. Clearly the large LO amplitude
causes high-frequency deterioration. Again very good agreement between prediction and

measurement is observed.
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Figure 7.19: Intermodulation measurements versus bias current for a fixed LO amplitude
Vo=1V.

7.6 Conclusions

A nonlinearity analysis of the CMOS transistor switching pair has been performed.
We demonstrated that in the frequency band of interest its nonlinearity can be accurately
described by a regular power series, or Volterra series at high frequencies, and we described
how the coefficients of these series can be calculated. As a result of our analysis we pro-
duced normalized graphs from which the active-mixer intermodulation can be predicted for
any technology parameters and operating conditions. Using these, the designer can rapidly
estimate the suitability of a given CMOS process for a given set of mixer specifications,
and can accelerate the design cycle. Several useful results were derived in the course of the
analysis. The imi)orta.nce of a physical CMOS transistor model, describing weak moder-

ate and strong inversion with a single analytical equation was demonstrated and a simple



174

IIP; (dBm)

A N o 0

06 08 1 12 14 16 18 2
Vo (V)

Figure 7.20: Intermodulation measurements versus LO amplitude for a fixed bias current
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appropriate model was discussed and used.
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Chapter 8

Design Examples

8.1 Introduction

This chapter describes some examples of single-balanced downconversion RF mixer
designs. Although double-balanced mixers are more commonly used in integrated systems,
these designs are sufficient to demonstrate the use of the theoretical results of the previous
chapters. The available process is standard CMOS of minimum drawn gate length 0.24um,

with two polysilicon layers.

8.2 Design Topology

The topology of the designs is shown in Fig.8.1. Care was taken to make this
design flexible during testing. The mixer core employs an inductively degenerated common-
source transconductance stage. The degeneration inductance L; is implemented with the

bond wire and the pin of the TSSOP package and is expected to be approximately 3nH.
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Figure 8.1: The topology of the implemented designs

Capacitor C4 employed in some of the designs is connected between the gate and the source
of the transconductance stage transistor to reduce the real and the imaginary part of the
impedance looking towards the gate of the transistor and therefore facilitate input matching.
The input and output matching networks and the ac coupling capacitors are external.
The current combiner described in chapter 3, section 3.2.2 is used at the output, also

implemented with discrete components. The capacitance of the current combiner Cc+Cour
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shorts the LO feedthrough at the output. Since the bond wire inductance represents a
significant impedance at the LO frequency which can give a significant voltage swing, part
of the capacitance of the combiner Coyr = 6pF is implemented on chip. Resistor Ry is
intended to reduce the output impedance of the mixer, to reduce possible excess gain and
reduce the nonlinearity generated by the nonlinear output resistance of the transistors of
the mixer switching pair.

The LO buffer transforms the external single-ended LO waveform to differential. It
employs a differential pair, one side of which is ac grounded and the other side ac connected
to the external LO signal. It utilizes on chip tuned LC tanks. The resistance Ryo4c which
sets the DC level of the LO waveforms supplied to the mixer is external. The bypass
capacitor Cpgg is used to reduce the common mode LO voltage. No matching network
is used at the LO port since there is no matching requirement and, as we shall see, the
necessary internal LO amplitude can be obtained without impedance matching at this port.

Independent bias networks for the mixer core and the LO buffer allow us to in-
dependently set the bias currents in these blocks. The dc level of the gates of the mixer
switching pair can be adjusted though Rpo4., and the dc level of the gates of the LO buffer
differential pair can be set independently since Vpp is connected on chip only to the bias
circuit of the LO. The bias resistors Rp are implemented with diffusion and all the on-chip
capacitors are implemented with double polysilicon. The capacitors whose quality factors
are critical are partitioned to small units such that the Q remains high.

High injection was employed since higher degeneration in the image band provides

lower out-of-band noise contribution.
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8.3 Mixer Core Design

In this section we use the theoretical results of the previous chapters to relate the

performance with the design parameters.

8.3.1 Mixer Conversion Gain

Since the input is conjugately matched, the gain of the transconductance stage is
given by expression (6.59)

(RMS current at transconductance stage output)?  wr 1
available source power T w wkg

GAINygnsc = (8 1)

where wp = gm/(Cys + Ca) is the unity gain angular frequency of M3 and w is the angular
operation frequency. To obtain the power gain of the mixer we must calculate the amount
of signal current that is delivered to the mixer load. The conversion loss in the switching
pair must be subtracted from the gain of the transconductance stage. This, as explained in
the previous chapters for perfect switching, is equal to 2/ or —3.9dB. In our case however
—5dB is a better prediction, as we shall see shortly in section 8.5. The output impedance
of the switching pair Rsp is in fact time-varying and its time-average is approximately the
effective value as discussed in chapter 2. When one of the two devices is turned off,‘ the other
device forms a cascode with the transconductance stage device and the output impedance
of the switching pair is very high. When both devices conduct, the output impedance of
the switching pair is significantly lower, almost equal to 2/ggs, where g4s is the output
conductance of M1 or M2. At the output of the combiner this impedance is stepped down
by a factor of 4 as we saw in chapter 3, section 3.2.2 (or as would be the case if a transformer

balun had been used instead of the combiner). Now, impedance R,y:1, which we use to limit
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the mixer output impedance if necessary, is in parallel with Ry,. Finally the total mixer

output resistance is
= Rsp/ / Routl

Rout 4 (8.2)
and the mixer power conversion gain equals
CG = 1010g,0(GAI Niranse - %  Rowt) — 5 dB (8.3)

The factor of 1/4 in the logarithm accounts for the fact that since the mixer output is
assumed matched, half of the output current will be delivered to the external load and half
will be consumed on the mixer internal output impedance. In practice the real part of the
internal mixer output impedance Ry is further reduced by the nonidealities of the current
combiner as explained in chapter 3. Ohmic losses in the combiner inductors, the input and
output matching networks and board traces further reduce the gain.

Most of the factors that determine the mixer output resistance are not easily
predicted accurately. Therefore it is a good practice to design a mixer with a conservative
value for Roy. If the measured gain is higher than desired it can always be reduced by

introducing Roy1 -

8.3.2 Linearity

Equation (7.40) approximately provides the intermodulation distortion of the mixer

b
+larf? |2 ) V2 (8.4)

3

as
a1

where V;, is the input signal voltage, a1, a3 are the power (or Volterra) series coefficients

of the transconductance stage and b;, b3 are the corresponding coefficients of the switching
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pair. Actually the output resistance of the switching pair also contributes nonlinearity and

in this case an approximate expression for M3 is

b
;3'|+ |a1b1|
1

as

3
IMs = 7 ( al* a1 | = ) V2 (8.5)

d3
d

where d; and ds describe the nonlinearity of the output resistance. However, this nonlin-
earity can be reduced if a linear resistor dominates the mixer output. Then, the input-third

order intercept point of the mixer in terms of voltage is given by

) - (8.6)

In terms of available power of the source, using the terminology of section 6.3.3

-1
) 6.7

where Io1p, transc is the output third-order intercept point of the transconductance stage

3

4

bs

b1

as
o}

1 3
.2 = — -
‘/-m,IIP:; Ial|2 (4

the third-order input intercept point is

1 b
IIP;(available source power) = G ATV (I(Z)IP: + B_ ﬁ
,transc

which has dimensions of current. We remind here that

V_2
IIP;(available source power) = % (8.8)
(]
GAINtransc = 4|a1|2Rg (8-9)
4 as
I? =_—|= .
OIP3,transc 3 a:i; (8 10)

and R, is the real part of the input impedance looking towards the transistor gate. From

(8.7) we obtain the IIP; in dBm:

IIP3(dBm) = 30 — 10log(2 - GAINtansc) — 101og (12—L— + Z—:%D (8.11)
OIP; transc
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or approximately

3b3

1
I1P3(dBm) = 27 — 101log(GAINiransc) — 5 max {—20 log(I%; Py transc)» 20 10g( b,

)

(8.12)

Although we abusively take the logarithms of non unitless quantities, if we use the same

system of units, the final result is apparently correct. The term 30 originates from the
logarithm of 1mW which appears in the conversion of power to dBm.

The IIP; due to the nonlinearity of the transconductance stage and the switching

pair alone respectively can be expressed as
(I1P3)4(dBm) = 27 — 10108(GAI Niransc) + 1010g(I3;p, transe) (8.13)

and

3b3

oy ) (8.14)

Quantities GAI Niransc and Iorp, transc can be calculated from the expressions of

chapter 6, while 20log(3b3/4b;) can be read from the normalized graphs of chapter 7.

Transconductance Stage Nonlinearity

The output third-order intercept point of the transconductance stage used in equa-

tion (8.12), when the input is conjugately matched, is given by (6.58), repeated here

27‘1

4
Ig)IPs,transc = gm (8.15)
where 71 = 1/g1, and r} is given by (6.28)
293
R 8.16
T el 34 (8.16)
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Above g1, g2, g3 are the coefficients of the power series that describes the drain current of

M3 versus its V.

Switching Pair Nonlinearity

Experimenting with the methodology described in chapter 7 one can see that the
intermodulation distortion of the switching pair always improves when the bias current
or the LO amplitude increases, provided that the width of the transistors is adjusted to
optimize the performance. Similarly the intermodulation always improves when the length
of the transistors is reduced. Therefore we will use the maximum allowed bias current,
optimize the LO buffer to obtain maximum LO amplitude and choose appropriate width
for the switching pair devices. The corresponding graphs of intermodulation versus device

size are shown in section 8.5.

8.3.3 Noise Figure

The noise figure of an active mixer with a conjugately matched transconductance
stage has been discussed before in section 5.6. This has not been significantly degraded by
high frequency effects, since as we shall see in section 8.5 the conversion gain of the switching
pair is still very close to the maximum theoretical value. According to the discussion
of chapter 4 the low frequency prediction of the switching pair noise is sufficient in our
operation frequency and is used in eq. (5.32). However, this is only a coarse estimate which
can vary by several dB from the measured value for the reasons discussed in section 5.6 and

also later in section 8.6
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8.4 LO Buffer Design

The size of the devices of the switching pair M B1 and M B2 of the LO buffer
is chosen as a compromise between two factors. First the width of the devices must be
large enough such that for the given input LO power the tail current is almost completely
switched and therefore close to maximum output LO swing is obtained. Second the parasitic
capacitance introduced from the common source node to ground must be small enough
such that a good common mode rejection and therefore a good single-ended to differential
conversion is achieved. Minimum channel length is used for these transistors since it benefits
both of the above factors.

The current source M B3 is chosen to have a non-minimum gate length in order
to increase its output resistance and improve the common mode rejection. Since the capac-
itance from the drain of this device to ground is dominated by the parasitic capacitances
of MB1 and M B2, only a very small benefit is introduced by reducing the width of M B3
to a value lower than the width of M B1 and M B2.

The tank is implemented with on chip inductors and capacitors. Although a larger
LO swing can be achieved with lower capacitance and larger inductance, some capacitance
was introduced such that the time-varying capacitance Cgys of the transistors does not
dominate. As we mentioned before in chapter 7, such capacitance is harmful since it reduces
the zero crossing slope of the LO waveform and elongates the time interval during which
the switching pair introduces noise and frequency distortion.

The on-chip inductors were implemented with metal 5, metal 4 and metal 3 in

parallel to improve the quality factor (Q). However, the low resistivity of the epi substrate
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Figure 8.2: On-chip spiral inductor model used in simulation, provided by ASITIC

used allows eddy currents to flow and introduce losses which significantly reduce Q. The
low Q translates to low impedance at resonance which means that relatively high current is
needed to acquire the desired LO swing. However, the low Q makes the LO buffer broadband

and less sensitive to tuning. The model of the inductors shown in Fig. 8.2 was derived with

the program ASITIC [59].

8.5 Implementation

Our mixer designs use devices of two different gate lengths 0.24pm and 0.49um.
The simplified technology parameters discussed in chapters 4 and 7 for these channel lengths

as extracted from the available spice models are shown in Table 8.1. The specifications that

Table 8.1: Process Parameters

Parameter (W=100 um) | L=0.24 pm | L=0.49 pym | Units
K 9.212¢-2 2.67e-2 AV
6 2.46 0.778 v-1
Vr 0.531 0.511 A\
Cys1 (cutoff) 21 21 fF
Cys2 (saturation) 140 250 fF

38 34 mV

no

all the designs satisfy are shown in Table 8.2.
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Our LO buffer, optimized as described in the section 8.4 for maximum output LO
voltage, provides a differential LO voltage of amplitude approximately 1V, and amplitudes

close to this value are used in the optimization of the switching pair.

Table 8.2: Design Specifications

Parameter Value
Input signal frequency (frr) 1.9GHz
Output signal frequency (f1r) 100MH=z
LO frequency (fro) 2GHz
Power Supply Voltage (Vpp) 2.5V
Current Dissipation of mixer core (Ig) 8mA
Current Dissipation of LO Buffer (Igg) 4mA
Required external LO power < —8dBm
Input Return Loss (in 50 © environment) < —12dB
Output Return Loss (in 50 § environment) | < —12dB
LO input Return Loss not specified

Fig. 8.3 and Fig. 8.4 show conversion gain and intermodulation distortion re-
spectively of the switching pair versus transistor width for channel length 0.25um. The
corresponding graphs for channel length 0.5um are shown in Fig. 8.5 and Fig. 8.6. In both
cases the bias current is 8mA, the LO amplitudes shown are 0.7V, 1V and 1.3V, the LO
frequency is 2GH z and the input signal frequency is 1.9GH 2. Some extra capacitance equal
to 60fF is included from the common source node to ground, which represents as a first
approximation the drain capacitance of M3 and the wiring capacitance. It is apparent from
these graphs that the optimal width values are approximately 100um and 150um for the
channel lengths 0.25um and 0.5um respectively. The transistor size changes the LO buffer
loading and affects the amplitude, but the capacitance of the tuned tank is adjusted such
that the amplitude at the transistor gates in all cases is 1V.

Four designs were fabricated whose design parameters are shown in Table 8.3.
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Figure 8.3: Conversion gain versus device width for minimum device

length and several LO amplitudes.
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Figure 8.4: Intermodulation distortion versus device width for minimum
device length and several LO amplitudes.

Their differences in the performance are discussed in the next section.
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Figure 8.5: Conversion gain versus device width for device length 0.5 ym
and several LO amplitudes.

50 100 150 200 250
W2 (um)

Figure 8.6: Intermodulation distortion versus device width for device
length 0.5 pm and several LO amplitudes.

8.6 Predicted and Measured Results

Before we compare predicted and measured results we should mention that the
prediction is not expected to be accurate since there are several unknown parameters for

which we use only a rough approximation. For example the value of the degenerating
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Table 8.3: Design Parameters

Design A | Design B | Design C | Design D

Parameter Units
W/L of M1,M2 100/0.24 | 150/0.49 | 100/0.24 | 150/0.49 | pm/um
W/L of M3 40/0.24 | 150/0.24 | 50/0.24 | 100/0.49 | um/um
W/L of MB1,MB2 || 200/0.24 | 200/0.24 | 220/0.24 | 220/0.24 | pm/um
W/L of MB3 100/0.49 | 100/0.49 | 100/0.49 | 100/0.49 | pm/um
Ca 0 0 200 100 fF

Ly 5 5 5 5 nH

Cr 600 400 600 400 fF

inductor Ly = 3nH which is implemented with a bond wire is only a first order estimate.
The input and output matching networks are formed with inductors and board traces which
demonstrate ohmic losses that are difficult to estimate.

The output current combiner is also imperfect and according to the discussion in
chapter 3, if the used inductors are lossless, it would approach perfect operation for small
inductance values and high mixer output impedance. However, lab measurements showed
that small inductance values induce high losses. Relatively high inductance values equal to
270nH and completely eliminating the external capacitor C¢c were found to give the highest
gain and were used in practice. As we shall see this gain is yet significantly lower than the
theoretically achievable with lossless inductors.

From equation (3.4), the operation of the current combiner improves for high
mixer output resistance. Also, high mixer output resistance provides higher power gain
because it approaches the ideal current source which can provide infinite power. Long
channel devices in the switching pair provide higher output resistance because of improved
channel length modulation effect. It is simulated from the available spice model, that

under the bias conditions that appear in the switching pair devices when they are on and
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contribute some finite output resistance, the output resistance is r4y; = 1.2K2 and oy =
3KQ for L = 0.24pm and L = 0.49um respectively. According to our discussion on the
current combiner of chapter 3 the output resistance of each one of the transistors appears
at the output in parallel with the current source which gives the difference of the two drain
currents. In particular the time-average of each one of the resistors should be considered, but
because calculating this time-average is not straightforward and because we would rather
obtain a pessimistic estimate for the power gain prediction, we will assume that the parallel
combination of the two impedances is half of the value quoted above.

The internal mixer output resistance depends on the drain voltage of the devices,
is highly nonlinear and tends to dominate the linearity when an external linear resistor
Ryus1 is not connected. The output resistance affects the linearity less when long channel
devices are used for the switching pair, because then the internal nonlinear resistance is
higher.

We should also note that there is some uncertainty with the measurements of the
IIP;. Several measurements that were repeated with matched input and output but with
different matching networks were found to be as much as 2dB different. This probably has
to do with the fact that the out of band behavior of the matching networks has a minor
effect in the intermodulation as discussed in chapter 6.

The power gain and linearity improve when the DC level of the LO voltage is
relatively low. This happens because as the drain-source voltage of the switching pair
devices increases their output resistance increases. A DC LO voltage of 2V was used for all

our measurements.
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The input 1dB compression point P_14p is dominated by the output headroom
when external resistor Ry is not connected. As we shall see P_j4p increases by a lot when
a low Rpy is used to reduce the output swing, which also reduces the power gain.

Two different quality factors can be defined for the mixer input. One, denoted with
Qin is the ratio of the imaginary and thé real part of the input impedance of the transcon-
ductance stage, including the bond wire of the gate. The second, denoted with Qm is the

quality factor of the matching network which matches the real part of the input impedance

of the mixer to the impedance of the source 50§ and is equal to \/Re{Z;}/50 — 1. The
higher these quality factors are, the higher the losses introduced and the more sensitive
matching is to the component value variation.

Estimating the noise figure is also a difficult task because of the uncertainty in the
design parameter values and the complexity of the accurate calculations. We will attempt
to obtain only a rough estimate and observe the trend as the design parameters change
rather than predicting it accurately. First the noise parameters of the transistors v and
are unknown. Arbitrarily we will use v = 4 and v = 2 for channel lengths L = 0.24um
and L = 0.49um respectively. Second, losses at the input matching network introduce an
unknown amount of attenuation which increases the noise figure. Third, since these designs
are single balanced, noise form the LO port appears at the output. The LO buffer generates
its own noise and also amplifies the noise floor of the signal generator used as external LO
source. This noise floor is in the order of —130dBm/Hz to —140dBm/Hz, (which as
a comparison is significantly higher than the available noise power of a resistor at room

temperature —174dBm/Hz). Now from the discussion of chapter 4 we know that because
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of symmetry, the transconductance of the switching pair G(t) is periodic with period half
of the LO period. Therefore, only the even order sidebands contribute noise, that is, only
noise at frequencies frr, 2frLo £ fir at the output of the LO buffer will be transfered to the
output. Fortunately the tuned tank LO buffer load attenuates the noise at these frequencies,
but this attenuation is finite, since our inductor Q is relatively low (simulated with ASITIC
approximately equal to 3.5). In addition, because of asymmetries introduced by the output
current combiner which is an asymmetric load, and the fact that the LO buffer has a single-
ended input and does not perform perfect single-ended to differential conversion, we do
expect that some noise will also be transfered from the fro + frr frequency bands where
the LO buffer load is tuned. As a very coarse approximation we will assume that the noise
at the LO port is white and is generated by an equivalent resistor equal to the resistance
of the tuned tank at resonance Rpp = 440§} (each tuned tank has a parallel resistance of
approximately 2202). Finally, we use expression (5.32) which as explé.ined in chapter 5 does
not accurately take into account the out of band noise contribution of the transconductance
stage.

Several other approximations have been made during the derivation of the expres-
sions used to predict the mixer performance, for example the gate-drain capacitances have
been neglected.

We must note that many of the factors that limit the accuracy of our prediction,
also limit the accuracy of the prediction of a circuit simulator. For example the simulator
gives overoptimistic results for gain if the board inductor losses are neglected.

Some critical parameters which have been found helpful in the performance predic-
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Table 8.4: Some critical design quantities

Parameter Design A | Design B | Design C | Design D | Units
GAINgranse 0.555 0.425 0.140 0.131 Q-1

b1 0.59 0.55 0.59 0.55

—I21p, transe 46 51.4 47 49.2 20 log(A?)
|3b3/4b, | 46.5 54.1 46.5 54.1 20log(A2?)
(II1Ps)¢r 6.5 5.0 12.0 11.2 dBm
(IIPs)sp (Low Rous) 6.3 3.7 12.3 8.8 dBm

G 5.1e-3 5.1e-3 5.1e-3 5.1e-3 Q!

G2 1.6e-4 1.05e-4 | 1.6e-4 1.05e-4 | Q72

Rin 712 545 179 168 0

Qin = Im{Z;n}/Re{Z:n} | 2.00 0.60 1.33 1.00

Qm = VRe{Zin}/50 -1 | 3.64 3.15 1.61 1.53

tion during the analysis performed so far are shown in Table 8.4. The predicted performance
parameters are shown in Table 8.5, while the measured performance parameters are shown
in Table 8.6. Some critical design quantities are given in table 8.4, while the prediction for

the performance parameters are shown in table 8.5.

Table 8.5: Predicted Performance Parameters

Parameter Design A | Design B | Design C | Design D | Unit
Power Gain (No Rgy:1) | 14.2 17.3 8.2 12.2 dB
IIP; (Low Royut1) 6.3 3.7 12.0 8.8 dBm
NF(dB) 6.8 7.8 11.0 9.9 dB

8.6.1 Design A

The devices of both the switching pair and the transconductance stage are of min-
imum channel length. The small width of the transconductance stage device provides high
wr and therefore high transconductance gain. The relatively high Q input matching net-
work introduces losses at the input and makes the input matching network very sensitive to

the component values. Also imperfect current combiner operation introduces losses at the
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output and makes the power gain about 4dB lower than predicted. The transconductance
stage and the switching pair contribute approximately equally to the nonlinearity when the
mixer output is dominated by a linear impedance. The predicted I1P; due to the transcon-
ductance stage and switching pair alone is 6.5dBm and 6.3dBm respectively. Because of
the interaction of the two nonlinea.ritiés we expect the measured IIP; to be a little lower
than these values, but on the other hand the losses of the input matching network tend to
increase this value. Therefore, the measured value of about 7dBm is in excellent agreement

with the prediction.

Table 8.6: Measured Performance Parameters

Parameter Design A | Design B | Design C | Design D | Unit
Power Gain (No Ryy1) | 10.2 13.3 6.0 9.2 dB

IIP3 (No Royi1) 2.0 1.0 5.3 4.8 dBm
IIP; (Low Ryyn1) 7.0 4.0 9.5 7.0 dBm
P_148 (No Rgy11) -11.2 -14 -7 -11.3 dBm
P—ldB (LOW Routl) -9.9 -7 -1.8 -2.2 dBm
NF(dB) 9.3 9.2 12.8 9.5 dB

Table 8.7 shows how the nonlinearity is dominated by the output resistance when
Rout1 is not present and how linearity improves as R, becomes low. The input P_y4p is
also shown in this table. When it is dominated by the output resistance nonlinearity it is
—11.2dBm while when a low Ry, is connected it is significantly higher, —5.5dBm. The
difference of the P_,4p and the IIP; is 12.5dB, higher than 9.6dB that would have been the
value if only third-order nonlinearity was present (see chapter 2). Therefore at this power
level, 5-th or higher order nonlinearities are excited. The measured noise figure 9.3dB is
about to 2.5dB higher than our coarse prediction. Such a discrepancy is expected because

of the input matching network losses and the other reasons explained before.
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Table 8.7: Gain, ITP3 and input P_,4p as a function of the output resistance

Rout1 () | Power Gain (dB) | IIP3 (dBm) | P_;4p (dBm)
o0 10.17 2 -11.2

27K 6.17 5.47

1.1K 3.83 6.16

510 1.00 6.25

200 -2.67 6.66 -5.5

100 -5.67 7.41

8.6.2 Design B

Here the devices of the switching pair are 0.5um long. This limits the linearity of
the switching pair which is less linear than the transconductance stage. Minimum length
but large width equal to 150um is used for the transconductance stage, which provides a
little lower transconductance gain than in Design A because of the lower wr, but also lower
Q input matching network and lower input losses.

The high output impedance of the long switching pair devices provides good op-
eration of the current combiner and high power gain since the output current is delivered
by an equivalent current source with a high output resistance. The predicted power gain
17.3dB is higher than the measured 13.3dB. The IIP; for a low Rout1 is limited by the
switching pair, and the measured value 3.7dB agrees very well with the measured 4dB. The
long channel switching pair devices are beneficial in reducing the output resistance nonlin-
earity since a relatively high Ry is sufficient to dominate the output resistance, without
excessively reducing the power gain.

The measured noise figure 9.2dB is again higher than the rough estimate 7.8dB.
The long switching pair devices have now lower noise contribution than in design A because

of their reduced « factor and because they attenuate more the noise from the LO port since
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their G2 value is lower.

8.6.3 Design C

Here a minimum channel length switching pair and minimum channel length and
small width transconductance stage are used, similarly to design A. However a capacitor
C4 = 200f F is connected between the gate and the source of the input transistor to reduce
the input impedance and facilitate input matching. This circuit is indeed very easy to
match and not very sensitive to the matching component value variation. Capacitor Cy
however reduces wy, which reduces the power gain. The output current combiner again
introduces high loss which makes the measured power gain 6.0dB, again lower than the
predicted 8.2dB.

The predicted IIP;3 is about 12dB from both the switching pair and the transcon-
ductance stage. The measured value 9.5dB is slightly lower but very close, within the limits
of the interaction of the two kinds of nonlinearity. Besides, we should mention that the
IIP; prediction of the transconductance stage is not accurate since in the derivation of
expression (6.28) we had assumed that Cy is small. This assumption does not hold very
well here since capacitor Cy is used. Indeed such a capacitor would tend to increase r3 and
reduce linearity.

The coarse estimate for the noise figure 11.0dB is close to the measured value
12.8dB. The low wr of the transconductance stage gives a high noise figure transconduc-
tance stage and also a low transconductance gain which does not significantly suppress the

noise generated by the switching pair and introduced by the LO port.
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8.6.4 Design D

This design uses long channel devices for both the transconductance stage and the
switching pair. It also uses capacitor C4 = 100fF to provide a low input impedance. The
long switching pair devices provide high output impedance which boosts the power gain.
The predicted power gain 12.2 is higher than the measured 9.0dB.

The IIP; is dominated again by the switching pair. The predict;ed is 8.8dBm and
the measured is 7.0dBm. Similarly to Design C, in reality the prediction of the transcon-
ductance stage nonlinearity is expected to be optimistic because of the large gate-source
capacitance, assumed small in (6.28).

The coarsely predicted noise figure is close to the measured value. Here, besides
the low gain of the transconductance stage, the noise figure remains below 10dB because
of the low noise factor 7 of the long channel devices and the low transconductance value of

the devices of the switching pair which suppress the noise form the LO port.
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Chapter 9

Conclusions

9.1 Thesis Summary

This thesis presented a systematic analysis of the operation of a commonly used
class of CMOS mixers, those which employ a transistor switching pair to commutate the
signal current. It was demonstrated that by carefully formulating the problems and by
adopting appropriate transistor models and some approximations, intuition can be obtained
and the performance can be qualitatively and quantitatively predicted. Some performance
characteristics, for instance the thermal and flicker noise generated by the switching pair
transistors, can be shown to have very simple analytical expressions, reported for the first
time as a result of this research. Other characteristics such as the switching pair intermodu-
lation require numerical solution of complicated equations, but in this case the performance
can be captured in graphs of normalized parameters. The linearity and noise of CMOS
transconductance stages were also studied and several useful results were derived. These

results can be applied to several other RF blocks besides mixers, such as LNAs and power
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amplifiers. Our theoretical results were validated with measurements of appropriate test
structures. A designer can rapidly optimize the performance of an active mixer by using
the results of this thesis without lengthy simulations. The designer can also easily judge if
a given CMOS technology has the potential to satisfy the desired specifications. The use of
the theoretical results was demonstrated with the design of some active mixers operating
in the 2GH z frequency band.

Some specific contributions are listed below:

e In chapter 4 expression (4.33) which predicts the thermal noise contribution of the
mixer switching pair was derived. In section 4.4.5 we showed how the estimate for
parameter G derived in section 4.4.2 can be used to predict the flicker noise generated
by the switching pair. The noise introduced by the LO port in the simplified case
that noise present at this port is white was found in section 4.4.3, and an expression
for the related gain (4.39) was derived. Simplified expressions for the switching pair
conversion gain, the gain of the white noise at the output of the transconductance
stage and the frequency limits where the prediction of our analysis is degraded by

capacitive effects were derived in chapter 4.

e The noise behavior of the commonly used inductively degenerated, conjugately matched
common-source CMOS transconductance stage was analyzed extensively in chapter
5. Expressions (5.21) and (5.22) were derived from which the noise figure can be
predicted and optimized. In particular the problem of optimizing the noise figure in

the presence of a lossy ESD was examined.

e In chapter 6 the intermodulation performance of several CMOS transconductance
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stages was studied. Expressions (6.59), (6.58) and (6.28) were derived from which
the IIP; of an inductively-degenerated conjugately-matched transconductance stage
can be predicted. Similar results for resistively degenerated stages with and without
input matching restrictions were derived. The body effect nonlinearity was found to
impose a limit in the linearization benefit introduced by degeneration, and the value of
degeneration above which no linearization benefit is obtained was found in expression

(6.35).

o In chapter 7 the concept of the time-varying power series and Volterra series was
used to find the intermodulation of the switching pair at low and high frequencies
respectively. The results are expressed in form of graphs of normalized parameters
shown in figures 7.9, 7.16 and 7.17. A simple transistor model whose IV curves
have continuous derivatives of any order in weak, moderate and strong inversion was
proposed. The continuity of the derivatives of the current and capacitance curves
versus bias in a transistor model used for intermodulation simulation was shown to

be critical.

9.2 Future Research Opportunities

One possible application of the research conducted in this thesis is generating
macromodels for mixers. The macromodels for example can take as parameters the design
parameters such as the bias current and the device sizes and model the gain, the output
noise and the nonlinearity effects. An accurate noise model could take into account the

cyclostationary nature of the noise.
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Several mixer performance characteristics were not analyzed in this thesis and can
be subject of future research, for example the port-to-port isolation and the 1 dB com-
pression point. An other interesting problem is the relation between device mismatch and
even-order nonlinearities. As mentioned in chapters 4 and appendix C the flicker noise be-
havior of devices with time-varying operating noise needs to be characterized theoretically
and experimentally. The thermal noise characteristics of short channel CMOS devices re-
mains a dark modeling area. In many modern applications the gate referred noise described
in [108] is significant, and verification of this model for short channel devices with measure-
ments is of very high importance. Theoretical and experimental work needs to be done,
to quantify all the fudge factors that the current model includes (i.e factors v, § and p)
described in chapter 5. Consideration of this more complete model for the characterization
of the switching pair noise at high frequencies is one more open problem. There is room
for analytical work on other mixer structures such as those discussed in chapter 3 and even
other circuit blocks such as oscillators, low noise amplifiers and power amplifiers. Finally
the problems analyzed here can be subject of future research using different approximations
or approaches in order to provide possibly more accurate, more intuitive or simpler ways to

predict the mixer performance.
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Appendix A

Cyclostationary Noise in
Radio-Frequency Communication

Systems

A.1 Introduction

The concepts of noise figure and noise temperature have been introduced to de-
scribe the noise performance of circuits and receivers {18, 2]. They are convenient perfor-
mance metrics because the noise figure and noise temperature of a system of cascaded blocks
can be found easily from the corresponding quantities of the individual blocks. However, the
simple formulas for a system of cascaded blocks assume that the noise at the input and the
output of every block is a wide-sense-stationary (WSS) process. There are two reasons why

the mixer output noise is in fact not WSS but has periodically time-varying statistics. First,
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the operating points of the devices may vary with time, and second the transfer function of
the noise signal from the point at which it is generated to the output can have time-varying
characteristics [31]. The mixer output noise is a cyclostationary process and its complete
description requires a periodically time-varying power-spectral-density (PSD) S(f,¢) [21].
An accurate evaluation of the output. noise when cyclostationary noise is processed by a
linear-periodically-time-varying (LPTV) system is considerably more complicated than the
evaluation of the output noise of a linear-time-invariant (LTI) system processing WSS noise.
The corresponding analysis and methodology is given in [21], and a related circuit simulator
has been presented in [71].

Despite the fact that the mixer output noise is cyclostationary, the noise figure
calculated using the time-average output noise PSD has been traditionally used to charac-
terize mixers, and the simple formulas for the noise figure of a system of cascaded blocks
have been used to find the noise figure of a receiver. We shall show here that this treatment
provides the correct noise characterization of a communication system in most practical
cases, but we will examine cases in which it could lead to an inaccurate prediction. The
pitfalls of applying the stationary process theory to cyclostationary signals have been pre-
sented in mathematical terms in [20]. Here we discuss qualitatively some related results

that can be useful in the design of radio-frequency communication systems.

A.2 Cyclostationary Noise and its Time Average

The complete description of a cyclostationary noise signal with its time-varying

PSD S(f, t), as opposed to its description with S(f), the time-average of S(f,t), is significant
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only when the block to which the cyclostationary noise is input is synchronized to the
variation of S(f,t) with time. This statement will be explained on an intuitive basis, and
it also gains support from the following theorem [19]

If a uniformly distributed random variable from zero to one cycle period is added to
the time variable t of a cyclostationary process with PSD S(f,t), (that is, the information
about the phase of the pérz'odically varying PSD is lost) the resulting process is stationary
and its statistics are the time-average of the statistics of the cyclostationary process.

If the system to which the cyclostationary noise is input does not track the PSD
variation with time, the phase of S(f,t) for this system is unknown. In the absence of
information about the phase of S(f,t) the process becomes stationary, with PSD equal to
the time-average of S(f,t).

Usually, the noise performance of the analog part of a communication system
consisting of a chain of radio-frequency circuit blocks, is cha,racterize;,d by measuring the
time-average noise PSD at the output of the chain. Noise measuring equipment measures
the noise PSD at a frequency f by measuring the noise signal power at the output of a very
narrow-band filter around f, without tracking the time variation of the noise statistics and
provides the time-average PSD.

When a cyclostationary noise signal passes through a LTI filter and the time-
average PSD is measured at the output, the same result is obtained if only the time-average
PSD is considered at the input of the filter [21]. However, when a cyclostationary noise
signal is fed to a time-varying system, consideration of only the time-average PSD of the

input noise can lead in the general case to wrong results [21]. For instance, if the time-
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Figure A.1: a) A cascade of two mixers. (b) Time-average PSD of noise at the input, after
the first mixer and the output.

varying gain and the power of the input noise obtain their peak values simultaneously,
considering only the time-average input noise will underestimate the output noise. The
following example will help clarify the situation.

Consider that a WSS signal n(t) with PSD S,(f) is fed to a mixer A, and the
output of this n,(t) is fed to a mixer B, as shown in Fig. A.1(a). The random signal

n(t) can represent noise present at the input of mixer A, or noise generated by its devices
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1. The mixing operation is modeled by multiplication of the input signal n(t) with a
periodic waveform (time-varying gain) generated by a local oscillator, a(t) with frequency
foo and b(t) with frequency f,p, for mixers A and B respectively 2. The output of mixer A
is a cyclostationary process whose time-average PSD consists of copies of S,(f) shifted in
frequency integer multiple of fo,, and wéighted by different coefficients. It is easy to see that
frequency components of n,(t) in distance integer multiple of f,, are correlated, since they
contain the same frequency component of n(t). A random process can be cyclostationary
with cycle frequency fo, only if there exists correlation between two different frequency
components in distance f,,. The spectral correlation can be expressed in terms of the
cyclic spectra, the Fourier components of the time-varying PSD, and in fact the k-th cyclic
spectrum for positive k is the correlation between frequency components in distance & foq,
while the 0-th order cyclic spectrum is the time-average PSD. A random process can be
WSS only if any two different frequency components are uncorrelated [21]. The output of
mixer B is a cyclostationary process with two cycle frequencies f,a and fop. If for and fop
are commensurate (their ratio is a rational number), ny(¢) can be viewed as cyclostationary

with one cycle frequency equal to the maximum common divider frequency of fo, and fos.

'In the case of noise generated by devices with time-varying operating point, this noise is cyclostationary
and white and its time variation can be incorporated to the system [31]. Therefore in any case the input
noise n(t) can be considered WSS. For every noise source inside the mixer the time-varying gain is a different
function.

2At high frequencies where reactive effects are not negligible, the mixing operation also depends on
the input-signal frequency and is better modeled with a periodically-time-varying transfer function A(f,t)
[107, 31), instead of a periodically-time-varying gain a(t). Frequency translation is described with the Fourier
components of A(f,t), the conversion transfer functions instead of the conversion gains. For simplicity
reactive effects are neglected in our mixer model. However the qualitative arguments presented here also
apply at high frequencies.
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A.2.1 Effect of LO frequency relation

Let us examine now the spectral content of the output of mixer B ny(t) at a
frequency fou:- Frequency components of 1,(t) at frequencies fous+kfob, k being an integer,
are folded on f,y; as shown in Fig. A.1(b). If nfo, = mf, for some integers n and m, there
exists correlation among these components, and it is incorrect to add their power, as we
would do if ne(t) were WSS, since a valid addition would require correlation terms. However,
if the ratio of fo, and fop is not a rational number, such integers n and m do not exist and
simply adding the different frequency components of the time-average PSD Spa(f) provides
the correct result, since the added terms are uncorrelated.

In practice, the ratio of two LO frequencies generated by different free running
oscillators can always be considered an irrational number, since because of the random
phase error they cannot track each other. The situation is different however if the two LOs
are locked to a common reference frequency. In a superheterodyne receiver which employs
two mixers, it is a common practice to generate the two LO signals from two PLLs with a
common reference frequency, which means that fos/fos is a rational number m/n (we will
assume below that m and n are such that a common integer divider greater than one does
not exist). Despite this, a rational frequency ratio foa/fop = m/n with m or n very large
numbers is expected to have the same practical effect as an irrational frequency ratio. In
fact, the LO frequencies in a receiver chain are often chosen such that they do not have a
simple relation in order to avoid spurious responses.

Assuming a smooth b(¢) with low frequency content, we can see that the conversion

gain of mixer B drops rapidly with the order of the sideband, and only the first few (for
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example up to 3 or 4) contribute significantly. Therefore, considering again the integers m
and n that satisfy foa/fos = m/n, if m is a large integer, in every set of correlated frequency
components of ng(t) in distance integer multiple of mfop = nfoq that contribute to fout,
only one term contributes significantly and only a minor error is introduced by adding the
power of all the components. If n is large, assuming a smooth a(t), the effect of noise
correlation is also attenuated for a similar reason: the copy of n(t) around nf,, has low
power. Concluding, the effect of spectral correlation is insignificant if a(t) is smooth and
n is large, or if b(t) is smooth and m is large, or both. Very often in practice, especially
at high frequencies a(t) and b(t) are smooth functions, and unless the ratio of the two
LO frequencies is a simple rational number m/n with m,n small integers, calculating the
time-average at the first mixer output and treating it as if it were the PSD of WSS noise,
does not introduce a significant error in the noise estimation at the second mixer output.
Nevertheless, there are practical situations where the time-varying gain of a mixer is not
a smooth waveform. An example is the sampling or subsampling mixer, in which case the
time-varying gain is a pulse train which has high frequency content.

The above argument can be easily visualized in the time domain with the example
of Fig. A.2. Assume that b(t) is an impulse train, so that mixer B is essentially a sampling
mixer as shown in Fig. A.2(a) and that we desire to estimate the time-average power of the
samples at the output of the sampler. Consider that the time-varying power o,4(t) of the
cyclostationary noise n,(t) — the integral of the time-varying PSD over all frequencies - at
the first mixer output is the periodic function of time shown in Fig. A.2(b). If foo = fob,

or foa = mfop, We always sample n,(t) when o4(t) is at the same point of the period as
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Figure A.2: Sampling cyclostationary noise.

shown in Fig. A.2(b), and if instead the time-average of o,(t) is considered at the input of
the sampler, we probably significantly overestimate or underestimate the output noise. In
this case, since b(t) is not a smooth function of time and its spectral content does not die

out at high frequencies, the effect of spectral correlation is not diminished if m is large. If
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foa/fob = m/n is a rational number and n is a small integer, we sample repeatedly only
a few points in the period and it is possible that considering the time-average of o,(t) at
the sampler input will result again in an erroneous noise estimation. However, if n is a
large number, the same points of the period are repeatedly sampled, but they are many
and uniformly distributed across a period, as shown in Fig. A.2(c), so considering the time-
average at the sampler input would give a practically correct result. When foq/ fob is not a
rational number, after long enough time the whole period is uniformly sampled and in fact
the same point is never sampled twice. In this case time-averaging at the sampler input
provides exactly the correct result.

Let us examine now the effect of the LO frequency relation in a more quantitative
manner. Referring to Fig. A.1, we can see that n,(t) consists of scaled copies of n(t) shifted
in frequencies kg foq + kbfob, Where k, and k;, are the sidebands at which the conversion
gain of mixers A and B respectively is significant, determined by the spectral content of the
waveforms a(¢) and b(t) and possibly as we shall see below by filtering the mixer outputs. If
two of these frequencies coincide, the spectral correlation affects the output noise estimation.

If k) and kj is a second set of mixer sidebands, the relation

kafoa + kbfob = k:;foa + k;;fob (Al)
or
kb - ké foa
= b _ ‘o A2
ka - k:x fab ( )

can only hold if fou/fob is a rational number, as we also concluded before. Furthermore, if

foa/ fob = m/n, spectral correlation has an effect only if there are integers k,, k., kp, and
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k; that represent mixer sidebands with significant conversion gain such that

ky—ky _m
ke—k — n

(A.3)

If for example, a(t) and b(t) are sinusoidal with frequencies m f, and nf,, where f, is some
reference frequency, kq, k., ky, and kj can only be +1 and —1, and spectral correlation can
have an effect only if n = m.

Similarly, one can examine the effect of spectral correlation when a third mixer
C follows the chain of A and B. Denoting the frequency of C by fo. and the sidebands of
C with some significant conversion gain by k. and ki, spectral correlation affects the noise

estimation only when there are mixer sidebands with significant conversion gain, such that

kafoa + kbfob + kcfoc = k:;foa + k;;fob + k::foc (A-4)

If the LO frequencies are related, i.e. foo = mfo, foo = nfo, foc = pfo, Where fo is some

reference frequency and m,n, and p integers with no common factors, (A.4) becomes
(ko — ky)m + (ky — kp)n + (ke = K)p = 0 (A.5)

In this case, it is possible that conditions (A.4) and (A.5) hold for low order sidebands, even
if the LO frequency relation is not simple. For example, if fo, = 2000M Hz, fo = 660M H2
and f,c = 10M Hz the above equations are satisfied for ko — k, = 1, kp — k, = -3, and

kc _k’c= _2.

A.2.2 Filtering a Cyclostationary Noise Process

If filtering takes place at the output of a mixer, as in Fig. A.3(a), it is possible that

the noise at the output of the filter is stationary, and no cyclostationary noise considerations
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Figure A.3: Filtering cyclostationary noise

need to be made, or that the characteristics of the cyclostationary noise change. Some
relevant theorems have been presented in [71], where they were derived in a mathematical
way. Similar results can be found elsewhere [31, 76]. These theorems become intuitive

by examining filtering of a set of correlated frequency components. Let us consider a
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cyclostationary noise process with cycle frequency f, and a set of correlated frequency

components in distance integer multiple of f,. The results of [71] can be observed:

1. Consider a low-pass filter with cut-off frequency f,/2 or lower, as in Fig. A.3(b). One
can see that only one component of the set of correlated components can fall in the
window [—f,/2, f»/2] that the filter allows to pass. Therefore any frequency compo-

nents at the output of the filter are uncorrelated and the output noise is stationary.

2. Consider a single-sided bandpass filter, either upper band or lower band with respect
to f,, and bandwidth f,/2 or less, as in Fig. A.3(c). After filtering, only one frequency

component of the correlated set remains, and the resulting noise is stationary.

3. Consider a bandpass filter with center frequency f, and bandwidth f, or less, as in
Fig. A.3(d). One can easily see that after filtering, the remaining correlated frequency
components can only be in distance 2f,, and therefore only the stationary and the

second-order cyclic spectra can exist.

Many other similar results can be visualized in a similar manner. For example if
the filter is a low-pass filter with a cut off frequency fo, the resulting process can contain
only the stationary and first-order cyclic spectrum. A possible application of such a result
as well as of result 3 above is the following: If it is known that the random signal at the
output of mixer A in Fig. A.1 does not contain the n-th order cyclic spectrum, ko — k. in
(A.2)-(A.5) cannot be equal to n.

In a receiver chain the first mixer is typically followed by a bandpass IF filter. In

this case one can apply the following theorem, which can also be verified easily by inspection:
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If cyclostationary noise with cycle frequency f, passes through a bandpass filter
with bandwidth f,/2 or less, and the frequencies k(f,/2) where k is an integer do not fall
into the passband, the output noise is stationary.

The latter has been used in [31] but here we clearly define the necessary properties
of the filter passband. Results 1 and 2 above can be seen as individual cases of this last

theorem.

A.2.3 Mixing a Band-Limited Cyclostationary Noise Process

In the previous section the passband characteristics of a filter following a mixer
were related to the frequency of the LO waveform driving the mixer in orde;* for the output
noise signal to have certain properties. Here we will examine the case of Fig. A.4(a) in
which a general cyclostationary signal for which we have no information about the location
of the correlated frequency components, passes through a filter and the filter output is fed
to a mixer (or more generally a time-varying circuit). We will relate the filter characteristics
with the frequency f, of the LO signal driving the mixer, in order for the time-average noise
at the mixer output to be unaffected by the spectral correlation.

If the filter is low-pass with cut-off frequency f,/2 or lower as shown in Fig. A.4(b),
no overlap will take place during mixing, and the average noise at the output will not be
affected by spectral correlation. This situation appears often at the back-end of a receiver
where sampling (for example performed by a switched capacitor filter or an analog to digital
converter) is proceeded by an anti-alias filter.

If the filter is bandpass with center frequency f. and bandwidth w, as in Fig. A.4(c),
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Figure A.4: Mixing band-limited cyclostationary noise.

one can see that overlap will not happen if

|(k = k') fo+2fo] > w

215

(A.6)
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for all mixer sidebands k and k' with some significant conversion gain. This results from the
observation that the positive passband will be transferred to frequency bands with center
kf, + f. and width w, the negative passband will be transferred to frequency bands with
center k' f, — f. and width w, and to avoid overlap the centers of the two frequency bands

must be in distance greater than w.

A.3 Two cases where spectral correlation is significant

A practical situation that deserves attention is when an interfering signal or blocker
is present at the input of a receiver. If this signal is strong it can change the operating point
of the devices and affect the circuit noise performance. The noise generated by the circuit
will acquire cyclostationary characteristics with cycle equal to the blocker period, and if the
blocker is not filtered or modulated to a different frequency, it acts as a common LO for
successive cascaded blocks. In this case, although a block can still be characterized with
the noise figure under the presence of a blocker, use of the formulas for cascaded blocks to
estimate the noise figure of the whole receiver can lead to an inaccurate prediction. This
situation could arise for example when an in-band blocker is processed together with the
weak desirable signal by the LNA and the RF mixer of a receiver.

Let us consider now noise introduced to a mixer from the LO port. The LO is a
periodically time-varying circuit and it is possible that the noise at its output contains some
cyclostationary component. The time-varying processing of this signal by the mixer tracks
exactly the time variation of the noise statistics since the mixer instantaneous operating

point is determined by the LO drive. Therefore, it is not correct to time-average the noise
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PSD at the LO output and use it as if it were a WSS process.

A.4 Conclusions

We examined qualitatively the significance of the cyclostationary nature of the
noise generated in a communication system. We saw that cyclostationarity is equivalent
to the presence of correlated components in the frequency spectrum. From the above
discussion it results that in the majority of the practical cases, use of the concept of noise
figure and considering only the time-average component of the cyclostationary noise at
the input and the output of every block does not introduce significant inaccuracy in the
noise characterization of the overall system for two reasons. First, the local oscillator
frequencies used usually do not have a simple relation and the situation resembles the case
at which the two frequencies are noncommensurate. Second, usually filtering takes place in
several places in the receiver chain which converts the cyclostationary noise to stationary
noise. However, we examined practical cases where cyclostationarity cannot be ignored,
namely when the subsequent stage is time-varying synchronously with the cyclostationarity,
as for example when the subsequent stage is driven nonlinearly by the stage generating
cyclostationary noise. In these situations, if noise characterization is desirable by means of
a circuit simulator which provides the time-average output noise the time-varying circuit
blocks must be simulated together. Alternatively, the simulator of [71] can be used to
calculate the cyclic spectra of every block separately and create appropriate macro-models

which can then be used in a behavioral level simulation.
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Appendix B

Time-varying Volterra series

Although the concept of the time-varying Volterra series have been used previously
in the literature [83, 106, 49], the authors could not easily locate a proof. This appendix

presents a derivation of this concept.

B.1 Taylor Expansion of a Functional

A functional is a function of a function. Consider the functional F(y(t)) which
depends on the value of y(t) over a time interval that we will assume to be (—o0,00). (For

example F(y(t)) = [, : y(t)dt is a functional).

Theorem 1 Consider h(t) a small perturbation around y(t). Then

Fly(t) +h(t) = Fw(®) + 3" Faly(t), h(t)) (B.1)
n=1

where

Eaw@ b)) = [ oo [ Ealen o B - Rl dn (B2)
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and
"F(y(t))
(&1) .- 0y(én)

are the Volterra Kernels. The concept of the Volterra kernels will be explained better below,

(B.3)

kn(£17 .. a§n) = ay

during the proof of this theorem.

Proof Consider the function f(€) = F (y(t) + € - h(t)). Taylor expansion in one dimension

provides

f@=f@+ﬂmk+%ﬂ@¥+$ﬂwﬁ+“. (B.4)

The Italian mathematician Vito Volterra (1860-1940) [99] calculated 7(¥)(0) by approximat-
ing the continuous-time functions y(¢) and h(t) with the discrete-time functions, or vectors
y=(y,...,yn) and h = (h1,...,hn). If F is a function whose argument is a vector, and

f(e) = F(y + €h) we know that

N
7'(&) = Y Di [Fly+eb)] - b (B.5)

=1

where D; is the differentiation operator with respect to the ¢ — th argument of F(-). In

analogy, in the continuous time case we have

f1&r= [ DelF(u(t) + ehN] A(e)de (B:5)

where D¢ [F(y(t))] represents differentiation of F(y(t)) with respect to y(¢):

OF(y() _ py)

D¢ [F(y())] = = F7(y(8);€) (B.7)

EG)

Considering F(y(t)) as a function of infinitely many variables y(t) indexed by t, D¢ [F(y(?)))

is the derivative with respect to one of those, y(£¢). Since

Flar= [ FOEE) + ehle); Ohe)de (B:5)

oo
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1O = [ PO (83
Now
Q= 21@= [ TPOEE + el Ohlelae (B.10)

but F((y(¢); &) is also a functional and using a similar definition for F(®)(y(t); &1, &2) we

obtain
o= [ [ PO + ehlo) 1, &b des (B.11)

hence
o= 77 [ PO 6, e (B.12)
Working similarly we can find f*)(0). Substituting in (B.4) and taking € = 1 we

obtain

F@+h0) = F@)+ [ FOG;0medk
+ /_:o /_:o FO(y(t); &1, &)h(61)h(E)dErde2 + ... (B.13)

which is (B.1) and (B.2) for

kn(E1y- -+, &n) = F™(y(t); 61, .., ) (B.14)

The Volterra kernels remain unchanged after a permutation of their arguments. For ex-

a'mple’ k2(61)£2) = k2(€21€1) because F(2) (y(t);§1,£2) = F(z) (y(t)’E% 62) in the same way

that

PF(y) _ 8°F(y)
Oy:0y;  Oy;0y;

(B.15)

where y; and y; are two components of the vector y.
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B.2 Volterra Series

The response of a time-varying system to an input y(¢) is a functional F(t,y(t))
which similar to this considered in the previous section, but it is also a function of time.
The response F(t,y(t)) depends on ¢ and on y(t) for all ¢ € (—o0, +00). The results of the
previous section apply, since dependence of the functional on ¢ does not affect the proof of

section B.1. The response of the system to a small perturbation z(¢) is

w(t) = F(t,yt) +2z(t) - Ft,y(t)
= [Thos©
+ _/:::o /_::o k2(t7{17{2):"‘(51)1’(&2)(1{1(162
+00 p400 f+00
t /_oo /_w ka(t, €1, 62,€3)z(€1)2(62)x(63)d6rdE2dEs + . .. (B.16)

and let us denote the nth term of this sum by wy,(t). Assume now that the perturbation is

a sum of K single frequency tones

K
z(t) = Zaiejz"f‘t. (B.17)

i=1

Then

K K +00 +00 )
wa®) =Y Y anetiy [ o [ Ealt 6 )bt gy,
i1=1  in=1 et ®
(B.18)
Consider now the transformation
kn(t7€1”"7€n) =bn(t,t—él)-"’t_§n) (Blg)

Then

K K
wn(t) = Z.,.Zai,...ai"-

11=1 in=1
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o0 o0 .
/ .. / bu(t,t — €1,...,t — Ep)ed2TUnbittfinbn)ge, | dg,
—00 —00

K K
= Z Z Ay - .- 04y ¢
i1=1 in=1

o0 o0 .
[/ s / b (t,uy,. .. ,un)e"ﬂ"(f'i"1+"'+f"n"")du1 cee dun]
) -0

. ejzn( Jig et fin )t (B.20)

Finally

K K
wa() =Y .o D @iy - 0in Balt, firy o fin) - Ut ot in)t (B.21)

71=1 in=1

where By (t, fi,,- - - , fi, ) is the Fourier transform of b, (¢, u1, . . . , u) with respect to uy, ..., un.

Quantity By(t, fi;,..., fi,) is the time-varying Volterra coefficient.

B.3 Time-invariant Systems

For the special case of a time-invariant system F(t,y(t)) = F(t + 7,y(t + 7)) for

all values of 7. This means that
kn(tagla ve ,gn) = kﬂ(t + T1£l + Tyeoo ,gn + T) (B22)

or

bn(t,t—gl,...,t—én) =bn(t+7',t—§1,...,t—§n) (B23)

for all 7 and therefore b,(t,u;,...,us) does not depend on its first argument, and the

Volterra coefficient is independent of time.
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Appendix C

Flicker Noise

C.1 Introduction

Flicker noise is called a noise signal with frequency spectrum proportional to 1/f7
with + close to 1. Such a spectrum is present in many diverse signals, such as those which
describe noise of active electronic devices and resistors, weather fluctuations, social effects,
biological phenomena, music, etc. This observation led some researchers to seek a common
underlying principle that generates flicker noise, but this attempt was unsuccessful [38]. The
behavior of a signal with an 1/f spectrum is described as follows [38]: 1/f noise combines
the strong influence of the past events with the influence of the current events. The result is
an overall contezt or pattern and somewhat predictable behavior but with the possibility of
new trends developing and of occasional surprises. The 1/f spectrum cannot be generated
by filtering a white spectrum with a filter with a small number of poles. A system with

infinite number of poles is required, such as the infinite RC transmission line whose input
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[ R
Z= j2nfC (C.1)

where R and C are the resistance and capacitance per unit length respectively.

impedance is

A certain ambiguity arises about the fact that infinite energy is contained at the
low frequency band .of a random signal with an 1/f spectrum. Since the low frequencies
are associated with long time constants of the generating system, some investigators have
attempted to find an upper limit in the time constants that generate flicker noise in MOS-
FETS, which would mean that the 1/f spectrum levels off at very low frequencies. No
change in the 1/f shape was observed down to 10783 Hz (1 cycle in 3 weeks) [38]. However,
we always observe the signal over a finite window of time, and the observed signal has an
1/f spectrum down to the lowest frequency allowed by the limited observation time.

In this appendix we review the theories that have been developed to explain the
flicker noise behavior of electronic devices and in particular of MOS transistors. These
theories mainly cover the case that the operating point of the device is time-invariant.
However in many practical analog circuits such as mixers, oscillators and switched capacitor
filters the device operating point changes periodically with time. The last section of this

appendix discusses this issue and summarizes the literature on this topic.

C.2 Theories for a Fixed Operating Point

Mainly two theories have been developed to explain and model flicker noise of MOS
transistors. One of them is the number fluctuation (or carrier fluctuation, or trapping, or

Mc Whorter’s) theory and the other is the mobility fluctuation (or Hooge’s) theory. Both
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explain some measurement results but fail to explain some other. The two theories have
been combined, and the resulting models seem to be able to match better experimental

data.

C.2.1 Number Fluctuation Theory

The number fluctuation theory attributes flicker noise to random capturing and
releasing of carriers from traps located in the Si — SiO; interface and in the oxide close to
the interface [10, 5, 69, 23, 22, 109]. When the trapped charge changes, the channel charge
which is responsible for the conduction changes also, and the drain current is affected. The
current fluctuation caused by a single trapping-detrapping process, has a Lorentzian Power

Spectral Density (PSD)

CcT

S.(f) = T @

(C.2)

where f is the frequency, c a constant associated with the amplitude of the fluctuation, and
7 the mean time between two trapping events (time constant of the trap). The superposition
of many Lorentzians with appropriately distributed time constants 7 results in an 1/ f power
spectral density (PSD).

It can be proved (see [64] for a review of the number fluctuation theory) that if
a) only oxide traps contribute to the flicker noise b) the oxide trap density N; (em=3ev1)
per volume unit and per energy unit is uniformly distributed in space and in energy, c)
the mobility is assumed a constant, d) the transistor is biased in strong inversion and the
linear region, e) trapping involves tunneling through the oxide and the time constant of an

oxide trap increases exponentially with the distance from the interface, and f) the oxide
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traps responsible for the flicker noise are located very close to the interface and therefore a
change in the trapped charge causes an approximately equal change in the channel charge,

then the PSD of the gate referred flicker noise is given by

AT Niy(Ety)
Mo~ wicg T ;

(C.3)

where ) is a constant, function of some physical constants, T' the absolute temperature, W
and L the effective dimensions of the transistor, C,; the oxide capacitance per unit area,

and Efy, the electron quasi-Fermi level in silicon. The PSD of the normalized current is

EL = Sy, - Qfﬂl — AT . Nt(Efn)
I? ¢ 12 @WLf N2

(C.4)

where N is the number of carriers per unit area in the channel, and g the electron charge.
Since Ni(E) is uniformly distributed in energy, it does not depend on the gate
voltage and Sy, is independent of bias. Such insensitivity to bias is actually observed
mainly in NMOS transistors [95]. If there exists some nonuniformity in the distribution of
the oxide traps with the distance from the interface, a dependence 1/f7 on frequency is
predicted by the above theory, with v slightly different than 1. Indeed, such a spectrum is
observed on MOSFET measurements with « from 0.7 to 1.2 [8]. In addition, a nonuniformity
in energy would result on a similar deviation on the noise spectrum because of oxide band
bending even with a uniform distribution in space, and in this case <y is bias dependent.
Reimbold [69, 23] extended the trapping theory presented above to the weak in-
version. He found that the ratio of the change Q. in the channel charge over the change

3Q; in the trapped charge that causes it, is given by

— JQn - -ﬁQn

R=|22| - ,
0Q: (Cp + Coz + Cit — Q)

(C.5)
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where 8 = q/kT, k being Boltzman’s constant, Qn is the channel charge and Cp, Coz, and
C;; are the depletion region, oxide and interface trap capacitances per unit area respectively.
This relation is true in the linear region for any gate bias. Using (C.5), (C.4) can be
generalized as follows to give the normalized PSD of the drain current in the linear region

of both strong and weak inversion

Si_ BT Ne(Efn)
I2 - WLf? (Cp+Coz+Cit — BQn)?

(C.6)

In strong inversion |3Qy| > |Cp + Cog + Cit| and (C.4) results from (C.6) since Qn = Ng.

In weak inversion |3Qn| < |Cp + Coz + Cit| and (C.6) becomes

51 _ BT N(Ep)
I2 - WLfY (Cp+Cozp+Ci)?

(C.7)

Since Cp varies very slowly with bias and Cj; and Ny(Eyy,) are generally weak functions
of bias, (C.7) implies that S;/I? is approximately bias independent. This plateau of S/I?
versus bias is actually observed in measurements [69].

Equation (C.7) has been derived for the linear region in weak inversion but it can
be shown [69] that it holds in the non linear region as well. Equation (C.4) is valid in linear
region and strong inversion and can be modified in a manner described in [33] to model
flicker noise in saturation.

A different formulation of the number fluctuation theory [109] relates the PSD of
the fluctuation in flat-band voltage Vj; (or threshold voltage) with the PSD of the trapped

charge fluctuation per unit area

SN,

m;. (08)

Svﬂ, =
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Figure C.1: A random telegraph signal.

time

The PSD of N; is given by

— )\Nt(Efn)

SN, 7

(C.9)

and relation (C.3) results.

The number fluctuation theory gains support from experiments with small di-
mension transistors ( area < 1lmm? ) with only one active trap [65, 95, 34]. In this case
the resulting modulated drain current is a Random Telegraph Signal (RTS), such as this
shown in Fig. C.1. The statistics of the RTS provide useful information about the trap
characteristics.

Experiments with devices that have been stressed in order to change the trapping
situation also attest to the number fluctuation theory. The stress is exercised by hot electron
injection [6, 75, 9, 92], by a tunneling current through the oxide [47], or by radiation [16].
Measurements of flicker noise before and after stressing show that both the magnitude of
the noise and the exponent -y are affected.

The trapping theory fails to explain the dependence of the gate referred noise on
bias that is observed mainly on PMOS transistors [8].

There exists some confusion in the literature about whether the traps that cause
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flicker noise are oxide or interface traps. All reported descriptions qualitatively agree with a
picture of traps distributed continuously with the distance from the interface. The further
a trap is located from the interface the harder it interacts with carriers and the longer its

time constant is.

C.2.2 Mobility Fluctuation Theory

The mobility fluctuation theory was first developed for resistor flicker noise. Hooge
[30] found empirically by examining homogeneous samples of semiconductors and metals
that flicker noise is caused by fluctuation in the mobility of the material, independent of

the current flowing. He found experimentally that the PSD of the mobility is given by

Su(f) = ﬁ\f:—t (C.10)

where Ny is the total number of carriers that contribute to the conduction, and ay is a
constant with value approximately 2-1073 for all the materials he examined. The mobility
fluctuations have been attributed to lattice scattering [30].

When this theory is applied to MOS transistors [29], predicts that the PSD of the

normalized drain current variation in the linear region is given by

St oy

7= TWIN (C.11)
and the gate referred noise is
Sy = —CHT N _oH - (Vgs — Vip)? (C.12)
Ve = FwLcz, ~ JwLN VT TV '

The effect of the bias dependent mobility has been taken into account in [42]. Equation

(C.12) shows that according to the mobility fluctuation theory the gate referred noise is a
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function of bias, since it is proportional to N. This contradicts the prediction of the number
fluctuation theory expressed by equation (C.3).

A certain inconsistency arises about the value of Hooge’s constant oy when this
theory is applied to MOSFETs. Experimental data indicate a value much smaller than
2-1073. In order to resolve this discrepancy, a modification in the value of this constant

was suggested [30, 97, 96] as follows

oy =oay- £ (C.13)
Hph

where oy is the new value of the constant and pp, is the mobility determined only by
phonon scattering. Even this modification was not sufficient to always explain the value of
this constant that results from measurements [28].

The mobility fluctuation theory explains the dependence of the gate referred flicker
noise to bias that is observed mainly in PMOS transistors, but fails to explain the insen-
sitivity of the gate referred noise to bias that is observed mainly in NMOS transistors [8].
If both mechanisms mobility fluctuation and trapping are responsible for flicker noise, it
is reasonable to believe that trapping dominates in NMOS devices where the channel is in
contact with the interface, while mobility fluctuation dominates in PMOS devices which
are usually buried channel devices and an abundance of free carriers does not exist close to
the interface for small gate bias.

The mobility fluctuation theory also fails to explain the weak inversion plateau
of Sy/I? described in the number fluctuation theory. According to equation (C.11), Si/I 2
should decrease strongly with increasing the gate voltage in the subthreshold region, since

the number of carriers per unit area N increases rapidly.
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C.2.3 Unified Theories

These theories [64, 35, 24] are based on the hypothesis that trapped charge fluc-
tuation causes correlated mobility fluctuation. Experimental evidence for this effect comes
from the RTS on the drain current of single trap transistors. It has been observed [65, 34]
that the amplitude of the fluctuations cannot be explained only by the change of the chan-
nel charge by one carrier, and a correlated change in the mobility needs to be considered,
which is attributed to oxide charge scattering. We will outline the derivation suggested by
Hung et. al in [35]. The resulting model is simple and suitable for a circuit simulator.

The model starts with the assumption that the mobility is correlated with the

number of trapped carriers per unit area, and is given by Matthiessen’s rule 1 as

1 1 1
— 4 —— = — 4 alN; (015)
Hn Hozx Hn

1
u
where p is the total mobility, p,7 is the mobility determined by oxide charge scattering, and
{in is the mobility determined by other scattering mechanisms. The oxide charge scattering
coefficient « is a function of the distance of the trap from the interface and an effective
value is used in equation (C.15). Parameter « is also a function of the carrier density in the
channel. Proceeding as in the number fluctuation theory, we finally obtain an expression for

the PSD of the gate referred noise in strong inversion and linear region (low drain voltage)

G, — AT
Ve = FWLCZ,

1Matthienssen’s rule states that if the mobility u is determined by many independent mechanisms, it is
given by

(14 auN)2Ny(Efn)- (C.16)

1 1
1_ 1 i+ (C.14)
B 1 p2 Hn

where g1, p2,. .., itn are the mobilities determined by each one of those mechanisms alone.
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The PSD of the normalized drain current is

Sr _

fd T Nt(Efn)
2 gWLf

Comparison of (C.17) and (C.16) with (C.3) and (C.3) shows that the expressions derived

with the new theory are identical to those of the classical number fluctuation theory, if the

trap density is replaced by
N;(Efn) = (1+ apN)’Ny(Ega). (C.18)

The gate referred noise is not bias independent even if Ny(Ey,) is assumed uni-
formly distributed in energy. Bias dependence comes from N = C,z(Vgs — Vr)/q which is
assumed uniform along the channel, o which is a function of N, and the mobility which
decreases with increasing gate voltage.

At low gate voltage, N is small and the model becomes identical to this of the
number fluctuation theory. At high gate voltage the model resembles this of the mobility

fluctuation theory with a (bias dependent), Hooge’s constant
AT
ay = 5 ()’ NNy(Epa) (C.19)

while an intermediate situation results for moderate gate voltage.

The suggested expression for the dependence of Nt" (Efn) on bias is
N;(Efn) = A+ BN + CN? (C.20)

where A,B and C are technology dependent process parameters. It is emphasized that

the implementation of the new unified model in a circuit simulator does not differ from
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the implementation of the classical number fluctuation theory with a bias dependent trap
density, given by (C.20).

The model is extended in [33] to any gate bias using Reimbold’s ratio R from
(C.5), as well as to the nonlinear region and saturation. The bias dependent mobility is
also taken into account.

A similar theory is developed in [64]. The derivation there starts with the assump-
tion that the mobility is linearly dependent on the channel charge instead of the trapped
charge. The dependence of the scattering coefficient on the distance from the interface is
preserved throughout the derivation. This does not result in a simple model as in [35], but
it leads to useful conclusions about the influence of the distance dependent scattering coef-
ficient on the noise spectrum. Because the scattering coefficient decreases with distance, a
1/f7 spectrum with v < 1 results, even assuming uniform oxide trap distribution in space
and energy and in addition v decreases with increasing gate voltage. A technique is devel-
oped to extract the profile of the oxide traps with the distance from the interface and with
energy.

At last [24], presents a re-derivation of the model developed in [35] using a the

fluctuation of the flat-band voltage caused by the oxide traps.

C.3 Flicker Noise of Devices with Time-Varying Operating

Point

There is a traditional belief that flicker noise is associated only with the DC current

flowing through a device [61], and is not present unless a DC current is present. However,
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experiments on resistors by Bull and Bozic [7] showed that flicker noise on resistors is
generated by fluctuation in the value of the resistance itself, independent of the current
flowing. When an AC current is applied, an 1/f spectrum appears on the spectrum of the
voltage across the resistor, around all the frequency components of the excitation current,
which is called 1/Af noise. A DC current component would only sense the resistance
fluctuation and generate an 1/f spectrum around DC. Since then, a few publications have
followed [46, 43, 51, 81, 80] on this subject for resistors. Some researchers observed a small
1/f spectrum around DC when only AC excitation was present, but this has been disputed
as a measurement error. Bull and Bozic also observed 1/A f noise on diodes and bipolar
transistors, but there existed some doubt if this noise was similar to the 1/Af noise of the
resistors, or simply the result of frequency distortion.

There exists a belief that since the flicker noise generating mechanisms in MOS-
FETs have time constants much longer than the period of the operating point variation,
their flicker noise depends on some effective bias value. It is not however clear what this
effective value is. It could for example be the average gate-source voltage, the average
drain current, or some other value. Theoretical and experimental work needs to be done to

illuminate this aspect of the CMOS device model.
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