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Abstract

Conflict detection and conflict resolution schemes are proposed. Conflict detection is
based on a measure of criticality which directly takes into account the uncertainty in the
prediction of the aircraft positions. The use of randomized algorithms makes the computation
of the criticality measure tractable. The performance of the algorithm is evaluated by Monte
Carlo simulation on a stochastic ODE model of the aircraft motion. Conflict resolution deals
with situations involving multiple aircraft. Energy of maneuvers is then used as cost function
for choosing among all conflict-free joint maneuvers the optimal one. As for the multiple
aircraft case, an approximate solution to the constrained optimization is proposed which
consists of finding the optimal two-legged joint maneuver by solving a convex optimization
problem for each type of maneuver. Inclusion of velocity and way-point constraints induces
nonlinearity in the constraint set. Second order cone programming (SOCP) is used to solve
the problem. A 3-D extension of the resolution algorithm is presented. Finally, simulation
results are presented for some typical multi-aircraft encounters for both the 2-D and the 3-D
cases.
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Chapter 1
Overview

Air travel is in great demand in the United States. Each year, hundreds of millions of
passengers are flown all over the country. Although the airline industry originated more
than 50 years ago, it is still a growth industry, with a rate of increase faster than the
growth rate of the nation’s gross national product (GNP). Moreover, air transportation
is expected to maintain its dominant position since no projected mode of transportation
can replace it from its own market. Because so many people are flying so frequently, the
airports and airways of the United States are no longer adequate to move them smoothly
to their proffered destinations. It is difficult to state with precision the dollar amount
of damages caused by delay due to congestion, but it can be estimated to be around 15
billion US dollars. In spite of tremendous technological advancement, current the Air traffic
management system uses technologies that were developed at least a decade back. Adding
physical facilities in the airport, i.e., runways, taxiways, is very expensive and many times,
is limited by geographic and political constraints. Recent technological advances, such as
on-board computing facilities and Global Positioning Satellite System (GPS) can help us to
automate the system for efficient control, scheduling and landing of larger numbers of aircraft.
In addition, it is imperative to reduce the controller’s work load with this automated system
and to give more autonomy to the individual aircraft. The concept of free flight is proposed
[5]. Free flight is an innovative concept designed to enhance the safety and efficiency of the
National Airspace System (NAS). The concept moves the NAS from a centralized command-
and-control system between pilots and air traffic controllers to a distributed system that
allows pilots, whenever practical, to choose their own route and file a flight plan that follows
the most efficient and economical route. Free flight calls for limiting pilot flexibility in certain
situations, such as : to ensure separation at high-traffic airports and in congested airspace,
to prevent unauthorized entry into special use airspace, and for any safety reasons. The free
flight is described in the hierarchal and hybrid control framework [19].

The principle of maintaining safe airborne separation is at the center of the free flight
concept. This principle is based on two airspace zones, protected and alert, the sizes of
which are based on the aircraft’s speed, performance characteristics, and communications,
navigation, and surveillance equipment. The protected zone, the one closest to the aircraft,
can never meet the protected zone of another aircraft. The alert zone extends well beyond
the protected zone, and aircraft can maneuver freely until alert zones touch. If alert zones
do touch, a controller may provide one or both pilots with course corrections or restrictions
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to ensure separation. Eventually, most commands will be sent via data link, an integrated
network of air, ground, and airborne communications systems. Additionally, on-board com-
puters and Global Positioning System satellites will allow pilots, with the concurrence of
controllers, to use airborne traffic displays to choose solutions. So we can define conflict as a
situation where two aircraft come within 5 n.mi (each other’s protected zone) of one another
horizontally and within 1000 ft or 2000 ft vertically depending on whether the flight level
is below or above 29000 ft [16]. Our purpose is to come up with an efficient and accurate
conflict detection and resolution algorithm. There has been a handful of research work done
in this field [11]. Most of the comprehensive work has been done in the deterministic setting
[21]. In this presentation, we will introduce a probabilistic conflict detection and resolution
scheme. If the initial and destination positions, flight plans and scheduled times of arrival to
those points are given, the probability that two or more aircraft will be in conflict as defined
above is estimated. If the probability of conflict is higher than a threshold value, some con-
trol is needed to avoid the conflict. In the resolution stage, we will replan the trajectories of
the aircraft involved in conflict such that the probability of conflict goes below the threshold
probability. In the resolution stage, we have also taken efficiency into consideration. We have
optimized the new trajectories such that the deviation from the nominal path is minimized.

There are three parts in this report. Chapter 2 of the paper deals with the probabilistic
conflict detection. The schemes proposed here make extensive use of randomized algorithms
for estimating integrals and carrying out optimizations. The advantage of the randomized
techniques is that they tend to be computationally more efficient. They also provide the
analytic bounds on the accuracy of the approximation involved, provided orie makes appro-
priate design choices. The cost functions for conflict resolution is an example of the design
choice. We provide the probabilistic scheme and perform the validation. We also describe
how to deal with the involved computational issues in order to formulate the algorithmic
version of the proposed scheme. Finally, the monte carlo simulation results obtained through
the proposed validation model are reported in this chapter.

In chapter 3, we have studied the conflict resolution problem where multiple aircraft are
involved in a potential conflict in the 2 dimensional case. Similar to [3],[6], our approach to
multiple aircraft conflict resolution is based on the optimization of a cost function, which is
suitably chosen to take into account practical factors such as passenger comfort, in addition
to being conflict free. The problem is formulated as a finite dimensional optimization prob-
lem, by parameterizing the resolution maneuvers by means of a finite number of variables.
We used the notion of energy as in [10] in order to find the optimal resolution maneuver
among the conflict free zones. Thus the problem is to find the trajectories which will pro-
vide the minimum cost. We have also added further constraints on the way-points for the
maneuver feasibility. The constraints are velocity constraints and the turning angle con-
straints. Addition of these constraints induces non linearity in the constraint set. We have
used the Second-order cone programming (SOCP) techniques to solve this quadratic con-
straints problem. In chapter 4, we study the problem of finding optimal three dimensional
conflict-free maneuvers for multiple aircraft. As this is a 3-D problem, there are more degrees
of freedom in the optimization problem. The change of altitude is the additional maneuver
which arises due to increased dimension. We minimize a certain energy function to obtain
the most efficient conflict-free maneuvers. A priority mechanism is incorporated into the
cost function so that aircraft with lower priority assume more responsibility in resolving the
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conflicts. Moreover, vertical maneuvers are penalized with respect to horizontal ones for the
sake of passenger comfort. A geometric construction and a numerical algorithm are given to
determine the optimal maneuver in the two aircraft case. As for the multi-aircraft case, an
approximation scheme is proposed to compute a suboptimal two-legged solution. We have
also added the velocity and the way-point constraints in the optimization problem in order
to get a more practical solution. SOCP is used here to solve the optimization problem.



Chapter 2

Probabilistic aircraft conflict
detection and validation

2.1 Introduction

Air traffic control(ATC) is a safety critical system. The main objective of deriving the
algorithms for Aircraft conflict detection and resolution is to ensure safety and efficiency of
the ATC system. Aircraft conflict detection and resolution requires attention be given at
three different levels of the air traffic management process.

1. Longrange: Some form of conflict prediction and resolution is carried out at the level of
the entire National Airspace System (NAS), over a horizon of several hours. It involves
composing flight plans and airline schedules (on a daily basis, for example) to ensure
that airport and the sector capacities are not exceeded. This is typically accomplished
using large scale integer and linear programming techniques [1],[23]

2. Mid-Range: Conflict prediction and resolution is carried out by ATC, over horizons of
the orders of ten minutes. It involves modifying the pre-planned flight plan on-line, to
ensure adequate separation. Algorithm in [12},[20], [4] operate in this level.

3. Short range: Conflict prediction and resolution is also carried out on board the aircraft,
over horizons of seconds to minutes. this is typically considered as a last resort solution.
The Traffic alert and Collision Avoidance System (T'CAS) currently operating on all
commercial aircraft is such a prediction/resolution algorithm (as in [5],[14]).

The work presented here concentrates primarily on the midrange level of the air traffic
management process [17],[18]. It is assumed that the proposed algorithms will eventually be
implemented as computational tools to provide assistance to ATC.

The ATC process and its interaction with the conflict detection and prediction is sum-
marized in figl. ATC and its components are are arranged in a feedback loop. The ATC,
aircraft and radar correspond to the plant while the prediction and resolution components
correspond to the controller. Our goal is to design the “Controller” modules and verify that
the closed loop system possesses certain desirable properties (safety, ATC workload, Effi-
ciency, Less delay etc).In this chapter, we present a randomized algorithm for the conflict

4
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detection which is computationally more efficient. They also provide the analytical bounds
on the accuracy of the approximation involved with an intelligent design choices.

Conflict detection information

/

Resolution

N —

[ Prediction

| Radar I ATC

Figure 2.1: Outline of the conflict prediction/resolution functionality

Validation of the prediction scheme requires one to model the radar and the aircraft. Here
we use a simple model for the radar (additive white noise) and we introduce a stochastic
difference equation to model the aircraft movement. Validation of the detection scheme is
then carried out by the Monte carlo simulation.

2.2 Probabilistic Models

2.2.1 Flight Plans and Configuration

Consider N, aircraft sharing a region of the airspace. Assume that the flight plan of aircraft
1 consists of a sequence of way pomts, {P‘}ro, P} € ®*, given in a global coordinate frame,
and a sequence of speeds, {v}}; ],,1, v; € Ry The interpretation is that aircraft ¢ follows
the sequence of way points, moving roughly along the straight line joining successive way
points P;_, and P; with velocity v;. Pj and P;, respectively represent the current position
of aircraft ¢ (available through ADSB or radar) and the threshold of the landing runway
at the destination airport. The nominal time of arrival of aircraft ¢ at way point j can be
recursively computed by T} = ||P} — P‘_1|| [v; + T;_;, § > 0, with T¢ = 0. Likewise, the
nominal distance traveled by alrcra.ft i, s‘(t) € §R and its nominal position, p i(t) € N3, at time
t € (T;_,,T}], can be respectively computed by s'(Tg) = 0, s'(t) = vi(t — T ,) + s*(T}_,),

, , pi_pi
and p'(t) = P}_, + vi(t — J—l)m

The conﬁguratz‘on, ~, of the N aircraft system consists of the flight plans of all aircraft,
v = {{P' o (V15 N We assume that the flight plan of each aircraft is known, except
of course the way pomt encodmg the current position, which depends on how well the
aircraft is tracking the flight plan. The models introduced below assume that an aircraft
turns instantaneously and heads for the new way point at the scheduled time, even if it has
deviated from its flight plan. This assumption is somewhat unrealistic, but is used in the
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prediction model to simplify the computation. It can be easily relaxed for the validation
model, if better models for the way aircraft execute turns become available.

2.2.2 Prediction model

The actual position of the aircraft is affected by uncertainty, due to wind and errors in
tracking, navigation, and control. Following [16, 12], we assume that the predicted position
z*(t) € R3, of aircraft i can be modeled as a multivariate Gaussian random variable, z*(t) ~
N(p‘(t), @(2)), independent of the random variables modeling the positions of other aircraft.
Notice that the mean is equal to the nominal position of aircraft  along its flight plan. The
variance of the predicted position is assumed to increase with time, reflecting the fact that
the uncertainty about the position of the aircraft increases the further we try to predict into
the future. In [16], a distinction is made between the variances in the along track and cross
track directions. It is assumed that the standard deviation of the along track component
grows linearly with time:
oir(t) = a1 + cot.

The standard deviation of the horizontal cross track component, grows linearly with the
distance traveled and then saturates at a fixed value:

oerp(t) = min{cy, ¢ + c3s'(t)}.
Finally, the standard deviation of the vertical cross track component, remains constant:
oerv(t) = cs.
The values ¢; = 50/1850 nmi, c; = 0.25 nmi/min, c3 = 1/57, ¢4 = 1 nmi, and ¢5 =

30/1850 nmi were proposed in [16, 11], based on empirical air traffic data. Since the uncer-
tainty components are assumed to be independent, the covariance matrix for ¢ € [T}_;,T})

is given by: '
. (car)®®) 0 © 0
Q®)=R| 0 (otra)’(®) 0O RT
0 0 (o&rv)*(®)

where we set R € SO(3) for the rotation matrix R(6%, ¢}) associated with the angles 6; and
/2 — ¢} that the vector P; — Pj_; makes with the z;, and z3 axes of the global coordinate
frame in which the P}’s are given.

This model is fairly accurate for mid-range conflict prediction, as it reflects the fact that
pilots tend to correct cross track errors in the short term and deal with along track errors
in the long term, using small changes in speed [16]. The accuracy of the model is limited by
the assumption that the positions of the aircraft are uncorrelated. Since the tracking noise
is primarily due to wind, the positions of the aircraft may in fact be correlated, especially
near the conflict point where they are close one to the other. We are currently investigating
ways of relaxing this assumption.
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Figure 2.2: The body and inertial frames.

2.2.3 Validation model

The prediction model is simple and allows fast computations, but has inherent limitations,
which limit its applicability for simulation and validation. To remove some of these lim-
itations we introduce a stochastic ODE model and use it to generate aircraft trajectories
for validation. The validation model provides a formal way of correlating the positions of a
single aircraft at different points in time.

Consider an aircraft moving in R3, and let = denote its position with respect to a global
inertial coordinate frame. Assume its velocity has magnitude v and makes an angle 6 with
respect to the z; axis and 7/2 — ¢ with respect to the z3 axis. Consider a body coordinate
frame x = [x1 X2 x3]7 with x; aligned with the aircraft velocity (along track), x» perpen-
dicular to it and lying on the plane on which the aircraft flies (cross track horizontal), and
X3 perpendicular to x; and X2 (cross track vertical) (Figure 1). The two frames are related
through the coordinate transformation

z = R(6,¢)x +p, (2.1)

where R(6, ¢) is the rotation matrix and p denotes the position of the origin of the body
frame with respect to the inertial frame. p can be interpreted as the nominal position of the
aircraft, z as its actual position, and x as the variation of the aircraft position with respect
to the nominal one along the tracking directions.

The nominal position p evolves according to:

p=R(6,4)[100]Tv (22)
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We assume that the uncertainty in the position around the nominal point is obtained through'
the ODE:
x=Ax+n (2.3)

where x(0) ~ N(0, V,(0)) and n € R3 is a white Gaussian noise 7(t) ~ N(0, V,(t)) indepen-
dent of x(0). Combining equations (2.1)-(2.3) produces the kinematic model

&= [(ZBws + %qu)RT + RART|(z - p)
+R[1 0 0]7v + Rn, .
p= R[100]7v, 0 = wy, ¢ =wy

where (v, wg, wy) are the linear and angular velocities.

The above equations describing the aircraft motion are nonlinear. To make them linear
we can adopt the simplification wg = wy = 0, and model turns as discrete events occurring
at the way points. This leads to a piecewise linear stochastic ODE: for t € [Tj_1, T}),

{ & = A(6;,¢;)(z — p) + B(6;,¢;)v; + C(6;,65)n
p = D(6;, ¢;)v;,

where A(6,¢) = RART, C(6,¢) = R, and B(6,¢) = D(6,¢) = R[1 0 0]7. The initial
conditions are p(0) = Py and z(0) ~ N(Po, R(61,$1)V4(0)R(61, $1)T), independent of the
white Gaussian noise n ~ N(0, V,(t)). The initial conditions and the noise processes for
different aircraft are assumed to be independent.

Position estimates y € R? for each aircraft are obtained every A seconds through radar
measurements (typically A = 12). We set

y(kA) = z(kA) +£(kA),

where the noise {{(kA)}k>o is described as a sequence of i.i.d. Gaussian random variables
with {(kA) ~ N(0,V;) and it is independent of all the other random variables involved in
the validation model.

For our stochastic validation model to resemble the statistics derived from air traffic data,
we need to appropriately choose V,(0), V,(t), A and V;. For the radar model parameters,
we set Ve = diag(Ve,, Ve, Vi, ) where Vg, = Vg, = ¢ and V, = c2, to reproduce the statistical
characteristics described in [16] for the uncertainty in the current aircraft position. For the
aircraft model we set V,,(0) = V,,(0) = ¢2, Vi, (0) = 2, Vi, (t) = 2c1¢2 + 2¢t, Vi, = 20562,
Ve = 2a3c?, where A = diag(0, —a3, —a3), az = Wf'}q—)vl and ag = 1 nmi~!. From standard
results in stochastic linear systems , x1(t), x2(t), and x3(t) will then be independent, zero
mean Gaussian random variables, with

vaT[Xl(t)] (Cl + Czt)2 .
varla(t)] = &+ (& — dle T
var([xs(t)] c

x1 and x3 are Gaussian processes exactly matching the mean and variance characteristics of
the along track and vertical cross track errors. The time constant of the exponential for the

Gaussian process x2 is equal to 1/2 of the time £ = %=2 required for oZry(t) to reach the
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saturation value c2 in the case when the aircraft trajectory is a straight line traveled with
speed v;. For typical speeds (v = 500 nmi/h), var[xa(t)] reaches 86% of the saturation
value in about 6 minutes. Ideally, the value of a3 should be set based on the estimate of the
correlation between the aircraft positions at different time instants, as it does not affect any
other relevant statistics. Since this piece of information is not available in the literature, we

arbitrarily set it equal to 1 nmi~!.

2.3 Conflict Detection
2.3.1 General Conflict Detection

The desired separation among aircraft is typically encoded by means of a minimum horizontal

separation, dy, and a minimum vertical separation, dy. Currently dy = 5 nmi for en-route

airspace and 3 nmi in the TRACON, and dy = 2000 ft above 29000 ft and 1000 ft below

29000 ft. The conflict setis then given by C = {(u1,up,u3) € R® : (u? + 13 < d%) A (|us| < dv)}.
Conflict detection consists of extracting some measure, C(7), of how safety critical the

current configuration, v, is, comparing this measure to a threshold, P, and declaring a

conflict if P is exceeded. The process should be repeated every time + changes, that is when

a new measurement comes in from the radar, the ATC changes a flight plan, etc.
Algorithm for general Conflict Detection

when « changes do

Compute C(7)

if C(vy) > P declare a conflict

end

In this paper we use the maximum of the probability of conflict over a horizon T as a
measure of criticality!. Consider two aircraft, 1 and 2, let z! and 22 denote their positions in
the inertial reference frame. Given the probability density function f(u,t) for the separation
u(t) = z!(t) — z2(¢) of the two aircraft at time ¢, the probability of conflict at time t is given
by

PC(t) = Prob{u € C) = / f(u, t)du.
c

For the prediction model, the predicted separation of two aircraft at time ¢ is a Gaussian
random variable with mean u(t) = p'(t) —p?(t) and covariance matrix Q(t) = Q*(t) + Q(¢).
We set C(7) = supyepo,r) PC(t), and, following [16], T = 20 minutes.

The major obstacle in the implementation of Algorithm 1 is the computation of C(y),
since one can not derive an analytical expression for PC(-). In the literature techniques
for estimating C(v) have been proposed using Monte Carlo simulation [12] and analytical
approximation [16]. We propose an algorithm for approximating C(~y) based on the theory
of empirical processes [22].

10ther measures of criticality (such as weighted averages of the probability of conflict) were also tested
as part of this study and were found to be less effective than the maximum.
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2.3.2 Estimation of C(¥)

Suppose for the time being that we are able to compute PC(t) with no error. Let Q be
the uniform distribution on [0,T, and consider the following algorithm for computing an
estimate, C'(7), of C(«).

Algorithm for Randomized Estimate of C(y)
Choose an integer N and set C'(y) =0
fori=1,...,N
Extract ¢; € [0, T] according to Q
if C'(v) < PC(t;) then C’'(y) = PC(t;)
end

Clearly, C'(y) = max,, v, PC(t) < C(7), since we are testing just N values of PC(t).
In addition, the quality of the approximation is random due to the stochastic selection of
the t;’s. Nevertheless, if the random extractions are independent, it can be shown that C’ is
a good approximation in a probabilistic sense.
Theorem for the Estimation of C(y): Fix 8 > 0 and consider the probability space
([0, 7], F, Q) where F is the Borel o-algebra on [0, 7).
Then

Q{te[0,T): PC() >C'()} <8 (2.4)

with probability greater than 1 — (1 — 8)%.

In other words, if we set N = [%ﬁﬁ-] (where [2z] denotes the smallest integer greater

than z), there exists an exceptional S C [0, 7] of Lebesgue measure at most ST such that
supp.1\s PC(t) < C' < suppq PC(t) with probability at least 1 — 6. Hence, C’ is an
approximation of C in the sense that is bracketed by the supremum of PC(t) over all [0, T
and the supremum of PC(t) over “nearly” all of [0, T] with high probability.

2.3.3 Estimation of PC(t)

Next, we introduce a method for computing a uniformly good approximation of PC(t) over a
finite set of time instants {t,,,...,tx}. Recall that PC(t) is the measure of the fixed set C
according to N(u(t), @(t)). By an appropriate change of coordinates, however, it can also be
viewed as the measure of a time dependent set, C;, according to the standard normal distri-
bution N(0, I). The required change of coordinates can be found by computing the Cholesky
factorization? Q(t) = L(t)L(t)T of the covariance matrix, and setting w = L(t)~1[u — p(2)).
We then get PC(t) = [, 5= e~ wdy, where G, = {w € R® : L(t)w + u(t) € C}. This
suggests the following algonthm for probabilistically estimating PC(t).

Theorem for the randomized Estimate of PC(t)
Choose an integer M and set PC’'(t) =0
forj=1,...,Mdo

%A similar procedure is followed in [16].
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Extract w; € R3 according to N(0,I)
PC'(t) = PC'(t) + Luec,
end
PC'(t) = £€Q

Iexpression denotes the indicator function. Again, PC'(t) = + Z’il Iec, is a random
approximation of PC(t), due to the stochastic selection of the w;’s. Under the assumption
that the random extractions are independent, the following result quantifies the level of
approximation involved.
Theorem for the Estimation of PC
Fix € € (0,1) and consider the probability space (®3, F, N(0,I)) where F is the Borel o-
algebra on R3. Then,

NMyMe RM.qup |PC'(t;) — PC(t;)|> €} <2Ne M€

tG{ti}P’:l

where w™ denotes (wy, w2, . .., wx)-

Hence, each finite collection of sets {C,}¥, has the property of uniform convergence of
empirical probabilities since for each fixed e the estimates uniformly convergences to their
true values as the number of samples M goes to infinity.

2.3.4 Randomized Conflict Detection
The following algorithm brings the two procedures together.
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Algorithm for the Randomized Conflict Detection
Fix P € [0, l]aa.nd €, B,and d € (0,1)
Set N = [piih], M = [ In 4]
when v changes do
Extract w; € R%, j =1,..., M according to N(0, I)
Extract t; € [0,T],i=1,..., N according to Q
fori=1,...,Ndo
Compute u(t;) and Q(t;)
Compute Q(t;) = L(t;) L(t:)T
PC'(t;)=0
forj=1,...,Mdo
PC'(t;) = PC'(t;) + ijec‘i
end
PC'(t;) = EE &)
if PC'(t;) > P declare a conflict
end
end

A conflict is declared if and only if the estimate

M
1
C'(y) = max ﬁZijec,i

i=1,....N -
j=1

exceeds the threshold P. Under the assumption that all the random extractions are inde-
pendent, the following theorem characterizes the accuracy of our approximation.
Theorem for the Approximate estimation of C(v)

Given ¢, 8, and 6 € (0,1), C'(7) is an approximate estimate of C(7) to accuracy 2¢ and level
B with confidence 1 — § in the sense that

Q{te[0T): PC(t) > C'(v) +2¢} < B,

with probability greater than 1 — 4.

Notice that the number of samples needed to achieve a certain approximation level is
independent of the nature of the sample space and of the probability distribution. In partic-
ular, the computational load does not significantly increase in the 3D case with respect to
the 2D case. This is not the case if one resorts to numerical methods based on gridding or
to approximate analytic methods such the one in [16].

2.4 Validation and Tuning

The performance of the conflict detection scheme was evaluated using a three step process:

1. Given the flight plans of two aircraft, generate trajectories and radar measurements
over a 20 minutes horizon using the discretized version of the validation model.



tmin
30| 0 | (N.D.)/1.0 | (ND.)/1.0 | (N.D.)/1.0
30 5 0.35/0.80 | 0.20/0.71 | 0.19/0.75
30| 10 | 0.17/0.64 | 0.17/0.68 | 0.17/0.84
45| 0 | (N.D.)/L.0 | (N.D.)/1.0 | 0.26/0.80
45| 5 | 0.19/0.75 | 0.22/.80 | 0.20/0.78
45| 10 0.41/0.60 | 0.16/0.77 | 0.11/0.76
90| 0 | (N.D.)/L1.0 | (N.D.)/1.0 | 0.26/0.80
90 | 5 | 0.27/0.78 | 0.13/0.83 | 0.21/0.84
90 | 10 | 0.01/1.0 | 0.21/0.80 | 0.17/0.93
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Table 2.1: P(FA)/P(SA) for our algorithm.

2. For every value of the - discretized - threshold:

(a) Execute the detection algorithm at every radar measurement time.

(b) Compute the probability of false alarm P(FA) (fraction of declared conflicts that
did not materialize) and the probability of successful alert P(SA) (fraction of con-
flicts declared at least 60 seconds before they occur).

3. Plot the System Operating Characteristic (SOC) curve and choose the optimal thresh-
old P.

The SOC is a plot of P(SA) versus P(FA), parameterized by the threshold. In principle, the
more the SOC curve approaches the point (0, 1), the better the performance of the system
is likely to be. P is typically chosen to correspond the point on the the SOC curve closest to
(0,1), in an attempt to achieve an “optimal” compromise between P(FA) and P(SA) [13].

To ensure our results are reasonable, we compare the performance of our algorithm with
the algorithm of [16], which is based on the same description of the uncertainty. The measure
of criticality used by [16] is the probability of conflict at the point of the minimum nominal
separation. An estimate for this quantity is computed for the 2D case by an analytical
over-approximation of the integral of the probability density function for the separation.
To compare the two algorithms we also restrict our algorithms to the 2D case, and to
simple crossing encounters, parameterized by the path crossing angle ¢ (deg), the minimum
nominal separation dmi, (nmi), and the nominal time #,;, (min) to dmin. The speeds
of the aircraft are kept fixed (v; = 480 nmi/h and v, = 500 nmi/h). Tables 2.1 and
2.2 summarize the values of P(FA) and P(SA) corresponding to the optimal threshold for
different encounter situations computed by running the two detection algorithms (e = 0.05,
0 = 0.1, f = 0.05). Note that when the minimum nominal distance is 0 nmi, in some entries
of Table 2.1 and 2.2 P(SA)=1, whereas the optimal P(FA) is not defined. The reason is
that for dmi, = 0 nmi there is almost always a conflict, therefore, the optimal threshold is
determined by maximizing P(SA), and there are not enough samples to get a statistically
significant estimate of P(FA).

Both algorithms give a similar value for P(SA), but P(FA) is lower with our algorithm.
The reason for this is that the measure of criticality used in [16] is an over approximation of
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Lmin

¢ | dmi 8 12 20

30 0 |(N.D.)/1.0]|(N.D.)/1.0]| (N.D)/1.0
30| 5 0.61/0.76 | 0.46/0.63 | 0.28/0.79
30 | 10 | 0.45/0.64 | 0.37/0.68 | 0.21/0.84
45| 0 | (N.D.)/L0| (N.D.)/1.0 | 0.43/0.84
45| 5 | 0.70/0.76 | 0.58/0.80 | 0.31/0.83
45 | 10 | 0.48/0.47 | 0.33/0.77 | 0.14/0.76
90| 0 |(N.D.)/1.0| (N.D.)/1.0| 0.42/0.84
90] 5 0.76/0.79 | 0.52/0.85 | 0.31/0.84
90| 10 0.33/1.0 0.30/0.73 | 0.23/0.93

Table 2.2: P(FA)/P(SA) for the algorithm of [16].

Lrmin
¢ | dinin 8 12 20
30| 5 |0.24/0.64 | 0.30/0.76 | 0.31/.82
45| 5 |0.19/0.75 | 0.22/0.80 | 0.22/0.80
90| 5 [0.21/0.71 | 0.21/0.90 | 0.28/0.89

Table 2.3: P(FA)/P(SA) with P=0.85 for our algorithm.

the probability of conflict at ¢,,,.
Different configurations lead to different SOC curves and therefore to different optimal
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thresholds. In [16] the threshold is set using heuristic arguments. We choose the threshold
based on the optimal thresholds corresponding to Table 2.1 for the case of dmin = 5 nma.
This typically turns out to be the most interesting case, since the cases d,;, = 0 nmi and
dmin = 10 nmi correspond to extreme situations in which either a conflict almost always
occurs or there is a negligible number of conflicts, respectively. Setting P = 0.85 leads to
the values of P(FA) and P(SA) reported in Table 2.3.

A sensitivity analysis of the dependence of P on the flight plans to allow us to choose
appropriate values for P for the typically encountered configurations. Other aspects that
should be taken into account in this process are the detection of conflict a certain amount
of time before it occurs and the prediction of its occurrence time. These aspects highly
influence the effectiveness of a prediction/resolution scheme involving the human-in-the-loop
component.



Chapter 3

2-D conflict resolution of multiple
aircraft using convex optimization
techniques

3.1 Introduction

In chapter 2, we developed a conflict detection tool. The obvious next step is to design a
conflict resolution tool. In this chapter, we study the conflict resolution problem of multiple
aircraft in the two dimensional case. In the TRACON area, it is not rare to encounter these
kinds of situations. Multiple aircraft conflict resolution is combinatorial in nature. As in [10],
our approach is to solve the multiple aircraft conflict resolution using convex optimization
algorithms. A cost function is defined which is suitably selected so as to take into account
various practical factors such as passenger comfort, fuel efficiency, etc... In [3] [6], convex
optimization techniques are used where the resolution maneuvers are parameterized by means
of a finite number of variables. Formulating the problem as a finite dimensional optimization
problem has inherent advantages: (a) It makes the problem more tractable (b) it allows
pilots and the air traffic controllers to exchange trajectory specifications in a simple way.
The resultant optimization problems are non convex, but we can have an efficient convex
relaxation which gives a near optimal solution. If we add some practical constraints such as
velocity constraints or the turning angle ( way point constraints), the optimization problem
will have a non-linear constraint set. Adding velocity constraints means restricting the speed
change of the aircraft. This is important due to following reasons;

1. An aircraft needs to have a minimum velocity to maintain a minimum lift force to fly
. If it flies less than that velocity, it will lose its stability.

2. Different aircraft have different engine capacities which will limits the maximum achiev-
able velocity of the aircraft. .Due to the statement (1) and (2), the velocities of each
aircraft are limited to a certain range.

3. Pilots and controller don’t prefer to use velocity change as a control.

The turning angle constraints have practical implications.The turning angle of the aircraft
cannot be too abrupt. This is very important in the passenger’s comfort point of view.

18
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Moreover, the physics of the aircraft restricts the implementation of a flight plan which

consist of a very large turning angle. The induced nonlinearity due to the inclusion of these
constraints are efficiently handled with the use of SOCP.

The chapter is organized in the following manner. In section 2, we describe convex
optimization techniques with an emphasis to the quadratic programming and the second
order cone programming. In section 3.3, the notion of energy of maneuvers is proposed.
The problem is to select from among all conflict free maneuvers the “optimal” ones, where
two or more aircraft are in conflict. We also study the maneuvers with minimum energy.
Resolution maneuvers are also classified to obtain different types of constraints. We apply
convex relaxation and the problem is formulated as a standard convex optimization form.
In section 3.4, we present our simulation result.

3.2 Convex Optimization
3.2.1 Basic definitions and properties

Important definitions and properties are described in this section [2].

3.2.2 Definitions

A function f : R® — R is convex if domf is a convex set and if for all z,y € domf, and 6
with 0 < 6 < 1, we have,

f(6z + (1-0)y) < 0f(x) + (1-6)f(y) (3.1)

Geometrically, this inequality means that the line segment between (z, f(z)) and (y, f(¥))
(the chord from z to y) lies above the graph.

A function f is strictly convex if strict inequality holds in (3.1) whenever z # y and
0<f<1.

A function f is concave if —f is convex, and strictly concave if —f is strictly convex.

A function f is affine if we always have a equality in (3.1). So all affine and linear
functions are both convex and concave.

(.f(y))

(x,f(x))

Figure 3.1: Graph of a convex function, where the chord between two points lies above the
graph
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3.2.3 First Order Condition

If f is differentiable (i,e, it’s gradient \7f exists at each point in domef, which is open),
then f is convex if and only if

f(y) 2 f(z) + v f(2)"(y - z) 3.2)
hold for all z,y € domef.This inequality is illustrated below,

T
(v ) (y-x)

¥

4
X

Figure 3.2: if f is a convex function,f(y) > f(z) + vV f(z)T (v — )

The above inequality states that for a convex function, the first order Taylor approxima-
tion is in fact global under-estimator of the function. Conversely, if the first order Taylor
approximation of a function is always a global under-estimator of the function, then the
function is convex. This shows that from local information about a convex function (i.e. it’s
derivative at a point), we can derive global information. This very important property of
convex function helps getting efficient solution in convex optimization problems.

3.2.4 Second Order Condition

If f is twice differentiable, i.e., its Hessian or second derivative \72f exits at each point in
dom f, which is open. The f is convex if and only if its Hessian is positive semidefinite

Vif(z) = 0

for all z € domj. For a function on R, this reduces to the simple conditionf” > 0.

3.2.5 Optimization

The basic optimization problem can be formulated as,
minimize fo(z)

subject to fi(z) <0,i=1,....,m

h,(:z:) = O,Z = 1, P
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This problem is to find an z that minimizes f,(z) among all = such satisfy the conditions
fi(z) £0,i=1,..mand h;(z) = 0,i = 1,...p. = € R" is the optimization variable and the
function fy : R® — R the objective function or the cost function. The inequalities f;(z) <0
are called inequality constraints and the h;(z) = 0 are the equality constraints.If there is no
constraint, the problem is said to be unconstrained.

The problem above is a convex optimization problem if fo, f1, fo, ..., fm are convex func-
tions and h;(x) = alz—b;. The additional requirements for a standard optimization problem
to be a convex optimization problem are:

1. The objective is convex.
2. The inequality constraint functions are convex.

3. The equality constraint functions h;(z) = afz — b; are affine.

3.2.6 Quadratic Optimization Problem

The convex optimization problem in the section 3.2.5 is called a quadratic problem (QP) if
the objective function is convex and quadratic, and the constraints functions are affine. A
quadratic program can be expressed in the form,

minimize z7 Pz + 2¢7z + 7

subject to Gz <X h

Az =b

where P = PT » 0. In a quadratic program, we minimize a convex quadratic function over
a polyhedron.

3.2.7 Second-order cone Optimization Problem

A second order cone program (SOCP) can be expressed in the following way,

minimize Tz

subject to ||Aix + b;|| L Tz +d;,i=1,2,...,N

Fr=g

Where z € R" is the optimization variable and the norm appearing in the constraints is the
Euclidean norm. The constraint ||A;z + b|] < ¢fz + d; is a second-order cone constraint,
since it is the same as requiring the affine function (4z +b, cTz +d) to lie in the second-order
cone in RF+!,

If ¢; = 0, the above SOCP is equivalent to quadratic constraint Quadratic programming
problem. That means, a problem with a quadratic objective function and the quadratic
constraints can be solved in this framework. SOCP is more general and can also take the
form LP (Linear Programming), where we have to put the value of A;, b; as zero.
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3.3 Optimal two legged Maneuver for the multiple air-
craft Resolution

3.3.1 Classification of Resolution Maneuvers

The classification of different types of maneuvers can be done by the method described in
[9]. Two resolution maneuvers can be classified as qualitatively identical - or of the same
“type” -, if there exists a continuous conflict-free deformation of one to the other. Distin-
guishing between maneuvers based on their “type” is useful, since if the aircraft involved in
an encounter situation negotiate a certain resolution type at an early stage, it is preferable
that they stick to the chosen type throughout the whole encounter. As, in [9], we know that
each resolution maneuver has a natural representation as a braid, and that the classification
of maneuvers in homotopy types can be reformulated as the classification of braids in iso-
tope classes, which is a well-studied problem in mathematics. This will lead to the complete
characterization of homotopy types of resolution maneuvers given in [9]. If we consider n
aircraft (numbered from 1 to n) flying at the same altitude, where each aircraft, say %, flies
from position a; € R?, at time t,, to position b; € R?, at time ;. Denote with P; the space
of all continuous maneuvers in R? which start from a; at time ¢y and end at b; at time ¢;,
i.e.,

Pi = {ai € C(Th,Rz) . Cli(to) = a,-,a.-(tf) = b,'}, 7= 1, e, N,
where C(T,, R?) denotes the set of all continuous maps from T}, = [to,¢s] to R2. Define
P =TI, P.. Each element a = (@, ,,) € P is called a (joint) maneuver for the n
aircraft encounter, or an n-maneuver if we want to emphasize the number of aircraft involved.
The minimum separation over encounter (MSE) for an n-maneuver a is defined to be the
minimum distance between any aircraft pair during the whole interval T}, i.e.,

Ala) = min inf [les(t) — e;(2)])

The set of conflict-free maneuvers is then given by
P(R)=P\A™!([0,R])) = {a € P: A(a) > R},

where R is the prescribed safe distance assigned to be 5 nmi in en-route airspace. We
distinguish different classes of maneuvers in P(R) according to the method of equivalence
relation given in [9)].

3.3.2 Cost Function

We consider n aircraft flying at the same altitude, with starting positions a; € R?, i =
1,---,n, at time ¢, and destination positions b; € R?, i = 1,---,n, at time ¢;. The set of
maneuvers for aircraft i, P;, is defined to be the set of all continuous, well defined paths in
R? which start from a; at time ¢, and end at b; at time t;. The set of n-maneuvers P and
the minimal separation over encounter A(a), o € P, are defined similarly as in the previous
section 3.3.1, whereas P(R) is defined to be the set of all n-maneuvers with a MSE greater
than or equal to R. This modification is in order to ensure that P(R) is a closed set, so that
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for the optimization problems we encounter later, the optimal value is in fact attained by
some maneuver in P(R).

We propose the energy of an n-maneuver as cost function to be optimized. Consider the
maneuver of a single aircraft, say o; € P; . The energy of o is defined as

ty
s = [l =1 n, (53)
to
Then, the energy of an n-maneuver a = (@, ...,a,) € P is simply the sum of the energies
ofall a;,i=1,---,n, te,
Ja) =) J(o). (3.4)
i=1

The application of Cauchy-Schwartz inequality to equation (4.1) yields
J(es) > [L{ea)]*/(ts = to),

where the equality holds if and only if ||&;(t)|| is constant, i.e., if and only if the motion of
aircraft i is of constant speed L(a;)/(ts —to). This serves our purpose perfectly since, if one
ignores the presence of other aircraft, the J-minimal maneuver for aircraft ¢ is the constant
speed motion along the line segment joining a; to b;. If the maneuver is required to lie on
some curve other than the line segment, then of all the different parameterizations, the one
with the least energy is the one with constant speed. This has a practical counterpart in our
context, since safety, performance limits and passenger comfort prohibit the aircraft from
making abrupt turns and speed changes.

Finally, we can formulate the constrained optimization problem we shall deal with as
follows:

Minimize J(c) subject to a € P(R). (3.5)

The necessary Conditions for Optimal Maneuver ra* = (of,---,a}) € P(R) to be a

solution to problem (3.5) is described in [9].

3.3.3 Optimal 2-legged Maneuver for Two Aircraft Conflict Res-
olution

Consider two aircraft with starting positions a = (a;,az) and destination positions b =

(b1,b2). Let o = (v, a2) be a 2-legged maneuver with way-points ¢;j, ¢ = 1,2, j =0,1,2.

Since cip = a; and ¢; o = b; are fixed, the only way-points we can actually choose are ¢;,

i = 1,2, which we then denote with ¢; = ¢;1 to simplify the notations. Assume that the

epoch corresponding to the middle way-points is ¢. € (to,ts). After some calculations, the
cost function for a rewritten in terms of ¢; and c; can be simplified to

tr—to
(tf - tc) (tc -
where C is a constant, and ¢} is defined by

tr—to

J(a) =

%) [ller = el + lle2 = 5171 + C, (3.6)

, i=1,2. (3.7)

Ky
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Figure 3.3: Plot of {¢; : d*(a; — a3,¢1 — ¢3) > R}

Note that ¢} and cj are the optimal way-points when minimizing J(a) without the MSE
constraint. In the braid representation, they correspond to the intersections of the horizontal
plane t = t, with the lines joining (ai,%o) to (b1, ts) and (as, to) to (be,ts), respectively.

The MSE constraint can also be simplified. For example in the first stage of the 2-legged
maneuver, the motions of the two aircraft are:
t—1t
te—to’

t—1to
tc_to’

a(t) =a1 + (a—a1) az(t) = a2 + (co — a2) to<t<t,. (3.8)

Simple calculations show that

Lemma 3.3.1 Set A = (a; — a2)T(c; — ¢2 — ay + az). Then, the minimum distance of the
two aircraft during the time interval [to,t.] is

llay — a2l ifA>0;
@* = { |ler — e, if A< —ller — €2 — a1 + a2
\/||a1 - 02”2 - /\2/"61 —C— o + a2||2, zf - "Cl —Cy—a; + 0.2"2 S A S 0.

By inspection we can see that d* is a function of relative positions a; — as and ¢; — ¢
only, and it is independent of the time t.. Hence, we shall use d*(a; — az, ¢; — ¢2) to denote
it explicitly whenever necessary. For the last stage of the maneuver, the motions can be
written in a similar way as

t—1t. t—t,
O!]_(t) =+ (b1 - Cl)ﬁ, ag(t) =cCo + (b2 - Cz)t—, tc S t S tf. (39)

F— e f—tc
Then, the minimum distance between the two aircraft during time interval [¢., 7] is d*(c; —
¢2, by —bo) and, hence, the overall MSE is A(a) = min{d*(a; — a2, c; —¢2), d*(c1 —¢2, by — ba) }.

To ensure that the maneuver belongs to P2(R), both d*(a; — az,¢; — ¢3) and d*(c; —
¢2,b1 — by) have to be at least R. Fix ¢y, and suppose we have the freedom of choosing c;
arbitrarily. Figure 3.3 shows the set {c; : d*(a; — a3, ¢1 — ¢2) > R} as a shaded region, which
is obtained by drawing a circle of radius R around c; and the two lines starting from point
a; — az + ¢ and tangent to that circle. This is always possible since, by the assumption
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Figure 3.4: The 4 possible configurations of the f easible set for c; given a fixed c,.

llax — a2]l > R, a; — as + ¢ is outside of the circle. The set {¢; : d*(c1 — c2,b1 — b2) > R} can
be obtained in a similar way. Then, the final feasible set for ¢; given c; is the intersection
of these two sets and, depending on the relative position of a; — a; and b, — by, it has four
possible configurations which are shown in Figure 3.4. Denote this feasible set as A(c;) to
highlight its dependence on ¢,. Notice that A(c;) has the important property to be invariant
with respect to translation: A(c,) for different c; can be obtained simply by translation. In
particular, if we consider the set A(0), then for any c; € R?, A(c;) = ¢ + A(0).

As a result of the above simplifications, optimization problem for a 2-legged maneuver
involving two aircraft degenerates into:

Minimize ||c; — ¢?||2 + ||c2 — c]|? subject to ¢, € A(cp), c2 € R2. (3.10)

Problem (3.10) can be considerably simplified if we observe that in all but the first
configuration, the unconstrained optimal c},c; are feasible, and hence they represent the
(trivial) optimal way-points for problem (3.10). In fact, notice that by equation (3.7),

tr—te te — to

So if we choose ¢; = ¢} in Figure 3.4, then cf lies on the line segment between a; — a; + ¢,
and b; — by + ¢, and is feasible in the last three configurations.

Therefore we shall now consider only the first configuration or, equivalently, we assume
that a and b are chosen such that there is a conflict for the unconstrained optimal maneuver,
i.e., the constant velocity motions connecting a; to b; for ¢ = 1,2. Then, for any fixed ¢,
the feasible set A(cz) of ¢; is the union of two disjoint convex sets corresponding to the two
fundamental types of maneuvers. Let

ty —t. t.— 1o
b — 12
tr—to tf—to(l b2+62) (3 )
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Figure 3.5: Construction of the optimal ¢; and c, for the first configuration.

and let p be the point in A(c;) nearest to g. . If p is not unique, we can choose any of
them. This is the case if and only if there is an exact collision for the unconstrained optimal
maneuver. In the case when we restrict the feasible set to a single connected component
(optimization over a certain type of maneuver), such a p is uniquely defined.

3.3.4 Optimal 2-legged maneuver for Multiple Aircraft Conflict
Resolution

We now turn to the problem of finding the optimal 2-legged maneuver for n aircraft encoun-
ters. Roughly speaking, the nature of the n aircraft conflict resolution problem is mainly
combinatorial in that the major task is to choose the type of resolution maneuver where one
can then find the optimal maneuver. There are various heuristics for choosing a resolution
type. We shall suggest a randomized type chooser based on a probabilistic resolution algo-
rithm as in [10]. In this subsection, however, we deal with the less difficult task of finding
the optimal maneuver within a given type.

Fix t, € T;,. Suppose we have decided which type of resolution maneuver to use. Then,
the problem is to find the way-points ¢y, - -« , ¢, which

n
Minimize ) _ le; — cf||* subject to ¢; € Af(c;), 1<i<j<n, (3.13)
i=1
where ¢} is defined as in (3.7) fori=1,.-. ,n, and A,-*j (cj) denote the connected component

of the set A;;(c;) matching our desired resolution type. Here, A;j(c;) is the feasible set for c;
given ¢; and it can be computed as in Section 3.3.3, with a;, b;, a;, b; in place of a1, by, a2, bs.
Figure 3.6 represents the four possible configurations of A;;(c;) depending on the relative
position of a;, b;, a;,b;. Notice that in all but the first configuration, one of the connected
component of A;;(c;) is nonconvex. In general, solving nonconvex programming problems
is a great challenge, even when the object function is quadratic. This is the reason why
we “linearize” the feasible set by using a half plane inner approximation Aj;(c;) of A;;(c;)
as shown in Figure 3.6. Although this inner approximation excludes some feasible c;, it
contains the unconstrained optimal c} if c; is chosen to be cj. Therefore it is expected that
the approximation will not be too loose. In the special case when any pair of aircraft is in
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Figure 3.6: Convex approximation of the feasible set for ¢; given c;.

the first configuration, <.e., the unconstraint optimal joint maneuver would cause a conflict
between any aircraft pair, the approximation is tight. A symmetric encounter is such a case,
and such encounters are in fact among the most dangerous ones of all possible encounters.

We then have a linearly constrained quadratic optimization problem which can be solved
very efficiently by many software packages. For multiple aircraft, we can run the optimization
algorithm for each fundamental type and choose the one with the lowest cost.

3.3.5 Velocity Constraints

Each aircraft has a speed limit (the maximum speed with which it can fly) that results from
the capability of it’s engine. In addition, every aircraft must fly more than a certain velocity
to maintain a minimum lift force to keep it in the air. If aircraft fly at excessively high
speeds, it becomes very difficult for the Air Traffic controller to handle the traffic efficiently.
Moreover, pilots don't prefer a large speed variation during to the course of their flight. As
our solution might end up suggesting velocities which can not be implemented in the actual
ATC system, it is imperative to add velocity constraints in the optimization process. The
constraint should make sure that our algorithm should suggest velocities which will lie within
a certain range. The range of velocities can be obtained by accumulating information from
the aircraft engine data, pilots and the Air Traffic controllers.

Consider an aircraft with the starting position a; and the destination position b;, where
a;,bi € R%. Let’s consider a 2-legged maneuver in P?(R) with its mid-way-point c; € R2.
As it is assumed before, the epoch corresponding to the middle way point is te; € (o, ty)-
We can fix ¢ for all the aircraft as t;. Again for 2 legged maneuver, , 5 = 0.5(to + t7). Let
Vinaz is the maximum velocity corresponding to the aircraft i. In the time interval [to, £2],
the aircraft i can be in a circle with a center at a; and the radius of Vj,,,t% Also, in the time
interval [t},1;], the aircraft i can be in a circle with a center at b; and the radius of Vyp,st!
The following figure depicts the situation,

The constrains can be mathematically expressed as, where i = 1,2..., N
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position of ¢;

Figure 3.7: Velocity constraints

llei — ail| < t:Vinaz

lle: — bill < teVinas

which are second-order cone constraints,
Foralli=1,2,...,N,

llei — ail| € t:Vinaz + x%Ci where xo; =0 for alli = 1,2, ...N.
llei — bs|l < £2Vimaz + X3¢ where xp =0 for alli =1,2,..., N.

We will add 2NV more second-order cone constraints in the optimization problem

3.3.6 Turning Angle Constraints

The angle each aircraft turns at its way point cannot exceed a certain threshold angle.
The turning angle constraints have practical implications.The turning angle of the aircraft
cannot be too abrupt from the passengers comfort point of view. Moreover, the physics of
the aircraft restricts the implementation of a flight plan which consist of a very large turning
angle. So our solution should provide a turning angle which can be implemented in the
actual flight plan. :

Consider an aircraft with the starting position a; and the destination position b;. Let’s
consider a 2-legged maneuver in P%(R) with its mid-way-point c;. Where, a;,b;,c; € R2. It
is assumed, the epoch corresponding to the middle way point is ¢t € (fo,%7). We can fix ¢,
for all the aircraft as ¢;. At any point of the flight path, the aircraft is not allowed to turn
in an angle which is more than the maximum turning angle .. In the 2-legged maneuver,
the maximum turn happens at the mid way-point. The position of c; should be chosen such
that the flight plan does not violate the tuning angle constraints.

The turning angle constraints can be transferred as Second-order cone constraints. In
the Figure 3.8, the aircraft 7 is taking a turn « at the point c;. c; should lie in a circle where
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a;, b; and c; are 3 points on the perimeter and c; is equidistant from a; and b; in such a
way that the angle a;c;b; is 180° — o or the outer angle is a. If c; always lies in the circle,
the maximum turning angle of the aircraft can never be more than than o.

Figure 3.8: Turning angle constraints

The circle with it’s center O; € R? and the radius r; will define the feasible set for the
turning angle constraints for the aircraft i.

Let d; € R is the perpendicular distance from the chord a;bi to O;.
We can get, d; = 3||b; — a;|cot().

The coordinate of O;,

+b; bi — a
% g g, (3.14)

Where O;,a; and b; are all vectors in R2.
Tz is the rotation matrix with +7 rotation angle.

T; = ( _01 (1) ) (3.15)

( 0 =1 9208)(3.16)

Oi=

T3

1 0

The radius of the circle 7;,
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_ "bi - a,||
n= 2sin(a) (3.17)

The constraints set can be written as equations,

Foralli=1,2,..,N,
lle: — Osll < 7

which can also be transfered as a SOCP constraint.
Forali=1,2,.,N,

flei = Oill < i+ xPes

where x; =0foralli=1,2,...N

We get 2N such constraints. This optimization problem can be solved using software
such as SOCP [15].

3.4 Simulation

Our algorithm is based on a probabilistic model of the aircraft motion which uses the prob-
ability of conflict to generate resolution paths. We run the stochastic resolution algorithm
first {10]. Then, with a high probability a safe resolution maneuver is generated, but even
if this is not the case, the maneuver corresponds to a particular resolution type which can
be thought to be a relatively good one. Using this type of resolution, we can then run the
convex optimization algorithm to obtain a nearly optimal resolution maneuver within that
type. Here, we use the software package SOCP to solve the optimization problem. We
ran the algorithm in different scenarios where there are 2,4,8 and 16 aircraft in a potential
conflict. We have also varied the conflict zone as R = 10n.mi. and R = 5n.mi.. As aircraft
are trying to maintain a distance R among themselves while optimizing their flight paths
without any coordination among them, our algorithm is a decentralized one. We can see
that the deviation from the nominal path is higher for the case R = 5n.mi than the case
where R = 10n.mi. We have also used the maximum velocity as 420 n.mi/hour and the
maximum turning angle as pi/10. The result of the simulations are presented in Figure 3.9
to Figure 3.16.
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Optimized and conflict free Trajectory
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Figure 3.9: Conflict resolution of 2 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=5 n.mi

Optimized and conflict free Trajectory
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Figure 3.10: Conflict resolution of 2 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=10 n.mi
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Optimized and conflict free Trajectory
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Figure 3.11: Conflict resolution of 4 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=>5 n.mi

Optimized and conflict free Trajectory
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Figure 3.12: Conflict resolution of 4 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=10 n.mi
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Optimized and conflict free Trajectory
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Figure 3.13: Conflict resolution of 8 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=5 n.mi
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Figure 3.14: Conflict resolution of 8 aircraft with velocity (less than 420.n.mi/hour) and way
point constraint (turning angle less than pi/10) and R=10 n.mi
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Optimized and conflict free Trajectory
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Figure 3.15: Conflict resolution of 16 aircraft with velocity (less than 420.n.mi/hour) and
way point constraint (turning angle less than pi/10) and R=5 n.mi

Optimized and conflict free Trajectory
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Figure 3.16: Conflict resolution of 16 aircraft with velocity (less than 420.n.mi/hour) and
way point constraint (turning angle less than pi/10) and R=10 n.mi



Chapter 4

Three Dimensional Optimal
Coordinated Maneuvers for Aircraft
Conflict Avoidance

In this chapter, we present the problem of finding optimal three dimensional conflict-free
maneuvers for multiple aircraft [7]. The candidate maneuvers include changes of altitude,
heading and speed. Among all the conflict-free maneuvers, we try to find the one which
minimizes a certain energy function. A priority mechanism is incorporated into the cost
function so that aircraft with lower priority assume more responsibility in resolving the
conflicts. Moreover, vertical maneuvers are penalized with respect to horizontal ones for the
sake of passenger comfort. A geometric construction and a numerical algorithm are given to
determine the optimal maneuver in the two aircraft case. As for the multi-aircraft case, an
approximation scheme is proposed to compute a suboptimal two-legged solution. Extensive
examples are presented to illustrate the effectiveness of the proposed approaches.

4.1 Problem Formulation

Consider a single aircraft, say aircraft 4, which flies from position a; € R? at time to to
position b; € R? at time t;. Set T = [to, t;], and denote with P; the set of all maneuvers for
aircraft 4, i.e., continuous and piecewise C? functions ; : T — R? satisfying a;(ty) = a; and
ai(ts) = b;

The energy of a maneuver a; : T — R? is defined as

1 v,
Te) =3 [ llaolPa, (4.1)
which by the Cauchy-Schwartz inequality satisfies

1 L(Oti)2

> A

)2 5% —wy

where L(a;) = ft:,! ||ci(t)|| dt is the length of the curve a;. The equality holds if and only
if the speed [|&:(?)|| is constant, and in this case the energy J(oy) is proportional to the

35
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square of the length of a;. This implies that the maneuver with the least energy for a single
aircraft is the constant-speed motion along the line segment from its starting position to its
destination position. If the aircraft is forced to move along some fixed curve other than the
line segment, then the parameterization of the curve with the least energy is the one with
constant speed, and the minimal energy is proportional to the square of the curve length.
As a result, the least energy maneuver between two points in the presence of static obstacles
is the shortest curve between the two points parameterized proportionally to its arc length.
This observation will be used later in this chapter , when dealing with the two aircraft case.

In the following development, we assume that a group of aircraft flying in a certain region
of airspace have been isolated so that only conflicts among aircraft in this group need to be
considered during the time interval of interest. This assumption, although unrealistic, is
popular in the current literature on conflict resolution.

Suppose there are n aircraft in the group and they are numbered from 1 to n. Each
aircraft, say aircraft i, starts from position a; € R3® at time ¢y and arrives at position
b; € R? at time t;, i = 1,...,n. P; is defined as above. Define P(a,b) = [, P;, where
a = (a1,...,a,) and b = (by,...,b,) denote the starting and destination positions of the
n-aircraft system respectively. Each element o = (a,...,a,) of P(a,b) is called a joint
maneuver (n-maneuver or simply maneuver when there is no ambiguity) for the n-aircraft
system. A joint maneuver a = (¢4,...,a,) € P(a,b) is said to be conflict-free if for all the
duration of the encounter, none of the aircraft enters the cylindrical protection zone of radius
R and height 2H surrounding another aircraft, or equivalently, there does not exist a pair of
indices (4, j) with 1 < i < j < n such that ||a; zy(t) — @y (t)|| < R and |, (t) — ;- (t)] < H
for some t € T. Here we use the notations that for a given ¢ € R?, ¢, and c, are the
components of ¢ on the horizontal zy plane and the vertical z-axis respectively.

We denote with P(R, H; a, b) the set of all conflict-free (joint) maneuvers with starting
position a = (ay,...,a,) and destination position b = (by,...,by) for the n-aircraft system.
Throughout the paper we assume that each pair of points in the set of starting positions
{ai,...,a,} satisfies either the horizontal or the vertical separation condition so that there
is no conflict for the n-aircraft system at time ¢p. Similarly for {b;,...,b,}. As a result, the
set P(R, H;a, b) is nonempty.

he performance of each n-maneuver @ € P(a,b) can be characterized in term of its
u-energy defined by

n
Ju(e) =) i (es), (42)

i=1
where J(a;) is the energy of o; defined in equation (4.1), and yq, ..., 1, are positive real
numbers adding up to 1 that represent the priorities of the aircraft. Without the separation
constraint, the p-energy minimizing joint maneuver is clearly the one in which each aircraft
fly at constant speed along a straight line. If we restrict our attention to conflict-free joint
maneuvers, the ones with smaller p-energy will still tend to be straighter and smoother, which
has practical implications in terms of passenger comfort and fuel consumption. Moreover,
by an appropriate choice of the coefficients {u;}, we can assign different priorities to the
aircraft. For example, those aircraft with higher maneuverability can be assigned smaller x

so that they assume a larger responsibility in resolving the conflict.

We say that a conflict-free joint maneuver is the optimal (resolution) manevver for a
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multi-aircraft encounter if it is the solution to the following constrained optimization prob-

lem:
Minimize J,(a) subject to a € P(R, H;a,b). (4.3)

It can be expected that in this formulation, the optimal resolution maneuvers will mainly
utilize the vertical dimension for almost all encounters since H is much smaller than R.
However, vertical maneuvers are usually the least comfortable ones for passengers. This is
the reason why we redefine the energy of a maneuver ¢; in equation (4.1) as follows:

e = 5 [ (O + lces(017 (@4)

where > 1 is a coefficient introduced to penalize vertical maneuvers. The u-energy of a
joint maneuver « is then defined by (4.2) with J(a;) given by (4.4) instead of (4.1). This
modification does not add further difficulties to the solution of problem (4:3), since the
minimization of the new cost function can be easily reduced to the previous one without
penalty by scaling the z-axis by a factor of 7. The p-energy with penalty 7 of a joint
maneuver is in fact equal to the p-energy without penalty of the scaled version of the same
joint maneuver, and optimal solutions to the scaled problem can be scaled back to give the
optimal solutions to the original problem.

After scaling, the protection zone becomes a cylinder of radius R and height 2nH, hence
horizontal resolution maneuvers are more likely to be invoked. In particular, in the level
flight case, if 7 — oo the problem degenerates into the 2D resolution problem studied in [8].

Without loss of generality, in the following development we then assume n=1 A
necessary condition for a conflict-free joint maneuver to be optimal is presented in [7]

4.2 Optimal maneuvers for two aircraft encounters

Assume that a = (a,,a,) and b = (b, b,) are p-aligned and denote with ¢ their common
p-centroid, i.e., ¢ = way + paas = piby + pzbs. An optimal 2-maneuver o* = (a},a3) €
P(R, H; a,b) satisfies

ai(t) —c= -f(ag(t) —¢), WteT, (4.5)
from which it easily follows that the energies of o} and o} are related by p2J(a}) = p2J (03).
Since we need only to search among conflict-free maneuvers satisfying equation (4.5) for a*,
minimizing the p-energy of the joint maneuver is equivalent to minimizing the energy of the
maneuver for a single aircraft, say, aircraft 1.

The separation constraint can be simplified as well, since equation (4.5) implies that it
is equivalent to the condition that the curve aj(-) never enters the cylinder W, of radius
R, = ppR and height 2H, = 2y, H centered symmetrically around the p-centroid ¢. As a
result of these simplifications, problem (4.3) is now equivalent to:

Minimize J(c;) subject to a; € Py, and a,(t) ¢ W, for all t € T, (4.6)

which consists in finding minimum energy maneuvers of a single aircraft in the presence of
a static obstacle W,,.
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From the discussions following the definition (4.1) of energy of a maneuver, we know that
a solution to problem (4.6) is a constant-speed motions along a shortest curve joining a; to
by while avoiding the obstacle W),. Under the feasibility assumption, both a; and b, belong
_to R®\ W, and such a curve can be computed efficiently. Once a} is computed, o} can be
obtained from aj through equation (4.5). This concludes the u-aligned case.
For the general case when a and b are not necessarily p-aligned, an optimal solution
a* € P(R, H;a,b) to problem (4.3) is given by:
* I t=t
{al(t) =N (ax b +w)(t) - t,_-ng , Vit e T’ (4.7)

a3(t) = 732, b+ w)(t) - 2w

where (v}(a,b + w),v3(a, b + w)) denotes an optimal maneuver in P(R, H;a, b + w) with
w = may — by + paas — pobs.

The optimal solutions depend on the choice of the priority coefficients p; and p;. Consider
the case when the priority of aircraft 1 is much larger than that of aircraft 2 so that pp =~ 0.
In the p-aligned case this implies that a; ~ b, and the radius and height of the cylinder W,
are approximately 0. Therefore -} is nearly a zero motion. For general a and b that are not
necessarily u-aligned, it follows from the first equation in (4.7) that optimal maneuvers for
aircraft 1 are almost constant-speed motions along the line segment from a; to b;. Hence
as expected, aircraft 1 behaves as if there were no other aircraft flying in the same region,
whereas aircraft 2 is the one assuming the responsibility of avoiding conflicts.

4.3 Some examples of optimal 2-maneuvers

In this section, we present some examples of two-aircraft encounters, and discuss the influence
of various factors on the corresponding optimal resolution maneuvers. In all the examples,
the coordinates of the aircraft positions are measured in nmi, with R = 5 nmi and H = 0.3292
nmi.

We start by considering a two-aircraft encounter where a; = (0,20, 1), b; = (40,20, 1),
and a; = (20,0,1), by = (20,40,1), so that the straight lines connecting the starting and
destination positions of the two aircraft respectively are on the same horizontal plane and
cross each other at a right angle.

Figure 4.1 shows an optimal maneuver in the case when the two aircraft have the same
priority (43 = pp = 0.5) and = 5. Starting and destination positions of the two aircraft
are marked with stars and diamonds respectively, whereas the circles represent the aircraft
positions at equally spaced time instants. Hence the denser the circles, the slower the
motions. The top view in (b) shows that the conflict is resolved by vertical deviations from
the ideal trajectories, which are defined to be the constant-speed motions along the straight
lines joining starting and destination positions of the two aircraft respectively.

We now study the effect of the priority coefficients on the optimal resolution maneuvers.
Plotted in Figure 4.2 are optimal resolution maneuvers for the same two-aircraft orthogonal
encounter under three different sets of aircraft priorities and the same 7 (n = 5). Although
the optimal maneuvers in all three cases have the same top view (shown in the right-hand-
side of Figure 4.1), the vertical deviation of aircraft 1 from its ideal trajectory decreases
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Figure 4.1: An optimal resolution maneuver for an orthogonal two-aircraft encounter (=35
and p; = pp = 0.5): (a) three dimensional view; (b) top view.

as its priority increases. In other words, aircraft 2 with smaller priority will assume more
responsibility in resolving the conflict. In the extreme case when y; = 1 and p2 = 0,
the optimal resolution maneuver will be such that aircraft 1 flies along its ideal trajectory,
while aircraft 2 assumes all the responsibility of avoiding conflicts with aircraft 1. These
conclusions hold in general for two-aircraft and multi-aircraft encounters.

(a) (b) ()
Figure 4.2: Optimal resolution maneuvers for the orthogonal two-aircraft encounter under

three different sets of aircraft priority (7 = 5): (a) g1 = 0.5, pp = 0.5; (b) p; = 0.7, pp = 0.3:
(C) m = 0'9: M2 = 0.1.

As for the effect of the vertical penalty factor, note that in Figure 4.1 where n = 5
and p; = p; = 0.5, the conflict is resolved using only vertical deviations from the ideal
trajectories. In contrast, in the case shown in Figure 4.3 where 7 is set equal to 15 (11 =
p2 = 0.5), the conflict is resolved using only horizontal deviations. The explanation is that
in order to obtain the optimal resolution maneuvers, we have to scale the z-axis by a factor
of . When 7) is large so that the height of the cylindrical obstacle becomes much larger than
its radius, a shortest curve between two points across the cylinder is more likely to be a curve
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@

(a) (b)

Figure 4.3: An optimal resolution maneuver for the orthogonal two-aircraft encounter with
larger n (n =15 and py = pp = 0.5): (a) three dimensional view; (b) top view.

around the side of the cylinder rather than around its top or bottom. Therefore the larger
the vertical penalty factor 7, the more likely it is that an optimal resolution maneuver will
consist of horizontal deviations from ideal trajectories. In general, for encounters involving
two or more than two aircraft, there are two extreme cases: When 7 is very large and the
aircraft initial and destination positions are all at about the same altitude, the problem
degenerates into a planar conflict resolution problem, where only horizontal deviations are .
allowed in resolving the conflict; When 7 is close to 0, then only vertical deviations are used
in the optimal resolution maneuvers and their top views consist of straight line segments.

It is worth noticing that due to the cylindrical shape of the obstacle, a slight change
of starting or destination positions of either aircraft may lead to radically different optimal
resolution maneuvers. Take for example the optimal maneuvers for the two-aircraft encoun-
ters shown in Figure 4.4, where a; = (0,20, 1), b = (40,20,1), by = (40,30, 1.2) are fixed,
and a, takes two different values: a; = (0,10,0.8) shown in (a) and (b) of Figure 4.4, and
az = (0,11,0.8) shown in (c) and (d) of the same figure. Although the values of a, are close
in the two cases, the optimal resolution maneuvers look quite different. While both consist-
ing of three constant-speed motions along straight line, the optimal maneuver in the first
case experiences more dramatic altitude changes in the early stage than in the late stage,
while the situation is reversed in the second case.

4.4 Optimal two-legged maneuvers for multiple aircraft
encounters

4.4.1 Reformulation of the problem

Consider an n-aircraft system with starting position a = (ay, . .., a¢,) and destination position
b = (by,...,bs). Fix an epoch ¢, € T such that ¢, < ¢, < t;. For each aircraft ¢,i =1,...,n,
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- Figure 4.4: Optimal resolution maneuvers for two-aircraft encounters with the same a,, b,
by and two different values of a2 (7 =5 and p1 = pp = 0.5): (a) three dimensional view and
(b) projection onto the zz-plane for the case a; = (0, 10,0.8); (c) three dimensional view
and (d) projection onto the zz-plane for the case a; = (0,11, 0.8).

choose a way point ¢; € R3. Then a two-legged maneuver with way point ¢; for aircraft i is
a maneuver consisting of two stages: first from a; at time %, to ¢; at time t., and then from
c; at time ¢, to b; at time t;, moving at constant velocity in both stages. Denote with P;,
the set of all two-legged maneuvers of aircraft i, and with Py(a, b) = [T, P; the set of all
two-legged joint maneuvers of the n-aircraft system. Denote with P(R, H;a,b) the subset
of Py(a, b) consisting of all those elements of P»(a, b) that are conflict-free. We assume that
the epoch t. is fixed throughout this section, so that each maneuver in Pz(a, b) (and hence
in Py(R, H;a, b)) is uniquely specified by the way points (cy,...,cn).
In this section we shall try to solve the following problem:

Minimize J, (o) subject to a € Py(R, H;a, b). (4.8)

The reason for studying problem (4.8) instead of the general problem (4.3) is that in the
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Figure 4.5: Two-legged resolution maneuvers for a three-aircraft encounter (p; = po = pz =
1/3): (a) three dimensional view and (b) top view in the case n = 5; (c) three dimensional
view and (d) top view in the case n = 50.

ATM practice, it is simpler for the central controller to transmit the aircraft trajectory infor-
mation in the form of way points and time to reach these way points rather than continuous
trajectories. From a methodological point of view, since each maneuver in Po(R, H;a,b) is
parameterized by a way points vector (cy, . . ., ¢, ), which resides in a finite dimensional vector
space, problem (4.8) is a finite dimensional optimization problem, which is much easier to
deal with than the variational problem (4.3).

4.4.2 Some examples of multi-aircraft encounters

Consider a three-aircraft encounter where a; = (0,50,4), b; = (100, 50,4), a; = (50,0, 4),
by = (50,100,4), as = (100,100, 5), and b3 = (0,0, 3), i.e., aircraft 1 and aircraft 2 are flying
at the same altitude with cross-path angle of 90°, whereas aircraft 3 dives across that altitude
and has a path angle of 135° with both aircraft 1 and aircraft 2. All the three aircraft have
identical priority and t. = (to + ts)/2. We choose a larger R (R = 10 nmi) to make the
resolution maneuvers more evident. In Figure 4.5 the solutions to problem in section 4.4.1.
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Figure 4.6: Two-legged resolution maneuvers for a four-aircraft encounter (u; = pg = pg =
ps = 1/4): (a) three dimensional view and (b) top view in the case = 5; (c) three
dimensional view and (d) top view in the case n = 50.

corresponding to two different values of 7 are shown. Plotted in (a) is the snapshot at a
time instant near {. of the two-legged joint maneuver that is a solution to problem (4.8)
with n = 5. Its top view is shown in (b). The cylinders in (a) represent half the size of
the protection zones surrounding each aircraft, i.e., cylinders of radius R/2 and height H.
Therefore two aircraft are in a conflict situation if and only if the corresponding cylinders
intersect each other. Similarly, (c) and (d) plot a snapshot of the solution to problem (4.8)
with 7 = 50. As in the case of two-aircraft encounters, larger value of 7 will force the aircraft
to adopt horizontal maneuvers to resolve the conflict.

Figure 4.6 shows the simulation results for a four-aircraft encounter with a; = (0,100, 4),
by = (100,0,4), ay = (20,80,4), by = (80,20,4), a5 = (95,95,4), by = (0,0,4), a5 =
(70,65,4), and by = (20,25,4). The four aircraft are divided into two groups, each consisting
of two aircraft one overtaking the other, with the path angle between the two groups being
90°. We choose R = 10 nmi, H = 0.3292 nmi, and t. = (to + t;)/2. All aircraft have equal
priority. (a) and (b) plot the snap shot of the solution at a time instant near t, when n = 5,
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(a) (b)

Figure 4.7: Two-legged resolution maneuvers for the four-aircraft encounter (u; = 0.7,
o = pg = pg = 0.1): (a) three dimensional view in the case 7 = 5 and (b) top view in the
case n = 50.

(c) and (d) plot a snapshot of the solution when n = 50. (c) and (d) can be thought of
as the restricted solution to problem (4.8) when the motion of each aircraft is required to
be contained in the plane of altitude 4. If we increase the priority of aircraft 1 such that
gy = 0.7, o = p3 = pg = 0.1, we obtain the results shown in (a) and (b) of Figure 4.7 for
n = 5 and n = 50 respectively. Compared with (a) and (d) of Figure 4.6, we can see that the
motions of aircraft 1 are closer to the straight line motions, forcing other aircraft to “bend”
more.

When the number of aircraft involved gets larger, the resolution maneuver becomes more
complicated. An example is shown in Figure 4.8 for an eight-aircraft encounter, which is
obtained by adding to the four-aircraft encounter in Figures 4.6 and 4.7 four more aircraft
with as = (55,0, 3.7), bs = (50, 80,3.7), as = (55, 20, 3.7), bs = (50, 100,3.7), a7 = (0, 55, 3.7),
b = (80,45,4), ag = (20, 55,3.7), and bg = (100, 45,4). By choosing identical priority and
n = 20, the obtained solution to problem consists of both horizontal and vertical resolution
motions. (a), (b) and (c) are views of the solution from different viewpoints, (d) is its
snapshot at a certain time instant.

4.4.3 Constraints on the velocity and the turning angle for the
aircraft maneuver feasibility

So far we have assumed that the two-legged maneuver obtained by solving the optimization
problem (Section 4.4.1) is flyable. In practice, this is usually not the case because of the
abrupt turn and the change of speed when an aircraft passes through its way-point. In the fol-
lowing we shall propose practical constraints on the way-points to alleviate such drawbacks,
at least to a certain extent. In order for the optimization problem to be computationally
tractable, it is important that the introduced constraints be convex.

We start by considering the speed constraint: the speed of each aircraft during both
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Figure 4.8: Two-legged maneuvers for an eight-aircraft encounter (u; = 1/8, i = 1,...,8,
1= 20).

stages of its motion cannot exceed a certain threshold v,,,. Recall that ¢, is the time epoch
corresponding to the middle way-points ¢;’s. Then the speed constraint can be expressed as:

lla; — cill £ Vmaz(te —to), |1bi — &l € Vmaz(ty —t.), i=1,...,n. (4.9)

For a single aircraft, say aircraft ¢, constraint (4.9) implies that c¢; must belong to the
intersection of two spheres, one centered at a; and the other centered at b;. Hence the speed
constraint is convex. Instead of a common vmqz, one can also impose different speed upper
bounds for the aircraft.

A further practical constraint is the turning angle constraint: the angle each aircraft
turns at its way-point cannot exceed a certain threshold 6,,,.. For aircraft 7, this constraint
specifies that its way-point ¢; must lie in a convex region of R? that is invariant under rotation
around the axis a;b;, which is the straight line passing through a; and b;. The intersection of
this convex region with any plane through a;b; is plotted in Figure 4.9. It is the intersection
of two disks with properly chosen centers and radii.

Note that each one of the two constraints above can be expressed using the second order
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Figure 4.9: Turning angle constraint on way-points.

cone constraints of the form (assume s is the optimization variable)
lAs +b]| < és +d, (4.10)

for some matrix A, vectors b, & and constant d of suitable dimensions. Although the turning
angle constraint is actually equivalent to an infinite number of second order cone constraints,
one can, for example, impose an upper bound on the turning angle for the projections of the
maneuver onto the plane zy, £z and yz respectively, thus leading to three second order cone
constraints. Therefore, the optimization problem in section 4.4.1 together with the speed
and the simplified turning angle constraints become a Second Order Cone Programming
(SOCP), which can be solved using softwares such as SOCP ([15]). Note that as before, the
vertical discount factor 1 can be incorporated into these two constraints.

Figure 4.10 shows the effect of the speed and turning angle constraints by considering
a five-aircraft encounter. The solution to problem in sction 4.4.1 without any additional
constraint is shown in (a), the solution with the speed constraint of vma; = 7.102 nmi/min
is shown in (b), whereas the solution with the turning angle constraint fm.; = 7/10 on the
zy plane projection is plotted in (c). Here we choose to = 0 min, ¢; = 10 min, ¢, = 5 min,
n =50, R = 5 nmi, and all aircraft have identical priority. It can be seen that, as expected,
the aircraft with the largest speed and turning angle (the one starts from the top left corner
and ends in the bottom right corner) tends to have a straighter motion under the added
constraints on either the speed or the turning angle.

Further adjustments can be introduced to improve the flyability of the generated maneu-
vers. For example, one can consider multi-legged maneuvers and adopt an iterative procedure
to get an approximated optimal solution for the multi-legged version of the conflict resolution
problem. Also, to avoid the sharp turns that the generated maneuvers may cause for the
aircraft at time ¢g, one can choose the starting epoch to be ¢ + A for some positive A, and
use the time interval [ty, £, + A as the buffer for possible heading adjustments. It should be
pointed out that the effort in this chapter is only a small step towards the implementation of
our algorithm in practical situations, and much more work needs to be done in this aspect.
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Figure 4.10: Two-legged resolution maneuvers for a five-aircraft encounter (u; = ps = p3 =
ks = 1/4, n = 50): (a) no additional constraint; (b) speed constraint with Ve = 7.102
nmi/min; (c) turning angle constraint with Opmq, = 7/10.




Chapter 5

Conclusions and Future work

We presented a stochastic algorithm to detect mid-range aircraft conflict. Monte-Carlo
simulation is performed to validate our detection model. There is an explicit separation
between the probabilistic model used for our prediction and validation. In the validation
scheme, our method shows a drastically improved ratio of conflicts detected per false alarm.
Our validation scheme also provides appropriate value for the various design parameters
such as the threshold conflict probability which can be successfully utilized in order to
increase the performance of the ATC system. Moreover, in our approach, we have used
randomized algorithms to manage the computational complexity of the problem and to
provide quantitative estimates of the level of approximation involved.

We studied the resolution algorithm when multiple aircraft are involved in a potential
conflict. First, we proposed an algorithm for the two dimensional case. Consequently, we
have presented the extension of the algorithm for the three dimensional case. A randomized
algorithm is used in order to know the type of the resolution maneuver and an optimization
is carried out where the type of the resolution maneuver is known from the randomized
algorithm. The original optimization algorithm is approximated by a convex optimization
problem by considering two legged maneuvers and the linear approximation of the feasible
region. The feasibility of the flight plan is also taken into account by introducing maximum
speed and the turning angle constraints.

The algorithms presented here work in the tactical level. The direction of our future
research work will lead us to the strategic level. The transition is inherently dependent on
a seemless and efficient interface between the two. One example can be cited in the case
of aircraft conflict resolution, as it applies to the avoidance of bad weather. In the current
system, a major portion of the delay is due to bad weather. A strategic level algorithm is
required to reroute the aircraft in order to reduce weather related delay. As the aircraft
approaches the site of the bad weather, the strategic conflict avoidance transitions into a
tactical one. Here, the conflict detection and resolution schemes that we have presented can
be applied to develop an efficient rerouting of the aircraft if it is integrated well with the
strategic detection and resolution schemes.

The development of a safe and efficient National Airspace System (NAS) is dependent
upon strategic and tactical conflict detection and resolution schemes which are well inte-
grated. It is the intention of this author to pursue this union in the hopes of creating a much
improved ATC system.
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