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Abstract

Energy-Efficient Processor System Design

by

Thomas David Burd

Doctor ofPhilosophy in Engineering-Electrical Engineering

and Computer Sciences

University of California, Berkeley

Professor Robert W. Brodersen, Chair

Motivated by the pervasive use of general-purpose processors in portable

electronics devices, energy-efficient processor system design is presented as a critical

enabler for smaller, more powerful, and longer-running devices. A decade of research

has demonstrated that extremely energy-efficient ASIC and custom DSP design is

achievable, but the energy-efficiency of general-purpose processors has severely lagged

behind. Thus, despite only performing a small fraction of the computation in these

portable devices, the processor system contributes a significant, if not dominant,

fraction of the device's total energy consumption. This thesis introduces and

demonstrates a top-down processor system design methodology for dramatically

reducing energy consumption, while maintaining the desired level of performance.

By understanding the fundamental usage requirements of a processor in

portable devices, combined with analytical models for energy consumption and

performance, energy-efficiency metrics are derived. A key design technique derived

from these metrics, dynamic voltage scaling, is then described for achieving the single-

largest increase in energy-efficiency. The metrics are further utilized in developing an



overall energy-conscious design flow methodology, and more specifically, energy-

efficient architectural and circuit design methodologies to additionally improve system

energy-efficiency.

The design and measured results are reported on a prototype processor system,

which successfully demonstrates the design techniques and methodologies presented in

this thesis, and the potential improvement in processor system energy-efficiency. The

system consists of four custom chips: a microprocessor, an SRAM, a voltage converter,

and an I/O interface chip. On top of this system runs a real-time operating system,

which executes software programs typically found in portable devices, to demonstrate a

complete embedded processor system. This prototype system's energy-efficiency was

quantified, and demonstrated to be more than order of magnitude higher than the most

energy-efficient processor system available today.

Robert W. Brodersen, Chairman of Committee
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Introduction 1

The explosive proliferation of portable electronic devices has compelled

energy-efficient VLSI and system design to provide longer battery run-times, and more

powerful products that require ever-increasing computational complexity. In addition,

the demand for low-cost and small form-factor devices has kept the available energy

supply roughly constant by driving down battery size, despite advances in battery

technology which have increased battery energy density. Thus, energy-efficient design

must continuously provide more performance per watt.

Since the advent of the integrated circuit (IC), there have been micro-power

ICs which have targeted ultra-low-power applications (e.g. watches) with power

dissipation requirements in the micro-Watt range [vittSO]. However, these applications

also had correspondingly low performance requirements, and the ICs were not directly

applicable to emerging devices (e.g. cell phones, portable computers, etc.) with much

higher performance demands.

For the last decade, researchers have made tremendous advancements in

energy-efficient VLSI design for these devices, derived, in part, from the earlier micro-

power research, and targeted towards the devices* digital signal processing (DSP).

Initial work demonstrated how voltage minimization, architectural modification such as

parallelism and pipelining, and low-power circuit design could reduce energy



consumption in low-power custom DSP application-specific ICs (ASICs) by more than

lOOx [chan92]. Later work demonstrated significant energy-efficiency improvement for

a variety of signal-processing applications, including the custom ASICs in a portable

multimedia terminal [chan94], a custom video decoder ASIC [tser96], and

programmable DSP ICs [ueda93][shir96][lee97].

A common component in these portable devices is a general-purpose processor.

Few devices are implemented with a full-custom VLSI solution, as a processor provides

two key benefits: the ability to easily implement control functionality which does not

map to custom hardware, and more importantly, the ability to upgrade and/or modify

functionality, after implementation, due to its programmable nature. Although the

processor may perform as little as 1% of the total device computation, advances in

energy-efficient custom DSP implementation have made the processor power

dissipation a dominant component in portable devices.

Since the advent of the first integrated CMOS microprocessor, the Intel 4004

in 1971, microprocessors were consistently designed with one goal in mind:

performance. Processor power and silicon area had been relegated to secondary

concern. The wide-spread emergence of portable devices has created a demand for more

energy-efficient processors, but the industry trend has been to fabricate an older

processor in a better process technology, operate it at a reduced supply voltage, and

market it as a low-power processor. Process and voltage scaling does improve energy-

efficiency, but not the improvement possible with a whole-scale processor redesign

with energy consumption in mind from the outset.

While some processors have been touted as low-power, and have become quite

prevalent in portable devices, they generally achieved this by delivering lower

performance. Thus, they are low-power, but not necessarily energy-efficient. The

StrongArm processor demonstrated what can be achieved by designing a processor with

energy consumption in mind from the start [mont96]. It provided a five-fold increase in



1.1 The Performance-Energy Trade-off

energy-efficiency, as compared to other contemporary processors, which had otherwise

only demonstrated incremental increases.

But even the StrongArm remains lOOx-lOOOx less energy-efficient for basic

computation (e.g. arithmetic, logical operations) than a custom ASIC implementation

[zhanOO]. This is in large part due to the overhead required by a general-purpose

processor: fetching and decoding instructions, multiplexing instructions onto the same

underlying hardware, and supporting superscalar and/or pipelined microarchitectures.

However, there is still large room for improvement to further improve processor

energy-efficiency, as will be demonstrated throughout this thesis.

1.1 The Performance-Energy Trade-off

The processor performance and energy consumption is shown in Figure 1.1 for

some portable devices currently available. While notebook computer processors deliver

tremendous amounts of performance, their high energy consumption requires a large

battery to provide even a few hours of run-time. On the other hand, Palm-PCs and PDAs

can deliver increasingly longer battery run-time due to their lower energy consumption,

CM

g 100
</)

Q

g 10
(Q

PDAs

Palm-PCs

0.1 1
Processor Energy (Watts • sec)

Notebook

Computers

FIGURE 1.1: Processor Performance vs. Energy Consumption.



1.2 Research Goals and Contributions

but it comes at the expense of decreased performance.

In fact, there is a general performance-energy trade-off, as indicated by the

dotted line, which occurs because many existing low-power design techniques sacrifice

performance in order to achieve lower power. In DSP applications, parallelism is a

common design technique to recover lost performance, while maintaining constant

energy consumption. However, for a general-purpose microprocessor, parallelism has

diminishing returns on increasing performance, and comes at the expense of

exponentially increasing energy consumption.

The current philosophy has been to rely on process technologies improvements

to shift the trend line up, which it does by approximately 2x per process generation. In

breaking with this philosophy, the StrongArm processor pushed the trend line up 5x,

and demonstrated that an energy-efficient processor design could yield as much

improvement as two or three process generations.

But this still falls dramatically short of the ideal goal of a processor that could

deliver performance approaching that of a notebook computer, while maintaining

PDA-like energy consumption, and providing an energy-efficiency similar to that found

in low-power, custom ASIC designs.

1.2 Research Goals and Contributions

The goal of this research is to significantly improve processor system energy-

efficiency by combining the lessons learned in low-power DSP design with the unique

design constraints of a general-purpose processor to develop a new, more energy-

efficient, processor design methodology. Several key research contributions which

address this goal are:

• Developed the technique of Dynamic Voltage Scaling (DVS) for a general-purpose

microprocessor to dynamically vary the processor's supply voltage and clock
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frequency, under operating system control. This allows the processor to provide

high performance when required, while minimizing energy consumption during the

remaining low-performance periods of time. This technique is most significant

because it eliminates the energy-performance trade-off of more traditional low-

power design techniques.

• Developed an energy-conscious design flow which enables energy consumption

optimization at all levels of the design flow, including the high-level C behavioral

simulator, where optimizations can have the biggest impact on energy-efficiency.

The new flow also eliminates the extra complexity added by DVS to a more

traditional design flow.

• Developed an energy-efficient architectural design methodology for all aspects of

a processor system, including system-level optimizations, as well as optimizations

targeted for the processor core and cache system.

• Developed an energy-efficient circuit design methodology for all aspects of digital

circuit design for processors, while meeting the circuit design constraints imposed

by DVS.

• Demonstrated the above concepts by implementing a prototype processor system,

consisting of four custom chips in a O.bpm CMOS process technology, that can

operate over the range of 1.2-3.8V, 5-80MHz, and 0.54-5.6 mW/MIP. Through

DVS, the system can deliver a peak performance of 85 Dhrystone 2.1 MIPS, with

an average power dissipation as low as 3.24mW. This yields as much as

26,000 MIPS/W, which is more than lOx than the most energy-efficient

microprocessor currently available.

1.3 Organization

Chapter 2 presents a usage model for processors found in portable electronic

devices in order to qualitatively identify the critical design optimizations for processor
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performance and energy consumption. Analytical CMOS circuit models are then

presented, from which three metrics are derived to quantify energy-efficiency. Four key

energy-efficient design principles are presented to demonstrate the application of these

metrics.

Dynamic voltage scaling (DVS), a technique to dynamically vary a processor's

performance and energy consumption, is presented in Chapter 3. After demonstrating

the potential energy-efficiency improvement of DVS, a voltage converter is described

which generates the variable voltage and clock frequency. The design constraints placed

upon the processor's circuits are then examined. DVS requires operating system support

via the voltage scheduler, which is presented, followed by new benchmark programs

used to quantify the energy-efficiency improvement of DVS.

An energy-conscious design flow methodology is described in Chapter 4,

which constantly evaluates not only performance, but energy consumption as well, at all

levels of the design hierarchy. A majority of the design cycle in modem complex

processor designs is spent on validating functionality, a problem which is exacerbated

by DVS. The remainder of the chapter describes four parts of the design flow that were

developed to aid and speed-up the design of a DVS processor system: clocking

methodology, power distribution methodology, functional verification, and timing

verification.

Chapter 5 presents a top-down energy-efficient architectural design

methodology. First, system-level architectural design issues are discussed, followed by

a more in-depth analysis of the processor core and the cache system.

An energy-efficient circuit design methodology is described in Chapter 6.

General circuit design techniques are discussed, including choosing logic styles,

transistor sizing, clock-gating, optimizing interconnect, and layout considerations for

both standard and datapath cell libraries. Memory design, which has additional
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constraints placed upon is by DVS, is presented next. Low-swing bus transceivers are

then described, which can be used to significantly reduce energy consumption for on-

chip busses, and even more significantly, for inter-chip busses.

A prototype processor system, consisting of four custom chips, is presented in

Chapter 7. This system successfully demonstrates the energy-efficiency improvement

due to DVS (5-1 Ox), as well as the energy-efficiency improvement due to the previously

described energy-efficient design methodology (2-3x). By radically re-evaluating the

design of a processor, its energy efficiency has been improved by more than a factor of

lOx, as compared to currently-available commercial processors, which even have the

benefit of much better process technologies.

Chapter 8 provides concluding remarks and suggestions for future research

directions.
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To effectively optimize the energy efficiency of a processor system, it is

critical to first understand the computational demands placed upon it. Based upon

relatively simple CMOS circuit models suitable for deep sub-micron process

technologies, three energy-efficiency metrics will be derived. Finally, some key energy-

efficient design principles will be discussed to demonstrate the application of these

metrics.

2.1 Processor Usage Model

Understanding a processor's usage pattern is essential to its optimization.

Processor utilization can be evaluated in terms of the amount of processing required and

the allowable latency for the processing to complete. These two parameters can be

merged into a single measure, which is Throughput, or T. It is defined as the number of

operations that can be performed in a given time:

Operations are defined as the basic unit of computation and can be as fine

grained as instructions or more coarse-grained as programs. This leads to measures of

throughput of MIPS (instructions/sec) and .SPECint95 (programs/sec) [spec94] which

compare the throughput on implementations of the same instruction set architecture



2.1 Processor Usage Model

(ISA), or different ISAs, respectively.

2.1.1 Processor Operation

The desired throughput of various software processes executing on a processor

are shown in Figure 2.1. The example processor usage pattern shows that the desired

throughput varies over time, and the type of computation falls into one of three

categories.

Compute-intensive
& minimum-latencyprocesses

s

.§*
00

§

I
Q

MAX

System
Idle

Background &
high-latency

processes

Time

FIGURE 2.1: Processor Utilization.

Compute-intensive and minimum-latency processes desire maximum

performance, which is limited by the peak throughput of the processor, Any

increase in hardware can provide will readily be used by these processes

to reduce their latency. Examples of these processes include spreadsheet updates,

document spell checks, video decoding, and scientific computation.

Background and high-latency processes require just a fraction of the full

throughput of the processor. There is no intrinsic benefit to exceeding the real-time

latency requirements of the process since the user will not realize any noticeable

improvement. Examples of these processes include video screen updates, data entry,

audio/video codecs, and low-bandwidth I/O data transfers.

The third category of computation is system idle, which has zero desired

throughput. Ideally, the processor should consume zero power in this mode and

therefore be inconsequential. However, in any practical implementation, this is not the

10
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case. Hence, as will be discussed in Section 5.2.5, optimizing this mode of operation

requires special attention.

These three modes are found in most single-user processor systems, from

personal digital assistants (PDAs), to notebook computers, to powerful desktop

machines. This model does not apply to systems implementing a fixed-rate DSP

algorithm; these systems operate either in the fixed-latency or idle modes of operation

which are much better suited to be implemented in a custom DSP ASIC [chan95]. In

multi-user mainframe computers, where the processor is constantly in use, this usage

model also does not hold true. For these machines, the processor essentially spends the

entire time in the compute-intensive mode of operation.

2.1.2 What Should be Optimized?

Any increase in processor speed can be readily exploited by compute-intensive

and minimum-latency processes. In contrast, the background and high-latency

processes do not benefit from any increase in processor speed above and beyond their

average desired throughput since the extra throughput cannot be utilized. Thus, peak

throughput is the parameter to be maximized since the average throughput is

determined by the user and/or operating environment.

The run-time of a portable system is typically constrained by battery life.

Simply increasing the battery capacity is not sufficient because the battery has become

a significant fraction of the total device volume and weight [culb94][iked95][kuni95].

Thus, it has become imperative to minimize the load on the battery, while

simultaneously increasing the speed of computation to handle ever more demanding

tasks. Even for wired desktop machines, the drive towards "green" computers are

making energy-efficient design a priority. Therefore, the computation per battery-life/

Watt-hour should be maximized, or equivalently, the average energy consumed per

operation should be minimized.

11
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Due to the high cost of heat removal, it has also become important to minimize

peak energy consumed per operation (i.e. power dissipation), mainly in hi^h-end

computing machines and notebook computers. However, the focus of this work is on

energy-efficient computing, so the parameter that this work focuses on is average

energy consumption.

2.1.3 InfoPad: A Case Study in EnergyEfficient Computing

The InfoPad is a wireless, multimedia terminal that fits a compact, low-power

package in which much of the processing has been moved onto the backbone network

[chan94]. An RF modem sends/receives data to/from five I/O ports: video output, text/

graphics output, pen input, audio input, and audio output. Each I/O port consists of

specialized digital ICs, and the associated I/O device (e.g. LCD, speaker, etc.). In

addition, there is an embedded processor subsystem used for data flow and network

control. InfoPad provides an interesting case study because it contains large amounts of

data processing and control processing, which require different optimizations for

energy efficiency.

The specialized ICs include a video decompression chip-set which decodes

128 X 240 pixel frames in real-time, at 30 frames per second. The collection of four

chips takes in vector quantized data and outputs analog RGB directly to the LCD and

dissipates less than 2mW. Implementing the same decompression in a general purpose

processor would require a throughput of around 10 MIPS with hand-optimized code. A

processor subsystem designed with the best available parts in an 1.2pm equivalent

process technology would dissipate at least 200mW. This provides a prime example of

how dedicated architectures can radically exploit the inherent parallelism of signal

processing functions to achieve orders of magnitude reduction of power dissipation

over equivalent general-purpose processor-based systems.

The control processing, which has little parallelism to exploit, is much better

12
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suited towards a general purpose processor. An embedded processor system was

designed around the ARM60 processor [gec94], which combined with SRAM and

external glue logic dissipates 1.2W, while delivering a peak throughput of 10 MIPS. It

is this discrepancy of almost three orders of magnitude in power dissipation that leads

to this work's objective of substantially reducing the processor system's energy

consumption.

2.1.4 The System Perspective

In an embedded processor system such as that found in InfoPad, there are a

number of digital ICs external to the processor chip required for a functional system:

main memory, clock oscillator, I/O interface(s), and system control logic (e.g., PLD).

Integrated solutions have been developed for embedded applications that move the

system control logic, the oscillator, and even the I/O interface(s) onto the processor

chip leaving only the main memory external such as the SA-1100 processor [dec98].

Figure 2.2 shows a schematic of the InfoPad processor subsystem, which

contains the essential system components described above. Interestingly, the processor

does not dominate the system's power dissipation; rather, it is the SRAM memory

which dissipates half the power. For aggressive energy-efficient design, it is imperative

to optimize the entire system and not just a single component; optimizing just the

processor in the InfoPad system can yield at most a 10% reduction in power.

Total Power: 1.2 W

45 mW 120 mW

Clock
Osc ARM60

400 mW

45 mW J J

\jnterface/^\SRAMj^
40 mW 600 mW

FIGURE 2.2 : InfoPad Processor Subsystem.
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High-level processor and system simulation is generally used to verify the

functionality of an implementation and find potential performance bottlenecks.

Unfortunately, such high-level simulation tools do not exist for energy consumption,

which forces simulations to extract energy consumption to be delayed until the design

has reached the logic design level. At this time, it is very expensive to make significant

changes, because it is difficult to make system optimizations for energy consumption

through whole-scale redesign or repartitioning.

It is important to understand how design optimizations in one part of a system

may have detrimental effects elsewhere. A simple example is the relative effect of a

processor's on-chip cache on the external memory system. Because smaller memories

have lower energy consumption, the designer may try to minimize the on-chip cache

size to minimize the energy consumption of the processor at the expense of a small

decrease in throughput (due to increased miss rates of the cache). However, the

increased miss rates affect not only the performance, but may increase the system

energy consumption as well because high-energy main memory accesses are now made

more frequently. So, even though the processor's energy consumption was decreased,

the total system's energy consumption has increased.

2.2 CMOS Circuit Models

CMOS has become the predominant process technology for digital circuits.

Circuit delays and power dissipation for CMOS circuits can be accurately modeled with

simple equations, even for complex processor circuits. These models, along with

knowledge about the system architecture, can be used to derive anal3^ical models for

energy consumed per operation and peak throughput.

These models will be presented in this section and then used in Section 2.3 to

derive metrics that quantify energy efficiency. With these metrics, the circuit and

system design can be analytically optimized for maximum energy efficiency.

14
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2.2.1 Power Dissipation

There are four main sources of power dissipation: dynamic switching power

due to the charging and discharging circuit capacitances, short-circuit current power

due to finite signal rise and fail times, leakage current power from reverse-biased

diodes and subthreshold conduction, and static biasing power found in some types of

logic styles (i.e. pseudo-NMOS).

Typically, the power dissipation is dominated by the dynamic switching power.

However, it is important to understand the other components as they can have a

significant contribution to the total power dissipation in poorly-designed integrated

circuits.

2.2.1.1 Dynamic Switching Power

For every low-to-high output transition in a digital CMOS gate, the

capacitance on the output node, C^, incurs a voltage change AVy drawing an energy of

Ci-AV'Vfyf) Joules from the supply voltage, F£>£) [chan95]. A high-to-low transition

dissipates the energy stored on the capacitor into the NMOS device(s), pulling the

output low. The power dissipation is just the product of the energy consumed per

transition and the rate at which low-to-high transitions occur.

For the simple inverter gate shown in Figure 2.3, AF is equal to so the

power drawn from the supply is:

Poweri (EQ 2.2)

This simple equation holds for more complex gates, and other logic styles as well, given

a periodic input. In static logic design, the output only transitions on an input transition,

while in dynamic logic, the output is precharged during half the clock cycle, which may

force a transition, and a transition can also occur in the other half-cycle, depending

upon the input values. In both cases, the power dissipated during switching is
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proportional to the capacitive load; however, they have different transition frequencies.

Fnn F£)£)

•C
-gp-

^dbp

Vou,

'dbtt

FIGUR£ 23 : DynamicSwitching Power Dissipation; Sourcesof Capacitance.

The basic capacitor elements of Q, shown in Figure 2.3, consist of the gate

capacitance of subsequent inputs attached to the inverter output (C»„, C„„), interconnect

capacitance (Cj^r), and the diffusion capacitance on the drains of the inverter transistors

^dgpy ^dgn) [raba96].

Usually, the value of Fo_^i is difficult to quantify since it is typically not

periodic, and is strongly correlated with the input test vectors. Without doing a

transistor-level circuit simulation, the best way to calculate Fq^i is to either perform

statistical analysis on the circuit [land93], or use a high-level behavioral model with

benchmark software to determine a mean value. Since most digital CMOS circuits are

synchronous with a clock frequency, fciK* activity factor, 0 < a < 1, is used to

denote the average fraction of clock cycles in which a low-to-high transition occurs,

such that Fq^i = a fciK-

For an integrated circuitwith nodes, the total dynamic switching power is:
N

Powerj^ynamic ~ ^dd Sclk ' ^
/ = 1

(EQ 2.3)

Aside from memory bit-lines and low-swing logic, most nodes swing AV= as was

the case for the simple inverter, so that the power equation can be simplified to:

PowerjyYNAMIC =^DD 'fcLK' EFF (EQ2.4)
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where the effective switched capacitance, is commonly expressed as the product

of the physical capacitance and the activity weighting factor a, each averaged over

the N nodes.

2.2,1.2 Short-Circuit Current Power

Short-circuit currents occur when the output of a gate is transitioning while the

input is still in mid-transition. This generally occurs when the rise/fall time at the input

is larger than the output rise/fall time. For the ideal case of a step input, the transistors

change state immediately, one turning on, one turning off. There is no conductive path

from the supply to ground. For actual circuits, however, the input signal will have a

finite rise/fall time. While the conditions Vn < Vin < Vdd - Wrpi and 0 < < VoD

hold for the input/output voltages, there will be a conductive path open because both

devices are on.

The longer the input rise/fall time, the longer the short-circuit current will

continue to flow, and the average short-circuit current increases. Figure 2.4 plots the

increase in energy consumption due to short-circuit current versus the ratio of input

rise/fall time (ti„) to output rise/fall time (tout) for a static CMOS inverter. The

AE/E^iin^Q) increases dramatically with increasing input rise/fall time. To minimize the

Drawn Device Sizes:

m|p = 3.0/0.6Mm
W/L\n = 1.2/0.6Min

Process:

= 0.65V

= 0.85V

^ir/^out

FIGURE 2.4 : Short-circiiit Energy Consumption vs. Input Rise/fall Time.
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total average short-circuit current power, it is desirable to have equal input and output

rise/fall times, since the input rise/fall time of one gate is the output rise/fall time of

another gate.

The average short-circuit current is roughly independent of device size for a

fixed load capacitance, since even though the peak magnitude of the current scales with

device width, the rise/fall time scales inversely with device width such that the average

current is approximately the same. The fraction of power dissipation due to short-

circuit current scales with Vi^p. However, when the supply is lowered to below the sum

of the thresholds of the transistors, + {Vj-pl short-circuit currents will be

eliminated because both devices cannot be on at the same time.

For well-designed ICs, the short-circuit power dissipation can be limited to

5-10% of the total dynamic power [veen84]. This is achieved by maintaining a bounded

ratio on rise/fall times through a transistor-width sizing methodology, discussed further

in Section 6. 1.2. 1, so that:

PowergfjQpj. = 5^^ •Powerj^ynamic (EQ 2.5)

where hsc is the ratio of short-circuit to dynamic power dissipation.

2.2.1.3 Leakage Current Power

There are two types of leakage currents: reverse-bias diode leakage, and sub-

threshold leakage through the channel of an "off device. The magnitude of these

currents is set predominantly by the processing technology and total number of

transistors.

Diode leakage occurs when one transistor is turned off, and another active

transistor charges up, or down, the drain with respect to the former's bulk potential. For

a static CMOS inverter, shown in cross-section in Figure 2.5, with a low input voltage,

the output voltage will be high because the PMOS transistor is on. The NMOS transistor
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will be turned off, but its bulk-to-drain voltage will be equal to the supply voltage,

-Vdd- resulting diode leakage current will be approximately Ild~ ^D''̂ SDi where

Af) is the area of the drain diffusion, and is the leakage current density of the

diffusion, set by the technology. Since the diode reaches maximum reverse-bias current

for relatively small reverse-bias potential (< lOOmV), the leakage current is roughly

independent of supply voltage.

^DD

po^y I
^out-Xdd

poly

^D--^DD, Fn = 0

FIGURE 2.5 : Reverse-biased Diodes in CMOS Inverter.

In an nwell process, such as that depicted in Figure 2.5, the nwell-substrate

reverse-biased diode also has leakage current. Since a diode's leakage current is

primarily determined by the more lightly doped side of the junction, which is the

p- substrate, the leakage current density is similar to that of the NMOS drain-substrate

diode [mull86]. Because the well area, Ajy, is an order of magnitude larger than the

diffusion area, this current will dominate reverse-biased diode leakage in an n-well

process. The current is liw~ ^W'̂ SW* where is the leakage current density of the

well, also set by the technology.

For the MOSIS 0.6|im process, « lOOnA/m^ and lOOnA/m (at

25° C). The leakage current density is temperature sensitive, so can increase

dramatically at higher temperatures. Since the well-diode leakage dominates diffusion-

diode leakage, the leakage current can be estimated from the size of the die. For a large

200mm^ chip, approximately one-half the area is nwell, such that the total diode
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leakage is on the order of lOpA.

Subthreshold leakage occurs under similar conditions as the diode leakage. In

the inverter described above, the NMOS was turned off, but even for ^GS = OV, there is

still current flowing in the channel due to the potential of The /£, vs. Fqs

characteristic, as shown in Figure 2.6, has an exponential relation in the subthreshold

region IFjI).

H5
la

Subthreshold
Region

TlT tIs"

Saturated
Region

FIGURE 2.6 : Ij) vs. for MOSFET in Subthreshold Region.

The magnitude of the subthreshold current is both a function of process, device

sizing {W/L% and supply voltage [szeSl]. The process parameter that predominantly

affects the current value is Vj. Reducing Vj- exponentially increases the subthreshold

current, which to first order, is proportional to or equivalently, ^DD-

For a Vf of 0.8V, the current magnitude for a single device is on the order of

IpA. Approximately one out of every two transistors has the necessary bias conditions

for subthreshold leakage. For a 2 million transistor chip, its total subtreshold current

would be on the order of IjiA, which dwarfs the reverse-diode leakage current.

The combination of diode-leakage current and subtreshold current for the

2 million transistor chip is approximately IpA, which at a supply voltage of 3.3V, is

below lOpW. This is insignificant to the dynamic switching power while the processor

is operating. This power is only important in setting the lower threshold of achievable
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power dissipation while the processor is idling. Hence, this power component will be

ignored except when discussing idle energy consumption.

However, as process technology continues to advance, the maximum operating

voltage decreases, and reductions in Vj are required to maintain a reasonable gate-drive

voltage. This is particularly true in processes targeted towards high-performance ICs.

For example, a 0.35|Lim process with Vj = 0.35V has a leakage current on the order of

lOnA per device [mont96][de99]. This yields 10mA of leakage current for the same

2 million transistor chip, and may become a significant fraction of the power

dissipation in a very low-power chip. There are several design techniques to reduce this

leakage current, such that it is once again only critical when considering idle energy

consumption, including selectively increasing channel lengths, dual V-p devices

[muto95], and djmamically varying F7'[kuro96].

2.2.1.4 Static Biasing Power

While static bias currents are usually avoided in CMOS circuits, occasionally,

they may prove to be beneficial. A typical application is for a large complex gate that

cannot be implemented with dynamic logic due to asynchronous timing constraints.

Figure 2.7 contains an example gate; it is a wide AND-OR-Invert gate with

asynchronous inputs. To implement this in full static CMOS would require several

Vt

A1B1+A2B2 —+Aj^j^

FIGURE 2.7 : Implementing Complex Logic with Static Biasing (psendo-NMOS)
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times the area to implement the stacked PMOS transistors. The extra PMOS transistors

would also increase the capacitance on the input nodes, loading down the previous

gates. However, by synchronizing the inputs through architectural design, which can

usually be accomplished, andthen implementing the complex gates with dynamic logic,

this power component can be made negligible.

2.2.1.5 Combined Power Model

With the assumption that no static biasing is present, the total power

dissipation is just the summation of the remaining three individual components:

Power = Powerj^ynamic P^^^^short •*" leakage (EQ 2.6)

where the Powercomponent is on the order of lO-lOOpW.

Power = (1+ ^sc) •^dd 'fciK' ^eff Powerleakage~ 'fciK' ^eff (EQ 2.7)

To simplify the following analyses, the assumptions that (l+S^^) » 1, and that

PoweriEAKAGE ^an be ignored except during processor idle will be made, so that the

total chip powerdissipation is approximatelyequal to just the djmamic switching power

component.

2.2.2 Energy/Operation

A common measure of energy consumption is the power-delay product (PDF)

[chan92]. This delay is often defined as the critical path delay, so PDF is equivalent to

the energy consumed per clock cycle {Power / fend- However, the measure of interest

is the energy consumed per operation which can be derived by dividing the PDF by the

operations per clock cycle. The energy consumed per operation can now be expressed as

a function of effective switched capacitance, supply voltage, and operations per clock

cycle:

Energy _ (E028)
Operation Operations / Clock Cycle v v • ;
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2.2.3 Circuit Delay

To fully utilize its hardware, a digital circuit should be operated at the

maximum possible frequency. This maximum frequency is just the inverse of the delay

of the processor's critical path which is proportional to the delay of a single CMOS gate

The delay for a CMOS gate, which is defined as the time required for the

output to transition to 50% of the voltage swing, K£>£>, can be approximated as [raba96]:

= = (EQ2.9)
VE VE ^

Jave the average device current during the transition. For sub-micron MOS

devices in velocity saturation, the device current, /£>, is [tohSS]:

~ ^SAT' ^OX' (^DD~ ^Dsat^ ^DS- ^Dsat C^Q

with the assumption of a fast input signal transition so that the device's gate-source

voltage is VdD' The term v^at is the maximum carrier velocity, which is a constant of

bulk silicon [mull86]. Cqx is the gate capacitance, W is the device width, and Vf is the

device threshold. is the value above which the current is independent of the drain-

source voltage, which in velocity saturation is [toh88]:

DD~

where Lg is the effective electrical channel length, while is the longitudinal

electrical field at which the carriers are considered at Vsat» is a fundamental

constant of silicon. is approximately 1.5x10^ V/m [pier96], so with the reasonable

approximation that Fj- ~ Ec^e (®-S- ii^ ~ 0.5pm, Vj'= 0.75V):

y
Dsat

yosa,=(^)( yoD-y?) m2.12)
The device remains in saturation during the output transition (defined as a 50%

change in output voltage), since is well below for the entire range of yDD>
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and the current is approximately constant such that Iave~^d- Combining equations

2.12, 2.10, and 2.9 yields:

Cr-^DDDelays- K = 2vsmtCox (EQ2.13)

where ky contains the technology dependence. For our 0.6pm process (Lg = 0.4,

^7-= 0.75V), this approximation gives less than 10% error in comparison to a SPICE-

simulated delay using a BSIM3 device model [huan93].

2.2.4 Throughput

Throughput was previously defined as the number of operations that can be

performed in a given time. When clock rate is set to be the inverse of the critical path

delay, the throughput is equal to the amount of computational concurrency (i.e.

operations completed per clock cycle) divided by this delay:

^ _ Operations _ Operations per Clock Cycle

^ CriticalPath Delay 2.14)

The critical path delay can be related back to the previous delay model by

summing up the delay over all M gates in the critical path:

M

DDFnn _ CriCriticalPath Delaya—— ^ ' X IF (EQ 2.15)
I = 1

Making the approximation that all gate delays are equal. Equation 2.15 can be

simplified if Ngates is used to indicate the length of the critical path (i.e. number of

gates), and average values for Ci and Ware used. Throughput can now be expressed as

a function of a technology parameter, supply voltage, critical path length, and

operations per clock cycle:

K' Operations rcr\'̂
N . C . *ClockCyclegates DD

Typical units for operations per clock cycle are MIPS/Mhz, and

SPECint95/MHz when operations are respectively defined as instructions and

benchmark programs.
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23 Energy Efficiency Metrics

While the energy consumed per operation should always be minimized, no

single metric quantifies energy efficiency for all digital systems. The metric is

dependent on the system's throughput constraint. There are three main modes of

computation: fixed throughput, maximum throughput, and burst throughput. Each of

these modes has a clearly defined metric for measuring energy efficiency, as detailed in

the following three sections. While single-user systems typically operate in the burst

throughput mode, the other two modes are equally important since they are degenerate

forms of the burst throughput mode in which the system may operate.

2.3.1 Fixed Throughput Mode

Many real-time systems require a fixed number of operations per second. Any

excess throughput cannot be utilized, and therefore needlessly consumes energy.

Systems with this characteristic will be defined as operating in the fixed throughput

mode of computation, and they are typically found in digital signal processing

applications in which the required throughput is set by a fixed-rate incoming or

outgoing real-time signal (e.g., speech, audio, video).

Energy Effidencyl^,^ = =oleZZn ^

Previous work has shown that the metric of energy efficiency in Equation 2.17

is valid for the fixed throughput mode of computation [chan92]. A lower value implies

a more energy-efficient solution. If a design can be made twice as energy efficient (i.e.

reduce the energy/operation by a factor of two), then its sustainable battery life has

been doubled, and since the throughput is constant, its power dissipation has been

halved. For the fixed-throughput mode, minimizing the power dissipation is equivalent

to minimizing the energy/operation.
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Using the energy model in Section 2.2.2, the metric can be expressed as:

EnergyCycle

The primary way to improve energy efficiency is to reduce supply voltage while

maintaining the throughput constraint, which yields a quadratic improvement in energy

efficiency. Additionally, reducing the effective switched capacitance will also improve

efficiency. Optimizing the energy efficiency of this mode of computation has been the

focus of much previous work, which has yielded a variety of low-power design

techniques that provide significant efficiency improvements [chan95].

2.3.2 Maximum Throughput Mode

In most multi-user systems, primarily networked workstations and mainframes,

the processor is continuously running. The faster the processor can perform

computation, the better, yielding the defining characteristic of the maximum throughput

mode of computation. Thus, this mode's metric of energy efficiency must balance the

need for low energy/operation and high throughput, which is accomplished through the

use of the Energy-to-Throughput Ratio, or ETR:

EnergyEf,ciency\^^,=ETRJ^^^j;^^^ (EQ2.19)
where is the energy/operation, or equivalently power/throughput, and Tj^ax is the

throughput in this mode.

A lower ETR indicates lower energy/operation for equal throughput, or

equivalently, indicates greater throughput for the same amount of energy/operation,

satisfying the need to equally optimize throughput and energy/operation. Thus, a lower

ETR represents a more energy-efficient solution.

The Energy-Delay Product (ED?) is a similar metric [horo94], but does not

include the effects of architectural parallelism when the delay is taken to be the critical
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path delay. For example, two processors may consume the same energy/operation and

operate at the same clock frequency, but one processor can complete two operations per

cycle, while the other processor can only complete one operation per cycle. Although

the EDP for the two processors is the same, indicating that they have equivalent energy

efficiency, the ETR for the first processor is one-half the ETR for the second processor,

correctly indicating that the processor which can complete two operations per clock

cycle is actually twice as energy efficient.

Throughput and energy/operation can be scaled with supply voltage, as shown

in Figure 2.8 (the data for Figures 2.8-2.10 is derived from Equations 2.8 and 2.16,

which models sub-micron CMOS processes); but, unfortunately, they do not scale

proportionally. So while throughput and energy/operation can be varied by well over an

order of magnitude to cover a wide dynamic range of operating points, the ETR is not

constant for different values of supply voltage.

Throughput

Energy/operation

^DD (^r)

FIGURE 2.8: Energy/operation, Throughput

As shown in Figure 2.9, Vqq can be adjusted by a factor of 2.5 (1.4-3.5^7') and

the ETR only varies within 50% of the minimum at 2^7-. However, outside this range,

the ETR rapidly increases. Clearly, for supply voltages greater than AVj there is a rapid

degradation in energy efficiency, as well as for supply voltages that approach the device

threshold voltage. But, since both throughput and energy/operation are monotonically

increasing function of supply voltage, varying allows throughput to be traded off

for lower energy/operation, and vice-versa.
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FIGURE 2.9 : ETR as a function of

To compare designs over a larger operating range for the maximum throughput

mode, a better metric is a plot of the energy/operation versus throughput. To make this

plot, the supply voltage is varied from the minimum operating voltage (near in many

digital CMOS designs) to the maximum voltage (2.5-5V, depending on the technology),

while energy/operation and throughput are measured. The energy/operation can then be

plotted as a function of throughput, and the architecture is completely characterized

over all possible throughput values.

• I • I ' I '

®Denote Max. &Min. Operating Points

§
I

I

Error in constant ETR
approximation

Knri=iy

Analytic^
Model

f'Dri=3.3V

Throughput (Operations/Sec)

FIGURE 2.10: Energy vs. Throughput

Using the ETR metric is equivalent to making a linear approximation to the

actual energy/operation versus throughput curve. Figure 2.10 demonstrates the error

incurred in using a constant ETR metric, which is calculated at a nominal supply

voltage of 3.3V for this example. For architectures with similar throughput, a single
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ETR value is a reasonable metric for energy efficiency; however, for designs optimized

for vastly different values of throughput, a plot may be more useful, as Section 2.4.1

will demonstrate.

Using the throughput and energy models from Section 2.2, the ETR is:

ETR = ^eff ^dd j jq)
K-^-(yDD-^T)

However, this equation is not entirely intuitive in aiding in energy-efficient design,

since the variables have several interdependencies. If the device width, FF, is increased

to reduce ETR, and C£ff will also increase, effectively increasing ETR when the

gate capacitance begins to dominate the load capacitance. Similarly, if Ng^tes is

reduced, this may come at the cost of increased and/or Cfpp. Hence, individual

parameters cannot be optimized in isolation, and their inter-dependencies must be taken

into account by fully evaluating the ETR when optimizing a circuit for energy

efficiency.

2.3.3 Burst Throughput Mode

Most single-user systems (e.g., stand-alone desktop computers, notebook

computers, PDAs, etc.) spend only a fraction of the time performing useful

computation. The rest of the time is spent idling between processes. However, when

bursts of computation are demanded, the faster the throughput (or equivalently,

response time), the better. This characterizes the burst throughput mode of computation

in which most portable devices operate. The metric of energy efficiency used for this

mode must balance the desire to minimize energy consumption, while both idling and

computing, and to maximize peak throughput when computing.

Ideally, the processor's clock should track the periods of computation in this

mode so that when an idle period is entered, the clock is immediately shut off. Then a

good metric of energy efficiency is just ETR, as the energy consumed while idling has
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been eliminated. However, this is not realistic in practice. Many processors do not

having an energy saving mode and those that do so generally support only simple clock

reduction/deactivation modes.

® peak

I
4)

&
O

— Throughput
—fcLK

§

o|
g a

,WastedEnergy

sleep

0 ts time

FIGURE 2.11: Wasted energy due to idle

The hypothetical example depicted in Figure 2.11 contains a clock reduction

(sleep) mode in which major sections of the processor are shut down. The shaded area

indicates the processor's idle cycles in which energy is needlessly consumed, and

whose magnitude is dependent upon whether the processor is operating in the *^low-

power" mode. The energy/operation while actively computing, EjnAXy the amortized

energy/operation while idling, E/pfig, is:

^ _ Total Energy Consumed Computing
Total Operations

^ _ Total Energy ConsumedIdling
IDLE Total Operations

(EQ2.21)

(EQ2.22)

Total energy and total operations can be calculated over a large sample time

period, Tj^^x is the peak throughput during the bursts of computation (similar to that

defined in Section 2.3.2), and Tjiy£ is the time-averaged throughput (total operations /

/5-). If the time period tg is sufficiently long that the operation characterizes the

"average" computing demands of the user and/or target system environment yielding

the average throughput (T^f^^), then a good metric of energy efficiency for the burst

throughput mode is:

MAX

(EQ2.23)
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This metric will be called the Burst-mode ETR {BETR)\ it is similar to ETR, but also

accounts for energy consumed while idling. A lower BETR represents a more energy-

efficient solution.

Multiplying Equation 2.21 by the actual time computing -(fraction of time

computing)], shows that E^^j^x is the ratio of compute power dissipation to peak

throughput Tj^^^xy previously defined in Section 2.3.2. Thus, ^ function

of the hardware and can be measured by operating the processor at full utilization.

Eidle^ however, is a function of and T^ve- The power consumed idling must

be measured while the processor is operating under typical conditions, and Tj^ve uiust

be known to then calculate EjqiE' However, expressing Ei^ie us a function of Ej^y^x

better illustrates the conditions when idle energy consumption is significant. In doing

so, EiiyiE will also be expressed as a function of the idle power dissipation, which is

readily calculated and measured, as well as independent of and T^ave-

Equation 2.22 can be rewritten as:

p _ \Idle Power Dissipation}[Time Idling^ (RCil1A\
IDLE Throughput}{Sample Time\

With the Power-Down Efficiency, P, defined as:

o Power dissipation while idling idle (E02251
Power dissipation while computing Pj^yix

Eidle can now be expressed as a function of Ej^^y^x-

E - ^^ W-Pave^(E0226)
[T-^ke] ['si VV • ;

Equation 2.27 shows that idle energy consumption dominates total energy

consumption when the fractional time spent computing (TyivE^^MAjd i® 1®®® fl^un the

fractional power dissipation while idling (P).

BETR = ETR 1 + P(Tuax
Jj
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The BETR is a good metric of energy efficiency for all values of

and p as illustrated below by analyzing the two limits of the BETH metric.

Id/e Energy Consumption is Negligible « Tj^ve '̂̂ max)- The metric should

simplify to that found in the maximum throughput mode, since it is only during the

bursts of computation that energy is consumed and operations performed. For negligible

power dissipation during idle, the BETR metric in Equation 2.27 degenerates to the

ETR^ as expected. For perfect power-down (P = 0) or high user-demanded throughput

^AVE)y BETR is exactly the ETR.

Idle Energy Consumption Dominates Cp » T^y£/Tj^^x)- The energy efficiency

should increase by either reducing the idle energy/operation while maintaining constant

throughput, or by increasing the throughput while keeping idle energy/operation

constant. While it might be expected that these are independent optimizations, Ej^i^

may be related back to Ef^j^x throughput by p since is fixed:

^IDLE _^IDLE^^AVE _ q "^MAX
p —p /rp P' f (^Q 2.28)
^MAX ^MAX^^MAX ^AVE

Expressing Ejj^i£ as a function of Ej^^^x yi®lds:

B" E
BETR= (IdleEnergyDominates) (EQ2.29)

^AVE

If p remains constant for varying throughput (and Ei^^^x stays constant), then Eiqi^

scales with throughput as shown in Equation 2.28. Thus, the BETR becomes an energy/

operation minimization similar to the fixed throughput mode. However, p may vary

with throughput, as will be analyzed further in Section 5.2.5.

2.3.4 Energy Efficiency for Practical Designs

As mentioned earlier, the BETR metric measures the energy efficiency of

processor systems. Unfortunately, information on the system's average throughput

{Tave) is required to utilize this metric, which is application specific. Thus, the BETR
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metric cannot be used to describe the energy efficiency of a processor in general terms,

but requires the specification of a target application, or class of related applications. An

example application is the InfoPad, as described in Section 2.1.3, in which the

processor system is responsible for packet-level network control on the pad and has an

average throughput requirement of 0.8 MIPS. If the video decompression was

implemented by the processor rather than the custom chip-set, then the average

throughput would increase to approximately 11 MIPS.

So that energy-efficient design techniques can be discussed independent of the

final application, the BETR metric's subcomponents, ETR and E^yi^^ will be discussed

individually.

2.4 Energy Efficient Design Principles

Four examples are presented in this section to demonstrate how energy

efficiency can be properly quantified. In the process, four design principles follow from

the optimization of the previously defined metrics: a high-performance processor is

generally energy-efficient; idle energy consumption limits the energy efficiency for

high-throughput operation; reducing the clock frequency is never energy efficient; and

dynamic voltage scaling is very energy efficient.

2.4.1 High Performance is Energy Efficient

Table 2.1 lists two processors that are available today - the ARM710 targets

the low-power market, and the R4700 targets the mid-range workstation market, and

both are fabricated in similar 0.6{xm technologies, facilitating an equal comparison. The

measure of throughput used is SPECint92. A commonly-used metric for measuring

energy efficiency is SPECint92/Watt (or SPECint95/Watt, Dhrystones/Watt,

MlPS/Watt, etc.). The ARM710 processor has a SPECint92/Watt five times greater than

the R4700*s, and the claim then follows that it is "five times as energy efficient**.
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However, this metric only compares operations/energy, and does not weight the fact that

the ARM710 has only 15% of the performance as measured by SPECint92.

TABLE 2.1 Comparison oftwo processors [arm94][idt95].

Processor
SPECint92 Power

(Watts)
Supply voltage,

Ftjt, (Volts)
SPECint92/Watt ETR

(10-3)
R4700 130 4.0 3.3 33 0.24

ARM710 20 0.12 3.3 167 0.30

The ETR (Watts/SPECint92^) metric indicates that the R4700 is actually more

energy efficient than the ARM710. To quantify the efficiency increase, the plot of

energy/operation versus throughput in Figure 2.12 is used because it better tracks the

R4700's energy at the low throughput values. The plot was generated from the

throughput and energy/operation models in Section 2.2.
0.08

a 0.04
10 IS 20

At20SPEC,theR4700
dissipates 54% the power

50 100 150

SPECint92 (throughput)

FIGURE 2.12 : Energy vs. Throughput ofR4700 and ARM710.

According to the plot, the R4700 would dissipate 65mW at 20 SPECint92, or

about 1/2 of the ARM710's power, despite the low Vqq for the R4700.

Conversely, the R4700 can deliver 30 SPECint92 at 120mW {Vqq = 1.7-^7'), or 150% of

the ARM710*s throughput.

This does assume that the R4700 processor has been designed so that it can

operate at these low supply voltages. If the lower bound on operating voltage is greater

than 1. then the ARM710 would be more energy efficient in delivering the
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20 SPECint92 than the R4700. Typically, a processor is rated for a fixed standard

supply voltage (3.3V or 5.0V) with a ±10% tolerance. However, many processors can

operate over a much larger range of supply voltages (e.g., 2.7-5.5V for the ARM710

[arm94], 2.0-3.3V for the Intel486GX [inte95]). The processor can operate at a non-

standard supply voltage by using a high-efficiency, low-voltage DC-DC converter to

generate the appropriate supply voltage [stra94].

While the ETR correctly predicted the more energy-efficient processor at

20 SPECint92, it is important to note that the R4700 is not more energy efficient for all

values of SPECint92, as the ETR metric would indicate. Because the nominal

throughput of the processors is vastly different, the Energy/Operation versus

Throughput metric better tracks the efficiency, and indicates a cross-over throughput of

14.5 SPECint92. Below this value, the ARM710 becomes more energy efficient.

2.4.2 Fast Operation Can Limit Energy Efficiency

If the user demands a fast response time, rather than reducing the voltage, as

was done in Section 2.4.1, the processor can be left at the nominal supply voltage, and

shut down when it is not needed.

For example, assume the target application has a of 20 SPECint92, and

both the ARM710 and R4700 have a P factor of 0.2. If the processors' is left at

3.3V, The ARM710's BETR is exactly equal to its ETR value, which is 3.0x10"^. It

remains the same because it never idles. The R4700, on the other hand, spends 85%

"• ^AVE '̂̂ MAjd time idling, and its BETR is 5.0x10"^. Thus, for this scenario,

the ARM710 is nearly twice as energy efficient.

However, if the R4700's p can be reduced down to 0.02, then the BETR of the

R4700 becomes 2.66x10"'*, and it is once again the more energy-efficient solution. For

this example, the cross-over value of P is 0.045.
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This example demonstrates how important it is to use the BETR metric instead

of the ETR metric if the target application's idle time is significant (i.e., can be

characterized and is significantly below Tj^ax)' For the above example, a p for the

R4700 greater than 0.045 leads the metrics to disagree on which is the more energy-

efficient solution. One might argue that the supply voltage can always be reduced on the

R4700 so that it is more energy efficient for any required throughput. This is true if the

dynamic range of the R4700 is as indicated in Figure 2.12. However, if some internal

logic limited the value that could be dropped, then the lower bound on the R4700's

throughput would be located at a much higher value. Thus, finite p can degrade the

energy efficiency of a high-throughput processor, due to excessive idle power

dissipation.

2.4.3 Clock Frequency Reduction is Never Energy Efficient

A common fallacy is that reducing the clock frequency, fcLK^ is energy

efficient. Reducingdoes reduce power dissipation, but it does not increase energy

efficiency. When compute energy consumption dominates idle energy consumption, it

actually increases energy efficiency. At best, when idle energy consumption is

dominant, it allows an energy-throughput trade-off. The relative amount of time spent

idling versus computing is an important consideration in determining the effect of clock

frequency reduction on energy efficiency.

Compute energy consumption dominates (Ej^ax^^ ^IDLe)'- Since compute

energy consumption is independent offciK* snd throughput scales proportionally with

fcLK* decreasing the clock frequency increases the ETR^ and thereby reduces energy

efficiency. Halving fciK is equivalent to doubling the computation time, while

maintaining constant computation per battery life, which is clearly energy inefficient.

Idle energy consumption dominates (Ej^ig » Ef^Ax)- Clock reduction may

trade-off throughput and energy/operation, but only when the power-down efficiency, p.
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is independent of throughput such that Ej^i^ scales with throughput. When this is so,

halving fciK will double the computation time, but will also double the amount of

computation per battery life, since has been halved. If the currently executing

process can tolerate throughput degradation, then this may be a reasonable trade-off. If

P is inversely proportional to throughput, however, then reducingdoes not affect

the total energy consumption, and the energy efficiency drops.

As shown in Table 2.2, reducing the clock frequency reduces energy efficiency

in two of the three possible operating conditions. In the third operating condition, the

efficiency merely remains unchanged. Thus, clock frequency reduction is never energy

efficient.

TABLE 2.2 Impact of Clock Frequency Reduction on Energy Efficiency.

Operating Conditions:
Compute Energy

Consumption Dominates

Idle Energy Consumption Dominates

P independent of
throughput

p inverselypropor
tional to throu^put

Throughput decreases decreases . decreases

Energy unchanged decreases unchanged

Energy Efficiency
(1IBETR)

decreases unchanged decreases

2.4.4 Dynamic Voltage Scaling is Energy Efficient

If P/jjj were to track fcLK* however, so that the critical path delay remains

inversely equal to the clock frequency, then constant energy efficiency could be

maintained as fcLK is varied. This is equivalent to scaling (Section 2.3.2) except

that it is done dynamically during processor operation. If Ej^i^ is present and

dominates the total energy consumption, then simultaneous fciK ^DD reduction

during periods of idle will yield a more energy-efficient solution.

Even when idle energy consumption is negligible, dynamic voltage scaling

provides significant wins. Figure 2.13 plots a sample usage pattern of desired
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throughput, with the delivered throughput super-imposed on top. For background and

high-latency tasks, the supply voltage can be reduced so that just enough throughput is

delivered, which minimizes energy consumption.

*q3
Q

Desired Throughput •
Delivered Throughput: - -

n

m

Reduce Kdz>
Reduce Tmax^/clk-

Reduce Energy/op

Time

FIGURE 2.13 : Dynamic Voltage Scaling.

For applications that require maximum deliverable throughput only a small

fraction of the time, dynamic voltage scaling provides a significant energy efficiency

improvement. For the R4700 processor, the peak throughput is 130 SPECint92. Given a

target application where the desired throughput is either a fast 130 SPECint92 or a slow

13 SPECint92, Table 2.3 lists the peak throughput, average energy/operation, and

effective ETR depending on the fraction of time spent in the fast mode. For each

category of throughput the total number of operations completed are the same so that

the relative changes in battery life can be evenly compared. When that fraction becomes

small, the processor's peak throughput is still set by the fast mode, while the average

energy consumed per operation is set by the slower mode. Thus, the best of both

extremes can be achieved. For simplicity, this examples assumes that idle energy

consumption is always negligible.

TABLE 2.3 Benefits of Dynamic Voltage Scaling.

Throughput:
Time spent operating in:

(SPECint92)
^MAX

(W/SPECint92)
ETR

(10-^)
Normalized

Battery Life
Fast Mode Slow mode Idle Mode

Always full-speed 10% 0% 90% 130 0.031 237 Ihr.

Sometimes full-speed 1% 90% 9% 130 0.006 45.0 5.3 hrs.

Rarely full-speed 0.1% 99% 0.9% 130 0.003 25.8 9.2 hrs.
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As shown in Table 2.3, the battery run-time can be improved by up to a factor

of lOx. In most portable devices (e.g. notebook computers, PDAs, etc.), peak

throughput is typically used only a small fraction of the time, such that this energy-

efficiency improvement is readily achievable. Although dynamically varying ^DD and

fcLK ^ processor system may seem extraordinarily difficult to accomplish. Chapter 3

will demonstrate that dynamic voltage scaling is a relatively straightforward and simple

technique to implement.
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Dynamic Voltage Scaling (DVS) can significantly improve processor energy-

efficiency for burst-mode operation. This technique can decrease the system's average

energy consumption while computing, by more than lOx, without sacrificing

perceived throughput, by exploiting the time-varying computational load that is

commonly found in portable electronic devices. By dynamically varying both the

processor's clock frequency and supply voltage in response to computational load

demands, the processor always operates at just the desired performance level while

consuming the minimal amount of energy. Since reniains constant while Ej^j^x

decreases, both the ETR and BETK metrics will scale down by a proportional amount,

providing a potential increase in energy efficiency in excess of lOx.

There are three key components for implementing DVS in a general-purpose

microprocessor system: an operating system that can intelligently vary the processor

speed, a regulation loop that can generate the minimum voltage required for the desired

speed, and a microprocessor that can operate over a wide voltage range.

This chapter focuses on the implementation methodology for DVS, the new

system constraints imposed by DVS, and the impact of DVS on the hardware design

methodology. This methodology was validated by a protot)q)e embedded processor

system that successfully implements DVS, and is described further in Chapter 7.
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3.1 Overview

Digital CMOS circuits are very amenable to implementing DVS, as their

performance and energy consumption scale together over a wide range of supply

voltage. Although the maximum supply voltage drops with improved process

technology, thereby reducing this range, so does the device threshold voltage, such that

DVS will continue to be a viable technique for future process technologies.

Furthermore, DVS provides a solution to the leakage problem of low threshold-voltage

processes by scaling leakage current with supply voltage.

3.1.1 Voltage Scaling Effects on Circuit Delay

CMOS circuit delay tracks very well over supply voltage, as shown in

Figure 3.1. Four example circuits are shown, ranging in complexity from a simple

inverter to a complex SRAM design that consists of an address decoder, memory cell

array, sense amplifier, output buffer, and control sequencing logic. The maxin\um clock

speed is just the inverse of the critical path delay, which was calculated via a SPICE

simulation and then normalized at 4V (the SPICE data for the SRAM is from [burs97]).

TJ
4>
N

VddCO
FIGURE 3.1: Various Circuit Delays vs. Supply Voltage

The inverter, ring oscillator, and register file all vary less than 10% over the

full range of supply voltage, ^DD- These three circuits are a good cross-representation
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of the bulk of CMOS circuits, both in logic style and complexity. The SRAM circuit,

which differs from the others because NMOS devices dominate its critical path delay,

runs faster at lower voltage because for our O.bpm process, Vrn < Vtp- However, the

speed variation at 1.2V is still only 25%, which is insignificant compared to the lOx

overall reduction in maximum speed from 4V. More importantly, the deviation is in the

positive direction; because the SRAM circuit runs faster at lower it will not be a

limiting factor of the chip's speed at low ^DD-

By using a ring oscillator to generate the clock signal, the clock frequency can

be scaled lock-step with enabling proper operation of the processor over the full

range of Vd£) through a closed-loop control system.

3.1.2 Maximum Energy Efficiency Improvement.

Figure 3.2 demonstrates the possible energy-efficiency improvement of DVS.

Starting at the nominal operating point of 3.3V, when the clock frequency,is

reduced, there is a proportional decrease in throughput. When this is done at constant

^DD» there is no reduction in energy/operation. However, if is scaled lock-step

with fcLK* lower curve is traversed, yielding more than a lOx energy reduction

at low voltage.

u

u

cS
•o

N

3JV
Constant ^DD

~iOx Energy
Reduction

3JV

Scale VQQwithfcLK

0 0.2 0.4 0.6 0.8

NormalizedThroughput («fciid

FIGURE 3.2 : Scaling Vj^d withfciK-
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The ability to dynamically traverse this curve is how DVS radically improves

energy efficiency. For the processor described in Chapter 7, the lower operating point is

6 MIPS @ 0.27 mW/MIPS {ETR = 45 pW/MIPS^), and the upper operating point is

85 MIPS @2.8 mW/MIPS {ETR = 33 pW/MIPS^). However, if peak throughput is only

occasionally demanded, then the processor can deliver a peak throughput of 85 MIPS,

while the average energy/operation can be as low as 0.27 mW/MIPS. This yields an

ETR of 3.2 fiW/MIPS^, which is more than a lOx improvement in energy efficiency.

Figure 3.3 plots the normalized battery run-time, which is inversely

proportional to energy/operation, as a function of the fractional amount of computation

performed at low throughput for the above processor. While a moderate run-time

increase (22%) can be achieved with only 20% of the computation at low throughput,

DVS yields significant increases when more of the computation can be run at low

throughput, with the upper limit in excess of a 1Ox increase in battery run-time, or

equivalently, more than a lOx reduction in energy/operation.

12

-g

20% 40% 60% 80%

Fraction ofComputation @ Low Throughput

FIGURE 3J : Battery Run-time vs. Workload

100%

3.1.3 Essential Components

A typical processor system is powered by a voltage regulator which outputs a

fixed voltage. However, the implementation of DVS requires a voltage converter that

can dynamically adjust its output voltage when requested by the processor to do so.
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With no commercial dynamic voltage converters available, a prototype converter was

designed and implemented [stra98]. This functionality can also be implemented with

discrete commercial components, but with much lower conversion efficiency than that

of the custom prototype.

Another essential component is a ring oscillator matched to the processor's

critical paths, such that as the critical paths vary over so will the processor clock

frequency. This is best achieved by having a ring oscillator on the processor, which will

then track the critical paths over process and temperature.

The processor itself must be designed to operate over the full range of voltage

supply, which places restrictions on the types of circuits that can be used and impacts

processor verification, as described in Section 3.3. Additionally, the processor must be

able to properly operate while is varying, as detailed in Section 3.4.

The last essential component is a DVS-aware operating system. The hardware

itself has no knowledge of the priority of the currently executing task, since this

information only resides within the operating system scheduler. Hence, to deliver the

significant increase in energy efficiency afforded by DVS, the operating system must be

able to intelligently vary ^DD and fcLK a function of desired throughput, which is

further described in Section 3.5.

3.1.4 Fundamental Trade-Off

Processors generally operate at a fixed voltage, and require a regulator to

tightly control voltage supply variation. The processor produces large current spikes for

which the regulator's output capacitor supplies the charge. Hence, a large output

capacitor on the regulator is desirable to minimize ripple on VdD' a large capacitor also

helps to maximize the regulator's conversion efficiency by reducing the voltage

variation at the output of the regulator.
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However, the voltage converter required for DVS is fundamentally different

from a standard voltage regulator because in addition to regulating voltage for a given

clock frequency, it must also change the operating voltage when a new clock frequency

is requested. To minimize the speed and energy consumption of this voltage transition,

a small output capacitor on the converter is desirable, in contrast to the supply ripple

requirements.

Thus, the fundamental trade-off in a DVS system is between good voltage

regulation and fast/efficient dynamic voltage conversion. As will be shown in

Section 3.2, it is possible to optimize the size of this capacitor to balance the

requirements for good voltage regulation with the requirements for a good dynamic

voltage conversion.

3.1.5 Scalability with Technology

For DVS to provide significant energy efficiency improvement, the process

technology must be able to operate over a wide range of voltage, such that the

throughput and energy consumption can appreciably vary.

The lower bound on voltage is set by the larger of Vrn and beyond which

the MOSFETs begin operating in the subthreshold region, and their delay increases

exponentially [pier96]. A more practical limit is -lOOmV above to

provide an operating margin for preventing the MOSFETs from entering this region.

The upper bound on voltage is determined by gate-oxide breakdown [mull86].

For our 0.6p,m process, this is only 6.3V To provide a margin of safety, a process has a

rated maximum voltage of around one-half of the gate-oxide breakdown voltage; for the

0.6pm process, the rated maximum voltage is 3.3V. While the MOSFETs can be

operated at a higher voltage, it is generally not recommended for long-term gate-oxide

reliability.
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3.2 Converter Feedback Loop

As process technology advances, the reduction in gate-oxide thickness

necessitates a reduction in the rated maximum supply voltage. However, to maintain

MOSFET performance, their threshold voltages have also been reduced, as shown by

the sampling of 24 process technologies in Figure 3.4. Scaling Fj'With Vqq maintains a

large range of energy consumption lOOmV)^), anywhere from lOx to over

30x. A future O.lOjum process may only have a rated voltage of 1.2V, but with a Vj- of

0.3V and 50mV of operating margin, the possible energy range is still 11.8x. Since

throughput scales by a similar order of magnitude as does energy consumption, DVS is

still quite applicable to even deep-submicron process technologies.
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FIGURE 3.4 : Vj^ and Range of Energy Consumption vs. Process Technology.

3.2 Converter Feedback Loop

The voltage converter loop is a non-linear negative-feedback loop. The steady-

state operation forces the processor clock,to be:

fcLK ~ ^DES ' ("^ MHz) (EQ3.1)

where is the desired frequency in MHz, and is stored as a digital word by the

processor hardware. Thus, the processor requires no knowledge of the actual supply

voltage. It simply adjusts fcLK ^DD requesting a new operating frequency.
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3.2 Converter Feedback Loop

3.2.1 Buck Converter

The loop is built around a buck-converter (Figure 3.5) which is very amenable

to high-efficiency, low-voltage regulation [stra94]. Using a digital pulse-width

modulation (PWM) algorithm, the buck-converter converts the battery voltage, to

the desired output voltage, as a function of the pulse duty cycle, D:

^DD ~ ^BAT'^ (EQ 3.2)
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FIGURE 3.5 : Buck Converter Design and Operation.

During the positive pulse, the PMOS power FET, is turned on and the

inductor current, begins ramping up, pushing charge onto the capacitor, Cqq. During

the negative pulse, the rectifying NMOS power FET, is turned on and ii begins

ramping down. The LC tank filters so that a steady-state DC voltage appears across

the capacitor as the inductor, absorbs the voltage differential during the

switching transient. The power FETs are only switched on when = F^^y (PMOS) or

Vx- 0 (NMOS) to maintain a minimal drain-source voltage drop in order to minimize

energy loss in the power FETs [stra98]. Ts is the fixed clock period of the converter.

To improve the converter's efficiency at low voltage and/or light load, the

converter loop also implements a pulse-frequency modulation (PFM) algorithm

[stra98]. At low voltage and/or light load, the processor's energy consumption is very

small, and so too is the current it draws from Rather than enable the PMOS for an

infinitesimally small amount of time to replace the small amount of charge removed
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3.2 Converter Feedback Loop

from CjT)/) by the processor, the converter is selectively enabled through pulse-skipping,

by which, in a given period if the voltage drop on is sufficiently small, the

converter is simply disabled. The conversion efficiency is greatly increased due to the

saved energy cost of enabling the power FETs, but comes with the penalty of increased

voltage ripple.

3.2.2 Loop Architecture

The full converter loop architecture is shown in Figure 3.6. The output of the

ring oscillator, fciK^ clocks a counter which is reset at 1 MHz intervals. This provides

the quantized digital word, which is the measured clock frequency in MHz. This

value is subtracted from the desired clock frequency, to generate an error

frequency value, A positive value indicates a higher voltage is required to

increase fcLK* ^ negative value indicates that the voltage is too high.

rum
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Oscillator Counter

/iMHz

Processor Clock

fcLK

MEAS.

I

Ring Oscillator

Ferr.

Processor

PCTI^

> Nctl^ —1
Loop Filter

& Drivers
Power

0101100 FETs

Register

FIGURE 3.6 : DVS Voltage Converter Loop Architecture.

The loop filter does two important functions. First, it converts the frequency

error into an equivalent voltage error via a hardware look-up table. Next, it converts the

equivalent voltage error into an update command for the power FETS through the

hybrid PWM-PFM scheme described in the previous section. When -3 < Fg^^ < 0

indicating that the voltage is slightly high, the pulse-skipping algorithm disables the
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3.2 Converter Feedback Loop

converter for the current clock cycle, allowing the processor to discharge Vqq. Any

other value of enables the converter for the current cycle through the control

signals Pen and Nqtl [stra98].

These two control signals are converted to power PET enable signals, which

are buffered to drive the large gate capacitance of the power FETs. The buck converter

produces an output voltage which is sent back to the ring oscillator, closing the

loop. In addition, the processor is powered by so it draws a time-varying current

Idd from the output capacitor.

3.2.3 Loop Stability

The external filter components, shown in Figure 3.7, primarily dictate the

frequency response of the converter loop. is the effective resistance of the

load, and varies as a function of

-•

^DD J__ +
^DD

FIGURE 3.7 : Converter Loop RLC FUter.

In a typical buck converter, this filter has two poles, due to the capacitor

voltage, ^2)^, and inductor current, ii, state variables. However, in this system, charge

is delivered to the capacitor, in discrete quantities, thereby ensuring that ii starts

and ends each cycle at zero which eliminates it as a state variable. Although operating

in this discontinuous mode increases the voltage ripple on it reduces this filter to

a one pole system, whose pole is set byRqq and as shown in Figure 3.8.

There is a sampling delay introduced by the front-end clock quantizer, which

places another pole around 1MHz. As increases, decreases, and the dominant

pole moves higher in frequency, potentially resulting in instability. For the system
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3.2 Converter Feedback Loop
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FIGURE 3.8 : Reducing the Buck Converter to a One Pole System

implementation in Chapter 7, peak current was 125mA at 4V so that the dominant pole

is a maximum of 7kHz and the loop gain is less than one at 1 MHz, thereby ensuring

system stability.

3.2.4 Software Interface

Changing the operating point of the converter loop is done by specifying a new

frequency, abstracting away the actual voltage required to meet that frequency. This is

quite suitable to the operating system for which voltage is meaningless. Desired

frequency can simply be calculated as:

„ _ Estimated Workload _
Time to Completion CV ♦ )

where the estimated workload is measured in processor clock cycles, and the time to

completion is derived from the time constraints of the active software process.

Since is specified as a digital word, it is implemented as a writable

register, which must be placed in the visible instruction set architecture (ISA) to make

it accessible to software. For the prototype system (Chapter 7), this register (CP14R4)

was placed along with other programmable system state into the System Coprocessor.

When the software writes to CP14R4, Vqq and /cij^ will immediately begin to adjust to
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3.2 Converter Feedback Loop

the desired levels, providing the software with direct and full control over the voltage

converter system.

Since the processor in single-user systems is quite often idling, waiting for

further user input, reducing idle energy consumption is important to improve the overall

processor system energy efficiency. Since the operating system is aware of when the

processor is idling, it will issue a processor halt instruction before these idle periods.

To improve the idle energy efficiency, the operating system simply needs to set the

desired clock frequency to a minimum before issuing the halt instruction. Then, the

processor will be operating at minimum voltage, and minimum energy consumption.

When user input is detected by the operating system, it can restart the processor, and

restore the desired frequency to whatever the value was before halting.

If user-input is detected via a processor interrupt, it may be many cycles before

the operating system can restore the desired frequency. To reduce this latency, the

protot5q)e processor changes the desired frequency when an interrupt occurs. By

implementing the frequency change in hardware, which only requires an additional

8-bit register, the speed can be altered immediately.

3.2.5 Clock Generation

A significant benefit of the converter loop architecture is that it provides clock

generation for the processor, which is simply a buffered version of fciK- The only

external circuits required is a 1 MHz oscillator, which can be implemented with little

power dissipation. The power dissipated by the oscillator itself can be <10pW [aebi97].

The power dissipated driving the clock signal on the printed-circuit board (PCB) is:

^PCB ~fcLK ' ' ^DD (EQ 3.4)

For a Ci of lOpF, and a of 3.3V, the power dissipation for driving this 1 MHz clock

signal is lOOpW.
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3.2 Converter Feedback Loop

A typical processor either generates the fcLK ^ phase-locked loop

(PLL), or uses an externally generated signal. For a 100 MHz clock signal, the power

driving the lOpF would be llmW at 3.3V, and the oscillator itself can add another

lO-lOOmW. Most mid-to-high performance processors have an on-chip PLL to generate

the processor clock signal. But even the lowest reported power dissipation is l.SmW,

and still requires an external 3.68 MHz crystal oscillator [mont96].

In contrast, the ring-oscillator for the converter loop is the equivalent of

33 gates switching every cycle; in our 0.6|im process, this is approximately IpF. The

power dissipation of the ring oscillator scales with fciK ^DD' At the low comer of

I.IV and 8 MHz, the power dissipated is only lOpW; this is lOx lower than

conventional clock generation approaches, even taking the required extemal 1 MHz

crystal oscillator into account. In addition, this capacitance will also scale down in

technology so that in better process technology, the power dissipation will be lower for

a given fcLK ^DD- Further reduction can be achieved by integrating the 1 MHz

oscillator circuit on-chip, leaving only the crystal extemal to the chip, which would

eliminate the power dissipation for driving the extemal 1 MHz clock signal.

3.2.6 Conversion Efficiency

The efficiency of a voltage regulator is defined as:

Power Delivered to Load
"H = •;;;—r;; ttt-:—:— (EQ3.5)Total Power Dissipation

with 100% being the maximum efficiency possible, in which no power is lost in

delivering energy to the load circuits. The buck converter is very efficient at voltage

conversion, with efficiencies typically in the 90-95% range [stra94]. While it can be

designed methodically for a fixed operating voltage, the difficulty arises in designing

for this efficiency across a range of voltage and current loads. Several techniques have

been developed for the converter loop design to improve the efficiency over this broad

range of operating conditions [stra98].
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3.2 Converter Feedback Loop

The loop filter PWM-PFM algorithm will not deliver charge when

-3 < Fei^ <0. For low voltage and/or light load conditions, when little charge is being

drawn from K/jx), the loop filter stops activation of the power FETs which are the largest

source of loss. Only one out of N cycles generates an "on" pulse, where N can be as

high as 100 cycles.

The entire front-end is digital, which includes all the circuits starting from

Vdd np to the generation of Ferr- When -3 < Ferr ^ 0, these are the only circuits

actively operating and dissipating power. By taking their variable delay over voltage

into account during the design of the loop, they can all be powered from Fxjx), instead of

VraT' Thus, the power of these circuits, which are continuously running, scales with the

current F£>£) operating point, so that at low voltage, their power dissipation becomes

insignificant.

To improve efficiency while the buck converter is actively operating, the

power FETs are comprised of multiple parallel FETs. Then, the actual FET size is

dynamically varied to minimize loss over the range of operating conditions [stra98].

The combination of these techniques provides an efficiency of 80-95% while

the processor is actively operating over the range of voltage and current load, and has

negligible power loss while the processor is idling. Chapter 7 describes the energy

efficiency of a prototype implementation in further detail.

3.2.7 New Performance Metrics

In addition to the supply ripple and conversion efficiency performance metrics

of a standard voltage regulator, the DVS converter introduces two new performance

metrics: transition time and transition energy. For a large voltage change

i^DD\'~^^DD7)y the transition time is:

2 • Cjyj)
hRAN^ T

^MAX
\yDDi-yDDi\ (EQ3.6)
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3.2 Converter Feedback Loop

where Imax the maximum output current of the converter, and the factor of 2 exists

because the current pulses are triangular. In practice, tjj^AN slightly longer for a

low-to-high voltage transition because the actual current charging Cqq is

^MAX~ ^dd(^dd)' energy consumed during this transition is:

^TRAN ^ 1~"n) • •I

Since both transition time and transition energy are proportional to minimizing

Cdd yields a faster and more energy-efficient voltage converter.

To gauge how the transition energy impacts the overall system energy

consumption, it is more intuitive to compare the power dissipation which factors in the

frequency of voltage transitions and level of processor performance. Given a frequency,

fvDD* which the system makes voltage transitions, the transition power dissipation is:

^TRAN ~ ^TRAN 'fvDD ^ ( ~̂"H) *̂DD ' \̂ DD\ ~^DD'̂ 'fvDD (^Q 3*^)

Figure 3.9 demonstrates how transition time {tTRAN) transition power

dissipation {Ptran) ^dd maximum 1.2-3.8V voltage transition of the

prototype system, which has I^ax^ 1A, Tj = 90%. Ptran is shown for three different

values of fvDD- Also plotted is the minimum prototype system power dissipation not

including Ptran* ^^d sets the threshold below which Ptran should remain so that it

does not dominate the total system power dissipation. A typical C£)£> value for low-

voltage/low-power voltage regulators is lOOjiF. This gives a tTRAN excess of 500|lis

which precludes any real-time control or fast interrupt response time, and only allows

very coarse speed control. For this value of an fvDD order of a context

switch (30-100Hz) will cause the transition power to dominate the system power

(55-80% of the total power).

Thus, existing voltage regulators make very poor voltage converters due to

their large C^/), which needs to be reduced by at least lOx. Using the converter loop.
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FIGURE 3.9 : Transitfon Time and Power Dissipation vs. Cj^jy

combined with the hybrid PWM/PFM algorithm, allowed a dynamic voltage regulator to

be designed which maintains good conversion efficiency at much lower values of ^DD-

3.2.8 Limits to Reducing Coo

Decreasing Cqq reduces transition time, and by doing so increases the speed at

which the voltage changes, dVj;^£jdt. CMOS circuits can operate with a varying

but only up to a point, which is process dependent. This is discussed in further detail in

Section 3.4.

Decreasing increases supply ripple, which in turn increases processor

energy consumption as shown in Figure 3.10. The increase is moderate at high but

begins to increase as approaches Vj because the negative ripple slows down the

processor so much that most of the computation is performed during the positive ripple,

which decreases energy efficiency. For values of supply ripple above 10%, the
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3.2 Converter Feedback Loop

processor can still operate properly, but the increased energy consumption of the

processor outweighs the decreased transition energy consumption, degrading overall

system energy-efficiency.
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FIGURE 3.10 : Energy Loss Due to Voltage Supply Ripple.

Loop stability is another limitation on reducing capacitance. As described in

Section 3.2.3, the dominant pole in the system is inversely proportional to C£)£). As

is reduced the pole frequency increases. As the pole approaches the sampling frequency,

interaction with higher-order poles will eventually make the system unstable.

The third limitation is that low-voltage conversion efficiency scales down with

CdD' Since the DVS processor will ideally be operating most of the time at low voltage,

it is important to maintain reasonable low-voltage conversion efficiency.

Increasing the converter sampling frequency will reduce the supply ripple and

increase the pole frequency due to the sample delay. Thus, these two limits are not

fixed, but can be varied. However, increasing the sampling frequency has two negative

side-effects. First, low-load converter efficiency will decrease because the converter

loop will need to be activated more frequently to maintain the same voltage. Second,
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the fcLK quantization error will increase. These side-effects may be mitigated with a

variable sampling frequency that adapts to the system power requirements (e.g. ^DD

and Idd)'

The maximum dVi^iJdt at which the circuits will still operate properly is a hard

constraint because system failure can be induced, but occurs for a much smaller ^DD

than the supply ripple and stability constraints. Low-voltage conversion efficiency is a

soft-constraint, but cannot be improved by adjusting the converter sampling frequency.

3.2.9 Optimizing Cjyjy in the Prototype System

For the prototype system, a value of 5)liF was chosen for The limiting

factor for not reducing it further was the low-voltage conversion efficiency. Table 3.1

lists the key converter performance parameters for both the typical value of

^DD (IOOM-F) and the optimized value (SpF). The top four parameters were optimized

given the three bottom hard constraints.

TABLE 3.1 Converter Performance Parameters

Parameter Constraint Cj)j) —100|liF Cdd ~

^TRAN minimize 130 pJ/transition 6.5 pJ/transition

^RAN minimize --520 ps -26 ps

q (3.3V) maximize . > 95% 92%

q(1.2V) maximize >95% 84%

ripple < 10% <1% 2%

dom. pole <100 kHz 400 Hz 7kHz

dVooldt <5 V/ps 0.01 V/ps 0.2 V/ps

The optimized value maintains the constraints placed on supply ripple, the

dominate pole frequency, and dVjyi^dt, while minimizing and and

maintaining good high voltage (3.3V) and low-voltage (1.2V) conversion efficiency.

There is still plenty of margin for the hard constraints, which would allow for an even
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smaller Cqd if the converter loop could be redesigned to compensate for the reduction

in low-voltage conversion efficiency, and continue to maintain a reasonable value

(> 80%).

3.3 Design Constraints Over Voltage

A typical processor targets a fixed supply voltage, and is designed for ±10%

maximum voltage variation. Correct functional operation must be verified over this

small voltage variation, as well as a slew of timing constraints, such as maximum path

delay, minimum path delay, maximum clock skew, and minimum noise margin. In

contrast, a DVS processor must be designed to operate over a much wider range of

supply voltages, which impacts both design implementation and verification time.

3.3.1 Circuit Design Constraints

To realize the full range of DVS energy efficiency, only circuits that can

operate all the way down to Vj should be used. NMOS pass gates are often used in low-

power design due to their small area and input capacitance. However, they are limited

by not being able to pass a voltage greater than such that a minimum of

2*Vf is required for proper operation. Since throughput and energy consumption vary

by 4x over the voltage range Vj to using NMOS pass gates restricts the range of

operation by a significant amount, and are not worth the moderate improvement in

energy efficiency. Instead, CMOS pass gates, or an alternate logic style, should be

utilized to realize the full voltage range of DVS.

As previously demonstrated in Figure 3.1, the delay of CMOS circuits track

over voltage such that functional verification is only required at one operating voltage.

The one possible exception is any self-timed circuit, which is a common technique to

reduce energy consumption in memory arrays. If the self-timed path layout exactly

mimics that of the circuit delay path as was done in the prototype design, then the paths
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will scale similarly with voltage and eliminate the need to functionally verify over the

entire range of operating voltages.

3.3.2 Circuit Delay Variation

While circuit delay tracks well over voltage, subtle delay variations exist and

do impact circuit timing. To demonstrate this, three chains of inverters were simulated

whose loads were dominated by gate, interconnect, and diffusion capacitance

respectively. To mimic paths dominated by stacked devices, a fourth inverter chain was

simulated in which both the PMOS and NMOS transistors were each source-

degenerated with an additional three equally-sized series transistors, effectively

modeling a four-transistor stack. The relative delay variation of these circuits is shown

in Figure 3.11 for which the baseline reference is an inverter chain with a balanced load

capacitance similar to the ring oscillator.
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FIGURE 3.11: Relative CMOS Circuit Delay Variation over Supply Voltage.
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The relative delay of all four circuits is a maximum at only the lowest or

highest operating voltages. This is true even including the effect of the interconnect's

RC delay. Since the gate dominant curve is convex, combining it with one or more of
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the other effects' curves may lead to a relative delay maxima somewhere between the

two voltage extremes. However, all the other curves are concave and roughly mirror the

gate dominant curve such that this maxima will be less than a few percent higher than at

either the lowest or highest voltage, and therefore insignificant. Thus, timing analysis is

only required at the two voltage extremes, and not at all the intermediate voltage

values.

As demonstrated by the series dominant curve, the relative delay of four

stacked devices rapidly increases at low voltage. Additional devices in series will lead

to an even greater increase in relative delay. As supply voltage increases, the drain-to-

source voltage increases for the stacked devices during an output transition. For the

devices whose sources are not connected to or ground, their body-effect increases

with supply voltage, such that it would be expected that the relative delay would be a

maximum at high voltage. However, the sensitivity of device current and circuit delay

to gate-to-source voltage exponentially increases as supply voltage goes down. So even

though the magnitude change in gate-to-source voltage during an output transition

scales with supply voltage, the exponential increase in sensitivity dominates such that

stacked devices have maximum relative delay at the lowest voltage.

Thus, to improve the tracking of circuit delay over voltage, a general design

guideline is to limit the number of stacked devices, which was four in the case of the

prototype design. One exception to the rule is for circuits in non-critical paths, which

can tolerate a broader variation in relative delay. By using the clocking methodology

described in Section 4.3, it can be ensured that this broader variation does not lead to

potential race conditions. Another exception is for circuits whose alternative design

would be significantly more expensive in area and/or power (e.g. memory address

decoder), but the circuits must still be designed to meet timing constraints at low

voltage.
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3.3.3 Noise Margin Variation

Figure 3.12 demonstrates the two primary ways that noise margin is degraded.

The first is capacitive coupling between an aggressor signal wire that is switching and

an adjacent victim wire. When the aggressor and victim signals have the same logic

level, and the aggressor transitions between logic states, the victim signal can also incur

a voltage change. If this change is greater than the noise margin, the victim signal will

glitch and potentially lead to functional failure. Supply bounce is induced by switching

current spikes on the power distribution network, which has resistive and inductive

losses. If the gate's output signal is the same voltage as the supply that is bouncing, the

voltage spike transfers directly to the output signal. Again, if this voltage spike is

greater than the noise margin, glitching, and potentially functional failure, will occur.

Capacitive Coupling

^A-GND

Victim h

SpppIv Bounce

^DD

GND

FIGURE 3.12 : Noise Margin Degradation.

For the case of capacitive coupling, the amplitude of the voltage spike on the

victim signal is proportional to to first order. As such, the important parameter to

analyze is noise margin divided by to normalize out the dependence on ^DD-

Figure 3.13 plots two common measures of noise margin vs. the noise margin of a

standard CMOS inverter, and a more pessimistic measure of noise margin, Vj. The

relative noise margin is a minimum at high voltage, such that signal integrity analysis to

ensure there is no glitching only needs to consider a single value of ^DD- If a circuit
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passes signal integrity analysis at maximum it is guaranteed to pass at all other

values of ^DD'
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FIGURE 3.13 : Noise Margin vs. Supply Voltage.

Supply bounce occurs through resistive (IR) and inductive (dl/dt) voltage drop

on the power distribution network both on chip and through the package pins.

Figure 3.14 plots the relative normalized IR and dUdt voltage drops as a function of
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FIGURE 3.14 : Normalized Noise Margin Reduction due to Supply Bounce.
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It is interesting to note that the worst case condition occurs at high voltage, and

not at low voltage, since the decrease in current and dl/dt more than offsets the reduced

voltage swing. Given a maximum tolerable noise margin reduction, only one operating

voltage needs to be considered, which is maximum to determine the maximum

allowed resistance and inductance. The global power grid and package must then be

designed to meet these constraints on resistance and inductance.

3.3.4 Delay Sensitivity

Supply bounce has another adverse affect on circuit performance in that it can

induce timing violations. Supply bounce decreases a transistor's gate drive, which in

turn increases the circuit delay. If this increase occurs within a critical path, a timing

violation may result leading to functional failure.

A typical microprocessor uses a phase-locked loop to generate a clock

frequency which is locked to an external reference frequency and independent of on-

chip voltage variation. As such, both global and local voltage variation can lead to

timing violations if the voltage drops a sufficient amount to increase the critical paths'

delay past the clock cycle time. However, in the DYS system, the clock signal is

derived from a ring oscillator whose output frequency is strictly a function of and

not an external reference. As such, global voltage variations not only slow down the

critical paths, but the clock frequency as well such that the processor will continue

operating properly.

Localized supply variation, however, may only effect the critical paths, and not

the ring oscillator. These can lead to timing violations if the local supply drop is

sufficiently large. As such, careful attention has to be paid to the local supply routing.

For the prototype design, a design margin of 5% was included in the timing verification

to allow for localized voltage drops.
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Delay sensitivity is the relative change in delay given a drop in ^DD» and can

be calculated as:

« 0.6

V, 0.4

Z 0.2

dDelay,^r ^ _ dDelay
V̂ dd) ~ lim

Delay LVi,a^(kDelay(Vj^jy))

This equation can be analytically quantified using Equation 2.13, and the normalized

delay sensitivity is plotted as a function of Vqq in Figure 3.15. For sub-micron CMOS

processes, the delay sensitivity peaks at approximately l^Vj. Thus, the design of the

local power grid only needs to consider one value of 2*Vj', to ensure that the

resistance/inductance voltage drop meets the design margin on delay variation. If the

power grid meets timing constraints at this value of !£>£>, it is guaranteed to do so at all

other voltages.

T 2F7 ^£>£1 3^7- 4^7'
FIGURE 3.15 : Normalized Delay Sensitivity vs. Supply Voltage.

(EQ 3.9)

3.3.5 Summary

The verification complexity and design margins of a DVS-compatible

processor are very similar to any other high-performance processor. One added

constraint is that the circuits must be able to properly operate from Vj- to maximum

^DD' Additionally, timing verifrcation is required at both maximum and minimum
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voltage, instead of just a single voltage.

Since the clock frequency is generated from the on-chip ring oscillator, the

constraints on the global power distribution are actually not as severe, because only

local voltage drops can induce timing failure, not global voltage drops. The only

constraint put upon the global power distribution is to ensure that noise margins are

met, which is much less restrictive than designing it to be immune to timing failure with

an externally referenced clock signal.

3.4 Design Constraints for Varying Voltage

One approach for designing a processor system that switches voltage

dynamically is to halt processoroperation during the switchingtransient. The drawback

to this approach is that interrupt latency is increased and potentially useful processor

cycles are discarded. However, static CMOS gates are quite tolerable to supply voltage

slew, so there is no fundamental need to halt operation during the transient.

For the simple inverter in Figure 3.16, when is high the output remains low

irrespective of However, when is low, the output will track via the PMOS

device, and can be modeled as a simple RC network. In our 0.6pm process, the RC time

constant is a maximum of 5ns, at low voltage where it is largest. Thus, the inverter

tracks quite well for a dVj^j^dt in excess of 200 V/ps.

Vdd
zr

YmzXoD
^dsiPMOS

FIGURE 3.16 : Equivalent RC Network for Static CMOS Inverter.

Because all the logic high nodes will track Fjp£) very closely, the circuit delay
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3.4 Design Constraints for Varying Voltage

will instantaneously adapt to the varying supply voltage. Since the processor clock is

derived from a ring oscillator also powered by ]^£)/), its output frequency will

dynamically adapt as well, as demonstrated in Figure 3.17.

\—Sglk-^ ••

UOn iSOn
Tlaia (Bn)(TIME)

FIGURE 3.17 : Ring Oscillator Transient Performance.

Thus, static CMOS is well-suited to continue operating during voltage

transients. However, there are design constraints when using a design style other than

static CMOS.

3.4.1 Dynamic Circuits

Dynamic logic styles are often preferable over static CMOS as they are more

efficient for implementing complex logic functions. They can be used with a varying

supply voltage, as long as their failure modes are avoided by design. These two failure

modes for a simple dynamic circuit are shown in Figure 3.18, and occur while the

circuit is in the evaluation state (<I)=1) and Vi„ is low. In this state, has been

precharged high, and is floating during the evaluation state.

^DD

0

iS

Ĵ S Vjp. false logic low

^ Viyg: latchup

_ Time

FIGURE 3.18 : FaUure Modes for Dynamic Logic with Varying Vjyjy
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^DD ramps down by more than a diode drop, by the end of the

evaluation state, the drain-well diode will become forward biased. This current may be

injected into the parasitic PNP of the PMOS device and induce latchup, which leads to

catastrophic failure by short-circuiting to ground [west93]. This condition occurs:

-Vbe
It -~z 72 (EQ3.10)^CLK\AVE^^

where Zclk\ave is the average clock period as varies from to F^^, - F^g. Since

the clock period is longest at lowest voltage, this is evaluated as F£>£> ranges from

^be ^MIN* where Fj-H- lOOmV. For our O.djiim process, the limit is

-20 V/|is, which will increase with process technology.

Vdd ramps up by more than Vfp by the end of the evaluation state, and Fg„^

drives a PMOS device, a false logic low may be registered, giving a functional error.

This condition occurs:

Tt ^ (EQ3.11)^CLK\AVE^ ^

evaluated for '̂ CLK\AVE ^s varies from F^/^^to Vjp. For our 0.6)im process,

the limit is 24 V/ps, which will also increase with process technology because clock

frequency improvement generally outpaces threshold voltage reduction.

These limits assume that the circuit is in the evaluation state for no longer than

half the clock period. If the clock is gated, leaving the circuit in the evaluation state,

these limits drop significantly. Hence, the clock should only be gated when the circuit is

in the precharge state.

These limits may be increased to that of static CMOS logic using a small

bleeder PMOS device, as shown in Figure 3.19. The left circuit can be used in logic

styles without an output buffer (e.g. NP Domino), but has the penalty of static power

dissipation. The right circuit is more preferable, as it eliminates static power

dissipation, and only requires a single additional device in logic styles with an output
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3.4 Design Constraints for Varying Voltage

buffer (e.g. Domino, CVSL). Since the bleeder device can be made quite small, there is

insignificant degradation of performance due to the PMOS bleeder fighting the NMOS

pull-down devices.

out Mr

FIGURE 3.19 : Using Bleeder Devicesto Improve Robustness over Varying ^DD-

3.4.2 Tri-state Busses

Tri-state busses that are not constantly driven for any given cycle suffer from

the same two failure modes as seen in dynamic logic circuits due to their floating

capacitance. The resulting dVj^i^dt can be much lower if the number of consecutive

cycles in which the bus remains floating is unbounded. Tri-state busses can only be

used if one of two design methods are followed.

The first method is to ensure by design that the bus will always be driven. This

is done easily on a tri-state bus with only two drivers. The enable signal of one driver is

simply inverted to create the enable signal for the other driver. However, this becomes

expensive to ensure by design for a large number of drivers, N, which require routing N

enable signals.

The second method is to use small cross-coupled inverters in order to

continuously maintain state on the bus. This is more preferable to just a bleeder PMOS

as it will also maintain a low voltage on the floating bus. Otherwise, leakage current

may drive the bus high while it is floating for an indefinite number of cycles. The size

of these inverters can be quite small, even for large busses. For our 0.6p,m process, an

inverter can readily tolerate a dV^p/dt in excess of 75 V/ps with minimal impact on
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3.4 Design Constraints for Varying Voltage

performance, and only a 10% increase in energy consumption.

3.4.3 SRAM

SRAM is an essential component of a processor. It is found in the processor's

cache, translation look-aside buffer (TLB), and possibly in the register file(s), prefetch

buffer, branch-target buffer, and write buffer. Since all these memories operate at the

processor's clock speed, fast response time is critical, which demands the use of a

sense-amp. The static and dynamic CMOS logic portions (e.g. address decoder, word-

line driver, etc.) of the memory respond to a changing supply voltage similar to the ring

oscillator, as desired. The sense-amp, however, must be carefully designed to scale in a

similar fashion.

The basic SRAM cell is shown in Figure 3.20. Bit and RTF are precharged to the

Vdd value at the end of the precharge cycle. While in the precharge state, both Bit and

Bit will track any variations on V^D' Once the Word signal has been activated to sense

the cell, the precharge devices are disabled and Bit and ^ do not respond to

variations. However, the current drawn through the pass device connecting w to R/?will

track since Word tracks creating a voltage differential across Bit and "BU

which will also track Vjyjy. So, to first order, the current drawn by the SRAM cell, which

is a measure of its delay, will track Vqq similar to the delay of static CMOS logic.
'J2I2_

m}±

m=\ m=0

Bit Bit

FIGURE 3.20 : SRAM CeU.

If Vjyiy drops, m will drop, but since Word will also drop, there is no affect on

Bit since the pass device is in the off state. When Viyjy increases, m will increase, as will

Word, but will have no affect until Vjyjy increases by Vrn, which is required to turn on
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the pass device. When this occurs, this second-order effect will cause the voltage

differential on Bit and Bit to increase faster because the pass device will begin charging

up Bity while Bit continues to be discharged. However, a dVj^Q/dt in excess of 50 V/ps

is required to induce this effect. Another second-order effect on the current drawn is

that since Bit and Bit do not vary in the evaluation state with Vdd> the Vfis of the pass

device remains constant, independent of any change on ^DD' However, this effect also

requires large dVj^iJdt in excess of 50 V/ps to have any appreciable effect.

The basic sense-amp topology, shown in Figure 3.21, responds to the varying

to first-order similar to static CMOS logic. Since the SRAM cell generates a

voltage differential on Bit and Bit which scales with the amount of time to

generate the critical ABit to trip the sense-amp also scales.

^DD

FIGURE 3.21: Basic Sense-amp Topology.

If the common-mode voltage between Bit and ^ were to scale with as it

varies during the sense-amp evaluation state, then the delay of the sense-amp would

scale much like static CMOS logic. However, this is not the case, and introduces the

limiting second-order effect. As increases, the critical ABit to trip the sense-amp

decreases, speeding the sense-amp up. As ^DD decreases, the critical ABit to trip the

sense-amp increases, slowing the sense-amp down.

Figure 3.22 plots the relative delay variation of the sense-amp compared

against the relative delay variation for static CMOS for different rates of change on

F£)£>. It demonstrates that the delay does shift to first order, but that for negative

71



3.4 Design Constraints for Varying Voltage

dVi^lJdt^ the sense-amp slows down at a faster rate than static CMOS. For the prototjrpe

design, the sense-amp delay was approximately 25% of the cycle time. The critical path

containing the sense-amp was designed with a delay margin of 10%, such that the

maximum increase in relative delay of the sense-amp as compared to static CMOS that

could be tolerated was 40%.

a
0

1
Tj
Q

Sens* Amp

Siatic C wos

-5 -4 -2 +5

FIGURE 3.22 : Sense-Amp Delay Variation with Varying Supply Voltage.

This set the ultimate limit on how fast could vary in our 0.6pm process:

IrfKoo/rf'l s 5F/ns (EQ 3.12)

This limit is proportional to the sense-amp delay, such that for improved process

technology and faster cycle times, this limit will improve.

What must be avoided are more complex sense-amps whose aim is to improve

response time and/or lower energy consumption for a fixed but fail for varying

One example is a charge-transfer sense-amp [burs97][kawa98].
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3.4.4 Summary

As was demonstrated for the sense-amp, simpler circuit design ensures greater

DYS compatibility. Many circuit design techniques developed for low power, such as

the charge-transfer sense-amp and NMOS pass-gate logic, are not amenable to DVS.

However, the potential energy efficiency improvement of DVS far outweighs the slight

degradation in energy efficiency by not using these more energy-efficient circuit design

techniques.

In addition, a methodical design approach must ensure that no signal is ever

floating for more than a half-cycle to prevent functional errors. But even with this

approach, there are limits to on the order of 20 V/|Xs for our 0.6|Lim process.

Higher dV^^j^dt can be tolerated for dynamic circuits with the use of bleeder and

feedback devices, but is not required since the sense-amp is the limiting factor. While

the basic sense-amp's delay scales to first-order with dV^i^dt^ second-order effects

limit \dVj;iiyldt\ to only 5 V/p.s in our 0.6|Lim process. However, this limit will increase

with better CMOS process technology.

3.5 Voltage Scheduler

To realize the full benefit of DVS, not only must the hardware support

operation at any desired voltage level, but the operating system must be intelligent

enough to set the processor speed based upon the current workload, and estimated

future workload requirements. A new element has been added to the operating system to

perform this new functionality, which is called the voltage scheduler.

A more comprehensive description of the voltage scheduler can be found in

[periOO]. This section only describes it in brief to highlight the key components and

functionality.
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3.5.1 Application Execution Models

Evaluating workload requires knowledge of an application's allowable

execution time, and the number of instructions that need to be executed in that time

frame. Based upon execution time requirements, software applications fall into one of

three general classifications: deadline-based tasks, rate-based tasks, and high-priority

tasks.

Deadline-based tasks are applications that can be clearly divided into

execution units called frames, each of which has a measure of work which should be

completed by its deadline [bum97]. A frame is an application-specific unit, such as a

video frame, and work is defined in terms of processor cycles. The desired rate of

processor execution in a single-threaded system is easily determined:

ProcessorSpeed = (EQ3.13)

It is the job of the voltage scheduler to determine the processor speed given a set of

multiple tasks. The work required is automatically estimated by the system and updated

to reflect the actual work performed as the application executes. The applications must

provide some level of buffering to accommodate missed deadlines.

Rate-based tasks sustain a predictable rate of execution, supplied by the

application, without an explicit deadline. Applications such as compilation, which

should finish in "a reasonable amount of time," fall into this category. The deadline for

these tasks is automatically calculated by the internal scheduler and update dynamically

as the task executes. Rate-based threads should be scheduled so that they appear to be

executing on a single-threaded system running at their specified speed: two 10 MHz

sustained rate threads will require time-sharing a system run at 20 MHz.

High-priority tasks are short, sporadic tasks which require quick response

times but do not present a significant system load. They execute before all other threads
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in the system; high-priority tasks themselves are ordered and execute highest-priority-

first. High-priority tasks are ignored by the voltage scheduler and do not directly effect

the processor speed.

Rate-based and high-priority tasks can be represented as deadline-based with

artificial deadlines, reducing all software applications to a single execution model

which can be quickly evaluated by the voltage scheduler via Equation 3.13.

Applications default to a rate-based model until they specify otherwise. Most system-

level threads run at high-priority, while multimedia tasks typically use a deadline-based

model.

3.5.2 Workload Prediction

An accurate workload prediction is necessary to allow a voltage scheduler

to efficiently schedule the system. The workload predictions for deadline-based threads

are determined empirically at run-time using an exponential moving average:

^OLD ' ^ I ACT
Wnew = k+l

The operating system updates the associated estimate each time a frame is completed.

An application may either explicitly specify an initial work estimate or use the

computation required for its first frame to initialize the sequence. Rate-based

applications specify their workload as sustained rate of execution, defined in terms of

processor speed (equivalent to work/time). High-priority threads do not need to specify

a workload estimate because they are ignored by the voltage scheduler.

Due to frame-to-frame application variance, the actual work required will

differ from the estimate. A thread will either terminate before or after its requested

deadline. Figure 3.23 shows two example of how this incorrect prediction can result in

sub-optimal energy usage. Applications with high workload variance can potentially

consume more energy than applications with consistent workloads; an efficient
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scheduling techniques can combine multiple frames together to reduce the effective

variance.

80%-
rraiTBl FTanf62

Time Time

FIGURE 3.23 : Workload OverAJnder Estimation
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3.5.3 Integration into the Operating System

At the heart of any pre-emptive multi-tasking operating system is a temporal

process scheduler. Its responsibility is to maintain the list of active and sleeping

threads, and schedule time slots for them to run in. The optimal algorithm for the

temporal scheduler is an earliest-deadline first (EDF) policy for a fixed-speed system

[liu73].

The voltage scheduler determines for a given process schedule, what the

optimal speed is to complete the outstanding threads by their specified deadlines for

minimal energy consumption. Thus, the voltage scheduler can be independent of the

imderlying temporal scheduler, simplifying its integration into an existing operating

system.

Whenever the temporal scheduler executes, it invokes the voltage scheduler

with the updated process table containing the active list of threads and their

corresponding deadlines. The voltage scheduler is only responsible for estimating the

workload for this list of threads and calculating the optimal speed at which the

processor should be operating.
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3.5.4 Zero-Start Algorithm (ZERO)

The ZERO algorithm is the culmination of work investigating an optimal, yet

implementable, voltage scheduler [periOO]. The basic algorithm assumes all tasks are

sporadic and calculates the minimum speed necessary assuming their relative start

times are all zero. Given that threads are sorted in EDF order, the speed can be found:

/ \

o c ^ - max
Pfoc6ssof^ Speed

^ workj
J^i

deadlines —currenttime
(EQ3.15)

The zero-start simplification causes ZERO to overestimate the processing

required when a future task has a large amount of work to be completed. Additionally,

ZERO will underestimate requirements for executing multiple periodic threads since it

treats all tasks as sporadic. The algorithm can be implemented in 0(n) time where n is

the number of scheduled threads; the required list of sorted threads can be maintained

incrementally as task deadlines are updated. To improve the algorithm's operation, it

has an additional four extensions:

Schedule Smoothing - Threads which have exceeded their deadline or work

estimate are scheduled so as to complete twice the work with twice the deadline.

Without this modification, a missed deadline or work underestimate will run the

processor at full speed to minimize frame completion latency (unless otherwise

specified by the over-deadline policy, below). Since applications are required to

tolerate missed deadlines, smoothing the schedule reduces energy without significantly

affecting system behavior.

Over-Deadline Policy - A thread may opt to be switched to a rate-based model

when its deadline or work estimate is exceeded. This technique is most useful for

applications which have the occasional long-running frame which is not latency-

critical, such as an initialization sequence. The over-deadline policy is complementary
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to scheduling smoothing: over-deadline handles frames which are over their deadline/

estimate by a significant amount, while schedule smoothing handles frames which are

still operating close to their deadline/estimate. When used in conjunction with

schedule-smoothing, the over-deadline policy is invoked at twice the deadline and work

estimate. In the absence of an over-deadline policy, the task will be executed at the

maximum processor speed to minimize time-to-completion.

Extra Work - Aggregate workload statistics of all high-priority threads are

accumulated and used to provide an estimate of their future work requirements. This

estimate is used to reserve cycles in the processor workload for future high-priority

tasks, which are otherwise not included by the voltage scheduler. This technique adjusts

execution so that frames complete closer to their deadline.

Event Filtering - Frames which could not possibly complete before their

deadline, even with the processor running at max-speed, are not included in the

automatic workload estimation. This filtering optimizes for the useful common case. A

user-interface, for example, consists of many short events, such as button refreshes,

with a few lengthy events, like opening a new dialog window. If the lengthy events

could never possibly complete before the stated deadline incorporating them into the

work estimate would only serve to inflate the estimate, adversely affecting the common

case. Threads are initially scheduled assuming a short frame, and then dynamically

adjusted for longer running ones.

3.5.5 Operation

A demonstration of the voltage scheduler on the prototype processor system is

shown in Figure 3.24, which plots over a two-second window. The top trace

demonstrates system operation without the voltage scheduler; the system either

operates at max speed or idles. The bottom trace demonstrates system operation with

the voltage scheduler enabled, in which case Vqqis being dynamically varied.

78



3.6 Benchmark Evaluation

Q
Max, Speed

DD

Idle

liser'̂ Iiiterfa^e Prcicess: Very jiursty computat!<on
—S96mo

a. 5V

a

DD

2O0mo<^cltw iwTi

'Incrda&edSpeedfor
Shorter Proceis Deddlinei

•il'i Loy^Speeidi

HighfLat^cy C0ihpuj[ati6h| Dohci @ Spieed/Ejiiei^

S00mo'«'diw iKTi 1 . 7e<»a

FIGURE 3.24 : Voltage Scheduler Improvement

For the user-interface application being executed, most of the processing can

be done at low voltage, greatly improving energy efficiency. When a large amount of

processing needs to be performed, the scheduler will ramp up Vj^jy to meet the specified

deadline. If a deadline is missed, the scheduler begins ramping up the processor speed.

3.6 Benchmark Evaluation

The ideal energy efficiency improvement of DVS is more than lOx. However,

to evaluate the practical improvement of DVS, it is important to have a benchmark suite

that mimics code that would actually be running on the processor system.

A class of systems where DVS is expected to have enormous impact are user-

driven portable electronics such as notebook computers and PDAs. While DVS is quite

applicable elsewhere, the scope of this benchmark evaluation only focuses on these

systems.
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3.6.1 Description

Two common multimedia tasks and a graphical user interface are Used to

evaluate DVS, which are commonly found in this class of systems:

• Audio - IDEA decryption of a 10-second 11 kHz mono audio stream, divided into IkB

frames with a 93ms deadline. In a single-task environment, this benchmark runs at

approximately 17 MHz.

• MPEG - MPEG-2 decoding of an 80-frame 192x144 video at 5 frames/sec, requiring

an average of 50 MHz processing.

• UI - A simple address-book user interface allowing simple searching, selection, and

database selection. 432 frames are processed, each defined as a user triggered event,

such as pen-down, which ends when the corresponding action has been completed. A

deadline of 50ms, described below, is used for each &ame. Most frames require less

than 10 MHz operation.

High-level wrappers are used by applications to specify real-time constraints

and manage work estimates. Each iteration, periodic applications (Audio & MPEG)

update their work estimate, set their next deadline based on the period, and stall until

the appropriate start time. Sporadic applications (UI) specify constraints using start/

stop times. The Audio benchmark supplies an initial work estimate based on previous

execution, while the MPEG and UI benchmarks use the results of their first completed

frame, which is run at max-speed. The wrapper for applications with hard deadlines

(Audio & MPEG) must contain small buffers to tolerate missed deadlines.

Simulated user input (mouse & keyboard) is the primary mode of input for the

UI application. A 50ms deadline representing human visual perception time is used for

UI events, as screen updates faster than this will not be noticed by the user [endo96].

Most UI events, such as simple button updates, can easily complete before this

deadline. Some events, however, are extremely computationally expensive; opening a
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new dialog window, for example, takes 260ms when the processor is running at max-

speed. There is no "correct" speed for these events. To balance energy-efficiency and

low-latency, a speed of 40 MHz is chosen.

3.6.2 Detailed Performance Analysis

To evaluate DVS energy efficiency improvement, the current consumed from

the battery supply can be monitored over the duration of the benchmark and integrated

to calculate total energy consumption with and without DVS enabled. The ratio of these

two energy measurements is then the energy efficiency improvement.

However, to understand the dynamics of the voltage scheduler algorithm, and

determine whether it is working as desired, more detailed monitoring was performed, as

shown in Figure 3.25. At regular lOps intervals, the operating system reports the active

thread running and the speed it is running at. In this example, there are six active

threads, labelled along the vertical axis. A low value indicates the thread is not running
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FIGURE 3.25 : Run-time Performance Analysis
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at that moment. A high value indicates it is running and the amplitude is proportional to

the current speed setting

The Idle thread initially dominates run-time until the MPEG benchmark thread

has become initialized. Once initialized at maximum speed, the ZERO algorithm begins

estimating the optimal MPEG speed setting, and adjusting it depending on the current

frame workload. The I/O monitor runs at constant intervals reading in the MPEG data

arriving at a fixed rate. The temporal scheduler (not shown) runs at regular intervals,

maintaining the process schedule. When the process schedule is modified, the voltage

scheduler, process dispatcher, and process distributor threads are launched.

With this monitoring, it can be observed that the MPEG benchmark dominates

total CPU time, which is desired. Also, the speed is being varied around to adapt to the

varying computational requirements of the MPEG frames. The voltage scheduler and

other operating system threads only consume a fraction of the CPU performance. This

performance monitoring greatly aided in the development and tuning of the ZERO

voltage scheduling algorithm
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Energy Conscious
Design Flow

4

The most critical aspect of energy-efficient design is to be energy conscious

throughout the entire design flow. A t5q)ical design flow treats energy consumption as

an afterthought, and is not thoroughly analyzed until the design has reached the

transistor schematic stage. This is too late in the design process for radical

modifications that can lead to a more energy-efficient implementation. Therefore, much

as performance is analyzed at the initial high-level specification of the design, so must

energy consumption be analyzed, as well. The primary goal of this design flow is to

evaluate energy consumption early on so that the largest energy reductions can be

attained.

In today's complex chip designs, a majority of the design cycle is spent on

validating a design for proper functionality, and verifying its layout implementation.

Implementing DVS exacerbates the verification problem by requiring multiple

operating conditions to be analyzed. Another goal of this design flow is to automate

design validation and verification so that the bulk of the design effort could remain

focused on the design implementation and optimization for energy efficiency.

The first section presents an overview of the design flow. Subsequent sections

explore in more detail those parts of the design flow that were developed to aid in the

design and verification of a DVS microprocessor system, though most of this design
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flow is equally applicable to general energy-efficient digital design.

4.1 Overview

The basic design flow from system specification to final chip layout is

presented in Figure 4.1. The flow refines the design through five discrete phases, each

of which has its own set of design tools, and optimization goals. Through each

refinement phase, the design is verified against the previous phase's implementation to
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FIGURE 4.1: General Design Flow from Specification to Layout.

84



4.1 Overview

insure proper functionality. Through transitive equivalence, the layout can be verified

to operate as specified by the initial cycle-level simulator.

Implementing an existing instruction set architecture (in this particular case

the ARM v4 ISA [arm96a]) provides the key benefit of having proven compilers and

assemblers available. The design verification process is bootstrapped by the ability to

swiftly write self-validating C code which can be compiled down to machine code and

executed on the simulator. This allows the simulation of real test code early on with

abstract design models.

An advantage of implementing the ARM V4 ISA was the availability of a

simulator (from ARM Ltd.) for the processor core [arm97]; once an abstract memory/IO

module was written, the simulator could begin booting the operating system and

executing benchmark programs. This provided the ability for high-level performance

and energy estimation so that the design could be optimized as the simulator evolved

into a cycle-accurate specification. Performance tuning at this stage is common in

microprocessor design, but energy estimation is typically done as an afterthought. By

incorporating energy estimation into the simulator, high-level energy optimization

significantly improved the design's energy efficiency as will be discussed in

Section 4.2.

Once the performance and energy optimized cycle-accurate simulator was

developed, the design progressed to the VHDL behavioral design phase. Since the

design is still at a behavioral-level specification, no significant optimizations are

possible at this level. Since the specification language has changed from C to VHDL, it

is critical at this juncture that the two models behave exactly the same, as discussed in

Section 4.5.1. The design was not initially specified in VHDL because C simulation is

several orders of magnitude faster, which enabled a rapid design turn-around during the

initial specification phase.
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As the VHDL description transitions from behavioral to structural models,

additional performance and energy optimization occurs. By annotating the structural

VHDL model with delays, critical paths can be identified and reduced. At this

microarchitecture level, better energy estimates are available for the individual blocks,

and the simulator is updated accordingly to provide better energy estimates. Dominant

energy consuming blocks can be identified and optimized. By the end of this phase,

remaining critical paths that cannot be removed via microarchitecture changes dictate

the achievable cycle time. At this point, the performance optimization transforms to

meeting the targeted cycle time.

Another significant level of energy optimization occurs during the transistor

design utilizing the various energy-efficient design techniques in Section 6.1. During

this phase, PowerMill provides accurate energy estimates which aid the designer to

further reduce energy consumption. Accurate timing analysis (Section 4.6) ensures the

target cycle time can bemet. Simple schematic redesigns are done when thetarget cycle

time cannot be met, as indicated by long path lengths, which is much less costly than

waiting for timing results on the extracted layout.

During the final layout phase, energy again can be minimized through

intelligent layout, but to a much less degree than previous phases. Through LVS, the

layout can be matched back to the schematic to verify a correct design. Timing analyses

on an extracted layout netlist can flag additional critical paths that need to be fixed

which were not flagged during the schematic design phase.

4.1.1 Energy Budgeting

To most effectively optimize energy consumption, energy reduction in total

system energy must be measured, and not just localized energy reduction. For example,

if a particular design change reduces the energy consumption of the write buffer 50%

while degrading system performance by only 10%, it may appear to be a desirable
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optimization. If, however, the write buffer only consumes 10% of the overall energy,

then a 5% reduction in overall system energy consumption does hot justify a 10%

performance reduction. Thus, it is imperative to always evaluate energy and

performance at the system level for potential design optimizations, and not in isolation.

Section 4.2 describes in further detail a methodology for high-level system

energy estimation. This provides an estimated breakdown of the system energy

consumption long before the design is taken to structural and physical implementation.

This breakdown provides crucial guidance on what blocks require careful design to

minimize energy, and what blocks consume negligible energy and can be rapidly

designed through synthesis. This breakdown is updated and maintained throughout the

design process to track where the focus should be for minimizing system energy

consumption.

4.1.2 Verification Overview

Verification checks are performed at each level of the design phase, as shown

in Figure 4.2. At the C & VHDL behavioral levels, the checks are strictly for

functionality. Test code is created using the methodology described in Section 4.5.2,

which verifies that the behavioral models match the specification for the ISA and 10

expected by the programmer. Scripts automatically generate test vectors for use at the

structural and transistor level design phases.

Very simple timing analysis is performed at the structural model by simulating

timing-annotated VHDL models. Excessively long critical paths can be identified at this

stage, ensuring an implementation is possible with the target cycle time derived at the

end of this design phase. Comprehensive timing analyses are performed at the

schematic and layout design phases, as described in Section 4.6.

Transistor sizing checks are done at the schematic design phase to catch

grossly under/oversized clock buffers and bus drivers, based upon capacitance
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FIGURE 4.2 : Validation Checks for Each Design Phase

estimates from the schematic netlist. Once the design transitions to the layout phase,

final sizing checks are performed on the extracted netlist to guarantee valid clocking

operation (Section 4.3) and to minimize short-circuit current (Section 6.1.2).

Finally, the layout requires standard additional checks to verify a proper

implementation (LVS, DRC, etc.). Through the use of scripts, all these tasks can be

automated.

4.2 High-level Energy Estimation

High-level energy estimation for architectural exploration has been

successfully demonstrated within a VHDL simulation environment [land94]. This

approach is very suitable for dedicated DSP architectures. However, this is not a

suitable approach for general-purpose processor systems which require several orders

of magnitude more simulation cycles to properly characterize the system. A reasonable

benchmark suite requires billions of simulated cycles; even on the fastest VHDL
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simulator, the suite would take at least a day to complete a single pass.

To reduce simulation time, processor behavior models can be written in C,

which can speed up simulation time one to two orders of magnitude, and then used to

provide extensive performance statistics. However, they can also be augmented to

provide energy consumption statistics as well, by applying the same black-box

capacitance modeling used in the VHDL simulator [land94] to the C simulator.

This enables the high-level architectural exploration methodology shown in

Figure 4.3 which has modified a standard ARM v4 processor core simulator to provide

both performance and energy statistics. Initial hardware capacitance estimates are

added to the simulator, which then executes the benchmark suite to provide statistics for

identifying dominant energy-consuming blocks and performance bottlenecks. New

optimizations are proposed to improve energy efficiency, and implemented in the C

simulator, so that the improvement in energy efficiency of these design optimizations
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FIGURE 4.3 : High-level Simulation Performance & Energy Estimation Methodology
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can be quantified after resimulating the benchmark suite.

An example simulator output report file:
Report date; Thu Feb 5 12:26:45 1998
Report tag: 'No ID Specified'
Report generated to ./report_fn.out

Sim time: 155.0ms
Run time: 118.0s
Simulation speed l/761th
Running on yellowstone...

Debug Info to Verify
Correct Operation

Energy Estim. for ARMulator 13 ^vel 1
Accesses to MUL Sim Block: ^ 8580
Accesses to ADM Sim Block: |r 280
Accesses to PSR Sim Block: r 5963
Accesses to ALU Sim Block: 3393973
Accesses to IMM Sim Block: 1627554
Accesses to TST Sim Block: 488809
Accesses to SWI Sim Block: 623
Accesses to OTH Sim Block: 0
Accesses to see Sim Block: 678441
Accesses to BRA Sim Block: 587153
Accesses to EAR Sim Block: 132436
Accesses to BAI Sim Block: 1504181
Accesses to LDR Sim Block: 1424354
Accesses to STR Sim Block: 212263
Accesses to MDT Sim Block: 71870
Accesses to LDH Sim Block: 77776
Accesses to STM Sim Block: 46120
Accesses to SWP Sim Block: 465
Accesses to eop Sim Block: 762
Accesses to DEe Sim Block: 8149529
Accesses to PRE Sim Block: 9942373
Accesses to eTL Sim Block: 8148058
Accesses to CAC Sim Block: 8034207
Accesses to WBI Sim Block: 169247
Accesses to MSG Sim Block: 1170528
Accesses to SRM Sim Block: 365819
Accesses to IOC Sim Block: 304309

Block Accesses Energy. {%} Sw. Gap (%)

S/ALU 5663245 9.446 % 8.792 %
RegBk 6768302 0.001 % 0.001 %
Mult 8580 0.048 % 0.044 %
PSR 241694 0.134 % 0.125 %
eonGen 1040224 0.434 % 0.404 %
AddGen 65959 0.018 % 0.017 %
NrPipe 107114 0.045 % 0.042 %
eoProc 156 0.000 % 0.000 %
MemRE 1049251 0.292 % 0.271 %
Prefet 6240667 6.940 % 6.459 %
eontrl 5915641 13.156 % 12.245 %
AddHux 0 0.000 % 0.000 %
Busint 21369 0.015 % 0.014 %
BusExt 284734 0.158 % 0.147 %
eache 4759464 39.218 % 36.501 %
SRAM 217294 1.812 % 1.687 %
I/O 9662 0.027 % 0.025 %

Bus Accesses Energy Sw . Gap Togc

A

B

RES
CDT

RDT

WDT

VAD

FRO

lO

5714811
3570615
4433936

156
10620210

107114
7396583

284734
9662

5.224 %
2.591 %
4.592 %

0.000 %
12.531 %
0.116 %
3.043 %
0.111 %

0.048 %

4.862 %
2.411 «
4.274 «
0.000 «

11.662 %
0.108 %
2.832 %
7.034 %
0.044 %

25.687 %
27.185 %
29.106 %

401 %
33.158 %

30.465 %
11.563 %

29.836 %
11.071 %

Delta Energy
Total Elapsed Time
Delta Elapsed Time
Delta Instructions

Removed Branches
Delta Exec. Cycles

CPI
Energy / Instruct.

Average Power

0.0195862 Joules
0.268321 sec
0.155443 sec
5915641 ^
0 —.

7551141
1.27647
3.31092 nJ
126.003 mW

.System
Summary

Instruction count report:
Data processing 75.56%

Set ccodes 5.32%
opl not used 28.66%
no result 4.25%

PSR Op 0.06%
Swap 0.01%
Multiply 0.15%
Halfword 0.00%*
Data transfer 17.63%

No WB 90.07%
Pre-incr 5.83%
Post-incr 4.09%
Store Byte 2.14%

Block Data 1.11%
Stores 64.91%

Branch 2.53%
Goproc 0.00%
SWI 0.01%
Squashed 2.93%

Gonditional 5.28%
PG Read 0.26%
PG Write 0.38%
Shifts 77.76%

Src:Register 0.00%*
Typ:Immediate 25.50%

Left 0 25.87%
Left 1 0.39%
Left 2 16.84%
Left 3 0.23%
L. others 6.46%
Others 24.71%

Instruction
Profiling

Configuration
Info

5915k instructions total profiled.

'/Cache/Memory report:
Unified: 16kb/8w-lines/4-way/Lru
FOLK: SOHHz HCLK: 25MHz WB: 8g

hits miss rate_
Data 1239206 7781 0.63%
Inst 3478202 17461 0.50%
Totl 4717408 25242 0.54%

active portion: 1.OOOOOOe+OO
actv : 4743884 sleep: 0 lunreq: 2777779
cwait: 220987 iwait: 29478 total: 77721282
wbacc: 20966 wbful: 403

NCW_NWB

Activity
Profiling

msize: 1024kB EXCLK: OHz
midle: 3601330 maddr: 45282
mwait: 0 mothr: 0
leff : 84.097% mutil: 7.327%

BlockEnergy Consumption

Bus Energy Consumption

bsize: 8-w
mdata: 239452
mtotl: 3886064

FIGURE 4.4 : Simulator Report File for Crypto Benchmark.

All design optimizations were parameterized where possible (e.g. cache-line

length, write-buffer size, etc.), so that previous configurations could be re-simulated

via command line flags. This was crucial since the hardware capacitance models were
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4.2High-level Energy Estimation

refined as the design progressed. Once the simulator incorporated the new capacitance

models, all previous configurations could be resimulated to find any design
optimization points that have shifted due to the newly refined models.

4.2.1 Capacitance Models

Energy consumption is one of the desired outputs from the simulator. To

accommodate the variable Vpo the underlying simulator models are based upon

capacitance. During simulation, the capacitance is multiplied by which varies
depending upon the current clock frequency setting. There are varying approaches to
capacitance estimation, with the simulator complexity increasing with estimation
accuracy. The three simplest approaches are:

White-noise Approach (0th order): Every time a block or bus is accessed, a

counter associated with that block is incremented by the average capacitance switched

on that block/bus by The switched capacitance values assume random signals on

the blocks so that a single value can be used.

Data Correlation Approach (1st order): This approach uses simulator state

variables associated with each block/bus's input ports to hold the previous state. The

current and previous input values are XORed to count the number oftransitioning bits,

which are then multiplied by a capacitance per bit value. For a bus, this capacitance is

just a sum of the estimated interconnect capacitance and fanout gate capacitance. For
circuit blocks, an empirical estimate can be made from circuit simulation data. This

works well on the majority of blocks that are bit-wise symmetrical, such as memory,

register files, shifters, muxes, etc. Non-symmetrical structures that have inter-bit data
correlation, such as an adder, will give an estimate with much greater variance because

the capacitance is not only a function of how many bits transition, but the location of
the transitioning bits as well.

Data/Instruction Correlation Approach (2nd Order): This approach builds
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4.2 H^-level Energy Estimation

on the previous approach by also keeping track of previous instruction(s) with simulator

state variables which can be used to model the inter-instruction dependehcie_s. This

better accounts for energy consumption in various muxes and state latches which are

used to route the data flow of the processor from instruction to instruction.

Previous work has shown that the white-noise approach does an inaccurate job

of energy estimation, so to provide a reasonable (first order) estimate, data correlation

must be accounted for. The second order approach will improve accuracy, but is not

necessary to provide useful energy estimates.

4.2.2 Implementation

It is critical that the energy estimation code be efficiently implemented so that

the speed of the C simulator is not significantly degraded, since speed is the primary

reason for using it. Thus, the counters and state registers required should utilize native

integer word types on the host simulation machine. In addition, all functions should be

compact and inlined to remove the unnecessary overhead of function calls.

A typical processor simulator consists of a large case statement representing

the various instructions, or classes of instructions. As such, the energy estimation

function calls required to annotate the simulator must be organized along instruction

boundaries, and not physical organization. A second level of functions calls are used to

map the logical system organization to an orthogonal microarchitecture specification.

Instruction Case Statement! Logical to Physical Manping;
case 0x09 : /• ADD reg w/ CCs set •/ INLINE void energy_alu(ProcState *state,

dest = Ihs + rhs ; ^—' Aword instr, Aword A, Aword B, Aword D)
energy_alu(state,instr,lhs,rhs,dest); {
SETFLAGS(dest, Ihs, rhs) energy_sim blocks->alu_cnt++;
WRITESBEST(dest) ;
energy_scc(state,instr,state->Flags); energy_alu_hw_blocJc(state,instr,A,B,D,RegAB)ibreak; ^energy_reg_hw_block(state,instr,A,B,D,RegR);

I

; Physical EnergyEstimaHon;
INLINE void energy_alu_hwJblock(ProcState 'state,

Aword instr, Aword A, Aword B, Aword D, Aword flags)
( MapALUopertuion to

ALU block activUy: • BitsFiipii.sT,
. , . . if {flags & RegA) ( BDS_ACCESS(a_hw_bus,A); )
Input bus activity: if (flags & RegB) ( BOSJlCCBSS(b_hw.bus,B); )

)

FIGURE 4.5 : Energy Estimation Implementation Example.
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as demonstrated with the simple code example in Figure 4.5.

Fully annotating the simulator requires placing these logical energy function

calls wherever the simulator changes the system state (e.g. dest - Ihs + rhs). Using a

simple system microarchitecture specification (Figure 4.6), these logical functions are

then mapped to physical function calls.
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FIGURE 4.6 : Microarchitecture Model for High-level Energy Estimation.

43 Clocking Methodology

A well-defined clocking strategy is required for any sub-micron digital

integrated circuit. The goal of this strategy is to limit the clock skew between any two

latches. The primary reason for controlling the skew is to prevent race conditions
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between latches, which lead to chip failure. The secondary reason is to prevent

performance degradation. If the delay on a critical path is more than targeted,, due to

clock skew, then the overall cycle time needs to be increased for proper functionality.

Maintaining DVS compatibility adds further constraints to the clocking

methodology. The ratio of clock skew to cycle time should remain tixed over the range

of operating voltage. While the delay through the clock buffers will scale, the RC ^elay

on the interconnect does not. Hence, the critical design corner to meet is at high

voltage, fast process, and low temperature.

4.3.1 Latch Design

The behavioral model for the processor core (from ARM Ltd.) that was used as

the design starting point assumed a latch-based design. Thus, the basic state element of

the design was necessarily a latch, rather than a flip-flop.

While a static latch is not the most energy-efficient latch implementation, it is

the most robust [west93][mark00]. It is well suited for use with aggressive clock gating

(Section 6.1.3) because the clock can be held either high or low indefinitely without

inducing a logical error. In contrast, a gated dynamic latch can have its internal state

flipped via leakage currents and DVS voltage changes [burd94][mark00]. Additionally,

static latches allow the system implementation to be stepped phase by phase, which is a

tremendous advantage when debugging the hardware design. Thus, a fully static latch

approach was taken.

Intuitively, it would seem that a single-phase latch is preferable over the

traditional two-phase, cross-coupled latch because one less clock wire is needed.

However, the natural design of a single-phase latch is dynamic. To make the latch static

requires a much more complex latch design, and effectively eliminates its advantage.

The basic latch design is shown in Figure 4.7, in which the feedback device is
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an inverter. Another possible implementation is to use a transmission gate between

nodes out and x, but this can lead to a race condition on back-to-back latches if there is

overlap on elk and clkb. The feedback device is clocked to both guarantee latch

operation and speed up the latch. While the latch is transparent, there is no contention

on the forward path, which greatly reduces the setup time, and allows any input signal

to successfully change the value on node x. This does come at a penalty of an additional

15% in clock net capacitance for a datapath latch. The penalty will be less for a

standard cell latch, where the interconnect capacitance is greater, thereby reducing the

contribution from the feedback device.

clkb

in

elk

FIGURE 4.7: Basic Two-phase Latch Design.

Since the behavioral model constrained the basic state element to be a latch,

the fully-static approach seemed to best balance energy efficiency and design

robustness. Had the model assumed a flip-flop based design, then a pseudo-static

version [burd94] of the TPSC register [yuan89] would yield a more energy-efficient and

robust design. This solution requires only one clock wire, yields equivalent register

setup & hold times, and allows clock gating if the clock is held low.

4.3.2 Clock Architecture

The basic clock-gating strategy is split-level. There is a local enable signal for

each n-bit latch, or set of latches. This signal is active-high, and is used to selectively

generate a local clock pulse. There are also three global halt signals, which are used to

halt large sections of the microprocessor: the processor core, the cache subsystem, and

the bus interface. Rather than actively suppressing clock pulses, which will change the

processor state, it simply gates out the low-phase of the global clock signal, as

elk
6^ Numbers indicate device width in|im.

eum
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demonstrated in Figure 4.8, maintaining exact processor state.

Global Clock [

Halt Signal

Local Enable
Signal

Local Clock

No effect because
local gate signal is low

GatedPulses7^

LTLTL

L

un_
Halted Clock

FIGURE 4.8: Clock Gating & Halting Timing.

This halting mechanism allows the processor memory interface to be designed

to expect the cache subsystem to return a word within one cycle of the request. If the

cache subsystem needs to go out to main memory, it simply halts the processor core

until it has the desired word available, and eliminates any unnecessary switching

activity in the core. Likewise the bus interface can stall the cache subsystem when it is

retrieving words, and the external I/O system can stall the bus interface when a high-

latency I/O memory request is made.

The natural implementation for this would be a three-level clock hierarchy,

divided by the global (halt) clock drivers, and the local (enable) clock drivers.

However, the skew can be better controlled in a two-level clock hierarchy by removing

the skew contribution from the global clock driver, although this comes at the expense

of increased energy consumption.

In the two-level hierarchy, the total capacitance on the global top-level clock

net is lOpF, which is just 3% of the nominal effective capacitance switched per cycle.

Another consideration is clock power when the processor is in the sleep mode.

However, if the processor is put into a low-speed mode before entering sleep, the idle

clock power dissipation is only 72jiW, which is only 9% of the total system sleep mode

power. Hence, it was decided a worthwhile trade-off to implement a two-level clock

hierarchy which provided a more controlled clock skew. In addition, it made the timing
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analysis simpler, because both the local enable and global halt signals are terminated at

the same gate.

4.3.2.1 Clock Drivers

One approach to generating the two-phase clock signals is to locally invert

within the latch cell. However, this has two significant drawbacks. First, the additional

gate gets toggled every clock cycle, which adds more capacitance to the global clock

net as compared to the interconnect capacitance added by running a second clock wire.

Second, the skew between the two clock signals is now a full gate delay, which is not

tolerable as will be demonstrated in the clock skew analysis later on. To reduce this

skew, the non-inverted clock signal can be buffered by two inverters, but since these

toggle every cycle, further capacitance is added to the global clock net. Hence, it is

preferable to generate the two-phase signal once per n-bit latch. For the datapath

registers, which dominate the overall register count, this requires one clock driver per

32-bit latch, and can be designed to have well-controlled skew.

Before each n-bit latch is a clock driver which performs single to differential

polarity conversion, as shown in Figure 4.9. A phase-1 clock driver generates a high

pulse on the PhiJ signal while clock is low, and the local-enable and global-halt (active

local-enable-

global-halt-

clock-

local-enable-

global-halt-

clock-

Phase-1 Clock Driver

Phil

Dr
nPhil

Phase-2 Clock Driver

nPhi2

FIGURE 4.9 : Modular Clock Driver Design.
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low) signals are high. Similarly, the phase-2 clockdrivergenerates a highpulse on Phi2

when clock is high, and the local-enable and global-halt signals are high. The local-

enable signal must only transition in the phase opposite of the clock driver phase (e.g. a

phase-1 clock driver's local-enable signal can only change while clock is high, such

that it must be generated by a phase-2 latch, or derived only from signals output by

phase-2 latches). The global-halt signal, which drives clock drivers of both polarities,

can only transition while clock is high.

The maximum skew between any two clock drivers was determined in Section

4.3.4 to be less than one-half of a gate delay. To maintain controlled skew, the inverter

chains need to be carefully sized for the output load, which can vary from less than

50fF to IpF. Close to 150 clock drivers where used in the design. Rather than design a

new clock driver each time one was required, and insure that it met the skew constraint

over process and voltage, a modular clock driver design was developed.

This modular approach consists of 2 gate cells, one for each phase, and 24 each

of inverting, and non-inverting driver chains. The modular cells in Figure 4.9 are

denoted by dotted lines. The input capacitance to the driver chain was kept constant so

that the same gate cell could be used for both small and large drivers, and not require

re-tuning. Since the input inverter is a fixed size, and the output inverter size is solely

dictated by the load being driven, the non-inverting clock path required four inverters,

rather than just two, to properly tune the driver delay. However, the extra two inverters

consume an insignificant amount of energy on all but the smallest clock drivers. In

addition, the layout took a modular approach, with the gate cell in the middle and a

driver chain cell abutting either side of it. The most significant benefit of this modular

approach was that the 50 unique cells could be designed and verified independent of the

final chip design.

Table 4.1 summarizes the delay and skew of the entire clock driver suite at

three different voltages and across process variation. The values have been normalized

98



4.3 Clocking Methodoiogy

to the clock cycle time, tdKy to demonstrate that both the mean delay, and the skew

track extremely well over Vdd-

TABLE 4.1 Clock Driver Delay and Skew (0.6|Lim Process).

^DD
Process

Comer

Delay (ps / % of tctjr) Skew

(ps/%oftcLA)Mean Max. Min.

4.1

Fast 555/7.9% 590/8.4% 510/7.3% 80/1.1%

Nominal 709/7.9% 755/8.4% 650/7.2% 105 /1.2%

Slow 897/7.8% 960/8.3% 826/7.2% 134/1.2%

3.3

Fast 648/8.6% 687/9.2% 601 / 8.0% 86/1.1%

Nominal 835/8.4% 885/8.9% 770/7.7% 115/1.2%

Slow 1070/8.6% 1140/9.1% 989/7.9% 151 /1.2%

1.1

Fast 5510/7.3% 5970/8.0% 5100/6.8% 870/1.2%

Nominal 8870/7.4% 9640/8.0% 8080/6.7% 1560/1.3%

Slow 17300/4.5% 19300/5.1% 15000/3.9% 4300/1.1%

When a new clock driver was designed into the chip implementation, the

capacitance on both Phi and nPhi were estimated from the schematic. These values

were used to index into Table 4.2 to determine the driver size for the two signals. If the

desired clock driver cell currently existed, it would be used, and ifnot, then a new clock

driver can be rapidly constructed. Once the layout was complete, the design was

extracted to measure the final signal capacitance. If the sizings were found to be wrong

for the extracted capacitance, a new clock driver could easily be swapped in.

TABLE 4.2 Clock Driver Sizing (not including diffusion capacitance)

Driver Min Load (IF) Max Load (fF)

Ix 37.5 62.5

2x 50 87.5

3x 75 125

4x 112.5 187.5

5x 150 225

6x 187.5 262.5

7x 225 300

8x 262.5 337.5

9x 300 375

X
o

337.5 412.5

llx 375 450

12x 412.5 487.5

99

Driver Min Load (fF) Max Load (fF)
13x 450 525

14x 487.5 562.5

15x 525 600

16x 562.5 637.5

17x 600 675

18x 637.5 712.5

19x 675 750

20x 712.5 787.5

21x 750 825

22x 787.5 862.5

23x 825 900

24x 862.5 937.5
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It would seem that only 48 unique clock drivers are needed, assuming the

output signals having equal driver strength (l-24x for phase-1, and l-24x for phase-2).

However, the majority of clock drivers had differently sized driver chains due to

varying interconnect capacitance. Hence, this modular design approach worked quite

well by allowing the rapid assembly of any arbitrarily-sized clock driver.

4.3.3 Bounds on Allowable Skew

The worst-case race condition between back-to-back latches sets the maximum

allowable clock skew [west93]. Any logic in between the latches makes the circuit more

robust against clock skew. There are two different cases to consider. The same-latch

case occurs when the two latches are clocked by the same two clock signals, such as in

a flip-flop, and there is skew between Phi and nPhi. The unrelated-latch case occurs

when there are two sets of clock signals, PhiAlnPhiA and PhiBlnPhiB, and the skew

occurs between the two sets. For each of these cases, the maximum allowable clock

skew, was found so that the two latches remain immune to clock race, as shown in

Figure 4.10.

Same-latch Case

Phi

nPhi

^MAX

Unrelated-latch Case

PhiA

nPhiA

PhiB

nPhiB

L.
r

^h4AX

FIGURE 4.10: Maximum Allowable ClockSkew Measurementfor Race Immunity.

Spice simulations were run to measure over voltage and process, as given

in Table 4.3. As previously mentioned, the critical comer to design for is high voltage

and fast process because interconnect RC delay will be most significant there. The other

comers were measured to ensure that the clock drivers scaled properly over voltage.
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These results are used in Section 4.3.5 to verify that there will be no fatal errors in the

chip implementation due to race conditions.

TABLE 4.3 Maximum Allowable Clock Skew (in ps).

^DD Process Corner ^MAX (unrelated-latch) (same-latch)

4.1

Fast 320 300

Nominal 410 390

Slow 530 490

3.3

Fast 380 380

Nominal 500 480

Slow 640 610

1.1

Fast 3700 3800

Nominal 6000 6100

Slow 10500 15000

4.3.4 Sources of Skew

There are several sources of clock skew, and each component was carefully

analyzed and quantified. A total maximum clock skew can be calculated by summing up

the individual components. While this is a conservative estimate because it assumes no

correlation in skew, it has a high confidence level because each component has been

completely analyzed and accounted for. The location of these sources are shown in

Figure 4.11.

I) Global Clock RC
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Drive
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Drive

5) Bounce

3) Clock Driver

Macro Block

SI*

FIGURE 4.11: Five Sources ofClock Skew.

The initial analysis assumed that the two dominant sources of skew were the

global clock RC and the clock driver skew. Each component was given a delay budget
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equal to 25% of the maximum allowable skew. This gave 100% headroom for margin of

error and for additional skew components. Upon completion of the design, the various

components were re-analyzed to verify the non-existence of race conditions.

4.3.4.1 Global Clock Wiring

This component is due to the voltage-independent RC delay on the global clock

wire. It is measured as the skew betweenthe clock input signals each macro block sees,

where each macro block was modeled as a lumped capacitance. To make sure the delay

budget of 25% of the maximum allowable skew could be met, an initial chip floorplan

was analyzed. A very simplistic model demonstrated that this target could be met, and

only require 3-4x larger than minimum-size wiring.

At the top level, widening the clock wire was very beneficial because the

fractional capacitance of the clock interconnect was small compared to all the clock

drivers' gate capacitance. Hence, widening the wire almost linearly reduced the RC

delay.

During the course of the implementation, a regular 20|im-wide clock routing

channel was created to allow for post-layout wire widening, and to eliminate interline

capacitance. The clock distribution attempted to model an H-tree distribution network.

After the initial chip layout was completed, a parameterized model of the global clock

wire was created that modeled the clock wire as a distributed RC network with lumped

capacitances for each macro block. The widths of the various wire segments were

parameterized so that the RC delay could be tuned without having to extract the layout

for each iteration.

The tuned top-level clock routing for the prototype processor is shown in

Figure 4.12. The routing used third-level metal (Metal3) almost exclusively, due to its

low resistivity, except where the clock routing intersected the top-level power grid

network. The final simulation yielded a maximum RC delay between any two macro
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FIGURE 4.12 : Prototype Processor IC Clock Distribution Network (Top Level).

blocks of Sips. The maximum delay between any two macro blocks within the

processor core was just 3 Ips. The widest wire segment was 6.0|Lim, with an average wire

segment of approximately 2.4iim.

4.3.4.2 Local Clock Wiring

This component is the RC delay on the clock signal within each macro block,

measured as the largest skew seen by any two clock drivers. This component was

initially assumed to be small, and the first large control block was used to verify that.

The ALU control block was simulated to have 15ps skew. To provide a margin for error,

this skew component was set to 20ps.

This RC delay is negligible because the longest wire is no more than 1mm, as
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dictated by the bounded macro block size. Care was taken in routing this clock signal;

MetalS was predominantly used, with the minimum number of vias. The 15ps estimate

above was for an initial place and route of the ALU control block with no special

attention paid to the signal routing, increasing the conservatism of the estimate.

4.3.4.3 Clock Driver Skew

The drivers are a dominant source of clock skew, and were designed to have a

maximum skew across all possible drivers no more than 25% of the maximum allowable

skew. Achieving this goal required careful design and sizing of the clock drivers. The

largest driver was implemented first to ensure it could be designed, and then smaller

drivers were designed to be within the delay budget. For the smallest drivers, additional

internal capacitance had to be added to meet the targeted delay variation.

The 25% rule was most critical at high voltage, where the RC delay is also

significant. At the low voltage comer, the allowable margin was increased to 50% since

the RC delay becomes negligible. The maximum delay variations for the entire suite of

clock drivers is given in Section 4.3.5, and meets the targeted specification.

4.3.4.4 Local Enable Wiring

This component is the RC delay on the Phi and nPhi latch-enable signals. The

worst case for this arises in the datapath, in which the enable signal must traverse

950|xm across a 32-bit latch. This was measured to be 20ps, and relatively negligible.

To provide a margin for error, this component was set to 30ps.

In the place and routed control blocks, care was taken in routing the enable

signals. The placement was optimized to group latches around similar enable signals.

Additionally, these routes were given the highest priority, along with the local clock

signal, to optimize their routing. In the final layout of the synthesized blocks, due to the

latch clustering, no enable signal ran longer than 1mm validating the 3Ops estimate.
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4.3.4.5 Enable Rise/Fall Time

Because the enable signals have a finite rise/fall time, there is a finite time that

the latches can remain open even if the signals' skew, as measured between 50% points,

is zero. Shown in Figure 4.13 are Spice simulations results which demonstrate that the

maximum allowable skew actually increases monotonically with rise/fall time, despite

the increasing overlap of the enable signals. Hence, the maximum allowable skew, as

measured with step edges in Section 4.3.3, is a conservative estimate of the skew.
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FIGURE 4.13 : Skew as a Function of Enable Rise/Fall Time.

This component, if anything, would contribute a negative number to the

maximum skew calculation. However, it is simply ignored, increasing the conservatism

of the maximum allowable skew calculation.

4.3.4.6 Variation Skew

The power distribution network (Section 4.4) was designed so that no more

than a 10% critical-path delay variation occurs with Vj)£) variation. variations only

affect the clock driver delay, which has a mean delay just under 10% of the target

critical-path delay. Thus, the maximum skew from variation is just a product of
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these two percentages, or just 1%. This component is voltage dependent, and will vary
with Viyjy similar to clock driver skew.

4.3.5 No-race Verificatioii

To verify that race conditions cannot exist, the individual skew components

were summed up andcompared against the maximum allowable skew. Due to the initial

delay budgeting on the clock drivers, and the global clock wire analysis, the final

implementation met the targeted skew with some room to spare.

Table 4.4 gives the comparison for the unrelated-latch case. As expected, the

smallest skew headroom (Maximum Allowable Skew - Total Skew) occurs at high

voltage and fast process, and is only 13% ofthe allowable skew. While this gave little

margin for error, it seemed reasonable due to the enormous conservatism built into the

estimate.

TABLE 4.4 Total Clock Skew Summary (aU times areIn ps): Unrelated Latches

Vdd
Process

Corner

Global

Clock

RC

Local

Clock

RC

Clock

Driver

Local

Enable

RC

Vdd
Bounce

Total

Skew

Maximum

Allowable

Skew

4.1

Fast 80 70 280 320
Nom 105 90 325 410
Slow 134 115 380 530

3.3

Fast 86 75 290 380
Nom 80 20 115 30 100 345 500
Slow 150 125 405 640

1.1

Fast 870 750 1750 3700
Nom 1560 1200 2890 6000
Slow 4300 3800 8230 10500

The same-latch case was much easier to meet, as shown in Table 4.5. Since in

this case the two latches share the same Phiand nPhi signals, global and local clock RC

are made irrelevant because the latches share the same clock driver.

Thus, by design, the chip implementation should be free from any race

conditions, across the entire voltage and process range. The only precondition is that
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TABLE 4.5 Total Clock Skew Summary (all times are in ps): Same Latch

Vdd Proc.
Clock

Driver

Local

Enable

RC

^DD
Bounce

Total

Skew

Max

Allowable

Skew

Fast 80 70 180 300

4.1 Nom 105 90 225 390

Slow 134 115 280 490

Fast 86 75 190 380

3.3 Nom 115 30 100 245 480

Slow 150 125 335 610

Fast 870 750 1650 3800

1.1 Nom 1560 1200 2790 6100

Slow 4300 3800 8130 15000

the latch contains two inverters. The number of inverters were reduced in some latches

due to critical path constraints, but it had to be ensured that there was no latch

immediately following a sped-up latch.

4.4 Power Distribution Methodology

Typical low-power chip designs have very relaxed constraints on the power

distribution network due to low DC and peak supply currents. While a DVS processor

generally has a low DC supply current, the peak supply current can be quite high when

it is operating at maximum clock frequency and supply voltage, thereby placing tight

constraints on the power distribution network, both at the chip level and at the board

level. Thus, power distribution requires careful design consideration in a DVS system

similar to any high performance, and high current, chip design.

4.4.1 On-chip Supply Variation

The on-chip voltage supply will vary due to inductive and/or resistive voltage

drops across the chip's power distribution network, and across the pins and bonding

wires of the chip's packaging. Global supply variations, which occur uniformly across

the chip, are essentially no different than changing the external supply voltage in a DVS

system. Thus, the DVS chips are relatively immune to global on-chip supply variations.
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However, the problems arising from local supply variations, which occur within a

limited area of the chip, are the reduction of signal noise margin and timing violations,

both of which can induce functional failure.

4.4.1.1 Noise Margin Reduction

Static CMOS circuits and most dynamic logic circuits (e.g. Domino, NORA,

DCVSL, etc.) are very robust against noise margin reduction, since their signal swing is

the full value of and have a noise margin of at least Vp Memory arrays (e.g. RAM,

ROM, PLA, etc.) are more susceptible to noise margin reductions. To make them more

robust, they should be designed to be either differential, or full swing. In the prototj^e

system (Chapter 7), the only types of memory arrays used were RAMs and CAMs,

which were designed with differential bitlines for improved robustness. The critical

circuits which are most susceptible to noise margin reduction are the I/O transceivers

due to their very large, and localized, peak currents.

4.4.1.2 Timing Violations

As described in Section 3.3.4, local on-chip supply variations can lead to

timing violations if a critical path sufficiently slows down to exceed the clock cycle

time of the ring oscillator. A DVS processor cannot have timing violations induced by

global supply variations, since the ring oscillator's delay (e.g. the inverse of the clock

frequency) will vary with the delay of the critical paths.

A design margin of 5% was included in the timing verification of the processor

to account for localized voltage drops. The equation for delay sensitivity

(Equation 3.9), which is the relative change in delay(F£)£)) for a given can be

rewritten to translate this 5% design margin into a maximum allowable voltage drop,

DDt sf a given value of ^DD-

5% •DelayfVj^j^)
^^dd(.^dd)^ ^Oelay/dVj^jj ~ dDelay/dVj^j^ (EQ4.1)

108



4.4 Power Distribution Methodology

and this can be used to calculate the maximum resistance, allowed on the supply

line given a gate's peak output current, Iqate-

5%Delay(Voo) 1

dOelay/dVoD ' loArd^DD) ^^

If the supply distribution network is designed so that the resistance that the

gate sees to a solid, reference voltage is less than R^ax* then any delay variation due to

supply variation will fall within the 5% design margin, and the processor will continue

to operate correctly without any spurious timing violations.

4.4.2 Chip-level Distribution

The chip-level power distribution network for the processor chip is shown in

Figure 4.14. The other DVS-compatible chips in the processor system (SRAM and I/O

chips) were designed in similar fashion, but the processor chip is focused on in detail to

demonstrate the power distribution methodology. There are two separate power

supplies, ^DD for the core, and Vj^qjq for the pad ring of the chip, to isolate the core

circuitry from the I/O transceivers. There is a single ground on the chip, since the low-

impedance substrate of our process makes separate ground supplies difficult to isolate.

There were two primary design goals for the power distribution network. First,

there should be sufficient bypass capacitance on the chip to supply the charge for the

large switching currents. This will reduce the voltage drop across the bonding wires and

packaging pins, which would otherwise be intolerable. This is not an issue for

traditional low-power/low-voltage chips, but it is an issue for a DVS-compatible chip

which can have large switching currents at high voltage. The second goal was to ensure

that any point on the chip has a low-impedance connection to a solid voltage reference,

either a large on-chip bypass capacitor or the external voltage supply. This was critical

to eliminate timing violations due to localized voltage drops.

Ground is routed in Metal3 directly over power in Metall^ except where the
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FIGURE 4.14 : Prototype Processor IC Power Distribution Network.

power lines dissect a block, in which they are routed in MetalS and Metal leaving

Metal2 to be used for signal routes. Routing ground on top of power helps to both

maximize the inter-metal bypass capacitance, and minimize inductive losses via

magnetic field cancellation.

A total of 16 pins for ^DD and another 10 pins for V^j^jq are distributed

uniformly around the periphery of the chip. The large number is essential to reduce the

inductive voltage drop on the bonding wires, as described in more detail in

Section 7. 2. 8. 2. Additionally, by spreading them evenly around the chip's edge, any
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point on the Vj^q and networks sees minimal resistance to the off-chip power

supply.

4.4.2.1 Bypass Capacitance

The bulk of the bypass capacitance is provided by NMOS devices which

provide the highest capacitance per area. These devices were placed in all the

significantly-sized open areas of the chip as well as under the power lines themselves.

Power is connected to the gate, while the source and drain are tied to ground,

maintaining the device in the triode region of operation.

The width and length of the NMOS devices are constrained in size due to

resistance in the device channel and in the polysilicon gate. The maximum RC time-

constant of the channel is to its mid-point, and is:

-1 » ^ _1 i^'LCox)^CHAN - 2-^DS-Cos - ' 4• Fy) ^

where the factor of four occurs because the source and drain are connected, dividing the

effective R and C by a factor of two each. The time-constant scales inversely with ^DD

similar to circuit delay, so that the maximum channel length is not strictly limited at

maximum supply voltage and current draw, but relatively optimal over all The

maximum time-constant of the polysilicon gate is:

'̂ GATE ~4•̂GATE '^GS ~4'{pPLY Cqx) = ^ — (EQ 4.4)

where Pp^y is the sheet resistance of polysilicon (10 Q/sq. in our 0.6pm process) and

the factor of four occurs because the gate is contacted on both sides of the device.

Unlike icHAN* '̂ GATE is independent of so the maximum channel width is strictly

limited at maximum voltage.

For the core circuitry (powered by the current spikes are on the order of

50-100ps wide at maximum voltage. To make the RC delay of the b3q)ass capacitance
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negligible, the maximum time-constant value was set to 25ps. This dictated the

maximum WIL of a bypass NMOS device to be 54/3 fxm in our 0.6pm process. When

including the overhead for routing the bypass capacitors, the area efficiency of this size

bypass device is approximately 62%.

Since all the power metal lines shown in Figure 4.14 contain b3^ass capacitors

underneath them, and the network is connected with cross-bar metal lines between

blocks, the entire network provides a solid voltage reference. That is, the voltage

on the Vqq network varies approximately uniformly across the chip.

Providing a solid voltage reference for is a much more difficult task.

For the worst-case condition that all I/O pins transition low to high, and they drive the

maximum 50pF external load capacitance, the total capacitance charged in a cycle can

be as high as 2nF. Bypass capacitance is used to mitigate the voltage drop on

placed both under the Vj^qjq power lines and in all available open areas between pads.

But, only 2nF of capacitance could be placed on-chip, such that for the worst-case

condition, the on-chip bypass capacitance cannot supply all of the charge, leading to

localized voltage drops on the I/O transceivers.

However, the bus interface was designed to have the minimum amount of gates

in its path delay to provide the requisite design margin for very large increases in delay

driving the external bus. By eliminating the bus interface as a critical path, large

voltage drops on V^j^iq are tolerable without inducing timing violations. Thus, only the

core circuitry connecting to the Vqq network had to be carefully designed to guarantee

no timing violations by design.

4.4.2.2 Local Supply Routing

As was demonstrated in Section 3.3.4, the delay sensitivity to is a

maximum at 2*Fy (approximately 2V in our 0.6pm process), so the local supply network

must be designed at this value of F/)£), which will determine the smallest amount of
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resistance tolerable in the power supply network. At 2V, Equation 4.2 is roughly 0.05/

IGATE' This equation can be expressed in terms of NMOS device width {Wj^ and

number of gates in parallel {Nqat^ 0.6|im process as:

0.05 0.001
R MAX'

^GATE '^SAT' ^OX* ~ ^T~ ^Dsat) ^GATE '

The equivalent resistance for a PMOS device is for a device with a width is 2.5 times as

large as the NMOS device due to the decreased mobility.

(EQ4.5)

This equation was used to determine how wide the local power routes to the

core circuitry should be. For the 32-bit datapaths of the ARMS core, the prefetch unit,

and the coprocessor, the lOOjim-wide Metal! and MetalS lines of the power distribution

network are spaced 825fim apart as shown in Figure 4.15. Within the datapath. Metal!

and MetalS are used for signal routing such that power had to be routed to the

individual bits in parallel Metall lines. The maximum resistance to the power

distribution network is from the midpoint of the datapath, whose resistive losses can be

modeled as shown.
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FIGURE 4.15 : Local Datapath Power Routing.

For a simple datapath cell with minimal output load (a Ix gate), 1.2jLim.

A worst-case analysis must assume all 32 bits of the datapath switch at once, which
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yields Rmax~ The contacts, vias, and metal wires must be designed so that:

^AfAX^^DIFF 2^^METI "*• ^VJAS^ (EQ4.6)

For our process technology, Roiff will always be approximately 20% of Rmax^ because

the number of parallel diffusion contacts scales with so that R^iff scales down

with Rj^aX' The metal via resistance, Rvias^ t>e made negligible (<2% of R^Ajd

because many vias can be added in parallel under the 100pm wide power network.

Thus, the width of Metall must be adjusted so that:

h
N "^MET\ " MET\

and combining these two relations for Rmeti gives:

^METi < i-6 •Rmax ~ ^METi ~ ' 9met\ ~ (EQ 4.7)
rr M rr UITTX Vr jyfti

^MET\ ^ (EQ 4.8)

which is a concise rule-of-thumb for sizing the Metall power lines given the size of a

gate's transistors. By following this, the datapath could be implemented to not have any

potential timing violations, due to power line resistance, by design.

Similar equations were developed for the large cache memory arrays, as well

as the placed-and-routed standard cells of the core control logic. For the standard cell

arrays, the cell-level power was routed in Metall, as shown in Figure 4.16, again to free
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FIGURE 4.16 : Local Standard CeU Power Routing.
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up Metal2 and MetalS for signal routing. However, to reduce resistance to the power

distribution network, as necessary, dpm-wide Metal2 straps connected up the power

lines, and could be spaced no further than 250pm apart. The maximum number of rows

was calculated to be sixteen. Again, by following these constraints, any place-and-

routed standard cell implementation could be guaranteed to not have potential timing

violations by design.

4.4.3 Board-level Distribution

The DVS regulator chip [stra98] is very sensitive to board-level parasitics

which may interact with the output LC filter for the DVS supply voltage, Vi^d. Thus,

careful attention had to be paid in laying out the power distribution for the board. An

entire PCB plane was dedicated to which reduced the parasitic resistance to a

negligible amount. This also allowed a single PCB via to connect the pins on the

chip sockets to the power plane, in order to minimize the inductance.

Since the plane provides negligible resistance and inductance, the need to

place the filter capacitor next to the inductor was eliminated. Instead, the 5pF capacitor

was evenly spread out across the board, and placed next to the chips* pins as lOOnF

and 200nF bypass capacitors. This provided both the necessary filter capacitance, as

well as good bypass capacitance, to eliminate unnecessary noise on the chips* F£)/>pins.

4.5 Functional Verification

At every stage in the design process, the design specification was constantly

verified for functional correctness. At the higher, more abstract, design levels, logical

behavior is checked. Closer to the physical design, individual signals are checked for

phase correctness and setup/hold times in additional to logical behavior. A verification

methodology was developed so that test code had to be developed only at the top design

level. At all subsequent design levels, scripts automatically generated new test vectors
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from the previous design level's test vectors.

4.5.1 Behavioral Verification

The essence of behavioral verification is ensuring that the processor system

properly operates from the programmer's point-of-view. The master reference for

comparing against is the specified behavior of the Instruction Set Architecture (ISA).

For example, an add instruction that adds two register and places the result in another

register must be validated for all specified register combinations as well as all register

values. Since exercising all possible combinations would create an infinitely long test

code, the difficultly of this task is heuristically deriving tractable test code that covers

the significant state transitions.

In addition, the processor requires a coherent memory hierarchy. The physical

memory hierarchy may store the same address contents in multiple locations, such as in

the cache and in main memory, but these contents must be consistent. The memory

hierarchy must also provide a minimum amount of memory management, such as

trapping illegal memory accesses, to prevent the processor from locking up. Hence, the

physical memory hierarchy must be verified to be logically correct over a wide range of

possible operations.

In collaborating with ARM Ltd. on this research project, both the ARMS

processor core behavioral model and its suite of validation test code was received from

ARM Ltd. [arm97]. By restricting any changes to the behavior model, the validation

suite could be used verbatim for verifying the processor core and its implementation of

the ARM v4 ISA. Test code had to be developed for the rest of the microprocessor and

external system components.

The basic design flow to create this test code is shown in Figure 4.17. This

verification flow ran in conjunction with the high-level behavioral design once enough

of the system was specified to be simulatable. Individual code was developed to test
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FIGURE 4.17 : Behavioral Verification Flow for Developing Test Code Suite.

each major part of the microprocessor (e.g. System Coprocessor, Cache Controller,

Write Buffer, etc.) as well as the external SRAM chip and I/O chip. To guarantee

correctness by design, the code was written to be self-checking; the result of any

operation under test would be compared against the expected value, and flag an error on

a mismatch. Both the cycle-level and VHDL simulator models included basic I/O so

that error messages could be printed to the simulator screen.

The self-checking test code enforces consistency between the C simulator and

the ISA, as well as consistency between the C simulator and VHDL behavioral model.

The golden test code suite consists of: 28 programs from ARM Ltd. that test individual

ARMS blocks, 32 programs from ARM Ltd. which comprise their validation suite to

verify the entire ARMS core, and an additional 10 programs that were developed for the

remainder of the system.

Once all the test code successfully ran on the VHDL system simulation, there

was extremely high confidence in the functional correctness of the behavioral model.

The additional step taken was to boot the operating system on the VHDL simulation to
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further verify functionality.

4.5.2 Test Vector Generation

Once the golden test code suite was developed, test vectors for individual

blocks could be generated from a behavioral VHDL simulation as demonstrated in

Figure 4.18. The block under test (BUT) has its pins traced while running the test code

that exercises the BUT. The output waveform database is then sampled and converted to

time-independent test vectors via the leap2crf script. Each vector corresponds to a

single clock phase, gives input state at the beginning of the phase, and indicates what

the output state should be at the end of the phase.
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FIGURE 4.18 : Automatic Test Vector Generation

A header file describes the direction of each pin to be input, output, or

bidirectional. In the test vector file, a bidirectional signal is treated either as an input or

output for any given test vector, depending on whether the signal was actively driven by

the BUT in that test vector or not. An ^ or Z state indicates a driven input, while a /, 0,

or Z state indicates an output signal. A skew file provides a skew number for each

signal, which can be used to model setup and hold time constraints on the BUT.

The golden test vectors are used verbatim as structural VHDL test vectors. The

crfZepic script allows switched-level simulation test vectors to be automatically
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generated from the golden test vectors. This script takes a time base as an argument so

that simulation test vectors can be created at arbitrary cycle times allowing vector to be

quickly generated for multiple voltages. When setup and hold time constraints had to be

renegotiated between blocks, the blocks' skew files were modified and adjusted

switched-level simulation test vectors could be automatically generated.

A hierarchal set of test vectors were generated. Some vectors were for smaller

blocks, such as an individual ARMS macro block or cache controller, and others were

for larger blocks, such as the entire ARMS core, the cache subsystem, and even the

entire microprocessor chip. This allowed the design to be verified at all levels of the

hierarchy. Most of the logical debugging occurred within the smaller blocks, while

verifying the larger blocks ensured the design was connected properly.

4.5.3 Structural Simulation

The script genTB was used create a testbench for a given block. The block's

VHDL entity provides the necessary pin-direction information, and creates a VHDL

stimulus file which reads the test vector file. At the beginning of each vector, the inputs

are toggled as specified, and at the end of the specified half-cycle time, the outputs are

checked against the expected outputs in the test vector file. If any errors are present, an

error flag is issued giving the exact location of the error.

As the design was refined from a high-level behavioral specification to a

lower-level structural VHDL specification, the test-bench simulation was run for each

block to ensure proper functionality. If all test vectors passed successfully, the block

was deemed to be functionally correct and ready for physical implementation.

4.5.4 Transistor Netlist Simulation

Timemill was the tool of choice for transistor level simulation. The crf2epic

script generates two files, an input vector file and an output vector check file. The input
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vector file specifies input signal transitions at regular time intervals, equal to the

desired half-cycle time. The skew file can be used to shift signal transitions around with

respect to the clock edge. The output vector check file specifies what the output pin

states should be at regular intervals. Again, with the skew file, when the outputs should

be stable with respect to the clock edge can be varied with setup-time constraints.

The initial simulation is run on a block's schematic netlist, to ensure

topological functionality. This step catches logical transistor design errors. Once the

block's layout is complete and verified back against the schematic via LYS, the layout

was extracted to create a netlist. Timemill was run on this new netlist, and would catch

setup and hold time violations for the block due to the interconnect parasitics.

4.6 Timing Verification

There are two parts to timing verification: race-condition analysis for

functionality, and critical-path analysis for performance. Pathmill was extensively used

for timing verification, in which the key to speeding up the analysis turn-around was a

schematic design that followed a simple naming methodology. Then, Pathmill could be

scripted to quickly find the important paths to be analyzed.

Timing was first run on the schematic design to flag potential race paths as

well as identify critical paths based upon logic depth. Any path longer than 30 gate

delays was reduced. Paths in the range 24-30 gates deep were reduced if a simple

schematic fix was possible, since they had a high probability of becoming critical with

extracted parasitics. Any path depth less than four was increased, which would occur as

the unintended side-effect of a sped-up latch. Finally, any path that could induce a clock

glitch (e.g. an output signal from a Phi2 latch gating a Phi2 clock driver) was flagged

and fixed.

Once the first-pass layout was complete, Pathmill was run again on the
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extracted netlist. Multiple timing iterations were used to fix critical paths that cropped

up due to lack of interconnect capacitance in the schematic netlist. The labelSpice

script was written to ensure that the layout netlist had the exact node names as the

schematic netlist. Hence, the exact same timing input deck could be used both on the

schematic and extracted netlists.

4.6.1 Schematic Naming Methodology

All cell instances that either maintain state (e.g. latches, flip-flops, registers)

or are clock drivers have specific naming requirements. The name conveys information

on the t)q)e of state and on which phase, 1 or 2, the instance is active. Within the master

instance, the actual state nodes also require specific names. Then, for example, through

simple pattern matching all phase-2 latch nodes can be specified in one statement.

The special instance labels are:

1. j?{7,2}/«/{#} Phase-1/2 transparent latch.

2. jp{7,2}y7qp{#} Phase-1/2 edge-triggered flip-flop.

3. j3{7,2}c/A:{#} Phase-1/2 clock driver.

4. p{l,2}enab{if) Phase-1/2 enabled signal (tri-stated).

5. p{1^2}pre{#} Phase-1/2 pre-charged node.

The {#} is used to differentiate multiple instances of the same tjqje/phase on a

given schematic sheet (e.g. pllatO^ pllatl, etc.). In addition, there is the special phase

designator. A, indicating an asynchronous signal (e.g. pAenabO).

The special state node labels are:

1. epic_Jatch Latch node between pass gate and cross coupled inverters.

2. epic_latch{l The two latch nodes in a flip-flop.

3. epic_clock Clock node right after the enabled gate cell in the clock drivers.

4. epic_enable Node immediately preceding the driving inverter on a tri-state bus.
Inverter enabling signal must be the output ofa clock driver.

5. epic_pre Prechargednode. Precharge signal must be the output of a clock driver.

6. epic_register Latchnode within a registerfile. Labelled differently becauseit requires
special handling since the register files are bi-phase.

121



4.6 Timing Verification

In addition, any one of the above state nodes can be suffixed with a letter

indicating parallel nodes on a single schematic sheet (e.g. epic_latcha, epic_latc.hb).

Through wild-card matching, all phase-2 latch nodes are simply

*p2lat*.epic_latch*. To ensure all instances are properly labelled, a script was written

to parse through the netlist looking for any node names not associated with a labelled

instance, and flag them to be changed. Likewise, the inverse can be checked as well.

However, if both the instance and node labels are omitted, then the node cannot be

caught just from parsing the netlist. However, it will most likely show up as a critical

path, and can be changed after the initial timing run. Thus, this methodology proved

very robust in properly annotating all state nodes.

4.6.2 Path Identification

When performing timing analysis, all delay measurements must be referred

back to a common signal, typically the output of the global clock driver. As was

demonstrated in Section 4.3.4, the maximum skew between any two clock driver

outputs is less than 4% of the cycle time. Because all the state nodes (except

epic_register) only change state upon a clock driver output transition, timing between

Clock-

Phil

..1

'epic^locka

^dl

LGate>

gateSig

Logic

td2

FIGURE 4.19 : Simple Circuit Example.
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4.6 Timing Veriflcation

state nodes can ignore delay through the clock drivers, with a 4% margin of error.

In Figure 4.19, when Clock goes low, Phil/nPhil get asserted, latching a new

data value onto the state node, epicjlatcha. When Clock goes high, Phi2lnPhi2 get

asserted, latching a new value onto the state node epic_latchb, at which time, the input

to p2lat must be stable. To ensure this, the delay through the logic block, referred

back to the common Clock signal must be less than the target cycle time:

^CRIT ~ ^d\~^dl ~ ^Clock-¥ epic_latcha ^epic_fatcha -> epic_fatchb ~ ^Clockepic_Jatckb 4.9)

where the delay through the clock buffers is:

^ClockepicJatch{a,b} ~ ^ClockPhi{1.2}^ ^Phi{1.2}epic_latch{a,b} (EQ4.10)

The first component differs at most by the maximum clock skew. The second

component will be essentially the same between the two because the output of the clock

drivers have nearly identical rise/fall times. Hence, Equation 4.9 can be rewritten as:

^CRIT ^epic_iatcha -> epic_Jatchb ^ClkSkew —̂epic_}atcha -> epicjatchb (^Q 4.11)

Hence, timing path analysis only requires looking between any two state nodes

(latch, flip-flop, precharged, and enabled), which is virtually equivalent to referring the

path calculation back to a common point. There are two exceptions to this rule.

The first exception is for clock gate signals. For the path from pllat to p2clk:

^CRin ~ ^Clock —> epic_latcha ''' ^epic_fatcha -> gateSig ^gateSig —> epic_plock ~ ^Clock -» epic_plock (^Q 4-12)

The last term is dropped, because the epic_clock node should be stable before Clock

changes. Equation 4.12 can be reduced to:

^CRITl ~ ^Clockepic_Jatcha ^epic_Jatcha-*epic_clock (EQ4.13)

Thus, the delay between the state node {epicjlatcha) and the clock node {epic_clock)

must be less than the target cycle time minus the delay through the clock buffer. The
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mean delay through the clock buffer is 8% of the half-cycle time of over voltage. Thus,

these paths have a shorter time to complete.

The other exception are epic^register nodes. All the register files are bi-phase,

so the standard clock drivers cannot be used. Instead, custom clocking circuitry is

required, which while designed to match the clock driver as well as possible, they do

not meet the same skew tolerance. Thus, input and output to these nodes must be given

an extra margin of tolerance, and carefully simulated to ensure no race condition exists.

4.6.3 Timing Analysis

Path delay varies from VCO delay in one of two ways. First, there are paths

whose delay is dominated by PMOS devices (since Vj-p > and/or interconnect

capacitance, and they slow down at low voltage with respect to the VCO. The second

class of paths, whose delay is dominated by gate/diffusion capacitance (which increases

with voltage) and/or interconnect RC delay, slow down at high voltage with respect to

the VCO. A typical commercial design is only concerned about a singular voltage

operating point, but DVS must operate over a broader range of voltage.

However, DVS only requires timing analysis at two voltages, which are the

extremes of the desired operating range. For the prototype processor, the voltages are

3.3V and 1.2V. If timing constraints are met at these two points, then the timing

constraints will be met at all intermediate points in between.

Using the schematic naming methodology, a complete timing analysis can be

performed with 16 individual Pathmill runs, listed in Table 4.6. This analysis checks for

short paths, long paths, and illegal paths. The target cycle time is 10ns at 3.3V, and 80ns

at 1.2V.

Checks 1-4 analyze paths between different-phase state nodes, so they only

have a half-cycle time to complete. In addition, the maximum delay is further reduced
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TABLE 4.6 Timing Analysis Pattern Set

# Source Sink
Maximum Delay (ns)

1 pi{latflop^enabpre}.epic_^ p2{lat,enab} .epic_^
4.5 (s) 36 (s)

2 p2{latjlop^enabpre} .epic_* pi{lat,enab} .epic_*

3 pi {latflop^enabpre}.epic_* p2{floppre} .epic_*
4.5(h) 36(h)

4 p2{latjlop^enabpre}.epic_^ pi{floppre} .epic_*

5 pi {latflop^enabpre} .epic^ plflop.epic_latchl
9.5(h) 76(h)

6 p2{latflop,enabpre).epic_^ p2flop.epic_latchl

7 pi{latflop} .epic_* p2clk.epic_clock
4.0(h) 32(h)

8 p2{latflop} .epic_* plclk.epic_clock

9 pi {latflop,enabpre}.epic_^
epic_re^ster 4.0(h) 32(h)

10 p2{latflop,enabpre}.epic_*

11
epic_regbter

pi {latflop,enabpre}.epic_^
4.0(h) 32(h)

12 p2{latflop,enabpre}.epic_^

13 pi{latflop,enabpre} .epic_^ plclk.epic_clock Should never occur

(same phase gate signal)14 p2{lotflop,enabpre} .epic^ p2clk.epic_clock

15 pi {latflop,enab}.epic^ plpre.epic_pre Should never occur

(same phase pre input)16 p2{latflop,enab}.epic^ p2pre.epic_pre

by 5% of the cycle-time to provide margin for clock skew. The first two checks are

soft (s) constraints, because the sink state node is transparent, and will continue to

operate if the maximum delay is exceeded. Checks 3-4 are hard (h) constraints, because

a functional error will result if the maximum delay is exceeded. Checks 5-6 have a full

cycle to complete minus 5% margin for clock skew. Checks 7-8 provide 10% margin to

account for both clock skew and delay through the clock buffer. The register checks

(9-12) analyze both input/output paths, and provide 10% margin to give additional

headroom for the custom clock drivers. The last four checks (13-16) check for illegal

paths that should never occur.

The output from Pathmill provides an ordered list of long and short paths for

from node => to node

path # of

delay stages

1 4.888 20 171.117.14.pllat0<13>.epic_latch 171.p21at2<l>.epic_latch
2 4.872 20 171.117.14.pllat0<13>.epic_latch 171.p21at3<l>.epic_latch
3 4.865 18 172.II.14.plpre<0>.epic_pre 172.p21at8<l>-epic_latch

FIGURE 4.20 : Example Pathmill Timing Analysis Output

125



4.6 Timing Verification

each check, as shown in Figure 4.20. In addition, Pathmill reports each stage in these

paths, such that they can be quickly identified in the schematic. If any paths exceed the

maximum delay check, they are fixed through schematic changes, and the design is re

analyzed.
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Design Methodology

5

While it is important to be energy conscious at all levels of the design

hierarchy, energy-efficiency optimizations at the level of architectural design generally

yield the biggest gains. The closer the design approaches to the final physical

implementation, the smaller the gains get because the scope of possible optimizations

narrows.

Unfortunately, traditional architectural design methodologies for

microprocessor systems focus primarily on performance, with energy consumption

considered as an afterthought. This approach is slowly evolving to consider energy

consumption earlier in the design process, but the radical change in design methodology

that is required has yet to happen. This wholesale change requires the incorporation of

energy estimation into the high-level system simulator (Section 4.2), so that both

performance and energy consumption can be estimated at the highest level of the design

space. This allows for architectural design choices to be evaluated for their overall

impact on system energy efficiency, and not just strictly performance.

The first section describes the architectural design and methodology of the

processor system, while subsequent sections describe in more detail the major

components of the microprocessor itself —the processor core, the cache system, and the

system-control coprocessor.
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5.1 System Architecture

Microprocessor systems generally resemble the generic architecture shown in

Figure 5.1. The processor bus connects the microprocessor tothe main external memory

(ROM, RAM), input/output devices via I/O controllers, and peripheral subsystems via

bus controllers. A PAL or PLD is typically used to generate the control signals between

the various chips.

Microprocessor

PAL/PLD

ROM

RAM

I/O

Controllers

Peripheral
Bus Controllers

LCD

Radio.
IMZ
etc.

PCI
ISA
etc.

FIGURE 5.1: Generic Microprocessor System Architecture.

While the generic system appears to have little room for optimization, a

number of architectural design choices are available which can significantly impact

performance and energy consumption. This is beyond the scope of this work, however,

since in trying to demonstrate DVS at the system level, constraints had to be placed

onto the system organization as described below.

5.1.1 Modifications for DVS

A key modification to implement DVS at the system level is a DVS-compatible

processor bus, which requires the bus to operate across the entire range of operating

voltage and performance. Existing processor bus specifications do not support this, so a

custom solution was developed for the processor bus. This, in turn, required custom
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chips to communicate on the bus, since no available commercial chip supports this

custom bus implementation.

To reduce the number of chips requiring a custom implementation, the system

was organized as shown in Figure 5.2. In this architecture, only three chips require

custom implementation: the microprocessor, the external RAM, and the I/O interface

chip. For the targeted application of portable electronic systems, this is a reasonable

solution since the bulk of the bandwidth on the processor bus is between the

microprocessor and the main memory. The I/O bandwidth is in the range of 10 kB/sec to

5 MB/sec for each I/O device, which is a small fraction of the available 200 MB/sec

peak bandwidth on the processor bus.

Custom Dy^compatibleC|ii^

RAM

Microprocessor

Processor Bus

I/a

Interface

Commercial Chips

- ROM

I/O

Controllers

LCD
Radio.
USB.

etc.

FIGURE 5.2 : Prototype System Architecture Incorporating DVS.

The PAL/PLD was eliminated for two reasons. First, commercial PAL/PLDs

are not DVS-compatible. Second, and most important, they consume an inordinate

amount of power in a typical embedded processor system given the functionality that

they provide. As such, this functionality (memory controller, interrupt controller, etc.)

was implemented on-chip within the system-control coprocessor, providing a

significant reduction in system energy consumption.

5.1.2 Cache Benefits and Limitations

On-chip cache is essential for providing good system performance and energy

efficiency in a general-purpose processor system. An on-chip cache access is simply
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much faster than anoff-chip access to main memory. While cache accesses can typically

be achieved at the processor clock rate, external accesses need to traverse through the

processor's external interface, the external system bus, and the memory chip's bus

interface, all of which increase access latency anywhere from a few processor cycles to

tens of cycles [henn95].

A cache access consumes less energy than an access to main memory because

the same things that slow the access down ~ external bus interfaces and the external bus

itself —also increase its energy consumption. For the prototype system, a cache access

is only 100 pF/access, while an external memory access is 500 pF/access, yielding a 5x

reduction in energy consumption per memory access.

However, cache misses require transferring several words into a cache line

from main memory, and an equal amount of words need to be transferred from the cache

back to main memory when the cache line being replaced is dirty. So what is important

to evaluate is the average capacitance/access for a memory access to the on-chip cache,

including the effects of cache misses:

^M4IAyE ~ (1 -MR) ' CcacHE'̂ ^extmem) ' (1 (EQ 5.1)

where MR is the fractional cache miss rate, Ccache the capacitance of a cache access

(100 pF/access), CgxrMEM the capacitance of an external memory access

(500 pF/access), LS is the line size in words, and DR is fractional amount of cache

misses that are also dirty. From Equation 5.1, we can calculate what is the maximum

miss rate that will ensure Cj^j^^ave < ^extmem so that adding the cache actually

improves system energy efficiency. From the prototype system, LS= S and DR = 10%,

such that as long as MR < 7.7%, then Cj^a\AVE ^EXTMEM- This level of miss rate can

be achieved with a cache size as small as 2kB [henn95].

So, for almost all practical sizes of an on-chip cache, the inclusion of the cache

will not only improve processor performance by reducing the average memory access
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time, but it will also improve the overall system energy efficiency. The cache used in

the prototj^e design has only a 0.5% miss rate (derived from benchmark program

simulations), reducing to only 125 pF/access, which is still 4x lower than

^EXTMEM-

The primary drawback to using a cache is its non-deterministic behavior,

which can adversely impact real-time systems. This can be addressed in one of two

ways. A software solution entails that any time-critical operation take into account a

worst-case latency assuming cache misses. If this is not feasible, a hardware solution

consists of either dedicated on-chip memory (e.g. ROM, SRAM) separate from the

cache, or a cache which allows speciHed cache lines to be locked into the cache.

For the PDA-like applications running on the prototype demonstration system,

a hardware solution to ensure operational latency was not necessary, as the latency

issues were sufficiently dealt with in software. Thus, implementing the on-chip cache

was essential for improving system energy efficiency, yielding the simplified

microprocessor architecture shown in Figure 5.3. The system control block incorporates

the glue logic required to seamlessly connect together the custom chips of the prototype

system. These three components are described in further detail in Section 5.2-4.

p Processor

u
0

U

1

Core

1

Cache Processor

CO System Bus

FIGURE 53 : Prototype Microprocessor Architecture.

5.1.3 Main Memory Architecture & Processor Bus Topology

Commodity SRAMs and DRAMs used for main memory are typically eight bits

wide. This data width has been used since the earliest microprocessor days when the

processor itself was only eight bits wide. While the bus width of the microprocessor has
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increased to improve memory bandwidth to the processor, the width of the RAM chips

has remained unchanged. To increase the bandwidth of the memory bank, multiple

memory chips are enabled in parallel, as shown in Figure 5.4, In this example, four 8-

bit RAM chips are accessed simultaneously to provide a 32-bit data word to the

processor.
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RAM
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RAM
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#4

> '8 •8 '8 '8
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#5

RAM

#6

RAM

#7

RAM

#8

FIGURE 5.4 : Typical Main Memory Architecture.

While this approach successfully meets the bandwidth (performance) demand,

it increases the energy consumed per access. However, a 32-bit RAM chip would

require only one memory chip to be activated per access, eliminating the unnecessary

energy consumption of the other three chips. The primary drawback to a larger bus

width is increased pin count on the memory chip. A t3q)ical 8-bit wide, 16Mb RAM chip

has a total of 29 address and data pins. If the address and data are multiplexed onto the

same bus, then only five additional pins are required to support 32-bit accesses. The

proposed architecture is shown in Figure 5.5.
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FIGURE 5.5 : Proposed Main Memory Architecture.

Two bus cycles are required for a single-word memory access in this

multiplexed approach. However, for a processor with a cache, most memory accesses
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are cache line reloads. Thus, if the processor bus can support burst-mode accesses, then

the cost of placing the address on the multiplexed bus can be amortized over multiple

data words. For a cache-line length of eight, the effective bandwidth is 8/9, or 89% of

peak capacity. Benchmark simulation demonstrated that with a large 16kB cache,

external accesses are predominantly cache-line reads and writes such that actual bus

capacity is only 15% less than peak capacity. This slight degradation in performance is

more than compensated for by the reduction in energy consumption of the external

memory chips. Thus, the processor bus was designed to support burst accesses, as

described in further detail in Section 7.4.

5.1.4 I/O Considerations

The I/O interface chip is essentially a bridge between the processor bus and the

I/O bus, such that its implementation is relatively simple. The critical functionality

required is flow control between the processor and the autonomous I/O controllers,

which all operate at different clock frequencies. This is provided through a simple state

machine on the chip in conjunction with wait signals which can halt either the

processor, or an I/O controller, as necessary.

To improve the system energy efficiency, the I/O interface chip also allows for

packed I/O data writes. Typical I/O data transfers are one byte wide, such that if I/O

data is transferred in single bytes, two processor bus cycles are required to complete the

data transfer, one for the address and one for the data byte. The aggregate I/O data

transfer rate is 0.5 bytes/cycle. However, by allowing four bytes to be packed into a

single word, then the transfer rate increases to 2 bytes/cycle. The I/O interface chip is

responsible for unpacking the word into four individual byte writes to the addressed I/O

controller. Packing I/O byte reads is not done, since the processor would have to wait

until the fourth read before it could process the data, adding additional latency to the

I/O transfer.
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To improve system performance, the I/O interface chip also supports direct

memory accesses (DMA) to allow I/O controllers to directly access the main memory.

This frees up processor cycles that would otherwise be required since the processor

must act as an intermediary between the I/O controllers and main memory when DMA

is not supported.

In the prototype system, this functionality is performed by the virtual I/O

controller (Section 7.8) which eliminates the need to implement this added functionality

in silicon. The actual I/O interface chip that was custom implemented only provides the

voltage level-conversion and signalling required to support I/O transfers and DMA

between the processor bus and the virtual I/O controller, which was implemented with a

Xilinx FPGA and a StrongArm processor system. However, for a complete system

solution, this functionality must be implemented on the custom I/O interface chip. Since

the average number of I/O accesses per processor cycle is well below one, the energy

consumed by this full-custom I/O interface chip implementation is negligible with

respect to the overall processor system energy consumption.

5.2 Processor Core

The design of the processor core presents a variety of opportunities for

improving the overall microprocessor system's energy efficiency. To facilitate the

design of the prototype system in Chapter 7, an ARMS behavioral model from ARM

Ltd. was incorporated into the high-level design specification of the prototype

processor. While significantly speeding up the implementation, this model also

constrained the processor design space by fixing the instruction set architecture as well

as the core microarchitecture.

As such, this section explores common processor core optimizations for

improving performance and/or reducing power dissipation. To properly evaluate these

optimizations, it is imperative to analyze the system-level performance and energy
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consumption improvement, rather than focus only on the improvement within an

individual processor block, as is often done. Those optimizations that demonstrate to

improve the overall system energy-efficiency may be utilized in the design of a future,

more energy-efficient microprocessor.

5.2.1 Instruction Set Architecture

Typically, an instruction set architecture (ISA) is designed solely with

performance in mind. High-level performance simulators allow the architect to explore

the ISA design space with reasonable efficiency. Energy is not a consideration, nor are

there high-level simulators available to even let the architect estimate energy

consumption. Simulation tools exist, but require a detailed description of the

microarchitecture so that they are not useful until the ISA has been completely

specified. Processors targeted towards portable systems should have their ISA designed

for energy efficiency, and not just performance.

Many processors have 32-bit instruction-words and registers. Register width'

generally depends on the required memory address space, and cannot be reduced; in

fact, more recent microprocessors have moved to 64 bits. For low-energy processors,

16-bit instruction widths have been proposed. Static code density can be reduced by

30-35%, while increasing the dynamic run length by only 15-20% over an equivalent

32-bit processor [bund93a][arm95]. Using 16-bit instructions reduces the energy cost of

an instruction fetch by up to 50% because the size of the memory read has been halved

[bund94]. In system's with 16-bit external busses, the advantage of 16-bit instructions

is further widened [free94][arm95]. Since instruction fetch consumes about a third of

the processor's energy [burd94b][mont96b], total energy consumption is reduced by

15-20%, which is cancelled out by the 15-20% reduction in performance, giving

approximately equivalent energy efficiency.

The available data indicates that this technique significantly improves energy
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efficiency only if the external memory's energy consumption dominates the processor's

energy consumption, or if the external processor bus is 16 bits, instead of the more

typical 32 bits. However, this is only true for no, or very small, on-chip caches (< 8kB).

Since most microprocessors today contain at least a moderately-sized on-chip cache

(16kB or larger) enabled by CMOS VLSI process scaling, utilizing 16-bit instructions

will typically have negligible impact on microprocessor energy efficiency. It is only

useful for reducing external memory requirements in cost-sensitive system designs.

The number of registers can be optimized for energy efficiency. The register

file consumes a sizable fraction of total energy consumption since it is typically

accessed multiple times per cycle (10% of the total energy in [burd94b], as well as in

the prototype system). In a register-memory architecture, the number of general purpose

registers is kept small and many operands are fetched from memory. Since the energy

cost of a cache access surpasses that of a moderately sized (32) register file, this is not

energy efficient. The other extreme is to implement register windows which is

essentially a very large (100+) register file. The energy consumed by the register file

increases dramatically increasing total processor energy consumption 10-20%. Unless

this increase in energy is compensated by an equivalent increase in performance,

register windows are not energy efficient. One study compared register files of size 16

and 32 for a given ISA, and found that for 16 registers, the dynamic run length is 8%

larger [bund93b]. The corresponding decrease in processor energy due to a smaller

register file is on the order of 5-10%. There appears to be a broad optimum on the

number of registers since the energy efficiency is nearly equal for 16 and 32-element

register file.

The issue of supported operation t3q)es and addressing modes has been a main

philosophical division between the RISC and CISC proponents. While this issue has

been debated solely in the context of performance, it can also have an impact on energy

consumption. Complex ISAs have higher code density, which reduces the energy
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consumed fetching instructions and reduces the total number of instructions executed.

Simple ISAs typically have simpler data and control paths, which reduces the energy

consumed per instruction, but there are more instructions. These trade-offs need to be

analyzed when creating an ISA.

The amount of hardware exposed (e.g., branch delay slot, load delay slot, etc.)

is another main consideration in ISA design. This is typically done to improve

performance by simplifying the hardware implementation. Since the scheduling

complexity resides in the compiler, it consumes zero run-time energy while the

simplified hardware consumes less energy per operation. Thus, both the performance is

increased and the energy/operation is decreased, giving a two-fold increase in energy

efficiency. A good example of radically exposing the hardware architecture are very

long instruction word (VLIW) architectures, which will be discussed in more detail in

the following section.

5.2.2 Architectural Concurrency

The predominant technique to increase energy efficiency in custom DSP ICs

(fixed throughput) is architectural concurrency; with regards to processors, this is

generally known as instruction-level parallelism (ILP). Previous work on fixed

throughput applications demonstrated an energy-efficiency improvement of

approximately N on an iV-way parallel/pipelined architecture [chan92]. This assumes

that the instructions being executed are fully vectorizable, that N is not excessively

large, and that the extra delay and energy overhead for multiplexing and demultiplexing

the data is insignificant.

Moderate pipelining (4 or 5 stages), while originally implemented purely for

speed, also increases energy efficiency, particularly in RISC processors which operate

near one cycle-per-instruction. Energy efficiency can be improved by a factor of two or

more [gonz95], and is essential in an energy-efficient processor.
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5.2.2.1 Superscalar Architectures

More recent processor designs have implemented superscalar architectures

with parallel execution units, in the hope of further increasing the processor's execution

concurrency. However, an iV-way superscalar machine will not yield a speedup of N,

due to the limited ILP found in tjrpical code [john90][wall93]. Therefore, the achievable

speedup will be less than the number of simultaneous issuable instructions and yields

diminishing returns as the peak issue rate is increased. The speedup has been shown to

be between two and three for practical hardware implementations [smit89].

If the instructions are dynamically scheduled in employing superscalar

operation, as is generally done to enable backwards binary compatibility, the effective

switched capacitance per cycle of the processor, Cqpu, will increase due to the

implementation of the hardware scheduler. Also, there will be extra capacitive overhead

due to branch prediction, operand bypassing, bus arbitration, etc. There will be

additional capacitance increase because the N instructions are fetched simultaneously^

from the cache and may not all be issuable if a branch is present. The capacitance

switched for un-issued instructions is amortized over those instructions that are issued,

further increasing Ccpu-

The energy-efficiency increase can be analjdically modeled. Equation 5.2

gives the ETR ratio of a superscalar architecture versus a simple scalar processor; a

value larger than one indicates that the superscalar design is more energy efficient. The

S term is the ratio of the throughputs, and the Cqpu terms are from the ratio of the

energies, which is proportional to the effective switched capacitance since the

architectural comparison is at constant supply voltage. The individual terms represent

the contribution of the datapaths, Cqpu^^* the memory sub-system, and the

d3mamic scheduler and other control overhead, Cqpij'^. A 0 suffix denotes the scalar

implementation, while a 1 suffix denotes the superscalar implementation. The quantity

CcpiF^ hasbeen omitted, because it has been observed that the control overhead of the
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scalar processor is minimal: Ccpu^''«Ccpu'^-^° [burd94b].

SiCcpJ^ +CcpJ^)

(^CPC/ ^CPU ^CPU )

Simulation results show that Ccpif^ is significant due to control overhead and

that CqpiJ^^ is greater than CcpJ^^ due to un-issued instructions, thereby negating the

ETR increase due to S. Since CQpif^ increases quadraticly as the number of parallel

functional units is increased, the largest improvement in energy efficiency would be

expected for moderate amounts of parallelism. In this best case, however, the

superscalar architecture yields no improvement in energy efficiency [gonz95].

5.2.2.2 Superpipelined Architectures

These architectures also exploit ILP and offer speedups similar to those found

in superscalar architectures [joup89], but their performance is lower because the

number of stall cycles increases with the depth of the pipeline due to data dependencies.

While these architectures do not need as complex hardware for the dynamic scheduler

{Ccpip^ is lower), they do need extra hardware for more complex operand bypassing

{Ccpip^ is higher). The net differences in speedup and capacitance should give

superpipelined architectures an energy efficiency similar to superscalar architectures.

5.2.2.3 VLIW Architectures

These architectures best exploit ILP by exposing the underlying parallelism of

the hardware to the compiler's scheduler, which minimizes the complexity of the

hardware. A good compiler is necessary to fully utilize the hardware. One such

implementation from Multiflow gives a speedup factor, 5, between two and six

[lown93]. Because the parallelism is visible, VLIW processors do not require

aggressive branch prediction, dynamic schedulers, and complex bus arbitration, so that

the energy consumed per operation is roughly the same as for the scalar processor. The

main additional energy cost is for the communication network that connects the
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autonomous functional units that comprise the VLIW processor, and executing the

instructions that shuffle data between them. Even with a pessimistic estimate of 50%

for the energy per operation increase, the VLIW processor's energy efficiency increases

anywhere from 33% to 300%.

5.2.2.4 Summary

Superscalar and/or superpipelined architectures are commonly used today

because of the increase in performance while maintaining backward machine code

compatibility. Unfortunately, utilizing these architectures actually degrades processor

energy efficiency. The most energy-efficient processor available today is a simple

scalar design with a five-stage pipeline [mont96]. While VLIW architectures

demonstrate very promising improvement in processor energy-efficiency, the required

change in the ISA and the increased requirements on the compiler has severely limited

their usage.

5.2.3 Microarchitecture

The processor control typically knows which pipeline stages are being used

each cycle. Those pipeline stages not used in a given cycle should have their clock

disabled for that cycle. This is particularly important to do in superscalar architectures

that t3q>ically have only a fraction of the entire processor being utilized in any given

cycle. With only a small overhead cost, this technique increases processor energy

efficiency by 15-25% (assuming that 40-50% of the processor is disabled 40-50% of the

time) [gary94].

To maximize the benefit of clock-gating, null or no-operation (NOP)

instructions should be suppressed. In many microarchitectures, NOP instructions are

mapped to real instructions. Although NOPs write to a null register, they consume more

than half the energy of a normal instruction, as demonstrated by empirical

measurements described in [tiwa96]. Instead, NOPs should be detected by a comparator
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in the instruction decode stage, and later stages executing on the NOP should be

disabled. Similarly, pipeline stalls and/or bubbles should not inject NOP instructions

into the pipeline but should instead cause subsequent pipeline stages to be disabled

during the appropriate cycle.

Correlation of data is often exploited for energy efficiency in signal processing

circuits. While processors do not exhibit the same level of correlation as found in DSP

circuits, high amounts of correlation can be found during effective address calculations,

which are typically offset from a high-valued stack pointer. In most scalar processors, a

single ALU calculates the effective addresses and all integer additions. By partitioning

these two types of additions onto separate adders, the signal correlation increases by

16%, decreasing the adder's energy consumed per addition by an approximately

equivalent 16%. Total processor energy efficiency can then be increased by 3-7%.

The ETR metric (Section 2.3.2) should be used to evaluate other

microarchitectural design decisions for their relative impact on system energy

efficiency. For those decisions with more than one feasible approach, the relative ETRs

can be compared to select the most energy-efficient alternative.

5.2.4 Upper Bounds on Energy Efficiency

The bare essence of a processor is the ability to perform computational

operations on data values. This capability, in its simplest form, is performed by the

microprocessor's ALU, which is typically a very small fraction of the overall silicon

area of the processor. In the prototype system, the fraction is well below 1%. All the

surrounding circuit infrastructure merely enables the programmable nature of a general-

purpose microprocessor.

Figure 5.6 plots the inverse of energy consumption, MlPS/Watt, for the

protot)q)e processor's most elementary component, the adder, and demonstrates how

each added level of complexity required for implementing a complete microprocessor
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increases its energy consumption. Energy consumption is measured at each complexity

level, using switch-level circuit simulations, when the processor is executing a common

sequence of code. The adder, or similarly the shifter, can operate at 278,000 MIPS/W at

1.2V in our 0.6p.m process, and sets the absolute lower bound on energy consumption.

Data storage for the adder or shifter's operands necessitates the need for a register file.

Including a 30x32b register file increases energy consumption by 2.7x, yielding a more

practical upper limit of 105,000 MIPS/W.
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FIGURE 5.6 : Energy Consumption for the CPU and its Base Components (0.6pm CMOS).

The biggest jump in energy consumption, a factor of 6.4x, is attributable to the

additional hardware required to build a fully programmable ALU and register bank.

This hardware includes latches, muxes, bus drivers, clock drivers, and associated

control circuitry. Additionally, the ALU includes a logic unit, a zero-detect unit, and a

fast 4-bit shifter, while the register bank includes a 5b—>32b register file decoder for

each of its two read ports and one write port. The second biggest jump in energy

consumption, a factor of 4.7x, is due to the additional hardware of the processor core.

This hardware supports instruction fetches, branches, branch prediction, loads, stores.
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and other ISA-specific functionality. The processor core that was implemented operates

at only 3,500 MIPS/W.

Thus, the hardware overhead required to implement a fully-programmable

microprocessor core increases energy consumption 30x above that required for just the

base adder/shifter and register file circuits. While this overhead will always dominate

the total processor energy consumption, there is still significant room for improving a

processor's energy efficiency over that of conventional designs. However, what this

entails is redesigning the processor core from scratch, starting with the ISA, and

progressing down to the microarchitecture, while making design decision designs based

not only on improved performance, but improved energy consumption as well.

Measures for both performance and energy consumption are captured when utilizing the

ETR metric to evaluate energy efficiency.

It appears in Figure 5.6 that the overhead required to turn a processor core into

a fully-functional microprocessor chip remains significant, showing an energy

consumption increase of 1.6x above the not fully-optimized processor core. However,

the full chip design, and the cache system design in particular, has room for

improvement beyond that demonstrated in the prototype system so as not to mitigate the

overall microprocessor energy-efficiency improvement due to a more energy-efficient

processor core. The limiting factor for not reducing the full chip's energy consumption

further was, in fact, the processor core itself.

5.2.5 Low-Energy Idle Mode Enhancements

Microprocessors in most single-user system applications, such as notebook

computers and PDAs, spend a majority of their time idling. Thus, it is essential for the

microprocessor to provide power down modes to minimize the energy consumption

while idling. However, to achieve the full benefit of these modes requires an energy-

conscious operating system that utilizes them.
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The design of the PowerPC 603 processor provides a good demonstration of

useful power down modes [gary94]. A doze mode stops the processor from fetching

instructions, but keeps alive snoop logic for cache coherency and the clock generation

and timer circuits, reducing power dissipation by 6.3x for this mode. A nap mode

disables the snoop logic, onlykeeping alive the timer logic, reducing power dissipation

another2.7x. Lastly, there is a sleep mode which only keeps alive the phase-locked loop

(PLL) and clock. The power is reduced an additional 17%, while the processor can be

up and running at full speed within ten clock cycles, and a cache flush. Further power

reduction can be achieved by disabling the PLL in the sleep mode, which reduces power

dissipation another 25x (for a total power reduction of 500x), but at the cost of several

thousand cycles (up to 200)xs) to return to full speed.

It is important to notice how much the PLL, which is found on most

microprocessors, limits the reduction of idle energy consumption. Frequently turning

off the PLL is not a viable approach due to the large overhead of restarting it.

Techniques for improving the energy efficiency of PLLs in power down modes are

needed.

A significant benefit of DVS is the lack of a PLL. The VCO within the voltage

regulation loop is continuously running, but at a very low level of power dissipation, so

that the microprocessor can restart with only one cycle of latency. In the prototype

system, there was only a single power down mode implemented (Sleep mode), which

reduced power dissipation 500x from the peak level, and provided a single-cycle

wake-up time.

While most microcontrollers and some embedded processors have power down

modes, only a few microprocessors have them. It is an important technique to include in

energy-efficient processors. The actual energy savings, though, depends more on how

well the operating system can utilize these modes.
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5.3 Cache System

The high-level specification of the cache system was a full custom design in

the prototype system, which enabled all aspects of the cache to be optimized for energy

efficiency. As such, the optimizations presented in the following sections were fully

validated in the implementation of the prototype system. Significant improvement in

energy efficiency was demonstrated as the cache system was implemented with

approximately half the average capacitance per cycle as the processor core. Typically,

embedded processors' energy consumption is dominated by their on-chip caches.

5.3.1 Cache size

Increasing the on-chip cache size will always decrease the cache miss-rate,

thereby decreasing the number of external accesses and reducing the average memory

access time [henn95]. Thus, on-chip cache size is tjrpically maximized, given die-size

constraints, for performance considerations.

Maximizing cache size will increase the capacitance/access to the cache.

However, this increase can be mitigated in two ways so that capacitance/access does not

scale proportionally to cache size. By sub-blocking the cache (Section 5.3.2), the actual

memory array size being accessed will remain constant, independent of cache size.

Although the interconnect capacitance increases with cache size, a hierarchically

buffered bus structure will limit the increase to scale approximately logarithmically.

Thus, if buffers are judiciously utilized, the average capacitance/access of a memory

access will continue to decrease with cache size past 256kB as demonstrated

in Figure 5.7. If, however, the interconnect capacitance scales proportionally with

cache size, then there is an optimal cache size, beyond which the average capacitance/

access increases with cache size.

In summary, maximizing the cache size will generally maximize system energy

efficiency by providing the highest performance and the lowest energy/access. For the
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FIGURE 5.7: Average and Cache Capacitance/access versus Cache Size (0.6pm CMOS).

prototj^e system, a cache size of 16kB was chosen, and was strictly limited by die-size

constraints. In Figure 5.7, was calculated based upon the cache miss rates from

[henn95]. For the prototype system, benchmark simulation reported a cache-miss rate of

0.5% for a 16kB cache. This reduces from the 250 pF/access shown in Figure

5.7 (based on a 2.0% miss rate) down to 125 pF/access for the prototype system.

5.3.2 Sub-blocking

Most large SRAMs are not composed of a single memory array, due to

excessive delay on the word and bitlines, but are composed of several smaller arrays or

sub-blocks in order to improve memory access time [raba96]. Enabling only the desired

block, rather than the entire memory array also reduces energy consumption, as well

[bund94][su95].

Reducing the size of the basic memory sub-block will reduce the energy

consumed per access as well as speed up the access time. However, circuit overhead

consisting of control signal generation, sense-amps, and output buffers sets the lower

limit on feasible sub-block size. Figure 5.8 plots both capacitance/access and area of a

16kB cache as a function of sub-block size in our 0.6pm process. For large sub-block
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sizes, the overall area asymptotically approaches a fixed value as the fractional

contribution of the circuit overhead goes to zero, while the capacitance/access scales up

with sub-block size. For small sub-block sizes, the capacitance/access asymptotically

approaches the fixed cost due to the circuit overhead, while the overall cache size

begins to exponentially increase. For sub-block sizes less than 0.125kB, the

capacitance/access will actually begin to increase due to the I/O capacitance loading

from the additional sub-blocks.
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For the prototype system, a size of IkB was chosen, which adequately balanced

the capacitance/access versus the overall cache size. At this design point, the cache

contributes 30% of the total processor energy consumption, and 50% of the silicon area.

5.3.3 Tag Memory Architecture

In addition to the data memory, which hold the contents of external memory

locations, an integral part of a cache is the smaller memory, called the tag memory,

which is use to map cache locations to the global memory space. Multiple sequential

data words are generally organized into a cache line, which is then mapped as a single

cache location into the global memory space. This amortizes the cost of the tag memory
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required over a larger data memory size [henn95].

The width of the tag memory is:

Tag Width =log •Set-Associativity^ (EQ 5.3)

where the Address Space for the ARMS architecture is 32 bits. Thus, the Tag Width is a

minimum of 18 bits for a direct-mapped 16kB cache, and the number of bits will

increase with the log2 of the set associativity. The number of tags required is:

NundterofTags = (EQ5.4)

For the 16kB cache and 32B cache line size used in the prototype system, there are 512

tags, such that the total tag memory is on the order of 512 x 20b, or 1.28kB.

If the tags are stored in a single memory array, the energy consumed accessing

a tag would be more than the energy consumed accessing the actual data word itself,

since the cache is sub-blocked in IkB arrays. However, the tag memorycan similarly be

sub-blocked. The same four address bits which are decoded to selectively activate the

data memory sub-blocks can be used to selectively activate the tag memory sub-blocks.

Then, only a 32 x 20b tag memory array is activated per cache access, significantly

reducing the energy consumption per tag memory access. The increase in the memory

critical path due to the gate delays added by the four-bit decoder is offset by the

reduced access time of a smaller tag memory array.

5.3.3.1 Design Approaches

During an access to the cache, the requested address is compared against the

tag(s) where the address may potentially reside in the cache. If there is a match between

the address and a tag, then the contents are currently stored in the cache, and the

contents are returned to the processor core. If there is not a match, then that address

location needs to be fetched from the external memory system. For an AT-way
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set-associative cache, N tags must be compared against the requested address because

the requested address may reside in any of N cache line locations. There are three

general approaches to implementing the tag compare:

Serial RAM Access: The tag memory is accessed first. If any of the N tags

matches the requested address, then an access to the data memory is initiated. The

benefit of this approach is that the data memory is only accessed for a cache hit.

However, the disadvantage is that the serial RAM accesses may dominate the critical

paths of the processor.

Parallel RAM Access: The tag and data memories are accessed in parallel.

Thus, if any of the N tags match the requested address, the desired data word has

already been read from the data memory and is available. However, writes to the data

memory still must be done sequentially since the write cannot be committed to cache

memory until the tag has been validated. The benefit of this approach is a fast read

access, which are the dominate t3q)e of cache accesses (> 80%). The disadvantages are

that cache writes must still be done serially, potentially requiring an additional cycle to

complete, and extra energy is consumed for data memory reads on cache misses.

Serial CAM/RAM Access: The tag memory is implemented as a content-

addressable memory (CAM). The tag CAM is first accessed, and if a match is found,

then the data RAM is accessed. The benefit of this approach is that the CAM's match

signals can be used directly as word line enables for the data RAM. This eliminates the

need for an address decoder for the data memory, significantly speeding it up so that

this approach does not dominate the critical paths of the processor. In addition, the data

memory array is only accessed upon a cache hit. The disadvantage is that CAMs

generally consume significantly more energy than their RAM equivalents.

5.3.3.2 Optimized Architecture

A CAM array was optimized and prototyped, which only consumes twice the
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energy of an equivalently-sized, 32 x 20b SRAM memory array. This removed the key

disadvantage to the Serial CAM/RAM Access approach, and therefore made it the

optimal design approach to select.

By utilizing a CAM for the tag memory, 32 tags can be compared

simultaneously for the same energy consumed as when comparing one tag. Thus, if the

cache is 2-way set-associative, the energy consumed by the Serial CAM/RAM Access

approach is the same as for the Serial RAM Access approach, because in the latter, two

RAM accesses must be made to read two tags. With the CAM, the comparison between

the tag and the requested address is implicit, thereby removing the need for external

comparators as in the Serial RAM Access approach. Also, the Serial CAM/RAM Access

approach eliminates the need for an address decoder for the data memory. Thus, for

2-way and higher set-associativity, the Serial CAM/RAM Access approach has the

lowest energy/access.

With respect to access time, the Serial CAM/RAM Access approach is only

slightly slower than the Parallel RAM Access approach. With the CAM, the removal of

the data memory address decoder and external comparators reduces the cycle time to

within 10% of the Parallel RAM approach. Therefore, for 2-way and higher set-

associativity, the Serial CAM/RAM Access approach is the most energy-efficient

solution for the implementation of the tag memory. Since some level of associativity

was required for the prototype design, as will be explained in Section 5.3.4 below, the

Serial CAM/RAM Access approach is the optimal solution.

The basic architecture is shown in Figure 5.9. The upper bits of the address,

which constitute the tag, are sent to the tag CAM array. If the tag is present in the CAM,

one of the match lines will go high, and indicate a cache hit. The line index bits of the

address are used to demultiplex the match line to the appropriate word line of the data

memory array.
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FIGURE 5.9 : Optimized CAM/RAM Cache Memory Architecture.

5.3.4 Associativity & Cache Line Size

For the ARMS processor core used in the prototype system, the memory

interface was designed and optimized for a unified cache [arm96b]. Given the

constraint that the cache must be unified, a direct-mapped cache is not very desirable.

When instruction and data addresses point to the same cache line, which may frequently

happen, the cache will continue to alternately swap out of cache memory the conflicting

address locations until the conflict is removed, needlessly spending many cycles

transferring the cache lines. Thus, at least 2-way set associativity is desirable to prevent

this conflict. Thus, since the processor core dictates the use of a unified cache, the

cache should be designed with some level of set associativity to prevent unnecessary

thrashing of the cache memory.

The requirement for at least 2-way set associativity dictated that the optimal

tag memory architecture is the Serial CAM/RAM Access approach. With this

architecture, the set associativity and cache line size for a fixed IkB sub-block are

related:

IkB = Set-Associativity' Line Size (EQ 5.5)

Simulations were then used to find the optimal cache line size and set-

associativity with respect to energy consumption, as shown in Figure 5.10. To measure

the true impact on system energy consumption, the capacitance/access was measured
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for not only the cache, which is broken down by tag and data memory, but also for the

external memory system. As the line size increases, the capacitance/access contributed

by the tag array decreases due to a smaller tag memory array, and because the tag

memory array does not need to be accessed for sequential cache accesses to the same

cache line. However, the capacitance/access contributed by the external memory

increases because more words are being fetched per tag, not all of which may be used

by the processor core. The contribution from the data memory array is relatively

constant because it is dominated by processor core cache accesses, which is

independent of cache line size, rather than cache-line reloads which are much more

infrequent. Due to the low miss rate of the 16kB cache, the impact on performance is

negligible for these cache-line sizes and levels of set associativity.
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FIGURE 5.10 : Average Capacitance/Access versus Cache Line Size (0.6)xm CMOS).

Thus, the optimal cache-line size for energy efficiency is 32B, which gives the

cache 32-way set associativity. Simulation demonstrated that a 4-way set-associative

cache would provide an insignificantly higher miss rate than a 32-way set-associative

cache, but the high degree of associativity is set by a combination of the Serial CAM/

RAM Access tag memory architecture, the IkB cache sub-block size, and the optimal

cache line size of 32B.
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The Cjif^j^y£ reported in Figure 5.10 for the 32B line size used in the prototype

system is 106 pF/access, which is below the of 125 pF/access as reported in

Section 5.3.1. This reduction of 19pF/access occurs because this simulation better

models the tag memory, which is not activated for sequential memory accesses to the

same cache line.

5.3.5 Cache Policies

Simulation of the processor system running the benchmark programs was

utilized to evaluate the most energy-efficient choice for the following cache policies.

5.3.5.1 Write Policy

The write policy dictates what happens upon a write for a cache hit. A write-

through policy dictates that every write is also transferred to the external memory to

maintain continuous memory consistency between the cache and the external memory.

A write-back policy only writes the data words back to main memory when a cache line

that had previously been written to is removed from the cache to be replaced by another

cache line.

These two policies demonstrate negligible impact on system performance, but

do show a difference in the total system energy consumption as shown in Figure 5.11.

For all three benchmarks, a write-through policy yielded consistently higher total

system energy consumption, due to an increase in external processor bus activity. With

the write-back policy, a cache line can be written to multiple times before being sent to

main memory, thereby decreasing the external memory traffic. Thus, the more energy-

efficient write-back policy was selected for the prototype system.

5.3.5.2 Write Miss Policy

The write miss policy dictates what happens upon a write for a cache miss. A

write-allocate policy will allocate space in the cache for the address being written to.
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FIGURE 5.11: System Energy Consumption vs. Write Policy for Benchmark Programs.

The cache line is first placed into the cache, and then the write can be completed. A

read-allocate policy will not allocate space, but send the data word directly to main

memory.

Simulations demonstrate negligible impact on both performance and energy

consumption. Thus, the policy chosen was read-allocate, which simplified the design of

the cache controller due to the complexity of the cache line allocation process, as

described in Section 7. 2. 3. 3. External memory can support both byte and word writes,

so the only added complexity was to support half-word writes, as specified by the

ARMS ISA, which are broken into two separate bytes before they are written out to

main memory.

5.3.5.3 Replacement Policy

The replacement policy dictates which cache line gets replaced during the

cache line allocation of a read miss. There are several choices of replacement policy.

One common policy is least-recently-used (LRU) replacement, which swaps out the

cache line which has not been accessed for the longest time. Another policy is round-
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robin replacement, which cycles through the potential cache lines. A third common

policy is random replacement.

For moderately sized caches (< 64kB) and for much lower degrees of set

associativity (e.g. 2-way or 4-way), the LRU replacement policy would provide the

most energy-efficient policy by minimizing the cache miss rate [henn95]. However, for

the high degree of set associativity (32-way) for the protot)T)e system, simulations

demonstrate negligible impact on both performance and energy consumption for all

three policy variants. Thus, the simplest policy for implementation was again selected,

which is round-robin. This can be implemented with 1 latch per cache line, which keeps

track of the last replaced line within each cache sub-block, and advanced one cache line

upon a replacement.

5.3.5.4 Level-0 Cache

A level-0 (LO) cache is essentially a small buffer between the primary (LI)

cache and the processor core. These are generally used when the primary cache cannot

complete a memory access within one cycle, due to either a very fast processor clock

speed or a very large primary cache memory [henn95]. In addition, LO caches have been

demonstrated to improve the energy efficiency of cache systems [bund94][su95]

An LO cache contains a data and tag memory, similar to the primary cache.

With an LO cache, a memory access first checks the LO tag memory to see if it contains

the desired memory location. If so, then the LO cache returns the desired word and the

primary cache does not need to be activated. If not, once the desired memory contents

have been located in the memory hierarchy, the cache line is placed into the LO cache. If

the LO cache size is only one cache line, then the LO can be implemented with little

impact on the cache system's performance since only a single tag compare is added into

the critical path. However, larger LO cache sizes, which need to be fully-associative,

require additional hardware complexity that will increase the capacitance/access of an
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LO cache hit, and may bloat the critical path and force a LO cache miss to extend over

an additional clock cycle.

With the slight modification to the CAM/RAM architecture highlighted in

Figure 5.12, it can support implicit buffers, which are functionally equivalent to an LO

cache, by latching the match lines and storing the location of the previously matched

tag. If a cache access has the same tag as the previous cache access, then the tag

memory does not need to be enabled, and the saved match line already points to the

correct word line of the data memory.

Tag
Memory
(32 X23)

Match

Lines

128
/ >

Word
Lines

Data

Memory
(128 x 2 x 32)

FIGURE 5.12 : Implementing an Implicit Buffer in the CAM/RAM Architecture.

While each cache IkB sub-block has this implicit buffer, to keep all of these

buffers active would require a 16-entry hash table of the last tag access to each sub-

block. The complexity then becomes similar to a larger LO cache. To simplify the

hardware, only one implicit buffer can be kept active at a time, requiring the storage of

only the tag of the previous cache access. This is functionally equivalent to a one cache

line LO cache.

Figure 5.13 demonstrates the improvement in energy efficiency of the LO cache

and implicit buffer by plotting the capacitance/access of a cache hit as a function of

their hit rates, and comparing them to a baseline implementation which accesses the

primary cache tag memory on each cache access (i.e. no LO cache). Two sizes of LO

caches are compared, as well as the implicit buffer approach. A high-level simulation is

used to estimate the capacitance/access by combining the capacitance/access of the
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individual blocks with their activity factors. For low LO hit rates, the LO cache approach

is much less energy-efficient than even the nominal case because many words are being

fetched from the primary cache and placed into the LO cache, which never get used by

the processor core. Only for high hit rates does the LO cache become more energy

efficient. The implicit buffer is more energy efficient across the broadest range of hit

rates, and is always more energy-efficient than the nominal case.
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FIGURE 5.13 : Capacitance/Access of a Cache Hit for LO Architectures (O.OjLim CMOS)

For the prototype system, the implicit buffer approach was chosen. For a one-

line (32B) LO cache, the hit rate will be on the order of 80% [bund94], at which value

the implicit buffer has 42% of the capacitance/access of a one-line LO cache. A four-

line LO cache can achieve much higher hit rates, in excess of 93.5%, at which point it

becomes more energy-efficient than the implicit buffer approach. However, the added

design complexity of the four-line LO cache outweighed the energy-efficiency

improvement. The implicit buffer approach provides a 30% improvement in energy

efficiency with minimal additional design complexity.
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5.3.6 Improvement with a Write Buffer

Write stalls occur when the processor core has to be halted while it is waiting

for an external write to complete. These occur for cache misses in which the cache line

being discarded has been modified in the cache and needs to be updated in external

memory. In addition, this occurs for direct writes to external memory which bypass the

cache. These typically occur for writes to the I/O memory space, which are quite

common in embedded processor systems. The use of a write buffer can eliminate these

write stalls by autonomously holding the stores and cache line writes and sending them

to external memory during free external bus cycles, thereby eliminating the write

penalty that is otherwisepresent (20 core cycles per cache line, 6 core cycles per single-

word write).

The basic implementation is shown in Figure 5.14. The write buffer collects

external memory writes from the cache memory and processor core at the processor

clock rate. When the external bus interface is free, the write buffer then completes the

writes at the external bus clock rate.

Processor

Core

Cache

Memory

Write

Buffer

Writesto ext. memory

Readsfrom ext. memory

External

Bus

Interface

External

Memory

FIGURE 5.14 : Cache Architecture Utilizing a Write Buffer.

For cache line writes, the system performance improvement is minimal due to

the low miss rate of the 16kB cache. The number of processor memory accesses in

which a cache line needs to be written out is 0.1%, thereby reducing the processor

cycles per instruction (CPI) by only 2%. However, the percentage of instructions that

are writes to I/O space is 1% for the benchmark programs, which translates into a

reduction of 15% in CPI, which is significant. Since the write buffer is used for only a
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small fraction of the time, its energy consumption is negligible (< 0.2%). Thus the

inclusion of a write buffer improves the system energy efficiency in excess of 15%.

5.3.7 Interfacing to an External Bus

The unified cache simplifies the external bus interface as compared to split

instruction/data caches, in which snoop hardware is required to maintain memory

coherency between the split caches [henn96]. With the addition of the write buffer, the

cache system busses can be connected directly to the bus interface with no adverse

affects on performance.

Bufferable writes are placed into the write buffer at the internal CPU clock

rate, and while the processor continues to operate, the bus interface writes the words in

the write buffer out to main memory in an autonomous fashion. For reads that must go

out to main memory, the processor is halted until the desired word is available in the

bus interface, but since it cannot perform useful work since out-of-order superscalar

operation is not supported, no performance is lost.

5.3.8 Advantages and constraints of the ARMS memory interface

The biggest constraint of the ARMS memory interface is that it is designed and

optimized for a unified cache, which is generally less energy-efficient than split

instruction/data caches. Since a unified cache requires some level of associativity, a

CAM-RAM tag memory architecture was implemented, and provided 32-way set-

associativity. A unified cache has one key advantage, which is that the hardware

required to maintain coherency in split caches is eliminated. The back-side of the cache

can communicate directly with the bus interface and external memory.

The ARMS memory interface contains a complex request-acknowledge

handshake protocol which can be utilized to improve the performance and energy-

efficiency of the cache subsystem [arm96b]. Encoded in the request control signal is
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what type of request it is (load, store, instruction fetch), what size it is (byte, halfword,

or word), whether the request is sequential to the last memory request, whether there

are more words to follow (as part of a load/store multiple instruction), and whether the

instruction fetch is speculative or not. Encoded in the acknowledge signal is whether

the request completed or aborted, and how many words were successfully returned on a

load/fetch request.

In addition, the cache system can send two additional signals back to the

ARMS core indicating whether the instruction and data buffers contain valid data from

a previous cache load/fetch request. In the prototype system, implicit buffers were

implemented inside the cache blocks themselves, as described in Section 5. 3. 5. 4. If

the cache indicates to the ARMS core that the end of the buffer has not yet been

reached, then the core does not need to place the address on the internal Address bus for

sequential loads/fetches, saving significant energy by not needlessly driving the bus.

5.3.9 An ARM8-optimized cache system

In addition to tuning the general properties (e.g. size, associativity) and

policies (e.g. write, replacement) of the cache system to the ARMS memory interface,

further architectural design choices were implemented to take full advantage of this

complex interface.

5.3.9.1 Double Reads

The drawback of a unified cache is that 25% of the instructions are data

transfer instructions, as measured from benchmark simulation. Thus the average

number of memory word accesses is 1.25 words per instruction. A standard memory bus

can only transfer one word per cycle, which would force the processor core to stall on a

data transfer instruction 25% of the time. To prevent the memory bus from being a

performance bottleneck, the ARMS interface allows for two words per cycle to be

retrieved from the cache system.
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The data RAM in the cache is organized into two columns of 32 bits each,

which is multiplexed depending upon Address[2]. By only allowing double reads to

occur for even word addresses, retrieving the second word simply entails switching the

multiplexer and re-firing the sense amp. Neither the CAM nor the word-line driver is

reactivated to read the second word. This strategy allows two words to be returned per

cycle, with the energy cost of retrieving the second word minimized to be less than 40%

of a standard cache read. The penalty for this strategy is that odd-word addresses cannot

return two words. However, once the prefetch unit is even-word aligned, it remains

even-word aligned until the next jump to an odd-word address, so that the impact on

performance is negligible.

5.3.9.2 Sequential Reads

The memory interface encodes whether the address of a fetch/load request is

sequential to the previous fetch/load request's address. Benchmark simulation found

that only 8% of data accesses are sequential, while 70% of instruction fetches were

sequential. Since only 20% of all instructions are loads, the net energy savings of an LO

cache for loads is only 0.25%. However, the energy savings of an LO cache for

instruction fetches is 10%. Thus, the implicit buffer for the LO cache (Section 5.3.5.4)

was only implemented for instruction fetches, and not data loads, since only the former

yields a significant reduction in overall processor energy consumption.

Using the 8-word implicit buffer simplifies the implementation of the virtual

LO cache within cache memory array. Only four bits of state are required to encode

which of the sixteen IkB blocks contains the current instruction buffer location. When

the core requests a sequential instruction fetch and the address is at the beginning of a

new cache line, the cache controller suppresses the CAM tag array, and the next word in

the implicit buffer is read from the data memory array.

161



5.4 System Coprocessor

5.3.9.3 Load/Store Multiple Registers

The ARMS memory interface also encodes whether there are more loads/stores

to follow sequentially, as part of a load/store multiple-register instruction (LDM/STM).

If the load/store is to the cache, these operations proceed at the core clock rate, and

cannot be further optimized.

However, if an STM takes a cache miss, then this encoded information allows

the cache controller to packetize multiple words per address, aligned on cache-line

boundaries, and place the address(es) and data words in either the write buffer, or send

them directly to the external bus interface. This increases the data bandwidth on the

external bus and decreases its energy consumption, compared to single-word stores,

which require an address to be transmitted on the external processor bus for each data

word.

If an LDM takes a cache miss, there is high probability that the missing cache

line will be loaded into the cache. Thus, optimizing LDM instructions was not

necessary, since the required cache lines will be loaded, and then the LDM will be

serviced from the cache at the processor clock rate.

5.4 System Coprocessor

The primary role of the system coprocessor is to configure global processor

settings, interface to the voltage converter chip, and maintain system control state. The

coprocessor has very low performance requirements, and consumes very little energy,

which for the most part is negligible. However, the energy consumption does become

critical while the processor is in the sleep mode, and in part, determines the total system

sleep-mode power dissipation. Thus, the coprocessor was carefully designed to

minimize its standby power dissipation.
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5.4.1 Architecture

The ARMS processor core provides a dedicated coprocessor interface, through

which coprocessor instructions are passed to the coprocessor unit and are executed in a

parallel 3-stage pipeline. Logically, the coprocessor looks like a large register file

which can be read from, and written to, by coprocessor data-transfer instructions (MCR,

MRC). However, the registers themselves are very heterogeneous, and cannot be

implemented as a standard register file. Some registers are read-only counters, others

have hard-coded values, while others are completely virtual in that a write to them

initiates some action by the coprocessor.

Thus, the coprocessor was implemented by connecting up the registers with a

shared input and output bus architecture. The heterogeneous registers' bitslices were

pitched-matched to provide compact layout.

5.4.2 Providing an integrated idle mode

The ARMS core does not provide a processor halt instruction. To implement

this instruction in the prototype processor, a coprocessor write instruction was used to

implement this feature. Upon a write to this register, the global clock signal is halted,

stopping processor operation. The processor can be restarted via an external interrupt,

or an internal timer interrupt.

Since all processor state is maintained during sleep mode, the operating system

can seamlessly enter and exit sleep mode without disturbing the state of the currently

executing software thread.

5.5 Summary

Energy-efficient architectural optimizations at both the system level and within

the cache subsystem significantly improved the overall processor system's energy
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efficiency, even while limited by the fixed architecture of the ARMS processor core. A

future, energy-optimized processor core may yield even further gains in overall system

energy efficiency.

In the prototype processor, the majority of the architectural optimizations

occurred within the cache subsystem, and the peripheral circuitry around the processor

core. Figure 5.15 plots the fraction of energy consumed by the core, and the remainder

of the processor for the prototype chip, and four other implementations of the ARM

architecture. The ARMS core used in the prototype is the same as the processor core in

the ARMS10, and very similar to the core in the ARM940T, and SA-110. What is

significantly different between these chips is the non-core component of the processor,

whose energy consumption is dominated by the cache. What is demonstrated in this

figure is the improvement in energy consumption of the cache subsystem, which

consumes only 42% of the energy in the prototype processor. In the other processor

chips, the fraction ranges from 52% to as much as 70% in the SA-HO. Thus, this shows

that the energy-efficient architectural design methodology presented in this chapter can

provide significant reduction in energy consumption.
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5.5 Summary

In the case of the ARMS processor, whose core is logically equivalent to the

prototype processor, the energy of the cache subsystem has been reduced by 30% in

relative terms while providing twice as large a cache. In absolute terms, the energy

reduction is 61%, or more than a 2x reduction.

165



Circuit Design
Methodology

6

The key to energy-efficient circuit implementation, much like architecture and

system design, is to focus on energy consumption throughout the entire design process,

rather than addressing it only as the design nears completion. There are several simple

rules of thumb that will yield an energy-efficient design implementation, and to be

compatible with DVS, new circuit techniques were developed for the more complex

blocks such as the arithmetic and memory circuits. The last section discusses a new,

ultra-low-energy bus transceiver design which was successfully demonstrated.

6.1 General Energy-Efficient Circuit Design

This section will describe a set of circuit design techniques which apply

equally well to any digital CMOS integrated circuit. Many of these design techniques

were first developed for low-power, custom DSP ASICs [burd94], and have been

applied here to a general-purpose processor system.

In an ideal digital system, all- signal paths through the. circuits have equal

delays, but in any practical system, this is not the case. Typical there is a small fraction

of signal paths that determine the achievable cycle time, the critical paths, and in those

paths, increased energy consumption may be warranted to decrease circuit delay to meet

a target cycle time. All other paths should consume as little energy as possible. For
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some paths, once their delay is increased to the cycle time, making them a critical path,

no further energy reduction can take place. Other paths, typically with very small logic

depth, have considerable slack and should be optimized solely for energy.

To make these optimizations, the circuit schematics must be analyzed and

modified before being committed to layout, after which, changes become much more

time intensive. Some paths reside entirely within a block, such that they can be

optimized solely within the block design. Other paths cross over multiple blocks,

requiring a complete schematic design of all dependent blocks for a truly optimal

design, rather than simply relying on predetermined setup and hold delays based upon a

behavioral model, and optimizing each block individually. The design methodology is

described in much more detail in Chapter 4.

6.1.1 Logic Style

There are a variety of logic styles to choose from, such as static CMOS, CPL,

Domino, NORA, C^MOS, CVSL, etc., which vary in their delay and energy

consumption [west93]. The optimal logic style cannot be found by merely selecting the

one that has the smallest total capacitance. They must be compared by analyzing their

effective switched capacitance per cycle, which factors in signal transition frequencies.

The outputs of static CMOS and CPL only transition upon an input transition, while

dynamic logic styles (Domino, NORA, etc.) incur output transitions both upon input

transitions, and during the precharge phase of every clock cycle. The clock nodes in

dynamic circuits have an energy-consuming transition every cycle, too. So, while

dynamic logic styles tend to be faster, they often have increased energy consumption, as

well.

For simple cells (e.g. AND, OR, AOI, etc.), the optimal logic style with respect

to energy efficiency is generally static CMOS [burd94], while with more complex cells,

there is no single, optimal logic style such that it is important to investigate a variety of
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logic styles. DVS also places further restrictions on logic design.

6.1.1.1 DVS Compatible Logic Design

While static CMOS is fully compatible with DVS, dynamic logic styles require

some modification to ensure proper operation. Fortunately, these modifications have

little impact on circuit performance and energy consumption. For buffered dynamic

logic styles, which are predominantly used in the prototype design, a small bleeder

PMOS device is added to maintain state on the precharged node when the inputs to the

pulldown network are not actively pulling the node down, as shown in Figure 6.1. This

device can have minimum width and non-minimum length, as very little current is

required to maintain state.

Inputs

pulldown
networic

Buffered Dynamic Logic
(e.g. Domino)

OutDut

pulldown
network

Bleeder

D

Output

Modified w/ Bleeder Device

FIGURE 6.1: Bleeder Circuit for Dynamic Logic.

In the prototype system, all synthesized logic utilizes static CMOS logic.

Dynamic logic was only selectively utilized in custom-designed blocks, such as wide-

NCR gates for zero-detection operations, wide-AND gates for decoding, and shifter

gates, where the effective switched capacitance reduction more than compensated for

the increased switching activity.
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6.1.1.2 ALU Design Example

Since the delay of CMOS circuits scales well over voltage, the initial circuits

were designed at 3.3V which set the target cycle time at 10ns. There were two critical

data paths in the ALU, both of which had only a half-cycle, or 5ns, to complete.

One path consists of a simple shift (0, 1, 2, or 3 bits only), a selective

inversion, and a 32 x 32 adder. The critical element in this path was the adder. The

shifter was implemented with a four-way mux, and the selective inversion with an OR

gate for a total of three gate delays. This allowed approximately 3.5ns for the addition

to complete, taking into account latch setup and hold time requirements. Various adders

were analyzed, including ripple, carry-select, and Brent-Kung adders [west93]. The

latter was selected because it could meet the targeted delay in the minimal energy

consumption. Other adders, such as the ripple-carry, had lower energy consumption, but

were removed from consideration because they could not meet the delay target.

The other path consists of a fully-programmable 32-bit shift, and a logic

operation unit. The logic operation unit (AND, OR, XOR) maps to a single

combinational logic gate, with an additional gate required for buffering. The shifter had

approximately 3.5ns to complete its operation, as well. The natural implementation of

the shifter would be a barrel shifter, which is the most compact. However, for DVS

compatibility, the usual NMOS pass gates must be replaced with CMOS pass gates. This

causes the 32-bit barrel shifter to consume a large amount of energy due to the large

CMOS pass gates required to keep delay through the shifter minimized. Instead, a

logarithmic shifter was utilized to reduce energy consumption, and was tuned to meet

the target cycle time.

6.1.2 Dransistor Size

Traditional design methodologies utilize cell libraries with transistor sizes

larger than necessary. A typical "Ix" output driver size uses transistor widths much
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larger than the minimum size. This is due to the desire to provide maximum drive

capability under a wide variety of load conditions. While this increases gate-area

density and simplifies the cell libraries required, it is not energy-efficient.

A more energy-efficient solution is to set the base "Ix" driver size to be

minimum size. For our MOSIS 0.6pm process, the minimum NMOS width is 1.2pm. To

equalize rise and fall times, and minimize gate delay, the "Ix" PMOS width is 2.4pm

due to the lower mobility of PMOS devices. A simple, energy-efficient, transistor-

sizing methodology is to initially set the size of all transistors so that short-circuit

current is minimized, as will be described in Section 6. 1.2. 1, below. Transistors in the

critical paths are then increased in size to decrease delay, as necessary, and all

remaining transistors with small fan-out are reduced in size while not violating

constraints for minimizing short-circuit current.

Conventional belief is that as process technology improves, interconnect

capacitance will dominate the total capacitance on a node, making transistor-size

dependent capacitance (gate oxide and diffusion capacitance) insignificant. Thus, the

optimal transistor size is much larger than minimum size, since performance will

increase while having a negligible impact on energy consumption. However, this is not

true, since while interconnect capacitance will dominate the global nets, for local nets,

transistor parasitic capacitance will continue to be significant, and remain critical to

minimize whenever possible [sylv98][ho99].

6.1.2.1 Minimizmg Short-Circuit Current

By bounding the ratio of input to output rise/fall times between gates, short-

circuit current energy consumption can be minimized. If the ratio is kept to less than

two, the upper limit of additional energy consumption is 12% at Vj^i^ = 3.3V. This is

achieved by sizing up devices as necessary when driving large loads. This constraint

will be defined as:

MIORFT = Maximum Input-to-Output Rise/Fall Time = 2 (EQ6.1)
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The simplest gate construct consists of minimum-size, back-to-back inverters.

In our O.bjim technology, the minimum nodal capacitance between these gates is 13.5fF

(50% gate capacitance, 50% diffusion capacitance). With a minimum interconnect

capacitance of 1.5fF, the minimum nodal capacitance rises to 15fF.

In Figure 6.2, a histogram of the nodal capacitance of the prototype ARMS

core is shown out to 50fF. The first peak occurs due to the small diffusion capacitance

between the numerous series transistors. These nodes represent internal gate nodes and

are not relevant. The next peak, starting around 15fF, represents inter-gate nodes and

validates the previous estimate. Nodes in the 10-15fF range occur either for other

internal gate nodes, or when the PMOS size has been reduced below the "Ix" width of

2.4|i.m, as will be discussed later.

12000f

10000

I 8000
I
£ 6000
9>

I 4000

0 5 10 15 20 25 30 35 40 45 50
Capacitance (fF)

FIGURE 6.2 : Histogram of Nodal Capacitance for ARMS Core. (53k nodes)

The minimum load capacitance driven by a "Ix" gate is 15fF. The test circuit

in Figure 6.3 was used to find the maximum load capacitance that a "Ix" gate could

drive while meeting the MIORFT. The worst case occurs when a driver with a maximum

load capacitance drives a gate with minimum load capacitance.
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FIGURE 63 : Test Circuit for Finding ^ Output Driver.

SPICE simulation yielded a of 50fF. This results in a rise/fall ratio for

VJVj- of 2.85. But what is critical is the input-to-output rise/fall ratio, and since the

longer rise/fall time on degrades the rise/fall time on rs2 the rise/fall ratio of VJVg2

is 1.9, which is below the MIORFT of two.

For larger load capacitances, the driver transistor sizes are just scaled up

proportionally. A "2x" gate can drive 50-100fF while meeting the MIORFT constraint;

a "3x" driver can drive lOO-lSOfF. While a "3x" driver could drive 45-150fF and still

meet the MIORFT, the finer resolution on the bins helps to further minimize energy

consumption. By using a "2x" instead of a "3x" to drive a lOOfF load, the combined

capacitance of transistor parasitics and output load has been reduced 10%.

6.1.2.2 Critical Paths

The timing veriHcation methodology in Section 4.6 is used to identify paths

that exceed the target cycle time. Within these paths, gate sizing can be increased to

reduce the path delay. The gate delay for the "Ix" driver varies by 40% over the range

of rated load capacitance. Gates can be sized up to significantly reduce delay at the

expense of increased energy consumption. Once the target cycle time has been met,

with some headroom, further size increases are not necessary. Since the number of paths

that are critical and need to be resized are small, the overall increase in chip energy

consumption is insignificant.

To prevent paths from arising that cannot be resized to meet the target cycle

time, a maximum logic depth constraint is imposed on the schematic design. This logic
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depth can be calculated by finding the maximum number of minimum sized inverters in

series in which the delay through them is below the target cycle time by some headroom

margin. For a 10ns (at 3.3V) target cycle time, and including 10% headroom margin, the

maximum logic depth is 30 gates (single inversion, e.g. NAND, NOR, AOI, etc.) per

half-cycle.

Thus, a schematic can be guaranteed by design that its layout implementation

can meet the target cycle time, preventing radical circuit redesign. If a netlisted

schematic has paths with logic depths greater than 30, then the circuit must be

redesigned through logic compaction or architectural modification to reduce the logic

depth to the allowed amount.

6.1.2.3 Non-Critical Paths

Paths that have very little logic depth can be made as slow as reasonably

possible without impacting target cycle time. However, to minimize short-circuit

current, gates with drive strength larger than "Ix** are not candidates for size reduction.

Simple gates within a more complex cell, such as an adder or flip-flop, often

have minimal capacitive loading. Hence, the PMOS width can be reduced from the

nominal 2.4iim down to 1.2|Lim without exceeding the MIORFT while decreasing the

gate-oxide and diffusion capacitance by roughly 33%.

Standard cells are not good candidates for size reduction because their output

loading is not known until after place & route, and can change with subsequent re

routes. Custom datapath cells, however, make excellent candidates because the internal

loading is known at the time of cell creation. Thus, down-sizing of transistors is done

only within custom datapath cells.

6.1.3 Gated Clocks

Gating, or selectively enabling, clocks is critical for energy-efficient circuit
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implementations, and this is particularly true for general-purpose microprocessors, in

which the clocked elements typically require activation only a fraction of the time. The

clock drivers described in Section 4, 3. 2. 1 contain inputs for both a local and global

clock enable signal, which allows either entire sections of the processor (e.g. processor

core, cache, etc.) to be halted with a global signal, or fine-grained control with a local

signal.

The local enable signal is used whenever the necessary condition for clocking

a latch can be calculated from locally available control signals. Routing additional

wires across the processor to provide the necessary state information, and adding a

large amount of additional logic to calculate the local enable signal can be less energy

efficient than always clocking the latch while the global enable signal is asserted. Thus,

for latches where the necessary state information is not readily available, the energy

penalty for providing this information must be evaluated and compared with the energy

savings of having a local clock enable signal.

In the prototype system, a total of 256 clock drivers were distributed across the

chip as shown in Figure 6.4. Of these, 80% have a local enable signal, demonstrating

that fine-grained clock gating can be utilized quite extensively in the processor design.

Within the processor core itself, 60% of the drivers are locally enabled.

These clock drivers, in turn, drive a total of 6292 latches distributed across the

processor chip as shown in Figure 6.5. This number does not include memory elements

in the register files and in the cache memory. If these latches were clocked every cycle

the processor is active, the aggregate clock load would be 150 pF/cycle, which is one-

half of the entire processors capacitance/cycle while it is active. However, 75% of these

latches were driven with a locally-enabled clock driver, reducing the average, aggregate

clock load to somewhere in the 50-75 pF/cycle range. Unfortunately, an exact number is

difficult to quantify.
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Finally, some latches must be clocked every cycle, even while the processor is

completely halted, and they are required in any block that interfaces with the external

world (e.g. interrupt controller, memory controller, etc.). Since these latches contribute

to the idle power dissipation, it is important to keep the number to a bare minimum. In

the prototype design, 60 latches required latching every cycle, and contributed 1Op,W to

the idle power dissipation, which is on the same order of magnitude as the subthreshold

leakage current power dissipation.

6.1.4 Optimizing Interconnect

The metal profile for our 0.6|Lim process is shown in Figure 6.6, along with the

capacitive components of a representative, minimum-width Metal2 wire. In this process

technology, minimum-width wires have almost a square profile, and as process

technology continues to advance, the height of the wires will become significantly

greater than their width.

1200 nm MetaiS

900 nm
top

700 nm Node Metall

me line

900 nm

bot

700 mn
Metall

900 nm 900 nm 900 nm

FIGURE 6.6 : Interconnect Dimensions and Capacitance Components (MOSIS 0.6pm)
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The total capacitance on Node is:

TOTAL ~ ^top ^hot 2 • (EQ 6.2)

where the line capacitance, C//„g, accounts for only 11% of with Metal1 and

Metals present, but 43% in the absence of Metal1 andMetalS as shown in Figure 6.7. In

areas of the chip with dense signal routing on all layers, spacing Metal2 wires at twice-

minimum spacing can reduce line capacitance by 11%, or more, depending upon how

much Metal1 and MetalS is present around the wire. In regions of the chip loosely

populated with wire routes, spacing wires far apart can provide a significant reduction

of almost 2x in energy consumption. This is particularly true for Metal! and MetalS

wires, as they are farther from the substrate than Metal1.

0.20

O 0.12

0.084
4 6

Metal2 Spacing (|xm)

FIGURE 6.7 : Metal! Wire Capacitance/|im With Adjacent Afeto/2 Wires.

With Metall/MetalS above/below

No Metall/MetalS above/below

In the prototype microprocessor chip, this technique was used pervasively to

reduce energy consumption. MetalS feedthru wires over the datapath were spaced

equidistantly to minimize their overall capacitance. The channel routes in the ARMS

178



6.1 General Energy-Efficient Circuit Design

core and in the cache system, in sparsely populated regions, were also spaced farther

apart. To minimize the load on the global clock, which transitions every single cycle

and is by far the highest energy-consuming net, it was routed in MetalS with at least

lOpm to the nearest MetalS wire. Metal2 and Metall wires were only utilized to cross

underneath and perpendicular to the clock net.

In more advanced process technologies, the fraction of Q/;v£ to Cjqj^i goes

up, which just exacerbates the benefit of spacing wires farther apart than minimum

spacing. Copper wires reduce the height of the metal wires, but this height reduction is

much less than the lateral geometry shrink going from our 0.6|xm process to a much

more advance O.lSpm copper process technology.

6.1.5 Layout Considerations

Many layout optimizations that are done for performance improvement or

silicon-area efficiency also improve circuit energy efficiency. For example, the layout

constraints of the custom datapath cells and the standard cells were carefully optimized

to minimize the silicon area in our 3-metal O.bpm process technology, and by doing so,

the overall circuit energy efficiency was increased.

Fingering devices can be used to reduce drain capacitance to not only speed up

circuit performance, but reduce the energy consumption. To further reduce drain

capacitance, pass gate diffusion can be merged with a driver's diffusion region. Spacing

control signals that frequently transition, such as clock signals, away from other cell

geometries reduces energy consumption as well.

6.1.5.1 Datapath Cell Layout

The datapath cell pitch was not set until the entire schematic of the ARMS core

datapath was complete, so that the absolute minimum number of cell feedthrus could be

calculated. The initial design yielded thirteen feedthrus, which after schematic
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redesign, was reduced to ten feedthrus. In addition, further constraints had to be

specified to optimize the layout with only three metal layers available for routing.

Within the cell, as shown in Figure 6.8, vertical Metall wires were used to

route power and ground. They have higher resistance than Metal3 wires, but require

many less contacts to connect to the devices, and also maximizes capacitance on the

power/ground lines. Their width was dictated by the maximum current the cell could

draw (Section 4. 4. 2. 2). Metall was utilized for control lines that span the entire

datapath, as well as local cross-overs of the Metall power/ground lines. They were

spaced as far apart as possible to reduce parasitic capacitance on them. MetalS was used

exclusively for feedthrus. The minimum pitch of Metal3 to accommodate contacts is

2.55)j,m, so in order to allocate room for ten feedthrus, the cell height was set to

25.5|Lim. These constraints minimized the overall area of the datapath, which in turn

minimized the length of the long feedthrus across the datapath, and reduced their

capacitance and energy consumption, as well.

NMOS Devices PMOS Devices NMOS Devices
—

Metal3

::2
<3 s

1 1 1 1

Metal3

Metal3
1 1 i nwell 1 ...JLL. 1 1 1

25.5pm

Variable Width

FIGURE 6.8 : Datapath Cell Layout Constraints.

The cells were designed so that they can abut on top and bottom, which

allowed them to be tiled up to form the datapath. By placing the power/ground lines on
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the far left and right of the cell, it can also directly abut other datapath cells on either

side if a routing channel is not required. In better process technologies with more metal

layers available, the cells can always abut because the additional metal layers remove

the need for explicit routing channels.

6.1.5.2 Standard Cell Layout

In designing the standard cell library, the goal was to minimize the overall area

of synthesized layout, which was achieved by reducing the cell size as small as

possible. The pitch was set to 19.2pm, as shown in Figure 6.9, which allowed for a

twice-minimum size PMOS device to be placed without having to finger it. To free up

as much Metal2 as possible for the router, no Metal2 was allowed inside the cell for

routing, and all pins had to be placed, centered about the middle in Metal2^ on a 2.4pm

routing pitch. This allowed the router to use Metal2 over the cell. The router used

Metal3 horizontally over the cell, Metall horizontally outside the cell, and MetaU for

vertical routes. The cells had to be designed to abut on either side.

MetaUpins
(on 2.4pmpitch)

Metall

PMOS devices

^ ^ nwell •

NMOS devices

Metall (GND)

19.2pm

Integer Multiple of 2.4pm

FIGURE 6.9 : Standard Cell Layout Constraints.

6.2 Memory Design

The basic memory blocks used in both the cache memory and the external

SRAM have been derived from a previous design which utilized sub-blocking, self-
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timing, and charge-sharing sense-amplifiers for a very low-energy implementation

[burs97]. In addition, this design was extended to a CAM which was utilized for the

cache tags. The key modification made to the previous design to make it DVS

compatible was changing the charge-sharing sense-amplifier, which uses an NMOS pass

gate to limit the signal swing on the bitlines to Vqq - Vj, to a full-swing design.

The critical aspect of a memory design, in order to ensure DVS compatibility,

are those circuits which are not standard CMOS logic. These primarily include the

memory cell, which only pulls down the bitline voltage by some fraction of and

the sense-amp circuit which restores the signal on the bitlines to full-scale. While

allowing the bitlines to swing full-scale would improve circuit robustness for DVS, this

would significantly increase memory energy consumption and delay, and is therefore

not a viable option.

The rest of the memory circuits (i.e. address decoder, word-line driver, output

buffer, and control circuitry) are typically implemented with standard static or d5mamic

CMOS logic, for which the circuit delay scales with voltage similarly to any other logic

circuits.

6.2.1 SRAM

The critical part of the SRAM's signal path along the bitlines, including the

memory cell and sense-amplifier circuits, is shown in Figure 6.10. The width of the

sense amplifier layout is twice that of the memory cell, so a 2-to-l multiplexer is used

for column decoding to provide efficient, compact layout by pitch-matching the sense

amplifier to two memory cells. CMOS pass gates are required to implement the bi

directional multiplexer.

The bitlines on either side of the multiplexer are precharged to so while

the SRAM is not being actively accessed, these precharged nodes will vary in voltage

with ^DD' The internal state of each memory cell, which is maintained by the cross-
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FIGURE 6.10 : SRAM Cell and Sense Amp.

coupled inverters, will also scale in voltage as varies. Thus, when the SRAM is

inactive, it can tolerate transient variations on ^DD much like static CMOS circuits

because all logic high nodes are actively being pulled up by a PMOS device.

Writing to the SRAM cell requires pulling one of the bitlines all the way to

ground in order to flip the state of the cell's cross-coupled inverters. This is

accomplished by one of the NMOS pull-down devices on Bit and R/r, which is enabled

by its corresponding NOR gate when the write enable {Weri) signal is high. The delay of

this signal path will scale with varying much like static CMOS logic.
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When the SRAM cell is being read from, the cross-coupled inverter, whose

output is low, begins to pull down one of the bitlines through the NMOS pass-gate

activated by the Word signal. Both NMOS devices are minimum size to reduce the size

of the SRAM cell (which determines the total SRAM block size) and therefore can only

pull the bitline down slowly. The sense amplifier is used so that only some fraction of

the voltage has to be developed across the bitlines to register a signal transition.

The memory is self-timed, which in addition to minimizing switching activity

to significantly reduce energy consumption, also enables the delay of the SRAM read to

scale with varying similar to static CMOS logic. A dummy word line is used to

generate the Sense signal, which is delayed from the activation of the Word signal by:

2 • Q •
^Word -> Sense ^ 6.3)

which is just the delay through two static CMOS gates. The voltage differential

generated on the bitline at the input of the sense-amp when it is activated is:

_ ' ^Word^Sense _ ' ^DD „
p T7v~Tr ^'^DD (EQ 6.4)
^Bitline ^ 1V ^DD) ^Bitline

where a is a voltage-independent term because the voltage-dependence in the ratio of

the current terms, I\ and /2, cancels out in Equation 6.4. Thus, the voltage drop is

proportional to ^DD' The delay from the activation of the Sense signal, at which point

the voltage on Bit is to the Bit signal crossing F^^/2 so that a signal transition

registers on is:

C^„• ^BU•(( ypo-^ysuio)--f) •(0.5 -g)
S..se^BU (EQ6.5)

where is the average current in the sense-amp's series NMOS transistors as Bit

varies from Vjyj^ - AF^/^jo to and scales with F^)/) similar to a static CMOS gate.

Thus, with self-timing, the voltage differential generated at the input of the

sense-amp is proportional to F£)£), which then allows the delay of the signal path from
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Word to to scale with ^DD similar to static CMOS logic. This is demonstrated in

Figure 6.11 which plots this delay versus static CMOS logic over VdD' .

) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

VoDiVT)
FIGURE 6.11: Relative Delay from Word to vs. Static CMOS logicfor Constant V^jy,

So while this delay tracks well for constant when F£)2) dynamically varies

while the sense-amp is evaluating, this delay begins to deviate. This occurs because the

voltage on Bit remains independent of Vj^d during the sensing, so that while the voltage

differential on Bit to flip the sense-amp at constant voltage is proportional to Vdd'

^Vbu = iVDD-i^VBu^0)-VDD '̂2- (EQ 6.6)

when varies by the required voltage differential scales inversely with

~ (^DD~ (^DD~ ~ (EQ 6.7)

Thus, when is positive, indicating that F^£) is falling, the amount of

voltage required to switch, AF5/^(AF£)£>), actually increases with ^DD and causes the

sense-amp to slow down much faster than static CMOS logic. Likewise, when AF£)£) is

negative, indicating that F£,£) is rising, the value AF5,-^(AF£)£,) actually decreases with

and causes the sense-amp to speed up much faster than static CMOS logic. As

shown in Section 3.4.3, this issue is most critical at low and ultimately limits how

fast F^£) can be allowed to vary. This is a fundamental limitation of sense-amps.
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6.2.2 CAM

A traditional implementation of a CAM cell is shown in Figure 6.12, which

uses a dynamic NOR gate {M3) to generate a Match signal that remains high if the data

values placed on the Bit!Bit lines completely matches the cells' contents across the

entire row [west93]. If any one bit in the row mismatches against the input pattern (i.e.

Bit ^ m and Bit ^ m), one of the NMOS pass gates. Ml or M2, pulls the input to M3

high, which in turn pulls Match low.

Match

FIGURE 6.12 : IVaditional CAM CeU.

This implementation is not DVS compatible, due to the NMOS pass gates. At

least two more PMOS transistors are required to convert them to CMOS pass gates.

Also, the traditional CAM cell requires Bit and Bit to be pre-discharged for a match

operation, and is not compatible with read and write operations which require Bit and

Bit to be pre-charged.

The CAM cell was redesigned, as shown in Figure 6.13, so that the CAM

always begins an operation with Bit and Bit pre-charged. This eliminates the delay and

unnecessary energy cost of switching the polarity on the bitlines. In addition, the CAM

cell is now DVS compatible.
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FIGURE 6.13 : CAM CeU and Sense Amp.

The additional five transistors increased the size of the memory cell so that the

sense-amp was better pitch-matched to a single memory cell in the CAM, as compared

to two memory cells in the SRAM. This change eliminated the need for a column

multiplexer so that the bitlines directly drive the sense amp. However, this forces the

bitlines to swing full-rail upon a CAM read. Since the CAM is most commonly

performing match operations, thereby making CAM reads infrequent, the overall

increase in system energy consumption is negligible.
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The CAM memory utilizes the same sense-amp and self-timed circuitry as the

SRAM, so that its delay has the same characteristics as the SRAM. The delay tracks

static CMOS logic very well at constant voltage, but suffers the same deviation when

^DD varies during the sensing period.

6.2.3 Register File

The ARMS architecture requires a 30x32b register file with one write-port and

two read-ports. The three ports are independently operated, requiring three different

ports to the register cell itself. To reduce the requisite routing overhead, the ports were

implemented with single-ended pull-downcircuits, as shown in Figure 6.14. The single-

ReadA

Write

Reads

I/O Circuitry

R^^er Cell

FIGURE 6.14 : Register FUe Cell and I/O Circuits.
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ended ports forced both the input and output bitlines to swing full-rail, but this ensures

that the delay of the register file scales over similar to static CMOS logic.

Both BitA and BitB are pre-charged high, and are selectively pulled down if

both the ceirs read signal {ReadA or ReadB) is high and the internal cell state is high.

The input data is inverted, because simulation demonstrated that the majority of data

bits written to the register file are low. This reduced the energy consumption of the

register file datapath by 55%, and the overall register file energy consumption by 33%.

The weak feedback transistors are required to maintain state on BitA and BitB when it is

not actively being pulled down in the evaluation state.

6.3 Low-Swing Bus IVansceivers

The energy required to drive large busses has become increasingly significant

as process technology has improved. While average gate capacitance and local

interconnect capacitance have reduced with improved process technology, global bus

capacitance has not. Global busses include both intrachip busses, and the interchip,

board-level processor bus.

Global intrachip bus capacitance has actually increased with improved process

technology, because both wiring capacitance per unit length and average bus length

increase with improved process technology. The wiring capacitance grows due to

thinner oxides and narrower wiring pitches. Larger die sizes necessitate larger bus

lengths for connecting up the various microprocessor blocks. The deployment of copper

interconnect has enabled a reduction in the wiring capacitance per unit length, because

it could be manufactured thinner than more traditional aluminum interconnect while

maintaining the same resistivity. But as copped interconnect is pushed into more

advanced process technologies, the wiring capacitance per unit length will continue to

once again increase.
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Interchip busses, primarily the external process bus, have a capacitance that

has remained roughly constant, because it is dominated by printed circuit board

capacitance, and packaging parasitic capacitance. However, bus frequencies have

greatly increased, driving up the energy consumption due to fast signal edges.

Transceivers for both intrachip and interchip busses are presented, along with

measured results from a test chip. These transceivers were not integrated into the

prototype system, in order to aid debugging, but integration into a future processor

system is discussed. The transceivers were designed to be DVS compatible so that they

could be integrated into a DVS processor system.

The key enabler of these low-swing transceivers is the demonstration of a

high-efficiency, low-voltage regulator [stra98]. The output voltage can be as low as

200mV with a conversion efficiency in excess of 90% using a standard 3.8V lithium-ion

battery for the input voltage.

6.3.1 Intrachip Transceivers

The on-chip transceiver was designed with differential signal lines. This

eliminates the need for a reference voltage at the receiver, and makes the bus

significantly more immune to coupling from adjacent, interfering signal lines. The

penalty is that the bus requires twice as many signal routes, but as the number of metal

layers continues to increase with process technology, this penalty is mitigated.

The transceiver architecture is shown in Figure 6.15. The driver uses two pairs

of two NMOS devices to drive the bus signals bit and TU to either VlQ^r or ground.

Since the driver's NAND and NOR enabled gates are powered by the variable voltage

^Z)Z)» the driver current and delay scales with V^i^. The voltage on bit and TU never

exceeds which can be little as 200mV, so that the receiver requires a comparator

with PMOS inputs to sense the voltage difference. To minimize energy consumption,

the comparator utilizes a clocked, dynamic design. The self-timed precharge signal
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simplifies the receiver control, which only requires a single clock signal to control it.
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FIGURE 6.15 : Differential Low-Swing Bus Transceiver Circuit

The RS latch at the output of the comparator registers when one of the

comparator's outputs, nx or ny, has gone high, and changes the signal OUT accordingly.

This eliminates any spurious transitions on the output signal. Since the comparator and

the RS latch is powered by the delay through the receiver scales with Vj^iy as well,

so that the transceiver delay and energy consumption scales with for DVS

compatibility. The self-timed precharge circuit puts the comparator back into precharge

mode as soon as a transition is detected in order to minimize energy consumption.

Figure 6.16 compares both the delay and energy consumption (in capacitance/

cycle) of the low-swing bus transceiver and a standard static CMOS bus transceiver

when driving a IpF load. The capacitance/cycle was calculated for random inputs,

which yields a 50% probability of a signal transition. While the low-swing transceiver

delay is twice as long, the capacitance/cycle reduction varies from 1.7x at high voltage
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to over 2.5x at low voltage.
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FIGURE 6.16 : Low-Swing vs. Standard Driver for Intrachip Busses (Simulated).

Thus, if architectural design can hide this increased bus latency and place a

latch at the receiver, the low-swing intrachip transceiver can provide significant

reduction in energy consumption. Additionally, for larger bus capacitances, the

capacitance reduction will increase. A 2pF bus capacitance will double the capacitance/

cycle of the standard bus transceiver, but the low-swing transceiver will only increase

by 30% at low voltage, and less than 2% at high This occurs because the bulk of

the energy consumed in the low-swing transceiver is by the comparator.

One other limitation to the low-swing transceiver is that while a standard bus

driver will only consume energy upon an input signal transition, the low-swing

transceiver consumes energy independent of the input signal. Thus, if the data is highly

correlated, the low-swing transceiver will actually consume more energy than the
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standard bus driver. For the IpF bus capacitance, if the probability of a transition drops

from 50% to 20%, then the standard bus driver becomes more energy-efficient. So in

order to evaluate whether a low-swing transceiver can reduce the energy consumption

on a bus, both its capacitance and data correlation must be evaluated.

6.3.2 Interchip Transceivers

The off-chip transceiver is a non-differential version of the on-chip

transceiver. While the differential signaling provides more robustness, the additional

pin-count on the package cannot be tolerated. Thus, the second bitline was removed,

and a reference voltage, set to one-half of used as the second input on the

differential comparator. The modified transceiver architecture is shown in Figure 6.17.

The single-ended receiver does place a constraint on the minimum value:

^LOW
^DD > ^REF ^Tp ~ +Vt„2 '̂ Tp (EQ 6.8)

so that as ViQjy is increased to provide more circuit robustness, the trade-off is

decreased operating range on V^d.

Enable -t
IN

LOW

Dnver Circuit

Receiver Circuit

44 P^Pne

Self-timed

Precharge

All device dimensions in finu
All devices have L=0.6 unless

labelled otherwise.

FIGURE 6.17 : Single-ended Low-Swing Bus lYansceiver Circuit
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Figure 6.18 compares both the delay and energy consumption (in capacitance/

cycle) of the single-ended low-swing bus transceiver and a standard static CMOS bus

transceiver when driving a 50pF load. This is a typical capacitance for a bus with ten

external chips connected to it, as in the prototype processor system. The capacitance/

cycle was calculated for random inputs, which yields a 50% probability of a signal

transition. For this case, the low-swing transceiver not only provides slightly less path

delay across the bus, but a significant reduction in capacitance/cycle in excess of 15x.

Correlation in the bus data will reduce the margin of savings, but the probability of a

signal transition would have to be below 3.3% before the low-swing transceiver

becomes less energy-efficient. Thus, the low-swing transceiver is extremely well-suited

for the external PCB processor bus, which has the key characteristic that the

capacitance per bit is anywhere from 25-lOOpF.
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FIGURE 6.18 : Low-Swing vs. Standard Driver for External Busses (Simulated).

A clock signal is still required to drive the external bus, and each cycle it is
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6J Low-Swing Bus Transceivers

required to switch on the order of 50pF of capacitance. Switching the signal at V£f£^ will

cause the energy consumed by the clock signal to completely dominate the energy

consumed by the low-swing bus. Thus, a continuous transceiver was developed to

transmit the clock signal at low voltage to mitigate this component of energy

consumption, and this circuit is shown in Figure 6.19.

All device dimensions in fim.

All devices have 1=0.6 unless
labelled otherwise.

Enable-7"

VlN

Driver Circuit

^(50pF)

Low-power Pre-AmpUfier Gain to Vdd

SuA/leg

Bias2

VREF-iVL0wl2)

Receiver Circuit

FIGURE 6.19 : Single-ended Low-Swing Clock IVansceiver Circuit

The driver is the same circuit used in the previous transceivers, and converts

the input clock signal to a low-swing signal. The receiver consists of two components,

the pre-amplifier and the second gain stage. The pre-amplifier's dual source-coupled

pair (SCP) circuits convert the signal to differential, and amplifies the signal from 0-

Vlow fo ^'^tp' The SCP circuits are biased by the battery voltage, to ensure a

fixed minimum tail-current of lOpA per SCP, which is set by bias voltages, Biasl and

Bias2, from a high-swing cascode current source [gray93]. The devices Mp\ and Mpi

provide an additional current source, which is a function of the variable voltage, yoD-
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6.3 Low-Swing Bus Transceivers

This allows the speed, and the energy consumption of the pre-amplifier to scale with

Vqi^. The second-gain stage amplifies the clock signal to The cross-coupled

loads ensure that this gain stage has no static current, as only one of this gain stage's

NMOS devices will be turned on, since Vtp > Thus, by using the pre-amplifier to

minimize short-circuit current, the receiver provides the necessary signal level-

conversion with minimal energy consumption.

The energy consumption in terms of the effective switched capacitance/cycle

at is shown in Figure 6.20. A clock signal switching at a voltage would have

50 pF/cycle, while the low-swing clock transceiver has reduced this to less than

2 pF/cycle. The capacitance/cycle is roughly constant, due to the variable-current tail-

source in the pre-amplifier. The penalty of using the continuous-time clock transceiver,

rather than the previous transceiver with the dynamic latch, is approximately 2x.
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FIGURE 6.20: Low-Swing ClockTransceiver Energy Consumption (Simulated).
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6.3.3 Test Chip

A test chip was fabricated in our 0.6p.m process to validate the low-swing

transceiver designs. The intra-chip receiver successfully operates with ViQjy = 200mV
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6.3 Low-Swing Bus Transceivers

as Vqd ranges from 1.0-4.2V, and the clock frequency ranges from 4-lllMHz. For the

1.4pF bus (measured) on-chip bus, the reduction in power dissipation ranges from 1.7x

to 3.3x as demonstrated in Figure 6.21, which yields an equivalent reduction in energy

consumption. In addition, the intrachip transceiver can operate as Vdd varies at a rate

of 10 V/|Xs, demonstrating that this design is compatible with a DVS processor system.

At Vqi) = l.OV, ViQiY can be operated as low as 40mV, though the minimum Viq^ for

all values of F£)£) is 150mV.

Bus Parameters

FiO^=200mV

Cbit= 1.4pF

FIGURE 6.21: Power Dissipation ofLow-Swing and Standard Driver for Intrachip Busses.

The inter-chip receiver successfully operates on a 50 pF/bit bus with Viq^ of

200mV as F£)jD ranges from 1.0-3.75V, and the clock frequency ranges from 4-lOOMHz

for the worst-case condition when all bits are switching simultaneously. Higher values

of Vpi) increase the current draw from Viqw^ and the resulting noise prevents the

receiver from continuing to operate properly. If Vi^qw increased to SOOmV, the

receiver can operate over the range 1.25-3.75V. When the number of bits that switch

simultaneously is reduced the receiver can operate at a value of as high as 4.75V

due to the decreased current draw on ViQjy-

197



6^ Low-Swing Bos Transceivers

In addition, when all bits are simultaneously switching, Viqw is 500mV, and

Vdd varies at a rate of 16 V/|lis, the receiver can operate over the range 1.25-3.25V.

As ViQjy decreases to 200mV, the range of drops to 1.0-2.6V. Decreasing dVj^j^dt

to 1 V/|is allows proper operation over the same range of as when it is held

constant. These results are summarized in Figure 6.22.

Maximum (2 bits switching,
constant

Maximum (all bitsswitching, constant Vj^j^

Minimum (all cases)

300 400

FIGURE 6.22 : Range of Operation for Low-Swing Interchip Bus.

500

The prototype low-swing inter-chip bus was designed with one power/ground

pin per eight bus pins. It is believed that by decreasing this ratio the range of operation

for V£f£) can be increased. In addition, further on-chip bypass capacitance for will

reduce the on-chip noise of this signal, and also improve circuit robustness and

operating range.

63.4 Future Integration

The prototype chip demonstrates the viability of the low-swing bus

transceivers, as well as significant reductions in energy consumption, particularly for

the external PCB processor bus. Extra overhead is required for the additional voltage
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6J3 Low-Swing Bus Transceivers

regulator to generate Vipm this can mitigated by sharing circuits between this

regulator and the existing system voltage regulator [stra98].

It is believed that additional pins for the low-voltage power and ground will

alleviate the headroom problems observed on the test chip, but this requires further

investigation. Additionally, for the inter-chip transceiver, it is necessary to provide a

stable Vji£f signal on-chip. For the test-chip, V££f was generated externally with a

resistor divider. However, this needlessly dissipates static power dissipation. Further

investigation is required to minimize this static power. One possible solution is to

generate V££p via a switched capacitor network. Another solution is to use large bypass

capacitors either on-chip or internal to the package to maximize the size of the resistors

used in the divider.
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Microprocessor

System

7

A complete embedded microprocessor system was designed and implemented

in 0.6|im CMOS to validate the processor system design methodology described in the

previous chapters. By combining Dynamic Voltage Scaling with energy-efficient

architecture and circuit design, the system is able to demonstrate more than an order of

magnitude improvement in energy efficiency.

In order to measure the energy efficiency of programs typically running on

portable devices, a complete software infrastructure was developed. This infrastructure

includes a pre-emptive multi-tasking real-time operating system providing standard C

library functionality, which allowed standard C programs to be compiled for the system.

A programmable I/O board enabled rapid prototyping of I/O devices to verify the

system's functionality, and enabled multimedia programs with real-time constraints to

run on the system.

Sections 7.1-7 describe the four chips as well as the physical board

implementation. Sections 7.8-9 describe the I/O board and the software infrastructure.

Section 7.10 presents the measured performance of the prototype system, and Section

7.11 compares this system to prior art and other energy-efficient processors currently

available today.
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7.1 System Architecture

7.1 System Architecture

The prototype system, shown in Figure 7.1, contains four custom chips

fabricated in a 0.6iim 3-metal CMOS process technology [hp95]. The chip-set includes

a microprocessor, a battery-powered DC-DC voltage converter, a bank of SRAMs, and

an interface chip for connecting to commercial peripheral devices, which are modeled

by the I/O board. These chips integrate all the necessary logic for inter-chip

communication so that they can be seamlessly connected together. For a completely

functional processor system, the only external components required are a crystal

oscillator, an inductor, and several small bypass capacitors.

Microprocessor
64kB

SRAM

0.5MB

Variable

~ Vdd

Commercial

Peripheral
Devices

FIGURE 7.1: Prototype System Architecture.

The DVS voltage regulation loop consists of the battery-powered converter

chip, and the VCO which is connected to the loop via the ^DD and fcLK signals. The

processor commands the desired clock frequency via the digital signal. The

37-bit System Bus consists of a 32-bit multiplexed address/data bus, and five bits of
V

control. In addition, the processor generates chip enable signals for the I/O and SRAM

chips.
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7.2 Microprocessor IC

There are three voltage domains in the system. The converter outputs the

variable DVS voltage, which powers the processor, the SRAM chips, the I/O chip,

and the front-end circuits on the converter chip. The battery voltage, supplies the

converter's power FETs and back-end circuits. The 3.3V voltage, K3 3, supplies the

output pads of the I/O chip so that it can replicate the system bus at a standard voltage

level, which allows the bus to connect to commercial ICs.

7.2 Microprocessor IC

The chip's processor core implements the ARM V4 instruction set architecture

(ISA) [arm96a]. The implementation was derived from an RTL behavioral model

(provided by ARM Ltd.) which fixed both the ISA as well as the processor core

interface. However, both the custom physical implementation of the core, as well as the

rest of the microprocessor design, were fully optimized for energy efficiency.

Full compatibility of the ISA was critical so that commercially-available

compilers, assemblers, and simulators could be used, thereby allowing rapid software

development on the hardware platform, and eliminating the need to develop custom

software tools. While the microprocessor implementation is ARM-based, the design

methodology outlined in the previous chapters is equally applicable to other ISAs, and

will yield similar improvement in energy efficiency.

Inter-chip communication is much more costly than intra-chip communication,

in terms of both performance and energy efficiency, so that integrating as much system

functionality as possible on the microprocessor chip will yield a more energy-efficient

implementation. As such, all system logic was integrated onto the microprocessor, with

the exception of the main memory, the voltage regulation loop, and the I/O interface.

The main memory remained separate because sufficient amounts of memory cannot be

integrated onto the same die. The loop and interface remained separate for design

simplicity, without having a significant impact on energy efficiency.
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The microprocessor die, shown in Figure 7.2, measures 7.5 x 9.0mm and

contains 1.3M transistors of which 890k are memory (CAM & SRAM) transistors.
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FIGURE 7.2 : Microprocessor Die Photo.



7.2 Microprocessor IC

7.2.1 Architecture

A high-level block diagram of the microprocessor's architecture is shown in

Figure 7.3. The processor core is a custom implementation of an ARMS, which is a 32-

bit five-stage scalar integer pipeline with an eight-word prefetch unit that performs

static branch prediction [arm96b]. The system coprocessor contains system control state

which can be manipulated by the ARMS core via its coprocessor interface. The cache

sub-system consists of a 32-way set-associative 16kB memory, a twelve-element write
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FIGURE 73 : Microprocessor Architecture.
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7.2 Microprocessor IC

buffer, and a bus interface, all of which are managed by the cache controller. The cache

is physically indexed to eliminate the need for a TLB, and the upper six bits, of the

address are utilized for memory-space control which gives the microprocessor an

effective 26-bit address space. The bus interface drives the external system bus, and

contains a memory controller which allows external memory chips to be seamlessly

connected to the bus. The VCO provides the variable-frequency clock signal, PClk, to

all the internal microprocessor components, and PClk is buffered and transmitted to the

converter as the fciK signal. The external bus is clocked by MClk^ which is divided

down from PClk.

7.2.1.1 Data Flow

The data flow of the microprocessor was designed around the fixed ARMS

interface. The memory interface consists of three unidirectional busses; the address bus

(VAddress), the write data bus (WData), and the read data bus (RData).

The system coprocessor sends data to the ARMS on a dedicated unidirectional

bus (CData). The coprocessor receives data via VAddress, and during this transfer

cycle, the ARMS must suppress any pending memory access and place the data word on

VAddress. Since coprocessor writes are infrequent, this has negligible impact on

processor performance due to the forced cancellation of memory-access cycles.

VAddress is an input to the write buffer and the bus interface, and is an input/

output to the cache memory so that the tag array can be read and written. The cache

controller also reads and writes the lower bits of VAddress so that it can detect cache-

line boundaries and generate cache memory block enables on reads, and increment

VAddress across a line for cache-line loads and write-backs.

WData is an input to the cache memory and the write buffer. The bus interface

has a bidirectional WData port so that it can input non-cacheable ARMS writes to be

sent to external memory, and output data to the cache memory during cache-line loads.
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7.2 Microprocessor IC

RData is an output of the cache memory and an input to the write buffer. The bus

interface RData port is also bidirectional so that it can input data from the cache

memory during cache-line write-backs to external memory, and send data to the core for

non-cacheable ARMS reads.

Since the system data bus is a single, bi-directional bus {PBus) which carries

time-multiplexed address and data words on it, as described further in Section 7.4, the

bus interface multiplexes the three internal busses onto PBus. Due to this multiplexing,

the write buffer stores both address and data words into a single twelve-element queue,

whose contents are sent to the bus interface via a dedicated unidirectional bus (WBOut).

7.2.1.2 Clock Control Domains

To eliminate unnecessary clocking and circuit activity, there are three top-level

clock control domains as shown in Figure 7.4. The core domain contains the ARMS

core and system coprocessor, which fetch and execute instructions when this domain is

active. The ARMS expects read and write memory accesses to complete in a single

cycle, and communicates these accesses to the cache controller via the ARMS*s memory

request and response handshake protocol [arm96b]. When the cache sub-system cannot

Always At^e —IvCO

System
Coprocessor

Core Domain

ARMS

Memory Write
Buffer

Cadte Domain

Cache Controller

ExternalDomain

(includes external
memory system)

Interface

FIGURE 7.4 : Clock Control Domains.
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7.2 Microprocessor IC

complete the request in one cycle (e.g. cache miss, full write buffer, blocked bus

interface, etc.), the cache controllerhalts the core domain via the Confirm si^al, which

gates PClk within all of this domain's clock drivers.

The cache domain contains the entire cache subsystem with the exception of

the system-bus side of the bus interface. The cache controller directs the operation of

the cache memory, write buffer, and bus interface via various control signals. In

response to a memory request from the core, the cache memory's tag array returns

whether the request is a match, and if it is not, the cache controller initiates a cache-line

load. If the access is not a match and the cache line is dirty (i.e. it has been written to in

the cache, but not updated in main memory), a cache-line write-back must be executed

first before initiating the cache-line load. The cache controller routes all bufferable

writes to the write buffer. When the buffer is full during a pending write, then the cache

controller halts the processor and waits for a slot to open. Similar to the ARMS memory

interface, the cache controller expects a read or write access to the bus interface to

complete in a single cycle. Since the system bus can operate at no more than one-half

the internal clock speed, the bus interface will halt the cache controller, via the Stall

signal, until the access is complete. This in turn halts the core domain's clock, as well.

The external domain is clocked by MClk^ and encompasses the system-bus side

of the bus interface, as well as the external memory system. An asynchronous interface

connects the core-side of the bus interface, which is manipulated by the cache

controller and clocked by PClk, to the bus-side of the bus interface, which connects

directly to the external system bus and generates the external memory chip enables

(CE). For external memory reads and I/O accesses that require multiple MClk cycles,

external chips can stall the bus-side of the bus interface via PWait, which also halts the

first two clock domains as well since they are both waiting for the pending system bus

access to complete.
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7.2.1.3 Write Buffer Control Flow

When there is no pending external-memory access request from the cache

controller in a given cycle, the bus interface polls the write buffer to see if is not empty.

When it is non-empty, the bus interface will autonomously initiate a system bus access

to write out the data to the external memory system. During this transfer, if the cache

controller has an access request to the bus interface (e.g. non-cacheable memory request

from the ARMS, cacheable request that takes a cache miss, etc.), the cache controller

must wait for the transfer to complete and stall the core clock domain. To ensure

memory consistency without additional hardware, any ARMS read request must stall

until the write buffer is empty [henn95]. With the large 16kB cache, this condition is

infrequent and stalling the core has negligible impact on processor performance.

7.2.1.4 DMA Control Flow

The I/O chip can directly access the main memory via a direct memory access

(DMA). A DMA request is sent to the microprocessor via the PReq signal. When there

is no outstanding system bus transfer, the bus interface grants the DMA request and

releases control of the system bus to the I/O chip. Until the DMA request completes,

any access request to the bus interface from the cache controller is stalled.

7.2.1.5 Processor Configuration & Monitoring

The system coprocessor, described further in Section 7.2.6, is responsible for

configuring the microprocessor and collecting dynamic statistics. The coprocessor sets

the processor speed by transmitting Fq£sired converter chip, and controls the

voltage-to-frequency conversion by configuring the VCO. In addition, it can conHgure

the ARMS core, as well as the operation of the cache subsystem via the cache

controller. The coprocessor collects run-time statistics from both the ARMS and cache

controller, which can be accessed in software via a coprocessor read instruction.
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7.2.2 Processor Core

The processor core is a fully-compatible, custom-implementation of the

commercial ARMS core. Starting from a block level RTL behavioral description, the

design methodology described in previous chapters was utilized to provide an energy-

efficient andDVS-compatible implementation. This section provides an overviewof the

ARMS core and highlights some of the specific design optimizations. A more detailed

description of the core's functionality, I/O interface, and signal timing can be found in

the ARMS data-sheet from ARM Ltd. [arm96b]

7.2.2.1 ARMS Instruction Set Architecture

The ARMS is similar to a traditional RISC ISA as it is a load-store

architecture. Data processing instructions can only operate on registers; external

memory contents can be loaded to and stored from the register bank, but not operated

on directly. In addition, the instructions are a fixed size of 32 bits. These characteristics

allow the ISA to map onto the common five-stage pipeline found in simple RISC

processor cores.

There are some non-traditional features of the ARMS ISA which prove useful

in embedded applications by reducing the machine code size. However, these add

complexity to the pipeline control and data flow. The primary features are:

• All instructions are conditionally executed. Each instruction has a four-bit

condition field, which must be evaluated before writing the results of the

instruction to the register bank or main memory, or passing the results to

subsequent instructions via data forwarding.

• The second operand of data processing instructions can be shifted before the data

processing operation. A five-bit field specifies the shift amount, and the shift type

can be logical left, logical right, arithmetic right, and rotate right. Because of this

feature, there is no explicit shift instruction.
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• Block data transfers to and from memory. Unlike regular load/store instructions

which operate on a single register, block transfers operate on a list of registers as

specified by a 16-bit field. This is a multi-cycle operation which halts subsequent

instructions in the pipeline until the operation has completed.

• Multiply and multiply-accumulate instructions. They require special hardware to

implement, and impact data flow because of the 64-bit result generated by a

32 X32 multiply and the need for the result to pass through the ALU to perform

the accumulate.

• Complex addressing modes. The ISA supports both immediate address offsets from

the base address register, and register-shifted offsets. In addition, the ISA allows

pre/post indexing and auto increment/decrement addressing modes [henn95].

7.2.2.2 ARMS Pipeline

The basic ARMS pipeline has five stages, as shown in Figure 7.5. However, the

Write stage is only used by load instructions when writing data to the register file. All

other instructions (e.g. data processing, store, branch, coprocessor) complete by the end

of the fourth stage at which time they have completed any writes to the register file.

The coprocessor operates lock-step with the ARMS pipeline, but with a half-cycle

delay, which is described in more detail in Section 7.2.6.

PClk
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7.2 Microprocessor IC

Complex instructions will cause the core to iterate on a pipeline stage more

than once, forcing all previous pipeline stages to halt. Simple shifts (left-shift hy zero,

one, two, or three bits) are optimized to complete in the same cycle as any operation

requiring the ALU, but complex shifts, which require the use of the barrel shifter, force

the core to loop on the Execute stage twice - one full cycle for the shift, and another full

cycle for the ALU operation. The multiply instructions will cause the core to loop on

the Execute stage a variable number of cycles, depending on the operands' data. Block

data transfers will force the core to loop on the Memory stage until all the requisite

registers have either been loaded or stored.

7.2.2.3 ARMS Data Flow Architecture

Figure 7.6 present a block diagram of the ARMS and highlights the main sub-

blocks of the core's datapath. The prefetch unit fetches instructions from the memory

via RData and places them in an eight-deep FIFO. The memory address is generated by

the program counter (PC) incrementer block and placed on VAddress. Whenever there is

no load or store pending on the memory bus, and the FIFO is not full, the prefetch unit

will fetch more instructions from memory. The datapath fetches instructions from this

FIFO in the first {Fetch) pipeline stage, and decodes the instruction in the first half of

the Decode stage.

In the second half of the Decode stage, the register operands are read from the

register file and placed on ABus and/or BBus. At the beginning of the Execute stage,

these busses input data to the multiplier, the write-data pipeline, or the ALU. The

multiplier will stall the datapath for two to six additional cycles, depending upon how

many of the most-significant source-operand bytes are zero, and place the output

product back onto ABus and/or BBus. The product passes through the ALU to be written

back into the register file. The write-data pipeline holds the register's data to be saved

for one cycle until the Memory stage, at which time the data is then placed on WData.

Simple ALU operations will complete in one cycle during the Execute stage, place the
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FIGURE 7.6 : ARMS Data Flow Block Diagram [anii96b].

result on the Result bus, and write the value back to the register file during the second

half of the Memory stage.

For loads and stores, the ALU is used to calculate the effective memory

address during the Execute stage, and the address is sent to the address buffer via the

Result bus. The address is then placed onto VAddress during the Memory stage. Stores
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will complete in this stage by placing the stored data onto WData. Loads will be

initiated during this stage, but the memory data will not be valid until the end of this

stage, and written to the register file in the first half of the Write stage.

When the PC is used as an operand register, the PC FIFO is used to hold the

value until the end of the Decode stage, at which time it is placed onto either ABus or

BBus. Writes to the PC are done via VAddress and flush all previous instructions in the

pipeline, inducing a two to four cycle penalty, depending upon the instruction. At the

same time the PC is placed on VAddress, to be latched into the PC incrementer block,

the instruction at that location is fetched and the prefetch unit begins loading

subsequent instructions.

To remove read-after-write (RAW) hazards in the pipeline, there are two sets of

data-forwarding paths. The ALU-forwarding path can bypass the Result bus to ABus and

BBus when a data processing or effective-address calculation result is used as an

operand in one of the next two subsequent instructions. It is either immediately

forwarded at the end of the Execute stage, or at the end of the Memory stage, in which it

is simultaneously being written back to the register file. Load instructions do not return

their data value to the datapath until the end of the Memory stage, so if the very next

instruction uses the loaded register as an operand, the datapath must stall for one cycle.

To make the data available for the Execute stage that coincides with the load's Write

stage, the load-forwarding path puts the returned data value onto either ABus or BBus

while simultaneously writing the data to the register file.

The 32-bit Process Status Register (PSR), shown in Figure 7.7, contains the

Flags Control

N

31 30 29 28^^

U Ov^ow
Carry
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N^ative

8 7 6 5 4 3 1 0

M4 M3 M2 Ml MO

Mode bits

FIQ disable
IRQ disable

FIGURE 7.7 : Process Status Register.
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condition code flags, the interrupts disable flags, and the mode bits which indicate

which mode the ARMS is operating in (e.g. user, supervisor, interrupt). Writing to the

PSR depends upon the current operating mode, and is done via the ALU and the Result

bus. Reading from the PSR is allowed in any mode, and is done by placing the register

value onto the Result bus and writing it to the register file. Instructions that set the

condition code flags do so at the end of the Execute stage. Subsequent conditional

instructions proceed as normal through the pipeline, but can be flushed in either the

Decode or Execute stage once the value of the flags are known

The ARMS interfaces to the system coprocessor via three busses. The pre-

decoded coprocessor instruction is placed onto CInstruct in the first half of the Decode

stage so that it is available on the rising edge of PClk. On this edge, the coprocessor

enters its half-cycle delayed decode stage. Reads from the coprocessor to the ARMS are

performed via CData, which is driven during the coprocessor's execute stage so that

data can be written to the ARMS's register file in the second-half of the Memory stage.

Writes to the coprocessor are done by placing the data value on VAddress during the

Memory stage, which makes the data available to be written into the coprocessor's

register file during its memory/write stage. The coprocessor pipeline is described in

more detail in Section 7.2.6.

7.2.2.4 ARMS Memory Interface

Although a split instruction/data cache structure is generally more energy

efficient, the ARMS memory interface is designed to connect to a unified cache due to

legacy system architecture constraints. Since, on average, there is more than one

memory read per instruction, due to instruction fetches and loads, the interface is

designed to return up to two words per cycle to eliminate this bottleneck. While this

would seem to shift the bottleneck to the cache memory's critical path. Section 7.2.3

will demonstrate that by constraining when the cache will return two words, the

memory's critical path can be significantly reduced with little or no degradation of
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processor performance.

The timing of the memory interface is shown in Figure 7.8. Both VAddress and

the ARequest control signal are driven by the ARMS when PClk is high so that they are

available to the cache system on the falling edge of PClk. If the memory request is a

store, then the data word to be written is placed on WData when PClk is low. The

ARMS always expects to get acknowledgment of the memory access request from the

cache controller by the rising edge of PClk via the AResponse control signal. For

instruction fetches and loads, the ARMS expects the word to be available by the falling

edge at the end of the memory access cycle. If two words are requested, it expects the

second word to be available on the rising edge of PClk following the access cycle.

ĵ Store
Load/Fetch Load/Fetch Load/Fetch Load/Fetch

Single I Double i Sequential i Single - Stalled
• 2 J* 3 »U 4 S

PClk_r"L_n
VAddress- CjZXZjZZXZZD- CZIK 6 (stalled)

ARequest ( 6(stalled)

—CTDWData-

AResponse-

RData-

Confirm

•cl3ct>c:i3<ie3{:z3

A [
FIGURE 7.8 : ARMS Memory Interface Timing.

c

If the cache system cannot complete the access request in one cycle, it must

still return an acknowledgment on AResponse when PClk is low, then deassert the

Confirm signal when PClk is high. Forcing Confirm low stops the clock signal in the

core clock control domain. The cache system reasserts Confirm when PClk is high

during the cycle it can complete the request, as illustrated for the fifth access sequence

in Figure 7.S. Due to the nature of the memory pipeline, the ARMS will already have

placed the sixth access request onto the interface, but it will stall until the fifth access
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request has completed.

The ARMS encodes in the ARequesi control signal whether the access request

is sequential to the last request of similar type (i.e. instruction fetch, data load, data

store), whether an instruction fetch is speculative or not, and whether the data load/

store will have more sequential accesses to follow as part of a block transfer

instruction. Access requests that are sequential do not need to drive VAddress because

the cache system can infer the new address by incrementing the previous address. These

hints from the ARMS are utilized to improve the energy efficiency and performance of

the cache, which is described in further detail in Section 7.2.3.

7.2.2.5 Optimizations for Energy Efficiency

The ARMS RTL behavioral model specified the microarchitecture of the core,

and was segmented into 29 sub-blocks. In order to use the model's companion test

vector suite, which provided vectors for the complete core as well as the individual sub-

blocks, the microarchitecture could not be altered. Generating a new suite requires a

tremendous effort, and outweighed the potential improvement in energy efficiency that

might be achieved by modifying the core's microarchitecture. Thus, only the physical

implementation of the processor core was optimized.

Before starting the design, an effective switched capacitance budget for the

core was set. The budget is in capacitance, and not energy consumption, because with

DVS the energy will vary with but the effective switched capacitance will remain

roughly constant. A budget was necessary to speed up design time so that only those

blocks that significantly contribute to the total core capacitance were energy optimized.

The design optimizations utilized the circuit design methodology outlined in Chapter 6.

Previous analysis [burd94b] and discussion with ARM (regarding an ARM?

core) indicated that for simple, scalar processor cores, three blocks —the register file,

shifter, and ALU —contribute more than 50% of the total processor capacitance/cycle.
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However, the ARMS has a prefetch unit, whose additional complexity was estimated to

reduce the contribution of these blocks to approximately 33%. Energy-efficient test

implementations of the three blocks in the target O.bjLim process technology were

50 pF/cycle, which was then multiplied by three to get the budgeted effective switched

capacitance of ISOpF/cycle. This budget was believed to be an aggressive, yet

achievable goal.

Previous research has demonstrated that for a large enough sample of machine

code, there is little variance in the effective switched capacitance per cycle for scalar

microprocessors [periOO]. Since the test vectors for each of the sub-blocks originated

from machine code run on the entire core to thoroughly test the sub-block, the

capacitance/cycle measured for each sub-block executing its own test vectors, when

summed for all sub-blocks, should approximately equal the capacitance/cycle measured

for the entire core running typical machine code. This critical observation allowed each

of the sub-blocks to be optimized in isolation, greatly reducing simulation time, and

yielding an overall energy-optimized processor core because individual sub-blocks can

be simulated much faster than the entire processor core.

This is validated in Figure 7.9 which compares the measured capacitance/cycle

when simulating the entire core (black) versus when simulating an individual block

(white). All of the individual sub-blocks compare to within 20%, with the exception of

the last sub-block, the multiplier, because it is exercised much more heavily in the test

code than in typical machine code. The 20% maximum variation can be reduced to

approximately 10% if the global bus capacitance is modeled in the sub-block

simulation, which is not the case for the measured data in Figure 7.9.

To further speed up the design time, the schematics were first energy optimized

before the time-intensive task of committing them to custom layout. Figure 7.10

compares the measured capacitance/cycle for each sub-block when simulating the

schematic and extracted layout netlists. The relative capacitances compare very well,
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FIGURE 7.9 : ARMS Capacitance Comparison of Sub-block vs. Entire Core Simulation.

with the extracted netlist yielding slightly higher capacitance due to the inclusion of

interconnect capacitance. Only two blocks radically deviate, which are the register file,

due to the overestimation of drain capacitance on the bitlines, and the ALU/shifter, due

to a large number of busses adding significant interconnect capacitance.
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In summary, the bulk of the design for energy optimization occurred while

designing the schematics for the various sub-blocks, which could be simulated

individually providing fast feedback on the measured capacitance per cycle. For those

sub-blocks that were below 3% of the budgeted capacitance (4.5pF), which were a

majority (18 of 29 sub-blocks), only obvious energy optimizations were made and the

schematics were quickly mapped to layout. This allowed more time to be spent on the

nine remaining blocks to be carefully optimized for energy efficiency, making the best

use of the design effort and yielding an overall energy-efficient processor core

implementation.

7.2.2.6 Core Energy Breakdown

A breakdown of the processor core energy consumption is shown in Figure

7.11. The numbers were generated from a 25,000 cycle simulation of typical machine

code on the extracted layout of the entire core. To ensure that this was a reasonable

Prefetch Multiplier
Control 2%

8%.

Prefetch

Datapath^
19%

Instruction &

PCFffOs

10%

Scala

Control

28%

FIFO \
Control

5%

/ Main

FSM'' Register
e%: Decode

9%

ALU&

Shifter

15%

Register
File

14%

Scalar

Datapath
43%

FIGURE 7.11: ARMS Energy Breakdown (Full Core Simulation).
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simulation, it was observed that the energy consumption is within 10% of the final

value in less than 10% of the simulation time. The simulation takes into account

processor core stalls due to memory system latency since the input vectors were

generated from a full system simulation. However, during this simulation, the processor

core is never put into sleep mode, and requires an average effective switched

capacitance of 187 pF/cycle while the processor system is active.

The breakdown demonstrates that the scalar core consumes 71% of the total

energy, split 60-40% between the custom-layout datapath and the fully synthesized

control logic. The prefetch unit consumes 27% of the total energy, split 70-30%

between the datapath and control, while the multiplier consumes only 2% of the total

energy for typical machine code. Among all sub-blocks, only six of them contribute

59% of the total capacitance/cycle, and it was on these six sub-blocks that a significant

fraction of the design time was spent.

The register file, ALU, and shifter combined contribute 54 pF/cycle, validating

the assumption in Section 7. 2. 2. 5, which estimated the capacitance at 50 pF/cycle,

and subsequently utilized to derive the capacitance budget for the entire core. These

three blocks' capacitance/cycle is only 29% of the total (40% of the scalar datapath/

control) which validates the initial assumption that these three blocks would contribute

one-third of the total core capacitance budget of 150 pF/cycle.

7.2.3 Cache

For scalar processor cores, the cache typically dominates the total

microprocessor energy consumption. However, since there was complete freedom in the

design of the cache, this implementation was heavily energy-optimized, yielding a very

energy-efficient cache that consumes only about one-half of the core energy

consumption. The only constraint on the cache was that it should be unified, and

support two memory reads per cycle to accommodate the ARMS memory interface. The
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size of the cache was chosen to be 16kB to maximize system energy efficiency (Section

5.3.1), and was solely limited by microprocessor die size.

The cache characteristics and policies were optimized for energy-efficiency as

described in Section 5.3, and summarized below:

• Associativity'. 32-way. Each IkB block has a 32 x 23 bit CAM for the tag lookup.

• Line Size: 32-bytes. There are 32 lines per IkB block.

• Write Policy: Write-back. Main memory is updated only when a dirty cache line is

replaced in the cache.

• Write Miss Policy: No write allocate. Write misses are sent directly to external

memory, and are not placed within the cache.

• Replacement Policy: Round-robin. Successive lines in the IkB block are chosen

for replacement upon a cache miss. A line will not be replaced until the 33rd

cache miss to a particular block.

• Double Reads: Two words may be returned in a single cycle if the address LSB is

0. If two words are requested and the LSB is 1, only one word is returned. After

the odd-address read, the ARMS prefetch unit will become even-address aligned

allowing subsequent double reads.

• Instruction Buffer: Each IkB block has an implicit instruction buffer, though only

one is active at a time. Consecutive instructions that do not cross a cache-line

boundary can be made without activating the CAM, reducing energy consumption

by 50%.

Figure 7.12 shows the how the 32-bit address space is utilized. The cache is

physically addressed, eliminating the need for a translation look-aside buffer (TLB).

,11 27,2(^,25 2i 54 2i

• ' ' Address Tag

' 'c:
Block Line Byte
Index Index Onset

Non-bufiferable bit. When high, will bypass write buffer.

Non-cacheabiebit. When high, will read/writedirectly to externalmemoiy.

Memorymap bits. All z«x> is main memoiy.Non-z»o is I/O and other memoryspace

FIGURE 7.12 : Address Space Breakdown.

222



7.2 Microprocessor IC

For embedded applications, a TLB is not particularly useful since embedded systems

generally do not have a larger, secondary storage unit (e.g. disk drive) which requires a

TLB to map it onto the smaller physical memory. Since a TLB also provides separate

address spaces to prevent memory conflicts, the lack of one in this system forces the

operating system and/or programmer to ensure no memory conflicts exist.

7.2.3.1 Cache Memory Array

As a compromise between energy consumption and silicon area (as described

in Section 5.3.2) the basic block size was set to IkB, and replicated 16 times to form the

cache memory array as shown in Figure 7.13. Due to the large size of the cache, which

fills approximately 60% of the chip, careful attention had to be paid to routing of the

busses, control signals, and power lines.

Power/Ground (shaded)

IkB

Write —.
Buffer —

To ARMS Core

Cache
Controller

To ARMS Cote

Bus

Interface

FIGURE 7.13 : Cache System Floorplan

The shaded areas indicate where power and ground are routed, which use

Metal2 & Metal3. Metall is used to connect up the bypass capacitance sitting under the

power routes, which totals 11.7nF for the entire array. The left, right, and top sides of

the cache abut the pad ring, providing low impedance from the power pins distributed

around the periphery to the entire cache memory.
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The switching activity of the three cache busses was analyzed to calculate the

total effective switched capacitance per cycle, as shown in Table 7.1. The capacitance

on WData is negligible, due to the low ratio of processor writes to reads, and the high

correlation in the data being written. The capacitance on VAddress and RData, however,

is significant (2.2% and 8.1%, respectively, of the total chip's capacitance/cycle

budget). By inserting a bi-directional switch on VAddress and a uni-directional switch

on RDatay only half of the cache toggles per cycle, reducing the capacitance/cycle by

2.3pF (-0.8%) and 6.5pF (-2.2%), respectively. By buffering up the signal on either half

of the cache, the capacitance that each block's outputs have to drive is reduced 60-75%,

such that much smaller drivers can be used. The speed-up of driving less capacitance

offsets the two-gate delays contributed by the insertion of the switches. To lighten the

load on the Match and Dirty output signals, they too have unidirectional switches,

reducing each block's output capacitance that it has to drive by 60%.

TABLE 7.1 Cache Bus Switching Activity and Efifective Switched Capacitance.

Bus

Toggles
(0^ 1)

per cycle

Capacitance per Bit Total Bus

Capacitance
per CycleHalfCache Global Total

VAddress 1.95 1200 flF 900 fF 3300 fF 6.4 pF

Wdata 0.15 600 fP 840 fF 2040 fF 0.3 pF

Rdata 6.50 1000 fF 1750 fF 3750 fF 24.4 pF

Thus, through simple high-level simulation and energy analysis, more than 3%

of the total microprocessor's energy consumption was reduced with the addition of

these simple switches.

7.2.3.2 Cache IkB Macro

The IkB macro builds upon a previous energy-efficient SRAM design

[burs97], which was ported from a 2-level metal process to a 3-level metal process. The

additional metal layer was used to provide much better power distribution and reduce

the capacitance on the bitline.
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The architecture of the macro is shown in Figure 7.14. On the left side is the

CAM array which contains the 23-bit address tags for the 32 cache lines. Upon a cache

read, prematch[31:0] is precharged and the 23-bit address tag is passed into the CAM

array, described in further detail in Section 6.2.2. If the n-th tag in the CAM array

matches, the prematch[n] signal remains asserted while all the other bus signals are

pulled low. The CAM state latches block contains the valid state bit for each of the 32

CAM tag addresses. The asserted prematch[n] signal is AND-ed with its corresponding

valid state bit to indicate whether a valid match exists, and if so, the signal match[n]

gets asserted as well as the global Match signal which is sent to the cache controller.

This indicates the desired cache line is present in the block.

I/O to IkB Macro Block

23b X 32

CAM

Array

cword

glilil
Ufiq&aas sjK

CAM

Array
Controller

prematch

Lme

Pointer

Array

CAM

State

Latches

nzii

Cam

State

Controller

match matchS

SRAM

Array
Controller

32bx2xl28

SRAM

Array

FIGURE 7.14 : Cache Memory IkB Macro Architecture.

The match[31:0] bus gets latched for subsequent sequential cache reads. The

matchS[31:0] bus is demultiplexed by Address[4:3] to select the desired word-pair of
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the cache line, and drives the corresponding word[m] signal into the SRAM array. Fora

cache read, the two 32-bitdata words corresponding to word[m] arereadfrom thearray,

and Address[2] drives the column demultiplexer to select which one of the two words to

place onto DataOut[31:0]. A cache write will take the data off Datain[31:0] and write

it to the desired location in the SRAM array. The schematic of the SRAM array cell,

column decoder, and sense-amp is described in Section 6.2.1.

During a cache read, if the global Match signal remains low, indicating the

cache line is not present in the block, then the cache controller looks at the global Dirty

signal. Dirty is set at the end of the match operation if the next location to be replaced

in the CAM has been written to in the cache and needs to be updated in main memory

before replacing. The next location is determined by the line pointer array block, which

is a circular chain of 32 latches, and gets rotated when a new cache line is written to the

macro block. If the cache line is dirty, then the cache controller reads the address tag

out of the CAM array, and then its corresponding cache line, which is then written to

main memory. To place new data into the cache, the cache controller first writes the

new address tag to the CAM array, and then subsequently, the eight data words

corresponding to this cache line.

Because matchS[31:0] latches the last cache line that matched, subsequent

cache accesses, which are sequential and do not wrap to the next cache line, do not need

to access the CAM. Instead, the cache controller increments the cache-line index bits

Address[4:2] appropriately, and matchS[31:0] drives the desired word[m] line to access

the SRAM array.

7.2.3.3 Cache Controller

The cache controller state diagram, shown in Figure 7.15, contains 30 unique

states. It is the central controller for the entire cache system, driving not only the 16kB

cache memory, but also routing data to the write buffer and to/from the external
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FIGURE 7.15 : Cache ControUer State Diagram.

interface. The bulk of the states are required to manage the cache memory, which

include writing dirty cache lines to main memory, reading in new cache lines, flushing

the cache memory, and performing read-modify-write operations to support the ARMS's

byte and half-word operations.
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To demonstrate the timing of the cache system, a timing diagram for a double-

read to the cache is shown in Figure 7.16. The ARMS's address and control signals

arrive at the cache controller during the Phi2 clock phase. The cache controller must set

both the correct block enable signal and the macro block control signals by the end of

the Phi2 clock phase, so that they are stable when the CAM is accessed in the Phil

clock phase. The cache controller must always return a response to the ARMS by the

end of Phil. If Match remains high, then the cache line was found in the macro block,

and in the subsequent two clock phases, data is returned to the ARMS via RData. If

Match goes low, then the cache controller will lower Confirm (not shown) in the next

CAM Access SRAM Access

I setup I access | wordl ; word2 |

PhilPClk

VAddress •

ARequestf
RRequest

BlockEnable[n]

SameLine, RamAcCt
nWritCyDouble^'

CacheFill, nFlush

Matchy
Dirty

AResponse,
RResponse

RData

PM2

IfMatch goes low, then ARMS
is halted, and Cache Controller
Initiates a new Cachellne read

from mam memory.

Phi2 Phil

Next CAM access can

begin here In Phl2
for one access/cycle

ARMS -> Cache

Controller Signals

Macro Block

_ Enable Signal

Cache Controller ->

Cache Macro Signals

Cache Macro ->

Cache Controller

Cache Controll^ ->

ARMS Signals

Cache Macro ->

ARMS Data

FIGURE 7.16 : Cache Memory Timing for a Cache Double-Read Hit
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Phi2^ which will gate the clock to the ARMS core while the cache system fetches the

desired word. In the meantime, the cache controller loads in the desired cache line &om

main memory, and if Dirty was also low, then it writes out the old cache line back to

main memory.

7.2.3.4 Cache Design Optimizations

The cache controller's control signals to the write buffer, bus interface, and the

ARMS core are dependent upon whether the Match signal, which is output by the

activated cache macro block, is high or low. The signal is not available until late in

Phil^ and created a critical path for generating these control signals, which must be

available at the beginning of the next Phi2. All possible cache accesses were analyzed

with the C simulator and categorized as either common cases or rare cases as shown in

Table 7.2. To reduce the critical path, an extra cycle delay was added to the state

machine for the rare cases, in order to reduce the loading on Match and speed up the

critical path.

TABLE 7.2 Categorization of Cache Access l^pes.

Common cases requiring optimization: Rare cases which could be slowed down:

1. Cache read hit (single & burst) 1. Non-cacheable burst reads

2. Non-cacheable single read 2. Cacheable/bufferable write miss (single & burst)

3. Cache read miss (single & burst) 3. Cacheable/non-bufferablewrite miss (single & burst)

4. Cache write hit (single & burst)

5. Non-cacheable/butferable write (single & burst)

6. Non-cacheable/non-bufferablewrite (single & burst)

Byte and half-word reads are rotated by the core. Byte and half-word stores

must be rotated by the memory system. Since the cache controller only consists of

standard cells, the datapath logic to do this resides in the bus interface, where the

RData and WData busses are readily available. However, this datapath logic is directly

controlled by the cache controller. Writes to memory locations present in the cache

memory require one stall cycle so that a read-modify-write can take place, as shown in
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the timing diagram in Figure 7.17. The original data word is read from the cache

memory, and latched from RData onto RDataTl. The byte or half-word to be written is

latched off of WData onto WDataTly then merged with the saved data on RDataT2 and

placed back onto WData where it can be written to the cache memory. Write misses are

sent as byte writes to either the write buffer or the bus interface. Because the external

SRAM and I/O can only operate on words and bytes, two cycles are required for half-

word write misses, in which WDataTl is used for temporary storage, in order to split

the half-word into two byte writes. When Confirm goes low, the ARMS core is stalled

for either one or two cycles depending upon whether it is a byte or half-word write.

Confirm

VAddress

WData

WDataTl

RData

RDataT2

request stalled write

m^e read &
new data

Byte/Haljword
Cache Writes

write write
request stalled byte0 byte1

byteOX ibytel

put selected byte
across entire bus

Halfword
Write Misses

FIGURE 7.17 : Timmg for Non-word Writes to the Cache and Main Memory.

7.2.3.5 Cache Energy Breakdown

As shown in Figure 7.18, half of the energy consumed by the cache occurs in

the SRAM component of the cache memory. For a single cache access in which the

CAM is activated, the CAM consumes 60% of the energy consumed by the SRAM. But

with the virtual instructions buffers, activation of the CAM is suppressed for sequential

instruction fetches, reducing its average energy consumption to 20% of that of the

SRAM. The busses consume 25% of the total cache energy, and includes the energy
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consumed by the address buffer. Finally, the cache controller consumes 15% of the total

cache energy. On a cycle-by-cycle comparison, the cache consumes 63% of that

consumed by the ARMS core.

Cache

Controller

15%

SRAM

50%

FIGURE 7.18 : Cache Energy Breakdown.
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7.2.4 Write Buffer

Since the external bus multiplexes address and data onto the same bus, the

write buffer stores both the address and data in a single register file, as shown in Figure

7.19. The multiplexed architecture allows either one cache line and one store, or up to

six single-word stores. In addition, the buffer can store a variable-number of multiple

words per single address for the Store Multiple (STM) instruction. If the STM words

cross over a cache-line boundary, the beginning address of the second cache line is
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FIGURE 7.19 : Write Buffer Architecture.
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placed into the buffer to align the external memory access on a cache-line boundary.

This is required to ensure that the store does not cross over multiple external SRAMs,

which the bus interface cannot support. Simulation demonstrated that given the system

architecture, any more than twelve buffer entries yields negligible performance

improvement.

The register file is 35 bits wide. The additional three bits are tags used to

indicate if the entry is an address {IsAddress)^ if it is the last data word (JsLast) or if it

is a byte-wide store {IsByte). The three busses of the cache subsystem {VAddress/

WdatafRdatd) are latched and multiplexed going into the register file. The latches are

required to provide enough setup and hold time for the register file, with two latches

required for RData because when reading out a line from the cache memory, two words

are returned per cycle. The address/data words are placed onto WBOut and sent to the

bus interface, under its control.

An out-of-order write buffer requires hardware to compare the address of a

pending read to all the addresses stored in the write buffer to ensure memory

consistency. The buffer control was significantly simplified by enforcing all external

memory accesses to be in order; before any external read request, the write buffer is

first flushed out. The exception to this rule is cache-line reloads, which are guaranteed

not to have the same address between the cache line being written out and the new line

being read in. Providing this exception reduces the latency to complete a cache-line

reload by a factor of two.

The input to the write buffer is controlled by the cache controller via four

signals, shown at the bottom of Figure 7.20. The LoadWord signal is utilized to enable

the write buffer, while the other three signals are decoded to determine which bus to

latch {LoadDirect)y which word is the address {LoadAdd)^ and which data word is the

last one {LoadLast). The timing on the input busses was dictated by the ARMS memory

interface, and the timing of the cache memory.
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VAddress

RData

VAddress

WData

LoadAdd

LoadWord

LoadLast

LoadDirect

Cache-line

Write

>

r -\

Indicates when data is latched
(and must be valid)

STM Write

V

Ln

Cache-line

Write

Direct write

Direct write — — STM write

FIGURE 7.20 : Write Buffer Timing.

7.2.4.1 Energy Consumption

For single writes (STR), the effective switched capacitance is 63 pF/word

(from simulation on extracted layout), and 26 pF/word for multi-word stores (STM).

The only instructions which use the write buffer are non-cacheable stores and stores

that take a cache miss. Since stores are approximately 10% of the instruction mix, the

write buffer contributes 1.3 pF/cycle, on average. Read cache misses may also enable

the write buffer, but only if the cache line is dirty, and switch 110 pF/cacheline.

However, this condition occurs well under 1% of the time, so the overall contribution is

less than 1 pF/cycle, on average. Thus, the write buffer consumes less than 1% of the

total processor chip energy consumption.

7.2.5 Bus Interface

The primary responsibility of the bus interface is to connect the processor
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clock {PClk) and bus clock (MClk) domains. The bus interface also includes the

components to enable bj^e and halfword writes, as shown in Figure 7.21. Reads from

external memory typically take many cycles to complete, and will stall the ARMS core

and/or cache system until the external access has completed. Since the prototype

processor is an in-order machine, there is no reason to provide buffering for reads to

allow the core to continue operating, since it must wait for the pending word to

continue. With a separate write buffer, there is no need to provide additional buffering

within the bus interface, such that the bus interface complexity is reduced to a four-to-

one multiplexer, four registers, and enabled buffers to drive the cache-system busses.

I§
(31.

'C

WBOut—

Byte
Rotator

Used for byte and

SN

n

inPBus *3

I
»<

CL,

outPBus O

(2

Processor Clock Domain (PClk) Bus Clock
Domain (MQk)

FIGURE 7.21: Bus Interface Architecture.

The bus interface talks to the cache controller, and the core via the controller,

on one side of the interface running at the processor clock speed {PClk). The other side

of the interface communicates with external memory at the processor bus clock speed

{MClk). The MClk speed is programmable via the system coprocessor, and can operate

at a 2x, 4x, or 8x multiple of PClk. Initially there was a Ix option, but the additional

hardware to support this was not warranted given the marginal performance

improvement achieved.
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The state machine controlling the bus interface is relatively simple, as shown

in Figure 7.22. If the state machine is idling, it services the write buffer if it is not

empty. Otherwise, it services I/O requests from the cache controller. Maintaining this

order ensures memory consistency. Otherwise, read requests from the cache controller

would have to be matched against pending writes in the write buffer, at the expense of

significant hardware complexity. Simulation demonstrated little performance

degradation by enforcing this order to eliminate the extra hardware. The only instance

when the cache controller takes priority over the write buffer is for a dirty cache-line

load, in which it is guaranteed that the outgoing cache line is not the same memory

location as the incoming cache line.

PReqPCT2&&

nBufferEmpty &&

InitRead && InUWrite

(nBufferEmp^ || PriorityReadl

Addrpassedtobus ^MtRead
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CackeUneSbSc
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Addr driven onto bus #
Qfteuetqflst word T

LastWM{^^[pArAiy
LastHbni&&

inReady

ATAR

OutReady

ENDR
inReatfy

OutReady=> outReadyPCT2
inReatfy=> inReadyPCT2

FIGURE 7.22 : Bus Interface State Machine.

All bus transactions must complete before moving onto a new transaction. The

state machine operates at PClk speed, and sends signals to the bus-side logic via a

simple handshake scheme that is independent of the phase difference between PClk and

MClk. If the PReq signal is assertedby the I/O chip, indicating a pending direct memory

access (DMA) request, the state machine hands off control of the bus after completing
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all outstanding bus requests. The I/O chip can then directly access main memory. The

processor core can continue to run, but if it attempts to access the bus, or attempts to

write to a full write buffer, then the core will stall until the I/O chip releases ownership

of the processor bus.

7.2.5.1 Clock Interfacing

MClk is derived from PClk using a selectable frequency divider consisting of

three flip-flops and a multiplexer, which introduces some phase shift. TheMClk signal

actually used is a buffered version of the signal off the external clock pad, which

ensures that the processor chip, memory chips, and I/O chip all operate with an MClk

that has minimum relative phase shift between the chips. This improves the robustness

of the signal timing on the external processor bus. This buffered MClk signal introduces

additional phase shift with respect to PClk, but a self-timed handshake scheme allows

proper operation of the bus interface independent of this phase shift, as well as ^DD-

Core->Bus\ The state machine changes state in Phil of PClk, and all signals

going to the external bus are derived from the machine state and other Phil signals. On

the falling edge of PClk, the control signals are latched, and the signal outReady is

asserted via an RS latch, with some delay. The outReady signal is then latched when

MClk is low, generating outReadyMCTl, to ensure a stable signal when MClk is high.

Upon the next rising edge of MClk, if outReadyMCTl is high, the output data is latched,

placed on outPBus, and sent directly to the processor bus pads. At the same time, the

bus-side logic drives outReady low via the same RS latch, and outReady is latched on

the rising edge of PClk to generate the signal outReadyPCTl. This signal is used by the

state machine to either wait, or pass new data to the processor bus. When outReady and

MClk are coincident in time, if the bus-side logic detects it is high, the additional delay

generating outReady will ensure the processor-side data is valid. Otherwise, outReady

will not be detected until the subsequent rising edge ofMClk. The signal outReadyPCTl

can stay high for up to one PClk cycle after the rising edge of MClk, but since the
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lowest clock ratio is 2x, the core-side logic will set up the next data element in the

second cycle, and be ready for the next slot on the processor bus: Hence, the state

machine at all times will be able to maintain maximum throughput on the external

processor bus. The timing for when the edges are coincident are demonstrated in

Figure 7.23.

PClk

ControlSigsC2,
muxBus

ControlSigsTl,
outPBusPCDl

outReady

MClk

outRea<fyPCT2

PBus
BusControl

FIGURE 7.23 : Core-side to Bus-side Timing.

Bus->Core: This case is similar to the previous one, in which all outgoing

processor bus requests get latched on the falling edge of PClk, and latched on the next

rising edge of MClk when outReadyMCTl is high. There is an additional signal that is

sent to tell the bus-side logic to latch the external processor bus on the falling edge of

MClk. When this occurs, the signal inReady gets asserted via another ^ latch, which is

latched on the next rising edge of PClk to generate the signal inReadyPCTl. Again,

additional delay is placed on the inReady signal to give the latched data enough time to

settle. The signal inreadyPCT2 is then used by the state machine to latch the data taken

of the inPBus bus, and send it off to the cache or processor core.

It is possible, if the outReady signal is exactly coincident with the rising edge

of MClk, for it to be detected some cycles, and not for others. This has the potential of

placing a bubble on the bus if a missed cycle follows a caught cycle, leading to an

invalid bus operation and possible system failure. To prevent this, an additional signal
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can be utilized to shift MClk an additional eight gate delays. This will eliminate the

coincidence, thereby eliminating the coincidence. Fortunately, this feature was not

required for correct operation of the prototype processor system.

7.2.5.2 Energy Consumption

Due to its simplicity and infrequent use, the bus interface has very little energy

consumption, on the order of 1-2% of the total processor energy consumption. However,

this does not include the bus drivers located in the chips pads, which consume

considerably more energy due to the large capacitance on the external bus, on the order

of 5-10% of the total system energy consumption.

7.2.6 System Coprocessor

The system coprocessor is a standard component of an ARM-based

microprocessor system, and is commonly found in some form in most other

microprocessors as well. It is responsible for system-level control functionality which

is independent of the processor core, as well as configuring the specifics of the

processor core.

The coprocessor operates lock-step with the ARMS pipeline, but with a half-

cycle delay as shown in Figure 7.24. For example, the coprocessor's CDecode stage

starts on the rising edge of PClk in the middle of the core's Decode stage. All

instruction fetching is performed by the core, so the coprocessor has no fetch stage.

There is also no memory stage since the coprocessor cannot directly access memory.

^^'L_rLrLrLrLjn_n_
Instruction 1: ^Fetch J^DecodeJ^ExecutejMemorj^ Write
Coprocessor: {cDecodJcExecutI CfVrite^

FIGURE 7.24 : ARMS Coprocessor Pipeline.

The ARMS interfaces to the coprocessor via three busses. The pre-decoded

coprocessor instruction is placed onto the CInstruct bus in the first half of the
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processor's Decode stage so that it is available on the rising edge of the clock. On this

edge, the coprocessor enters the CDecode stage in which the coprocessor instruction is

decoded. The coprocessor then proceeds with its three-stage pipeline, as shown in

Figure 7.24. Reads from the coprocessor to the ARMS are performed via the CData bus

which is driven during the CExecute stage so that data can be written to the ARMS's

register file in the second-half of the Memory stage. Writes to the coprocessor are done

by placing the data value on VAddress during the Memory stage, which makes the data

available to be written into the coprocessor's register file during the CWrite stage.

The system coprocessor is comprised of various counters and registers

containing special state variables. While the block appears logically like a register file,

it could not be implemented as such due to the heterogeneity of the registers; some are

read-only counters while other are read-write registers. Also, on many of the logical

read-write registers, many of the bits are hard-coded to zero. The implementation used a

shared bus architecture, with separate input and output ports. Table 7.3 lists all the

registers of the system coprocessor, which is logically organized as three separate

coprocessors.

TABLE 73 System CopFocessor Register Summary

Reg# Coprocessor 13 Coprocessor 14 Coprocessor 15

0 Access Cycle Coimt (RO) Real Time Coimter Low (RO) MMUID(RO)

1 Idle Cycle Count (RO) Real Time Counter Higjh (RO) System Control

2 Sleep Cycle Count (RO) Timer Interrupt

not used

3 Wait Cycles (RO) Interrupt Suspend

4 Hit Count (RO) Internal Dynamic Clock Speed

5 Cached Miss Count (RO) External Pin Control

6 Cache Writeback Count (RO) Hw. Control Tweaks

7 Uncached Access Count (RO) Instruction Count (RO) Cache Operations (WO)

7.2. 6.1 Coprocessor 13

This logical coprocessor only consists of read-only counters. Four of the

counters (register 0-3) are used to monitor processor operation. One counter records
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cycles that the processor core is making a memory request (Access); another tracks

when the core is active, but has no memory request (Idle); a third tracks when the

processor is asleep (Sleep); and the last one tracks when the core is stalled waiting on
f

the external bus to complete a transaction (Wait). Another four counters (register 4-7)

monitor cache operation by recording the number of cache accesses that are hits,

misses, dirty cache-line writebacks, and uncached accesses. These eight counters can be

utilized by the operating system to adjust processor performance depending upon how

the processor is being utilized. For example, if the processor spends a significant

amount of time stalled, then processor speed can be reduced because the performance

bottleneck is in accessing I/O data.

7.2.6.2 Coprocessor 14

Registers 1 and 0 are read-only, and form a 64-bit real-time counter whose

value is in microseconds. When writing to register 2, any pending timer interrupt is

cleared, and a new timer value is set, also in microseconds. When reading this register,

the next timer event is returned. The processor enters sleep mode when register 3 is

written to. The processor will remain idle until the next interrupt occurs, either due to

an external event or due to the timer. Reading register 3 returns the current state of the

interrupt lines as indicated in Table 7.4. The EnlRQ bit as specified indicates a pending

IRQ request from an external source, while the nTIQ line indicates a pending timer

interrupt from the internal timer. The EnlRQ and nTIQ lines are merged into a single

signal, nIRQ, which is then sent to the ARMS core.

TABLE 7.4 Interrupt Information Bitmap. (CP14R3)

31-10 9 8 1 6 5-0

X nTIQ EnlRQ nIRQ nFIQ X

A write to register 5 sets two target internal dynamic clock speeds: one for

normal operation, and one for interrupts as shown in Table 7.5. The special interrupt

clock speed can be enabled/disabled with a separate control bit for both IRQ and FIQ in
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C15R1. Upon writing to this register with no pending interrupts, the desired clock value

is sent to the regulation system via the regulator interface (Section 7. 2. 6. 4). When

either an FIQ or IRQ arrives (and the corresponding mask bit is enabled in C15R1), the

interrupt clock speed is sent to the regulation system. Also, upon de-assertion of the

interrupt, the normal clock rate is sent to the regulation system. Reading this register

returns the current sampled processor speed, which is not necessarily the same value

written. This allows the operating system to get feedback from the voltage converter

loop to ensure that it is delivering the target frequency.

TABLE 7.5 Clock Speed Write Bitmap. (CP14R4)

31-15 14-8 7 6-0

ignored interrupt clock speed ignored normal clock speed

The lower three bits of register 5 controls the state of four external pins. There

is no other effect of writing to this register, and thus it is the recommended register to

use when NULL coprocessor write operations are required. A read from this register

returns the last value written. Register 6 controls both the external bus clock ratio

(bits 6:5), and the fine-tuning for the VCO (bits 4:0), which is described further in

Section 7.2.7. The bus clock ratio can be set to 2x (10 or 11), 4x (01), or 8x (00).

Register 7 is a read-only register which maintains a count of the number of instructions

executed since processor start-up.

7.2.6.3 Coprocessor 15

Coprocessor 15 contains standard register definitions in ARM implementations

[arm96a]. However, only those registers that pertain to the prototype system

architecture were included; the registers that control a translation look-aside buffer

(TLB) were not implemented due to the lack of a TLB in the prototype system.

Register 0 is read-only and always returns the hexadecimal value 0x42018110, which

specifies the implementor, 0x42 ('B' for Berkeley), the architecture version, 0x01, the

part number, 0x811, and the revision, 0x0.
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Register 1 is the system configuration register, whose 15 standard bit mappings

are described in Table 7.6. Those bits which apply to the prototype are in bold. ThQ C,

and W bits effect the function of the cache memory system. The B and Z bits are fed

back into the processor core to alter core functionality. The A bit is sent to the cache

controller to alter response to non-aligned memory accesses. All others bits are read as

0 or 1, and are unalterable.

TABLE 7.6 System Configuration Register Bitmap. (CP15R1)

31-15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name not used IE FE I Z F R S B L D P W C A M

Liitial Value 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

Ai Alignment Paul t Enable

C: Cache Enable

W: Write-buffer Enable

Description B'. Big Endian Select (else Little Endian)
Z: Branch Prediction Enable

FE\ Enable differentclock speed for FIQ (set withC14R4).
IE: Enable differentclock speed for IRQ (set withC14R4).

Writing to register 7 will flush, or clean, cache blocks. The Flush operation

will invalidate the entire cache. The Clean operation writes out data at the specified

address if it is dirty. The entire cache can be cleaned by stepping through all 512

cachelines. These operations also require subsequent writes to the NULL coprocessor

register (CP14R5) to work properly with the cache system. The code sequences are

shown in Table 7.7.

TABLE 7.7 Cache Control Operations. (CP15R7)

Function opcode_2 value CRm value Data Instruction

Flush ID cache(s) 000 0111 SBZ MCRpl5,0,2r,c7, c7,0
MCRpl4,0,Ar,c5,2r

Clean ID single entry 001 1011 VA MCRpl5,0, Rd, c7, cll, 1
MCRpl4,0,Rd,c5,Jr

(SBZ = Should Be Zero, VA—VirtualAddress,X = don't care)

7.2. 6.4 Regulator Interface

In the prototype processor, the system coprocessor is also responsible for
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interfacing with the separate regulator chip, when the conditions for changing the

processor frequency occur (Section 7. 2. 6. 2). The interface is synchronized to the

regulator chip with the 4 MHz clock signal, and transmits the new seven-bit digital

frequency value serially, in order to reduce the pins required.

Once the regulator has received the new frequency value, and begins adjusting

^DD and the clock frequency accordingly, further frequency change requests must be

blocked until the regulator has reached steady-state. However, it is not necessary to do

this on the processor. On the DVS chip, new request are denied as long as the internal

Track signal is high, which indicates that the converter is currently changing so

there is no need for flow control from the converter chip back to the processor. Hence,

the only time new requests will be blocked by the interface is when there is a currently

pending transaction being serially transmitted.

7.2.6.5 Energy Consumption

There are three different processor operating conditions to consider when

analyzing this block's energy consumption: Active (processor is active). Wait

(processor is stalled on a memory access), and Sleep. The first is not critical, since the

energy consumed by the processor core will dwarf that consumed by the coprocessor.

The second is not critical either, due to energy consumption in the cache subsystem

which dominates any energy consumed by the coprocessor, and because the energy will

be the same between the Sleep and Wait modes. The Sleep mode is most critical since

this is the lowest energy mode, with energy consumption dominated by the coprocessor

and the global clock distribution, as shown in Table 7.8.

TABLE 7.8 Estimated Processor Capacitance/cycle by Operating Condition.

Mode Coprocessor ARMS Cache System

Active 6.3 pF 200 pF 125 pF

Wait
3pF

4pF 40 pF

Sleep 4pF 3pF
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Thus, the system coprocessor's circuits which are always active (e.g. real-time

counters, interrupt controller, etc.) were optimized to minimize their .energy

consumption, which was reduced to 30% of the total energy consumed by the processor

while in Sleep mode.

7.2.7 VCO

To accommodate process variation over the die, as well as simulation error, the

oscillator was designed to be programmable from 50% to 150% of nominal frequency

with five bits of control. The frequency control is designed to be glitch-free so that it

can be programmed via software through a register in the coprocessor (CP14R6).

The basic oscillator architecture, shown in Figure 7.25, consists of five binary-

weighted delayblocks, plus a return path to close the loop. Each of the delayblockshas

both a slow and fast path which is selected by the ctrl[n] signal. A new value for this

signal may be loaded when the trigl signal transitions low-to-high. By ensuring that the

pass gates in the basic block have switched by the time trigl transitions low-to-high,

the oscillator will change frequency glitch-free. At system start-up, the VCO operates

in its slowest mode (e.g. highest voltage for a fixed frequency) to ensure proper

operation. In the initial boot sequence, the operating system can measure how fast the

Basic

Block

Full

VCO

in Ctrl

Ctrl

-|>out

ctrl[4:0]

Delay4 Delays Delay2 Delayl DelayO

FIGURE 7.25 : VCO Architecture.
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VCO can be operated at, and set it accordingly.

The hardware was stepped from 5 MHz to 80 MHz in 5 MHz increments, and

at each step, the ring oscillator's control bits were decreased until processor failure.

Decreasing the control bits had the effect of decreasing supply voltage, since the

converter loop maintains constant clock frequency. The minimum control setting to

prevent processor failure was exactly the setting for nominal frequency at all frequency

values, with the exception at 5 MHz, at which speed the control could be decreased by

one LSB from nominal. This demonstrates that the critical paths of a CMOS processor

do track extremely well over a wide range of voltage.

7.2.8 Packaging and Chip-Level Design Issues

The microprocessor die was placed into a 132-pin QFP package. There are 77

signal pins, with 56 pins required for the processor system bus including 17 pre-

decoded chip-enable signals for the memory chips {CE[15:0]) and the interface chip

{lOCE). Thus, no external decoding circuitry is required, as the processor can be

internally configured for 1-16 32kB, 64kB, or 128kB memory chips. Additional signal

pins include four pins for the regulator chip interface, two pins for the external interrupt

lines from the I/O sub-system, one pin for an initial reset by the regulator, one pin for

an external reset signal, and one pin for the reference clock signal used for the internal

counters. Twelve more pins are used to provide debug support.

There are 55 power pins, with 28 for ground, 16 for the variable processor core

voltage (F/5£)), ten for the variable I/O circuit voltage {Vqqjq)^ and one for the battery

voltage Although separate ground lines for the core and I/O circuits would have

been preferable, in order to isolate the core from the noisy I/O circuits, the low-

impedance substrate in this process makes this unfeasible. The battery voltage is

strictly used to provide electro-static discharge (BSD) protection on those input pins

whose signal level is
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The complete processor chip pad breakdown is given below.

TABLE7.9 Processor Chip Pad Breakdown (132-pin QFP package).

Signal i/o Pads Supply Description Pin Number(s) Imax

gnd! 28 Single ground

1,7,11,16,19,23,28,3139
42,47,52,57,64,68,72,77
81,87,91,98,102106,110,115,
118,125,129

Vdd 16
Core voltage
(1.2-3.8V)

9,21,33,37,49,60,70,74,
79,89,96,100,108,120,
127,131

^DDIO 10
I/O voltage
(1.2-3.8V)

4,14,25,35,45,84,94,104,113,
122

^BAT 1 High-VESD(4V) 59

MClk 0 1 ^DDIO

LPARM

Processor Bus

126 50 mA

PBus i/o 32 ^DDIO

50,48,46,44,43,41,40,38,36,
34,3230,29,27,26,2432,20,
18,17,15,13,12,10,8,6,5,3,2,
132,130,128

33 mA

Write ot 1 ^DDIO 124 33 mA

Byte ot 1 ^DDIO 123 33 mA

Burst ot 1 ^DDIO 121 33 mA

PReq i 1 ^DDIO 119

nMREQ o 1 ^DDIO 116 33 mA

PWait i 1 ^DDIO 117

CE ot 16 ^DDIO
85,86,88,90,92,93,95,97,99,
101,103,105,107,109,111,112

33 mA

lOCE 0 1 ^DDIO 114 33 mA

POk o 1 ^DD Clock ou^ut 69 50 mA

PwrGood i 1 ^BAT Reset from converter 58

nBst i 1 ^BAT External hard reset 61

FIQ i 1 V3.3 InteiTupts. Input from
Xilinx(3.3V)

62

IRQ i 1 Vu 63

ReJClk i 1 FbAT 1 MHz, for timers 66

ak4M i 1 ^BAT 4MHz,forDVS 67

LoadM 0 1 ^DD
DVS interface

71 10 mA

DataM o 1 Vdd 73 10 mA

ExtClk i 1 Vbat External clock input
(for debug)

56

EnExtClk i 1 VbAT 55

SwCE i Vbat

Debugging pins

53, 54

ExtPins 0 Vddio 78, 80, 82, 83 33 mA

Confirm 0 1 Vddio 76 10 mA

Stall 0 1 Vddio 75 10 mA

EnSpec i 1 Vbat 65

ShMClk i 1 Vbat 51
.. ,
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7.2.8.1 Pad Design

For debugging purposes, the I/O pads were designed to operate at a different

voltage than the core, so that they could be left at fixed voltage while the internal core

voltage was varied. Thus, all output & input pads support level shifting, with the

exception that the four signals which connect to the regulator chip must always be at the

nominal core voltage The schematic for the level-converting I/O pad is shown in

Figure 7.26.

enOut,
(0 - Vddio)

out

enin

'DDIO

level-convert

DDlO DDIO

DDIO DDIO

level-convertr

100 Os

•f^VW

Hol
Pjrcuit

All devices: L^.6pin.

All devices powered at

^DD unless noted.

DDIO

^pad

DDIO

100 Os

FIGURE 7.26 : Level Converting I/O Pad.

For an outgoing signal, the enabled cross-coupled loads on the complementary

NMOS gates provides level conversion from Vj^j^ to Vqqjq. The ratio of NMOS to

PMOS width is dictated by the maximum possible range of voltage conversion. The

level conversion was designed to operate from IV to 3.3V, and with an effective Wp of

3pm, the required was 25pm. Simulation demonstrates that this will correctly

operate for V£)£) as low as 950mV. The enOut signal must range from OV to so
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the enable signal generated by the core passes through its own level-converter before

driving the pads.

The target load capacitance on the output is 50pF, which is sufficient to drive

ten chips (4pF each) and four inches of a PCB trace (2.5 pF/inch). Signals must be

transmitted within one-half of an MClk cycle since they change on the rising edge and

are latched on the falling edge. The target delay through the pad is one-quarter of a

cycle, allowing another one-quarter cycle of margin before the signal arrives at the

other chip. The target rise/fall time is also one-quarter cycle in order to reduce current

draw. At 50pF and = 3.3V, this corresponds to a peak current {Imax Table 7.9)

of 33mA per signal. The sizeof the inverters driving the output MOSFETs was dictated

by ground and power bounce concerns, and discussed further in Section 7. 2. 8. 2.

A feedback device was added to the tri-stated outputs to hold state while

varies. In theprototype system, varies at most by 0.2 V/ps, andthe output tracks

^DDIO to within 30mV. The hold circuit adds negligible delay, and increases the energy

consumption within each pad by only 1%.

The BSD protection is comprised of 500 pm^ diodes to ground and

which is the recommended size according to the process manual [hp95]. The diodes

provide the primary and only BSD protection, and were validated by simulating the

human-body model (HBM) for discharge, which generates a 2kV charge pulse [hp95].

Thecurrent pulse peaks at 1.33A, and with 5Qs of series resistance, the voltage rises to

9.1V, which is under the failure limits. To prevent the BSD diodes from turning on,

ground and power bounce must be limited to less than 0.5V. Both input nodes have a

100 £2 poly resistor for isolation to prevent gate-oxide breakdown.

The input level conversion is a simple inverter powered at A latch is used

to maintain logic state at the output of the pad, and the output inverter is sized to drive

a IpF load.
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7.2 Microprocessor IC

7.2.8.2 Ground & Power Bounce

The low impedance epitaxial p+ layer of the process essentially shorts out all

of the chip grounds, creating a single ground network. Bypass capacitance can

minimize bounce on the power lines, but ground is the global chip reference voltage and

must be stabilized. To minimize absolute bounce, the ground network should contain as

many pins as possible. A total of 28 pins were allocated, or 21% of all the package's

pins. Simulations show that with the maximum number of I/Os switching, the ground

bounce is between -540mV and +410mV at the maximum V^^jq of 4V, which provides

sufficient margin to prevent the BSD diodes from turning on (0.6-0.7V).

While bypass capacitance minimizes the Vj^^jq bounce relative to ground to

minimize I/O delay variation, it is also important to minimize the bounce in

absolute terms to prevent the BSD diodes from turning on. Simulations demonstrated a

worst case bounce of -600mV and +450mV at 4V for ten pins, with 2nF of on-

chip bypass capacitance. The primary cause for the drop is the speed at which the

output drivers are turned on. The device sizes were reduced to slow down the rise/fall

times by 4x, but have fast turn off times.

The processor core is much more sensitive to power bounce due to timing

considerations. A global reduction in will not affect functionality, as all the

processor circuits' delay will scale appropriately. However, if only a part of the chip

experiences a reduction in timing violations leading to functional failure may

occur. Thus, 16 pins were allocated to and evenly distributed around the chip

periphery. In addition, 16nF of bypass capacitance on is spread throughout the chip

to minimize localized variations.

7.2.8.3 Global Routing

The RC delay on global signals is only critical on the processor bus, which has

as little as 8ns to operate within at 4V. The RC delay product goes up with the square of
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the wire length, and becomes significant above 3.5mm for Metal!, and 7mm for Metal3.

To provide sufficient margin at the maximum voltage of 4V, the RC delay must be kept

below SOOps for all signal routes. The resistance is lowest on MetalSy which must be

used for all long routes, due to its 50% lower RC delay. The program routeCap was

written to calculate the RC for varying widths given a constant pitch, and report the

width and space required for the wire to meet the maximum RC delay constraints. The

longest route at 12mm required twice minimum width and spacing.

To eliminate Miller capacitance from adjacent parallel lines, the input and

output busses are interleaved. Since they do not transition at the same time, any wire's

nearest neighbors will not be switching concurrently, thereby negating the Miller effect.

7.3 Regulator IC

The primary function of the regulator IC is to convert a desired frequency

value from the operating system into an output value which operates the processor

at this desired frequency. This section gives only a brief overview of the architectural

implementation, as the regulator chip is described in detail elsewhere [stra98].

7.3.1 Architecture

The architectural block diagram of the regulator is shown in Figure 7.27. The

LoadM and DataM signals from the processor chip transmit the digital desired

frequency value serially, which is then reconstructed as a 7-bit word, M. The clock

signal, fcLK* originates from the processor chip's internal VCO, and is converted to a

digital word via a counter, which is then subtracted from M to calculate the frequency

error, To minimize energy consumption, the entire frequency detector is operated

at the variable voltage, Vhd. The loop filter level-converts F^rr from to the fixed

battery voltage, which is also used to power the rest of the regulator circuits. The

filter generates the power MOSFETs' timing signals (P_ow, N_on)y and the FET driver
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7.3 Regulator IC

block converts these timing signals into the actual power MOSFETs' gate input signals.

The buck converter, consisting of the power PMOS and NMOS, as well as the external

LC tank, converts into which is then sent back to power the processor chip.

Auxiliary circuits, including the current comparators and the start-up circuits, provide

the control and limiting circuitry for proper operation.

S LoadM,
CPU

Interface

JUL
4 MHz

system clock
(external)

DD 'BAT

To CPU PwrCood

FET

Drivers

^BAT
T

nr>r\

External

Current Comparators:

PMOS limit, NMOS limit

PMOS zero, NMOS zero
1

P^n
Start-up

Logic

Soft-startcircuits

FIGURE 7.27 : Regulator Architecture [stra98].

t*" To CPU

7.3.1.1 Frequency Detector

The frequency detector, shown in Figure 7.28, has a relatively simple

implementation. A counter and register transforms the "analog" clock signal into a

digital measure of the clock frequency in MHz. A shift register converts from serial to

parallel the desired frequency sent from the processor chip, and this frequency is

latched as the signal M. While the regulator is actively changing M must remain
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13 Regulator IC

constant. Thus, during this tracking period, the Track signal remains high, and blocks a

new value of M from being latched. Once Track goes low, the new value of M is loaded

into the register, and the regulator goes back into tracking mode, and begins adapting to

this new value of M.

o
CO
CO

0 .& DataM
Oh Q
s

1 LoadM

Ck4M

-i4 +1
A A

Load
Control

FIGURE 7.28 : Regulator Frequency Detector.

To optimize low-voltage conversion efficiency, the frequency detector circuits

all operate at the voltage Vdd- Since the detector is the only block within the regulator

that is always operating, varying its supply voltage will scale the converter's energy

consumption with the desired frequency level.

7.3.1.2 Loop Filter

The loop filter translates into an update command for the buck converter,

and implements a hybrid pulse-width pulse-frequency modulation (PWM/PFM)

algorithm to provide good conversion efficiency across a broad range of output voltage

and current loads. It is responsible for hand-off between regulation and tracking modes,

as described in Section 3.2.

The loop filter block diagram is shown in Figure 7.29. While the converter is

in tracking mode, the input register is actively latching the current value. The

shifter, adder, and Ton block implement the PWM part of the algorithm, by calculating

the variable conduction interval for the power MOSFETs. The intermediate four-bit
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digital word, update, is:

update = FF+2 ^•F„^g (EQ7.1)

which contains a gain term, implemented as a binary shifter, and a feed-forward

component for DC compensation. Both the gain (g) and feed-forward (FF) are a

function of Af, which corrects for the non-linear to fcLK conversion in the

processor's VCO. The Ton block then uses the update signal to determine how many

250p,s clock cycles to keep the power MOSFETs on for (via P_on and N_on) to provide

the required charge pulse given Ferr and the desired frequency value.

'•7^ REG -Tt* S. -7^

3
I

Enable

2*scomplement

to sign / mag

mag

16 X 16

SRAM

FF
/ 4

Clk4M Track FIGURE 7.29 : Regulator Loop FUter [stra98].

M[6:3]

Clk4M

In regulation mode, the loop filter's PFM aspect of the algorithm only activates

the PWM circuits for positive Frrr- Negative Ferr, indicated by Fgg„, implies that ^DD

is too high, so the loop filter suppresses the charge pulse in the current cycle and allows

the current load of the microprocessor to reduce Vqe).

7.3.1.3 FET Drivers

The FET drivers buffer the gate enable signals of the loop filter (P__o« and

N_on) to drive the large gates of the power MOSFETs. To optimize conversion

efficiency, the power MOSFET's are binary-weighted to provide four levels of device

size based M. The FET drivers block is responsible for enabling the requisite number of

power MOSFET devices.
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73 Regulator IC

7.3.2 Pin-out

The regulator chip was designed for a 68-pin LDCC package, whose pins are

described in Table 7.10.

TABLE 7.10 Converter Chip Pad Breakdown (68-pm LDCC package).

Signal i/o Pads Supply Description Pin Numbers(s)

VX 10 Power FET switching node 1-6,65-68

P^DD 6 Power FET 10-15

pGND 6 Power FET groimd 55-60

^BAT 3 Digital supply at 18,48,51

^DD 2 Digital siq)plyat F^^ 20,31

GND 5 Digital ground 19,21,30,47, 50

1 Analog supply at 38

aGND 2 Analog ground 36,41

ygp® o 1 ^BAT Power PMOS gate 54

vgw® 0 1 ^BAT Power NMOS gate 52

ak4M i 1 ^BAT 4 MHz, 50% duty clock input 53

PORB i 1 ^BAT ResetB signal 49

PwrGoocP 0 1 ^BAT Indicates completion ofsoft-start 46

RAM_dOUT 0 1 ^BAT Data from converter to EEPROM 16

RAM^ 0 1 ^BAT EEPROM enable 17

RAMJON i 1 ^BAT Data from EEPROM to converter 22

RAM_cIkout o 1 Kbat EEPROM 125 kHz clock 23

DataM i 1 ^DD Serial load oiM 24

LoadM i 1 Vdd Enable serial load ofM 25

Trac^ o 1 ^BAT Indicates status ofcontrol loop 26

fclk_f)uf 0 1 Vdd Decoded VCO output 32

EnExtClk i 1 Vdd Enable full-swing VCO input 33

ExtClk i 1 Vdd Full-swing VCO iiq)ut 34

fclk_in i 1 Vdd Low-swing VCO input 35

Vref i 1 Low-swing reference voltage 37

Vfb i 1 VjDiy Kelvin sense 39

ibias i 1 Attach 10 )lA pull-down source 40

Ilim_lA i 1 Vbat Sets 1 A or 0.5 A current limit 44

TESTenable i 1 Vbat Sets test mode 45

a. Output is enabled only when TESTenable= 1.

The regulator die, shown in Figure 7.30, is l.bmm x 3.4mm in a 0.6pm 1P3M

CMOS process.
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FIGURE 7JO : Regulator Chip Die Photo.

A key goal of the prototype processor system was to demonstrate DVS at the

system level. Existing bus topologies could not be used, nor could commodity memory

chips, since they require a fixed voltage. Thus, the processor system bus was designed

in its entirety for energy efficiency, without having to conform to legacy standards.

The long-term vision is to utilize low-swing bus transceivers (Section 6.3) to

make the energy consumed driving the bus completely negligible. To aid in debugging

the prototype system, however, this option was not implemented, as it required the

ability to operate the processor bus at a fixed 3.3V to use commercial test equipment.

However, always operating the bus at 3.3V would completely diminish the energy

savings while the processor is operating internally at low voltage. Thus, the processor

bus itself was designed to be voltage scalable, with the option of running at fixed

voltage, when necessary, for debugging purposes.

7.4.1 Overview

Traditional memory systems use 8-bit or 16-bit memory chips so that for a 32-

bit memory access, either two or four chips need to be activated. To improve system
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energy-efficiency, the memory chip's data bus is 32-bits wide, so that only one chip

needs to be activated per access. To reduce the pin count of the memory chips, the

address and data are multiplexed onto the same bus. This adversely affects single data

bus transfers, by reducing their bandwidth by 50%.

However, the bus was designed to support burst transfers, in which multiple

data words can be transferred per address. Simulation demonstrated that the bus traffic

is predominantly cache-line reloads, which transfer data in bursts of eight, such that the

bandwidth reduction is closer to 11%, and is acceptable given the overall reduction in

system energy consumption. Thus, near peak utilization is achieved on the processor

bus despite having to multiplex address and data onto the same physical bus.

7.4.2 Timing

The timing for the processor bus is shown in Figure 7.31, for both a single-

word transfer as well as a burst transfer. In the first cycle that CE goes high, or lOCE in

the case of the interface chip, the address is placed onto PBus^ the Burst signal is

asserted, and the Write and Byte signals are set accordingly. Burst remains high until

either the second-to-last word for a read, or the last word for a write, which allows for

an arbitrary-length burst of data to be transferred. CE remains high for the entire

duration of the transaction, and is used to gate the clock within the individual chips.

The PWait signal can be used to stall the processor bus during a transaction. The

memory chips have a single wait state for a read (none is needed for a write) to allow

the SRAM time to retrieve the data. The interface chip may insert a variable number of

wait states depending upon how long it takes to fetch data from the external I/O

peripherals.
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7.5 Memory IC

The memory chip is based upon the SRAM design used within the processor's

cache, and was designed to be DVS compatible while optimizing energy-efficiency. The

new, key design challenge was the organization of the block-level architecture and
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global routing in order to minimize energy consumption. In addition, the memory chip

supports split internal/external voltage sources, so that the I/O can be operated at a

fixed voltage while the internal voltage varies in order to facilitate system debugging.

The SRAM die, shown in Figure 7.32, measures 9.6 x 10.4mm and contains

3.4M transistors.

Bypass

^Capacitance f
t.l I •

n
7^

FIGURE 7J2 : SRAM Chip Die Photo.

7.5.1 Architecture

The total SRAM chip size of 64kB was set strictly by die size limitations. The

basic SRAM block size was set to IkB to provide a balanced trade-off of area efficiency

(78% utilization) and energy consumption (50 pF/access). A flat hierarchy would be

prohibitively expensive due to the large amount of capacitance on the bitlines, and the

enormous drivers required within each SRAM block to drive this bus. Thus, a two-level

hierarchy was chosen, in which the blocks are organized into an 8kB module, which was
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then replicated eight times for a total of 64kB, as shown in Figure 7.33.
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K

W +4

Ad^^sJncKmenter_ J

*^ead'jiw^fy^wrUe
intData

-r—

•§!
Ii
9!oo'
00'

FIGURE 7.33 : SRAM Architecture.

The controller is responsible for interfacing with the processor bus, and

contains additional circuitry to increment the internal address for burst-mode accesses,

and to allow read-modify-write operations for byte writes. Also, the controller provides

the SRAM control signals which get routed to each module. Since the address and data

arrive on the same bus, only the lower 16 bits which contain the address information are

routed to the address incrementer block.

7.5.1.1 Operatfon

The internal timing of the SRAM chip is shown in Figure 7.34. The address is

not available on the internal address bus, intAdd^ until almost the end of the first cycle,

which necessitates the SRAM chip to always assert the PWait signal for one cycle until

the first data word has been read. Subsequent reads can be performed without the need

for asserting PWaity such that an eight-word cache line requires only ten cycles to

transfer across the processor bus. There is no need to stall the processor bus during

either a word write, or a byte write, as shown in the lower two timing diagrams.
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7.5.1.2 SRAMModuIe

The basic IkB SRAM block in the module is essentially the same which was

used in the processor cache and is replicated in the SRAM chip, with the addition of an

address decoder. Since the 8kB module size is the same as the cache partition of 8kB,

the output drivers see the same load and did not require redesign. The capacitance/cycle

of the IkB SRAM block is 50 pF/cycle for both read and write operations, with another

10 pF/cycle required to drive the interconnect within the module.

To reduce loading on the global busses and control signals, they are buffered

before driving the local module interconnect. Since the data bus is bidirectional, it
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contains bidirectional transceivers which switch direction depending on whether it is a

read or write. A potential hazard arises for read-modify-write operations required for

byte writes, which switch the direction of the transceivers between cycles. To eliminate

unnecessary short-circuit current, the enable signals have fast de-assertion times, and

slow assertion times to ensure that either the local module data bus, or the global bus,

intData^ are not driven by two different transceivers at the same time. Furthermore, to

reduce unnecessary switching activity, the direction of the transceivers are left in

whatever the last state was, so that there is no default direction that they always switch

back to.

7.5.2 Energy Consumption

Performing a single read or write has an effective switched capacitance of

150-200pF over three and two bus clock cycles, respectively. Additional words in a

burst read or write contribute approximately 75pF per word, and are much less because

the internal address and control lines remain driven from the first data access. A byte

write operation has an effective switched capacitance of 250pF, due to the combination

of an SRAM read and write to complete it. The most common tjqje of operation is a

cache-line reload, which requires 725pF over ten bus cycles. Thus, if the SRAM chip is

constantly active, it contributes a maximum of 36 pF/processor-cycle (there are at least

two processor cycles per bus cycle), which is only 11% of the 320 pF/cycle consumed

by the processor chip while it is active. In practice, the average capacitance/cycle will

be lower since the SRAM is not constantly active. Thus, the SRAM was successfully

designed to have minimal impact on total system energy consumption.

7.5.3 Package

The SRAM die was placed into an 84-pin QFP package. There are 39 signal

pins, with 38 pins required for the processor system bus and one pin required the reset

signal. A total of 45 supplypins ensurethat the ground and supply bounce is maintained
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well below a diode-drop of 600mV. In addition, there is 4.3nF of bypass capacitance on

the I/O power supply, and 9.6nF of bypass capacitance on the core power

supply, A 68-pin package would have been sufficient in providing enough supply

pins to keep the ground and supply bounce within tolerable levels, but a larger pin-out

package was needed in order to have a sufficiently-sized cavity given the large die size.

TABLE 7.11 SRAMChip Pad Breakdown (84-pinQFF package).

Signal i/o Pads Supply Description Pin Number Imax

gnd! 28 Single ground

5,11,13,20,26,32,
34,41,43-45,47-52,
54,55, 58,59, 61,62,
64, 68, 74, 76, 83

Vdd 8 Xntemal voltage (1.2-3.8V) 3,18,39,46,53,60,
66,81

^DDIO 8 I/O voltage (1.2-3.8V) 1,8,16,23,29,37,71,
79

^BAT 1 BSD voltage for nRst 56

MClk i 1 ^DDIO

LPARM

Processor Bus

42

PBus i/o 32 ^DDIO

2,4,6,7,9,10,12,14,
15,17,19,21,22,24,
25,27,28,30,31,63,
65,67, 69,70,72,73,
75,77, 78,60, 82,84

33 mA

Write i 1 ^DDIO 40

Byte i 1 ^DDIO 38

Burst i 1 ^DDIO 36

PWait ot 1 ^DDIO 35 33 mA

CE i 1 ^DDIO 33

nRst i 1 ^BAT External hard reset 57

7.6 Interface IC

The primary function of this chip is to connect commercial, fixed-voltage

peripheral chips to the variable-voltage system bus of the embedded DVS processor

system. These chips may include ROM and DRAM, as well as chips providing system

I/O, such as a serial communication controller (SCO), codecs, LCD controllers, etc. A

StrongArm microprocessor and a Xilinx FPGA were used to model the I/O subsystem in

the prototype system, and are described in more detail in Section 7.8. To simplify the
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design of interface chip, the bulk of the control FSMs to communicate with the

StrongArm were pushed into the Xilinx connecting the interface chip to the StrongArm.

Thus, the primary function of the interface chip is to level convert the system bus to a

fixed 3.3V bus, and perform simple flow control. The level conversion occurs in the

pads so that all the internal chip circuitry operates with the variable supply voltage,

Vdd-

In a practical system implementation, this chip would be more complex in

order to enable it to connect directly to peripheral I/O chips. With the controller

circuitry integrated on-chip, the controller itself could be DVS compatible providing

variable performance and energy consumption. Further enhancements would include

having two regulator loops ~ a processor core voltage/frequency, and an external

memory system voltage/frequency. This would enable high-speed DMA transfers, when

necessary, when the processor core is in a low-performance mode of operations.

To aid in system debugging, the processor system bus signals are always

replicated on the 3.3V Xilinx-side bus. This allowed test equipment to monitor activity

between the processor and main memory on the processor system bus, at a fixed

voltage. In a practical system implementation, this feature would be optionally disabled

in order to eliminate unnecessary energy consumption driving these signal pins when

the I/O interface is not actively being used for either an I/O read/write or a DMA

request.

The interface chip die, shown in Figure 7.35, measures 4.4 x 4.4mm, and

contains 40k transistors, of which 5k are used by the controller implementation located

in the center of the die. The chip is pad limited with its 132 I/O signals resulting in the

large die size. The entire core outside the controller contains bypass capacitance used to

bypass the two input voltage supplies (Vdd and V3 3).
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FIGURE 735 : Interface Chip Die Photo.

7.6.1 Architecture

The basic chip architecture is shown in Figure 7.36. When there is no active

I/O or DMA request, the interface chip is in snoop mode. The bus clock (MClk), the

processor bus (FBus), and the bus control signals (Write, Byte, Burst, PWait) all drive

their equivalent Xilinx-side signals. All the on-chip signal paths are delay matched to

maintain a constant delay shift across the Xilinx bus. To eliminate 15 unnecessary pins,

the 16 memory chip enables (CE[15:0J) are OR-ed into a single signal, XCE.

For an I/O request, the processor asserts lOCE, which gets level-converted to

XIOCE, and signals the Xilinx that an I/O request needs to be serviced. Because all the

circuit paths forwarding signals from the processor bus to the Xilinx bus are delay

matched, the Xilinx can interface to this bus in a synchronous manner since there is

approximately zero relative delay shift on the Xilinx bus. This removed the need for an

otherwise more costly asynchronous interface between the interface chip and Xilinx.
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FIGURE 736 : Interface Chip Block Diagram.

The timing for an I/O write is shown in Figure 7.37, which demonstrates how

the interface chip interacts with the Xilinx chip. The transactions get replicated from
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FIGURE 737 : Timing Diagram for a Single I/O Write Request to the Interface Chip.

265



7.6 Interface IC

the processor bus to the Xilinx bus, with the XReady signal providing flow control from

the Xilinx back to the interface chip. By default, an I/O request will initially drive

PWait high, stalling the processor system. Once the Xilinx has latched the address off of

XPBuSy it asserts the XReady signal one cycle, which in turn drives PWait low for one

cycle, and advancing the state of the processor system one cycle. Once the data word

has been transferred to the Xilinx chip, the transaction is complete. Because it can take

many cycles to complete an I/O request, PWait is generally high for a majority of the

duration of an I/O request.

On an I/O read (Figure 7.38), the XPBus switches direction, as indicated when

the enXPBus signal goes low, in order to receive the desired data. Since XPBus gets

driven by the Xilinx delay-shifted with respect to MClk^ it is latched and driven onto

PBus the subsequent MClk rising edge, requiring the 32-bit latch to hold state for one

cycle. To prevent both the interface chip and the Xilinx from driving XPBus at the same

time, the enXPBus signal goes low a cycle early and stays low an extra cycle. As long as

the delay through the interface chip is less than the cycle time of MClk, there will be

PBus[3J:0J address

lOCE

PWait

enXPBus NOrcTsi^ ^driveXPBuswhenenXPBusislow. Guaranteed non-overlap times

XMClk

XPBus[31:0J address

XWrite

XBurst

XIOCE

XReady

FIGURE 738 : Timing Diagram for a Single I/O Read Request to the Interface Chip.
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guaranteed non-overlap times to eliminate this potential conflict on XPBus.

When the I/O subsystem wants to initiate a DMA request, the Xilinx asserts

XPReqy which in turn asserts PReq and informs the processor of a pending DMA

request. Once the processor has completed any outstanding bus access, it releases the

processor bus and synchronously deasserts nMREQy which then deasserts XnMREQ

giving the I/O subsystem control of the bus. At the same time, the direction of the

control signals is changed, and they are driven by the Xilinx via XWrite^ XByte^ and

XBurst. Similar to XPBus, these are latched in order to resynchronize these signals with

the edge of MClk. The Xilinx does not need to drive the CE signals, as they are

internally generated by the interface chip, which can infer these signals by decoding the

address placed on XPBus. In DMA mode, the XRdReady signal is used to indicate when

the SRAM has returned the value of a DMA read request.

7.6.2 Pin Out

The interface chip was placed into a 132-pin QFP package. There are 103

signal pins, with 56 pins required for the processor system bus and 44 pins required for

the Xilinx bus. An additional two pins are utilized for debugging, and one pin for the

reset signal. The remaining 29 pins are used for ground and supply lines. The active

circuit area on the interface chip was only approximately 2 mm^. The large die size was

necessary given the large number of pins required to interface between the two busses.

The complete chip pad breakdown is given in Table 7.12.
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TABLE 7.12 Interface Chip Pin Out (132-pln QFP package: 103 signal^ 29 power pins).

Signal i/o Pads Supply Description Pin Number Imax

gnd! 16 Single ground 1,9,17^6,34,42,50,59,67,
75,83,92,100,108,116,125

V3.3 6 Core/Xilinx voltage (3.3Vi 7, 18,29,105,117,127

^DDIO 6 I/O voltage (1.2-3.8V) 40,51,61,73, 84,94

^BAT 1 ESD voltage 102

MClk 1 1 ^DDIO 99

PBus i/o 32 ^DDIO

LPARM

Processor Bus

98,97,96,95,93,91,90,89,88,
87,86,85,82,81,80,79,78,77,
76,74,72,71,70,69,68,66,65,
64, 63,62,60,58

33 m

Write i/o 1 ^DDIO 57 33 m

Byte i/o 1 ^DDIO 56 33 m

Burst i/o 1 ^DDIO 55 33 m

PReq 0 1 ^DDIO 54 33 m

nMREQ 1 1 ^DDIO 53

PWait i/o 1 ^DDIO 52 33 m

CE i/o 16 ^DDIO 30,31,32,33,35,36,37,38,39,
41,43,44,45,46,47,48 33 m

lOCE 1 1 ^DDIO 49

XMOk 0 1 ^3.3 28 33 m

XPBus i/o 32 V3.3

27,25,24,23,22,21,20,19,16,
15,14,13,12,11,10,8,6,5,4,3,
2,132,131,130,129,128,126,
124,123,122,121,120

33 m

XWrite i/o ^3.3 119 33 m

XByte i/o V3.3 118 33 m

XBurst i/o V3.3 115 33 m

XPReq 1 V3.3
yvUmx

Processor Bus
114

XnMREQ 0 V3.3 113 33 m

XPWait 0 V3.3 112 33 m

XCE 0 V3.3 110 33 m

XIOCE 0 V3.3 111 33 m

Ready 1 V3.3 109

RdReady 0 V3.3 107 33 m

Done 1 V3.3 106

nRst i ^BAT External hard reset 101

SwCE i 2 ^BAT Debugging pins 103,104
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7.7 Prototype Board

7.7 Prototype Board

The prototype system was constructed on an 8-layer 6" x 8" PCB board, with

four supply layers, and four routing layers. Due to the integration of the memory and

interrupt controllers onto the processor chip, few external components were required to

construct the system. Extra complexity was added for features which supplemented

system debugging, such as bypassing the converter chip with a fixed external voltage,

and split core (P£)£)) and I/O supplies (P/)D/o)- The prototype system communicates to a

StrongArm-based system board (Section 7.8), which emulates I/O activity, via a

DB2x25 connector.

7.7.1 Architecture

The 4 unique custom ICs of the prototype system are connected as shown in

Figure 7.39. The 37-bit system bus connects the processor chip to the SRAM chips and

the interface chip. The nine chip enables {CE[8:0J, lOCE) are output by the integrated

memory controller. An additional eight chip enables are available for SRAM chips, but

were left unused in the prototype system. The interface chip communicates with the

StrongArm board's Xilinx chip via a 43-bit bus, which replicates the system bus

functionality with a few additional control signals. The system reset switch allows the

processor system to be reset while leaving the converter actively operating, and can be

used if the processor performs an illegal operation. The processor also uses 1 MHz

oscillator to provide the reference frequency used by the internal real-time counter.

The converter requires additional external components. An EPROM programs

up the loop filter's SRAM upon resetting the converter. Two series potentiometers

provide coarse and fine-grained tuning of the chip's bias current. The 4 MHz oscillator

provides the system clock to the converter, and is also used by the processor to send

new clock frequency {F^^^sired) values via LoadM and DataM. The converter also has a

separate reset switch, to re-initialize its internal circuits. While the converter is being
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FIGURE 739: Prototype Board Architecture.

reset, the PwrGood signal is de-asserted while is being re-initialized, and resets

the processor chip. The converter chip also requires an external inductor and capacitor

for the buck converter. The inductor was implemented via a small form-factor, SMT

4.7iliH coil. The capacitor was implemented with 46 O.lpF and 0.2|iF SMT capacitors

placed next to the eleven chips* supply pins on the backside of the board for a combined

5.5pF of capacitance.

For an actual production system, all the external circuitry could be eliminated

except for the 4 MHz reference clock frequency. The EPROM provided flexibility by

allowing the loop filter's characteristics to be varied, but this was not necessary as the

converter successfully operates with the initial data values. Instead, the converter's on-

chip SRAM data could be hard-coded into an on-chip ROM. The potentiometers could
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be eliminated via an accurate on-chip reference bias.

7.7.2 Layout

A photograph of the board is shown in Figure 7.40 demonstrating the final

board layout. The board area is dominated by the eleven custom chips. Additional

components previously not described are input power connectors for the supply

voltages, control jumpers which provide hard-wired control settings to the processor

chip, and test points which allow select internal signals from the processor chip to be

monitored externally.

i

•OWRtMNHMItb innimmuutm mMmnmcriMiK

wntihiiittitwW

^•ViiiMniiiiiiiiiiMr

i r ' M * ** . .^*^4 IX

i}

Scliniilt -I

Foiutv

BSl poi

FIGURE 7.40 : Prototype Board Layout.

7.7.3 Power Distribution

A critical aspect to the design of the prototype board was managing the power

distribution networks, of which there were four, as shown in Figure 7.41. The variable

voltages are V£,£), which powers the internal circuits of the chips, and Vddio* which is

used strictly for the processor bus. Jumpers at the inductor allow either the converter to

drive both and F£)£)/o> just with a fixed external voltage source for and



7.7 Prototype Board

neither, with external voltages supplied for both and The battery voltage,

^BAT^ powers the converter chip, and all the external components, including external

control signals to the custom chips. Thus, is required by all the chips to provide

ESD protection. The Xilinx chip on the StrongArm board is a 3.3V part, so the internal

circuits of the interface chip also operate at this voltage (V3 3). For a future system in

which the interface chip is much more complex, its internal circuits could be powered

level-converted to 3.3V at the pads to reduce system energy consumption.

Legend
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FIGURE 7.41: Prototype Board Power Distribution.

The converter is sensitive to the parasitics on the variable voltage and

the battery voltage {Ybat)* were laid out so as to minimize inductor parasitics.

Additional capacitance on the variable voltage power routes are tolerable if accounted

for in the total capacitance placed on these nodes. The design of the power planes is
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shown in Figure 7.42, in which both and V^^jq are distributed to all the chips with

minimal inductance. Likewise, those parts powered by were clustered in the

upper-left corner so as to provide a wide power signal. The two ground planes

were placed on either side of the first power plane containing as it is the most

sensitive power line.
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MEM4
• • ' >

MEMS

MEM6 MEM7

FIGURE 7.42 : Prototype Board Power Planes.

7.8 StrongArm I/O Board

The StrongArm board is a commercial development board, and used to model

I/O from peripheral devices. A software approach was chosen so that I/O devices (e.g.

codec, LCD, radio, etc.) could be rapidly constructed and modeled, as well as to

provide low-level debugging functionality for the prototype system. The board allows

all I/O output to be validated and time-stamped to ensure correct I/O output from the

prototype system. In addition, the StrongArm board can generate input data at set

intervals, much like any I/O device would.
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The ARM programming environment provides debug and monitoring support.

The current version, Angel, is used by the StrongArm board, and its predecessor.

Demon, is used by the prototype processor. This debug and monitoring support consists

of low-level software running on the host CPU, and remote software running on a PC or

Sun workstation. The software communicates via a serial channel, which is emulated

for the prototype system by the StrongArm, and allows the debugger to properly operate

on the prototype processor.

7.8.1 Architecture

A block diagram of the StrongArm board is shown in Figure 7.43. The

StrongArm processor is an SA-1100, which has 16MB of local DRAM and 1MB of local

Flash ROM. A Xilinx XC4013 bridges the Xilinx bus from the prototype board to the

SA-1100*s memory bus, although the external interrupt lines (F/g, IRQ) for the

prototype processor are generated directly by programmable output pins on the

SA-1100. The board also contains two serial UART ports. One is used to communicate

with the Angel debug monitor running on the SA-1100, and the other is virtually

connected to the prototype processor via an I/O processor emulated in software. This

software processor monitors incoming data on the second UART, and routes it to the

prototype system via the Xilinx, and likewise takes output data from the prototype

system destined for the remote debugger, and sends it to the UART.

To CPU FIQ/IRQ Interrupts

Xilinx

XC4013

1MB

Flash

SA Interrupt^
SA-1100

16MB

DRAM

UART

UART

To PC

Angel Debug
(SA-1100)

To SUN
Demon Debug

(DVSCPU)

FIGURE 7.43 : StrongArm Board Architecture.

The benchmark data-sets were burned into the Flash ROM, so that the SA-1100
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would not have to download the data-sets across the slow UART channel into DRAM,

and would otherwise take more than 15 minutes upon a system reboot.

7.9 Software Infrastructure

To fully qualify the energy-efficiency improvement of DVS, a software

environment typically found in a portable device was booted on the prototype system.

This includes a real-time operating system (RTOS), the voltage scheduler required by

DVS, and common application programs. The prototype system would then execute the

benchmark application with and without the voltage scheduler to quantify the increase

of processor system energy-efficiency due to DVS.

7.9.1 Software stack

The stack-up of the software infrastructure is shown in Figure 7.44. On the

prototype processor is the low-level Demon debug monitor, on top of which sits the

RTOS, the voltage scheduler and the user application programs. On the SA-1100 is the

Angel debug monitor, which sits underneath the StrongArm I/O Processor (SAIOP)

software program. This provides I/O support to the RTOS, and creates the virtual

channel which allows Demon to communicate with the remote debugger program,

armsd, running on a Sun. Another armsd program running on a PC interacts with the

SA-1100 debugger.

UserApplications

Running on Sun

VoltageScheduler MPEG AUDIO UI

armsd Process

Schedule^ UART SAIOP Real-time OS

armsd
. UART^ Angel Demon

Running on PC RunningonSA-1100 Runningon DVSCPU

FIGURE 7.44 : Software Architecture.
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The RTOS [peri98] is a custom pre-emptive multi-tasking kernel that contains

a temporal scheduler and standard C library functionality. The temporal scheduler

decides which task runs when using an earliest-deadline-first (EDF) policy, which is

optimal for fixed speed systems [liu73]. The kernel is not cognizant of the speed setting

of the processor. Whenever the temporal scheduler updates the process schedule, the

voltage scheduler is executed, which is run as a separate thread on top of the kernel.

The voltage scheduler analyzes the current process schedule and application deadlines

to provide a voltag6 schedule for varying microprocessor performance. The algorithm is

discussed in further detail in Section 3.5.4.

The user applications are written in C/C++ using the full C library support

provided by the RTOS. The three application used in the DVS evaluation benchmark

suite (MPEG, UI, AUDIO) are discussed in Section 3.6.1.

7.9.2 Software I/O processor (SAIOP)

The RTOS and user applications use address mapping, as described in Table

7.13, to specify the destination for I/O data. The SAIOP program then routes the I/O

data to the desired location on the SA-1100.

TABLE 7.13 ID Space Address Mapping.

I/O Device Address Description

lO Channel

0x48003a00 I/O controlinformation. Opens/closes a file or network connection,
and performs flow control

0x48002000 I/O read data.

0x48002400 I/Oreadcontrol. Provides information onchannel, andps delay until
next word is to be read.

0x48003b00 I/Owritedata. Dataword is taggedwithchannel beingwritten to.

Frame Buffer

Ox58xxxxxx Frame buffer. Writes to this space are logged in fiamebuffer.datfde
for later verification.

0x78xxxxxx Framebuffercolor-map. Write to this spaceadjust thecolor-map of
the display device.

Debug Space 0x68000Ixx Debug space. Used for low-level debugging of RTOSstate.

Serial Channel
0x880000xx Serialchaimel. Mimicsthe register set and functionality of a stan

dard UART serial interfiice.
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With the exception of the serial channel and frame buffer, all I/O connections

are established as sockets, and time-share a single I/O channel location. Each I/O

device is allocated a unique channel ID, which is used to tag all input/output data on the

I/O channel for that device. Flow control is available to slow down and/or speed up the

flow of data as necessary. Writes to the I/O channel are verified against the master data

set stored in the Flash ROM, and reads have their data supplied by the ROM, and tagged

with a delay time for which the SAIOP should wait until asserting the interrupt line to

indicate that the next data word is ready.

The frame buffer is located in a separate address space, and the contents

thereof are written to a file for post-execution evaluation to ensure the correct data was

written to it. The debug space is used to perform low-level thread and speed tracing of

the prototype processor, which aided in the debugging of the system. The SAIOP maps

the virtual serial channel to the physical UART on the StrongArm board, allowing the

Demon running on the prototype processor to communicate with the remote debugger

on a Sun workstation.

7.10 Results

The prototype system successfully booted up on first silicon, and the entire

benchmark suite was able to execute on the prototjqie system to demonstrate, on a real

hardware implementation, the potential energy-efficiency improvement of DVS. In

addition, the benchmark program Dhrystone 2.1 was run in order to measure the energy

consumption in terms of MlPS/Watt, a commonly quoted measure, to compare against

commercial processor implementations.

While the original design target was for to operate over 1.1-3.3V with a

clock frequency range of 5-100 MHz, the prototype silicon failed to operate for a Vqq

less than 1.2V. Since even the VCO failed, which consists of only CMOS pass gates and

inverters, the most likely cause of failure was a much larger \V'fp\ than specified in the
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process manual (0.95V, worst case, with a 0.7-1.5V wafer acceptance range), although

no test structures were on the die to verify this hj^othesis. However, the prototype

system successfully operated over the voltage range 1.2-3.8V, although over the

somewhat lower frequency range of 5-80 MHz, as shown in Figure 7.45, demonstrating

the ability of a DVS processor system to scale with widely-varying process parameters.

2.0 2.5

Vdd(S)
FIGURE 7.45 : Measured Clock Frequency and Supply Current vs. Supply Voltage.

7.10.1 IVansient operation

Figure 7.46 shows a scope trace for the system's maximum low-to-high and

high-to-low speed transitions. The F/j/) signal transitions from 1.2V to 3.8V, then back

down to 1.2V. The Track signal indicates whether the converter loop is in the tracking

mode, in which it is actively changing or in regulation mode, in which it is trying

to maintain a constant Vj^jy value. This signal demonstrates that the maximum transition

time is 70ps for the 5-80 MHz transition under full system load, while smaller voltage

transitions can be performed in less time. During this entire transition period, the
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processor system can continue to execute instructions.

fcLK~ 80MHz

fracki Mode j(Vnn

Re^a|$on Mdde
300mA

-74/is 50>u8'^div IRTI 4Z&MS

FIGURE 7.46 : I^ansient Response of the Converter Loop.

The decaying exponential response of Vj)d demonstrates that the converter

loop behaves much like a single dominant-pole system. In fact, Vjr,D changes to within

70% of its final value within only 25ps, because it is slew-rate limited to 0.08 V/|Xs.

The signal is the battery current measured going into the regulator, but

after the battery's bypass capacitor. There is a current spike on the low-to-high

transition which is required to charge up the loop's output capacitor to the required

voltage. The negative current spike on the high-to-low transition occurs because the

power PMOS is removing charge from the output capacitor and placing it back onto the

battery's bypass capacitor at approximately 90% conversion efficiency. The conversion

loss of the loop is the transition energy, which is a maximum of 4pJ for both the low-to-

high and high-to-low transitions.

To demonstrate how the converter adds charge to the output capacitor. Figure

7.47 shows a scope trace plotting the buck circuit waveforms when the converter is
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regulating a constant The power PMOS (Afp) is enabled first, which begins

ramping up the inductor current (i^) for a duration specified by the loop filter.. At the

end of the duration, Afp is turned off, and power NMOS {Mjq) is turned on, which ramps

down ii until it returns to zero. When the converter is ramping up the pulses

will be larger and more frequent, and when it is ramping down ^DDy 'Z, will be reversed

in polarity and the timing of the power FETs will switch so that Mjq is enabled

before Mp,

(^iV)

^GSW*)

1.47V

Inn ~ 22niA

>ri^i ii fcji 1

clii 'zbdmvfi^ ciii 2.bo v ^ i.'s'oiis 'dh4 "v
HEE loomvs/^f ch4 2.00 v ^

FIGURE 7.47: Converter Waveforms in Regulation Mode [stra98].

7.10.2 Dhrystone Benchmark

The Dhrystone 2.1 benchmark is commonly used for microprocessors in

embedded applications to characterize throughput in MIPS, as well as energy

consumption in Watts/MIP [weic84]. This benchmark was compiled for the prototype

system, so that system energy-efficiency could be directly compared against the energy-

efficiency of commercial ARM implementations.

Figure 7.48 plofs the prototype system's throughput versus its energy

consumption for the Dhrystone 2.1 benchmark. The upper curve is for the system when
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it is powered by a fixed, external voltage source, and the converter is disabled. The

lower curve is for the system with the converter loop enabled. The curves are generated

by running the system at constant frequency and to demonstrate the full operating

range of the system. The throughput ranges from 6-85 Dhrystone2.1 MIPS, and the

total system energy consumption ranges from 0.54-5.6 mW/MIP. The efficiency of the

converter loop, which is proportional to the gap between the two curves, ranges from

90% at high voltage to 80% at low voltage.
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FIGURE 7.48 : Measured Throughput vs. Energy Consumption.

With DVS, peak throughput can be delivered upon demand. Thus, the true

operating point for the system lies somewhere along the dotted line because 85 MIPS

can always be delivered when required. When only a small fraction of the computation

requires peak throughput, the processor system can deliver 85 MIPS while consuming,

on average, as little as 0.54 mW/MIP.

A commonly quoted energy-efficiency metric is MlPS/Watt. The equivalent for

this system would be the ratio of peak MIPS to average power dissipation because the
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throughput and power dissipation can be dynamically varied. In the optimal case when

peak throughput is required only a small fraction of the time, the system's average

power dissipation can be as low as 3.24mW, yielding 26,200 MIPS/W. When the system

is operated at constant the energy-efficiency is a maximum of 1,850 MIPS/W at

1.2V.

7.10.3 Idle £nergy Consumption

Because a microprocessor in portable systems idles a significant amount of

time, the energy consumed while idling can become critical to the overall energy

efficiency. For the prototype system, a halt instruction was implemented via a

coprocessor write instruction, which asserts the Sleep signal. This signal effectively

stops all activity by clock gating the rest of the system, with the exception of a few state

registers in the interrupt controller, the external bus interface, and the real-time

counters.

If the processor speed is set to 5 MHz before entering sleep, the entire system

dissipates only 800p,W of power, with a one cycle start-up from sleep. The latency to

ramp back up to full speed upon wake-up is set by the converter loop to be TOps,

although the processor can continue operating during this ramp up period and begin

immediate execution of the interrupt handler.

7.10.4 DVS benchmarks

To evaluate DVS, benchmark programs were chosen that represented software

applications that are typically run on notebook computers or PDAs. Existing

benchmarks (e.g. SPEC, Dhrystone MIPS, etc.) are not useful because they only

measure the peak performance of the processor. New benchmarks were selected which

combine computational requirements with realistic latency constraints. The three

programs are MPEG, UI, and AUDIO, and are described in more depth in Section 3.6.1.
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7.10.4.1 Measuring Energy Consumption

To measure energy consumption of the benchmark applications, the simple

circuit in Figure 7.49 was used in-line on the regulator's voltage supply, After

Demon boots and the RTOS and benchmark program are downloaded into main memory,

the Demon break-points the start of the application and idles at low voltage. When

instructed by a "go" command from armsd, the benchmark will execute, and at the end

of running, will put the processor back into idle mode at low voltage.

(From Supply)
y (ToRegulator)

—Q_Sc^AAAr
-o

2.5Q

3.3F

/t£G

Discrete Cap

"go" programs ends,
(program starts) and system idles.

'BAT-

'END

tune

FIGURE 7.49 : Energy Measurement Circuit & IVansient Response.

While Demon is booting, the switch remains closed and the capacitor

maintains across its terminals. At the break-point, the switch is opened, the "go"

command is given, and roughly changes as depicted. The voltage drops due to the

capacitor sourcing charge, and due to an IR drop on the intrinsic resistance of the

discrete capacitor. When the microprocessor idles after completing the application,

Vjieg jumps back up a little bit due to the IR drop disappearing and settles to

During low-voltage idle, the drop on Veeg is 60 pV/sec, and hence, very flat.

The energy consumption of the benchmark is:

(EQ7.2)

There is energy loss in the 2.SQ resistor, but at the maximum average current of 20mA,

the loss is only 1.2%, which was neglected. Thus, the energy consumption of the

benchmarks could be measured to within 99% accuracy.
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7.10.4.2 Results

Using the above approach for measuring energy consumption, the three

benchmarks were first run at constant maximum throughput to measure the baseline

energy consumption. They were then re-run with the voltage scheduler enabled, and had

their energy consumption measured again.

TABLE 7.14 Measured Benchmark Energy Consumption (Normalized).

Benchmark Programs

Algorithm MPEG UI AUDIO

Maximum Performance 100% 100% 100%

Optimal 67% 25% 16%

Voltage Scheduler 89% 30% 22%

Table 7.14 shows the measured system energy consumption for the three

benchmarks, which is normalized to when the system is running at maximum

throughput, since this is the typical operating mode of a processor system that operates

from a fixed V^d. The row labelled Optimal is the energy reduction when all the

computational requirements are known a priori, and is an estimated value derived from

simulation. The optimal values represent the maximum achievable energy reduction for

these benchmarks. The last row is the measured energy consumption with the voltage

scheduler enabled. As expected, the compute-intensive MPEG benchmark has only a

11%energy reduction from DVS. However, DVS demonstrates significant improvement

for the less compute-intensive AUDIO and UI benchmarks, which have a 4.5x and 3.5x

energy reduction, respectively. Comparing the DVS results against the optimal results

demonstrates that while the voltage scheduler's heuristic algorithm has a difficult time

optimizing for compute-intensive code, it performs extremely well on non-speed

critical applications.

Table 7.15 shows the average power dissipation of the three benchmarks with

the voltage scheduleroperating. The effective MIPS/W is calculatedas the ratio of peak

throughput (85 MIPS) to average power dissipation, and demonstrates the achievable
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increase in energy efficiency when the system is running real programs. Both the UX and

AUDIO benchmarks have an average power dissipation on the order of lOmW, yielding

an energy efficiency on the order of 10,000 MIPS/W.

TABLE 7.15 Measured Power Dissipation with the Voltage Scheduler.

Benchmark Programs

Voltage Scheduler: MPEG UI AUDIO

Average Power (mW) 145 11.75 8.00

Effective MIPS/W 600 7,200 10,600

Thus, real applications, with the proper operating system support via the

voltage scheduler, can achieve a significant reduction in energy consumption with DYS,

thereby improving processor system energy-efficiency by up to a factor of lOx.

7.11 Comparison to Prior Art

A technique for minimizing the supply-voltage to reduce energy consumption

utilizing a voltage regulator was initially proposed for digital circuits at fixed

throughput [kaen90]. A replica of the critical path was used in a negative-feedback loop

to set to the lowest possible level, while the circuits continued operating correctly

given a desired clock frequency.

This technique was subsequently demonstrated on a MIPS R3900 processor

core, with an integrated, on-chip, voltage regulator [kuro98]. A desired operating

frequency is set externally, and the regulator outputs the minimum Vdd value at which

the processor core can continue operating. However, the clock frequency could only be

set externally, and requires a system reboot in order to change the frequency value.

This technique was enhanced to dynamically scale for variable-rate digital

signal processing [niel94]. A variable-rate processing circuit has an input FIFO, which

is monitored for how full it is. When the FIFO is near empty, can be reduced, and

when the FIFO is near full, V^D must be increased to catch-up to the input data.
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Adaptive scaling was later demonstrated with an open-loop regulation approach, which

used four ^DD values to provide faster switching transients and used dithering to

approximate intermediate values [chan96]. More recently, an approach for dynamic

voltage scaling has been demonstrated for I/O interfaces, in which and the energy

consumption, scales with the throughput demands on an I/O transceiver [weiOO].

The work presented here extends these techniques, and combined with efforts

on energy-efficient operating system design [periOO] and dynamic voltage converters

[stra98], demonstrates the following:

Dynamic voltage scaling on a general-purpose microprocessor. The voltage and

clock frequency of a general-purpose microprocessor, built upon an ARMS processor

core, can be dynamically varied from 1.2-3.8V and 5-80 MHz, respectively. Changes

can occur dynamically, without having to halt processor operation, and occur at a fast

rate (< 70ps), such that they appear instantaneous to the software executing on the

microprocessor.

Direct operating-system control of supply voltage and clock frequency. A control

register has been added to the processor's ISA. When the operating system writes to this

register, the voltage converter will immediately change the processor's voltage such

that it operates at the desired frequency. Reads from this register return the current

clock frequency to provide feedback to the operating system.

Dynamic voltage scaling implemented over a complete processor system chip-set.

Not only is the voltage and clock frequency dynamically varied on the microprocessor

chip, but on the external SRAM memory chips, on the I/O interface chip, and on the

external processor system bus as well.

7.11.1 Comparison to Other ARM Processors

Another goal of this work was to see how much the intrinsic energy-efficiency

of a microprocessor could be improved without the benefit of DVS. A key benefit of

implementing a commercial ARM8 processor core was that the prototype processor
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could be compared against other commercial ARM microprocessor implementations.

One of these implementation is the StrongArm SA-110, which is the most energy-

efficient commercial microprocessor available to date.

Energy consumption, in capacitance/cycle to normalize out the dependence on

is plotted for the prototype processor and four commercial ARM microprocessors

in Figure 7.50. In addition, the processors performance and process technology is given.

The capacitance/cycle is broken out to show that which is consumed by the core, and

that which is consumed by the cache and the rest of the chip.

I I Processor core.

I IRest ofthe chip. (Cache Size)

Normalized to Q»6pm

Prototype ARM710 ARM810 ARM940T SA-110
• 85 MIPS •23 MIPS •SOMIPS • 165 MIPS • 230MIPS

• 0.6 jun • 0.6 |im • 0.5 \lm • 0.35 jim • 0.35 ^im

FIGURE 7.50 : Capacitance/cycle ofVarious ARM Microprocessors.

The prototype processor has the lowest capacitance/cycle of the five

implementations, with the SA-110 a close second. However, since the ARMS 10,

ARM940T, and SA-110 have the benefit of a better CMOS process technology, the

capacitance/cycle for these three were normalized to the 0.6|im process technology of

the prototype processor. Compared against the normalized values, the prototype
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processor demonstrates almost 2x lower capacitance/cycle than any of the four

commercial processors, validating the energy-efficient design methodology presented

in this work. Despite the microarchitectural constraint of using the ARMS processor

core, the prototype system was still able to demonstrate a significant reduction in

capacitance/cycle.

Sincethe cache sub-system was designed in its entirety with energy-efficiency

in mind, it is interesting to see how the non-core component of the prototype

processor's capacitance/cycle compares against the other implementations. Comparing

the normalized values, the non-core component of the prototype processor is 3x lower

than any of the other commercial implementations, despite having a larger cache size

than all but one of the other implementations. Thus, if the processor core itself was re-

architected and the instruction-set architecture (ISA) designed with energy-efficiency

in mind, an even more energy-efficient microprocessor couldbe achieved.
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Processor systems are widely prevalent in portable devices, which demand

increasingly higher levels of energy-efficiency. Processor energy-efficiency has lagged

behind custom ASICs and DSP chips, such that while the processor carries only a

fraction of the device's computation load, it is a significant, if not dominant, component

of the overall system energy consumption. This thesis has demonstrated both design

techniques, and a design methodology, to significantly improve processor energy-

efficiency to enable smaller, more powerful, and longer running portable devices.

Dynamic voltage scaling has demonstrated to be the most significant design

technique, providing an increase in energy-efficiency in excess of lOx. While DVS

requires modifications to both the circuit design and design flow, which diminish

energy-efficiency by 10-20%, this reduction is overwhelming compensated by the lOx

increase.

Furthermore, quantitative energy-efficiency metrics have enabled an energy-

efficient design methodology which has provided a further increase of 2-5x in energy-

efficiency. This is achieved by optimizing both performance and energy consumption at

all levels of the design hierarchy, as opposed to a more traditional design approach

which relegates energy consumption to a secondary concern. A prototype system has

successfully validated the design techniques and methodology presented in this work.
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8.1 Summary of Research Contributions

The goal of this research is to significantly improve processor system energy-

efficiency by combining the lessons learned in low-power DSP design with the unique

design constraints of a general-purpose processor to develop a new, more energy-

efficient, processor design methodology. Several key research contributions which

addresses this goal are:

• Developed the technique of Dynamic Voltage Scaling (DVS) for a general-purpose

microprocessor to adaptively vary the processor's supply voltage and clock

frequency, under operating system control. This allows the processor to provide

high performance when required, while minimizing energy consumption during the

remaining low-performance periods of time.

• Developed an energy-conscious design flow which enables energy consumption

optimization at all levels of the design flow, including the high-level C behavioral

simulator, where optimizations can have the biggest impact on energy-efficiency.

The new flow also eliminates the extra complexity added by DVS to a more

traditional design flow.

• Developed an energy-efficient architectural design methodology for all aspects of

a processor system, including system-level optimizations, as well as optimizations

targeted for the processor core and cache system.

• Developed an energy-efficient circuit design methodology for all aspects of digital

circuit design, while meeting the circuit design constraints imposed by DVS.

• Demonstrated the above concepts by implementing a prototype processor system,

consisting of four custom chips in a 0.6pm CMOS process technology, that can

operate over the range of 1.2-3.8V, 5-80 MHz, and 0.54-5.6 mW/MIP. Through

DVS, the system can deliver a peak performance of 85 Dhrystone 2.1 MIPS, with

an average power dissipation as low as 3.24mW. This yields as much as 26,000
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MIPS/W, which is more than lOx higher than the most energy-efficient

microprocessor currently available.

8.2 Current Industry Directions

In the rapidly evolving processor industry, some of the techniques described in

this thesis are beginning to come to fruition. Of particular interest is run-time voltage/

frequency adaptation, which was not even considered feasible three or four years ago

within the industry, and yet, is rapidly emerging in a variety of products technologies:

• In 1999, Intel introduced SpeedStep, which runs the processor at two different

voltages and frequencies, depending upon whether the notebook computer was

plugged into an AC outlet, or running of its internal battery.

• In 2000, Transmeta introduced LongRun, which dynamically varies voltage and

frequency over the range of 1.2-1.6V and 500-700MHz, providing a 1.8x variation

in processor energy consumption. Control of the voltage/frequency is in firmware,

which monitors the amount of time the operating system is sleeping.

• In 2000, AMD introduced PowerNow!, which dynamically varies voltage and

frequency over the range of 1.4-1.8V and 200-500MHz, providing a 1.7x variation

in processor energy consumption. Control of the voltage/frequency is implemented

via a software driver which monitors the operating system's measure of CPU

utilization.

• In 2001, Intel will introduce the XScale processor, which is essentially the second

generation StrongArm. It can dynamically operate over the voltage and frequency

range of 0.7-1.75V and 150-800MHz, providing a 6.3x variation in processor

energy consumption, the most aggressive range announced to date. Details of the

control have not yet been released. By further advancing the energy-efficiency of

the original StrongArm, this device will be able to deliver 1000 MIPS with an
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average power dissipation as low as 50mW at 0.7V, yielding an effective

MlPS/Watt as high as 20,000.

8.3 Future Research Directions

This thesis has provided the groundwork for a variety of continuing research

directions. Further research is required on dynamic voltage scaling, as well as all

aspects of energy-efficient design.

Integrating the voltage converter onto the same chip as the processor could be

explored. Integration would enable further research on multiple, variable voltage

supplies, without adversely impacting system cost, size, and complexity. One potential

use of an additional supply would be for the external processor bus, which could then

operate at a speed independent of the processor core. This would allow high-speed

DMA to the main memory, so that even when the processor core is operating at low

speed, high-bandwidth I/O-memory transactions could still occur. Additional research

areas would be applying DVS to external I/O devices, such as a radio, which could

likewise dynamically trade-off performance (bandwidth) versus energy consumption.

Another research direction would the further exploration of instruction set

architecture and microarchitecture for improving energy-efficiency. Of particular

interest are VLIW and parallel processor architectures which explicitly expose their

parallelism, and do not suffer from exponentially increasing energy consumption with

parallelism as is the case with superpipelined and superscalarprocessorarchitectures.

As process technology continues to advance, energy consumed by interconnect

will consume an increasingly larger fraction of the total energy consumption. Thus,

further investigation of low-swing interconnects could yield additional improvement of

processor system energy-efficiency.
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