
 

 

 

 

 

 

 

 

 

Copyright © 2000, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



HARDWARE AND SOFTWARE

REPRESENTATION, OPTIMIZATION, AND

CO-SYNTHESIS FOR EMBEDDED SYSTEMS

by

Bassam Tabbara, Abdallah Tabbara
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL MOO/7

1 January 2000



HARDWARE AND SOFTWARE

REPRESENTATION, OPTIMIZATION, AND

CO-SYNTHESIS FOR EMBEDDED SYSTEMS

by

Bassam Tabbara, Abdallah Tabbara and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL MOO/7

1 January 2000

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720



Hardware and Software Representation, Optimization, and
Co-synthesis for Embedded Systems

Bassam Tabbara
EECS Department

University of California at Berkeley
Berkeley, OA 94720

+1-510-643-5187

Abdallah Tabbara
EECS Department

Universityof Californiaat Berkeley
Berkeley, CA 94720

+1-510-843-5187

Alberto Sangiovanni-Vincentelli
EECS Department

University of California at Berkeley
Berkeley, CA 94720

+1-510-642-4882

tbassam@eecs.berkel0y.edu atabbara@eecs.berkeley.edu alberto@eecs.berkeley.edu

Abstract

Current software andhardware co-synthesis methodologies of
control dominated embedded systems focus primarily on
improving productivity in the complex design process. Inorder to
improve synthesis quality, we propose a methodology that
incorporates data flow and control optimizations performed on a
novel implementation independent design taskrepresentation. The
approach is applicable to any co-synthesis tool; we use a public
domain co-design environment to report some results of our
investigation. The data collected shows that performing such
optimizations on an adequate representation can lead to
considerable size and performance improvements in both the
synthesized software and hardware.

Keywords

Design representation, control and data flow analysis,
optimization, software andhardware co-design, co-synthesis.

1 Introduction

Embedded systems are very prevalent in today's society and
promise to be even more commonly found in many of the things
we interact with ona daily basis. Applications vary from today's
airplane or car controllers, and the abundant communication
devices to the future's autonomous transportation vehicles and
consumer electronics and appliances:

Hardware/Software Co-design (HSC) is a recent field that
emerged out of the pressures of the always shrinking time-to-
market and the ever-increasing demand for more "intelligence" on
board theembedded device. Design productivity, however, should
notbe improved at theexpense ofquality ofsynthesis; thevarious
applications not only require that theproduct design cycle befast
and correct-in-the-first-time, the fin^ implementation must be
reliable, cost-effective, and of good merit. These requirements
impose constraints on the hardware (HW) and software (SW)
components of thesystem. Invariably, thesystem must beevident
(i.e. speed of execution of the software), and performance of the
hardware must be adequate. The product must also be small in
size if it is to fit seamlessly in common objects. Therefore, both

code size of the software and silicon area of the hardware must be
within bounds. Other design metrics include power, as well as
application specific considerations such as fuel preservation and
emission control in an embedded vehicle controller.

1.1 Assumptions

While fellow researchers have developed representations
especially suited for data processing applications (such as SDF
[16] or DDE [9]), in this work we target heterogeneous control-
dominated embedded system applications, so we assume a
functional decomposition thatcaptures thedesign as a network of
Finite State Machine modules extended with data computation
(EFSMs) as described in [7], and [21]. Each module behavior is
conveyed using graphical entry or an FSM-based reactive
language (for example Esterel [6]) front-end. We focus on the
representation, optimization, and synthesis of each individual task
in the network, so we do not assume a specific model of
computation governing the composition of these tasks in the
system.

1.2 Reactive System Co-synthesis
Current software and hardware co-synthesis strategies for

control-dominated applications areaimedat theefficient (fastand
compact) implementation of a reactive decision process [3]. Data
flow aspects are neglected; it is generally assumed that software
compilers andhardware Register Transfer Level (RTL) compilers
will address these optimizations.

f >
Gbrtrol-

daninated

Eteign

CtacoipoGe
/

EFSM
Represenaim

Ivhp
CDR3

Represeniaicn
imsw

Figure 1. ReactiveSystem Co-synthesis

The typical synthesis process, as shown in Figure 1, starts
with design capture, followed by modeling and representation
using finite state machines extended with operations and data
computations referred to here as Extended Finite State Machines
(EFSMs). The EFSM of eachsystem component module is then
mapped in this flow onto a Control Data Flow directed acyclic
Graph (CDFG) used to generate reactive hardware or software.
Executing a path in theCDFG when thetask is invoked performs
a transition of the EFSM.

Whilethe CDFGis ideal forrepresenting the reactivetasks to
be synthesized (since it can be used for both early size/speed
estimation as well as synthesis of the hardware, and code



generation of the software) this representation hides much of the
control flow across invocations of the reactive module, and
consequently data cannot be fully propagated. This limits data
flow optimizations, as well as control optimizations that depend
on this data, to just optimizing paths in the CDFG without
considering the optimizations across paths. We illustrate this
using a simple example shown in Figure2.

Case (state)

slate

EFSM

CDFG

Figure 2. Data Flow Optimization and the CDFG
Representation

The example shows an EFSM with a constant propagation
opportunity that would save a runtime addition operation. The a
= 5 operation of SO and the a = a + 1 of SI can be
combined into one a = 6 operation in SI. This optimization
cannot be easily identified in the CDFG representation since it is
distributed across two invocations of the reactive task (first for
state SO and second for state SI).

Thekey point to emphasize here is that it cannot be expected
of software and hardware compilers (as "conventional wisdom"
leads one to believe) to statically discover such an optimization
thatinvolves a run-time decision inthetaskCDFG representation.
The very simple example of Figure 2 shows that the CDFG
representation has a shortcoming in identifying potential
optimizations that lie across task invocations, and our recourse, as
will be described shortly, is to use an equivalent task
representation that is better able to identify and exploit such
optimizations.

1.3 Our Contribution

We introduce here a design representation for each system
task that is able to capture the EFSM description, and at the same
time is suitable for performing data flow and control
optimizatidns. We show that performing data flow and control
optimizations at the design representation level will directly
reflect positively on the size and performance of both the
synthesized software and hardware. We are currently evaluating
this optimization for synthesis approach by incorporating data
flow and control optimizations into the co-synthesis flow of a
representative public domain co-design environment that targets
reactive controllers [7]. In the sequel we describe the key ideas
behind our approach.

2 Data Flow and Control Optimization
Approach

Our proposedoptimization approach is divided into 2 phases:

1. Architecture Independent Phase: EFSMs are considered
individually; data flow analysis and intra-EFSM
optimizations are performed. The optimizations here are
useful forboth sizeandperformance improvement since they
involve removing redundant and useless tests and
assignments, and in general decreasing the number of
variables in the EFSM task.

2. Architecture Dependent Phase: Optimizations in this stage
rely on architectural information to perform additional
optimizations tuned to the designtargetand typically involve
some estimation-based trade-off between size and
performance. These include:
• Scheduling and Resource Allocation of the macro-

architecture: The interconnection of EFSMs is
considered; issues such as resource sharing,
communicationoverhead, scheduling and pipelining are
addressed for optimization.

• Instruction Selection for Software: Instruction selection,
allocation, and scheduling are performed for the micro
architecture [13].

The process can of course be iterated for different functional
decompositions.

3 Architecture Independent Data Flow and
Control Optimizations

3.1 Related Work

Previous work in control optimization is mostly based on
BDD-based techniques for Control Flow Graphs (CFGs) such as
[8]. The limitation of these optimizations is that they neglect the
data and are in fact "data valueblind"; control optimizations that
can result fromdata analysis (such as dead operation elimination,
and copy propagation for example) are not available to such
techniques.

The two most relevant bodies of work to our research are:
• High-Level Synthesis (HLS)for silicon compilation,and
• Code optimizationtechniquesforsoftwarecompilation.

High-level synthesis for silicon compilation has been an
active research area in the past two decades. The focus of such
techniques however has been mostly on approaches for
scheduling, allocation, and bindingof the specification (usuallya
Hardware Description Language (HDL)) to the hardware
implementation suchas [17]. Generaloptimization techniques, for
examplecommon sub-expression extraction,and constantfolding,
are applied in a local fashion. Bergamaschi recently proposed a
design representation. Behavioral Network Graph (BNG), for
unifying the domains of HLS and Logic Synthesis [5]. His work
recognized the need for an internal design representation on which
to perform data path and control optimization before logic
synthesis of hardware. The BNG, however, is at an even lower
abstraction level than the design CDF DAG and is therefore not
suitable for our need of a unifying design representation for
software and hardware at the high abstraction level in the
embedded co-design domain.

The literature has a wealth of data flow optimization
techniques, most notably classical optimization techniques of
Kildall [15], Kam et.al. [14], and more recent work by Aho et.al.
[1], and TJiang [20]. However, the focus has been on hand-written
code optimization. In fact the architecture independent and
dependent parts are most often tightly coupled together in a
general optimizing compiler intended usually for code



optimization of a specific component processor and instruction
set.

In our work we specialize the aforementioned silicon and
software compilation techniques to the embedded systems domain
since these techniques can be applied on any internal design
representation, no matter what the abstraction level, and need not
be restricted to the final stages of software assembly code
generation, or hardware synthesis. Early optimization, as we will
show, benefits all the subsequent steps in the control-dominated
co-design flow.

3.2 Intermediate Design Representation

We have developed a novel implementation-independent
(initially unscheduled) task representation referred to as Function
Flow Graph (FFG) equivalent to the EFSM representation, and
quite similar to the classical CFG from the software domain. The
representation is able to capture the EFSM semantics and
behavior, and is well suited for control and data flow analysis.

3.2.1 Function Flow Graph (FFG)

FFG is the task representation used for design analysis and
optimization. Each EFSM state is represented as a collection of
nodes, and edges represent control flow. This flow graph is the
data structure on which the task control flow analysis is
performed, and data flow information is gathered.

Definition 1: A Function Flow Graph (FFG) is a triple G =
(V, E. No) where

i. V is a finite set of nodes

ii. £ =/ (x.y)J is a subset of VxV, (x,y) is an edge fromx to y
where x e Pred(y), the set of predecessor nodes of y.

iii. No e F is the start node corresponding to the EFSM
initial state.

iv. A set of operations is associated with each node N.
V. Operations consist of TESTs performed on the EFSM

inputs and internal variables, and ASSIGNS on the
EFSM outputs and intemal variables.

3.2.2 C-Like Interchange Format (CLIF)

The textual interchange format of the FFG is called the C-
Like Intermediate Format (CLBF). The format consists of an
unordered set of TEST and ASSIGN operations:
• TEST instruction

[if (condition)] goto label
• ASSIGN instmction

dest = unop(5rc/)
dest = srcl binop src2
dest = func(arg7, arg2,...)

The format does not have any aliasing that is there are no side
effects (no pointers);operations involve ASSIGNing to the target
a result of a computation performed on one or two source
operands (typicallyreferred to in the softwarecompilationdomain
as quadruples) or an assignment from a stateless arithmetic or
Boolean function, or TESTing a variable and performing a
resulting action. The control transfer statement is the goto
statement. The format has C syntax, and supports all the unary
and binary arithmetic. Boolean, and relational operators in C.

FFG

Flow Graph
CLIF

Textual Representation
SI: xox + y:

Xox + y;

Oob+c
Obx;

ccndl =(y==c5n):
ooncE = IcoxSl;
lf(oonce>03toSHO
cxilput°a
0CtoS1;rLocp7

5Uft oulpUstx
QDtoSI:

(coimJ2= / uuinut(b)
SI

x=x+y

*=x+y

asx

condl s (y=GsU)

cond2 - !condl;

0) / oul]>uI(a)

Figure 3. Simple FFG and Its CLIF Representation

A simple FFG graph, along with its equivalent CLIFtextual
representation is shown in Figure 3. The Rgure exhibits typical
opportunities for data flow and control optimizations such as
eliminatingthe a = b + c operation sinceit is useless (a is re
defined before the result of the said operation is used), and
performing dead operation elimination on the (cond2 == 1)
branch since y is always equal to 1 upon entry to state SI,
consequently cond2 is 0. While the Figure shows "local"
optimizations forsimplicity, thegoal is to address global versions
of these optimizations.

3.3 Our Optimization Flow

We perform data flow andcontrol optimization at the design
representation level. Thepurpose oftheapproach is two-fold:
a) Raise the abstraction level, and allow optimization to be

reflected in both software and hardware synthesis, and
b) Incorporate powerful classical data flow and control

optimizations that have a considerable potential for
improving thequalityof the synthesized output.

EFSM FFG
Optimized

/ \' FFG
CDFG

Optimizations

Figure4. Our Optimization and Synthesis Flow

Our modified co-synthesis flow is shown in Figure 4. After
the FFG is mapped onto an optimized CDFG we proceed with
reactive synthesis.

3.3.1 Control and Data Flow Analysis

In order to implement task optimizations we need to identify
operations and variables that can be eliminated using a static
conservative procedure. To that end we have developed an
optimizer that examines the FFG in order tostatically collect data
flow and control information of the task under analysis using an
underlying data flow analysis framework.

Definition 2: A monotone data flow analysis framework is a
triple D = (L, A F) where:

i. L is a bounded semilattice with meet a, and
ii. £ is a monotone function space associated with L

The framework can be used to manipulate the data flow
information by interpreting the node labels on in F of the
control flow graph G as elements of an algebraic structure L

Definition 3 (adapted from [14]): A particular (problem)
instance of a monotone data flow analysis framework is a pair / =
(G, M) where M: N F '\s a function thatmaps each node /V in V



of C to a function in F on the node label semiiattice L of the
framework D.

While control flow can be inferred from the structure of the
FFG flow graph, data flow information can be collected by setting
up and solving a system of equations that relate data at various
points in the FFG module behavioral description. In the context of
the FFG and the problems we solve, M is an algorithni for
extracting information from the quadruple sequence associated
with each node N, and grouping it into a set which becomes the
node label for the corresponding node in the data flow problem
instance graph G; F isa pair ofequations describing information
flow while the meet operator for forward flow problems in this
case (i.e. when we proceed along the flow ofcontrol in the FFG)
is set intersection n. Thegeneral form ofthesystem ofequations
to be solved is as follows:

VyV € V,where G = (V, E,A^o) is thetaskFFG
IniN) = n OutiP)

PgPred(iV)

OutiN) = (IniN) - Kill(N)) UGen(N)
The equation pair for every node Nmeans that the information

passed along to other nodes in the FFG (^Out(N)) is the
information reaching the node (the meet along all paths leading
into node: In(N)) and not invalidated in the node iKill(N)) added
to the information generated in the node itself iGen(N)) [14]. In
some cases we may need to proceed in reverse to the flow of
control (typically when "use" information isrequired as opposed
to "definitions"); the equations differ slightly in that case. The
types ofproblems we solve to gather information about the design
are all monotone and include suchclassical problems as variable
reaching definitions and uses, and available expression
computation.

Our optimizer solves these data flow equations using the
iterative method, which has been shown to be a general (i.e.
applies toarbitrary flow graphs) and optimal method for the data
gathering problems we solve [15]. While the average running time
can be improved by depth-first ordering ofthe FFG, the method's
worst-case time complexityis as follows:

0(n^) where n=number ofFFG nodes
N

and n=^ Kj
1=1

where N - number of EFSM states

a:.=i+c,-

Cj = numberof transitions in state /

3.3.2 Control and Data Flow Optimizations

Once the analysis and information gathering about the task at
hand is complete, optimization of the FFG begins. The objective
is tooptimize the FFG task representation for speed ofexecution
and size (area of hardware, code size of software). The design
representation improvement techniques and transformations
through data flow analysis that are performed include:
• Live variable preservation, and dead variable removal

through reaching definition anduseanalysis
• Identification of same computations through normalization,
• Copypropagation, andconstant folding,
• Common sub-expression simplification, and
• Movement ofoperations between states inorder tospeed up

thecritical path guided byfrequency ofexecution estimates.
Control optimizations include:

• Unreachable FFG node elimination,
• Dead operation elimination, and
• Reduction of test variables and normalization of TEST

operations, which leads to tremendous size reductions in the
CDFG, used for synthesis [3].

Our design representation optimization process specializes the
classical techniques and transformations listed above to the
control-dominated embedded domain where reactive semantics
are imposed (see Section 5 for an example of one possible
mapping policy) and input/output traces must be preserved.

4 Architecture Dependent Optimizations
Up till now, we have described optimizations that involve

reducing useless and redundant operations, and variable tests and
assignments. Such optimizations are reflected in both size (area),
and speed (performance) improvements of the hardware or
software. Scheduling, allocation, and binding decisions change
this picture; these will usually involve a trade-off between size
and speed depending on the target architecture. For example, if
the architectural constraints (e.g. clock speed) are suchthat data
path computation can beperformed atevery task invocation (e.g.
clock cycle), then data path components can be"shared" across
invocations (smallest code size/area extreme) since all theirinputs
and outputs would beregistered for the given schedule. The data
we present in Section 6 shows the other (fastest) extreme where
estimated speed is optimized i.e. computations are all
"replicated".

5 Synthesis

In order to perform synthesis, CUF is mapped into the
Software Hardware Intermediate FormaT (SHIFT) representation
of the POLIS co-design toolset. SHIFT is a representation format
for describing a network ofEFSMs. It is a hierarchical netlist [3]
of: •

• Co-design Finite State Machines (CFSMs): finite state
machines with reactive behavior

• Functions: state-less arithmetic. Boolean, or user-defined
operations.

A CFSM execution consists of four phases:
1. Idle awaiting trigger inputs
2. Sample inputswheninvoked
3. Computechain of operations
4. Emitoutputs, returnto Idlemode
A CFSM in SHIFT is therefore composed of input, output,

state orfeedback signals with initial values, aswell asa transition
relation (TREL) that describes the reactive behavior. Functions
are used in the TRELto ASSIGN computation results to valued
outputs.

A function can be thought of as a combinational circuit in
hardwareor a function (with no side effects) in software.

We therefore decompose the CLIF representation ofeach task
into a single reactive control part, and a setofdata path functions
consistent with the current defaultSHIFTmacro-architecture. We
then use the POLIS engine to build the CDFG for software and
hardware co-synthesis.



6 Results

6.1 Experimental Procedure

Embeddedsystemtarget architectures are quite numerousand
varied, so for space considerations we restrict our presentation
here to software synthesis on a single processor. To make our
results accessible and useful to a wide audience, we choose to
report size improvement results obtained from the CDFG node
count directly, before the final mapping onto a software
implementation. The CDFG is built after performingthe FTGtask
representation architecture independent optimizations, as well as
the architecture dependent arithmetic function replication
described in Section 4. Collecting speed results involveprofiling
on the target architecture and so are not as single to report. To
that end, we will be reporting estimates collected on 3
representative platforms:
1. htrol compiler for the 68HC11: representing the 8-bit/16-bit

data (4 MHz) widely used micro-controllers.Speed estimates
were gathered using the macro-modeling technique by
Suzuki et.al. [19].

2. ARMSoftwareDevelopment Kit (SDKv2.50) profiler for the
ARM9 (160 MHz ARM 920T) family of Harvard
architecture RISC processors (ARMulator) [2].

3. GNU'sgcc compiler (with the highest level of optimization)
for an Alpha 21164 64-bit (400 MHz) processor:
representing the high end 32-bit and 64-bit RISC processors
such as those cited in the EEMBC suite [11] since gcc has
been ported to most of these embedded processors in the
form of the Cygnus GnuPro compiler [10]. Speed estimates
were obtained from the pixie instrumentation of the
ATOM analysis Tool [18].

In order to give an idea of the proportion factor between the
reported CDFG node count and the final output byte size, we also
show the bytesobtainedafter synthesis on the gcc platform.

6.2 Benchmarks

We present in this section results on two benchmarks: Quick
Sort and Insertion Sort fragment examples used by Aho et. al.[l].
We have adapted the examples to be reactive by periodically
reading from, and writing to, an external memory block. These
examples have been used quite extensively in the software
optimization domain, and we hope they will serve here to show
two cases where it is obvious that current optimization for
synthesis techniques are outperformed by our proposedhigh-level
design representation optimization followed by CDFG building,
and synthesis approach. We also intend for these examples to
demonstrate the benefits of optimization on control-dominated
designs that have "intelligence" embodied in a significant data
computation portion. Synthesis results are displayed in Table 1. It
can be seen fromthe data that the representation and consequent
optimizations are able to improve considerably final codequality
in all cases. We can also see a case (Insertxtask) where the high
level optimizations prevented design explosion. Our experience
has shown that this is a quite common occurrence in hardware
synthesis.

SYNTHESIS &

MAPPING

METHOD

EFSMTask (GCC BYTES)
CDFG (NODES)

GCC (CYCLES)
ARM (CYCLES)

INTROL (CYCLES)

EFSM-^CDFG Quick
(24952)

327 389 274 1165

EFSM~>FFG-^

CDFG
Quick

(15320)
246 111 186 494

% Improvement 38.6 25 71.5 32.1 58

EFSM-»CDFG Insertx

(-)

>

4000

Designexploded(very large
SHIFT file)

EFSM-X:UF-^

CDFG

Insertx

(22040)
522 115 108 607

% Improvement
- >87

- • -

Table 1. Benchmark Results

6.3 Application Design Example

The optimization technique described in this paper has been
applied to the synthesis of an industrial case study from the
communication networks domain: an ATM server suitable for

implementing Virtual Private Networks (VPN) in ATM nodes
[12]. Results are shown for 3 design tasks in Table 2. The
automatically generated Real-Time Operating System RTOS [4]
size was reduced by about 6% in the optimized design.

SYNTHESIS &

MAPPING

METHOD
EFSM Task(GCC BYTES)

CDFG (NODES)
GCC (CYCLES)

ARM (CYCLES)
INTROL (CYCLES)

EFSM^CDFG
quid

(7960)
14 119 496 229.5

EFSM-^FFG^

CDFG

quid
(6912)

11 no 490 221

% Improvement 13J 21.4 7.6 1.2 3.7

EFSM->CDFG
first cell

(13072)
137 248 350 734

EFSM-)FFG-^

CDFG

first cell
(12152)

125 212 246 631

% Improvement 7.1 8.8 14.5 29.7 14

EFSM-»CDFG
extract

(8032)
100 104 166 313.5

EFSM^FFG->

CDFG

extract

(7488)
85 103 154 298

% Improvement 6.8 12 0.96 72 4.9

Table 2. ATM Server Design Results

Results here also show a measurable improvement in code
quality reflected in both size and performance in all cases. The
effect of the instruction selection and allocation performedby the
target compiler at the low level are more apparent here because of
the relatively small returns on the high level optimizations since
the design is mostly control. Our experience shows that in such
designs guiding low level optimizations, such as register
allocation for example, with proper "hints"at the high level has a
tremendous impact on size and performance.

Overall experimental results are therefore very encouraging
and have shown a considerable advancement in the quality of the



synthesized software and hardware on the order of about 10-20%
on control-dominated examples with greater improvement results
the more abundant datacomputations are.

7 Conclusions

Boosting design productivity cannot be the major focus of
system level co-design tools; attention should be paid as well to
enhancing thequality of the final synthesized output that will run
on the target architecture. We have shown that design
representation level data flow and control optimizations have a
considerable positive improvement effect on synthesized
software. Our experience indicates that hardware synthesis
benefits greatly too. The optimizations at the high level assist the
lower (abstraction) level optimization algorithms and heuristics in
the co-design flow as well. This is because typically the lower
level algorithms deal with smaller granularity optimizations and
therefore perform better on smaller inputs. It should be noted, as
well, that the computation cost of the data flow and control
analysis and optimization toimprove synthesis quality should not
be viewed asan overhead since it is most often recovered by the
significant speed up of the low level synthesis techniques (e.g.
building the CDFG, an 0{t^) process in the number of FFG
nodes, is up to 80% faster in theQuick Sort benchmark).

8 Future Work

While we have focused here onoptimizing the function of an
EFSM task in a system composed of such interconnected
elements, we are working towards exploring opportunities in
Function Architecture Co-design. An Attributed version of the
FFG (AFFG) serves as an excellent mechanism for
function/architecture co-design. By analyzing the EFSM functions
in the network, an automated design assistant can recommend
suitable architectures, at the macro-architectural level (e.g.
partitioning control bydecomposing the single reactive controller
into several smaller control fragments) and then the micro
architectural level, (e.g. through the use of instruction selection
techniques) for implementation. On the otherhand, architectural
constraints specified by the user can feed further optimization
opportunities back to the EFSM function during the architecture
dependent optimization and mapping step, and the assistant can
then attempt to massage the function to meet these constraints
(e.g. operator strength reduction can be performed on costly
operations in the selected targetarchitecture).

Acknowledgements
Our thanks go to Richard Newton and Robert Brayton from

the University ofCalifornia at Berkeley, and to Luciano Lavagno
and Felice Balarin from Cadence Design Systems for their
continued assistance and support. The authorsalso wish to thank
the Semiconductor Research Corporation (SRC) who is funding
thisresearch under theGraduate Fellowship Program.

References

[1] Aho, A. v.; Sethi, R.; Ullman, J.D., "Compilers: Principles,
Techniques, andTools", Addison-Wesley, 1988.

[2] ARM Limited, http://www.arm.com. 1999.
[3] Balarin F.; Chiodo M.; Giusto P.; Hsieh H.; Jurecska A.;

Lavagno L; Passerone C.; Sangiovanni-Vincentelli A. L.;
Sentovich E.; Suzuki K.; and Tabbara B., "Hardware-

Software Co-Design of Embedded Systems: The POLIS
Approach", Kluwer Academic Publishers, May 1997.

[4] Balarin F., Chiodo M., Lavagno L, Jurecska A., Tabbara B.,
A. SangiovanniVincentelli, "Automatic Generation of a
Real-Time Operating System for Embedded Systems",
CODES/CASHE'97, Braunschweig, Germany, March 1997.

[5] Bergamaschi, R. A., "Behavioral Network Graph: Unifying
the Domains of High-Level and Logic Synthesis", DAC,
1999.

[6] Berry, G., Couronne, P., Gothier, G. "The Synchronous
Approach to Reactive and Real-Time Systems", IEEE
Proceedings, 79, September 1991.

[7] Chiodo M., Giusto P., Hsieh H., Jurecska A., Lavagno L,
Sangiovanni-Vincentelli, A., "Hardware/software Co-design
ofEmbedded Systems" IEEE Micro, Vol. 14, Number 4, pp.
26-36,1994.

[8] Chiodo, M.; Giusto, P.; Jurecska, A.; Lavagno, L.; Hsieh,
H.;Suzuki, K.; Sangiovanni-Vincentelli, A.; Sentovich E.,
"Synthesis of Software Programs for Embedded Control
Applications", DAC, June 1995.

[9] Choi, C.; Ha S. "Software Synthesis for Dynamic Data Flow
Graph", IEEE International Workshop on Rapid System
Prototyping, June 1997.

[10] Cygnus GNU, httD://www.cvgnus.com. 1999.
[11] The EDN Embedded Microprocessor Benchmark

Consortium (EEMBC), httD://www.eembc.org. 1999.
[12] Filippi E., Lavagno L., Licciardi L., Montanaro A., Paolini

M., Passerone R., Sgroi M., Sangiovanni-Vincentelli, A.
"Intellectual Property Re-use in Embedded System Co-
design: an Industrial CaseStudy", ISSS, Dec. "98.

[13] Hanono, S.; Devadas, S., "Instruction Selection, Resource
Allocation, and Scheduling in the Avis Retargetable Code
Generator", DAC, 1998, pp. 510-515.

[14] Kam, J.B., Ullman, J.D. "Monotone Data Flow Analysis
Frameworks", Acta Informatica, 1977, pp. 305-307.

[15] Kildall, G. "A Unified Approach to Global Program
Optimization", ACM Symposium on Principle of
Programming Languages, 1973, pp. 194-206.

[16] Murthy, P.K.; Bhattacharya, S.S.; Lee, E.A. "Joint
Minimization of Code and Data for Synchronous Data flow
Programs", Fonnal Methods inSystem Design, July 1997.

[17] Goossens, G.; Lanneer, D.; Vahoof, J.; Rabaey, J.; Van
Meerbergen, L; DeMan, H. "Optimization-based Synthesis
of Multiprocessor Chips for Digital Signal Processing, with
CATHEDRAL D", International Workshop on Logic and
Architecture Synthesisfor Silicon Compilers, 1988.

[18] Srivastava, Amitabh and Alan Eustace, "ATOM: A System
for Building Customized Program Analysis Tools"
SIGPLAN, 1994.

[19] Suzuki, K. and Sangiovanni-Vincentelli, A. "Efficient
Software Performance Estimation Methods for
Hardware/Software Co-design" DAC, pp. 605-610, June
1996.

[20] Tjiang, S.W. "Automatic Generation of Data-Flow
Analyzers: A Tool for Building Optimizers", Ph.D.
Dissertation,StanfordUniversity, 1993.

[21] Vahid, F., Gajski, D. "Incremental Hardware Estimation
During Hardware/Software Functional Partitioning", TREE
Transactions on VLSI Systems, Sept. 1995.


	Copyright notice 2000
	ERL-00-7

