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Abstract

Classical formulations of the portfolio optimization problem, such as mean-variance
or Value-at-Risk (VaR) approaches, can result in a portfolio extremely sensitive to
errors in the data, such as mean and covariance matrix of the returns. In this paper
we propose a way to alleviate this problem in a tractable manner. We assume that
the distribution of returns is partially known, in the sense that only bounds on the
mean and covariance matrix are available. We define the worst-case Value-at-Risk as

the largest VaR attainable, given the partial information on the returns' distribution.
We consider the problem of computing, and optimizing, the worst-case VaR, and show
that these problems can be cast as semidefinite programs. We extend our approach to
various other partial information on the distribution, including uncertainty in factor
models, support constraints, and relative entropy information.
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Notation

For two n-vectors x^y, x > y (resp. x < y) means Xi > yi (resp. Xi < t/i), i =
x+ denotes the positive part of x, which is the vector with components max(xi,0). e is
the n-vector with all components equal to one. The notation denotes the set of n x n
symmetric matrices. For two n x n symmetric matrices A,B 6 «Sn, A ^ B (resp. A B)
means A —B positive semidefinite (resp. definite). For 5^0, denotes the symmetric
square root of S. For symmetric matrices of the same size, (A,B) = Tr(AB) denotes the
standard scalar product in the space of symmetric matrices. For a non empty convex subset
Q of R", we denote by /C(Q) the cone of non negative distributions with support included
in n. ^ denotes the cumulative distribution function of a scalar, zero mean, unit vEiriance
Gaussian random variable.

1 Introduction

We consider a one-period asset allocation problem. Over the period, the price of asset
i changes by a relative amount x,, with x modeled as a random n-vector. For a given
allocation vector ly, the total return of the portfolio is the random variable

n

r(w,x) = ^WiXi = w^x.
i=l

The investment policies are constrained. We denote by W the set of admissible portfolio
allocation vectors. We assume that W is a bounded polytope that does not contain 0.

The basic optimal investment problem is to choose w € W, in order to malte the return
high, while keeping the associated risk low. Depending on how we define the risk, we come
up with different optimization problems.

1.1 Some classical mesisures of risk

In the Markowitz approach [14, 13], it is assumed that the mean x and covariance matrbc
F of the return vector are both known, and risk is defined as the variance of the return.
Minimizing the risk subject to a lower bound on the mean return leads to the familiar
problem

minimize vFTw subject to SFw > y,, w £W (1)

where /i is a pre-defined lower bound on the mean return.
The Value-at-Risk framework (see, for example, [18, 9]) instead looks at the probability

of low returns. The VaR is defined as the minimal level 7 such that the probability that the
portfolio loss —r{w, x) exceeds 7 is below e:

V(w) = min 7 subject to Prob{7 < —r(iy, x)} < e,

where e € (0 1] isgiven (say, e ~ 2%). Contrarily to the Markowitz framework, which requires
the knowledge of the first and second moments of the distribution of returns only, the VaR



above assumes that the entire distribution is perfectly known. When this distribution is
Gaussian, with given mean x and covariance matrix F, the VaR expresses as

V(w) —K(€)Vw'̂ rw —X^Wy (2)

where /c(e) = —
In practice, the distribution of returns is not Gaussian. One then can use the Chebyshev

bound to find an upper bound on the probability that the portfolio loss —r{w^x) exceeds 7.
This bound is based on the sole knowledge of the first two moments of the distribution, and
results in the formula (2), where now ^(e) = l/\/e. In fact, the classical Chebyshev bound
is not exact, meaning that the upper bound is not attained; we can replace it by its exact
version, as given in [2], by simply setting «(e) = —e)/€ (we will obtain this result in
section 2.1).

In all the above cases, the problem of minimizing the VaR over admissible portfolios
adopts the following form:

minimize kVv^Tw —x^w subject to iz; € W. (3)

where k is an appropriate "risk factor", which depends on the prior assumptions on the
distribution of returns (Gaussian, arbitrary with given moments, etc). When /c > 0 (which
is true iff e G (0 1/2] in the Gaussian case), V{w) is a convex function of ly, and the above
problem can be easily solved globally using for example interior-point techniques for convex,
second-order cone programming (SOCP, see [12, 21]).

The classical frameworks may not be appropriate for several reasons. Clearly, the vari
ance is not an appropriate measure of risk when the distribution of returns exhibits "fat"
tails. On the other hand, the exact computation of VaR requires a complete knowledge of
the distribution. Even with that knowledge in hand, the computation of VaR amormts to a
numerical integration in a possibly high dimensional space, which is computationally cum
bersome. Furthermore, integration techniques such as Monte-Carlo simulation [9] are not
easily extended to portfolio design. Assuming Gaussian returns is a practical, albeit quite
rough, approximation. The classical Chebyshev bound does not assume prior knowledge of
the distribution, but may be overly pessimistic. The exact version of the Chebyshev bound
is not realistic, as the optimal worst-case distribution turns out to be discrete [3]. Moreover,
Chebyshev bounds do not take into account support information, stemming for example
from the fact that prices are never negative, and hence, returns always greater or equal to
-1.

1.2 The problem of data uncertainty

Despite their shortcomings, the above frameworks do provide elegant solutions to VaR anal
ysis and design. However they suffer from an important drawback, which is perhaps not so
well recognized. As pointed out in [4, 17], these approaches require a perfect knowledge of
the data, in oiur case the mean and covariance matrix. In practice, the data is often prone to
errors. This hidden risk is compounded by the fact that the point estimates of the covariance
matrix sometimes have low (numerical) rank, and this may result in an optimal portfolio



with zero variance, quite an absurd result. In general, portfolio optimization based solely
on such inaccurate point estimates may be highly misleading, meaning for example that the
true VaR may be widely worse than the optimal computed VaR. This problem is discussed
extensively in [4], where a method is proposed to combine the classical Markowitz approach
with a priori information or "investor's views" on the market.

Errors in the mean and covariance data may have several origins. It may be difficult
to obtain statistically meaningful estimates from available historical data; this is often true
for the means of stock returns [4]. These possibly large estimation errors contribute to
a hidden, "numerical" risk not taken into account in the above risk measures. Note that
most statistical procedures produce bounds of confidencefor the mean vector and covariance
matrix; the frameworks above do not use this crucial information.

Another source of data errors comes from modelling itself. In order to use the variance-
covariance approach for complex portfolios, one has to make a number of simplifications, a
process referred to as "risk mapping" in [9]. Thus, possibly large modelling errors are almost
always present in complex portfohos. We discuss these errors in more detail in section 3.

Yet another source of data perturbations could come from the user of the Value at Risk
system. In practice, it is of interest to "stress test" Value at Risk estimates, to analyze the
impact of different factors and scenarios on these values. It is possible, of course, to come
up with a (finite) number of different scenarios (what happens if two usually uncorrelated
industry sectors become suddenly highly correlated?), and compute the corresponding VaR.
(We will return to this problem in section 2.3.) However, in many cases, one is interested
in analyzing the worst-case impact of possibly continuous changes in the correlation struc
ture, corresponding to an infinite number of scenarios. Such an endeavour becomes quickly
intractable using the (finite number of) scenarios approach.

1.3 The worst-case VaR

In this paper, our goal is to address some of the issues outlined above in a numerically
tractable way. To this end we introduce the notion of worst-case VaR.

Our approach is to assume that the true distribution of returns is only partially known.
We denote byV the set ofallowable distributions. For example, V could consist in the set of
Gaussian distributions with mean x and covariance matrix F, where x and F are only known
up to given componentwise bounds.

For a given loss probability level e € (0,1], and a given portfolio ly € >V, we define the
worst-case Value-at-Risk with respect to the set of probability distributions V as

Vp(w) := min7 subject to supProb{7 < —r(it;,x)} < e, (4)

where the sup in the above expression is taken with respect to all probability distributions
in V. The corresponding robust portfolio optimization problem is to solve

:= min Vp{w) subject to € W. (5)

The VaR based on the (exact) Chebyshev bound is a special case of the above, with V the
set of probability distributions with given mean and covariance.



1.4 Main results £uid paper outline

Our main result is that, for a large class of allowable probability distribution set P, the
problem of computing, and optimizing, the worst-case VaR can be solved exactly by solving
a semidefinite programming problem (SDP). SDPs are convex, finite dimensional problems
for which very efficient, polynomial-time interior-point methods, as well as bundle methods
for large-scale (sparse) problems, became recently available [16, 23, 21,19]. (Formore details,
see Appendix A.) SDPs are now the subject of intense research and arise in a large number
of applications, ranging from statistics to control systems design [19].

When the mean and covariance matrix are uncertain but bounded, our solution produces
not only a worst-case VaR or an optimal portfolio, but at the same time computes a positive
semidefinite covariance matrix and a mean vector that satisfy the bounds, and that are
optimal for our problem. Thus, we select the covariance matrix, and the mean vector, that
is the most prudent for the purpose of computing, or optimizing, the VaR.

Some of the probability distribution sets V we consider, specifically those involving sup
port information, lead to a seemingly untractable (NP-hard) problems. We show how to
compute upper bounds on this problem, via SDP.

Lobo and Boyd [10] were the first to address the issue of worst-case analysis and ro
bustness with respect to second-order moment uncertainty, in the context of the Markowitz
framework. They examine the problem of minimizing the worst-case variance with (com
ponentwise or eUipsoidal) bounds on moments. They show that the computation of the
worst-case variance is a semidefinite program, and produce an alternative projections al
gorithm adequate for solving the corresponding portfolio allocation problem. Our paper
extends these results to the context of VaR, with various partial information on the proba
bility distribution.

In our approach, we were greatly inspired by the recent work of Bertsimas and Popescu,
who also use SDP to find (bounds for) probabilities under partial probability distribution
information [2] and apply this approach to option pricing problems [1]. To our knowledge,
these papers are the first to make and exploit explicit connections between option pricing
and SDP optimization.

The paper is organized as follows. In section 2, we consider the problem of worst-case
VaR when the mean and covariance matrix are both exactly known, then extend our analysis
to cases when the mean and covariance (or second-moment) matrix are only known within
a given convex set. We then specialize our results to two kinds of bounds: polytopic and
componentwise. In section 3, we examine uncertainty structures arising firom factor models.
We show that uncertainty on the factor's covariance data, as well as on the sensitivity
matrix, can be analyzed via SDP, via an upper bound on the worst-case VaR. Section 4
is devoted to several variations on the problems examined in section 2: exploiting support
information, ruling out discrete probability distributions via relative entropy constraints,
handling multiple VaR constraints. We provide a numerical illustration in section 5. Proofs
are in the Appendix B.



2 Worst-Ccise VaR with Moment Uncertednty

In this section, we address the problem of worst-case VaR in the case when the moments
of the returns' probability distribution are only known to belong to a given set, and the
probability distribution is otherwise arbitrary.

2.1 Known moments

To lay the ground for our future developments, we begin with the assumption that the mean
vector X and covariance matrix F of the distribution of returns are known exactly. We assume
that F 0, although the results can be extended to rank-deficient covariance matrices. We
denote by E the second-moment matrix:

E:=E
X X

T
' S x'

1 1 X^ 1
, where S :=T xSF. (6)

Prom the assumption F 0, we have E 0.
The following theorem provides several equivalent representations of the worst-case VaR

when moments are known exactly. Each one will be useful later, for various cases of moment
uncertainty. The proof of this result is in Appendix B.l.

Theorem 1 Let V he the set of probability distributions that have a given mean x and
covariance matrix F 0. Let e € (0 1] and 7 € R fee given. The following propositions are
equivalent.

1. The worst-case VaR with level e is less than 7, that is,

sup Prob{7 < -r{w,x)} < e,

where the sup in the above expression is taken with respect to all probability distributions
in V.

2. We have

where

K(€)||F^/^iy||2 - x^w < 7,

K(e) :=
1 — €

3. There exist a symmetric matrix M € Sn+i and r € R such that

(M, E) < T€, M yO, T > 0, M

where E is the second-moment matrix defined in (6).

0 w
T

w —r 27
hO,

(7)

(8)

(9)



For every x € R" such that

^ ^ """Vo, (10)
(x-x)^ K(ef

we have —x^w < 7.

5. There exist A € <Sn and v € R such that

(A, r) + K(e)^v —x^w < 7, A w/2
vF j2 V h 0 (11)

Let us comment on the above theorem. The equivalence between propositions 1 and
2 will be proven in Appendix, but can be obtained as a simple application of the (exact)
multivaxiate Chebyshev bound given in [2]. This implies that the problem of optimizing the
VaR over it; 6 W is equivalent to

minimize /((e)Viy^Tit; —x wsubject to u; GW. (12)

As noted in the introduction, this problem can be cast as a second-order cone programming
problem (SOCP). SOCPs are special forms of SDPs which can be solved with efficiency close
to that of linear programming [12].

The equivalence between propositions 1 and 3 in the above theorem is a consequence of
duality (in an appropriate sense; see Appendix B.l).

Proposition 4 follows from 3 via duality again, this time in the SDP sense. This connection
is not direct, as it involves some elimination of variables. Note that proposition 4 implies
that the worst-case VaR can be computed via the SDP in variable x

V'p{w) = max—x^it; subject to (10).

The above provides a deterministic, or "game-theoretic", interpretation of the VaR. Indeed,
since P >- 0, condition (4) is equivalent to a: G 5, where S is the ellipsoid

5= I(x —x)^r~^{x —x)< «(e)^} ,

Therefore, the wort-case VaR canbe interpreted as the maximal loss —x'̂ w when the returns
are deterministic, known to belong to 5, and are otherwise unknown.

Expressions (9) and (11) for the worst-case VaR allows us to optimize it, by making w
a variable. This is a SDP solution to the worst-case VaR optimization problem, which of
course is not competitive, in the case of known moments, with the SOCP formulation (12).
However, this SDP formulation will prove useful as it can be extended to the more general
cases seen in section 2.2, while the SOCP approach cannot.



2.2 Convex moment uncertainty

We now turn to the case when (F, x) are only known to belong to a given convex subset U
of Sn X R,", and the probability distribution is otherwise arbitrary. 14 could describe, for
example, upper and lower bounds on the components of x and F. We assume that there
is a point (F,x) in U such that F >- 0. (Checking this assumption can be done easily, as
seen later.) We denote by 14+ the set {(F,x) GZY | F >- 0}. Finally, we assume that U+ is
bounded. We denote as before by V the corresponding set of probability distributions.

In view of the equivalence between propositions 1 and 3 of theorem 1, we obtain that the
worst-case VaR is less than 7 if and only if, for every x GR" and (F,x) GU+ such that (10)
holds, we have —x^w > 7. It thus suffices to make F andx variables in the above conditions,
to compute the worst-case VaR:

Vp{w) = sup —x^w subject to (F,x)gZY+, (10).

Since F ^ 0 is implied by (10), and the "sup" over a set (here, 14+) is the same as the "sup"
over its closure, we can replace 14+ by U in the above, and the "sup" then becomes a "max"
since 14 is bounded. We thus have the following result.

Theorem 2 When the distribution of returns is only knoumhave a mean x and a covariance
matrix F such that (x, F) G U, and is otherwise arbitrary, the worst-case Value-at-Risk is
the solution of the optimization problem in variables F, x,x;

max —x'̂ w subject to (F, x) GU,

where K(e) is given in (8).

F X — X

{x —x)^ «;(e)^ ^ 0, (13)

Solving problem (13) yields a choice of mean vector x and covariance matrix F that
corresponds to the worst-case choice consistent with the prior information (F, x) GU. This
choice is therefore the most prudent when the mean and covariance matrix are only known
to belong to 14, and the probability distribution is otherwise arbitrary.

To optimize over the allocation vector w, we consider the problem

min max —x'̂ w subject to (x,F) GU,
twew z,i,r •' V » /

F X — X

(x —x)^ «(e)^

It turns out that we can exchange the "max" and "min" in the above, since 14, W are convex,
bounded and have non empty interiors. This yields the convex optimization problem in
variables x, x and F:

—= min subject to (x, F) G U, F X — X

(x —x)^ «:(e)^ b 0, (14)

where <^vv is a convex function, defined as the support function of the convex set W:

0w(x) := sup x^w.
tuew



An optimal portfolio can be recovered from any optimal x by finding a w that achieves the
supremum in the above (the existence of which is guaranteed by boundedness of W); the
optimal worst-case VaR is the negative of the optimal objective.

We obtain an alternative expression of the worst-case VaR, using the formulation (11).
A given 7 is an upper bound on the worst-case VaR if and only if, for every (r,x) € U
with r >- 0, there exist A,v such that (11) holds. Thus, the worst-case VaR is given by the
max-min problem

maxr x niin (A, F) -f /c(c)^v —xrw
' A,t>

(15)
hO, {x,r)eu, r^o.subject to

A w/2
'uF/2 V

The feasible set in the above problem is compact and convex, and the objective is linear in
r,x for fixed A,f (and conversely). It follows that we can exchange the "min" and "max"
and optimize (over w) the worst-case VaR by solving the min-max problem

min max (A, F) -I- k{€)^v —x^w
A,v,w r,s

(16)
bO, (x,r)eU, FbO, u;€W.subject to

A w/2
w^/2 V

The above problem can be interpreted as a game, where the variables A, v seek to decrease
the VaR while the variables F, x oppose to it. Note that in the case when U is not convex,
the above is an upper bound on the worst-case VaR, given by (15).

Theorem 3 When the distribution of returns is only known have a mean x and a covariance
matrix F such that {x,F) G U, where U is convex and bounded, and the probability distri
bution is otherwise arbitrary, the worst-case Value-at-Risk can be optimized by solving the
optimization problem in variables r,x,x (I4)• Alternatively, we can solve the "min-max"
problem (16).

The tractability of problem depends on the structure of sets U and W. When both sets
are described by linear matrix inequalities involving x, F and w, the resulting problem can
be expressed explicitely as an SDP. The "min-max" formulation is useful when we are able
to explicitely solve the inner maximization problem, as will be the case in the next sections.

2.3 Polytopic uncertainty

As a first example of application of the convex uncertainty model, we discuss the case when
the moment pair (x, F) is only known to belong to a given polytope, described by its vertices.
Precisely, we assume that (x, F) GU, where

ZY = Co{(xi,Fi),...,(xz,Fz)}, (17)

where the vertices (xi, Fj) are given. Again, let V denote the set of probability distributions
that have a mean-covariance matrix pair (x, F) GU, and are otherwise arbitrary.

10



We can compute the worst-case VaR in this case, and optimize it, as a simple application
of the general results of section 2.2. The matrix-vector pair (x, P) is made a variable in the
analysis problem (13) or the portfolio optimization problem (14). Denoting by f the vector
containing the independent elements of x and F, we can express f as

I I

1=1 i=l

where corresponds to the vertex pair (xi,ri). The resulting optimization problem (13) or
(14) is a semidefinite programming problem involving the vector variable A.

It is interesting to examine the case when the mean and covariance matrix are subject
to independent polytopic uncertainty. Precisely, we assume that the polytope U is the direct
product of two polytopes: U = Ux where

Ux := Co{xi,...,xz} C R", Ur := Co{ri,... ,rz} C 5„.

(We have assumed for simplicity only that the number of vertices of each polytope is the
same.) Assuming that Fj b 0, z = 1,..., /, the worst-case VaR is attained at the vertices.
Precisely,

V'p{w) = ^m^ nFVw —minigi/^ iFw

Thus, the polytopic model yields the same worst-case VaR as in the case when the uncertainty
in the mean and covariance matrix consists in a finite number of scenarios.

With the previous polytopic model, the computation of Vp is straightforward. Moreover,
its optimization with respect to the portfolio allocation vector w is also very efficient. The
optimization problem

min Vpiw)

can be formulated as the second-order cone program in variables ly, t:

min t subject to /c(e)||Fj^^it;||2 <t-\-xJw, z= 1,..., i.
tt;€W

As seen in appendix A, this problem can be solved in a number of iterations (almost) inde
pendent of problem size, and each iteration has a complexity 0(ln^). Thus, the complexity
of the problem grows (almost) linearly with the number of scenarios.

The previous result is useful when the number of different scenarios is moderate, however
the problem becomes quickly intractable if the number of scenarios grows exponentially with
the number of assets. This would be the case if we are interested in a covariance matrix

whose entries are only known within two upper and lower values. In this case it is more
interesting to describe the pol3d;ope U by its facets rather than its vertices, as is done next.

2.4 Componentwise bounds on mesui and coveiriance matrix

We now specialize the results of section 2.2 to the case when F,x are only known within
componentwise bounds:

x_ < X:= Ex < x+, F_ < F := E(x —x)(x —x)^ < F+, (18)

11



where and r+,r_ are given vectors and matrices, respectively, and the inequalities
are understood componentwise.

The interval matrix [r_, r+] is not necessarily included in the coneofpositivesemidefinite
matrices: not all of its members may correspond to an actual covariance matrix. We will
however assume that there exist at least one non-degenerate probability distribution such
that the above moment bounds hold, that is, there exist a matrix F 0 such that r_ < F <
F+. (Checking if this condition holds, and if so, exhibiting an appropriate F, can be solved
very efficiently, as seen below.)

The problem of computing the worst-case VaR reduces to

maximize —x^w
subject to x_ < X < a;+, F_ < F < F+,

{x-xf «(e)2 hO,

Note that the SDP (19) is stricly feasible if and only if there exist F >- 0 such that (18)
holds. In practice, it may not be necessary to check this strict feasibility condition prior to
solving the problem. SDP codes such as SeDuMi [21] produce, in a single phase, either an
optimal solution, or a certificate of infeasibility (in our case, a proof that no F >- 0 exists
within the given componentwise bounds).

Alternatively, the worst-case VaR is the solution of the min-max problem

min max (A, F) H- k{€)^v —x^w
A,v r,x

subject to
A w/2

vF12 V
X- <x < x+, F_ < F < F+, F ^ 0

V0, (20)

For fixed A, u, the inner maximization problem in (20) is a (particularly simple) SDP in
X, F. We can write this problem in the dual form of a minimization problem. In fact.

max —vFx = min Aia;+ —Aix_,
x_<x<x+ •^±>0, ti;=A_—A+

and a similar result for the term involving F:

max (A,F)= min (A+,F+) - (A_,F_),
r-<r<r+, r^o ^ ' a±>o, A:<a+-a_ \ ^ "

where we are using that property that both the maximization and minimization problems
are strictly feasible, which guarantees that their optimal values are equal (see appendix A).

We obtain that the worst-case VaR is given by the SDP in variables A±,A±, v:

= min (A+, F+) - {A_,F_> + K{e)^v + A^x+ - Xlx. (21)
subject to A+ >0, A_ > 0, A+ >0, A_ > 0,

A+ - A_ w/2
w^/2 ^0, w = X- —X+.

As noted before, the above formulation allows us to optimize the portfolio over w eW: it
suffices to let ii; be a variable. Since W is a polytope, the problem falls in the SDP class.

12



In the casewhen the moments are exactlyknown, that is, r+ = r_ = F and x+ = x_ = x,
the above problem reduces to problem (3) asexpected (with the correct value ofk ofcourse).
To see this, note that only the variables v, A := A+ —A_ and A_ —A+(= w) play a role.
The optimal value ofA is easily determined to be ww'̂ /4v, and optimizing over > 0 yields
the result.

2.5 Componentwise bounds on mean and second-moment matrix

We now assume that we have componentwise bounds on the mean x and second-moment
matrix S, specifically.

x_ < X:= Ex < x+, S- < S := Exx^ < (22)

where x+,x_ and S+^S- are given vectors and matrices, respectively, and the inequalities
are understood componentwise. We denote by E the second-moment matrix defined in (6),
and by E^. and E_ the corresponding componentwise bounds. Again, we assume that there
exist a E 0 within the interval matrix [E_ E+]. As before this assumption can be checked
in a single phase, while computing (or optimizing) the VaR.

We observe that the constraint appearing in formulation (10) for the worst-case VaR can
be written as

S X — X X

(x —x)^ K(e)^ 0
0 1x^

hO, (23)

which is a linear matrix inequality involving x, x, and S. Note that this constraint imphes
5^0. Thus, we may compute the worst-case VaR by solving the SDP

max —x'̂ w subject to x_ < x < x+, 5_ < 5 < (23).

To optimize the VaR, we turn to the formulation (9). The worst-case VaR is less than 7
if and only if there exist r > 0 and M such that

sup(M, E) < re, M ^ 0, r > 0, M +
E

0 w
T

w -T 27 hO,

where E is the second-moment matrix defined in (6), and the "sup" is taken with respect to
the componentwise bounds on E. As in section 2.4, we have

max (M, E)= min (M+,E+) —(M_,E_).
E_<E<E+, E^O ^ ' M±>0, ^ ^ /

Therefore, the worst-case VaR can be optimized via the SDP in variables M+, M_, A+, A_
and w:

min (M+, r+) —(M_, r_) -1- K{e)^v + Ajx+ —A^x_
subject to A+ >0, A_ > 0, > 0, M_ > 0,

0 w/2
— A/_ -1" w^/2 ^0, It; = A_ —A+ € W.

13
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3 Factor Models

Factor models arise when modelling the returns in terms of a reduced number of random
factors. A factor model expresses the n-vector of returns x as follows

X= A/ + zi, (25)

where / is a m-vector of (random) factors, u contains residuals, and A is a n x m matrix
containing the sensitivities of the returns x with respect to the various factors. If S (resp.
/) is the covariance matrix (resp. mean vector) of the factors, and u is modeled as a zero-
mean random variable with diagonal covariance matrix D, uncorrelated with /, then the
covariance matrix (resp. mean vector) ofthe return vector is F = D-\-ASAF (resp. x = A/).

Such models thus impose a structure on the mean and covariance, which in turn imposes
structure on the corresponding uncertainty models. In this section, we examine how the
impact of uncertainties in factor models can be analyzed (and optimized) via SDP.

3.1 Uncertainty in the factor's mean and covariance matrix

The simplest case is when we consider errors in the mean-covariances of the factors. Based
on a factor model, we may be interested in "stress testing", which amounts to analyzing the
impact of simultaneous changes in the correlation structure of the factors, on the VaR. In
our model, we will assume (say, componentwise) imcertainty on the factor data S and /.
For a fixed value of the sensitivity matrix A, and of the diagonal marix D, we obtain that
the corresponding worst-case VaR can be computed exactly via the SDP

maximize —x^w

subject to X= A/, T = D-\- ASA'̂ , /_</</+, S- < S < S+,

(x-xf «(e)2

where f± and S± are componentwise upper and lower bounds on the mean and covariance
of factors. A similar analysis can be performed with respect to simultaneous changes in D,
S and /. Likewise, portfolio optimization results are similar to the ones obtained before.

3.2 Uncert£dnty in the sensitivity matrix

One may also be looking at the impact of errors in the sensitivity matrix A, on the VaR.
As pointedout in [9], the mean-variance approach to Value at Riskcan be used to analj^e

the risk of portfolios containing possibly very complex instruments such as futures contracts,
exotic options, etc. This can be done using an approximation called risk mapping, which is
a crucial step in any practical implementation of the method.

In general, one can express the return vector of a portfolio containing several different
instruments as a function of different "market factors", such as currency exchange rates,
interest rates, underlying asset prices, and so on. Those are quantities for which historical
data is available, and for which we might have a reasonable confidence in mean and covariance
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data. In contrast, most complex instruments cannot be directly analyzed in terms of mean
and covariance.

The process of risk mapping amounts to approximating the return vector via the de
composition (25). In essence the factor model is a linearized approximation to the actual
return function, which allows to use mean-variance analysis for complex, nonlinear financial
instruments.

Because the factor model is a linearized approximation of the reality, it may be useful
to keep track of linearization errors, via uncertainty in the matrix of sensitivities A. In
fact, instead of fitting one linear approximation to the return vector, one may deliberately
choose to fit linear approximations that serve as upper and lower bounds on the return
vector. The risk analysis then proceeds by analyzing both upper and lower bounds, for all
the instruments considered. Thus, it is of interest (both for numerical reasons and for more
accurate modelling) to take into account uncertainty in the matrix A.

We assume that the statistical data 5, D and / is perfectly known, with 5^0 and
0, and that the errors in A are modeled by ^4 G ^4, where the given set A describes the

possible values for A, We are interested in computing, and optimizing with respect to the
portfolio weight vector w, the worst-case VaR

£)1/2VwcM := max w - vFAf. (26)

We will not compute the worst-case VaR exactly, but will come up with upper bounds.

Ellipsoidal uncertainty. We first consider the case when A is subject to ellipsoidal un
certainty:

^ ^ (27)+ li € 11^112 <l|
where the given matrices Ai G i = 0,..., /, determine an ellipsoid in the space of
n X m matrices.

The worst-case VaR then expresses as —w'̂ Aof + (l>(w)y where

(l){w) := max \\C(w)u +d(w)\\2 +e{w)'̂ u,
Il«ll2<l

for an appropriate matrix C{w) and vectors d(w)y e(w), linear functions ofw that axe defined
in theorem 4 below. Our approach hinges on the following lemma. This lemma is proved in
appendix B.2.

Lemma 1 Let C G R^^', d G R^, e G R^ and p > 0 be given. An upper bound on the
quantity

can be computed via the SDP

<!>:= max \\Cu-\-d\\2e u,
ll«ll2<P

XiIn C d

2</) < min Ai -h p^A2 + A3 : X2I1 e

e^ As
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The following theorem is a direct consequence of the above lemma, in the case p = 1. It
shows that we can not only compute, but also optimize, an upper bound on the worst-case
Var under our current assumptions on the distribution of returns.

Theorem 4 When the distribution of returns obeys to the factor model (25), and the sen
sitivity matrix is only knovm to belong to the set A given by (27), an upper bound on the
worst-case VaR given in (26) can be computed (optimized) via the following SDP in variables
A (and w eW)

where

min k{Xi + A2 + A3) - w'̂ Aof subject to
Alfn+m C{w) d{w)

X2I1 e(w)
d{wY e{wY A3

C{w) — Miw ... Miw ], with Mi = 1
0

d{w) =
•

i)l/2 w, ei{w) = —w'̂ Aif, 1 <i <1.

Norm-bound uncertainty. We now consider the case when

A={A +LAR I Ae R"", ||A|| < l},

hO, (28)

(29)

where A € R"*"*, L € R""' and R 6 R'*"' are given, and A is an uncertain matrix that
is bounded by one in maximum singular value norm. The above kind of uncertainty is
useful to model "unstructured" uncertainties in some blocks of A, with the matrices L, R
specifying which blocks in A are uncertain. (See [6] for details on unstructured uncertainty
in matrices.) A specific example obtains by setting L = R = I, which corresponds to an
additive perturbation of A that is bounded in norm but otherwise unknown.

The following result follows quite straightforwardly from lenuna 1, and is proved in
appendix B.3.

Theorem 5 When the distribution of returns obeys to the factor model (25), and the sen
sitivity matrix is only known to belong to the set A given by (29), an upper bound on the
worst-case VaR given in (26) can be computed (optimized) via the following SDP in variables
X (and w E W)

min 5(Ai -I-1 -1- A3) —w'̂ Af subject to Xlln+m d{w)
d(w)'̂ A3

t w'^L
L'̂ w fjili

where

d{w) =

bO,

• 51/2^T •
• *

£)1/2 w, C =
0

, e

16

C C
(30)



4 Extensions cind vziriations

In this section, we examine extensions and variations on the problem. We assume throughout
that Xand F are given, with F 0. The extension to moment uncertainty is straightforward.

4.1 Including support information

We now restrict the allowable probability distributions to be of given support $7 C R", and
seek to refine theorem 1 accordingly.

Hypercube support. First consider the case when the support is the hypercube :=
{xi where xi,Xu are given vectors, with xi < x < Xw Theorem 1 is extended as follows.
Its proof is in Appendix B.4.

Theorem 6 When the probability distribution of returns has known mean x and covariance
matrix F, its support is included in the hypercube Q. := [xi x^], and is otherwise arbitrary,
we can compute an upper bound on the worst-case Value-at-Risk by solving the semidefinite
programming problem in variables x,

maximize —x^w

subject to (x-x)^ K(e)2
K{e)'̂ xi < X—X< K(e)^Xii, x^ < x < Xw

where ^(e) is given in (8).

If we let X/ = —oo and x^ = +oo, the last inequalities in (31) become void, and the
problem reduces to the one obtained in the case of no support constraints. Thus, the above
result allows us to refine the condition obtained by simply no taking into account the support
constraints. Contrarily to what happens with no support constraints, there is no "closed-
form" solution to the VaR, which seems to be hard to compute exactly; but computing an
upper bound is easy via SDP.

In fact, problem (31) can be expressed as an SOCP, which makes it amenable to even
faster algorithms. Again, we stress that while this approach is the best in the case of known
moments, or with independent polytopic uncertainty (as dealt with in section 2.3), the SDP
formulation obtained above is more useful with general convex uncertainty on the moments.
When F 0, The SOCP formulation is

maximize —x^w
subject to ||F~^/^(x —x)||2 < «(0^5 (^2)

< X—X< «;(e)^Xti, x/ < x < x^.

Let us now examine the problem of optimizing the VaR with hypercube support infor
mation. We consider the problem of optimizing the upper bound on the worst-case VaR
obtained previously:

F X — X

(x —x)^ /^(e)^
/c(e)^Xf < X—X< /c(€)^Xu, X/ < X< Xu,
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We can express the inner maximization problem in a dual form (in SDP sense), as a mini
mization problem. This leads to the following result.

Theorem 7 When the distribution of returns has known mean x and covariance matrix F,
its support is included in the hypercube Q := [xi Xu], and is otherwise arbitrary, we can
optimize an upper bound on the worst-case Value-at-Risk by solving the SDP in variables
w,t,A,u,v, Au,/,

YTopt
V-p = mm

subject to

(A, F) + k(€)^v —x^w
+K(€f{xlXu - xfXi) + -x)- I/f(xi - x)

A (wXi - Xu
(it;+ A/ - A„ + i/u - v

maximize —x'̂ w subject to
r — eX X — X X

(x —x)^ /c(e)^ 0 to,

where /c(e) is given in (8).

x' 0 1

tle=l- Tr P-^X + 2x^P-ix - x^P-^Xc > 0,
1 —t —TrP~^F x —Xc

(x - Xc)^ P hO,
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yo.

(33)
In the above, when some of the components of x^ (resp. xi) are +00 (resp. —00), we set the
corresponding components ofX^^i^u (resp. Xi,i/i) to zero.

Again, if we set A^ = A/ = !/„ = = 0 in (33), we recoyer the expression of the VaR
given in (11), which corresponds to the exact conditions when first and second moments are
known, and no support information is used.

As before, we can express the above problem as an SOCP. To see this, it suffices to
express the dual, in the SOCP sense, of problem (32).

t

Ellipsoidal support. In many statistical approaches, such as maximum-likelihood, the
bounds of confidence on the estimates of the mean and covariance matrix take the form of

ellipsoids. This motivates us to study the case when the support is an ellipsoid of R",
given by

Q:= {x I (x —Xc)^P"^(x —Xc) < 1},

where Xc is the center and P >- 0 determines the shape of the ellipsoid.
Following the steps taken in the proof of theorem 6, we obtain the following result.

Theorem 8 When the distribution of returns has known mean x and covariance matrix
F, and its support is included in the ellipsoid fl := {x | (x —Xc)^P~^(x —Xc) < 1}, we
can compute an upper bound on the worst-case Value-at-Risk by solving the semidefinite
programming problem in variables x, X, t:

(34)



4.2 Entropy-constrained VaR

The worst-case probability distribution arising in theorem 6, with or without support con
straints, is in general discrete [3]. It may be argued that such a worst-case scenario is
unrealistic. In this section, we seek to enforce that the worst-case probability distribution
has some degree of smoothness. The easiest way to do so is to impose a relative entropy
constraint with respect to a given "reference" probability distribution.

We will assume that the probability distribution of returns satisfies the following as
sumption, and is otherwise arbitrary. We assume that the distribution of returns, while
not a Gaussian, is not "too far" from one. Precisely, we assume that the Kullback-Leibler
divergence (negative relative entropy) satisfies

r dPKL{P, Po) := J log—dP<d (35)

where d > 0 is given, P is the probability distribution of returns, and Pq is a non-degenerate
Gaussian reference distribution, that has given mean x and covariance matrix P >- 0. (Note
that a finite d enforces that the distribution of returns P is absolutely continuous with respect
to the Gaussian distribution Pq.)

The proof of the following theorem is in Appendix B.5.

Theorem 9 When the probability distribution of returns is only known to satisfy the relative
entropy constraint (35), and the mean x and covariance matrix T of the reference Gaussian
distribution Pq are known, the entropy-constrained Value-at-Risk is given by

Vp{w) = k{€, d)l|r^/^u;||2 - x^w, (36)

where /c(e, d) is given by

g€/A-d _ 1 e"^Cw -1-1^-1
K{e,d) := ^f{e,d), f(e,d) := sup -jji—— =sup ^ , (37)

A>o — 1 z;>o v

where ^ is the conditional distribution function of the zero-mean, unit-variance Gaussian
distribution.

The above theorem shows that, by a suitable modification of the "risk factor" «(e) ap
pearing in theorem 1, we can handle entropy constraints (however we do not know how to
use support information in this case). For d = 0, we obtain /c(e, 0) = —$~^(e), as expected,
since we are then imposing that the distribution of returns is the Gaussian Po = A/'(x, F).
The risk factor K(e,d) increases with d. This is to be expected: as the set of allowable
distributions "grows", the worst-case VaR becomes worse, and increases.

4.3 Imposing constraints on the covariance matrix

We have seen that the covariance matrix F, which is assumed to be exactly known in the clas
sical approaches, becomes an optimization variable here: our approach amounts to selecting
the most prudent one in the face of data uncertainty. We may impose additional constraints
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on the matrix F, if prior information is available. For example, we may impose some bounds
on the condition number of F, allowing us to rule out neax-degenerate distributions if those
are deemed unrealistic. A condition number constraint has the form

i ./ Xr :< u•/,
/i

where // > 0 is given. The above is a simple linear matrix inequality constraint on F, which
can be added to problems such as (2) or (31).

4.4 Multiple VaR constraints

The framework we used allows to find a portfolio that satisfies a given level 7 of worst-case
VaR, for a given probabihty threshold e:

supProb{7 < —r(iu,a;)} < e.

Such a constraint does not account for what happens to "extreme" cases when the loss
exceeds 7. To overcome this diflficulty, we may consider multiple VaR constraints

sup Prob{7j < —r(w^ x)} < e^, z = 1,..., m

where €1 <...<€,„ are given probability thresholds, and 71 < ... < 7,n are the correspond
ing acceptable values of loss. The set of values (7^, e,) therefore determines a "risk profile"
chosen by the user.

It is a simple matter to derive SDP conditions, under the assumptions used in this paper,
that ensure that the multiple VaR constraints hold robustly with respect to the distribution
of returns. For example, in the context of the assumptions of theorem (2), we have

Theorem 10 When the distribution of returns is only known via its first two moments, and
is otherwise arbitrary, the multiple worst-case Value-at-Risk constraints hold if and only if
there exist variables T,x,xi,.., ,Xm such that

X- < X < x+, F_ < F < F+,
F Xi—x

{xi - x)^ /c(ei)23:iW< -7i, ^ 0, 2 = 1,... ,m.

The above theorem allows to optimize the risk profile by proper choice of the portfolio
weights, in several ways: we may minimize an average of the potential losses 71 + •.. + 7Tn,
for example, or the largest value of the losses, maxj 7,. Such problems fall in the SDP class.

5 Numerical example

In this example we have considered a portfolio involving n = 13 assets. Our portfolio weights
are restricted to lie in the set

W = <w

n

ii; > 0, ^Wi = 1
i=l
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This kind ofset doesnot usuallyresult in very diversified portfolios. In practice, onecan (and
should) impose additional linear inequality constraints on w in order to obtain diversified
portfolios; such constraints are discussed in [11]. In a similar vein, we have not accounted
for transaction costs. Our purpose in this paper is not diversification nor transaction costs,
but robustness to data uncertainty.

Using historical one-day returns over a period of 261 trading days (firom November, 1999
through October, 2000), we have computed the sample mean and covariance matrix of the
returns, x"®™ and With these nominal values, and given a risk level e, we can compute
a portfolio, using theorem 3, with r+ = r_ = F"®™ and x+ = x_ = x"®™. We refer to this
portfolio—one resulting from the assumption that the data is error-free—as the "nominal"
portfolio, against which we can compare a robust portfolio.

Weassume that the data (includingour mean and covariance estimates) is prone to errors.
We denote by p a parameter that measures the relative uncertainty on the covariance matrix,
understood in the sense of a componentwise, uniform variation. Thus, the uncertainty in the
covariance matrix F is described by

< pir-'Ci, j)|, i < ij < n.

In practice, the mean is harder to estimate than the covariance matrix, so we have put the
relative uncertainty on the mean to be ten times that of the covariance matrix, i.e.

|x - x"°'"(i)| < 10p|x"°™(i)|, 1 < 2 < n.

We have then examined the worst-case behavior of the nominal portfolio as the uncertainty
on the point estimates x"°™ and F"®™ increase. This worst-case analysis is done via theorem
2. We have compared the worst-case VaR of the nominal portfolio with that of an optimally
robust portfolio, which is computed via theorem 3.

Our results were obtained using the general-purpose semidefinite programming code SP
[22].

These results are illustrated in figure 1. The x-axis is the relative uncertainty on the
covariance matrix, p. The y-axis is the VaR, given as a percentage of the original portfolio
value. Figure 2 shows the relative deviation of the worst-case VaR with respect to the
nominal VaR, which is obtained by setting p = 0. For example, for p = 10% the worst-case
VaR of the nominal portfolio could be as much as 270% of the nominal VaR, while the VaR
of the robust portfolio is about 200% of the nominal VaR. The curves shown are for e = 5%,
which is the level of probability we want to impose on potential losses.

We see that if we choose the nominal portfolio, data errors can have a dramatic impact
on the VaR. Taking into account the uncertainty by solving a robust portfolio allocation
problem dampens greatly this potential catastrophic effect. This is even more so as the
uncertainty level p increases.

In figure 3, we illustrate the behavior of our portfolios when the probability level e
varies. We compare the VaR in three situations: one is the VaR of the optimal nominal
portfolio (that is, obtained without taking into account data uncertainty), shown in the lowest
curve. The upper curve corresponds to the worst-case analysis of the nominal portfofio. The
middle curve shows the worst-case VaR of the robust portfolio. Again, we see a dramatic
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Figure 1: Compaxison between the nominal and robust portfolios, as a function of
the size of data uncertainty, p. Dotted line: worst-caseVaR of the nominal portfolio.
Solid line: worst-case VaR of the robust portfolio.
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Figure 2: Comparison between the nominal and robust portfolios, as a function
of the size of data uncertainty, p. Dotted line: deviation of worst-case VaR of the
nominal portfolio, relative to the nominal VaR (p = 0). Solid line: relative deviation
of worst-case VaR of the robust portfolio.
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Figure 3: Comparison between the nominal and robust portfolios, as a function of
the probability level e. Lower curve: nominal VaR of the nominal portfolio. Middle
curve: worst-case VaR of the robust portfolio. Upper curve: worst-case VaR of the
nominal portfolio.

improvement brought about by the robust portfolio. The latter is less performant than the
nominal portfolio if there were no uncertainty; the presence of data uncertainty makes the
nominal portfolio a poor choice over the robust one.

Note that the benefit of using a robust portfolio increases as the confidence level e de
creases: it turns out that the middle curve becomes closer to the lowest curve when e tends
to zero. This can seem paradoxical: in a "nominal" context, that is, with error-free data,
decreasing e is a way to bring more certainty about "good" events. This is only seemingly
true: in our example, when data uncertainty is present, decreasing e has a negative effect
on the nominal portfolio. This effect is tamed only by taking data uncertainty into account
explicitely, via robust optimization.

6 Concluding Remsirks

Our results can be summarized as follows. The problem of computing the worst-case VaR,
or optimizing it, takes the general form

minimize (t>)/[^{x) subject to (x, x,r) € V, (x —x)
X — X

hO,

where <j>y^ is the support function of a convex set, that describes the set of admissible port
folio allocation vectors; the set V refiects the partial information (moments bounds and
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support) we have on the distribution of returns, and the risk factor k depends on the chosen
optimization model (entropy-constrained or moment-constrained).

The optimal variables r,x in the above problem are selected to be the most prudent
when facing data uncertainty. The portfolio weights (ly) are recovered as dual variables; in
a sense, they come "for free" if we use a primal-dual interior point method for solving SDP,
such as the one described in [23]. The duality between the portfolio weights and the worst-
case probability distribution information (x, F) is reminiscent of the duality in option pricing
problems, between the optimal hedging strategy (for replicating the price of an option) and
the risk-neutral probability measure [15].

As noted in section 2.1, the above formulation has a deterministic interpretation, in which
the returns are assumed to be only known to belong to a union of ellipsoids of the form

|x I«(€)^r y {x —x){x —x)^}
where the shape matrix P and center x are unknown-but-bounded, and the problem is to
best allocate resources in a "min-max", or game-theoretic, manner. Our SDP solution illus
trates a kind of "certainty equivalent principle" by which a problem involving probabilistic
uncertainty has an interpretation, and an efficient numerical solution, as a deterministic
game.

The numerical tractability of the above problem depends on the structure of the sets W,
V. Wehave identified some practically interesting cases when these sets result in a tractable,
semidefinite programming problem, namely componentwise and ellipsoidal bounds. In the
case of support constraints on the distribution of returns, the problem does not seem to be
tractable, but we have shown how to compute an upper bound on the worst-case VaR, via
semidefinite programming.
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A Semidefinite and Second-order Cone Programming

A semidefinite programming problem takes the form
m

minimize (Fz subject to F[z) := Fq + ^ h 0, (38)
1=1

where z is the m-vector of variables, c € R"* represents the linear objective, the Fis are
given py.p symmetric matrices, and the constraint (called a linear matrix inequality on z)
means that F{z) must be positive semidefinite. The main conceptual tool used in this paper
is convex duality, in particular, SDP duality. The dual of the above problem is also an SDP
in a p X p sjonmetric matrix variable Z:

maximize —Tr FqZ subject to Z ^0, Tr FiZ = Ci, i = 1,... ,m. (39)

When either primal or dual problem are strictly feasible, strong duality holds, and both
problems share the same optimal value [23]. If both problems are strictly feasible, then any
pair X, Z such that x (resp. Z) is feasible for the primal (resp. dual) problem is optimad if
and only if

F(x)Z = 0.

A second-order cone programming problem is one of the form

minimize

subject to \\CiX + dill < ejx -f- i = 1,... ,L,

where Q € di € R"S ei e R"", fi € R, i = l,...,L. The dual problem of
problem (40) is an SOCP as well:

L

maximize — (djZi + ,
L

subject to ^ (CfZi +CiSij = c, pi|| < Si, z= 1,...,L,
i=i (41)

t=i
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where Zi € Sf G R, i = 1,... ,L are the dual variables. Optimality conditions similar
to those for SDPs can be obtained for SOCPs. SOCPs can be expressed as SDPs, therefore
they can be solved in polynomial-time using interior-point methods for SDPs. However the
SDP formulation is not the most efficient numerically, as special interior-point methods can
be devised for SOCPs [16, 12].

Precise complexity results on interior-point methods for SOCPs and SDPs are given by
Nesterov and Nemirovsky [16, p.224,236]. In practice, it is observed that the number of
iterations is almost constant, independent of problem size [23]. For the SOCP, each iteration
has complexity 0((ni -I-... -I- TiL)m^ + m^); for the SDP, we refer the reader to [16].

B Proofs

B.l Proof of theorem 1

We first prove the equivalence between propositions 1 and 3, then show that the latter is
equivalent to 2. As noted in the comments following the theorem, equivalence between
propositions 4, and 5, follows from simple SDP duality, and both are straightforwardly
equivalent to the analytical formulation given in proposition 2.

Computing the worst-case probability. We begin with the problem of computing the
worst-case probability for a fixed loss level 7. We introduce the Lagrange functional for
(p,M)eX:(R")x5„+i

Clp,M) = J^^xs(x)p{x)<lx+{M,Z- X X

1 1
p{x) dx).

where (A,B) = Tr{AB) denotes the standard scedar product in the space of symmetric
matrices, M = is a Lagrange multiplier matrix, and xs is the indicator function of the
set

<S = {x 17< —x^w^ . (42)
Since E 0, strong duality holds (see [8, 3] or [5]). Thus, the original problem is equivalent
to its dual. Hence, the worst-case probability is

where 6{M) is the dual function

d{M) = saPj,^ic(B.''̂ Cip,M) ={M,i:) +s\ipj^^(Xs(x)-l(x))p(x)dx,

and l{x) is the quadratic function

l{x) = M

27
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We have

0{M) =sup C(p, M) =I iltherSsf '̂
The dual function is finite if and only if:

C.l l{x) > 0 for every x € R";

C.2 /(rr) > 1 for every x € R" such that 7 + x'̂ w < 0.

Condition C.l is equivalent to the semidefinite positiveness of the quadratic form: M ^ 0.
In addition, Condition 0.2 holds if there exist a scalar r > 0 such that, for every x,

l{x) > 1 —2r(7 + x'̂ w). Indeed, with condition C.l in force, an application of the classical
strong duality result for convex programs under the Slater assumption [7] shows that the
above condition is sufficient, provided there exist a xo such that 7 + Xq < 0, which is the
case here since w gW and W does not contain 0.

We obtain that conditions C.l, C.2 are equivalent to

There exist a r > 0 such that: M ^ 0, M +
0 TW

T
TW —1 + 2x7

0.

We obtain that the worst-case probabiUty (43) is the solution to the SDP in variables
M,t:

inf (M, E) subject to r > 0, M ^ 0, M -\- 0 TW
T

TW —1 -h 2x7
0.

Computing the worst-case VaR as an SDP. We obtain that the worst-case VaR can
be computed as

V'p{w) = inf 7 subject to (M, S) < e, x > 0, M ^ 0,
0 TW

,TM +
TW' —1 + 2x7

yo.
(45)

We now show that the x-components of optimal solutions (whenever they exist) of (45)
are uniformly bounded from below by a positive number. This will allow us to divide by x
in the matrix inequality above, replace 1/x by x, and M/x, w/t hy M,w, and obtain the
SDP in variables x, M, 7:

V'p(w) = inf 7 subject to (M, S) < xe, x > 0, M >z 0,

M +
0

w'

w

-X 4- 27
^0.

(46)

To prove our claim we first note that setting Mq = (e/ Tr E) •/, with I the nxn identity
matrix, xo = 1 and 70 such that 70 + w'̂ x > 0 and 270 > ||iy|p(TrE)/e + 1 yields a triple
(Mo,xo,7o) that is feasible for problem (46). Therefore we can add the constraint 7 < 70 in
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(45) without changing its optimal value. When 7 < 70, and M, r, 7 are feasible for (45), the
last matrix inequality in (45) implies

0 < (M,E) + (E,

< 2t{w^x + 7) + e —1
< 2t{'uFx+ 7o) + e —1

0 TW

tvF —1 + 2t7

Since w^x + 70 > 0, we conclude that optimal r are uniformly bounded from below, as
claimed. Conditions in (46) are exactly those appearing in proposition 3. We have thus
shown the equivalence between propositions 1 and 3.

Analytical formula for the worst-case VaR. Finally, weshowthat the SDP (46) yields
the analjdiical formula (7). We first find the dual, in the sense of SDP duality, of the SDP
(46). Define the Lagrangian

C{M, T, 7, = 7 - a (re - (M,11)) - fj,T - {X, M) - (y, M +

so that

Vp(u;) = inf sup C{M,T,'y,a, ^,X,Y).
a>0,/i>0,Xb0,V^0

Partition the dual variable Y as follows:

y =
Z m

T
V

We obtain the dual problem in variables X, Z, m,iy,a:

sup —2rrFw subject to
z/ = l/2, ae + /i —z/ = 0, a > 0, //> 0,
oE = X + y, ^

Z m
XhO, Y = T yo.

0 w

tiF —T + 27 )>

The above dual problem is strictly feasible and the feasible set is bounded. Therefore, strong
duality holdsand both primal and dual values are attained. Eliminatingthe variables n^u^X
yields:

Vp{w) = max —2mFw subject to

0<a<i. aEvy=[5
Note that the constraint on Y imply a > 1/2 > 0. Therefore, we make the change of

variables (Z,77i, a) —> (V, v,2/) with V —Zla^ v = m/a, y = l/2a € [e 1]. We obtain

Vp{w) = max — subject to E ^
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If 2/ = 1, we have v= x and the objective of the problem is —sFw.
Assume now that y < I. In view of our partition of S given in (6), the matrix inequality

constraints in problem (47) are equivalent to

1

or, equivalently,

Defining

we can express as

S — ix —i;)(x —v) ^ -vv
\-y VV y

The above constraint holds for some V ^ 0 if and only if

S >: T~—~ ~ + -vv^,
y1-2/

r = 8-xx'^y (v - yx){v - yx)'
2/(1-2/)

The dual problem now becomes

Vp{w) = subject to: S - xx''^ - yx){v - yxf, € [e 1).

Denote by (j){y) the objective of the problem with y < \ fixed. We have for 2/ < 1:

0(2/) =

The above expression is valid for 2/ = 1. Maximizing over y.

<l>{y) = - sFw.

We thus have y = eat the optimum. This proves the expression of the worst-case VaR given
by (7). o

B.2 Proof of lemma 1

We have

:= max \\Cu + d\\2 +
ll«ll2<P

max v^iCu + d) -b ^u.
ll«l|2</>, IM|2<1

M:=

0 C d

0 e

cF 0

- - T - -

V V

= max u M u

1 1
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Iklb < p, Iklb < 1,

(48)
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Thus, we can express (j) via an SDP with a rank constraint:

20 = max{M, X) : X =
Xii Xi2 Xi

X22 X2
xT Xo 1'1 *^2

TrA^ii < 1, TrX22 < rankX = 1,

hO, (50)

where Xu is N x N, X22 is I x I.
Now consider the following upper bound on 20, obtained by relaxing the rank constraint:

0 = max(M, X) : X =

Problem (51) is an SDP, the dual of which is

ijj' —min Ai + p^X2 + A3 : M(A) :=

^12 XI
XI2 X22 X2
Xi X2 1 _

hO, TrA:ii<l, TrA:22<p^

XJn C d
CF X2I1 e
(f A3

0.

(51)

(52)

We obviously have 20 < 0 < 0'. Since both SDPs (51) and (52) are strictly feasible,
therefore strong duality holds. Thus, 0' = 0 is an upper bound on 20. o

B.3 Proof of theorem 5

Defining

d(w) — , e = -Rf, r{w) =
• 5i/2^r •

£)1/2 w, C =
0

, e

we may express the worst-case VaR as —vFAf + (piw), where

(j>(w) = max ||CA^r(iu) + d(iy)||2 + e^A^r(iy)
= max \\Cu-\-d(w)\\2-\-e^u

Al/n+m ^
= 5(Ai + ||r(u;)||iA2 +As) : (F X2lr

d(wY F

d{w)
e

As
hO,

where the last inequality is derived from lemma 1, with p = l|r(u;)||2. Using Schur comple
ments [6], we may rewrite the finear matrix inequality in the last line as

\ n M n FAi7n+m d{w)
d(w)'̂ As

C C

where p = I/A2. Introducing a slack vsiriable t > A2||r(it;)||2 = \\r(w)\\2/pj we can rewrite
the objective as Ai -I-1 + As, where t is such that t > \\r{w)\\2/p. The latter inequality
can be written as the linear matrix inequality in the theorem. (We note that this con
straint is a second-order cone constraint and its structure should be exploited in a numerical
implementation of the theorem.) o
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B.4 Proof of theorem 6

The proof proceeds in the same three steps as in the proof of theorem B.l, Again, we denote
by E the second-moment matrix defined in (6). From the assumption F >- 0, we have E 0.

Computing the worst-case probability. We begin with the problem of computing the
worst-case probability. We introduce the Lagrange functional: for (p,A) € IC(Q) x Sn+i

C{p, A) = / X5(a^)p(x) dx (A, E- /*
JQ JQ

X X

1 1

T

p{x) dx).

Again, since E >- 0, strong duality holds, and the original problem is equivalent to its dual.
Hence, the worst-case probability is

A€On+i

where ^(A) is the dual function

9{k) = sup g;<;(n)'C(p,A) ={A,S>+ sup f {xs{x)-l(x))p(x)dx,
^ ' p6/c(n)^n

where l[x) is the quadratic function defined in (44). We have

e{K) = I X€n,
^ ^ 1 -l-oo otherwise.

First, we examine the condition C.l:

l{x) > 0 for every x,xi<x< Xw

The condition is true if, there exist two vectors A,x > 0, A/ > 0 such that

for every x, l{x) > 2Xj(x —xi) + 2X^{xu —x).

In turn, the above is true if and only if

A>-
0 Xi —Xu

(Ai - A„)^ 2(Aj'i„ - Xfxi)
(53)

Note that, in the case when no support information is available, the above condition is exact,
provided we set A„ = A| = 0. Indeed, condition C.l then simply says that l{x) > 0 for every
X € R", while (53) reduces to A ^ 0.

Similarly, the condition C.2:

l(x) > 1 for every x € x^w H- 7 < 0

holds if there exist a vector 1/ > 0 and a scalar r > 0 such that

for every x, /(x) > 1- 2t(7 -F x'̂ w) + 2iJi (x - x/) + 2i/J(xu - x).
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In turn, the above is true if and only if

Ay
0 —TW

—tuF 1 —2r7 +
0

Xi) (54)

Again, in the case when no support information is available, the above condition is exact,
provided we set 1/^ = 1^1 = 0. Indeed, in this case C.2 reduces to the condition: l(x) > 1 for
every x € R" such that 7 + x^w < 0. This holds if and only if there exist a scalar r > 0
such that

For every x /(x) > 1—2r(7 + x'̂ w).

This fact, with condition C.l in force, is an application of the classical strong duality result
for convex programs under the Slater assumption [7], which shows that the above condition
is sufficient, provided there exist a xo such that 7 + Xq tu < 0, which is the case here since
w and W does not contain 0. The above condition is the same as (54) with = i/i = 0.

To summarize, an upper bound on the dual problem

Aigf ^(A)
A€On+l

is obtained by solving the SDP in variables A, r, /x, i/:

inf (A,E) subject to
T > 0, A„ > 0, A/ > 0, Uu >0, ui> 0,

0 A/ —Au

{k-KY 2(Xlxu-Xfxi)Ah

A
0 •TW

—Tw'̂ 1 —2x7 +
0

{j^i-i^uY 2(iFxu-lYxi)

The above SDP results in a suflacient condition (expressed in an SDP form) ensuring that
the worst-case probability is below a given level e. This condition is exact when no support
information is available, if we set Xu = Xi = 0 and 1/^1 = 1^1 = 0.

Computing the worst-case VaR as an SDP. We obtain that (an upper bound on) the
worst-case VaR can be computed as

Vp{w) = inf 7 subject to
(A,S) < 6, r > 0, Au > 0, A/ >0, i/u> 0, 1/1 > 0,

0 A/ —Xn

{Xi-X^Y 2{Xlxu-Xfxi)
A h

A 5^
0 —TW

—Tw"^ 1 —2x7 +
0

- l^uY Xi)

We can assume x to be uniformly bounded away from 0. To see this, we first choose a set
of variables (Ao,xo,7o) and A^,; = = 0 that is feasible for the above problem, and such
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that 7o + w'̂ x > 0. When 7 < 70, and A,r,7, are feasible for the above problem,
we have

0 < (A,S) + (S,
0 TW —1/1 + i/u

(tw -1/1 + -1 + 2t7 - 2(z/Jxu - ujxi)
< 2t(vFx +7)+ 6-1 +2(u^{x - Xu) +vj (rci - xfj
< 2t{'uFx+ 7o) + €- 1,

)

in view of our assumption that xi < x- = x = x^ < x^. Since 'uFx + 70 > 0, we conclude
that T is uniformly bounded, as claimed.

Dividing by r, we obtain the SDP in variables r, Au, A/, i/^, i//. A,7

Vv(w) < V^c-up(iy) := inf 7 subject to
(A,E) < re, r > 0, A^ >0, A/ > 0, i/u >0, vi> 0,

0 Xi —Xu

{Xi-Xu)'̂ 2(Xlxu - Xfxi)
0 —w

,T - +

Ah

A
—W^ T —27

0

2(ylxu - vjxi)
(55)

In the above, when some of the components of Xu (resp. xi) are +00 (resp. —00) , we set
the corresponding components of Xu^i'u (resp. Xi^ui) to zero. When no support information
is used, all components of Au,i, i/u^i are zero, and the upper bound is equal to the worst-case
VaR.

Dued form and analytical expression. Finally, we show that the SDP (55) can be
equivalently expressed in the form (31), and reduces to the analytical formula (7) when no
support information is used.

Wefirst find the dual, in the sense ofSDP duality, of the SDP (55). Definethe Lagrangian

/I(A, Ati,/, r, 7> 6k, fijPu^i^ Qu,h ^1F^) ~
7 - a (re - (A, E>) -HT-pJXt- - qjvi - qlv^

so that

-{X,A-

-{Y,A-

0 A/ Au
(Ai-A„)^ 2{Xlxu-Xfxi) )

0 —w

—vF T —27 +
0

(n-VuY 2{v^Xu-vfxi)

Vwc-upito) = inf sup C
A=A^,Au,,,i/„,j,r,7 a>0,Ai>0,Pu.i>0,g„,|>0,X^0,yh0

Partition the dual variables X^Y as follows:

Xu
T

Xl2
, y = >11

T

2/12

X{2 X22 . . 2/12 2/22
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We obtain the dual problem in variables X, Y,a:

sup —2yi2W subject to
2/22 = 1/2, ae < ^22, a > 0,
aE = X + y,

x =
' Xn

T
X12

yo, y =
>11

T
2/12

Xi2 X22 . yi2 2/22

^1^22 ^ ^12 ^ ^u^22i ^iy22 —yi2 ^ ^ti2/22*

hO,

The above dual problem is strictly feasible and the feasible set is bounded. Therefore,
strong duality holds and both primal and dual values are attained. Eliminating the variable
X yields:

Vp(w) = max —2yi2W subject to

0 < a < ^, aE ^ y =

xi < 2yi2 < 2xu, {2a -

Ku yn

)xi < 2{ax - 2/12) < (2q: - l)xu.

Note that the constraint on Y implies a >.1/2 > 0. Therefore, we make the change of
variables (yii,2/i2,a) (V, v,2/) with V = yn/a, v = yn/cx^ y = l/2a 6 [e 1]. We obtain

Vp(w) = max — subject to E ^
V V

T y
bO, €<2/<l,

(1 - y)xi <x-v <{1- y)xu, yxi<v< 2/x„.

(56)

If 2/ = 1, we have v = x and the objective of the problem is —x^w.
Assume now that y <1. In view of our partition of E given in (6), the matrix inequality

constraints in problem (56) are equivalent to

S — —(x —?;)(x —v)^ hV y -vv^.
1-2/ 2/

The above constraint holds for some V ^ 0 if and only if

or, equivalently.

S y —(x —v){x —v)^+ -vv^,
1-2/ 2/

r = S —xdF y
1

y(i - 2/)
{v - yx){v - yx)c,\T

(57)

(58)

The dual problem now becomes

Vp(w) = maxy.y
T

V W

y
subject to S —xaF y
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Introduce the new variables a; = u/y, = l/y —1 G[0, where K(e) is defined in (8).
Since T = S —xdF, using Schur complements we can rewrite the above as

V'p(w) = maXx,K —x^w subject to
r X — X

{x —x)^
K^Xi <X —X< K^Xui Xi < X <Xu

h 0, G[0, «:(e)^], (59)

The above problem is strictly feasible and its feasible set is bounded. We can form the dual,
in the SDP sense, to this problem, and there will be no duality gap. The dual is

min (A, T) + K{e)^v —x^w
+/c(e)2(xJ'Atx - x[Xi) + - x) - uf (xi - x) + tK{e)^

A (w + Xi- Xu + i^u- ^^0/2
[w + A/ •— Ati + i>u "" ^0^/2 ^subject to hO, t>0.

At the optimum, we have t = 0. The problem thus obtained is exactly the one we would
have obtained by setting « = «(e) in (59). This proves the formulation (31).

If we let xi = —00 and x„ = +oo, the last inequalities in the above problem become void,
and the VaR is exact. Its expression reduces to the one with no support constraints given
in (7). o

B.5 Proof of theorem 9

As before, we begin with the problem of computing the worst-case probability. We address
the following problem:

maximize Xs(x)p(x) dx subject to KL{p^po) <d, ^„p(x)cte =l, (60)
where p and po denote the densities of distributions P and Fq. For a given distribution with
density p such that KL(p^pq) is finite, and for given scalars Aq > 0, A, we introduce the
Lagrangian

L(p,Ao,A) =J^^xs(x)p(x)clx +Xo(l-J^„p{x)dx^+x(d-j^Jog^^p{x)dx^,
where as before, xs is the indicator function of the set S defined in (42). The dual function
is

e(Ao,A) = sup L(p,Ao,A) =Ao +Ad +sup / „(xs(2:)-Ao-Alog^^)p(a:)(ix,
pGx:(R") p Jtl \ PoWj

and the dual problem is:
inf 0(Ao, A).

(A,Ao)6R+xR

Prom the assumption that F >- 0, strong duality holds [20]. For any pair (A,Ao), with
A> 0, the distribution that achieves the optimum in the "sup" appearing in the expression
for 0 above has a density

p{x) = pq{x) exp ^ (61)
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and the dual function expresses as

^(Ao, A) =\o +\d-\- XJpo(x) exp —— -1^ dx
= Ao +Ad +A Prob{7 <—x'̂ w} + Prob{7 >—x'̂ w}^
= Ao +Ad +Ae —l)</>(7) +1^ ,

where the probabilities above are taken with respect to po? and

<j>(y) := Prob{7 <-x^u)} =1-$̂ 2^^=j.
Taking the infimum over Aq yields

inf e(Ao,A) = A<i + Alog((e'/-^-l)0(7) + l). (62)
Ao€R ^ ^

The worst-case probability obtains by taking the infimum of the above convex fimction over
A>0.

The constraint 0°^^ < e is equivalent to the existence of A > 0 such that

Ad +Alog - 1)(^(7) + l) <e,

that is,
7 > «:(e, d)Vw'̂ Tw —viFx,

where «:(e, d) is defined in the theorem, o
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