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Abstract

This paper studies the feasibility andalgorithms for inferring delay at each link in a commu

nication network based on a large number ofend-to-end measurements. The restriction is that

we are not allowed to measure directly on each linkeuid can only observe the total delays on one

or more network routes that includethat link. It is assumed that wehave considerableflexibility

in choosing which route to measure. We investigate three different cases: (1) each link delay is

a constant; (2) each link delay is modeled as a random variable from a family ofdistributions

with unknown parameters; and (3) each link delay is a random variable whose distribution is

completely unknown. We will answer whether such indirect measurement ispossible at all, and

when possible, how such measurement can be carried out.
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1 Introduction

1.1 Motivation

As the internet grows, it becomes increasingly important to monitor the network performance and

identify failures. These must be based on the knowledge of the complete or partial topology of

the network and on the measurement of some quantities of the network. In this paper, we study

the issue of network measurement, given that the network topology is completely known. The

useful information one might want to know about the network includes the delay, packet loss ratio,

link capacity and throughput, etc. One might be interested in the end-to-end information on

some route or localized information at some routers or links. For information with randomness,

it is also possible to distinguish its long-time average and instantaneous value. In building a

network measurement infrastructure, there is a choice about the measurement locations, where

the measurement software or hardware are placed. We can think of placing them (1) in every

network router and end-hosts; (2) only in the end-hosts at the edge of the network; and (3) in

selected routers and end-hosts. Here are the constraints. First, it might never be possible to have

a consistent measurement infrastructure throughout the entire internet which is partitioned into a

disparate array of administrative domains. Second, it is costly and practically difficult to install,

maintain, and upgrade the measurement related software and hardware in a large number of routers

and computers. One naturally wonders how to reduce the number of measurement locations and

still be able to observe the entire network by creating redundancy in the number of routes or in

the number of observations.

This paper addresses the choice of measurement locations, in particular the feasibility of measur

ing every link of the entire network from a subset of the network nodes. The object of measurement,

which we call the link attribute, is additive in the sense that the combined attribute on multiple

links is the sum of individual link attributes. The instantaneous delay, the average delay, and the

amount of packet loss are all additive. Loss ratio and throughput are examples of non-additive link

attributes. We will consider delay as the prototype of an additive link attribute.

We will specifically investigate a special case of choice (2) above. The measurement agents are

at selected end-hosts at the edge of the network. The following is a typical question we would like

to answer. Suppose we do not have a direct measurement of the average delay on a particular link,

but we do have the end-to-end delay measurement on many routes that pass through that link.



Can we, then, calculate the link delay based on the end-to-end measurement?

1.2 Previous research

Our work is motivated by [1], which studies how to infer packet loss ratios on individual links in a

multicast tree based on the observed loss statistics on end-to-end routes. Our work is independently

done from a few other works ([3] and [5]) on the same subject of inferring link delays based on

end-to-end delays. As far as we know, the deterministic analysis of section 2 has no counterpart in

other works. In the study about parametric delay models in section 3, the authoritative reference

on the general EM algorithm is [2]. In [8], Vardi applies the EM algorithm in a similar network

setting. There, he uses a Poisson model and we useexponential and mixture ofexponential models.

The conclusion that Gaussian model is not identifiable is new (Theorem 3.1). In the same section,

the method of moment is similar to [3], where the authors use moment method to estimate fink

delay variances.

The study on non-parametric delay model in section 4 has deep relation with [5]. In terms

of style, we take an intuitive approach and [5] is more formal and more systematic. Both have

reached the conclusion that, in order to be able to infer the link delay distribution, one needs to

make an assumption that there is a non-zero probability that each link delay is zero. We arrive

at this conclusion as a corollary of our deterministic study in section 2. In fact, we showed that

this is almost a necessary condition for estimating link delays based on route delays. Our intuitive

approach allows us to examine the applicability of our sampling technique in terms of the number

of samples needed. We think our estimation technique is an intuitive variant of the estimator in

[5].

Finally, [1], [3] and [5] allspendconsiderable effort in showing the "goodness" oftheir estimators.

They certainly suggest one of the future directions for our work.

2 Deterministic Case

In this section, we consider link attributes as constant quantities, and hence, are subject to deter

ministic analysis. We willstudy the possibihtyof determining the link attribute through end-to-end

measurement.

The deterministic analysis is motivated by the consideration of non-parametric probability



model of link delays, which will be discussed in detail later. We give two motivating examples

here. In the first example, we would like to determine the empirical distribution of each link delay

through end-to-end measurement. For each measured end-to-end delay sample, we normally need

to determine the delay due to each link on that end-to-end route. In a slightly different example,

suppose we have the average delay on a end-to-end route and would like to find the average delay

of each link on the end-to-end route. In the following, we will state the problem more formally.

First, we will introduce some graph theory terminology.

2.1 Some standard graph theory definitions

A directed graph G = [A, U] is defined to be a set A whose elements are called nodes (or vertices)

and a set U whose elements u G U are called arcs between a pair of vertices.

A p-graph is a directed graph with no more than p arcs between any two nodes a and b in that

order. If G is a 1-graph, an element in U is represented as the ordered pair of nodes, such as (a, b).

Suppose G is a directed graph. A walk of length g is a sequence of q arcs, P = {ui, ...,Ug},

where ui,...,Uq E U, and ui = (aoiOi),U2 = (01,02))= (o^_i,o^). A path is a walk in which

no node appears more than once. A circuit is a closed walk whose initial and final nodes coincide,

and in which no other nodes are visited more than once.

The distance from node oi to node 02 is the length of the shortest path from oi to 02.

For each o GA, define dJ(o) to be the number ofarcs starting from o, and d^(o) to be the

number of arcs ending at a.

A non-directed graph, or simply a graphs G, is a pair [A,U], where A is the set of nodes and

U is a set of edges. An edge has two endpoints, a E A and 6 G A. A chain is a sequence of edges,

ui,U2, such that the terminal node of Ur is the initial node of Ur+i) for r = 1,2, ...,n —1. A

cycle is a chain of edges which starts and ends at the same node. A graph is connected if for every

a G A, 6 G A and a ^ b, there is a chain starting from node a and ending at node 6. A subgraph

of G generated by .B C A is a graph Gb = [B,Ub], where Bb is the set of edges u G U such that

the two endpoints of u are in B. A connected component of the graph G is a maximal connected

subgraph G in the sense that it is not contained in any other connected subgraph of G.



2.2 Statement of the problem

We represent a network as a directedgraph G = [A,U], where A is the set of routers and end-hosts,

and U is the set of communication links (directed, i.e., arcs) between elements of A. Note that a

physical link in a network is represented by two arcs going in opposite directions in a directed graph

representation. The reason is that we allow the attributes, such as delays, on the two directions of

the physical link to be different. Let As C A be the set of end-hosts which are designated to send

packets, called senders^ and Ar C A be the setofend-hosts which aredesignated to receive packets,

called receivers. We call the elements in As sender nodes, the elements in A^ receiver nodes, and,

together, they are called measurement nodes. Any node a with dJ(o) > 1 and dQ{a) > 1 is called

a router node. Because a router node has at least one incoming link and at least one outgoing link,

it is capable of forwaxding packets from an incoming link to an outgoing link. Let us associate

with each link, u € V, a. constant rc„, which represents a fixed attribute of the link u, such as

the expected delay. Assuming the attributes are additive when multiple links are involved, our

objective is to study the feasibility of determining each for u € U, when the accumulated

attributes from the senders to the receivers on all possible walks are given. An example is that we

want to know whether the expected delay on each link can be recovered simply by sending packets

at the senders and observing the received packets at the receivers, assuming a packet accumulates

the delays as it traverses links on the walk from a sender to a receiver.

Definition 2.1 A route from s e As to r e Ar is a walk on the directed graph G = [A,U] in which

any circuit appears at most once. The route attribute is the accumulated attributes of the links on

the route. (Ifa link appears on a route n times, its link attribute is accumulated n times.)

Lemma 2.1 Given a finite directed graph G = [A,U], A^ and Ar, the total number of routes is

finite.

Proof: Let N be the number of nodes in G. A circuit can traverse at most N distinct nodes.

The number of circuits which traverses K < N distinct nodes is bounded hy N x {N —1) x ... x

{N -K + 1) Therefore, the total number ofcircuits is finite. The total number of paths of length

K < N is bounded by iV x (iV - 1) x .!. x {N - K). So, the total number of paths is also finite.

Notice each route consists of a path with a finite number of nodes. At each node, the possible

number of distinct circuits is also finite. Hence, the total number of routes must be finite. B



Although walks from a sender to a receiver in which some circuits appear more than once are not

considered as routes, the definition of the route is not restrictive for the problem we are considering,

because the accumulation of the link attributes around a circuit, called the circuit attribute, can

be observed. The accumulated attributes on two walks which differ only in the number of times a

circuit is traversed differ by a known constant.

Suppose the links in the directed graph G are labeled as 1,2,..., L, where L is the total number

of links. Suppose the routes are also indexed from 1 to M, where M is the number of routes. Let

the vector x = (a;i,X2, in be the link attributes, and let y = {yi,y2, -"^yM)^ in be

the route attributes observed on each route, and let r(i,j) be the number of times link j appears

on route i. Let C/j C U be the set of links on route i. Then

yi= (1)
jeUi

Let R be the M x L matrix whose (i, j)-th entry is r(i, j), which is called the route matrix for G,

we can write equation (1) in the matrix format.

Rx = y (2)

Definition 2.2 The directed graph G is identifiable if equation (2) has an unique solution; oth

erwise, we say G is unidentifiable. G is strongly unidentifiable if no component of x is uniquely

determined by (2).

Proposition 2.2 Suppose, for any oi 6 U Ar and 02 ^ U Ar, the distance from ai to 02 is

at least 2. Then G is strongly unidentifiable.

The condition for Proposition 2.2 says that no two measurement nodes are adjacent, i.e., are

connected by a link. The focus of the deterministic analysis is to prove Proposition 2.2 and to point

out its consequences. One necessary condition for solving the set of linear equations in (2) uniquely

is to have M > L. We therefore assume this to be true. Essentially, we assume the number of

routes is greater than the number of links. We will postpone the proof of Proposition 2.2.

Corollary 2.3 If at least one link in G does not directly connect two measurement nodes, then G

is unidentifiable.



Proof: Remove all links which directly connect any pair of measurement nodes. Then, delete

nodes which have no links attached. Links which do not connect two measurement nodes directly

together with the nodes to which they are attached survive the deletion process. Hence, the

resulting directed graph has at least one connected component, in which all measurement nodes

are separated by a minimum distance of 2, hence, is unidentifiable. •

Suppose each measurement node is a measuring site, where measurement software or hardware

need to be placed. By the above proposition and corollary, the only way to uniquely determine the

attribute of a particular link is to measure it at the two nodes directly attached to it. All nodes are

required to become measiurement sites in order to monitor the complete network. It is not possible

to monitor the network from the edge, relying on the redundancy of routes.

We will first make the some assumptions about the directed graph G which do not reduce the

generality of our results but simplify the exposition.

Definition 2.3 A node or a link in G is reachable if it is on at least one route.

Assumption 2.1 (1) The directed graph G is connected when viewed as an undirected graph. (2)

Every link is reachable.

In the case where G is not connected as a graph, we can look at each connected component

separately. When a link is not reachable, it certainly cannot be identified, and it won't affect the

identifiability of other links. Hence, we can remove it from G. A consequence of the assumptions

is that every node is reachable. For, if a node is not reachable, none of the links connected to it is

reachable. Also, every node which is not a measurement node must be a router node. Otherwise,

all the links connected to it are not on any routes.

2.3 Symmetric networks

First, certainspecial networks are easily identifiable. We say a network is symmetric if its directed

graph representation G = [A, U] has the property that all links between any two nodes a GA and

6 GA have the same link attribute. The symmetry is observed in that the link from a to 6 has the

same attribute as the link from b to a. Under Assumption 2.1, we have

Proposition 2.4 If a pair of nodes, a and b, are connected by at least one link from a to b and at

least one linkfrom b to a, then the attribute of these links can be uniquely determined.



Proof: Setup any route, h, that passes through a link starting from a and terminating at b.

Then, li plus circuit starting from a, to 6, and back to a can also yield a route. Call it I2. Prom the

difference of route attributes of I2 and Zi, we get the attribute of the circuit above, which is twice

the link attribute for the links that connect a and 6. •

Corollary 2.5 Suppose G has the property that, for every a € A and b ^ A, if there is a link from

a to b, then there is a link from b to a. Then, G is identifiable.

Proof: The attribute of every link can be uniquely determined by the previous proposition.

•

In reality, communication links in the networks are almost always full duplex. Even though the

attributes of forward and backward links are usually not identical, by the proof of the proposition,

the combined attributes of the forward and backward links can be uniquely determined between

any two adjacent nodes. For purposes such as fault discovery, this can be adequate.

2.4 Strong unidentifiability of asymmetric networks

In this section, we will prove Proposition 2.2. Again, we assume that G satisfies Assumption 2.1.

Let us first get familiar with the matrix R in equation (2). It has the following simpleproperties.

• Each entry of R is either 0 or a positive integer.

• Each row of R (say i) corresponds to a route (i) and each column (say j) corresponds to a

link {j). The {i,jY^ entry ofR is the number of times link j appears on route i.

The dimension of matrix R is M x L, where M is equal to the number of routes, and L is the

number oflinks. Let the rows ofR be vectors vi^, V2^,..., vm^, and let the columns ofR be vectors

wi, W2,..., WL- Foreachi 6 {1,2, ...,L}, define vectors Oi 6 tobeoftheform (0,...,0,1,0, ...,0)^

with 1 in the i^^ location.

Lemma 2.6 Every column vector of R can be expressed as a linear combination of other column

vectors.

Proof: Let us fix i, for i £ {1,2,...,L}. The i^^ column vector of R corresponds to link i in

the directed graph G = [A, U]. Let a £ A and 6 € A be the two nodes to which link i is connected.

Since all measurement nodes are separated by a distance of at least 2, at least one of these nodes.



say a, is not a measurement node. Then a must be a router node by the assumption that any link

including link i must be on at least one route. Let C U be the set of outgoing links starting

from node a, and C U be the set of incoming links to node a. Then we have the following

identity.

^ Wj = ^ Wj (3)
j^Ua jeU+

To show this, let us fix a A; for A; G{1,2,..., M}. Y,jq.u- Wj(A:) is the number oftimes the route,

numbered by the rows of matrix R, enters node a. Similarly, number of times

the route leaves node a. Since a is a router node and is not a measurement node, any route

which enters it must leave it. Hence, we get the equality of (3). Since link i is either in or in

U~, by re-arranging equation (3), we get,

Wi = (4)

. Ejsu- wj ifi€U+

Corollary 2.7 G is unidentifiable.

Proof: By Lemma 2.6, matrix R does not have full rank. •

Lemma 2.8 For every i G{1,2, ...,L}, ei ^ span{vi, V2,..., vm}-

Proof: We need to show that there is not a non-zero row vector A= (Ai, A2,..., A^) such that

ei = AjVj. Note that = AR = (Awi, Aw2,..., Awl). Since all components of Oi are O's

except that the i*'̂ component isa 1, it issufficient to show that, for any A, Awj = 0 for every j ^ i

necessarily implies Awi = 0. By Lemma 2.6, we can write Wi = for some otj GM.

Then,
L L

Awi = A ^ QjWj = ^ OjAwj =0

•

Finally, we are in a position to show strong unidentifiability.

Proof: (of Proposition 2.2) Let us view R as a linear transformation from to R^. It

is sufllcient to show that, for each i = 1,2,...,!/, there exists a vector zi G kernel R such that

Zi^Oi 7^ 0. This is enough because if Zi^ei 7^ 0 for a fixed i G(1,2, ...,L}, then the i^^ entry ofZi



must be non-zero. Then, if the vector x is a solution to equation (2), x + czi is also a solution, for

any real constant c. In particular, the entries for all these solutions are different. That is, the

delay of link i cannot be determined uniquely. Letting i vary, we can conclude the directed graph

G is strongly unidentifiable.

Let us call the span of {vi, V2,Vn} the row space of the linear transformation R. Then, it

is a well known fact that kernel R and row space R are orthogonal complement of each other. In

other words, for every v such that v X kernel R, it must be true that v G row space R (See page

138 of [7].

By Lemma 2.8, ei ^ rmv space R, for every i G {1,2, ...,L}. Therefore, for each z, there exist a

vector Zi Gkernel R, such that Zi^ei ^ 0. Otherwise, Oi would be in row space R. •

2.5 Conclusion of deterministic analysis

The results of this section are based on deterministic analysis. In summary, the deterministic and

additive attribute of a link in an asymmetric network cannot be observed unless we measure it

directly from the two nodes it is attached to. We loosely say the network cannot be completely

observed from a proper subset of the nodes.

Link attributes such as delay are often non-negative. In Proposition 2.2, we did not impose the

constraint of non-negativity. If such a constraint is imposed, and if all link attributes are strictly

positive, Proposition 2.2 is still valid, since the vector of link attributes has an open neighborhood

in M|o >where R>o is the set of non-negative real number. Ifsome link attributes are zero, then it
is possible that all link attributes can be uniquely determined. This last point makes determining

a non-parametric model possible, as we will show in section 4.

3 Probabilistic Case - Parametric Models

Many link attributes, such as delay, has randomness, which, on one hand, alters the objectives we

can pursue, and on the other hand, adds a different set of information that we can utilize. It is

entirely possible that the network can be observed fi*om a subset of the nodes. In this section, we

will study the case where the link attributes can be specified by some parametric probability models.

The objective is to recover the imknown parameters of the model through statistical inference.

10



A parametric probability model is one whose distribution has known functional form with some

parameters. Its distribution is completely specified if the parameters are known. We will see

that parametric models pose certain difiiculties to our problem. First, since a parametric model

is parsimoniously determined by a few parameters, we are somewhat obliged to determine all its

parameters. This can be analytically difficult for additive link attributes. Second, by stipulating

that the link attribute follows a parametric model, we have made a very strong assumption. Even

if we can estimate the parameters correctly and efficiently, the contribution may not be great if the

model is invalid when compared with the reality.

Throughout the discussion of the probabilistic models, including both the parametric and non-

parametric models, we assume all linkattributes are independent ofeachother at all time instances,

and attributes of the same fink at difierent time instances are independent.

3.1 Gaussian model

Let G = [A,U] be the directed graph satisfies assumption 2.1. Suppose there are total L links

in G numbered as 1,2, ...,L, and there are total M routes, numbered as 1,2, ...,M. For each link

i, let its link attribute Xi to be a random variable with Gaussian distribution with mean m and

variance erf. Since Xi, X2y ...j Xl are independent, they are multivariate Gaussian with mean vector

H= (Aii,M2>and covariance matrix S = diap(ai,cr2,Let R be the route matrix

associated with G, let X = (Xi,X2, ...,Xz,), and let Y = (Yi,!^, ...jYm) be the route attributes

onroute 1,2,...,M. Since Y = RX, Y is also multivariate Gaussian with the mean vector R^ and
rj^

covariance matrix Sy = RSR .

Denote Pe the multivariate Gaussian distribution for the random vector Y with parameter

0 e ©, where 0 is the parameter space. In this case, 6 = (R/a, Sy).

Definition 3,1 A parametric model is identifiable ifOi 62 implies Pq^ ^ P62, for all 0i, 02 ^

Otherwise, we say it is unidentifiable.

Then, we have the following theorem.

Theorem 3.1 If no measurement nodes are adjacent in the directed graph G, the Gaussian model

Pq specified above is unidentifiable.

11



Proof: Let K = rank R. By Proposition 2.2, K < L. This implies we can select K routes so

that any route vector (i.e., a row in R) is a linear combination of the selected K routes. Therefore,

without the loss of generality, we can assume R is a X x L route matrix with full row rank. Prom

Y = RX, Y is a multivaxiate Gaussian with mean R/i and covariance matrix Sy = RSR^. Sy

is invertible. The distribution of Y is completely determined by its mean vector and the covariance

matrix. It depends on /i through R/i. Since kernel R ^ {0}, there exist vectors fj} ^ such that

R/i^ = R/Lt^. •

Theorem 3.1 is a rather disappointing result. Multivariate Gaussian random variables have

some nice properties which make many calculations simpler. For instance, the joint distribution is

completely specified by the mean and the covariance matrix. A linear transformation of the multi

variate Gaussian random variables is also Gaussian. The mean and covariance of the transformed

Gaussian can be obtained by linear transformations on the original mean and covariance. These

nice properties works against us in our case, where the linear transformation by R is not injective.

It might be worth pointing out that the variances of link attributes can be measured in certain

networks, as will be shown in section 3.2.2.

3.2 Exponential model

The exponential model is a commonly assumed model for the distributions of link delays. Suppose

that the link attribute, Xf, of link i is characterized by an exponential distribution with parameter

Xi, denoted by Xi ~ exp(At), for each i € {1,2, ...,L}, and Xi,X2, are independent. Since

the parameters A '̂s are from the space of the positive real numbers, and there are a finite number of

links in question, we will assume that all Af's are distinct. We will first investigate the identifiability

issue of a single route.

Lemma 3.2 The distribution of any route attribute is identifiable up to ordering.

Proof: Without loss of generality, let us assume the route in question, denoted by r, has I

links, 1,2,The link attributes, X'i,X2, are independent exponential random variables

with parameter Ai, A2,..., A/. Let Yr be the route attribute, i.e., Yr = Xi. Since the moment

generating function for an exponential random variable with parameter Xi is the moment

12



generating function for Yr is,

GW =r[x:^ (5)
i=l ^

If the set = {A}, A^,A}} is not the same as the set A^ = {A?, A^,A|}, the resulting moment

generating functions will be different, also. Since we can find the unique distribution function

corresponding to the moment generating function of the form in equantion (5), by the definition of

identifiability, the distribution of any route attribute is identifiable if we ignore the order of the I

links in the route. *

Suppose it is possible to estimate the Aj's correctly onall routes. It is not difficult to determine

the correspondence between the links and the parameters A '̂s on some directed graphs. Consider

the graph ofa binary tree infigure 1with 1sender node at the root, 8 receiver nodes at the leaves,

7 intermediate router nodes, and 15 links. There are 8 routes, each associated with one of the

receivers. Number the routes 1,2,...,8 from left to the right. Suppose the estimates ofAi, A2,A15

basedon the observations on each route are exact so that we can consider the estimates and the true

parameter values are equivalent. Since the estimation based on route 1 yields {Ai, A2, A4, Ag} and
theestimation based on route 2 yields {Ai, A2, A4, Ag}, we can conclude that Ag must be associated

with Xg and that Ag must be associated with Xg. In this fashion, we can find the parameters

Ai's for all links at the bottom level. Recursively, we can move one level up in the graph and

identify the parameters for X4,X5jXq and X7. For example, consider route 1which is associated
with the parameter set {Ai, A2,A4, Ag}, and route 3, which is associated with the parameter set

{Ai, A2, A5, Aio}. Since we have identified Xg with Ag and Xio with Aio when we consider the
bottom level, we can conclude that A4 must be associated with X4 and that A5 must beassociated

with X5.

The above reasoning leads to the following lemma.

Lemma 3.3 For an exponential model in which all parameters Aj's are distinct, it is possible to

construct anidentifiable directed graph inwhich the measurement nodes are not necessarily adjacent.

This is in contrast with both the deterministic case and the Gaussian model.

In order to estimate the parameters of link attributes based on the observations of the route

attribute, it is natural to consider a maximum-likelihood estimator. However, maximizing the

likelihood of the sum of independent exponentials is difficult. Consider the following example.

13
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Figure 1: Binary Tree

Let the random variable Y be the sum of three independent exponential random variables with

parameters Ai, A2 and A3. Suppose we make N independent observations of Y and let denote

the observation. Let the random vector Y = Let | A)

denote the density of Y, where A= {Ai,A2, A3}. Py is also known as the likelihood function. After

some algebra, we get,

^ A1A2A3 ^-A,t/W
I A) =

I A1A2A3 , A1A2A3 -Aat/Wi
(Ai —A2)(A3 —A2) (Ai —A3)(A2 —A3)

We want to obtain the parameters Athat maximize the likelihood function Py or the log likelihood

function. However, we know no easy way to directly apply the traditional optimization techniques

by taking the derivatives with respect to the parameters. The difficulty is due to the sum in the

expression of the likelihood function.

There are two solutions to our dilemma. The first one is an iterative technique, called the

EM algorithm, which is widely used in the maximum likelihood based parameter estimation with

incomplete data. The second approach is to deviate from the strict maximum likelihood based

estimation and use the method of moments. We will discussion each of these two techniques in the

following.

3.2.1 EM algorithm

Let us consider a single route with I links, numbered as 1,2,...,/. Let the link delay to be Xi ~

exp{Xi) for link i, i = 1,2, ...,7, and the Xj's are independent. We assume the parameters A '̂s are

different. Let the route delay to be Y. Then, Y = Xi. Suppose N independent samples of Y

14



are observed, denoted by ...,y^^^}. At each time n, the delay oflink i is denoted

Let A= (Ai,A2,...,A/), Y = (y(i),y(2), ...,yW) and X =

The EM algorithm is an iterative algorithm for finding the parameters A that maximize the log

likelihood, denoted lx{Y) = log PV(Y | A) [2]. Notice that the random variables Y are observed.

The random variables X are not observed, and are caUed hidden random variables. In our case, if

X were observed, then Y would be completely determined. At each step of the iteration, we have a

current estimate of the parameters, denoted by A^*^, where t stands for the iteration. At the

iteration, let the conditional density of the hidden variables X conditional on the observed random

variables Y be Px\yP^ IY;

The E-step of the EM algorithm is to write the complete log likelihood (ofall random variables)

with a generic parameters A, under the assumption that the hidden variables are also observed.

Then the conditional expectation of the complete log likelihood is evaluated with respect to the

conditional density Px|y(X | Y;A^*^). The M-step of the algorithm is to find a new set of pa

rameters, denoted by that maximize the expected complete log likelihood computed in the

E-step.

We now apply the EM algorithm to our case. The complete likelihood is denoted by L^(X) =

Px(X I A). LliX) is,

n=l t=l 71=1 i=l

Then the complete log likelihood, denoted by /^(X), is,

N I I

/\i^

n=l t=l i=l

'a(X) = - E

Suppose in the iteration step, the estimate for the parameters is Then, the E-step of the

EM algorithm is to take the expected value of the complete log likelihood over the conditional

density Px|y(X | Y; A^*^). In our case,

Wx (X) IY, aW] = logXi - Y, | Y, A<"]) (7)
71=1 i=l 7=1

The M-step is to choose to maximize the expected log likelihood E[ZJ(X) | Y,A^*^]. That is

= argmax;^g0E[/J(X) | Y,A '̂̂ ] (8)
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where the parameter space © is, 0 = {(Ai, A2,...,A/) : At > 0,i —1,2,The M-step in our

case is fairly simple. By taking derivative with respect to the At's, the optimization yields,

— for i = 1, 2, I (9)
En=iE[^i ' IY,A(')]

Hence, the key for applying the EM algorithm is to compute | Y, A^*^], for i = 1,2,...,/

at each iteration step. By independence, | Y,A('̂ ] = E[Xj-"^ | where =
We will next compute this value. For convenience, we drop the time index n and

iteration index t. Let /V(- I A) denote the density for the random variable Y. It can be shown that

i=l j=l,j^i ^ *

Then, for any x = {xi,X2, —^xi) such that ajj > 0 for all i, and xi = y,

TT'f^x,v(x|.;A) =n^^ (")
Because y = Xi, there are only / —1 independent if's in equation (11). In principle, we can

find the expression for the conditional density Pxiivi^i I 2/5 A) by integrating the right-hand side

of equation (11) with respect to the other 1 —2 variables. But, we can do this more simply by

noting that Y = ATj + Wi, where Wi = has the density Pwii'^i I A). By the general

expression in equation (10) for the density of the sum of independent exponentials,

^ ^ A-J'H'<(t«i|A)= ( n
k=:l,k^i j=l,j^kj^i •/ ^

Therefore,

PxM^i I y; A) = for 0 < < y (12)

The conditional expectation of Xi can then be computed. We get the closed-form expression.

717r V I T/" \l 1j_1,j5^A: Aj—Afc'l Aj—A^ A,—A^ Jnxi Iy, A] = /v(y IA)

Substituting the result from equation (13) into equation (9) with the correct time and iteration

indices, we then have an iterative procedure to compute the parameters A.
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3.2.2 Method of moments

The the following heuristic based on the method of moments can be an alternative for estimating

the parameters in the exponential model. Again, consider the example shown in figure 1. From

Yi = Xi + X2 + X4 + Xq and Y2 = Xi + X2 + X4 + Xg, the covariance of Yi and Y2 is

Cov(yi, Yz) = Var(A:i + ATz + X4)

From

Var(Yi) = Var(A:i + Xz + ^4) + VarCXg)

we get

Var(X8) = Var(yi) - Cov(yi,y2)

Both quantities on the right hand side above can be estimated based on measurement samples

collected for the routes. Since the variance of an exponential random variable with parameter Xi is

1/Aj^, the parameter Ag canbe estimated. In a similar fashion, the parameters Ag to A15 canall be

estimated from the variances for bottom level links. We can then move up one level from the bottom

and estimate the parameters for link 4, 5, 6 and 7. For example, taking Yi = Xi X2 -{• X4 Xs

and ^3 = Xi + X2 + X5 + A^ioj get

Var(X4) = Var(Yi) - Cov(Yi, Yg) - Var(A:g)

By now, we have estimates for all quantities on the right hand side. It is obvious this algorithm

can be continue upward until all link parameters are determined.

We stress that this method requires multicast on the binary tree for collecting the samples for

YiS. In other words, each time a packet is sent at the root node, samples are collected at the

bottom level, one for each route, where n is the depth of the tree.

In the following, we will discuss some issues related to this heuristic approach.

1. The estimator based on the method of moments may not be asymptotically efiicient, while

a maximum likelihood estimator usually is. For an exponential random variable, the sample

mean estimator and the maximum likelihood estimator are the same. We might lose efiiciency

when the sample variance is used in estimating the parameter. Nevertheless, we expect the

estimator proposed here to be reasonably efficient, particularlywhen the depths of the binary

tree is small. The major advantage of this estimation scheme is its computational simplicity.
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2. In the Gaussian model, the variances can be estimated using the method of moments. How

ever, since the means and and variances for the Gaussian model are unrelated, our method

gives no information about the means. Our deterministic analysis shows that applying the

method of moments only to the first moments will not yield unique estimates of the model

parameters. That is why, in the exponential model, we need to rely on the second moments.

3. The method here can be used also for the one-parameter Gamma model, in which each link

attribute is considered to be a Gamma random variable with known order n, and unknown

parameter Aj. The density is of the form 2; > 0, and the variance is

The method of moments is in fact a family of estimation methods that rely on the moments of

the random variables. Here is another one of these methods. Again, consider the example shown

in figure 1. Prom Yi = A"i + ^"2 + ^"4 + Xs and Y2 = Xi + X2+ X4+ Xg, we get Yi —Y2 = Xs —Xg.

Notice that Yi —Y2 can be observed. Since the mean of an exponential random variable with

parameter Aj is l/Aj and the variance is 1/Ai^, we can write

E[yi-y2] = i/A8-i/A9

Var(yi-y2) = l/A8^ + l/A9^

Given a random variable Z, let us define the following notations. Let m{Z) be the sample mean

and cr^(Z) be the sample variance. Then, assuming certainty equivalence, i.e., the estimate of the

mean and the variance are in fact the mean and the variance of a random variable, it is reasonable

to set up the following equations, and solve for As and A9.

m(yi-y2) = I/A8-I/A9 (14)

<iHYi-Y2) = l/As^ + l/Ag^ (15)

The positive solutions to the above equations are unique.

m{Yi - Y2) +\/2aHYi - Y2) - (m(Yx - Y^))-"1/Xs = 2

_m(yi _ yj) +
I/A9 = (17;

In the similar fashion, all parameters associated with the links at the bottom level can be solved.

Then, we can move one level up in the tree and try to solve the parameters associated with links
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in that level. For example, Yi —Is = + Xq —X5 —Xiq. Since the parameters for Xs and Xio

have already been estimated, we consider them known constants. By independence of the Xj's and

by certainty equivalence, we set up the following equations and want to solve for A4 and A5.

m(yi-y3) = I/A4 + l/Ag - I/A5 - 1/Aio (18)

<T2(yi-y3) = 1/A4^ + l/As^ + l/As^ + l/Aio^ (19)

As a final note on the exponential model, if each link delay is a sum of J independent exponen

tials with a constant J parameters, the techniques used for the simple exponential model can be

applied.

3.3 Mixture of exponentisJ model

Some may argue that the exponential model is too simple to model link delays. In this section,

we present a different model, the mixture of exponentials model. This model is motivated by

the observation that the link delay distribution may have different decaying tail at different time,

possibly due to the difference in the traffic load. If we consider each decaying tail as a mode,

the link delay switches among these modes. It has been shown that power decaying tail can be

approximated quite nicely with this model [6].

More specifically, let us model the delay at link i, Xj, as a mixture ofJ exponentials, each with

a parameter Aj^, for j = 1)2,..., J, where J is &known constant. Let ttij be the probability that
Xi takes one ofthese J exponentials, with —1- Let Ai = (Aij, Ai,2) •••) Ai,j). We can write

the density for Xi. ^

j=i

Again assume Y = Y,l=iXu where Y is the route delay. We would like to estimate the
parameters Aand tt based on the observations ofY. We formulate a maximum likelihood estimator

and apply the EM algorithm, because the estimation problem can be considered in a setting with

unobserved hidden variables. First, the link delays, XiS, are imobserved. Second, we can regard

the particular mode a link delay chooses as a hidden variable. Let us define a vector-valued random

variable Qi associated with each Xi taking values in the set {ei,e2, ...,ej}, where ej GM*' is a
vector (0,..., 0,1,0,..., 0)^, with the 1inthe position. Denote X = and Q = where

i = 1,2,...,I and n = 1,2,...,N. The variables in bold with a bar on the top are two-dimensional
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variables. Then, the complete likelihood is,

Q) =n ri (21)
n=l t=l j=l

—

Here, we make the notation more compact by letting the discrete vaxiables Q vary. Note that Q- j

stands for the entry of the vector which is either 1 or 0. For each index i, only one of the

J terms indexed by j survives. The complete log likelihood is,

N I J

l^,^(X,Q) =logi^.^(X,Q) =53;^53Qij'(log7rij +logAij - (22)
n=l t=l j=l

To simplified the notation, let (•) represent the conditional expectation operator E[ • | Y,

The expected value of the complete log likelihood is,

(1J,,(X, Q)) =£ ^ (23)
n=li=l j=l

In the M-step of the EM algorithm, we would like to find and so that Q)) is

maximized. This isa constraint optimization problem, subject to the constraint that 53^=1 = 1

for i = 1,2,..., I. It is easy to show that,

47" = Ecsl"-)/^ (24)
n=l

^'7" = E(<3.'7)/E(^i"'<5l7> fori = l,2,..,/andj = l,2,..,J (25)
n=l n=l

Therefore, the key is to compute {Qi^j) and Since samples at diflferent time instances are

assumed to be independent, the conditioning in the above expressions of conditional expectations

is on alone. In order to compute the above expectations, we need to evaluate the posterior

probabilities conditional on the observation of y^"^. We will drop the time index n and iteration

index t in the following analysis.

Let the random vectors X = (Xj) and Q = (Qi), for i = 1,2,...,/, and x and q be the

corresponding non-random versions of them. One strategy is to start with the joint conditional

density, Fx,Q|y(*,q | y; A, tt). More explicitly, for anyx such that Xj > 0 for all i, and X]i=i

we need to compute

f'x.Qiy (x,Qu. = 1,Q2,n = 1, Qij, = 1 I y; A, tt) = (26)
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for all I-tuples € {1,2,J}^, where

PY{y\>^yT^)= XI n
ji,j2,---,ji^{'i-,'2,—>J}^ A:=l,A:#z '•'* i=l

We can then compute Pxi\Y Pxi,Qi\Y t>y marginalizing the joint conditional density. The proce

dure developed here is a general one for mixture models, including the mixture ofexponentials and

the mixture of exponentials and Gaussians. However, the computation complexity is exponential

in the number of links, /, due to the discrete nature of the random variables, QtS. For example, if

we choose k = 2 and L = 10, thenwe need to compute equation (26) 2^° times for each observation

of Y, and the outer sum in equation (27) has also 2^° terms.

A simpler approach is to first compute the conditional density Px|y(* I 2/j

i'x|y(x|y;A,^) = (28)

where ^ ^

PY{y |A,7r) = *)dxidx2.^.dxi-i (29)
J A •• 1 .• 1'^t=l j=l

where the set

A = {(xi,X2,...,a;/_i) : Xi > 0,i = 1,2,1,and^ 2/}
t=i

Then, the conditional density Pxi,Qi ]Ycan be computed.

Pxi,Qi\Y(xhQi,i = 11 y;a,t) = PQ,\Xi,Y(Qij = 11 ®i.y;-^.'r) '̂x(|y(®i Iy;\T) (30)

Given Aj, Qi is independent of Y. Hence,

PQi\Xi,Y{Qid = 1 Ia;i,2/;A,7r) = PQi\Xi(Qi,3 = 1 Ia;t;A,7r) (31)

The transform method can further help us to reduce the computation complexity, because of

the simple form of the moment generating function for the exponential distribution. In particular,

we need not calculate the integration in equation (29). The moment generating function of Y can

be expressed as Gy(s) = HLi ^Xi(s), where Gx. 's are the moment generating functions for the

XiS. Because CxM = pt(5)/ni=i('^i,j - -s)? where gi{s) isa polynomial in s whose degree is less

than J, we get,

Gy(s) = (33)
nL n/=,(Au - ^)
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We can perform partial fraction expansion on Gy(s) and get,

I J

GyW =EEr^ (34)
i=i j=i ~ ^

for some real numbers aij. Hence,

I J

Pviy |A,7r) =
t=i j=i

Let us write Y = Xj + Wj, where Wi = X)fc=i,A:5£t-^A:- Then, by the general expression shown in

equation (34),
I J

Pw,{wi\X,^)= Y, (36)
k=l,k^i j=l

for some real numbers f3kj. Then,

i^i iy —Xi IA, tt)
' Py{y\x,^) {oTO<Xi<y (37)

Given the conditional density Pxi,Qi\Y^ in principle, (XiQij) can be computed. We next show

how to compute (Qij). To do this, we need to compute PqiviQij = 1 I In the following,

notations are simplified when there is no confusion.

P{Qi,j =l\ y) = [ P{Qij =hxi\ y)dxi
Jxi<y

= / P(Qw =1Ixuy)P(xi Iy)dxi
Jxi<y

= J P{Qi,j =1IXi)P{xi Iy)dxi

Jxi<y P{Xi)

4 Probablistic Case: Non-parametric Models

4.1 Introduction

When assuming a parametric model, one needs to address the issue of relevance of the model,

i.e., how close the model resembles reality. Currently, there is no generally agreed model for link

delays. Moreover, as we have seen, it can be difficult to infer the model parameters. These points
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motivate the study on the identification of non-parametric models through sampling. The objective

is to find a way to identify the distribution of a particular link attribute based on the end-to-end

measurement, and to ask how well we can do this. To obtain a non-parametric distribution by

sampling is generally a slow process. However, if we can postulate a relevant parametric model

based on the non-parametric model obtained through sampling, the effort is well justified. If we

limit our goals to estimate only partial information such as the mean and variance of the link

attribute, the non-parametric approach becomes even more viable.

At this point, we specifically consider the variable part of the link delay as the subject of study.

We do not consider the fixed propagation delay on a link, since there are various ways to determine

it. For instance, it can be computed if the locations of the routers are known. In addition, because

the propagation delays are the same in both directions of transmission, by the result for symmetric

networks in section 2.3, it can be determined from end-to-end measurement. In practice, people

use the ping program to measure it. In the following, we will assume the propagation delays are

zero. The term, delay, is reserved to the variable delay.

Strictly speaking, our result from the deterministic analysis has ruled out the possibility to

determine a genuine non-parametric model by sampling the end-to-end route attributes. For, this

will necessarily involves measuring a set of route attributes at each sampling time instances and

determining the contributions from each of the links on the routes. Hence, we do need to add to

the non-parametric model a mild assumption which can be easily validated.

Assumption 4.1 There exists an /c > 0, such that the probability that the delay ofany link is zero

is greater than k.

Theassumption isbased onourobservation that the end-to-end delay ona routeis typically very

small (in the range ofa few milliseconds). The small delay indicates the absence ofqueueing delay,

which can easily be up to hundreds ofmilliseconds. We think that the queues at the routers along a

route are empty most of the time. The small variable delay is possibly due to the variability of the

processing delay by the router's processors. The assumption made in 4.1 idealizes this situation

by assuming the variable processing delay is zero. Besides the usual independent assumptions

among the link delays, we make no more assumptions. The delay model ofeach link appears to be

non-parametric with a mild assumption.

For each link i, let the probability that the link delay is zero be rji, where k < 7]i < I. These
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parameters need not to be estimated separately, even though they can be. They affect the efficiency

of the estimation procedure and the estimation error when the estimation is not exact. The uniform

lower bound of the /c, in assumption 4.1 can be considered close to zero. It is only used for

showing a convergence result in a lemma later.

To determine a link delay distribution, we would like to obtain independent link delay samples

from the end-to-end delay samples. According to the deterministic analysis, this can not be done

in general if we do not know any probabilistic structure of the delays. In our case, assumption 4.1

provides extra information on the probabilistic structure that enables us to do so. The condition

under which this can be done is contained in the following lemma, which is a direct consequence of

the deterministic result.

Lemma 4.1 A link delay sample for link i can be determined from the route delay samples collected

at the same sampling instance if and only if there exists at least one route containing link i on which

all links except i have zero delay.

Assumption 4.1 makes the condition stated in the lemma possible. In fact, it guarantees the

existence of the condition in the asymptotic regimes of large number of routes and/or large number

of time samples. The procedure we will propose for estimating the link delay distribution appears

to be naive at the first glance. However, the above lemma shows that it is in fact the best we

can do. There is a serious inherent inefficiency in estimating the distributions of the link delays

by end-to-end measurement because only selected samples will be accepted as valid samples. The

acceptance rate of samples fundamentally limits the practicality of the sampling procedure. To

increase the overall sample population, we need to explore the statistical redundancy in both the

spatial and temporal domains. In other words, we want to take advantages of the large number of

routes and of the large number of independent time samples. We will see that the nature of the

spatial and the temporal redundancy are the same.

4.2 Sampling theory for link delays

4.2.1 Route redundancy

This subsection shows why it is possible to obtain one valid link delay sample. Suppose we would

like to estimate the distribution of the delay Xi of link 1. Let us assume there exist M routes on
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which link I is the only common link between any of the two routes. Let us fix a time instance. If

M is large enough, we would expect that almost certainly, on at least one of the M routes, all but

link I have zero delay. More formally, let the number of links on the route be /j +1. Denote the

link delays, except the common link /, on the route Xij, for j = 1,2,and let the route

delay of route i be Fj. Hence, Yi = XljLi Xij+Xi, for i = 1,2,..., M. Define anew random variable
Wm = inin4g{i^2,...,M} ^i- Then we would expect that, Wm Xi, as M —> oo. Assumption 4.1
is a sufl&cient condition for this to be true.

Lemma 4.2 Under assumption 4-^> Xi, as M —> oo.

Proof: Let Vm = min^e{i,2,...,M} - Xi. It suffices to show Vm ^ 0 as M —> oo. Fix an
e > 0. Since the F's are non-negative random variables, it is sufficient to show P{Vm > e infinitely

often ) = 0. By the Borel-Cantelli lemma([4]), this is true if > e) < oo. For fixed

M, let Qj = P{Yi > e), for i = 1,2,..., M. By assumption 4.1, there exists a 0 < (J < 1, such that

ai = P{Yi -Xi>e) <S, for i = 1,2,...,M. Indeed, we can take 5 = 1- . Now,
M

P(Vm > e) = P(Yi -Xi>t,Yi-Xi> e,...,YM -Xi>e) = naj < S'̂
1=1

Hence, Em=i > «) = Em=i '5'̂ < °°- "

Lemma 4.2 says that if there are enough redundant routes sharing a single common link /, then

we can take the minimum of all route delays as the linkdelay of link L The convergence result can

be easily generalized to cases inwhich link I is theonly common link to all routes, but some proper

subsets of the routes also share other links.

We can define some notion of the convergence rate, and show that convergence rate is exponen

tial in the number of routes, M. However, the value ofM for which the convergence is considered

"reasonable" fast crucially depends onother parameters. Moreover, the number ofroutes that can

be established in practice is limited by, first, the difficulty and cost in managing a large number of

routes, and second, by the fanout ofthe routers. We will consider what temporal redundancy can

offer.

4.2.2 Temporal redundancy

We, first, reiterate the assumption that delay samples at two different sampling instances are

independent. Let us revisit the scenario discussed in lemma 4.2, where M routes share a single

25



common link I. SupposeN independent set ofsamplesof the route delaysare observed at N different

time instances. Define i = 1? 2,M, and for n = 1,2,N. Define

the random variable Wm,n —niin{l^^"^ :i £ {1,2,..., M}, n £ {1,2,..., N]}, and tentatively assume
Xi is a constant. Then, similar to the case of lemma 4.2, we can show

lim Wm,n = Xi a.s. (38)
MN—^oo

We emphasize that the equality in equation (38) is asymptotic in the product of M and N. In

other words, the effects on the convergence rate from the number of routes and from the number

of time samples are the same. In practice, we can either take a large number of routes, or a large

number of time samples, depending on the situations.

4.2.3 Practicality of the sampling theory

In the following, we will look at a simple example to demonstrate the feasibility and constraints of

the sampling technique alluded by the previous discussion.

M receivers

Figure 2: Singlely-overlapped Routes

Figure 2 shows a special case of the situation discussed in the previous two subsections. We

want to measure the delay of link I between the sender node a and router node 6. In the figure,

there are M routes from a via 6, where the M routes branch out. The thinner directed line from

a to 6, stands for a link (link I in this case) as usual. Each thicker directed line represents a path

which may traverse multiple nodes. Only the ending nodes for those paths are shown. Suppose

each route contains I +1 links. For every link, let the probability that the link delay is zero be r/,

where 0 < 77 < 1. Suppose we set up a multicast connection so that when a packet is sent at node

a, each of the receivers of the M routes receives a copy of the packet. We then have M route delays

at each sampling instance. Let total N packets be sent from node a at iV different sampling times.

26



Then, a total ofMN route delay samples can be collected. If Xi is a constant, then (38) follows.

We would like to know the value of AfN with which we can obtain a valid link delay sample. The

probability that the minimum ofthe MN end-to-end delays is equal to Xi is the probability that

at least one of the MN path delays from node b to the receivers is zero. Denote this probability

as 1 - h{rjJ,MN), where hirjJ^MN) = (1 - We hope hi'qJ.MN) approaches 0 for

reasonable values of MN. Our first impression is h{r}, /, MN) tends to 0 exponentially fast in MN.

However, a second look tells that h{r),I,MN) depends very crucially on the value of . Because

is exponential in /, it can be extremely small. For example, for 77 = 0.1 and I = 10, = 10

For a fixed probability 0 < o; < 1, let us solve MN for which,

h(77, /, MN) = (1 - = a (39)

Then,

For small 77^,

MN= , (40)
log(l - 77^)

MN « (41)

Notice that MN is proportional to 1/77^. The approximation of(41) is good for 77^ upto 0.2. When
77^ = 10-10, by (41), MN = 4.6 x lO^®, 9.2 x lO^®, 13.8 x lO^o, and 18.4 x lO^®, for a = 10-2,10-'!,

lO-o, and 10"®, respectively. These values for MiV axe apparently quite large. Another important

observation is, once the value MN is large enough (in the range of 1/77^)5 fbe efiect ofexponential

convergence kicks in. We canachieve an extremely low value ofh{r}yI,MN) withmoderate increase

of MN.

We believe MN = 10® is a rough upper bound for a reasonable measurement set up. With this

value of MAT, weshow the upper bounds for / -H1 for diflferent values of 77 in Table 1, based on the

approximation in (41). Recall that / -fl is the number of links per route in the current example;

and 77 is the probability that the link delay is zero.

In today's internet, a typical route across North America traverses less than 20 links. Many of

these 20 or so links are within the local area network of the sender or the receiver, and hardly have

any delay. It is likely that one is interested in the delay statistics of only a few of these 20 links.

The parameters, 77, are probably different for each link, and we now index them by the finks. Now

n[_i77i, which is the probability that the delay of the path consisting of finks 1, 2, ..., and I is
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V I+l, a = 10"® I-hl, a = 10"^®

0.1 6 5

0.3 10 9

0.6 23 21

0.8 51 46

0.9 107 97

Table 1: Upper bounds on the number of links per route

zero, takes the role of r}^. From the approximation of in (41) with ni=i "Hi replacing 7/^, we get,

Vi

i=l
MN

(42)

For MN = 10®, ni=i Vi is 1.38 x 10~® and 4.14 x 10~® for o; = 10~® and a = 10"^®, respectively.

Our measurement of the Internet delay shows that the actual value for this product is significantly

greater than 0.1 even for very long routes. Hence, the sampling scheme alluded here is practical.

In fact, it works for even small values of MN. For instance, suppose we choose MN = 100. Then,

ni=i Vi is 1.38 X10"^ and 4.14 x 10"^ for a = 10~® and a = 10"^®, respectively. Hence, as long as
routes are non-congested half of the times, the sampling scheme works.

4.3 Rejection-based sampling scheme

In this subsection, we introduce our rejection-based sampling scheme, whose salient feature is that

only those true link delay samples are accepted and the rest are rejected.

4.3.1 Illustrative example - two-level trees

Figure 3a shows a simple network of a two-level tree with two routes. We wish to collect samples

for the delay of link li. Let route (1,1) be from node ai to ci. The index indicates route (1,1)

contains link ui and link li. Let route (1,2) be from node ai to C2. We will collect N set of route

delay samples on route (1,1) and route (1,2) via a multicast connection from ai to ci and C2. At

each sampling time instance, n, the delay of route (1,1) is -b and the delay of

route (1,2) is -I- Z^\ where Xi is the link delay for link ui, and Zi is the link delay
for link for i = 1,2. Among the N set of time samples, let us restrict ourselves to the set S of
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Figure 3: Two-level Tree

time instances for which = 0, i.e., 5 = {n G {1,2, ...,iV} : = 0}. Then, it must be true

that y/for n £ S. The rejection-based sampling is very simple. At each time instance n,
if Yj 2^ > 0, then reject the sample; if Y^^ = 0, then accept the sample Yj as a sample for the
delay of link li. Due to the symmetry of the network, wecan also extract the delay samples for link

I2 from the same sample population {y/i\ y/2^}^_i. Because the link delays axe independent to
eachother, the sample distribution for link approaches the distribution of Zi as iV —> 00. Given

the distributions for Zi and Yi,i, the distributionfor Xi can be computed. Figure 3b illustrates a

setup in which route redundancy is further exploited at the lower level.

4.3.2 Sampling on general network

In the examples shown in figure 3, the link we are measuring terminates at a receiver node. In

more general situations, the link to be measured can be deep inside the network, not connected to

any measurement nodes. We now discuss the sampling technique that deals with general situations

suchas the example shown in figure 4. There, the thinner line from node c to node d, denoted by l,

stands for a link as usual. We want to sample the delay of link I. The thicker lines are paths whose

intermediate nodes are not drawn. Let route 1 be (a, d, e), let route 2 (6, c, d, e), and let route 3 be

(6,c, /). Let Y, be the delay for route i, for i = 1,2,3.

In all previous examples, the network can be covered by a single multicast tree. A sampling

instance, n, is the time when a packet is sent from the root of the multicast tree. In the current

example, we do not have a single multicast tree. Let us consider a notion of sampling period, a

short time interval on which we collect one set of route delays. Suppose link delays change slow

enough so that they stay constant during each sampling period. The sampling technique can be as
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follows. At each sampling instance n, get the measurement for the route delays for i = 1,2,3,

and collect N set of such measurements. Let 5 = {n G{1,2,..., AT} : = 0,y3"^ = 0}. S is the
setofsampling instances when the delays onroute 1 and route 3 are both zero. At those sampling

instances, the delay samples for link /, denoted by Xi, is the delay on route 2. That is,

x(") = yM for n e 5 (43)

Figure 4: Multi-level Tree - multiple senders

The difficulty of algorithm lies in that link delays may not be constant during each sampling

period. It is quite likely that the link delay samples are sensitive to the precise sampling times.

In that case, for the above algorithm to work, the packet sent from node o and the packet sent

from node b should be arranged to arrive at node d simultaneously. Due to the apparent difficulty,

we propose a different strategy that does not directly collect link delay samples but collects path

delay samples. If we know the delay distribution of two paths which differ only in one link, we can

compute the delay distribution for that link. For the example in figure 4, let Wi and W2 be the

delays for path (d, e) and (c, e), respectively. Since W2 = Wi Xi^ the probability mass functions

for these random delays are related by Pw2 —Pwi <8) Pxi •> where ® stands for convolution. Here,

we assume that delays are discretized. If Pw2 Pwi are known, Pxi can be computed by the

standard procedure of deconvolution.

The method for collecting path delay samples is an obvious extension to the case of the two-level

trees shown in figure 3. Simply interpret all directed lines in figure 3 as paths, and replace link

delays with path delays in the corresponding sampling algorithm.
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5 Conclusion

This paper address the issue of determining or estimating link delays based on the observation

of end-to-end route delays. We have looked at three situations: the link delay is a constant

(deterministic case), it is random and has a distribution from a model family (parametric model),

or it is random with unknown distribution (non-parametric model). The deterministic analysis also

serves as one of the building blocks for the non-parametric case.

The purpose of this paper is more on developing a broad understanding and families of tech

niques for solving the link delay inference problem than on evaluating a single technique for a

specific situation. We certainly expect that some topics of the paper can be pursued further. For

example, the applicability and performance of the EM algorithm to the problem of network delay

inference need to be evaluated with realistic data. However, we hope that our study can provide

insights to more specific inference problems.
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