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Abstract

The performance of TCP over heterogeneous networks is severely degraded due to
packet losses due to errors on the wireless channel, which are interpreted to be congestion
related, by TCP, creating window cutbacks and inefficient channel utilization. Link
level error recovery protocols have been proposed that seek to improve the throughput
performance. In this work we present a method for using continuous error detection
based link level error recovery for improving the throughput of TCP over heterogeneous
networks. The ability to detect error before the end of a packet allows for an increased
number of retransmissions over the wireless hop, before a TCP timeout, resulting in an
increased probability of successful reception at the mobile host. This method is general
enough to integrate with any existing state-of-the-art link level error recovery protocols,
and its complexity is low enough to be supportable in low power hand-helds and other
information appliances that might proliferate the personal communications market of
the future.

1 Introduction

There has recently been widespread interest in the extension of data networks to the
wireless domain. As Internet’s Transmission Control Protocol (TCP) is currently the
predominant data transport protocol on which applications run, many researchers are
studying the issues in operating TCP over wireless and heterogeneous networks. It
has been shown that the performance of TCP is very poor in the presence of lossy
channels[10, 11, 16]. This is because TCP is designed to consider all packet losses as
congestion-related, and throttle its rate whenever losses occur. Over a wireless link,
packet losses occur due to both channel errors as well as congestion, and these non-
congestion-related losses cause TCP to cut back its congestion window resulting in
reduced throughput and low channel utilization.

Many schemes have been proposed to improve the throughput performance and a
good comparison of the different schemes can be found in{l]. It was observed there
that the best improvements are obtained using link layer error recovery with selective
acknowledgments. This tries to hide the link-related losses from the TCP sender by
using Forward Error Correction (FEC) and/or local retransmissions over the wireless
link. The local retransmissions can be done such they are tuned to the characteristics
of the wireless link and therefore can provide a significant improvement in throughput
performance.



In this work, we present a new link level error recovery protocol using continuous
error detection based on arithmetic coding. The ability to detect errors in a continuous
fashion while transmitting packets over the wireless channel can result in reduced delays
in detecting errors which can lead to more retransmission attempts before TCP timeout
happens, resulting in improved throughput performance. This idea can easily integrate
into existing state-of-the-art link layer recovery protocols like the Berkeley SNOOP
Protocol, and improve their performance.

Before we present the network topology and the protocol that we propose, we briefly
summarize how TCP works, and the problems that it faces over wireless channels.

2 TCP: A Brief Overview

In this section, we provide a brief overview of the Internet’s transport protocol, the
Transmission Control Protocol (TCP). We describe its objectives and its congestion
control mechanism.

TCP is a connection oriented, adaptive window flow control protocol that uses a
“bang-bang” technique for window adaptation. The window size hunts for the “opti-
mum” window size but always overshoots; this results in packet loss, following which
there is reduction in the window size. A typical sample path of the TCP congestion
window is shown in Figure 1. TCP provides the following services to the higher layers:

(i) Reliable, end to end, in-sequence data transport
Any TCP connection has 2 entities associated with it, the TCP transmitter
and the TCP receiver. The transmitter dynamically adjusts its window size as
described in Section 2.1. The receiver advertises a maximum window beyond
which the transmitter’s window cannot increase. When any packet is lost or
damaged, the receiver does not acknowledge that packet, causing the transmitter
to eventually retransmit the packet.

(if) Congestion control
TCP detects network congestion in one of two ways:
(2] Packet loss at some intermediate node due to buffer overflow.
[b] Packets or acknowledgments (ACKs) delayed due to congestion resulting
in TCP timeout.

In either of these cases, the window drops to one and hence, reduces the load
on the network. This is the original TCP algorithm proposed by Van Jacobson

8].

2.1 Window Adaptation in TCP
The transmitter window adapts using the following algorithm:

(i) Slow Start Phase: The TCP transmitter window W (t) increases by 1 every
time a packet is acknowledged. This effectively means that the window doubles
every round trip time. This phase continues till the window reaches the slow-start
threshold Wi (t). This phase results in an exponential growth of the window (see
Figure 1).

(ii) Congestion Avoidance Phase: Following slow-start, the TCP transmitter
probes for extra bandwidth in the network and hence, the window grows slowly.
Each time a packet is acknowledged, the window grows by %, i.e., roughly, the
window grows by 1 every round trip time. This phase continues till loss occurs,
or the window reached its maximum possible value (Wez)-
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Figure 2: The network consists of many wire-line links connected by routers and a single
wireless link

(ili) Loss Recovery: There are four versions of TCP that differ primarily in their
loss recovery mechanisms. In the earlier versions of TCP, if a packet loss resulted
in a TCP timeout, the congestion window was cut back to 1 and the slow start
phase re-initiated. In the later versions of TCP the fast retransmit and the fast
recovery algorithms (see [15]) were implemented where loss does not necessarily
cause a new slow-start; instead, the transmitter tries to recover in the congestion
avoidance phase itself.

3 Network Topology

In this section, we present the system that we consider for the proposed protocol.
Consider a TCP connection over a network as shown in Figure 2. We first assume
that the wireless link has no errors (which is the same a a purely wire-line case). Here
when congestion occurs at a router in the network, buffers overflow causing packet loss.
This causes the TCP window to cut back (see Section 2) thereby reducing congestion.
However, in practice, the wireless link is lossy. Hence, packet loss occurs even in the
absence of congestion. This is interpreted wrongly by TCP as congestive loss causing
the TCP window to cut back when, ideally, it should have just retransmitted the lost
packet keeping the window unchanged. Hence, TCP throughput suffers in heterogeneous
networks. Link level recovery schemes where ARQ and FEC are used over the wireless



link to shape it so that it appears like a lossless link of smaller capacity and larger delay,
have been proposed to address this problem. The relative performance of these schemes
is compared in[1, 2, 6]. We propose a new link level protocol using an arithmetic code
based ARQ scheme ([7], [9]) which could result in improved performance of TCP.

An existing state-of-the-art solution that works at the link layer, into which our
proposal can be integrated, is the Berkeley SNOOP Protocol. We briefly describe
portions of the protocol that are relevant to the integration with our system.

3.1 SNOOP Protocol

In the earlier section, we saw that a TCP-aware link layer protocol achieved significant
performance improvement over regular TCP over wireless links. This prompted the
authors in[1] to come up with such a scheme, namely, the SNOOP protocol.

This runs primarily at the base station to the wireless network. It monitors all the
TCP packets and maintains a cache of all the packets sent from the Fixed Host (FH)
that haven’t yet been acknowledged by the Mobile Host (MH). It also keeps track of all
the acknowledgments sent back to the FH and detects loss of packets either by arrival
of duplicate acknowledgments, or by a local timeout. Upon detecting a packet loss,
it retransmits the lost packet to the MH from its cache, if it has it cached and also
hides the packet loss from the sender by filtering the duplicate acknowledgment and not
forwarding it to the TCP transmitter.

4 Arithmetic Coding based Link-Level TCP-Aware
Error Recovery Protocol

In this section, we discuss a new link-layer error recovery protocol that we propose, that
is based on continuous error detection and has the potential to improve TCP throughput
significantly over wireless links with small round trip delay.

Before we describe the protocol, we discuss Arithmetic Coding, which is used at the
link level as an error detection mechanism in the proposed protocol.

Arithmetic coding is discussed extensively in [12]. Details on how it can be used
for error detection are presented in [4]. In (7] and [9] it is shown that throughput
performance of ARQ protocols can be improved by using continuous error detection.

4.1 Arithmetic Coding

Arithmetic coding is a data compression technique that encodes the data string by
creating a code string that represents a fractional value on the number line between
0 and 1. The coding algorithm is symbol-wise recursive, i.e., it operates upon and
encodes (decodes) one data symbol per iteration or recursion. On each iteration, the
algorithm successively partitions an interval of the number line between 0 and 1, and
retains one of the partitions as the new interval. Thus, the algorithm successively deals
with smaller intervals, and the code string, viewed as a magnitude, lies in each of the
nested intervals. The data string is recovered by using magnitude comparisons on the
code string to recreate how the encoder must have successively partitioned and retained
each nested subinterval. '

This can be best understood with an example as shown in Figure 3. Consider
four symbols, a, b, ¢ and ¢ with probabilities of occurrence 0.125,0.25, 0.5 and 0.125.
The example shows how a symbol stream bbc..... is encoded. After encoding the first
symbol b, the fractional number will lie in the region [0.125,0.5). The next symbol
would divide the coding space for b (i.e., the region [0.125,0.5)) in the ratio of the
symbol probabilities, and so on.
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Symbol stream: bbc ....

Figure 3: An example of Arithmetic encoding.

4.2 Integrating Error Detection into Arithmetic Coding

As a coding scheme, arithmetic coding suffers from the problem that even a single
inverted bit at the receiver (i.e, a single bit error) corrupts all subsequent bits. This
can be used to our advantage when our purpose in using arithmetic coding is not source
coding, but continuous error detection.

The basic idea is to introduce redundancy by adjusting the coding space so that some
parts are never used by the encoder (see [4]). During decoding, if the number defined by
the received encoded string ever enters this “forbidden region”, then a communication
error must have occurred and the decoder can ask for a retransmission.

For example, in Figure 3, say the symbol ¢ is the forbidden symbol that is never
used by the encoder. Then, whenever the decoder decodes ¢, we know that an error has
occurred.

By increasing the amount of coding space that the forbidden symbol occupies, it is
possible to make statistical guarantees about where the errors may have occurred. That
is, it is possible to isolate the location of the error in a statistical sense, to any desired
“confidence level” to the previous n bits, where n depends on the amount of invested
excess redundancy and the desired confidence level.

Suppose an error occurs at a particular bit position. Then, the error will be detected
after n bits with probability 1 — (1 — €)™ with confidence level 100(1 — §)%. These
quantities are related by the expression (see (7], [9]):

= L092(8)
" loga(1 —¢)

Using arithmetic coding for error control has several advantages:

(1)

e The amount of redundancy included in encoded messages can be controlled as a
single tunable parameter of the coding process, and, if necessary, varied adaptively
to accommodate prevailing channel conditions.

o Error checking can take place continuously as each input bit is processed, so that
errors are located quickly, without having to wait for the end of the block as in
block codes like CRC.

o An error’s location can be pinned down to a small interval to a specified accuracy,
thus reducing the amount of material that requires retransmission.

4.3 Protocol Description

In this section, we propose a new protocol that exploits the advantages of continuous
error detection mentioned in the earlier section. We use a link-level TCP-aware scheme
for this purpose, motivated by its superiority as suggested in[1] and use ideas similar to
the SNOOP protocol for ACK filtering.
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Figure 4: Schematic diagram of the link layer ARQ protocol.



The TCP layer packetizes the data and sends it to the arithmetic encoder at the
link level. The encoder encodes the stream using a redundancy e that is known to both
the encoder and decoder. The encoded stream is now passed on to the transmit buffer
from where it is sent on the air to the receiver.

At the receiver, the arithmetic decoder keeps track of symbols decoded and is on
the lookout for the forbidden symbol. If there are no errors in a stream of n bits (where
n is as defined in Section 4.2), the decoder passes the bits onto a receive buffer which
then sends the packets up to the TCP layer at the receiver.

If there is an error, it flushes its buffer and asks for a retransmission of the past n
bits using some redundancy e that it specifies.

Meanwhile, the ACK filter keeps track of the duplicate acknowledgments and sup-
presses them while the link level tries to recover the lost bits through ARQ.

One issue that arises is how to distinguish between the retransmit stream and the
original stream of data. This can be done in two ways. One is to do it as shown in
Figure 4. This uses a specific header for the retransmit stream which the decoder can
recognize and which can also include details like how many bits are being sent. To
ensure that this header sequence does not occur in the data stream itself, we use a bit-
stuffer at the base station before encoding and undo it at the receiver before sending
the packets up to the TCP layer. Another way of doing this would be to have a specific
symbol in the coding space reserved as a control symbol to identify retransmits and any
other control information that the base station might want to send to the receiver.

The exchange of control information also necessitates the use of a MUX at the
receiver and a deMUX at the base station to separate the ACKs which need to be
forwarded to the TCP layer at the base station, from the control information that have
to go to the encoder.

An important consideration is that of controlling the redundancy to make full use of
this degree of freedom that we have. One example would be to detect when a channel
comes out of a deep fade. We know that more the redundancy, faster the error detection.
When we detect errors at the receiver even after a couple of retransmits locally from the
base station, we know that the channel is in a fade and so the channel error probability
is very high. At such times we could increase € to some large fraction like 50% and
keep checking for the frequency of errors at the receiver. When we begin to notice that
the frequency of errors has gone down after some time, we can immediately reduce the
redundancy to the lower set of values that are used during normal transmission.

This idea could be used during retransmits also. When a retransmit is done, it could
be done at a higher redundancy than the current € to make the next error detection
faster. This will help as we have only a fixed number of local retransmits available
before the TCP timer expires, and we would want to have as many tries as possible
to avoid a retransmit all the way from the TCP sender which would result in window
cutbacks.

The Channel State Estimator (CSE) block in Figure 4 looks at the frequency of
errors over some time interval in the past and decides what ¢ the encoder should use
for the next transmission. This is then conveyed to the encoder as a part of the control
information.

The ACK filter block serves two purposes. Firstly, it keeps track of the packets
that are being sent up and the ACKs that are going down. If it detects a duplicate
acknowledgment, it suppresses it to allow time for local retransmits from the base
station. This feature is similar to the one in SNOOP protocol. In addition to this, it
can help the decoder to see if the rare event of it not having detected an error (the
other 1006% of the confidence level discussed in Section 4.2)has actually occurred. It
could detect this, if, a packet that it had sent up as being correct, is requested for a
retransmit. In such a case, it could adapt its redundancy correspondingly, and ask for
a retransmit from the base station buffer starting from this packet onwards.

There could be another rare event that could upset this scheme of things; the case



where the original TCP packet that came to the base station from the TCP sender
suffered some error in transit. This would create a retransmit request from the receiver
which is not the mistake of the wireless link, but of some other wired link. We do not
want the link-level scheme to react to this. So, we have a CRC check done on the TCP
packet at the base station itself before sending it down to the encoder. This ensures
that all packets which are transmitted on the link are “good”. An additional advantage
of this is that as the base station drops this packet, the link bandwidth is not wasted
by sending a “bad” packet.

There are several other ideas that could be incorporated into this framework to make
the protocol more robust and efficient. An interesting idea would be to send incremental
parity as retransmit info in an attempt to correct this error (see [5]). This would mean
that instead of sending all the requested bits when error occurs, we only send the parity
bits for the data in error. This could be integrated in an optimal fashion to result in a
hybrid ARQ/FEC scheme which might work better than either of the two individually
depending on the situation.

We hope that this framework will result in better TCP throughput than the schemes
which have so far been proposed. We plan to simulate this scheme shortly.
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