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Abstract

In this thesis, results from classical dynamical systems are generalized to hybrid dynamical
systems. Continuous dependence on initialconditions in hybrid systems is established. The

concept of u limit set is introduced for hybrid systems and some important properties are

derived, where Zeno and non-Zeno hybrid systems can be treated within the same frame

work. As an example, LaSalle's Invariance Principle is extended to hybrid systems. The

idea ofequilibrium set is developed as a generalization ofequilibrium point in conventional

dynamical systems, and Lyapunov stability of equilibrium set is discussed. Zeno hybrid sys
tems are investigated in detail. The u limit set of Zeno executions is characterized for a few

quite general classes of hybrid systems. Examples of Zeno hybrid automata are studied to

illustrate the idea.
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1. Introduction

Hybrid systems, or systems that interacts continuous-time and discrete-time dynamics, have

attracted much research attention in these years. They have been used as models in a large

variety of applications. The rich structure of such hybrid systems allow them to accurately

predict the behavior of quite complex systems. However, the continuous-discrete nature of

the system calls for new theoretical tools for modeling, analysis, and design. Intensive recent

activity has provided a few such tools, for instance, Lyapunov stability results. However, as

will be shown in this thesis, in many cases the results come with assumptions that are not

only hard to check but also unnecessary. There are several fundamental properties of hybrid

systems that have not been sufficiently studied in the literature. These include questions on

existence and uniqueness of executions, which have only recently been addressed in [18, 24].

Another question is when a hybrid system exhibits an infinite number of discrete transitions

during a finite time interval, which is referred to as the Zeno phenomenon. The significance

of these questions has been pointed out by many researchers, e.g.. He and Lemmon [11] wrote

"An important issue which is not addressed in this paper concerns necessary and sufficient

conditions for a switched system to be live, deadlock free, or nonZeno."

Zeno is an interesting mathematical property of some hybrid systems, which does not

occur in conventional dynamical systems. Real physical systems are not Zeno. Models of

physical systems may, however, be Zeno due to a too high level of abstraction. It makes

hybrid system simulation imprecise and time-consuming. Several hybrid systems simulation

packages, such as Dymola [10], Omola [20], and SHIFT [9] get stuck when a large number

of discrete transitions appear in a short time interval. Therefore, it is nice if simulation

softwares would detect Zeno and either resolve the Zeno phenomenon automatically or with

support from the user. Even if Zenoness is an important property of hybrid systems, they

have only been studied to some extent [1, 2, 4, 5, 12]. Some researchers took no Zeno

execution as a standing assumption in the discussion.

The main contribution of the thesis is to carefully generalize the concepts from classical

dynamical systems likeu limit set and invariant set, in a waythat Zenoexecutionsare treated

within the same framework as regular non-Zeno executions. It is then straightforward to



extend existing results, for instance, Lyapunov stability theorems for hybrid systems [6, 26].
We illustrate this by proving LaSalle's Invariance Principle to hybrid systems. In the latter

part of the thesis, we characterize Zeno executions and their Zeno states, where the Zeno

states are defined as the u limit points of a Zeno execution. We are able to completely

characterize the set of Zeno states for a few classes of hybrid systems. It is shown that the

features of the reset maps are important. For example, if the reset relations are identity

maps or contracting, the continuous part of the Zeno state is a singleton.

The outline of the thesis is as follows. In Section 2 the formal notation and definition

for hybrid automata is presented. Continuous dependence on initial conditions in hybrid

systems is introduced in Section 3. Section 4 presents some results in the invariant set and

stability of hybrid systems. We propose the idea of equilibrium set of hybrid systems in

Section 5 and discuss its Lyapunov stability. Zeno hybrid systems are investigated in detail

in Section 6, and two examples are studied in Section 7 to illustrate the idea. Finally, some

conclusions and future work are given in Section 8.

Part of this work has been submitted as [27].

2 Hybrid Automata and Executions

For a finite collection V of variables, let V denote the set of valuations of these variables. We

use lower case letters to denote both a variable and its valuation. We refer to variables whose

set of valuations is finite or countable as discrete and to variables whose set of valuations

is a subset of a Euclidean space as continuous. For a set of continuous variables X with

X = R" for n > 0, we assume that X is given the Euclidean metric topology, and use

II • II to denote the Euclidean norm. For a set of discrete variables Q, we assume that

Q is given the discrete topology (every subset is an open set), generated by the metric

^d(q,q') = 0 if q = q' and dD{q,q') = 1 if q ^ q'. We denote the valuations of the

union Q x X by Q x X, which is given the product topology, generated by the metric

= (^D{q,q') + ||a; —a;'||. Using the metric d, we define the distance between
two sets C/i,I72 C Q XX by d{Ui,U2) = '̂'̂ Uqi,xi)&Uid{{qi,Xi),(q2,X2)). We assume that a



subset C/ of a topological space is given the induced topology, and we use U to denote its

closure, U° its interior, dU its boundary, C/® its complement, \U\ its cardinality, and P{U)

the set of all subsets of U.

The following definitions are based on [19, 13, 18].

Definition 1 (Hybrid Automaton) A hybrid automaton H is a collection H = {Q, X,

Init, f, InV; Reset), where

• Q is a finite collection of discrete variables;

• X is a finite collection of continuous variables with X = M";

• Init C Q X X is a set of initial states;

• f : Q TX is a vector field;

• Inv CClxX. is the domain of H;^ and,

• Reset: Q XX P(Q XX) is a reset relation.

We refer to (g,a;) G Q x X as the state of H. Unless otherwise stated, we introduce the

following assumption, to prevent some obvious pathological cases.

Assumption 1 |Q| < oo and f is Lipschitz continuous in its second argument.

Note that, under the discrete topology on Q, f is trivially continuous in its first argument.
Under Assumption 1, a hybrid automaton can be represented by a directed graph (Q,E),
with vertices Q and edges E = {(q,q') GQ x Q : 3x,x' eX, {q',x') GReset(q,x)}. With
each vertex q GQ, we associate a set of continuous initial states Init(g) = {x GX : (q,x) e
Init}, a vector field f(q,'), and a set I(q) = {x GX : (q,x) e Inv}. With each edge
e = {q^q') e E, we associate a guard G(e) = {x GX : 3x' GX, (q',x') GReset(^,x)}, and
a reset relation P(e, x) = {x' GX | {q',x') GReset(g, x)}. Since there is a unique graphical

^The set Inv is called the invariant set in the hybrid system literature in computer science. Note that Inv
is not invariant in the usual dynamical systems sense.



representation for each hybrid automaton, we will use the corresponding graphs as formal

definitions for hybrid automata in most examples.

Definition 2 (Hybrid Time Trajectory). A hybrid time trajectory r = {/t}£o ^
or infinite sequence of intervals, such that

• Ii = [ri,r/] for i < N, and, if N <00, In = [rAr,rJv] or In = [tn^t'j^);

^ Ti < t[ = Ti+i for i > 0.

A hybrid time trajectory is a sequence of intervals of the real line, whose end points overlap.

The interpretation is that the end points of the intervals are the times at which discrete

transitions take place. Note that Tj = r/ is allowed, therefore multiple discrete transitions

may take place at the same "time". Since the dynamical systems we will be concerned

with will be time invariant we can, without loss of generality, assume ro = 0. Hybrid time

trajectories can extend to infinity if r is an infinite sequence or if it is a finite sequence ending

with an interval of the form [tn,oo). We use t G r as shorthand notation for that there

exists i such that t £ li S r. For a topological space K we use k : t K ais a. short hand

notation for a map assigning a value from K to each t e r; note that k is not a function

on the real line, as it assigns multiple values to the same t eM: t = T[ = Tj+i for all i > 0.

Each r is fully ordered by the relation ^ defined by ti -< t2 for ti e [Ti,T/] and <2 ^ if

and only if i < j, or i = j and ti < ^2-

Definition 3 (Execution) An execution x of a hybrid automaton H is a collection x —

(r, q,x) with t £T, q : t Q, and x : r ^ X, satisfying

• ^ I^if (initial condition);

• for all i with Ti < t[, q[-) is constant and x(*) is a solution^ to the differential equation

dx/dt = f(q,x) over [Tj,r/], and for all t G [Tt,r/), (9(t),x(t)) G Inv (continuous

evolution); and

^"Solution" is interpreted in the sense of Caratheodory, i.e., x{t) is and satisfies x{t) = x(ri) +

Jti f{q{s),x{s))ds for all t € [ri.r/].



. • for all i, {q{Ti+i)jX{Ti+i)) 6 Reset(g(r/),a;(r/)) (discrete evolution).

We say a hybrid automaton accepts an execution x or not. For an execution x =

we use (50,^0) = (9(70), x(ro)) to denote the initial state of x- The execution time T(x)
is defined as T(x) = ~ t^), where AT + 1 is the number of intervals in the hybrid

time trajectory. An execution is finite if r is a finite sequence ending with a compact
interval, it is called infinite if r is either an infinite sequence or if T(x) = 00, and it is

called Zeno if it is infinite but T{x) < 00. We use Snigo^xo) to denote the set of all

executions ofH with initialcondition (^o, a:o) € Init, S^{qQ, xq) to denote the set ofall infinite

executions of H with initial condition {qo,xo) e Init. We define Sh = U(9o,xo)€init
and Sjf = U(go,xo)€init^H (9o,iCo).

Definition 4 (Non-Blocking and Deterministic Automaton) Ahybrid automaton H
is non-blocking if Sjj{qQ^XQ) is non-empty for all (^Oj^o) € Init. It is deterministic if

contains at most one element for all (qo,xo) GInit.

Note that if a hybrid automaton is both non-blocking and deterministic, then it accepts a
unique infinite execution for each initial condition. In [18] conditions were established that

determine whether an automaton is non-blocking and deterministic. The conditions require
one to argue about the set ofstates reachable by a hybrid automaton, and the set of states

from which continuous evolution is impossible. Astate (q,x) e QxX is called reachable by
H, ifthere exists a finite execution x = (r, q, x) with r = and (q(T'j^), a;(rjv)) = {q, x).
We use Reach/f to denote the set of states reachable by a hybrid automaton, and Reach^(g)
the projection of Reach/f to discrete state q. We will drop the subscript H whenever the
automaton is clear from the context. The set Reach is in general difficult to compute.
Fortunately, the conditions of subsequent theorems will not require us to do soi any over-
approximation ofthe reachable set will be sufficient. In [7, 18] methods for computing such
over-approximations using simple induction arguments are outlined.

The set of states from which continuous evolution is impossible is given by

Out^ = {{q\x^) GQXX|Ve > 0, G[0,e), (q\x(t)) i Inv},

where a;(-) is the solution to dxjdt = f{q^,x) with a;(0) = x^. Note that if Inv is an open set,
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then Out is simply Inv'̂ . If Inv is closed, then Out may also contain parts of the boundary

of Inv. In [18] methods for computing Out were proposed, under appropriate smoothness

assumptions on / and the boundary of Inv. As before, we will use Out/f(g) to denote the

projection of Out to discrete state q, and drop the subscript H whenever the automaton

is clear from the context. With these two pieces of notation one can show the following

results [18].

Lemma 1 (Non-blocking) A (deterministic) hybrid automaton is non-blocking if (and
only if) for all {q,x) € Out HReach, Reset(g,x) 7^ 0.

Lemma 2 (Deterministic) A hybrid automaton is deterministic if and only if for all

(q,x) e Reach, |Reset(g,x)| < 1 and, ifReset(q,x) / 0, then {q,x) € Out.

A hybrid automaton is invariant preserving if the state remains in the closure of the invariant

along all executions.

Definition 5 (Invariant Preserving) A hybrid automaton is invariant preserving z/Reach C

Inv.

Lemma 3 A hybrid automaton is invariant preserving if and only if Init C Inv andfor all

(q,x) e Inv n Reach, Reset(q,x) C Inv.

Note that the conditions of the lemma do not depend on the vector field /.

Definition 6 (Transverse Invariants) A hybrid automaton is said to have transverse in

variants if there exists a function cr : Q x X —> R continuously differentiable in its second

argument, such that Inv = {(g, x) € Q x X : a{q, x) > 0} and for all (q, x) with a(q,x) = 0,

Lfa(q,x)^0.

Here L/<t : Q x X —>• R denotes the Lie derivative of a along / defined as

Lfa(q,x) = •^(q,x)-f{q,x)

In other words, an automaton has transverse invariants if the set Inv is closed, its boundary is

differentiable, and the vector field / ispointing eitherinside or outside ofInvalong the bound-



ary.^ IfH has transverse invariants the set Outf^ admits a fairly simple characterization[18]:

Outjy = {(g,x) 6 QxX : <j(g,x) < 0}U{(g,x) € QxX : cr(q,x) = 0 and Lfa{q,x) < 0}.

3 Continuous Dependence on Initial Conditions

Continuity of solutions with respect to initial conditions is a desirable property of many

dynamical systems. This is for instance the case in simulation studies. For conventional

smooth systems, a Lipschitz condition onthe vector field guarantees continuous dependence.

Forhybridsystems, however, it is not sufficient to require that the vector field in each discrete

state is Lipschitz continuous. Some early work on this topic can be found in [8, 23]. The

following result lists assumptions that guarantee continuous dependence on initial conditions

for a class of hybrid systems.

Theorem 1 Consider a deterministic hybrid automaton H with transverse invariants. i4s-

sume it is invariant preserving and that f{q, •) is for all q e Q. Furthermore, assume

that for all e = {q,(f) GE, R{e, •) is continuous, and G{e) n/(g) is an open subset of dl{q).
Consider a finite execution x = (t, g, x) € Snigo, a^o) with r = then for every e > 0
there exists S> 0 such that for every (goj^o) ^ Init with d{{qQ,XQ), {qo,Xo)) < S, there exists
T{xo) > 0such that the execution x = (r, q, x) e Sniqo, xq) with f = {QfLo and = r(xo)
satisfies

• l^ix) -T(x)\ < e, and

R.emark 1 The result says that for a given execution x^ execution x starting close
enough to x with some appropriate execution time will stay close at the end point. Fur
thermore, the proof indicates that they have the same sequence ofdiscrete transitions. Note

Under appropriate smoothness assumptions on a and / the definition of transverse invariants be
relaxed somewhat by allowing Lfa{g,x) = 0on the boundary of Inv and taking higher-order Lie derivatives,
until one that is non-zero is found. Even though many ofthe results presented here extend to this relaxed
definition, the proofs are slightly more technical. We will therefore limit ourselves to the notion oftransverse
inv£triants given in Definition 6.



that for a given initial state and execution time, the execution x is unique by assumption.

Also note that it is in general not possible to guarantee the same execution time for x

X-

Remark 2 The assumption on the invariant preserving property can be replaced by the one

that G(q,q') fl I{qY is open in X.

Remark 3 If there is only one discrete state and no reset relations, the hybrid automaton,

of course, defines a smooth dynamical system. It is easy to see that all assumptions are

satisfied for this case. By setting AT = 0 and T(x) = T{x), we obtain the traditional result

of continuous dependence on initial conditions.

The following lemma is used in the proof of the theorem.

Lemma 4 Consider a hybrid automaton H and an execution x satisfy the assump

tions of Theorem 1. Let xq) denote the phase flow of the differential equation dx/dt =

f{Q{Ti),^) with initial condition a;(0) = and Aj = r/ - r^. Then, for every i < N with
Ai ^ 0, there exists a neighborhood ^Wi C I(q{Ti)) ofx{Ti) and a function T* : R+,

such that for all y G W^,

• cl>\T\y),y)edI{q{n)),

• 0'(t,?/) 6 I{q{Ti))° for all t € {Q,T^(y)), and

• : Wq —>• dI[q(Ti)), defined as ^^{y) = 4'̂ (T^(y),y), is continuous.

Proof: The first part ofthe lemmais a straightforward application ofthe ImplicitFunction

Theorem to the function a, which defines the transverse invariants in Definition 6. Since

Ai ^ 0, the state (g(r/),a;(ri)) is reached from (g(ri), a;(ri)) along continuous evolution. By

the definition ofan execution, it holds that x(t) GI{q{Ti)) for all t G[n,r-). Therefore, since

I(q(Ti)) is closed by Definition 6, it follows that a;(r/) e I{q{Ti)). By the definition of an
'̂ Note that the phase flow is defined for all ic € K" and is not restricted to the domain I{q{Ti)).
®Aneighborhood of a continuous state is defined in the subspace topology on the corresponding domain.

Here, is thus the set of points z 6 ligin)) such that \\z - a;(Ti)|| < r for some r > 0.



execution, we have x(r/) e G{ei), where Cf = (g(r/),g(ri+i)). So a(q{Ti),x{T'̂ ) = 0, because

G(ei) n J(q'(ri)) C dI[q{Ti)) from the assumptions. The composed function cr(g(ri), (/>*(•, •))

is in a neighborhood of (Aj, x{Ti)) in R+ x E", because cr(^(ri), •) is (Definition 6) and

♦) is in both arguments (/(^(ri), •) is'C^ so the solution is also [25]). Moreover,

•^<r{q(Ti),(t>%xo)) = Cfa(q{Ti),x{Ti)) ^ 0,
(f,zo)=(Aj,a:(Ti))

where the inequality follows from Definition 6. The Implicit Function Theorem is hence

applicable. It gives that there exists a neighborhood C E"^ of Aj and a neighborhood

C E" of x{Ti), such that for each y e Wj the equation cr(g(rj), <l>^(t,y)) = 0 has a unique

solution t e Furthermore, this solution can be given as t = T^{y), where T* is a unique

mapping from WJ to and (l>*(T^(y),y) e dI(q(Ti)).

For the second part of the lemma, assume there exists i € (0,T*(i/)) such that <t>^{i^y) €

for some y G Wq. Then, o'(9(ri),<^*(t,2/)) = 0, which contradicts that T^{y) is the

unique solution to the equation o{q(Ti),4t^{t,y)) = 0.

For the third part, note that since 0*(-, •) is in both arguments, it follows that for all

e > 0 there exists Si > 0, such that for all t with ||i - T'(x(ri))|| < Si and all y e with

||y-a;(ri)|| < Su

\\cl>%x(Ti))-<l>'{T(x(Ti)),x{Ti))\\<^

\mny),y)-<l>\T(ylx(TM<^-
By the continuity of T*, for this particular (Ji, there exists some (^2 > 0 such that for all

y EWq with \\y —x(Ti)\\ < S2, we have ||T*(2/) —T*(x(ri))|| < 5i. By setting <5 = min((5i,52),
it follows that for all y e WJ with \\y - x(ri)|| < S,

ll^*(2/) - ^^(:r(T,))|| = \mT(yU) - <l>\T\x{Ti)\x{n

<\W{T\y\y) - cl>\T(y),x{TM + ll '̂(T'(2/),a:(ri)) - ct>'{T(x(Ti)),x(Ti
< 2e,

which proves the continuity of ^

Remark 4 In the case i = Nj ^ 0, and x{t'j^) g dI(q{TN)), by the same argument as
in the proof of Lemma 4, the conclusions in the lemma still hold.



Lemma 5 Consider a hybrid automaton with transverse invariants. For all g € Q, the

domain I[q) contains no isolated point.

Proof: Assume I{q) contains at least one isolated point, say, x. Then there isan open set

O C E" such that OnI{q) = {x}. By Definition 6, a(q,x) = 0 and (T(q,x) < 0 for all x GO
and X^ X. Since a{q, •) is a{q, •) attains a local maximum at x and thus da{q, x) jdx = 0.
This, however, implies that Lfa{q,x) = 0, which contradicts the assumption of transverse

invariants. ,

Now we are ready to prove the theorem.

Proof: We will show that there exists a sequence of sets {W°, V°,...,W^,y^}, where

W C I{q{Ti)) is a neighborhood of x(Ti) and V' C I(q(Ti)) is a neighborhood of x(r/), such
that a continuous map (which is given by the continuous evolution in q(Ti)) describes the

mapping from into and the continuous reset R{ei, •) describes the mapping from

to The composition of the maps is also continuous, which then will be shown to give

the result.

Let us define properly and simultaneously construct and V\ We do it recursively

and start with i = N. Define = {x G I(q(Ti^)) : ||x —a:(Tj^^)|| < e}, which contains

no isolated point from Lemma 5. Because H is invariant preserving and I{q{TN)) closed,

we distinguish the following three cases for the definition of (1) Ajv / 0 and x(rjv) G

dHq{TN)), (2) An^O and x(r^) G/(gCr^v))®, and (3) = 0 and x(rj;^) GI{q{TN)).

(1) From Remark 4, there exists a neighborhood C I{q{TN)) ofx{rN) and a func

tion r^, such that for all y G € dI{q{TN)) and (l>^{t,y) GI{q{TN)Y
for all t G (0,r'(y)). Define dI{q{TN)) as y).

By continuity of there exists a neighborhood C of x{tn) such that

C . Furthermore, all executions x with x(fiv) G fulfills x(fj^) G

where f'j^ = fN + T^{x[fN)).

(2) Define as T^(y) = Ajv- Let C I{q(TN)) be a neighborhood of x{tn) such
that for all y € and t G(0, Ajv), ^^(t,y) G/(g(riv))°. Such a neighborhood Wq

10



exists, because for all t € (0,A^r), belongs to the interior of J(g(Tjv)).

Define —>• I{q{Tiq)) as ^^{y) = <l>^{T^(y),y)- By continuous dependence

on initial conditions for differential equations, there exists a neighborhood C

of x{tn) such that both c and all executions with x(fiv) G fulfills

^(Jn) ^ where + T^{x(fpj)).

(3) Define as T^{y) = 0, and to be the identity map. Then, =

Next let us define and let e, = (g(rj-),g(rj+i)). Note that the domain of i?(eiv-i,-)

is G{eN^i) n 7(g(r7v_i)), which follows from the definitions of the reset and the guard and

that H is inv£u:iant preserving. Since i2(eiv_i,-) is continuous, there exists a neighborhood

Vq~'̂ C of a;(rjv_i) such that R{eN-u HG(eN-i)) C where is
given by any of the three cases above. By eissumption, G(eN-i) H I{q{TN-i)) is an open

subset of dI(q{TN-i))i so there exists a neighborhood c of x{rN-i) such that

n dI{q(TN-i)) C G(eN-i) fl /(g(r;\^_i)). Since H is deterministic, it then follows that

all executions with € V^~'̂ ndI(q(TN-i)) fulfills x{fN) GW^.

To define we distinguish two cases: (1) A;v-i 0 and (2) Aat-i = 0.

(1) Define and as in (1) above. Again there exists a neighborhood C

of a;(r^_i) such that c OdI{q(TN-i)). Moreover, all

executions x with x{fN-i) G fulfills G H dI{q{TN-i)), where

T^_l = fyv-i + T^~^(x(f;v-l)).

(2) As in (3) above, let T^~'̂ {y) = 0, and be the identity map.

Hence,

Proceeding further, we get a sequence of sets {H^°, ..., as well as continuous

functions T' :W' R+ and ¥ : W' ^ V' for i = 0,... ,N. Now, for A: = 1,..., A/^, define
®It is assumed that is a subset of Init(g(ro)). If this is not the case, one should replace by
n Init(g(To)) here and in the following.

11



the function recursively as

^°(xo) = Xo

and for A: = 1,..., AT H-1, define the function 7^^ : -» R"*" as

e=i

Then, = x{fl^) and j'̂ ixo) = - fo for execution x = (x,q,x) with (qo,xo) €

go X The functions and 7*^ are continuous by construction. Particularly, by the
continuity of 7^"*"^ there exists (5i > 0 such that for all xq with po - rcoH < (5i, we have
|7^+^(fo) - 7^"'"Hxo)| < e. The latter inequality is equivalent to | Aj - ^^ilo ^t| < e.
Finally, the continuity of implies that there exists (^2 > 0 such that for all y € with

\\y - ^(7^)11 < <^2j 11^^(2/) - 3;(r^)|| < e. Hence, by the continuity of there exists (J3 > 0
such that for all xq e with ||xo - xo|| < ^3, it holds that ||^^(xo) - rr(r7v)|| <62. Since

^^(^^(^0)) = x(f'j^)j we have ||x(f^) —a;(r^)|| < e. The proof is completed by setting
6 = mm(6i,S3). 1

4 LaSalle's Invariance Principle

We first recall some standard concepts from dynamical system theory, and discuss how they

are generalized to hybrid automata.

Definition 7 (Invariant Set) A set M C QxX is called invariant iffor all (go, xq) e M,

for all (T,g, x) G^ff(go,rco) and all ter, it holds that {q{t),x{t)) € M.

Invariant set is such that all executions starting in the set remain in the set for ever.^ The

class of invariant set is closed under arbitrary unions and intersections. We are interested

in studying the stability of invariant set, i.e., determine whether all trajectories that start

close to an invariant set remain close to it. More formally:

^Strictly speaking, we need to assume that M C Init.
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Hefinition 8 (Stable Invariant Set) An invariant set McQxX is called stable iffor
all € > 0 there exists 6 > 0 such that for all (qo^xq) € Q x X with d{{qo,xo),M) < S,
for all X = (T,g,a;) G SH(qo,Xo), and for all t e t, d((q{t),x{t))jM) < e. An invari
ant set 25 called (locally) asymptotically stable if it is stable and in addition there exists

A > 0 such that for all (qo.xo) with d((qo,xo),M) < A and all x = (r.q^x) € Sg'(qo,xo),
limf_r(x) d-{{q{t),x(t)), M) = 0.

Note that since r is fully ordered the above limit is well defined.

The asymptotic behavior ofan infinite execution is captured in terms of its u limit set.

Definition 9 (a; Limit Set) The u limit point (q,x) € Q x X of an infinite execution

X—{t-,Q-,x) 6 Sjj is a point for which there exists a sequence t such that
as n oo, On T(x) and {q(On),x(On)) ->• {q,x). The u limit set C Q x X is the set
of all u limit points of an execution x-

The following proposition establishes a relation between u limit set and invariant set.

Lemma 6 Consider a hybrid automaton H that satisfies the conditions of Theorem 1. Then

for any execution x— G , if rc(-) is bounded, the u limit set is (ij nonempty,
(a) compact, and (Hi) invariant. Furthermore, (iv) for alle> 0 there exists T er such that

d{{q{t),x{t)),S^) < e for all t>T.

Proof: The proofs of (i) and (ii) are similar to the corresponding proofs for continuous

dynamical systems [25]. We include them here for completeness.

(i) Recall that Q x X is a metric space. Ifx is bounded, x is contained in a compact subset
of that space. Therefore, it has a limit point, by the Bolzano-Weierstrass property [21].
Hence, ^ 0.

(ii) To show that is compact, it suffices to show that it is closed, since x is assumed to be
bounded. Consider an arbitrary (^,x) GS^. Then there exists an open neighborhood, U, of
{([jx) and d.T ^ T, such that {q(t),x{t)) ^ Ufor all t > T. Therefore, Un = (/} and, since
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(g,x) is arbitrary, Sy is open.

(iii) To show that is invariant, take an arbitrary (g, x) G5^^, it suffices to show that for

all X= GSH(q,x) with f = {Ii}S=o and A,- = f/ - f,, we have (g(rjy^),x(fjv)) € 5^.
If the hybrid automaton is blocking at or it will jump between discrete states

with no continuous evolution, the property is trivially satisfied. Then we only need to

consider the case T{x) > 0. Note that since (g,x) G there exists a sequence {^n}^o

with 9n^T such that as n —>• oo, T(x) and {q{9n),x[9n)) —>• (g,x). The last condition

implies that there exists iVi > 0 such that q{9n) = q for all n > Ni. Prom the continuous

dependence on initial conditions in Section 3, for every e > 0, there exists > 0 such that

for every (go,^o) with d((go,^o), < 5, there exists T(xo) > 0, such that the execution

X= (r,q,x) G^ff(go,^o) with f = {/i}£o> = T(xo) and Aj = f/ - f, satisfies

• \T{x)-T(x)\ < e, and

For this particular 5, there exists N2 > Ni such that for all n > N2, d{(q(9n), x(9n)), (g, ^)) <

6, Therefore, the execution x" = ('r",g",a:") G^//(g(^n),a;(0„)) with r" = {I^}fLo, =

T{x{9n))^ and A" = —r" satisfies

• |r(x")-r(x)|<e,and

By determinism and time invariant properties,

= (g(0„ + r'^ - Tq"), rc(0„ + - t^)).

Summarizing, there exists a sequence {9'̂ } = {^n+T^-rf jjlo such that 9'̂ -)• T(x)+T(x),
and (q(9'J,x{9l,)) (g(f;^),x(f^)). Therefore, (g(f;r),x(f;;^)) G5^.

(iv) Theproofissimilar to the continuous case [22,16]. Assume, for the sake ofcontradiction,

that there exists e > 0 such that for all T € r, d((q{t),x(t)),Sj^) > e for some t > T,
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Then there exists a sequence {^n}S!Lo with On ^ r such that as n ^ oo, Too and

> e. This sequence is bounded, therefore, by the Bolzano-Weierstrass

property it has a limit point {q,x). Moreover, (q^x) 6 5;^, by the definition of 5^. But, by

construction of the sequence, d{[q, x), S^) > e, which is a contradiction. •

LaSalle's principle is a useful tool when studying the stability of conventional, continuous

dynamical systems. Lemma 6 allows us to extend this tool to hybrid systems.

Theorem 2 (LaSalle's Invariance Principle) Consider a hybrid automaton H that sat

isfies the conditions of Theorem 1. Assume there exists a compact invariant set C Q x X,

and define Oi = QflOut'^ and = HnOut. Furthermore, assume there exists a continuous

function K : -> R, such that

• for all (q,x) € fli, V is continuously differentiable with respect tox andLfV(q,x) < 0;

and

• for all {q,x) € ^2; V (Reset(g,x)) < V{q,x).

Define Si = {(?,x) G fli : LfV(q,x) = 0} and S2 = {(9,2^) G ^2 : V (Reset(g,x)) =

V{q,x)} and let M be the largest invariant subset ofSi US2. Then, for all (9o>a;o) € Q the

execution (r, g, x) G approaches M as t Tq
oo-

Proof: Consider an arbitrary state (go,a:o) € and let x = {T,q,x) GSff{qo,Xo). Since

Q is invariant, {q{t),x(t)) G for all t £ t. Since Q is compact and V is continuous,

V{q{t),x(t)) is bounded from below. Moreover, l/(g(t),x(t)) is a non-increasing function of

t er (recall that r is fully ordered), so therefore the limit c= limf_^7.^(;^,) V{q{t),x(t)) exists.

Since Qisbounded, x isbounded, andtherefore the u limit set 5^^ isnonempty. Moreover,

since Q is closed, S^ C fl. By definition, for any (q,x) 6 Sy^, there exists a sequence

{^n}^o with On E Tsuch that as n ^ 00, Too and {q(0n)jx{0n)) (9,x). Moreover,
V(q,x) = l^(lim„_^oo(9(^n)5a:(0„)) = lim„_^oo l^(9(^n),3;(0„)) = c, by continuity of V. Since

5;^ is invariant (Lemma 6), it follows thatL/F(g,x) = Oif(g,x) 0 Out, and V{Reset{q,x)) =
V{q,x) if {q,x) GOut. Therefore, 5^ C 5i US2, which implies that Sy^ C M since 5^ is
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invariant. Moreover, by (iv) in Lemma 6, the execution x approaches and hence M, as

t ^ '̂ oo* •

Note that since the class of invariant set is closed under arbitrary unions a unique largest

invariant set M exists.

5 Equilibrium Set and Lyapunov Stability

This section is concerned with the stability of hybrid automata. In conventional dynamical

systems, equilibrium point is an important concept in the Lyapunov stability theory. All the

solutions starting nearby some equilibrium points staynearby forever, and at theequilibrium

point there is no more motion. Some researchers have studied the extension of Lyapunov

theory to hybrid systems [6, 26, 15]. However, the idea ofequilibrium points cannot be gen

eralized to hybrid systems immediately. In hybrid systems, when the continuous trajectory

converges to some points in the state space, those points are not necessarily the equilibrium

points of the corresponding vector field, as illustrated by Example 1. Here we introduce

equilibrium set as a counterpart of equilibrium point for hybrid systems. Equilibrium set

will be shown to play a similar role as equilibrium points in Lyapunov stability analysis of

hybrid systems.

Definition 10 (Equilibrium Set) A finite collection of states S = is an

equilibrium set of a hybrid automaton if every qj belongs to a cycle {(^1,92); (92,93), ••

(9m, 9i)}, where qi G{qj}f=i, and for every qi there exists some Xi such that [quXi) € S, and

• (9i+i, Xi+i) GReset(gi,Xi), for all i = I, 2, m - 1,

• {quXi) G Reset(g,„,a;r„).

For the ease ofnotation, we let (90,3^0) = (9m, a^^) and (9m+i,a;r„+i) = (9i,a:i). We know
that every hybrid automaton can be associated with a directed graph (Q,E). If this graph
contains no cycle, obviously the hybrid automaton has no equilibrium set.
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-0.1 <xi<0

X2 <0 -CX2

Qi Xi =

• a;i > 0

q2 Xi = X2

X2 = -10

xi > 3

xi := 0 2.9 < Xi < 3

X2 := -CX2 X2<0

Figure 1: Example 1

4.9 < xi < 5

X2<0

Remark 5 An equilibrium set is an invariant set. If some states of an equilibrium set is

reachable, then the hybrid automaton accepts a Zeno execution.

Example 1

Consider the hybrid automaton in Figure 1, we have

R{QiiQ2iX) = Ax-h bi, R(q2,q2,x) = Ax-\-b2, R{q2iqi,x) = Axbs,

where

A = bi = bo = b.=

Then

Ri{xi) = A^xi + A^bi + Ab2 + 63 = Xi

•^2(^2) —A?X2 4" A^b2 "1" A63 + 61 —X2

Rsix^) = A^xs + A^b^ + Abi +62 = 2:3,

which yields the unique solution as

Xi = (0,0)^, a;2 = (5,0)^,^3 = (3,0)^.

And it is easy to check that

Xi GG{qi,q2), X2 GG(q2,q2)i X3 GG{q2,qi).

Therefore, {(91,0:1), {q2,X2), (92?2:3}} is an equilibrium set.

Definition 11 (Stable Equilibrium Set) An equilibrium set S = {(9i,:ri)}£i ofa hybrid
automaton H is stable if for all e > 0 there exists S > 0 such that for all (qo,Xo) with
di{qo,Xo),S) < 5, for all x = (r,9,x) G (90,^0) and for all t Gr, d{(q{t),x{t)), S) < e.
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. In [6] multiple Lyapunov functions was introduced as a tool for analyzing Lyapunov

stability of hybrid systems. Here we borrow this idea and apply it to equilibrium set to

get the following theorem. In addition, we improve the theorem in [6] by getting rid of the

restriction on reset map and the assumption' on non-Zenoness.

Theorem 3 Consider a hybrid automaton H with equilibrium setS = {{qj, ®collec

tion ofopen sets with Xj E Dj C I{qj), andfunctions V{qj, •) : Dj —> R continuously

differentiable in x such that for all j:

1. V{qj,Xj) = Q,

2. V(qj, rr) > 0 for all x € Dj\ {xj}, and

< 0 for all x € Dj.

If all the reset relations are continuous functions and for all the execution (r,q, x) € Sff and
for all j, the sequence {V(q{Tk).)X{Tk)) : q{Tk) = qj} is non-increasing, then S is a stable

equilibrium set of H.

Proof: The proof is similar to that in [6]. For simplicity, we do the proof only for the case

N = 2. The proof is similar ifAT > 2. Given e> 0, choose R e (0, e) such that B(xj, R) CDj
for all j, where B(xj,R) = {x € R" : ||x - Xj|| < i?}. Set Cj{R) = mm^edBixi,R) V(qj,x),

= {x E Dj ; V(qj,x) < r}. Pick aj E (0,Cj(i?)), for ^i, choose ft E (0, oi) such that

Q for ^2, choose ft € (0,02) such that R(q2,qu^l^) C Pick 6 >0
such that B(xi, 6) C and B(x2, b) C Assume without loss of generality that q(To) =
qi. Take any execution (T,q,x) with ||x(ro) —xi|| < S. By a continuous Lyapunov argument
and the sequence {V(q(n),x(Tk)) : qln) = ft} is non-increasing, x(t) C for all t until

some discrete transition (91,^2) takes place at t = r/.j. And then x(Ti) = R(quq2,a:(T^.i)) E

^a2- By same argument again, x(t) C for all t until discrete transition (^2,91) takes
place at t = rj_i. By assumption, x(Tj) = 9i, x(rj_i)), and V(qi,x(Tj)) < I^(gi,x(ro)).
Therefore x(rj) E and x(t) C for all its stay in ^i. The claim follows by induction.
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6 Zeno Hybrid Automaton

Zeno hybrid automata accept executions with infinitely many discrete transitions within a

finite time interval. Such systems are hard to analyze and simulate in a way that gives
constructive information about the behavior of the real system. It is therefore important
to be able to determine if a model is Zeno and in applicable cases remove Zenoness. These

problems have been discussed in [13, 14]. In this section, some further characterization of

Zeno executions are made. Recall that an infinite execution x is Zeno ifT(x) =
is bounded, and we also use Tqo to denote the Zeno time ofexecution x whenever the context

is clear.

Definition 12 (Zeno Hybrid Automaton) Ahybrid automaton H is Zeno if there exists
{QOi^o) GInit such that all executions in Sff{qo,xo) / 0 are Zeno.

Example 2

The hybrid automaton in Figure 1 is Zeno. This is easily checked by explicitly deriving the
time intervals r- —Ti, which in this case gives a converging geometric series. Figure 2 shows
an execution accepted by the hybrid automaton.

Our interest is to study the properties of Zeno execution. It is clear that Zeno execution

is determined by the vector fields, reset relations as well as the guards. In Example 1, should
the reset map of X2 be replaced by X2 := — -, where d= 1/y^20xi(To), it's easy to verify
that {At}gi has the same diverging rate as hence the hybrid automaton will not
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have any Zeno execution.

Now we will introduce Zeno state set to investigate the properties of Zeno hybrid au

tomaton.

Definition 13 (Zeno State Set) The u limit point of a Zeno execution is called its Zeno

state.

We use Zoo C Q x X to denote the set of Zeno states. In other words, Zoo consists of all

cluster points of sequence {(g(^n),a;(0„))}S;Lo with € r such that ^ Tqo as n -)• oo. In

Example 1, the Zeno stateset is {(gi, (0,0)^), (^2, (3,0)^), (q2, (5,0)^)}. One straightforward
necessary condition for the existence of Zeno executions is that (Q,E) contains a cycle. We

write Qoo for the discrete part of Zeno states set:

Qoo = ^ Q : 3a: € X, {q,x) € Zoo},

and Boo for the edges in Qo©.

We will give some examples to illustrate the notion of Zeno state set. In Example 1, we
have already observed that one discrete Zeno state may correspond to multiple continuous

Zeno states. Besides, the Zeno state set could bea finite, a countable, oreven an uncountable

set.

Example 3

Consider a Zeno execution with Zoo = {(9>^)}j niodify this hybrid automaton by extending
three extra continuous states {xe,Xf,Xg) with

Xe = 0, Xf = 0, Xg = 0,

and reset maps

Xe\ I cos9 sin9 \ I X,
XfJ sin^ cos9l \xf

Xg •- tan(|i/),
where 0/27r is irrational, and the initial condition Xe(To) = 1, x/(to) = 0, Xg(To) = 0. Then
the Zeno state set is

-2^00 = {g} X{(x,Xe,Xf,Xg) : (Xe,Xf)'̂ € S^,Xg € M}.
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a:ism,^>0

±1 = 1

X2 = xl

iisinr^ <0

X := X

X := X

xisin,^<0

Figure 3; Example 4

A Zeno hybrid automaton may have Zeno executions with no Zeno state. Note that the

vector field in the following example is not Lipschitz continuous.

Example 4

Consider the hybrid automaton H in Figure 3. The execution of H with initial state

exhibits an infinite number of discrete transitions by Too = 1, and X2(t) =

1/(1 —t), for all t e [OjToo). However, for all {^i}£oj fhe sequence {a;2(0i)}£o is

strictly monotonic increasing and unbounded. Therefore, H has no Zeno state.

Example 5

Similar to Example 3, if we have a Zeno execution with = {(^,x)}, augment an extra

continuous state Xe with trivial continuous dynamics Xg = 0, reset map Xe(Tt+i) = 2xe(T/)

and the initial condition Xe(0) = 1. For all {^i}£o5 ^ 1? {^e(^i)}So cluster point.

Evidently, the modified hybrid automaton has no Zeno state.

In Example 4, the Zeno execution has no Zenostate because / is not Lipschitz continuous,

which yields the finite escape time. And in Example 5, it is due to the exploding reset map.

It turns out that both continuous dynamics and reset map are crucial to the Zeno state.

By definition the discrete part of the Zeno state will be visited infinitely often, but the

discrete state being visited infinitely often is not necessarily in Qo©. This can be observed

by modifying the vector field and reset map in Example 4 as:

• fiQyX) = (1,0)^, for all {q,x) GQ x X;

• R{gi,g2,x) =
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Xi < 0

X2 < 0

X3 < 0.5

a;i < 0

X2 <0

Xi > 0.5

Xi = X2

X2 = -10

X3 = 0

Xi > 0

X2 := -CX2

2:3 := 4x3(1 -X3)

Xi := 0

X2 := -CX2

X3 := 4x3(1 - X3) 2:3 > 0.5

iCi := 5 a;i < 5

X2 := -CX2 X2<0

X3 := 4x3(1-0:3) x3<0.5

Xi < 5

X2 < 0

X2 := —CX2

X3 := 4x3(1 - X3)

Figure 4: Example 6

The execution of H with initial state (gi, (-1,1)^) is a Zeno execution with Tqo = 1, and

(91 j(0,1)^) is the only Zeno state. The discrete state q2 is visited infinitely often, but it is
not in Qoo since X2 blows up in state 52, so here we actually have Eoo = 0. In Lemma8, we

will give conditions under which the discrete state being visited infinitively often is in Qoo.

As pointed out before, in most cases discrete execution sequence q has at least one loop

which corresponds to a cycle in directed graph (Q,E). Let us consider a hybrid automaton

with only two discrete states and 92- If denoting as 0 and 92 as 1, the discrete execution

sequence can be described as a binarynumber 0.0110010... in [0,1]. Oneinteresting question

is whether this number is rational or irrational. Most of the hybrid systems behave like a

rational number, which means the discrete execution sequence will repeat itselfperiodically.

However, there exist hybrid systems that do not periodically jump between the two discrete

states.

Example 6

Consider the hybrid automaton in Figure 4 with Init = {gi} x {x G : 0 < Xi < 5,X2 =

0,X3 = 0.9}. A simulation is presented in Figure 5, where xi and X2 are shown. The reset

map of X3 is the logistic map with initial condition X3(ro) = 0.9, and the iteration of this

map will take any value in (0,1) [22].
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Our objective is to study the Zeno hybrid automaton via Zeno state. The hybrid tra

jectory will approach the Zeno state set when time tends to Zeno time. We will show that

under certain conditions the Zeno state set is the equilibrium set of the hybrid automaton.

Before doing that, let us first introduce some notions about reset relations.

Reset relation R{q,q',') is called non-expanding if there exists some 6 € [0,1] such that

for all XGG(q, q'), all x' G R{q, q', x),

non-contracting if there exists some 5 > 1 such that for all x G G{q,q'), all x' G R{q,q\x),

\W\\ > <^I|2^II;

and contracting if there exists some 5 G [0,1) such that for all x,y e G{q, q'), x' Gi?(g,g',x),

y' G R{q,q\y),

Ik'-2/11 <(5||x-2/||.

Note that contracting reset relation is actually a function: if we pick up x = y, then

R{q,Q\x) =R{q,q',y).

Lemma 7 (Rate of Growth/Decay) Consider a hybrid automaton H, there exists some

c > 0 such that for all execution x = (t, g,x) G all t E r,

i) if for all (g,g') GE, R(q,q',-) is non-expanding, then

IW<)||<(||x(r„)|| + l)e^('-'»)-l;
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ii) if for all {q^(f) € E, R{q^q\-) is nan-contracting, then

ll®WII > (Ik(To)ll + - 1.

Proof: There exists some c> 0 such that for ail z, alH G[n, r/],

ll/(9(n),xW)ll <c(|li(i)|| + l)

Since ||3:|p = x^x it follows that

dllxlp d\\x\

SO that

Proceeding further,

that is.

dt

d\\x
dt

-c(W +l)<^<c(||x|| +l).
Applying Bellman-Gronwall lemma [22] twice, we have

(l|x(Ti)|| + 1) < ||i(t)|| + 1 < (||i(ri)|| + 1) e'C-"', t € h,r-].

i) Since by non-expanding assumption, ||x(ri)|| < ||i(r/_i)||, which yields

= 2||x||
dt

= 2\x'̂ x\ < 2||a;||||i;|

<l|x|| = 11/(9, x)||<c(||l|| + l),

< (||i(ri_i)|| -I-

l|x(t)|| + 1 < (||x(to)|| -I-

||x(t)|| < (lli(ro)ll- 1.

The proof of ii) is similar to i). a

In the conventional systems dynamics analysis, Lipschitz continuity assumption on the

vector field excludes the possibility for finite escape time. For the hybrid system, when

the reset relation is non-expanding, we can conclude that hybrid execution has no finite
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escape time. An important implication of this lemma is, for Zeno hybrid automaton, since

t € [tojToo], then x(-) is bounded on [To,roo]. Hence for all qi € Q, all t 6 [ro,roo], there
exists some AT > 0 such that \\f(qi,x{t))\\ < Ki. That is, the vector field of the Zeno hybrid

automaton is bounded along the execution, provided the reset relation is non-expanding.

Now we are ready to give the relationship between Zeno state set and equilibrium set of

the hybrid system.

Proposition 1 Consider a hybrid automaton with Zeno execution x = If it has

finite Zeno state set Zoo = {(Qk^ and (Qoo7-E^oo) a cycle graph, andfor all e e E,

G(e) is closed and R{e, •) is continuous, then Zoo is equilibrium set of the hybrid automaton.

Proof: Take (gi,a;i), there exists a sequence '̂ oo such that q{6i) qi and

x{9i) x\. Since the discrete states are finite, when i large enough, q(di) = qi. Suppose

€ [T„t,r^], by Lipschitz continuity vector field assumption, when z —)• oo,

||3;(rni)' - Xill < ||a;(r„i)' - x(0i)|| 4- ||x(^i) - Xi\\ ^ 0,

and x(T^f} 6 G(qi,qni) for some qni € Qoo- Let q2 be the accumulation point of {gni}So»
then {a;(r^)}go has a subsequence in the guard G{qi,q2}. For the ease of notation, assume

it is just x{Tl^^) itself. Since all the guards are closed and x(t^^) xi as i oo, we have

xi e G(qi,q2). And also,

x{rni+i) = R(quq2,x{rl,i)),

^('̂ nt+l) ^ X2i

hence X2 = R(qi,q2jXi). Applying the same argument again and again and since there

are only finite many discrete states, we can conclude that Zoo is equilibrium of the hybrid

automaton. ^

When x(-) is bounded, Weierstrass theorem says that ^ has at

least one cluster point. Therefore when the Zeno hybrid automaton has the non-expanding

reset map, it has at least one Zeno state. Specifically, we are interested in the case that Zeno

state set is a finite set in the hybrid state space.

Proposition 2 Consider a hybrid automaton with R(q, q', x) = {x} for all [q, q') € E. For

25



euery Zeno execution x — 2;), it holds that Z^o = Qoo x {^} for some Qoo Q Q and

xGX.

Proof: For all {0i}go) suppose 6i G [Tm,T^i], m —>• 00 as i -> 00, we have
p6i

x(Oi) = x(Tni) + / /(g(T„i), x(r)) dr
Jrni

= x{T„i} + {Bi - T„i) (/i(5(T„i),
for some ...,^^6 [r„i,t!^]. Hence for all fe > / > 0,

x(9k) = x(9i) + «, - 9i)
nfc—1

+ W-7i) (/i(9(7i),x(f/)),„.,/„(g(ri),a:(^f)))^
i=nl+l

+ {9k - Tnk) (fl{q(Tnk), .... fn{q{T„k), l(Cfc)))^
which gives that

i=nl

By the fact that ~ '̂ 0 < OO' we know that is a Cauchy sequence. The

space X = R" is complete, so the sequence has a limit x = limi_^oo3:(^i). For any other

sequence {ai}go with Oj G r, Oj —>• Tqo, from the same argument as above, it is clear that

||x(0i) - x(Q!i)|| -> 0 as 2^ 00, thus Xis the unique limit point. Therefore, x is the unique

limit point. h

The merit of the above proposition is that as far as i? is an identity map, the continuous

part of Zeno states set is a singleton. Further, this singleton will be just the origin if all the

reset relation is contracting and has 0 as fixed point.

Proposition 3 Consider a hybrid automaton with R(q, q\ •) contracting and R{q, q', 0) = 0

for all {q, q') GE, then for every Zeno execution x = (t, q, x), it holds that Zoo = Qoo x {0}
for some Qoo C Q.

Proof: For all {0i}£o' ^ '̂ oo, suppose 9i G [T„i, r^], m ->• oo as i -> oo, we have

lk(^i)|| <lk(7-m)|| +II [ f{q{rni),x(T)) dr||
drni

< lk(7-m)||+i<r(TV-T„j).
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Using the fact that ||a:(T„j)|| < 5||a:(Tj^j_i)||, it follows that

lk(^t)|| < i5||a:«j_i)|| + - T„i)

=iSllxlTm-i) +f f{q{Tni-i), x{t)) (ir|| +K(t^ - r„j)
^Tni-1

< i5||a:(T„i_i)|| + K5(T'„f_i - r„i_i) + K{T'̂ i - T„i).

By induction,

and
00 ni

||i(0i)l| <J"'||x(ro)|| +K^ - r„),
m—0

m=0 m=0 m=0 ni=0

Therefore, ~ '̂ m) -> 0 as ni oo, which yields that ||x(0t)|| 0 as

i —>• CO, hence x = 0. •

- r^) =KYi-rL- rm) E <°°-

In the above proposition, 0 is the common fixed point of all the reset function, and it

is also the continuous part of the set of Zeno states. This is not a coincidence, actually we

have the following general result which guarantees that the set of Zeno states will be just

-^oo = Qoo X{ar*} provided all the contracting reset functions share the same fixed point x*.

Proposition 4 Consider a hybrid automaton with R{q,q',-) contracting and there exists

3^* € X such that R(q, q\ x*) = x* for all {q, q') € E. For every Zeno execution x = (t", q^ x),

it holds that Z^o —Qoo x {a;*} for some Qoo Q Q-

The proof is very similar to the last proposition. The only thing worth mentioning is

that we can't say that all the vector field along the hybrid trajectory are bounded directly

from Lemma 7, however, the same proof technique still works.

Lemma 8 For a Zeno hybrid automaton with non-empty Zeno states set, if all the reset

relations are non-expanding, then there exists some N > 0 such that for all i > N, q(Ti) E

Qoo-

Proof: Suppose for all n > 0 there exist some > n such that qinj ^ Qoo- By assump-
tion Q is finite, hence sequence {(^(rjj, 9(Ti„+i))}~^ has a subsequence {(9(Ti„„). 9(Ti„„+i))}^„
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where = q ^ Qoo and g(ri„„+i) = q'- By Lemma 7, for all qi 6 Q, ||/(gi,x(t))|| is

bounded by some K > 0. Hence,

- a:(7i„„)|| < K\\tI^^ - ri„„|| -> 0,

there exists some x € X such that lim„j_^oo^(7i„^) = x. Then by the definition of Zeno

state, {q^x) € Zoo> which gives the contradiction. h

The next result is about the location of Zeno state. For an invariant preserving hybrid

automaton, the continuous trajectory is always wondering inside some I{q). Under certain

conditions, it can be shown that continuous part of the Zeno state lies in the boundary of

I{q), for some q e Qoo-

Proposition 5 Consider an invariant preserving Zeno hybrid automaton with all reset re

lation non-expanding and // G{q,({) H = 0 jor all q,q' € Qoo

and {q, q') G E, then Xi G dl(qi) for all i. Furthermore, if Xi = x for all i, it holds that

xenLdm-

Proof: Note that for all (qi,Xi), there exists a sequence Too such that

-> qi and -> Xi. Suppose G[rk{inhrl^ij, since

Ik(^in) ~ ^ ^W^in ~ 7fc(z„)|| 0,

we have ||a;(Tjfc(j„)) - Xi\\ 0. By assumption the automaton is invariant preserving,

^(Tk{in)) ^ HQi)' And from Lemma 8, when n is large enough, all the discrete transitions
will take place in Qoo- So there exists some GQoo such that rr(rjfc(i„)) G hence

^ ^(QuQi) n/fe). Since G(qi,q'i) r\I{qi)° = 0, we have x(rjb(i„)) Gdl(qi). Notice
that dl{qi) is a closed set, so that x = lim„_^oo 6 dl(qi). The second part is obvious.

From the above result, the following propositions can be obtained.

Proposition 6 Consider an invariant preserving hybrid automaton with identity reset rela
tions. It has no Zeno execution if
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h^x — 0

X = Ax

h^x>(^

X := Lx

Figure 6: Case study I

• G{q, n /(g) C dl(q) for all (q,q') € E,

• nfei9^te) = 0-

Proof: Assume the hybrid automaton has Zeno execution x = (t, Q, ^)) from Proposition 2,

we know that Zoo = Qoo x {^} for some Qoo Q Q and x G X. By virtue of Proposition 5,

we have x GPljli which gives the contradiction. •

7 Examples of Zeno Hybrid Automata

We characterized some theoretical properties of Zeno hybrid automaton in the last section.

It would be interesting to investigate the existence of Zeno execution in some special hybrid

systems. In this section, we study two hybrid automata both with one discrete state and

planar vector field.

Case I

Consider the hybrid automaton in Figure 6 with linear vector field, linear reset map and

I{q) = {rc G : K^x > 0}, where = (1, hi).

If a;(ro) =0, the hybrid automaton will take discrete transitions back and forth forever.

There is no continuous evolution. To exclude this pathological case, we assume that x{to) ^

29



Xi = X2

±2 = F{x)

xi = 0

Xo < 0

X\ := 0

X2 '.= —6x2

Figure 7: Case study II

0. The solution of the continuous system is

x(t) =

At t = the guard = 0 is satisfied, therefore

= 0.

Let At = T- - Ti, and recall that x(Ti+i) = Lx(t-), we have

= 0.

At t = Ti, it also holds true that /i^x(r/) = 0, that is, xi(rl) + hiX2(Tl) = 0. It follows that

I^TeA^uiL ^

Now it is clear that for all i GN, Aj satisfies the same equation, so this hybrid automaton

spends exactly thesame time in its stay in every discrete state, so there is no possibility for
Zeno execution.

This example can be generalized to hybrid automaton with n discrete state each of them

has second order LTI vector field. However, for the general LTI systems in M", we don't
have any result now.

Case II

In Example 1, we have a ball bouncing in the gravity field. Here we consider hybrid automa

ton whose vector field is conservative system with one degree offreedom [3]. Intuitively, it
describes the movement of a ball in some other fields.
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Definition 14 A system is called a conservative system with one degree of freedom if it is

described by the differential equation

Xi = X2,

X2 = F(x),

where F is a differentiable function.

We also have the following terminology in literature:

• Ek = 5X2, the kinetic energy

• Ep = — , the potential energy

• En = Ek Ep, the total energy.

Note that
d
—E„(t) = X2X2 - F(x)xi = 0,

hence total energy En keeps constant along the continuous trajectory. For this hybrid au

tomaton, assume

• I(q) = {x € : Xi > 0},

• G(QjQ) = {x € : Xi = 0,X2 < 0},

• R{q,q,x) = (0,-5x2), <5 > 0.

If the potential energy is in the form

Ep = kxi -hd, k > 0,a > 0,

and x(to) = (0, c)^, then the level curves of the total energy is

=^^2 +
therefore

\xl +E,{xr) =E,{x,(^)).
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Now the continuous dynamics reads

hence

Since

then

ps

h = V2
Jo

^ /o /

^1 —'\/2 (Ep{xi( 2)) £^p(xi)V

+d= feifCy) +d,

From the reset relation we have

X2(Ti} = -Sx2(tI_i) = dX2(Ti_i).

By induction,

Now

X2{Ti) = S'x2{to),

=V2[
Jo

=V2 / ,
Jo

Sid^

Sjkx^i^) - k(-

1. If0<a<2A5>lora>2A0<5<l, then 6^ ^> 1, and To© = diverges,

there is no Zeno execution. Especially, when 5 = 1, the hybrid system has a closed

orbit.

2. If0 < a < 2AO < (J < 1ora > 2A<5 > 1, then 5®"^ < 1, and Too = converges,

so we have a Zeno execution in this case.
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8. Conclusions and Future Work

Motivated by numerous assumptions like "In this paper, we assume that the switchedsystem

is live and nonZeno" [11] and suggestions like "Additional work is needed in determining the

role that Zeno-type controlmight play in hybrid system supervision" [17], we have extended

some classical results to hybrid systems, using tools that capture also the features of Zeno

executions. We have tried to illustrate some of the nature of Zeno by characterizing Zeno

executions and Zeno states for a few quite general classes of hybrid systems.

There are several problems that need further investigations in the area of hybrid systems.

One important issue is to carefully generalize the results in dynamical systems to hybrid

systems. In the thesis, we study some fundamental properties of hybrid systems. The rich

content in dynamical systems is always a resource for further research. The other issue is

Zeno. Physical systems are not Zeno, but due to modeling simplification, models of real

systems can be Zeno. We are interested in developing methods to automatically detect Zeno

hybrid automata and to extend the simulation of the automaton beyond the Zeno time.
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