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Abstract

HYBRID SYSTEM DESIGN AND EMBEDDED CONTROLLER SYNTHESIS

FOR MULTI-MODAL CONTROL

by

Takkuen John Koo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor S. Shankar Sastry, Chair

Based on operational, financial and environmental considerations, large scale systems such

as automated highway systems, air traffic management systems, and unmanned aerial vehi

cle networks have been advocated to have higher levels of automation. By nature the sys

tems are distributed and highly dynamic, the environments around the S3rstems are rapidly

changing, and multi-objective design specifications intensify the complexify of system de-
/

sign. To manage the design complexify, multi-modal control paradigm, in which control

systems are designed by hierarchically nesting of composition of modes of operation such

that each mode of operation is designed to cope with a designated scenario with respect to

a design specification while the organization of modes of operation depends on the ordering

of these specifications, is proposed.

A multi-modal control system can be modeled as a hierarchical nesting of parallel and

serial composition of discrete and continuous components. A model of computation (MOG)

governs the behaviors and interactions of components at each level of the hierarchy. The

control system is a hybrid system which is composed of different MOCs. The formal syn

thesis of embedded controllers is interpreted as the generation of an architecture mapping

fi:om discrete-continuous components to hardware-software components to ensure that the

implementations are correct by construction.



This dissertation is focused on a formal approach of hybrid system design and embedded

controller synthesis for multi-modal control. Throughout the dissertation, a hehcopter based

unmanned aerial vehicle is used as a design example. First, modal controllers based on

feedback linearization and differential flatness for a nonlinear non-minimum phase helicopter

modelare designed. Second, a general framework is developed for the derivation of control

modesswitching which satisfy reachability specifications. Third, embedded systemsynthesis

based on a formal methodology is presented. Various MOCs axe used and translated in

different design stagesaccording to the design properties ofMOCs. Depending on the choice

of architecture, the components specified by the MOCs are then mapped to hardware and

software components.

Professor S. Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

Large scale systems ranging from automated highway systems, air traffic management

systems, unmanned aerial vehicle networks, communication networks and power distribution

networks have been advocated to have higher levels of automation based on operational,

financial and environmental considerations. However, each of these systems by nature is

distributed as a large number of subsystems and the interactions between subsystems are

complicated. Furthermore, each subsystem is highly dynamic and the environments in

which the system resides in are usually rapidly evolving. All these reasons make the design

and analysis for the control of large scale systems a challenging problem.

Multi-objective design requirements always result in contradictory demands on the de

sign and this in turn has adverse effects on the complexity of system design especially for

large scale systems. One natural way to reduce the complexity of system design is by

compositional methods. Compositional methods attempt to solve a complex problem by

decomposing the problem into a sequence of smaller problems of manageable complexity.

Imposing a hierarchical structure on the system architecture has been used for solving the

control problem of large scale systems. In a multi-agent system point of view, each sub

system is modeled as an agent with sensing, computation and communication capabifities.

Behaviors of agents are governed by a control policy derived in an attempt to fulfill system-

wide objectives. A control policy comprises tasks and each agent is assigned a task to

perform.

The criteria for the selection of a control policy depend on the availability of essential



information and the complexity of computing a solution. The first criterion depends on the

amount and types of information collected from sensors and exchanged via communication.

The second criterion comes from the formulation of the problem and the computation

capabilities of the planner and agents. Due to advances in technology, the realization of

different control policies with various levels of centralization is now feasible. As a matter

of fact, a completely decentralized policy could produce inefficient local solution and a

completely centralized policy is usually prohibitively complex or expense to be computed.

A balance needs to be sought between completely centralized and decentralized scheme.

Semi-autonomous agent control has been proposed in [66] for resolving the design

conflict in providing feasible solutions to the problem. In the scheme, given a task, each

agent computes its own nominal strategy to execute the task. On the other hand, conflict

among agents could arise due to the presence of contingent events especially when agents are

operating in a rapidly changing environment. In this case, agents would attempt to derive

strategies with or without coordination to resolve the conflict. This naturally requires that

agents can be operated in different discrete modes of operation for providing the balance

between optimal behaviors and conflict resolution.

To execute the given strategy, each agent chooses its own course based on its dynamical

properties and physical constraints. Nevertheless, in the control design for each agent, a

similar balance has to be made. Due to the dynamical properties and physical constraints,

it is in general difficult to derive a single controller being able to execute a given strategy

while meeting multiple performance objectives such as fast response and good tracking ca

pabilities, and protecting the operation envelope in the presence of unanticipated external

disturbance. However, in many design cases, designing controller satisfying partial require

ments is feasible. This naturally suggests that a realistic approach is to have the controlled

system designed to be able to switch between different modes of operation by utilizing

different controllers in order to resolve the design conflict.

In summary, the controlled system are designed by hierarchically nesting of composition

of modes of operation. Each mode of operation suggests a discrete state of the system. In

terms of formal modehng framework, the multi-modal controlled system can be modeled

as a hierarchically nesting of parallel and serial composition of discrete and continuous

components. Furthermore, a model of computation (MOC) [62] governs the behaviors and

interactions of components at each level of the hierarchy. Hybrid systems in the general



sense of the term could be considered as formalisms used to describe a complex system as

combinations of MOCs where a single one is not powerful enough or expressive enough.

At each level of hierarchy, control derivation is based on a level of abstraction provided by

the governing MOC. This naturally leads to generalize the design problem for the control

of large scale systems as a problem of multi-modal control derivation under the modeling

framework of hybrid system.

An embedded system is generally represented as a set of components which interact with

each other and with the environment which is given and cannot be designed. The notion

of components here is referred to a model for software and hardware that interacts with

a physical environment in real time. Advances in embedded hardware and software have

enabled the rapid realization of sophisticated, high-performance control systems. However,

the design methodologies and design tools for the control of large scale, highly complex

systems to deliverhigh levels ofmissionreliabilityespeciallyin dynamic and rapidly evolving

environment are inadequate. Consequently, today most of the cost in system development

is spent on ad-hoc, prohibitively expensive system integration and validation techniques

that rely almost exclusively on testing more or less complete versions of the entire system.

Hybrid systems refers to the distinguishing fundamental characteristics of embedded

control systems, namely, the tight coupling and interaction of discrete with continuous phe

nomena. Hybridness is a characteristic of embedded control systems because every digital

hardware/software implementation of a control design is ultimately a discrete approxima

tion interacts through sensors and actuators with a continuous physical environment. The

model of computation defines the behavior and interaction of these components. In formal

embedded system design, compactness of description, fidelity to design styles, ability to ver

ify and simulate, synthesize to an appropriate implementation and optimize its behavior are

criteria to follow for the choice of an MOC to describe and manipulate a design. Its aim is to

ensure the requirements and constraints are met at the system level in a formally verifiable

manner in order to reduce extensively expensive down stream design errors. In the modeling

framework of hybrid systems, formal synthesis of embedded controllers can be in general

interpreted as automatic generation of architecture mapping from discrete/continuous com

ponents to hardware/software components to ensure the implementations that are correct

by construction.

This dissertation will be primarily focused on formal approach of hybrid system design
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and embedded controller synthesis for multi-modal control. Special emphasis will be put on

scalability and interoperability to cover the complete design flow from architectme concep

tion, control law derivation, and mode switching synthesis all the way to the generation of

real-time embedded controller code. Helicopter based unmanned aerial vehicle (UAV) will

be used as an example to demonstrate the efiectiveness of the proposed design concepts for

solving multi-modal control problem.

1.1 Research Areas

Advances in technology are revolutionizing the development of advanced control tech

nologies for UAV systems and are enablers for the conduct of missions deemed impossible

in the recent past. In the following, we list a few of significant issues associated with the de

sign problem of multi-agent multi-modal control derivation for UAV systems. Research on

these issues has been actively conducted in and related results has published under Berkeley

Aerial Robot (BEAR) project.

Multi-agent Coordination and Conflict Resolution

UAVs are being demanded to be used more and more in a number of civilian and

military operations such as search and rescue, inspection of power lines, terrain surveying,

and investigationof hazardous waste sites. Successful development and deploymentof UAVs

eliminates the risk of human life involved in any such operation. Since the environments in

which UAVs are operating usually are rapidly evolving, this requires UAVs to be capable of

making autonomous decisions, coordinating their decisions with other vehicles, and being

reactive to possible contingent events. In most of the UAV related missions, the control

problems can be generalized as a pursuit-evasion game whichis the problemof controlflng a

swarmofautonomous agents in the pursuit ofstatic or movingevaders. Different approaches

have been proposed in solving this problem either in deterministic [75, 84] or probabihstic

framework [44] based on complete or partial information about the environment. Agents

can communicate and exchange information via a dynamic mobile network which can be

dynamically reconfigured based on current spatial topology of the agents. Coordination of

the autonomous agents in close proximity to maintain mesh stability has been studied in



Figure 1.1: A group of UAVs perform formation flying. (The animation is generated by
SmartAerobots)

[89] regarding possible information structures and topologicai conflgurations. Due to failure

in establishing communication among agents, the trajectories of different agents may come

into conflict. Conflict resolution using non-cooperative methods bcised on game theory in

which each agent models the actions of other agents as disturbances and chooses its actions

to be safe against the worst possible disturbance are proposed by [68]. In [75, 84, 44], the

solution generated by the approaches are purely discrete. Whereas, in [89], the approach

provides purely continuous solution. In [68], a hybrid solution which contains continuous

trajectories and discrete strategies is derived based on the Hamilton-Jacobi equations.

Single-agent Multi-modal Control

To accomplish a mission, an UAV has to be able to perform extremely especially in a

rapidly evolving environment in order to execute a given navigation task: controlling its

state from one point to another one in a specified way. On the other hand, the agent must

protect its states from being operated outside the operation envelope. In order to cope with

different and possibly conflicting tasks, an agent should be designed to be able to switch

modes of operation based on state information and use different controllers whose design

are based on given design specifications for operating within the modes. This multi-modal

control system can be modeled as a hybrid system [131: a discrete transition system with

closed loop dynamics embedded in each discrete locations. Stability of a subclass of the



multi-modal control systems which considers linear time-invariant (LTI) plants with LTI

controllers in the framework of supervisory control has been studied by [36, 70, 5, 11]

based on Lyapunov stability theory, and in [11] linear matrix inequality (LMI) technique

is used. The ordering of design specification provides a guideline for the organization of

modes of operation. While design specifications of controllers are in total ordering, the

problem of deriving switchingconditions has been studied by [45] for classes of dynamical

systems subject to pointwise-in-time state and control constraints. In [68], the problem

of systematically synthesizing hybrid controllers based on optimal control which satisfy

multiple design specifications is considered. In both cases, the synthesis procedures involve

the computation of reachable sets from a set of initial states. Hence, exact solutions to the

synthesis problem can be only obtained for limited classes of dynamical systems in which the

reachability problem is decidable. For general dynamical systems, numerical approximation

has to be used for reachable set computation.

Vehicle Dynamics and Control

Helicopter [85] is versatile in maneuverabihty and this makes helicopter based UAVs

indispensable for many applications where human intervention, especially in restricted areas,

is considered difficult or dangerous. Helicopter control [74,85] requires the ability to produce

moments and forces on the vehicle for two purposes: first, to produce equilibrium and

thereby hold the helicopter in a desired trim state; and second, to produce accelerations

and thereby change the helicopter velocity, position and orientation. Like airplane control,

helicopter control is accomplished primarily by producing moments about all three aircraft

axes: roll, pitch, and yaw. The helicopter has in addition direct control over the vertical

force on the aircraft, corresponding to its vertical take-off" and landing (VTOL) capability.

The engine power is controlled a rotor speed governor to automatically manage the power.

In [49], a helicopter model has been shown to be nonlinear and non-minimum phase.

Linearization by state feedback [39] has been successfully applied in control design for

highly maneuverable aircraft such as VTOL aircraft [76] and conventional take-off and

landing (CTOL) aircraft [98]. The idea of using approximate input-output linearization on

helicopter control is motivated by the control design of planar VTOL in [30] and VTOL in

[94]. In [30], approximate input-output linearization is applied by neglecting the coupling

between rolhng moment and lateral acceleration. State transformation technique is used on



constructing an output tracking control in [94]. In [93], helicopter control design based on

/x-synthesis and soft computing techniques are studied. Differential flatness has been applied

to approximate models of aircraft [72, 102] for trajectory generation. Since differentially

flat systems are systems in which all states and inputs can be expressed as fimctions of

the outputs and their derivatives [102, 28], trajectory generation can be then computed by

considering algebraic functions of the outputs and their derivatives as constraints. Thus,

the complexity of computation can be reduced and the efiiciency for computation can be

enhanced.

1.2 Dissertation Outline

The material of this dissertation is arranged in six chapters. In Chapter 2, a framework

for modeling multi-agent multi-modal system by means of hybrid systems is presented.

Some background on hybrid systems; modeling, verification, simulation, synthesis is also

given, along with references where a more thorough presentation can be found.

Chapter 3 describes the dynamicsand controldesignfor helicopterbased UAV. Dynami

cal modeland properties of a helicoptermodel is presented. Nonlinear control designs based

on feedback linearization and differential flatness are illustrated. Performance of different

control design are also provided.

The goal of Chapter 4 is to synthesiscontrol modeswitchingsequence along with switch

ing conditions for navigation purposeby applyingalgorithms developed for hybrid systems.

The controllers designed in previous chapter defines basic control modes. The controlled

system can be modeled as a hybrid automaton: a finite state machine with closed loop

dynamics embedded in each discrete locations.

In Chapter 5, embedded system synthesize based on formal methodology is presented.

The system behavior at the top level is specified in synchronous language then translated

to various MOCs in different design stages depending of the design properties of MOCs.

Depending on the choice of architecture, the components specified by the MOC are then

mapped to hardware and software components. The design framework allows to shorten

prototyping time and to prove the correctness of the properties of the system.

Finally, Chapter 6 contains some concluding remarks and directions of future work.



Chapter 2

System Model and Architecture

In this chapter, a framework for modeling multi-agent multi-modal system by means

of hybrid systems is presented. Some background material of hybrid system from model

ing, verification, simulation, synthesis is also given. An architecture for implementing the

proposed multi-agent multi-modal control system is presented.

The multi-disciplinary research field of hybrid systems has emerged over the last decade

and lies at the interface of computer science, control engineering and applied mathematics.

In [33], hybrid systems are defined as systems built from atomic discrete components and

continuous components by parallel and serial composition, arbitrarily nested. Each system

components consists of an interface, which determines the possible ways of using the com

ponent, and a set of executions, which define define the possible behaviors of the component

in real time.

The hybrid phenomena captured by such mathematical models is manifested in a great

diversity of complex engineering applications. The high-profile and safety-critical nature

of such apphcations has fostered a large and growing body of work on formal methods for

hybrid systems: mathematical logics, computational models and methods, and automated

reasoning tools supporting the formal specification and verification of performance require

ments for hybrid systems, and the design and synthesis of control programs for hybrid

systems that are provably correct with respect to formal specifications.



2.1 Models of Computation

In component based model, a system is composed of components. In the framework

of concurrent model of computation [62], the components in such a model are entities

capable of performing some computation in parallel. Furthermore, the mechanism by which

components communicate is defined by the model of computation. A component based

design provides a clean way to integrate different models by hierarchically nesting of parallel

and serial composition of heterogeneous components. This hierarchically composition allows

one to manage the complexity of a design by information hiding and the reuse of components.

There are a rich variety of models of computation that deal with concurrency and time

in different ways. Here, we outline some of the most useful MOCs for embedded systems

presented in [61], such as continuous-time(CT), synchronous data flow (SDF), finite-state

machine(FSM), synchronous/reactive (SR), discrete-event (DE). CT models represented

by differential equations are excellent for modeling analog circuits and many physical sys

tems. SDF supports modeling of multi-rate difference equations and useful in digital signal

processing. In FSM, execution is a strictly ordered sequence of state transitions, not con

current. FSM models are excellent for control logic in embedded systems, particularly

safety-critical systems since FSM models are amenable to in-depth formal analysis. In the

synchronous/reactive (SR) model of computation, data values are aligned with globalclock

ticks. Thus, they axe discrete signals, as with difference equations, but unlike difference

equations, a signal need not have a value at every clock tick. Because of the tight syn

chronization, SR models are excellent for appUcations with concurrent and complex control

logic such as safety-critical real-time applications. Examples of languages that use the SR

model of computation include Esterel [10], Signal [8], Lustre [16], and Argos [71]. In DE

models of computation, an event consists of a value and time stamp. This model has been

realized in a large number of simulation environments, simulation languages, and hardware

description languages, including VHDL and Verilog. There is no global clock tide in DE,

but there is a globally consistent notion of time.

Depending on the level of abstraction and domain-specificity of design practice, different

MOCs can be chosen and mixed for design. An essential difference between concurrent mod

els of computation is their modeling of time. One powerful modeling of time, as proposed in

[62], is by taking time to be merely a constraint imposed by causaUty. This interpretation
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results in time that is partially ordered and hence provides a mathematical framework for

formally analyzing and comparing models of computation.

Mixing heterogeneous models for system design has been receiving more and more at

tention from both academic and industrial world. In circuit design communities, the com

position of CT and DE is called the mixed-signal model; in control and computer science

communities, the composition of CT with other MOCs which don't have signals continu

ously evolving along the time line is called the hybrid system.

2.2 Hybrid Automata

The hybrid automaton model developed by [1, 79, 12, 66, 97, 57] is one of the most pop-

ulaj in the hybrid systems literature. Such systems are essentially a finite state machine, or

finite automaton, with a continuous dynamical system embedded in each discrete location.

The continuous state in a discrete location evolves continuously according to differential

equations, as long as the location's invariant remain true; then, when a transition guard

becomes true, the discrete state proceeds to another discrete location, and reset some of the

continuous state to new values. Hybrid automata without inputs or outputs are called au

tonomous, or closed, hybrid automata. Thus, non-autonomous hybrid automata are called

open hybrid automata. However, the term open hybrid automata is not uniformly used for

non-autonomous hybrid automata throughout the literature.

In the following, we present a definition of hybrid automata [67] which captures all of

the essential features of hybrid automata will be discussed in this dissertation.

Definition 2.2.1 (Hybrid Automaton) A hybrid automaton H is a collection H =
(Q, X, V,y, Init^ /, /i, J, jE?, G, J?, ip), where

Q is a finite collection of discrete state variables;

X is a finite collection of continuous state variables;

V is a finite collection of continuous input variables;

Y is a finite collection of continuous output variables;

Init C Q X X is a set of initial states;

f : Q X X xV—¥TX is an input dependent smooth vector field;

h:Q XX xV ^2^ is an input dependent output map;
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• I: Q 2^^^ assigns each q E Q an input dependent invariant set;

• E C Q X Q is a collection of discrete transitions;

• G : E 2^^^ assigns to each e = {q,q') ^ E a guard;

• R : E XX X V —>2^ assigns to each e = {q,q') E E, x £ X and v £ V a reset
relation; and

• (p -.Q XX 2^ assigns to each state a set of admissible inputs.

{x,v) € (3(91,92)
X ;€ R{qi,q2,x,v

{x,v) e C?(93, 9i)
X :€ R(q3,qi,x,v)

Figure 2.1: Definition of Hybrid Automaton

A hybrid automaton involves continuous evolution as well as instantaneous transitions. To

distinguish the time at which discrete transitions take place we introduce the notion of a

hybrid time trajectory [67].

Definition 2.2.2 (Hybrid Time Trajectory) A hybrid time trajectory r = ®
finite or infinite sequence of intervals of the real line, such that

• for allO <i < N, li = [Ti,T[] with ri < t- —n+i;

• if N < oo, either 1^ = [r^v, with tn <r'j^ < oo, or In = [tn, t'j^) with tn
oo.
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The interpretation is that rj are the times at which discrete transitions take place; notice

that multiple transitions may take place at the same time (if ti = t[ = Ti+i). Hybrid

time trajectories can extend to infinity either if r is an infinite sequence, or if it is a finite

sequence ending with an interval of the form [r^v, oo).

Since there are many models of hybrid automata proposed and each one has its own

special properties which axe useful in simulation, verification or synthesis, we will introduce

them and highlight their properties according to research areas.

Simulation

Numerical simulation of continuous behavior and of discrete behavior is well understood.

However, when a hybrid system is simulated, the MOCs used to describe its behavior dictate

the way the components of the system interact and execute. Since MOCs differ mostly for

the way their components interact, the most diflficult problem to solve when simulating

them is to resolve the interacting issue. Several numerical packages have recently been

developed for simulating hybrid systems, for example Ptolemyll [61], Dymola [25], OmSim

[73], SHIFT [20], and a Simulink toolbox [38]. For a survey on these packages in regard to

their performance and supports, please refer to [77]. However, in order to have efficient and

to accurate simulations, some fundamental hybrid phenomena have to be first resolved by

the use of theoretical methods. The numerical packages have been applied to the simualtion

of AHS [26, 19, 21], ATMS [47], and a helicopter based UAV [65].

Fundamental issues such as existence and uniqueness of executions of hybrid automata

are still the topic of intense research activity [101]. To derive local existence and unique

ness conditions for hybrid systems, one needs to consider issues such as blocking and non-

determinism associated with the discrete dynamics, in addition to the usual conditions

associated with the existence and uniqueness of trajectories for continuous dynamical sys

tems. Moreover, to ensiure the execution can be extended over arbitrarily long time horizons,

one also needs to show that an infinite number of discrete transitions cannot take place in

a finite amount of time. Executions that fail to satisfy this property are referred to as

Zeno executions, and hybrid automata accepting such executions are referred to as Zeno

hybrid automata [41]. The Zeno phenomenon is fundamentally a hybrid phenomenon and

is an important consideration when modeling, analyzing, controlling, and simulating hybrid
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systems.

However, none of these packages make special provisions for the case of fast switching;

as the time intervals between discrete transitions get smaller, either simulation slows down

or its accuracy decreases. In some cases, the simulation may even give erroneous results

or error messages. Regularization techniques have been proposed in [41] to extend the

Zeno executions of Zeno hybrid automata to times beyond the Zeno time at when the Zeno

phenomena occur. Different types of regularization may not be unique and may depend on

the specific assumptions made about the actual model from which the hybrid automata is

derived.

Verification

Hybrid systems can be used as verification model for systems which exhibits both con

tinuous and discrete behaviors. The safety criticality of many applications requires the use

of formal methods to guarantee that an unsafe region of the state space is not reachable

from a set of initial conditions. A reachability problem is to answer the following question:

given a set ofinitial condition, will a target set bereached any state ofa hybrid automaton.

One standard approach to reachability called model checking attempts to compute the

set of reachable states by completely exploring the whole state space, by starting from the

set of initial states and repeatedly adding new reachable states, to check whether the system

satisfies the desired specification. The computation can be automated and is guaranteed

to converge for some hybrid automata for which the reachability problem is decidable. In

general, however, this approach, may not be automated and may not terminate.

Another standard approach to verifying certain properties of a hybrid system is to find

an equivalent transition system called a bisimulation with a finite number of states. Bisim-

ulations are simply quotient systems which preserve the closed properties of the original

systems and can be used to reduce the complexity ofverifying properties of very laxge scale

systems. If a hybridautomaton has a finite state bisimulation, then checking propertiesfor

the hybrid automata can be equivalently performed on the finite, discrete, quotient graph.

Since the quotient graph is finite, the algorithm will terminate. However, a finite state

bisimulation exists only for certain classes of hybrid automata [34, 60], again, for which the
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reachability problem is decidable.

Even though the computation of reaxihable spaces for finite state machines is well devel

oped, computation of the reachable spaces of a differential equation is extremely difficult.

This is mainly due to the infinite cardinality of continuous state spaces. In particular,

there are decidability results for timed automata [2] and rectangular automata [35]. For

timed automata, the differential equations are in the form jc = 1, and KRONOS [23] is

developed as one of the model checking tools. Rectangular automata are automata where

in each discrete location the continuous dynamics are described by differential inclusions of

the form Ax < 6, and HYTECH [32] is used for model checking for the hybrid automata.

Linear hybrid automata [3] are hybrid automata that can be analyzed symbolically in the

theory of the reals with addition. Rectangular automata are linear hybrid automata. An

important class of linear differential equations in the form x = Ax Bu with a decidable

reachability problem is discovered and presented in [57]. This is achieved by posing the

reachability computation as a quantifier elimination problem [96] in the decidable theory of

the reals based on o-minimal theories [100]. The corresponding hybrid automata are called

linear hybrid systems [82]. Verification usingoptimsd of control for hybrid automaton with

continuous dynamics described by nonlinear differential equations is shown in [66]. The ap

proach attempts to determine the worst possible execution of the automaton with respect

to the given property and verify that the property is satisfied only for this one.

Synthesis

A hybrid automaton is called a controlled hybrid automaton whose underlying contin

uous time dynamics are modeled as inhomogeneous differential equations whose inputs are

controls that can be designed. The purpose of controller synthesis is to. construct not only

continuous control laws but alsodiscrete strategies in order to satisfy the given system spec

ification. Conditions of the existence of solutions to a class of controlled hybrid automata

is presented in [64].

Current emphasis on controller synthesis has been placed on solving problems with

safety specifications, which are described by giving a set of good states within which the

hybrid automaton should evolve. In particular, game theoretic approach is proposed by [66]

for controllersynthesis for continuous time nonlinear system in the presence of disturbance,
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and the approach has been successfully applied to automated highway systems[69] and air

traffic management systems[68]. The set of all initial states guaranteeing that the evolution

of the system remains in the good set is the maximal controlled invariant set contained in

the set of good hybrid states. This set is called maximal safe set and the set of all control

strategies which make this set invariant is the maximal controller. Systematic procedures

for solving problems with safety specifications using game theoretic approach have been

proposed in [97] by computing optimal solutions of Hamilton-Jacobi-Bellman equation for

continuous time nonlinear systems and in [105] by using linear programming and quantifier

elimination for discrete time linear systems.

Optimal control approaches have been used in [12, 66, 31] to formulate and solve an

optimal control problem for a class of hybrid systems, while providing existence of optimal

and near-optimal control polices. The solutions are computed via convex optimization

problem in terms of finite-dimensional linear programming.

The reachability operator, an algorithm that can determine the evolution of sets of

trajectories, is key to the verificationand synthesisof controllers for hybrid systems. There

is extensive research in computingexactly, or approximately reachable sets [59, 56, 68, 17].

2.3 System Architecture

In designing an architecture enabling the control of multi-agent multi-modal control

system, the concept of hierarchy is proposed for reducing complexity in design. In semi-

autonomous agent control, depending on the mission and environment, there are several

scenarios being considered for decision making. Each scenario comprise several levels ar

ranged in a hierarchy. At any instant, the decisions conform to a particular scenario. The

scenario refers to the current estimate of the system environment. Given that scenario,

decisions at each level are specified according to the syntactic rules, and interpreted at each

level. Behavior at each level is semantically compiled into nominal behavior at a lower

level. However, in execution, changes in the environment may cause large deviations of

actual from nominal behavior. This may trigger an alarm. The alarm may lead to a change

in scenario and an intervention from the high level. Small changes in the environment may

be handled by local decisions that don't require scenaxio change. It is only the large changes
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Figure 2.2: Each agent is equipped with a Flight Management System(FMS) which is
reactive to mission planner and environments

for which local decisions is ineffective that trigger scenario change. This structure has been

proved useful in works ranging from automated highways [104, 29] to air traffic management

systems [99].

For UAV networks, we have proposed to adopt the above decision structure in con

structing the architecture. For control purpose, a hierarchical structure is imposed on the

system architecture by introducing a mission planner on top of the agents for generating a

control policy for agents in an attempt to fulfill system-wide objectives. A control policy

comprises tasks and each agent is assigned a task to perform. Each agent is equipped with a

Flight Management System (FMS) which is responsible for task execution and has sensing,

computation and communication capabilities. Mission planner and agents may exchange

information via a communication network depending on availability. Each FMS consists of

4 layers, namely strategic planner, tactical planner, and trajectory planners, and regulation

layer. They are arranged in a hierarchical manner as shown in Figure 2.2. Notice that

dynamics of agents are modeled as parts of the environment since in general they are given

and are not supposed to be designed at this design stage.

Based on a given task by mission planner, strategic planner computes its own nominal

strategy as a coarse, self-optimal trajectory by using a highly abstracted model of vehicle
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and static environment model. A task could be specified for navigation in searching scenario

or coordination with other vehicles in close proximity.

The tactical planner refines the nominal strategy from strategic planner so as to cope

with contingent events such as conflict resolution and collision avoidance. In order to

reduce complexity, abstracted model of vehicles and estimated environment model are used

in computation.

Given a strategy from tactical planner, the trajectory planner based on dynamical prop

erties and physical constraints of the vehicle to determine its own course. The nominal

course is determined by the ordering of controller design specifications related to perfor

mance. However, the course could be further refined in order to cope with situation due to

the presence of unanticipated external disturbance.

The regulation layer selects a specified controller for executing the given course from

trajectory planner. To simplify future discussion, we assume that the actuators and sensors

related to regulation purpose are all embedded in this layer. Regulation layer directly

interacts with the environment.

Envelope
Protection

Conflict 3 I Collision
ResolutionV Avoidance

Task

Execution

Figure 2.3: In the directed graph, each node representsa mode of operation and each arrow
connects a higher priority to a lower one.

The ordering of design specifications provides a guideline for the designing an architec

ture which allows hierarchical nesting of composition of modes of operation. Mode switching

among the contingent events is driven by the changes in environment. Envelope protection

has the highest priority since this mode is used to keep the vehicle operating safely in

the presence of unanticipated external disturbance. This suggests that envelope protection

should be handled in trajectory planner. Whereas, collision avoidance and conflict resolu-
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tion axe the modes of operation related to the contingent situations at the agent level while

assuming that the vehicle are operating normally. Hence, both modes have lower priority

than envelope protection and should be handled in a layer upper, tactical layer. However,

since the ordering of events is incomparable, there is no way to assign these two modes with

different priorities. If no contingency happens, an agent execute the given task. Whereas, in

the presence of events, an agent would switch modes of operation to handle the events and

then resume task execution via task replaning. The ordering of events is shown in Figure

2.3 This design principle confronts with the motto of flight pilot which is "aviate, navigate,

communicate" to handle different levels of contingent events.

In designing a system, there are many other aspects needed to be considered in adopting

an implementation for mapping from the architecture and a detailed discussion will be

provided in Chapter 5
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Chapter 3

Nonlinear Control Design

In this chapter, output tracking control of a heUcopter based unmanned aerial vehicle

model is investigated. First, based on Newton-Euler equations, a dynamical model is de

rived by considering the helicopter as a rigid body upon which a set of forces and moments

act. Second, we show that the model cannot be converted into a controllable linear sys

tem via exact state space linearization. In particular, for certain output functions, exact

input-output linearization by state feedback results in unstable zero dynamics. Third, by

neglecting weak couplings between forces and moments on the model, we apply input-output

linearization to the approximate model for deriving an approximate control with positions

and heading as the outputs . Given a bounded output trajectory, the tracking error of

the original model by applying the approximate control is proved to be bounded. Finally,

we prove by construction that the approximate model with the same outputs is differen

tially fiat and hence the state and input can be expressed as functions of the outputs and

their derivatives. This property is very useful for real-time trajectory generation. Based

on geometric control theory, we decompose the dynamics into two subsystems: inner and

outer systems. A nonlinear controller is proposed based on differential fiatness of the outer

system.
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3.1 Introduction

Helicopter [85] is versatile in maneuverability and this makes helicopter based unmanned

aerial vehicles (UAVs) indispensable for both civilian and military applications where hu

man intervention, especially in restricted areas, is considered difficult or dangerous. Given

a multi-agent, multi-objective UAV mission, control system design for a single UAV is a

very complicated and challenging task. One natural way to reduce the complexity of system

design is by compositional methods. Compositional methods attempt to solve a complex

problem by decomposing the problem into a sequence of smaller problems of manageable

complexity. In sophisticated flight management systems [46, 54], a single UAV flies from

origin to destination while satisfying a large number of aerodynamic, scheduling, and envi

ronmental constraints by switching among a finite set of control modes^ where each control

mode essentially corresponds to a diflferent output tracking controller. For example, for

regulating at a fix location, position and heading control mode is used. In the case of sensor

failure such as in the absence of position information from the global positioning system

(GPS), altitude and attitude control mode is more desired to be used for stabilizing the

vehicle since the on-board inertial navigation system (INS) would still be able to provide

altitude and attitude information for control. The resulting hierarchical control strategy

which involves the interaction of continuous and discrete dynamics can be modeled as a hy

brid system [4] for system analysis and controller synthesis[68, 48]. In this chapter, output

tracking control of a helicopter model is investigated. The helicopter model is based on a

UAV [53] being developed by the Berkeley Aerial Robot (BEAR) team at UC Berkeley.

Helicopter control [74, 85] requires the ability to produce moments and forces on the

vehicle for two purposes: first, to produce equilibrium and thereby hold the hehcopter in a

desired trim state; and second, to produce accelerations and thereby change the helicopter's

velocity, position and orientation. Like airplane control, helicopter control is accomplished

primarily by producing moments about all three aircraft axes: roll, pitch, and yaw. The

helicopter has in addition direct control over the vertical force on the aircraft, corresponding

to its vertical take-oflf and landing (VTOL) capability. The engine power is controlled by

a rotor speed governor to automatically manage the power. Helicopter flight dynamics are

inherently unstable, particularly in hover.

Linearization by state feedback [39] has been successfully applied in control design for
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highly maneuverable aircraft such as VTOL aircraft [76] and conventional take-off and land

ing aircraft [98]. In this chapter, we design an output tracking controller for a helicopter

model based on input-output linearization. Our control design is constructed by first ne

glecting the coupling effect, then showing that the approximate control results in bounded

tracking on the exact model. The idea of using approximate input-output linearization in

helicopter control is motivated by the control design of planar VTOL in [30] and VTOL in

[94]. In [30], approximate input-output linearization is appfied by neglecting the coupling

between rolling moment and lateral acceleration. A state transformation technique is used

on constructing an output tracking control in [94]. In [93, 37], helicopter control design

based on /i-synthesis and fuzzy logic are studied.

Differentially flat systems are systems in which all states and inputs can be expressed as

functions of the outputs and their derivatives [102, 28]. They have the useful property that

there is a one-to-one mapping between trajectories in output space and trajectories in state

and input space. Instead of incorporating the dynamical equations as constraints, trajectory

generationfor differentially flat system can be computed by considering algebraic functions

of the outputs and their derivatives as constraints. Thus, the complexity of computation

can be reduced and the efficiency for computation can be enhanced. Differential flatness

has been applied to approximate models of aircraft [72, 102] for trajectory generation.

Trajectory plays a significant role in determining the performance of a closed-loop system

especially under saturation. For details related to trajectory generation under the effect of

control saturation, please refer to [42, 81].

In this chapter, we first derive a heficopter dynamical model whichis derived by consid

ering the helicopter as a rigid body upon which a set of forces and moments act. In section

3, we prove that the model cannot be converted into a controllable linear system via exact

state space linearization. In particular, for certain output functions, exact input-output

linearization results in unstable zero dynamics. In section 4, by neglecting weak couplings

between forces and moments on the model, we apply input-output finearization to the ap

proximate model for deriving an approximate control with positions and heading as the

outputs . Given a bounded output trajectory, the tracking error of the original model by

applying the approximate control is proved to be bounded. Then, in section 5, we prove by

construction that the approximate model with the same outputs is differentially flat and

hence the state and input can be expressed as functions of the outputs and their derivatives.
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Based on geometric control theory, we decompose the dynamics into two subsystems: an

inner and outer system. A nonhnear controller is proposed based on differential flatness

of the outer system. Finally, in section 6, simulation results using both output tracking

controllers based on exact and approximate input-output linearization are presented for

comparison. We conclude our work in section 7.

3.2 Helicopter Model

A model of a helicopter can be divided into four different subsystems, which axe actuator

dynamics, rotary wing dynamics, force and moment generation processes, and rigid body

dynamics. The connections between subsystems, and state and control variables are defined

in Figure 3.1. In this chapter, due to the fact that the complete dynamics of a helicopter,

taking into account flexibility of the rotors and fuselage, the dynamics of the engine and

actuators is quite complex and somewhat unmanageable for the purpose of control, we con

sider a helicopter model as a rigid body incorporating with a force and moment generation

process. For illustration, we use model data obtained from a model helicopter on which we

will apply the proposed control law in real flight. However, the result is also applicable to

other helicopters with similar force and moment generation processes.

Actuator

Dynamics

Rotary

Wing
Dynamics

Force &.

Moment

Generation

Process

Rigid Body

Dynamics

Figure 3.1: Helicopter dynamics

By regarding the helicopter as a rigid body as in [85], the equations of motion of a model

helicopter can be derived by applying Newton-Euler equation.

3.2.1 Rigid Body Dynamics

Consider the helicopter depicted in Figure 3.2. The equations of motion for a model

helicopter can be written with respect to the body coordinate frame, which is attached



towards the center of mass of the model helicopter. The x axis is pointed to the body head

and y axis goes to the right of the body. As shown in [78], the equations of motion for

a rigid body subject to body force G and torque G applied at the center of

mass and specified with respect to the body coordinate frame is given by the Newton-Euler

equation in body coordinate, which can be written as

r m/ 01 r 1 [/'iX mv^

0 X wM \ \ \

where G is the body velocity vector, u)^ G is the body angular velocity vector,

m G R specifies the mass, I G R^^^ is an identity matrix, and X G is an inertial

matrix.

P,R

Figure 3.2: Coordinate frames for specifying rigid motions and forces acting on a helicopter.

The position and velocity of the helicopter center of gravity are given by P G R^ and

t;P = p G R^, respectively, expressed to the spatial frame in North-East-Down orientation.

Let R G 50(3) be the rotation matrix of the body axes relative to the spatial axes and

G R^ be the body angular velocity vector. Given e = [ei 62 63]^ G R^, we define

e Gso(3), the space of skew-symmetric matrices in R^^^, by

0 -63 62

e = es 0 -61

-62 ei 0
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Differentiating the orthogonality constraint = 7, = R^R as shown in [78]. We

parameterize R by ZYX Euler angles with <f), 0 and -0 about the x, z axes respectively.

,zip^ye^x<t)
R = e""^e" e

c9cip s^sOdj} —c<f>silj C(f>s6cip + sOsip

cdsip s(f>s9sil} + c(f)cif} C(l>s6sip —s(f)cip

—sO S(l)c9 c<j>c9

where x = [1 0 0]^, y = [0 1 0]^, 2: = [0 0 1]^ and c0, s9 are abbreviations for cos0 and

sin^ respectively, and similarly for the other terms. By differentiating R with respect to

time, we have the state equations of the Euler angles, © = [00 0]^, which are

© =

1 S0t0 C0t0

0 c(f> —s<l> u)"

0 S(f>/c9 c<f)lc9

where t9 is an abbreviation for tan 9. In the ZYX Euler angle parameterization of rotation

matrix, there are singulaxitiesat 0 = ±7r/2. For the following discussion, we assume that the

trajectory of helicopter does not pass through the singularities. If the trajectory is required

to pass through the singularities, wecan simplyswitch to another chart parameterizing the

rotation matrix. By using the fact that = Rv^, we can rewrite the motion equations of

a rigid body as

•"vP

XXu^)

" p '

vP

©

.

3.2.2 Force and Moment Generation Processes

(3.2)

(3.3)

The helicopter system can be considered as a lumped model consisting of a main rotor,

a tail rotor, a horizontal stabilizer, a vertical stabiUzer and a fuselage, which are denoted

with subscripts M, T, ff, V, jP, respectively.

In the following, we express the external wrench, a force/moment pair, exerted on the

helicopter. The force experienced by the helicopter is the resultant force of the thrust gener

ated by the main and tail rotors, damping forces from the horizontal and vertical stabilizer.
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aerodynamic force due to fuselage, and gravitational force. The torque is composed of the

torques generated by the main rotor, tail rotor and fuselage, and moment generated by the

forces as defined in Figure 3.3.

Horfzion

Reference
Heotfi'ng

Side View

Top View

Figure 3.3: The free-body diagram of a helicopter in flight. (Figure courtesy of D. H. Shim)

Rear View

Assume that the helicopter is operated at low speeds and hence the drag contributed

from the horizontal, vertical stabilizers, and the fuselage can be ignored. Therefore, the

terms with subscripts H, V and F are discarded. As shown in [63], the external wrench can

be written as:

' Xm ' 0

II

Ym + Yt + R' 0

Zm mg

r'' =

Rm

Mm -1- Mt

Nm

+

Ym^m + Zmvm + Yrhr

-XMhM + ZmIm

-YmIm - YtIt
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The forces and torques generated by the main rotor aie controlled by Tm, clu and 6is, in

which Tm is the main rotor thrust, ais and bu are the longitudinal and lateral tilts of the

tip path plane of the main rotor with respect to the shaft, respectively. The tail rotor is

considered as a source of pure lateral force Yp and anti-torque Qp, which are controlled by

Tp, tail rotor thrust. The forces and torques can be expressed as

Xm = -Tm sin ais (3.4)

Ym — 2\fsin6is

Zm — —Tm cos ai5 cos bis (3-6}

Yp = -Tp (3.7)

Rm - - QMsinais (3.8)
^ li/f

Mm ^ ais+ Qmsinbis (3.9)

Nm - -Qm cosais cosbis (3.10)

Mp = —Qp (3.11)

The moments generated by the main and tail rotor can be calculated by using the constants,

{iM^yMihMihp,lp]y as defined in Figure 3.3. In above, we approximate the rotor torque

equations by Qi ~ -I- for i = M,T. The details of generation of the rotor

torques, Qm.Qt, one can obtain by applying the equations as shown in [63]. The system

parameters are given in Appendix A.l.

3.2.3 System equations

We assume that all the states can be measured accurately. In order to present the

system in an input-aifine form, we assume that the inputs of the about nonlinear system

are the derivatives of Tm, Tp, au and 615. Define P = \px Py Pz]^, = [v? uj and

cu^ = [wj Ljy The system equations can be rewritten as

4

x= f{x) -\-^giWi (3.12)
i=l
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vP " 0 0 "0 " 0

*
:

:

0 0 0 0

X-^{t^ - , 9\ = I , 92 = 0 J 93 = 0 , 94 = 0

0 0 I 0 0

0 0 I 0

0 0 0 0 I

with X= \px Py Pz Vx Vy Vz (l> 9 'ij; Uy LJ^ Tm Tt ais € R" {= X) with n = 16 and
w = lwi^W2^W3,W4] 6 R"^ with m = 4 is defined as the state vector and auxiliary input

vector of the system, respectively. It can be easily seen that /(a:), 9i are smooth vector

fields.

As defined in [85], a helicopter is said to be in trim if all the forces, aerodynamic and

gravitational, and aerodynamic moments acting on the helicopterabout the center ofgravity

are in balance. Hence, by solving the nonlinear equations of body wrench, which are —0

and = 0, one can solve for the system trim condition. The trim condition is irrespective

of the values of ip. In the following, we define xq in trim condition, in which px = 0,

Py = 0? Pz = O5 = 0, Vy = 0, u? = 0, = 0, Tm = 47.97, Tt = 2.42, au = —0.018,
bis —0.0061, (j) = 0.044, 9 = 0.018, and hence w'' = 0 and tof = 0 for z= I,..., 4.

3.3 Exact Linecirization by State Feedback

In this section, we show that the model cannot be converted into a controllable linear

system via exact state space linearization. In addition, for certain output functions, exact

input-output linearization results in unstable zero dynamics.

Consider the square system {i.e. system with as many inputs as outputs) multi-input

multi-output (MIMO) nonlinear control system described by

E
X = f(x) + gw

y = h{x)
(3.13)
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with

9 = [91 92 93 54] and yj = hj{x) for j = 1,...,m

where hi (a;),••• , hm(x) are smooth functions on R" and m = 4. Define strict relative degree

jj at xo € X with respect to output yj as an integer such that

Lg^V'jhj{x) =0 Va; € X, 0< / < —2, V« € [1,m]

Collecting these calculation, we have

\ —

•

+ : *

W

. .

_ _ Lg,Ly-''hm

1

1

6

:= b(x) + A{x)w (3.14)

where A{x) is called the decoupling matrix. If .4(a;) is invertible at every point in X, then

the static-statefeedback given byly = (.A(a;))~^[—6(a;)-f-u] will result in a closed-loop system

that is decoupled firom input v to output y. This decoupled and input-output linearized

system is given by 1

v
i

1
..

6
1

(3.15)

If the matrix i4(a;) is singular, we cannot use a static state feedback to linearized the

nonlinear system, and we have to look for a dynamic state feedback to achieve linearization

by state feedback.

Definition 3.3.1 (Vector Relative Degree [39].) The system (3.13) is said to have vector

relative degree {71,.. •, 7m} at xq£X if

Lg.L^jhj{x) =0 Va; GX, 0 < / < 7j —2, Vi G[1,

Lg,L'/'%{xo)yiO

for j —1,... ,m and the matrix ^(a;o) is nonsingular.

m\
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Define the distributions,

Go = span{pi,...,p^}

G\ — span{pi,...,pjTi,...,

Gi = span{ad^5j : 0 < < i,1< j < 4}

for i = 1,...,n —1. The conditions under which there exist outputs hi^...,hm such that

the MIMO system has vector relative degree and furthermore is such that 71H f-7m =

are given as the following lemma:

Lemma 3.3.2 (Full State MIMO Linearization [39].) Suppose the matrix ^(xo) has rank

m. Then, there exist m functions Xi{x), A2(a:),..., Am(a^) such that the system

X = f{x) + g{x)w,

y = X{x),

has vector relative degree {71,... ,7m}

7i + ... + 7m = n

iff

1. For each 0 < i < n —1 the distribution Gi has constant dimension in a neighborhood

X of Xq.

2. The distribution G„_i has dimension n.

3. For each 0 < i < n —2 the distribution Gi is involutive.

By applying the above lemma, we have the following result regarding fuU state MIMO

linearization of the system equations (3.12).
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Theorem 3.3.3 Consider the system equations (3.12). There do not exist any m func

tions Ai(rc), A2(a:),..., Am(aj) defined on X, such that the system has vector relative degree

{71,•••, 7m} at xo with nfk = n

Proof: It can be computed that the distributions have constant dimensions near xq, which are

{4,8,12,14,16, ••• , 16}. The distribution G15 has dimension 16. However, the distribution

G2 and G3 fail to be involutive. By applying Lemma 3.3.2, we complete the proof.

Thus, the above theorem suggests that it is impossible to find a set of outputs such that the

model can be converted into a controllable linear system via exact state space linearization.

However, if the MIMO system has relative degree 71 H 1- 7m < "a, then we can write

a normal form [87] for the equations. In particular, consider the following set of outputs

fe, Py, Pz, (f>, 0, i)}, (3.16)

which can be used to form various control mode and obtained from sensors such as GPS

and INS. For the squaresystem, there are Of = 15 possible input-output pairs. We define

• j^4 ^ {1? •••>6} as the indices of the output functions selected from the combina

tions. To performexact input-output linearization, we pick the jth output yj of the system

equation and differentiate it with respect to time. For all j = 1,..., 6, one can check that

one has to differentiate every of the outputs 3 times before encountering one of the inputs,

i.e.,
4

yf =Llhj +Y,L9,Ljh,Wi.
1=1

Given fci, •• • , ^4, the input-output system can be written as

r (3) 1
yk. B^hki W\

—

• "I" •^kik2kzk4 (^)

B^hk4 IW4

where the decoupling matrix is defined by

Lg^L'jhki
^kik2k3k4{^)

^91 '̂f^k4

^94 '̂f^ki

L9^L^hk4

(3.17)

(3.18)

(3.19)
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Then, we have the following proposition to show that the decoupling matrix for each

possible combination is nonsingular for all x € X.

Proposition 3.3.4 Given system equations (3.12) and any m output functions of (3.16),

the decoupling matrix Akik2k3k4{^) of the input-output system has full rank for all x 6 X

for all possible combinations of ki,-- - ,k4 £ {1,...,6}.

Proof: See Appendix A.2.

Since Ak^k2k3k4{'̂ ) has full rank and Lg^hj = 0 and Lg^Lfhj = 0 for all x € X, by the

definition, the system has vector relative degree {3,3,3,3} for all x £ X. It follows that

Akxk2k3k4('̂ ) is nonsingular and exists for all x GX. Thus, the state feedback
control law

W\

(x)'̂ k\k2k3k4'

—L^fk-ki +

lAjhk^ "I" V4W4

yields the lineax closed loop system

1

%•
I

V
i

1

•
•

1

V
4

(3.20)

(3.21)

This feedback law makes the input-output map linear, but has the unfortunate side-effect

of making some dynamics unobservable. In order to guarantee the internal stability of the

system, it is not sufficient to look at input-output stability, we must also show that all

internal (unobservable) modes of the system are stable as well.

If a system has relative degree 7 = 71 + 1- 7p <n, then we can write a normal form

for the equations (3.13) by choosing as coordinates

^}=/ii(x), (^ = Lfhi(x), ...; hi(x),

= h2(x), Q = Lfh2(x), ..., = Lj~^h2{x),

^f = V(x), ^f = Lfhm(x), ..., ^l^=Lyhm{x)

(3.22)
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As shown in [87], these qualify as a partial set of coordinates. Furthermore, one can

complete the basis by choosing n —7 more functions r)i{x),Tj2{x),... ^rjn-'yix). Define

^ = Ki,--and 77 = [77i,772,...,r7n-7r. In these ^,77 co
ordinates the system equations (3.13) have the following normal form

_ c2

ei = & « =f2 _ xr2

a _ t2 _ £2
^71—1 S7i? S72—1 Si725

£lS71

tm tm

Wm-l - V7m

S72
= K^(^,»7)) +^(^(^,77))^

cm

- ^7m J

where $ : a; i->- (^, 77) is the diffeomorphism mapping firom x into the normal form coordi

nates. Note that p G q 6

In order to analyze the internal stability of the system, zero dynamics of the system

should be examined. The zero dynamics of a nonlineai* system are the internal dynamics

of the system subject to the constraint that the outputs and all derivatives of the outputs

are set to zero for all time, i.e. ^ = 0. This can be done by using the control law with

= ... = 174 = 0 and initializing the system with the trim condition (^Oj»7o) = ^~^(xo).

Hence, the zero dynamics can be written as

77 = 9(0,77) +p(0,77)A($(0,77))-^fe($(0,77)).

For illustration, two modes of operation will be explained.

In position and heading control mode, {pxiPy^Pz^i^} are chosen as outputs, one

can easily verify that the zero dynamics may be parameterized by 77 = and

the linearized zero dynamics at equihbrium point has eigenvalues ±16.45282 and ±12.11232.

The linearization is inconclusive.

We define a nonsingular matrix T which transforms the state transition matrix of the

Unearized zero dynamics into block diagonal form. By applying 77* = T~^r), the nonUnear

dynamics are locally decoupled. From the phase portrait as shown in Figure 3.4, one can

(3.23)
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Figure 3.4; Phase portrait of zero dynamics in position and heading control mode

conclude that the nonlinear system is not asymptotically stable, since the equilibrium point

is surrounded by a family of periodic orbits. The zero dynamics is non-minimum phase.

In attitude and altitude control mode, {0,0, ^tre chosen as outputs. It can

be easily verified that the zero dynamics becomes

Pa: = 0.1757

Py = —0.4335,

where the states Px^Py and their first derivatives become unobservable. The zero dynamics

is unstable and hence the system is non-minimum phase. In this mode, the helicopter is

constantly drifting in the X —Y plane while attitude and altitude are held constantly.
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3.4 Approximate Linearization by State Feedback

In this section, approximate linearization technique is applied to the helicopter system.

First, the system equations (3.3) is rewritten as

P = —R
m

Tjv/sinoig ' 0 '

TMs'mbis -Tt + 0

'-L COS COS . 9 .

R = Rjlj

u) = XXu^).

(3.24)

(3.25)

(3.26)

The reason of the failure of exact linearization is due to the existence of couplings between

rolling (pitching) moments and lateral (longitudinal) acceleration. Those couplings are

introduced due to the presence of ais, bis stnd Tp- As shown before, if position and heading

control mode is chosen the internal dynamics axe not regulated and exhibit an unstable

behavior.

Here, we propose to approximately linearize the system by neglecting the coupling terms.

This can be done by assuming that ais^bis^Tp/TM axe small. Therefore, equation (3.24)

can be modeled as follows

Pm = -R
m

0 " 0 "

0 + 0

. 9 .

(3.27)

while keeping equations (3.25) and (3.26) the same. In what follows, we demonstrate the

idea of approximate linearization in position and heading mode.

We differentiate outputs Pm = [pxm Pym Pzm]^ on (3.27) and on (3.25) until at least

one input appears in each output equation, and we get the final equations in the form:

r (3) 1
Pxm *

(3)
Pym

(3)
Pzm

=

*

*

+

*

*000

* 0 0 0

*000

* * * *

Wi

W2

Wz

W4

Since the decoupling matrix has rank 2, decoupling of the system cannot be achieved by

static state feedback. Here, we propose to use dynamic decoupling[18] . Following the
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algorithm, we have to add an integrator to twi, since column one in the decoupling matrix

has more than one nonzero elements. Hence, the first three rows in the decoupling matrix

are all zeros, and we have to difierentiate the first three outputs again. Then, we can see

that the decoupling matrix has the same form as in previous iteration. By following the

algorithm, it requires to add another integrator to wi, and continue differentiating the first

three outputs. And, the iteration ends, since the decoupling matrix finally has full rank.

The extended system is in the following form:

r (5) 1
Pxm Wl

(5)
Pym

(5)
Pirn

=

6^
+

W2

W3

V;(3)

1

1

W4

Ae

of which the vector relative degree is (5,5,5,3}.

We can rewrite the true system in normal form (^, rf) of modeled system. Define =

Pxm, 4i = Pym, = Pzm, ij = f, ^iF< and we have

in which

«

a
i

a
u

it
it
it

= ff+pW

= it

= it
= 6^ + A^u

= it
= it
= b'I' + A'I'u

(3.28)

p{x) = —RTm
m

—sin Ola

sinbu-Tr/TM • (3-29)

COS Ola COS 5ia 1

In above, the linearized model system does not contain any unobservable (zero) dynam

ics and hence is minimum phase, since the sum of Kronecker indices {71,72,73,74} and

7j = 18 is equal to the order of the extended system rig = 16+ 2. As defined in [30],



36

the system is said to be slightly non-minimum phase, since the true system is non-minimum

phase but the approximate system is minimum phase.

We can then apply the tracking control law designed for the model system to the true

system, which is

where for y = 0,..., 7i and i = 1,..., 4 and the polynomials

u = —Ag

-1

.(J)

(71+1) 1 (71) 1-aier <+161

«7.+ie4

57.+1 _|_ 57t _| ^ (3.31)

chosen Hurwitz. The following theorem provides a bound for the performance of this control

when applied to the true system.

Theorem 3.4.1 Given that the desired trajectory and its first ji —l derivatives are bounded,

the states of the system (3.28) are bounded and the tracking errors satisfy

= \^i-ydi\<k€

= \^i-yd4\<ke

where e = max(|ais|, |6is|, \TtITm\) and k is bounded.

Proof. For the i^^ component of p, it can be easily shown that

llftll <^|ri
m

— sincis

sin6is - TtITm

cos flis cos bis ~ 1

< e Vl4\TM/m\
K

(3.32)

where r, is the i^^ row ofR and the following facts are used: | sina:| < |a:|, cos a; < |1—a:| for

X € (—7r/2,7r/2]. For illustration of bounded tracking, we consider only in the following



proof, and the result applies to ^ well. Define an error vector as

e^ =

11
s

.
Vdl.

Then the closed loop system can be expressed as

pi

pi

-«o -a

>ii

—OCa

1

rH 0̂

4eK

44
-

0

40

.4
.

0

c
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(3.33)

We first show that is bounded. To this end, consider as Lyapunov function for the above

error system V = where P > 0 is chosen so that AjP 4- PAi = —I. This can be

done since ei = ylie^ is stable. Taking the derivative of V along the trajectory, we find

V = -|e^|2 + 2e''PC,1^;

< -|e^r+ €2lei|d(P)i^

< -\e^\'̂ + e\e^\K

Thus, y < 0 whenever |e^| > eK which implies (e^l is bounded and, hence, is bounded.

Furthermore, we can conclude that the tracking error will be 0(e). •

In above, we have demonstrated the idea of applying approximate linearization in po

sition and heading mode. However, one can apply the same principle to show that there

exists another set of outputs, such as {px^Py^Pz^P}, called position and side slip angle

mode, approximately linearize the system. In particular, if the controller tries to keep slide

slip angle, j0, to zero, the system is said to be operated in coordinated flight mode. Since

the desired side-ward movement is zero, and the desired heading is aligned with the tangent

of the trajectory projected on X-Y plane, i.e. ij) = atan2(uy,'u?). Thus, to minimize the

drag force introduced by the fuselage, coordinated flight mode is the most desirable mode

of operation.
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3.5 Trajectory Generation based on Differential Flatness

In the previous section, we have shown the idea of using approximate linearization

to derive a tracking controller. However, one can use the same framework to design a

trajectory generator. In this section, we prove by construction that the approximate model

with the same outputs is differentially flat and hence the state and input can be expressed

as functions of the outputs and their derivatives. This property is very useful for real-time

trajectory generation in hierarchical control system as described in [46].

A system is said to be differentially flat, if there exist output functions, called flat

outputs, such that all states and inputs can be expressed in terms of the flat outputs and

their derivatives.

Deflnition 3.5.1 (Differentially Flat System[28, 102]) Given a system x = f{x,u) has

states X gMP', and inputs u G , the system is said to be differentially flat if there exist

outputs y of the form y —y{x,u,u,... such that, x = x(y,y,... u =

u(y,y,...,y^^^). •

There doesn't exist any systematic characterization of flat systems and the search for

flat outputs is usually difficult. However, as stated in [28], dynamically feedback linearizable

systems [39] by a special class of dynamic feedbacks, called endogenous, are differentially

flat.

As shown above, the helicopter model is approximately linearized. Hence, it suggests

that one could generate an approximate state-input trajectory which is close to the true

state-input trajectory. Furthermore, it can also be used for the generation of output trajec

tory while taking state and input constraints into consideration. In following, we present a

constructive proof for showing that the model system with positions and heading as outputs

is differentially flat.

Theorem 3.5.2 Consider the system equations(3.27)(3.25)(3.26) with output chosen to be

{PxmiPym^Pzm '̂̂ }' resulting system is differentially flat on sets where <f) ^ -k/Kfl and
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e ^ ±7r/2.

Proof: To show that all the states can be derived by the outputs and their derivatives, first

we rewrite (3.27) as

Pxm 0 0

Pym 0 + 0

Pzm -Tmlm 9

and the equation becomes

Pxm 0

Pym 0

Pzm 9 -TMlm

By taking norm on both sides, can be obtained as

Pm — iPxrn)^ iPym)^ "t" {pzm ~ 9)^

/o'\

and hence Tm ^Tm ~ (3.35), we can simplify as

,-i^

Pxm sin 0 COS 0

—m

Pym Tm
—sin^

pzm 9 cos 0 cos (j)

Thus, one can easily verify that

and hence

_ .„_1 / -Vxm sin V + PymCOS if) ^
^ TM/m ^

msin^ Pzm 9 ^
—COS (pTMlm cos0TA//m

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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By applying to the derivatives of the Eulev angles, we obtain vector u. Then, one can

solve for ais, bis It from the Euler equations. Hence, taking the derivatives, we have

W2 = Tt, wz = ais, W4 = 615. Hence, we have set up that

(P,v'', i/), 0,f, w',Tm, Tt, au,bu,wi,wi,wi,W2, wz, m)

n- (P, P, P, P''), ,-0, ^W)

is a diffeomorphism on sets where ^ ^ ±7r/2 and 9 ^ showing that the model system

is indeed differentially flat. •

Similarly, one can show that in coordinated flight mode, {pxm,PymiPzm,^}\p=o are flat

outputs of the model system.

Proposition 3.5.3 Consider the system equations(3.27)(3.25)(3.26) with output chosen to

{PxmtPymiPzm', The resulting system is differentially flat onsets where (f) ^ ±7r/2

and 9 ^ ±7r/2.

Proof: By using the fact that ij) = atan2(nj, v?) when = 0, and applying Theorem 3.5.2.

It is straightforward to show that

(P, v^,R,u}^, Tm, Tt, ais,his,wi,wi,wi,W2, wz, W4)

^ (P,P, P, P(3), PW,

is a diffeomorphism. Hence the result.

Conditions for switching between different flat outputs for trajectory generation has

been studied in [51].

3.6 Nonlinear Control Design Based on Outer Flatness

A system x = f(x,t,u) is called differentially flat if there exist output functions, called

flat outputs, such that all states and inputs can be expressed in terms of the flat outputs
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and their derivatives [27]. Differential flatness has been applied to approximate models of

aircraft [72] and helicopter [49] for trajectory generation. The full helicopter dynamics axe

not flat in general, however it can be shown that the dynamics can be partitioned into an

"inner system" (e.^.the attitude dynamics) and an "outer system" (e.^.the position dynam

ics) where the outer system is flat. This scheme has been successfully used for generating

a two stage control synthesis for many systems which are not completely flat [103]. Such a

scheme which utilizes the flatness of the outer system is roughly illustrated in Figure 3.5.

In the figure, Pq is the outer system which is flat, and P/ is the inner system which is not

necessarily flat. Given a desired output trajectory, say 2/^( ), the mapping F in Figure 3.5
utilizes the flatness property of the outer system to generate an desired output trajectory

2/^(-) for the inner system. The control synthesis for the overall system then reduces to the
design ofan inner system controller, C, which drives the inner system output y^{t) y^Jt)

(exponentially) as t > oo. As the inner system output converges, one can show that the

outer system output converges to the desired one, y^(t) y^(t) as i —oo. That is, the
overall system asymptotically tracks the desired trajectory.

Figure 3.5: Partitioned inner and outer systems.

It has been shown in [49] that the helicopter dynamics are approximately differentially

flat with the position and heading {P, ip} as the flat outputs. The approximation is based

on the assumption that the coupling terms 015,615,Tt are small and can be neglected in

the model. So if 015,615, Tj- « 0, the outer system dynamics (3.24) can be rewritten as:

p =
m

0 " 0 '

0 + 0

. 9 .

+ h (3.40)
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—Tm sin ais

TMsinbis -Tt

-TM{cosaisCosbis —1)

where the inputs are = y^ = (0,TAf), and the outputs axe The inner

system dynamics are described by (3.25), (3.26) and in addition the rotary wing dynamics

which can be approximated by the following equations (for details see [85]):

Tm = cmiOm + Tt = ctiOt + nis = -B, bu = A

for near hovering operation, where 6m,0t are the main and tail rotor collective pitch, and

P, A are the longitudinal and lateral cyclic pitch. One must notice that this approximation

introduces a small non-vanishing modeling error h which depends on 0, Ta/, ai5,5is, Ty. We

will soon show its effect on the stability of the closed-loop system.

The control design for the overall system is be based on an assumption that there exists

a controller C such that = 0 is an exponentially stable equilibrium point for the inner

error system:

= /(e^e^,^)|eO=o, /(0,0,i) = 0

where = y^ —y^ and . There have been various design methodologies

proposed for the controller of the inner system, e.g. [63]. The details of the design of inner

controller deployed in here, please refer to [50]. In this section, we are only interested in

the performance of the overall system assuming such a controller C is already available. As

shown in [49], for the approximated outer system (3.27), there exists a smooth mapping

from the outer system output to the inner system output:

^

(p.V') (0,Tm)

which is defined by the equations:

h = —fl(e)
m

Tm = my/{px)'̂ + {py)'̂ + (pz- gV
^ = sin-i j
a _ f Pxcosip+pysinij} Pr-1

^ —Tm cos<f>/m ' —Tm 'COS(l>/m^
ijj = "ip

42
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Figure 3.6: Block diagram of control scheme.
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where (f>^0 ±7r/2. Suppose that the desired output trajectory of the outer system is

= {pd,PdiPd^tf^d)- To obtain the desired trajectory of the inner system, we define a

pseudo-input vector:

Vp=Pd + Kyijp - Pd) + Kpip - Pd) (3.41)

where jRTp, Ky e are control parameters. With the above pseudo-input, the desired

output of the inner system is given by:

(0d,TMd) = (3.42)

A more detailed schematic of the controller for this system is illustrated in Figure 3.6.

Clearly, if the inner system exactly tracks the desired trajectory (0d,TMd), that is, = y^
in Figme 3.5, then the behavior of the overall closed-loop system is specified by the outer

system only, which, due to chosen the control law (3.41), is approximately a linear system

with poles assigned by the parameters Ky^Kp.

Now if we summarize all conditions so far and rewrite the dynamics of the overall

closed-loop system in terms of the tracking errors and e^ of the inner and outer systems

respectively, they have the form:

i/ —= /(e^e^,^)

= Ae^ + g{e^ ^t) + h{e^ ^e^,t)
(3.43)



where

= —R{e)
m

0

0

-Tm
m

0

0

-^Md
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In the above equations, /(e^, e^, t) is in general a function ofboth and since the input

of the inner system is a function of e^.

The function h(e^,e^,£) from (3.27) is a small non-vanishing approximation error, and

g{e^, t) vanishes when the inner system exactly tracks the desired trajectory, i.e.,p(0, t) = 0.
Since the helicopter model is smooth and many of the parameters are physically bounded,

g(e^^t) is in fact (globally) bounded as ||5(e^,<)|| < iiHe^H for some constant Li > 0^ and

/(e^e^,t) isLipschitz, i.e.||/(e{,e?,i) - /(e^,ep,t)|| < L2{\\e{ - e |̂| + ||e? - e§\\).

Stability Analysis

We now analyze the performance of the overall closed-loop system. As we have argued

before, the function / in (3.43) is in general a function of both and However, in

practice, the inner system is usually designed to have a much faster convergence rate than

the outer system. To simplify the analysis, for now we assume that the inputs TMdi') and

0d( ) of the inner system are approximately constant, and thus / is only a function of

(the more general case will be presented afterwards).

Recall that given an general system x = f{x,t), by the Lyapunov theorem and its

converse [87], the system is exponentially stable if and only if there exists a Lyapunov

function V{x, t) satisfying:

aiWxf < V(x,t) < a2\\xf

+ < -aalNI

dV

dx
< a;4||a;||

for some positive constants a\^a2-,OL^^o^A > 0.

However, we may write:

/(e^,e^,t) = /(e^, 0, t) +d(e^, e^, t)
^Such a L can be estimated from the system equation (3.24).

(3.44)

(3.45)

(3.46)
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where c?(e^,e^,t) = /(e^,e^,t) —/(e^,0,t). The nominal system = /(e^,0,t) is expo

nentially stable as designed. We can apply this theorem to both the nominal outer system

= Ae^ and the nominal inner system = /(e^,0,t) and denote the corresponding

Lyapunov functions as and and the Lyapunov constants as 01,012,0:3,0:4 > 0 and

>0 respectively.

Then for the overall system, we have the result:

Theorem 3.6.1 Consider the following perturbed system:

e' = /(e^,e^,t) = /(e^,0,t) + d(e^, e^,t)
(3.47)

= Ae^ + g{e^ ,t)

where g(e^,t) is a perturbation term that satisfies ||p(e^,t)|| < for some Li > 0. If,

for /(e^,e^,it), there exists L2 > 0 such that l|/(ei,ef,<) - f(^2^^2^^)\\ ^ -^2(1161 —̂ iW ~

||ep—e^ll), then the overall system is exponentially stable if the product of the two Lipschitz

constants satisfies the inequality:

(3.48)
04 Pa

Proof: Since /(e',e^,<) is Lipschitz, we have ||d(e^,e^,t)|| < L2||e |̂|. We consider the
candidate Lyapunov function V = V^ ptV^ for the overall system. Then we have:

V = V' + ,iV° < -Me'f + Ai2l|e'||||e°||-+^La^Ll\\e°\\\\e•\\

= -(l|e'llJ|e''ll)Q(l|e'lU|e°||)^

where the matrix Q G is:

-^{PaL2 + paALi)
-^{PaL2 +fJ-ocALi) paz

Q is positive definite if and only if det(Q) > 0. That is, there exists // > 0 such that:

-o?^L\p^ -H {APzaz - 2pAL2aALi)p - P4L2 > 0.
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This is true if and only if the discriminant of the quadratic function of fj. on the left hand

side is positive which yields: •L2 < ^ •

This theorem states a very interesting fact about the system (3.47): heuristically, 03 and

are proportional to the convergence rates of the outer and inner systems respectively,^

hence the stabihty of the perturbed systems requires only that the product of the Lipschitz

constants of the perturbation terms is less than the product of the two convergence rates,

regardless of the rate of each individual system.

The stability of a similar model of the overall closed-loop system has been studied

before in [103], however, no explicit conditions are provided under which a exists such

that the overall system is stable. Here, Theorem 3.6.1 give more detailed and useful results

in characterizing the properties of the closed-loop system.

Although we have established the conditions for the system (3.47) to be exponentially

stable, estimates of its Lyapunov constants indeed depend on Li,L2 and all the Lyapunov

constants of the inner and outer systems. These constants can be optimized by maximizing

the smaller eigenvalue of Q with respect to p. We here omit the detail and carry on

the analysis by assuming that the system (3.47) is exponentially stable and its Lyapunov

constants are denoted by 71,72,73,74 > 0. We now want to estimate the effect of the non-

vanishing error term h on the performance of the closed-loop system (3.43). In general, we

can no longer expect asymptotic stability when a non-vanishing perturbation is introduced.

However, according to [43], we can still have good estimates of a bound on the tracking

error and the rate of convergence outside this bound.

Proposition 3.6.2 Assume that the system (3.47) has the Lyapunov constants {7i}|==i.

Then, for the closed-loop system (3.43), if \\h{e^,e^,t)\\ < S < then the tracking

error of the overall system is bounded by b = outside this bound, the error

exponentially decreases with a rate larger than X= ^.

The control parameters Ky and Kp can be adjusted so as to minimize the error bound b.

For the helicopter model, the error term h(e^,e^,t) is usually extremely small, as is 5. We

more precise estimates of the convergences rates are given by ^ and
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can also choose the control parameters such that the inner and outer systems have very fast

rates of convergence, hence a large 73. Consequently, the error bound b is very small, and

usually barely noticeable in simulations and experiments.

The nonlinear controller based on outer flatness has been successfully applied in landing

an UAV based on computer vision and formation flight of UAV cluster with mesh stability

as shown in [90, 91] and [89] respectively.

3.7 Simulation Results

We apply our approximate method and compare with the exact method on the true

system. The initial conditions are = 0.1^, py = 0.05^, px = 0-25, = uj = vf = 0,

tp = 0.01, g = 9.8 and other states are in trim conditions. For both control designs, the

dominant conjugate poles are -1.4± 1.4283i and other poles axe placed at —5. To illustrate

the idea, we set yd and all their derivatives equal to zero, and the controllers are required

to hover the helicopter back to origin while turning the heading to zero.

The result of using exact linearization is shown in Figure 3.7, and that of using ap

proximate linearization is shown in Figure 3.8. Both controllers are successful in stabilizing

the outputs. However, in the exact method the internal dynamics, roll and pitch angles,

are excited and continue to oscillate. Furthermore, it exhibits large control effort. While

applying the approximate control law, the internal dynamics are stabilized. The control

inputs are kept relatively small throughout the simulation, and it validates the assumption

made on oi^, 615 and Tt-

We present the simulation result of the propsed nonlinear controller based on outer

flatness. The inner controller has poles placed at —5 for controlling the main rotor thrust

and at —10 and —7 ± 7.1414i for controlling the attitude dynamics; the outer controller

has both poles placed at —2. With the same initial conditions and desired trajectory, the

controller is applied to the exact model and the simulation result is shown in Figure 3.9.

The nonlinear controller stabilizes the both inner and outer system and results in bouned

errors. These phenomena have been predicted in Theorem 3.6.1 and Proposition 3.6.2.



Exact Linearization based on {p , p , p , v)
X y z

1.5

o

0- 0.5

-0.5
8 10

8 10

< -0.5

-0.05

8 10

Figure 3.7: Exact input-output linearization applied on outputs { px, py, pz,



o
Q.

Approximate Linearization based on {p , p , p , aj;}
X y 2

8 10

i2 40

49

-0.05

Figure 3.8: Approximate input-output linearization applied on outputs {px, Py> Pzi ''P }



Outer Flatness Controller with {p , p , p , ij/} as outputs
X y z

1.5

c '
.9

"(3
o

0. 0.5

-0.5
8 10

0.5

a> -0.5

o
_o

^ -1

-1.5

-2

< -0.5

0.15

0.1

0.05

P 0

-0.05

-0.1

4 6

Time

50

10

10

Figure 3.9: Nonlinear control design based on outer flatness with outputs { px, Py, Pz, fp]
Notice that the dashed lines represent the desired trajectories of 0,Ta/.
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3.8 Chapter Summary

In this chapter, the output tracking control design of a helicopter based unmanned

aerial vehicle model based on approximate input-output linearization is illustrated. We

show that the model cannot be converted into a controllable linear system via exact state

space linearization. By neglecting the couplings between rolling/pitching moments and

lateral/longitudinal forces, we show that the dynamically extended approximated system

with positions and heading as outputs is linearizable without zero dynamics. We have

proved that bounded tracking is achievable by applying the approximate control with a given

bounded output trajectory. Next, we derive a diffeomorphism showing that the approximate

system with the same outputs is differentially flat. By that, state and input can be expressed

as functions of the outputs and their derivatives. Hence, output trajectory generation can

take state and input constraints into consideration. Application of path generation for

helicopter based on differential flatness can be found in [24]. Based on geometric control

theory, we decompose the dynamics into two subsystems: inner and outer systems. A

nonlinear controller is proposed based on differential flatness of the outer system. This

control design only assumes that the outer system is differentially flat and the inner system

is exponentially stable. Also, the assumptions made on the outer system can be applied

to many different helicopter models. Hence, it is possible to design a nonlinear controller

based on the propsed scheme and implement it for controlling actual helicopters.

Simulation results show that the approximate control law produces desired performance

without excite the internal states into oscillation. The performance of the control design

based on outer flatness is simulated. The nonlinear controller stabilizes both the inner and

outer systems and it results in bouned errors.

To reduce the bounded error, one can simply design robust controllers to augment

the presented controllers for compensating the effects due to the existence of non-vanishing

terms. For distubance satisfying matching condition, sliding mode controller can be applied.

For mismatched disturbance, controllers can be derived using the Backstepping method [55]

and Dynamic Surface Control [95]. However, linear techniques such as //-synthesis [80] can

also be used since the systems are linearized by state feedback.

Computer Aided Control System Design(CACSD) has enabled the analysis and design

of control system. The proofs of Theorem 3.3.4 and 3.3.3 are performed symbolically. The



description of the system (3.24) and controller derivation using Lie derivatives are computed

symbolically.

In future, we will extend our control design to include the fuselage drag force, rotary wing

dynamics and actuator dynamics. Robustness issue will be addressed to accommodate the

presence of external disturbance and uncertainty of the dynamical model. The final tracking

controller will be implemented and tested on a UAV called Ursa Minor as shown in Figure

3.10, on which we have mounted embedded controller, GPS, INS and wireless Ethernet.

Figme 3.10: An unmanned aerial vehicle of Berkeley Aerobot fleet: Ursa Minor.
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Chapter 4

Control Mode Switching Synthesis

In many control applications, a specific set of output tracking controllers of satisfactory

performance have already been designed and must be used. When such a collection of

control modes are available, an important problem is to be able to accomphsh a variety of

high level tasks by appropriately switching between the low-level control modes. In this

chapter, we define the concept of control mode, and propose an algorithm for determining

the sequence of control modes that will satisfy reachability tasks.

4.1 Introduction

Large scale systems like automated highway systems, air traffic management systems,

UAV networks are multi-agent, multi-objective systems that operate in many modes of

operation. This results in systems of very high complexity which may dramatically Umit

the appUcabihty of current analysis and design methods.

One natural way to reduce the complexity of system design is by compositional methods.

Compositional methods attempt to solve a complex problem by decomposing the problem

into a sequence of smaller problems of manageable complexity. For example, in sophisti

cated flight management systems [54], modern aircraft fly firom origin to destination while

satisfying a large number of aerodynamic, scheduling, and air traffic constraints by switch-
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ing among a finite set of flight modes, where each flight mode essentially corresponds to a

different output tracking controller.

More generally, given a continuous control system, a control mode is defined as the

operation of the system under a controller that is guaranteed to track a certain class of

output trajectories. Difierent outputs of interest correspond to different control modes.

Given a set of control modes, the mode switching problem attempts to find a switching

sequence of the control modes as well as switching conditions in order to satisfy various

tasks. In this chapter, we focus on reachability tasks.

Problem 4.1.1 Given a control system, a set of control modes for the system, determine

whether there exists a sequence of modes that will steer the system from an initial control

mode to a desired final control mode. If such a sequence exists, then determine the switching

conditions.

Clearly, in this setup, many more interesting questions can be asked. For example one

can ask what axe the optimal switching conditions, where optimality can mean minimum

time, or minimum number of switchings. Furthermore, one can ask whether a set of modes

is sufficient for performing a reachability, or more general, task. In this paper, we do not

consider these more difficult questions. We focus on Problem 4.1.1, while setting up the

framework for considering these more general questions in the future.

4.2 Problem Formulation

In this section, the definition of control modes is given and a planner helicopter controller

design is used as an example to illustrate the ideas of control mode. Finally, the problem

of mode switching is posed.
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4.2.1 Control Modes

Throughout this chapter, we consider a nonlinear system modeled by differential equa

tions of the form

x{t) = f{x(t)) + g{x(t))u{t), x{to) =xo, t> to (4.1)

where x{t) G M", u(t) G R^. The system is assumed to be as smooth as needed. We now

define a concept of control mode.

Definition 4.2.1 (Control Modes) A control mode, labeled by qi, is the operation of the

nonlinear system (4-i) under a closed-loopfeedback controller described by

y*(t) = h'{x(t)) r'
(4.2)

u{t) = k^{x{t),r^)

where zG{1,..., N], y^{t) eW^,r^ e M"", h^ :W k^ :W x ->

The constant trajectory is the desired output trajectory, and y^(t) is the output vector

which shall track Hence, in each mode the closed-loop dynamics is parameterized by

the desired output trajectory, r\ Clearly, more general definition of mode can be easily

defined. For example, one can define a mode as the operation of the system under an open

loop control, or one can consider more general classes of trajectories, or may require the

input to satisfy certain input constraints. Such generalizations will be considered in future

research.

In this chapter we are interested in switching between controllers, rather than the design

of output tracking controllers. We therefore make the following assumption.

Assumption 1 For each control mode qi, i G , iV}, we assume that a controller (4-2)

has been designed to achieve asymptotic output tracking, while the state satisfies a set of

state constraints x{t) G C K", when the initial condition of the system (4-1) start in the

setXlQX^ CW.
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The above assumption is justified given the maturity of output tracking controllers for

large classes of linear and nonlinear systems [39, 40, 22). Of course, much remains to

be discovered for the performance of these controllers in the presence of state constrains.

For pointwise-in-time input and/or state hard constraints in nonlinear control systems, a

reference governor [7] is proposed to augment the system to fulfill the constraints as wellas

stability and tracking requirements.

Because of incompatible constraints, one cannot simply switch from one mode to an

other. A natural question is then whether this task can be achieved by a finite sequence of

modes.

In general, controller derivation follows a typical design pattern. First, an objective

of control design which is defined by the output, desired output, purpose and constraints

is given. Then, a controller is derived and implemented based on a specific control design

methodology. Depending on implementation, the performance of the closed-loop sys

tem is specified by initial set, flow^, stability type, and desired output range. A complete

control mode specifications comprises objective, implementation and performance. On

the other hand, a control mode is defined by output, desired output, and purpose', while

in Assumption 1, constraints, initial set, and stability type are specified. Whereas, flow and

desired output range are useful for describing the dynamical behaviors of control modes and

hence will be used to determine possible sequence of modes.

Example 4.2.2 2-D Helicopter Model and Control Modes In this example, a heli

copter model [65] described in longitudinal and vertical axes with simplified force and mo

ment generation process is considered. The x,z-axes of the spatial frame are pointing to

north and down directions. The body x-axis is definedfrom the center of gravity to the nose

of the helicopter, and body z-axis is pointing down from the center of gravity. The motion

of the helicopter is controlled by main rotor thrust, Tj^ and longitudinal tilt path angle, a.

^The solution of (4.2) that starts from a point of the initial set at time t = 0.



The pitch angle is defined by 6. The equations of motion can be expressed as:

Px 1

m

cos 6 - sin0 -Tm sin 0
+

0

Pz sin 9 cos^ —Tm cos a 9

6 = —(Mmo +/iM^M sina)
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(4.3)

(4.4)

The state vector is defined as x = \px:Px^Pz,Pz,0,6]^ € The inputs vector is defined as

u = [Tm,o]^ G

In this example, each controller is designed as regulator hence the output is asked to

track the desired output which is specified as a constant trajectory. In generally, a controller

can be specified to have the output to track a desired output with respect to certain classes

of trajectories. Four control modes are designed for different control objective.

OutputMode Class

Label

Desired

Output

Qi

Q2

Qz

Q4

95

96

Hover = h^{x)
— C R X [ /imaocjO]

Cruise y'̂ = h^{x) r^ €

Acc/ALH y^ =h^{x)
= \Px,PzV R^ CM^ X

eR^

= {Px.Pz]^ R^ CK^. X

[~^maxj 0]

[~^majcj 0]

[~/^max? 0]

(0,7r/2]

[-7r/2,0)

Dec/ALH y'̂ = h'̂ ix) eR'^
= IPx^PzT Q R- X

Climb y^ = h^(x)

Descent y^ = h^(x)
= [V,'yf R^CR+x

GR®
= [V,i^ R® C R^. X

where total velocity V —y/p% +p1, flight path angle 7 = axctan2(p2,pa;), and ALH stands

for "Altitude Hold". Define X^ = Rx [Vmin J^^ax] X[~^max5 0] X[V^Jn, Vmax] X[~^max) ^max] X

[~^max} ^max] f^"^ ^ X^ = R X[T^nin, Vmax] XR X[Vmin} ^^axl X[ ^max} ^max] X

[—^max}^max] for i 6 {3, ••• ,6}. Depending on a given implementation for each mode.

Purpose Constraint
Set

y^

y^ —> r 2

y^ ->

y4 y.4 ^4

yb y.5

yG ^ ^6 X^



the performance of the corresponding closed-loop system can be further specified by flow,

stability type, initial set, and desired output range.

Given a set of control modes, a controlled system can perform complex task via the com

position of the control modes. In the following, we use high-altitude takeoff of a helicopter

as an example to illustrate the idea.

Example 4.2.3 High-altitude takeoff of a helicopter In flight instruction for pilots,

high-altitude takeoff can be performed by the following steps: (1) Set power to just below

hover power and ease cyclicforward to start slowacceleration. Maintain heading with pedals.

(2) After passing translational life airspeed and before reaching the landing gear groundspeed

limitation, ease back on the cyclic to become airborne. (3) Maintain a level attitude over the

surface to accelerate to normal climb speed. (4) Raise the nose to maintain normal climb

speed.

A controlled helicopter can perform high-altitude takeoff by utilizing a set of control

modes. An example is shown in Figure 4-t with the control modes defined in Example 4.2.2

and switching sequence, switching conditions and regulating values are translated from the

flight instruction.

V>5/\tZ-Zl|<e 1V-5I< e/\17t<e IV-5I< £/\!Z-Z2|<e

Hover^ Cruise Cruise

Figure 4.1: Control mode switching for high-altitude take-offof a helicopter. The switching
sequence and conditions axe based on flight instruction for pilots

Based on the above example, we can now define the mode switching problem that we

will address in this chapter.
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Problem 4.2.4 (Mode Switching Problem) Given a initial control mode qo with de

sired set point tq, does there exist a sequence of control modes such that for any state

starting from mode qo, the system can reach a desired mode qp with set point vp? If so,

then determine a control mode sequence qo qi - - • qp along with regulating values

for each control mode qi, as well as state conditions for switching between control mode qi

and qj•

In Figure 4.1, one can consider that a mode switching problem is specified with hover

mode given as initial mode with initial positions defined, cruise mode given as final mode

with specified velocity and altitude, and the set of control modes defined in Example 4.2.2.

4.3 A Mode Switching Condition

In its full generality. Problem 4.2.4 can be posed as a controller synthesis problem for

general hybrid systems [68]. Such synthesis methods involve nested, and possibly cyclic

reachability computations, where each reachability computation involves computing the

capture set of a differential game. Furthermore, recent decidability results for controller

synthesis methods axe rather restrictive [92].

In our mode switching problem, however, there is enough structure to take advantage

of in order to simplify the complexity of the synthesis task. First of all, the continuous

controllers are assumed to have been designed, and therefore we do not have to design

the continuous part of the system, but simply determine the mode switching conditions.

Furthermore, by imposing certain conditions on the allowable mode switches, we reduce the

complexity of the synthesis problem, by essentially decouphng the discrete and continuous

aspects of the synthesis.

To address the problem, we have to characterize the reachable set of each mode and

switching condition among them. Let 4>^(t,r'̂ ,xo) denote the fiow of system (4.1) operating

in mode qi with the controller defined by (4.2) for initial condition xo, and desired output

trajectory
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Definition 4.3.1 (Predecessor set) Given a set P C X^, the predecessor set Pre^(P) in

mode qi is defined by

Pre^{P) = { xq e I > 0 3a: GP such that a: = 0*(<,P,a:o) } (4.5)

Therefore Pre*(P) consists of all states that can be reached from the set P in mode qi,

at some future time, for some output tracking parameter n. Furthermore, because of As

sumption 1, we have a guarantee that throughout the whole trajectory, with initial condition

starting in the set XJ, the state constraints are satisfied, that is 0*(t,r%xo) G X^,

At this point, we assume that the Pre* operators are available to us. There is exten

sive research in computing exactly, or approximately such reachable sets [59, 56, 68, 17].

However, in Section 4.5, we take advantage of the fact that in each control mode the closed

loop dynamics for part of the state are stable in order to obtain easier approximations of

reachable sets.

Next, we need to define the condition under which mode switching is allowed. Given

control modes and qj, one would typically allow a switch from mode qi to qj if during

the operation of the system under mode qi^ the state reaches the allowable set of initial

conditions Xl- If one allows thistype ofmode switching, thenreachability critically depends

on the initial conditions since some initial conditions in Xq may reach the set X^ ofmode
qj while others may not. If this is the case, then nested reachability computations seem

necessary. However, such nested computations can be avoided if one places the following

condition on mode switching.

Definition 4.3.2 (Mode switching condition) A transition from mode qi to mode qj is

allowed only if

Xi c Pre'iXi) (4.6)

If the system starts at any xq G Xq, then switching from mode qi to qj can occur at any

time t such that ^*(t,r*,a:o) € Aq.

The condition expressed in Definition 4.3.2 guarantees that our ability to get from mode qi to
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mode Qj is independent of the choice of initial condition in Xq. The only thing that depends

on the initial condition is when we will reach Xq, and how (choice of r*) we will reach

but not if we will reach . This is reminiscent of the time-abstract bisimulation property

from formal verification [59], or the consistency property for hierarchical systems [15, 83).

In this case, however. Definition 4.3.2 is quite different since no partitioning of the state

space is involved.

4.4 Mode Sequence Synthesis

The mode switching condition 4.6, even though not necessary, makes the mode switch

ing problem tractable since one can first determine the sequence of modes using discrete

graph reachability, and then determine the continuous parameters r® for each mode. This

decouples the discrete from the continuous aspects of the problem.

4.4.1 Control Mode Graph

Given a collection of control modes 9i,. • •, we define a control mode graph as a finite

graph (Q, -^), where the set of vertices of the graph is Q = {gi,..., qn}, and the transition

relation —fC Q x Q is defined by

<!=!• XicPre'(xi) (4.7)

We denote (qi,qj) by qi qj. Given an initial control mode go, the problem of whether

we can reach control mode gp, can be efficiently solved using, for example, the following

reachability algorithm, which computes the set of all reachable states from go until we reach

the target mode qp. For a set i? C Q, let Post{R) = {qj ^ Q \ 3qi ^ R with qi qj} be

the set of successors of R in the graph.
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Algorithm 1 (Graph Reachability)

Set R := {go}

while true do

Sequence Found if g/? G i? ; STOP

Thsk Infeasible if Post(R) C R ; STOP

Compute Reach Set R:= RUPost(R)

end while

Of course, standard algorithms can determine the shortest path (minimum number of

mode switches) between mode qi and g^, in the control mode graph. The structure that

we have imposed on our control mode graph, immediately result in the following theorem

which solves the mode switching problem. The proof is straightforward given the the mode

switching condition above.

Theorem 4.4.1 (Mode Switching Solution) Given a collection of control modes, con

sider the mode switching Problem 4-^'4' Construct the control mode graph as described

above. If there exists a path in the control mode graph, then Problem 4-2-4 solvable.

Having determined the sequence of modes that can steer our system from go to g^?, we are

left with the problem of determining the parameters rj for each mode of the sequence. By

construction (Definition 4.5), such parameters exist. However, depending on which control

modes are connected to, the range of P could be different. Thus, there should be a cost

function for staying in one mode but associated with a permissible transition. Therefore

it is reasonable to pose the problem of choosing ri within mode z as an optimization of

optimal control problem over control mode graph.

A key issue for this approach (as well as for all controller synthesis approaches for hybrid

systems), is to be able to compute Pre^{Xl) in order to check condition 4.3.2. This is the

focus of the next section of this chapter.
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4.5 Reachability Computations

There has been a rapidly growing interest in computing reachable sets for various classes

of systems [59, 56, 68, 17]. In particular, the approach of [59] has been extended to classes

of parametric linear control systems [58], which is highly relevant for computing the oper

ator 4.5. However, these computations are based on quantifier elimination methods whose

complexity is prohibitive for large scale systems.

In our case, however, the continuous dynamics are those of output-tracking, closed-loop

systems. Therefore part of the state is forced to converge to a trajectory that we get to

design, and part of the trajectory is guaranteed to satisfy state constraints. This gives us

the opportunity to obtain very reasonable approximations of the reachable sets, and even

design reachable sets by appropriately designing output trajectories. The following example

illustrates the main idea.

Example 4.5.1 Reachability Computation To illustrate the idea of reachability com

putation, point mass example is used. The dynamics of a point mass can be described by

x\ = X2
(4.8)

^2 = U

with X= [xi xf!^. Consider there are two control modes defined for the above dynamics,

and they are:

Figure 4.2; Two control modes: position mode and velocity mode
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Control Mode Specification

Mode label: qi
class: position regulation

Objective
output: y^(t) = h^{x{t)) = a:i(t)

trajectory: r^ 6
purpose: y^{t) -> r^

constraint: Vt x{t) e XS X' = K x > 0
Implementation

input: u = r^) = - x^), x\ = [r^ 0]^
Performance

flow: a;(<) = r^,a;(0))
stability: if x({j) 6 Xq 3Mi,q;i > 0

Vt > 0 |a;(t) - 41 < Mie-^^^\x(id) - 4|,
lmy'(t)-r^ =0

initid: V^/Mi)
range: ='R

Mode label: q2
class: velocity regulation

Objective
output: y'̂ {t) = h'̂ {x{t)) = X2{t)

trajectory:
purpose: y^(t) -4

constraint: Vt x{t) € = K x > 0
Implementation

mpwt; u= /:^(a;(t), r^) = A"?(a;2(t) - 4); 4 =
Performance

flow: x(t) = 4(t,7'^,ic(0))
stability: if x{0) GXq 3M2,a2 > 0

vt > 0 |i2(i) - xl\ < M2e-«'|i2(0) - x§|,
limu^(t) — = 0
t->0 ^ '

initial: Xj = K x
ranje; = (-K^ax.

Consider the case when V^ax/-^i ^ ffoing to examine the mode switching

conditions between the modes. First, according to Definition 4.5, a transition from mode qi

to q2 is allowed only if

Xo' C Pre'(X„2).
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To show this is true, we rewrite Pre^(Xo) as

PreHxS) = (U U jfl '̂
\t>Or^eR^ )

T-ie/21 \<>o

Now, we would like to show that Ut>o UxeX^ 4'̂ {t,r^,x)~^ D{r^} x (—V^max? ^max) since

if this is true, Pre^(A'o) = and hence we show that C Pre^(Xo). However, even

for such a simple dynamical system, the reachability problem is decidable only for certain

classes of linear control systems [59], Here, we demonstrate how to perform the reachability

computation for a class of linear control systems as a quantifier elimination problem in the

decidable theory of the reals based on o-minimal theories.

Consider a linear system with diagonalizable matrix A with real rational eigenvalues, it

has been shown that in [59] the reachability problem is decidable. Let

0 1

-ki -k2

with k\ = 2 and k2 = 3. Hence, Mi = 2.6180 and 0.3820. Choose ^ ^max =

1 such that V^^jMi > With loss of generality, we set r^ = 0 to simplify the

computation. Since Xq = K x (-V^max'̂ max)? show that there exists t>0

such that (l)^{t,r^,x)~^ > V^ax 4>^(t,r^,x)~^ < —l^ax initial condition Xq. There

are several quantifier elimination packages such as REDLOG, QEPCAD, Mathematica

can be used for performing such symbolic computations. For example, in Mathematica

version 4-0, via loading the "Experimental" package, one can use the following instruction

to perform the computation. Notice that the change of variable s = exp(t) is used in the

K' =
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expression, as suggested in [59].

RgSOIvG [3s,s>l,s€Reals (3xl,xl€Reals (3x2,x2>—l&&x2<l&&x2€Reals (2s^~2s)xl+(2s^~s)x2>5) ^

Resolve[3s,s>l,s6Reals (3xi,xl€Reals (3x2,x2>—l&&x2<l&&x26Reals (2s^~"2s)xl+(2s^"*s)x2<C~5) )]

After few seconds for computation, Mathematica then returns True as the result.

Now, we would like to check that a transition from mode 92 to qi is allowed. Therefore,

we need to show that

XS C PreHxi)

is true. However, we cannot use the same technique as before, since this closed-loop system

does not belong to any known decidable class of systems. In this case, we are lucky enough

to show the result via the use of simple arguments. First, in mode qi, we know that Xj =

where x\ = [r^ 0]^ and ^ = E. Since the parameters is not

specified, by the definition of the predecessor, one can interpret Pre^(Xo) Pre'̂ { [J

Therefore, we have Pre'̂ (X^) D (J Xq = Mx i-V^^/Mi,V^Q^/Mi) since the reachable

set is computed for t>0. Due to the fact that it can be easily seen that

Xq = C Pre^(Xo). Hence the result.

Figure 4.3: Control mode graph of the example
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4.6 The Synthesis Procedure for Control Mode Switching

In the following, we provide a procedure which summarizes the previous discussion for

solving the mode switching problem posed as Problem 4,2.4. If solvable, a hybrid controller

associated with an optimal hybrid automaton is synthesized as the outcome of the algorithm.

The Synthesis Procedure

Step 1: Control Mode Graph Synthesis Given a set ofcontrol modes Q = {^i, •••

construct a control mode graph (Q, according to the mode switching condition de

fined in Definition 4.3.2.

Step 2; Control Mode Sequence Synthesis Given initial and final control modes with

desired set points as (goj '̂o) and respectively,deploy Algorithm 1 for checking

the existence of solution; if Problem 4.2.4 is solvable, search for all permissible solu

tions, and according to given optimal criteria select a solution which contains both

discrete and continuous variables.

Step 3: Hybrid Controller Synthesis Given an optimal solution, construct a hybrid

controller by using the discretesequence in the solution to define the discrete state of

a FSM. In a discrete location deploying control mode qi and a control mode qj being

deployed in the next discrete location, the guard is defined as X* n Xq, the outputs

are both and u which are defined by 4.2, and the inputs are the state variables x.

Step 4: Hybrid Automaton Synthesis Construct a hybrid automaton as defined in

Definition 2.2.1 by combining the hybrid controller defined in the previous step. The

continuous state of (4.1) defines the continuous state of the automaton. In a discrete

location deploying control mode qi and a control mode qj being deployed in the next

discrete location, outputs are defined by no input either discrete or continuous is

defined for the automaton since close-loop dynamics are considered, guard is defined

as X* HXq, reset relation is defined simply as an identity map, and invariant set I(qi)

is the maximum invariant set within the constraint set X*.
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4.7 Chapter Summary

The proposed approach has generalized the idea of multi-modal controller presented in

[45, 68] which assumes that all the given controllers are totally ordered in terms of per

formance. Therefore, the switching sequence is implicitly designed and only the switching

conditions based on state information axe needed to be constructed. However, in our pro

posed synthesis procedure, no presumption is made on the ordering of performance and a

directed transition between any two modes is possible as long as the mode switching condi

tion is satisfied. Hence, our procedure provides a constructive method for the derivation of

multi-modal control. Since the hybrid controller is constructed by correctness, formal veri

fication becomes unnecessary for verifying the system behaviors meeting the specifications.

In hierarchical control design perspective, in order to reduce design complexity in design

time and computation time in run time, a subset of states which contain important or

critical information should be considered and used for high-level planning. To apply the

proposed multi-modal control procedure on dynamical system like helicopters as mentioned

in previous example, not only a set of controllers which can cover the whole operational

envelope for extreme performance is needed but also abstracted models, i.e.reduced order

models which preserve specific close-loop system properties, are important since this can

greatly reduce the complexity on solving the control mode switching problem. In [15, 83],

systematic methods are proposed for obtaining an abstracted model which is consistent with

the original model on certain properties such as controllability and stability. Therefore, if

such an abstracted model can be obtained, one can perform the reachability computations

on a reduced dimension state space for solving the mode switching problem while there is

a guarantee that the derived solution can be implementable on the original model.

There are several major issues related to the applicabihty of the procedure. First, if the

reachability problem for classes of dynamical systems are decidable and there exist efficient

algorithms for all necessary computations, the procedure return exact results. But, if the

given dynamical systems are not belong to any decidable classes, a conservative way of

solving the problem is to use under-approximation methods for computing reachable set

in checking mode switching condition since it provides a guarantee to the existence of a

solution. Second, allowing controllers with parameters varying continuous over compact

sets could introduce difficulties in applying the proposed procedmre to certain classes of
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dynamical systems, mainly computation of parametric reachable sets and parameterization

of cost functions associated to closed-loop behaviors.

However, to solve this problem, one possible way is to design a reasonable number

of controllers with fixed parameters to cover the spectrum of parameter space as much as

possible. Then, one can apply the same procedure again since both reachability computation

and obtaining cost function for closed-loop systems with fix parameters can be performed

with standard methods. Since the search on a graph can be done in polynomial time,

therefore, the problem is still tractable. However, the drawbacks are that optimal solutions

could not necessary be obtained and extensive amount of computing resource would be used

for computation because of excessive number of control modes introduced.

In its full generality, the mode switching problem can be posed as a Model Matching

problem which is a problem of finding a controller C for a give plant P such that the compo

sition of C and P conform to a given specification M. The plant P is a continuous system

but the controller C is a hybrid controller which is a finite automata with a continuous con

trol law at each discrete location. The specification is given in the from (^Oj^o) —^

However, similar problems have been considered in various communities under labels such

as "supervisory control", "scheduler synthesis", "equation solving" and "interacting FSM

synthesis". The common notion of conformance for finite automata is language contain

ment. However, since we have a hybrid specification, a new firamework is needed in order

to address the needs and it will be fleshed out in future research.
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Chapter 5

Embedded Controller Synthesis

This chapter presents a formal methodology for the design, implementation and vali

dation of reactive systems. The methodology has been applied to the design of a FHght

Management Systems (FMS) for a model hehcopter in the BEAR project[53]. P0LIS[6],

a compute-aided-design (CAD) tool developed at the University of California at Berkeley,

is extensively used. The automation of the design problem and the vaUdation techniques

provided by this tool allow to shorten prototjrping time and to prove the correctness of

the properties of the system. Automatic code generation guarantees error free implemen

tation, which is fundamental in safety critical applications. Simulation of the entire design

is performed using Ptolemy, a hierarchical heterogeneous simulation environment.

5.1 Introduction

Reactive systems [88] react continuously to their environment at the speed of environ

ment. Reactive systems are prominent in industrial process control, airplane or automobile

control, embedded systems, man-machine interfaces, etc. They can be contrasted with in

teractive systems, which react with the environment at their own speed. This class covers

operating systems, data bases, networking, distributed algorithms, etc. Interactive and

reactive systems deeply differ on the key issue of behavioral determinism. Interactive sys-
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tems are naturally viewed as being non-deterministic, while behavioral determinism is a

highly desirable and often mandatory of reactive systems. A real-time system is defined as

a reactive system that is subject to externally defined timing constraints.

Flight Management Systems (FMS) were first proposed for smart aircrafts in future Air

Traffic Management Systems (ATMS) [86, 97] for decentralized air traffic control. FMS are

responsible for

Navigation planning of the route for task execution, calculating a feasible course, and

regulating an UAV along the course;

Emergency handling switching among different modes of operation to handle contingent

events such as conflict resolution among UAVs, obstacle avoidance, and envelope

protection.

FMS for UAV[46] axe inherently reactive, since they react to the environment by changing

mode of operation, as described above.

An FMS operates in a mission critical environment, where reliability and safety are

more important criteria than performance. Formal verification and automatic synthesis of

implementations axe the surest ways to guarantee safety. Managing the design complexity

and heterogeneity is the key problem. The design approach should be based on the use

of one or more formal models of computation (MOC) [62] to describe the behavior of the

system at a high level of abstraction. The implementation of the system should be made

using automatic synthesis as much as possible from this high levelof abstraction, to ensure

implementation that axe "correct by construction". Validation should be done at the highest

possible levels of abstraction.

The POLIS [6] system is intended for control-dominated systems whose implementation

is based on micro-controller for tasks to be implemented in software and Application Specific

Integrated Circuits (ASICs) for tasks to be implemented in hardware. The input to POLIS

is a combination of graphics and text describing the behavior of each single finite state

machine in the formal language ESTEREL. The analysis at the behavioral level can be

carried out with formal tools. Performance evaluation can be carried out by simulating

the behavior of the axchitecture selected with an abstract timing model of processor in the

heterogeneous simulation environment offered by PT0LEMY[14]. In our design example we
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Figure 5.1: Polls design flow chart

carried several simulations with different types of Hardware-Software (HW-SW) partition

and choices of microprocessors in order to validate the design.

Section 2 presents formal synthesis of reactive system design. In Section 3, the exam

ple design and its representation in the POLIS/Ptolemy domain is discussed in details.

Concluding remarks are offered in Section 4.

5.2 Polis Co-design Methodology

In the formal approach to the design of a control system, the choice of the Model of

Computation (MOC) to represent the behavior of the system is often crucial. In order to

do it we need to know what are the main characteristics of the system that we are going

to implement and then find the MOC that can capture most of the properties [62]. In the

case of a reactive system, we need a specification language that includes constructs for hier

archy, pre-emption (input events arrive at irregular and unpredictable times), concurrency
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and sequencing. A widely used MOC for description of such system is the Finite State

Machine(FSM).

Definition 5.2.1 A Finite State Machine (FSM) is a quintuple T = {I,O^X,R^F) where

I is a finite set of input symbols, O is a finite set of output symbols, X is a finite set of

states, RC X is the set of initial states, FCIxXxXxO is the transition relation.

A FSM contains all the desired properties and also, under mild conditions, it is deterministic

and completely specified. The drawback of such a representation is the difficulty posed on

the possibility of data computation. The FSM models purely reactive systems, while in

almost all control application data computation is also needed.

A more suitable model is the Extended Finite State Machine (EFSM), which is a

FSM where the transition relation may depend on a set of internal variables. It operates

on a set of finite-valued variables by using arithmetic, relational, boolean operators and

user defined functions. The EFSM model has a fundamental limitation: communication

between EFSMs is totally synchronous, therefore it is not implementable on a distributed

environment where a combination of hardware and software modules is used. Hardware and

software implementations are characterized by different behavior in execution and commu

nication. The desired MOC should then reflect this situation. The necessity of extending

the FSM semantics to include an asynchronous communication mechanism brings us the

choice of the so called Co-Design Finite State Machine (CFSM). A OFSM can be

defined as a FSM which has also a data computation part. CFSM exploits a locally syn

chronous behavior. It produces an output in reaction to an input assignment in zero time.

Globally the CFSM has an asynchronous behavior; each CFSM reads inputs, and produces

outputs in an imbounded but finite amount of time. Several specification languages can

be used to model CFSMs. POLIS uses synchronous language to model each individual

CFSM. The synchronous approach is very attractive for several reasons. Computation and

internal communication take no time. The behavior is totally predictable. The problem of

synchronization doesn't exist. Determinacy allows formal verification and the synchronous

approach allows translation in EFSM in a fully abstract way, so that behaviorally equivalent

specifications are mapped into syntactically equivalent EFSMs. Communication between
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CFSMs happens by means of events which axe control signals that may or may not contain

also data information.

The high level specification language used by POLIS is Esterel[9]. This language is

very simple and contains the necessary constructs for the description of our system. Hier

archy is handled via procedure calls, preemption consists of two basic constructs, one which

allows the module to terminate its computation for the current instant and one which does

not, concmrrency is specified by using a parallel composition construct. Data manipulation

cannot be done naturally in Esterel, The user needs to define functions outside the environ

ment and then link them in the program. Also the synchronous hypothesis makes difficult

to model the communication among subsystems that operate at different rates. The timing

constraints need to be specified outside Esterel. This will be assessed during the HW-SW

synthesis phase. Starting from the behavioral specification, CFSMs are generated using the

Software Hardware Intermediate Formal (SHIFT) language. The next step is to connect

the various CFSMs so generated. This can be done in the simulation environment Ptolemy,

which we will discuss later. At this stage formal verification can take place. This technique

is very powerful but at the same time computationally expensive. Performing formal ver

ification at the behavioral level allows detection of errors at an early stage and keeps the

complexity of the formal verification scheme low.

The next step involves the selection of an implementation architecture. The advantage of

using formal methods consists in the use of automatic synthesis techniques. There are three

fundamental decisions to be taken: Partitioning, Architecture Selection and Scheduling.

These three steps are based on experience and therefore the designer is allowed to choose.

POLIS provides libraries for several types of micro-controllers for software implementation

and ASICS for hardware synthesis. POLIS provides a choice of schedulers, which regulate

the communication among CFSMs. After the selection of the architecture is complete the

system is simulated within Ptolemy for performance validation.

Co-simulation is used in POLIS both for functional debugging and for performance anal

ysis during the architecture selection process. Hardware-Software (HW-SW) co-simulation

is generally performed with separate simulation models. POLIS allows for HW-SW co-

simulation within the same environment. The basic concept is to use synthesized C code to

model all the components of a system, regardless of their future implementation. For the

software partition the simulation code is the same that will run on the target processor.
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Depending on the selected architecture, each task will take a specified number of clock to

be executed (one clock cycle for hardware, a number of cycles for software depending on

the selected target processor for software) and will result in different execution constraints

(concurrency for hardware, mutual exclusion for software). The Ptolemy system provides

the simulation engine and the graphical interface. Among the various computation mod

els offered by Ptolemy, the discrete event (DE) model has been used, since it matches the

CFSM execution semantics. Co-simulation provides a truthful estimate of the performance

of the system, i.e. of the capacity of the software architecture to meet the timing constraint

imposed by the discretized dynamic system. In case the designer doesn't find the result

satisfactory, the aforementioned design process needs to be iterated. If, on the other hand,

the simulation results meet the specifications, synthesis can take place. POLIS provides

automatic code generation which is specific to the selected micro-processor.

5.3 System Design and Synthesis

This section presents an application of this design methodology to the modehng and

synthesis of a FMS for a single UAV performing a particular task. However, the same

methodology can be applied for multiple UAVs with different mission specifications. The

FMS can be modeled by a hierarchical finite state machine. Consider a search and inves

tigate scenario, UAV is requested to search for objects of interest in a confined area by

navigating via a series of way points and perform an investigation whenan object is found.

After investigation, UAV should resume its nominal route. The system to be modeled can

be decomposed into three parts: the Flight Management System which is responsible for

planning and controlling the operation of the UAV, a Detector for the detection and inves

tigation of objects of interest and an aerial vehicle (the plant to be controlled). Figure 5.2

shows the given mission. In order to illustrate the reactiveness of the system we put an

object that the UAV will be able to sense along path.
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Figure 5.2: Search and investigate scenario: to navigate through the way points and detect
objects of interest along the path

Aerial vehicle dynamics

An aerial vehicle can be represented by a rigid body moving in a 3-dimensional space

in response to gravity, aerodynamics, and propulsion. Due to the characteristics of the

aerial vehicle designed, the force and moment are generated by different actuators which

corresponding to different control inputs. For aircraft, the control inputs axe generated

through engine, aileron, elevator and rudder which produce thrust and 3-axes moments.

For an helicopter, the control inputs are generated through engine, main rotor collective

pitch, tail rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, which produce

thrust and 3-axes moments.

In the search and investigate scenario, a helicopter based UAV is chosen to execute the

mission mainly because of its vertical take-off and landing (VTOL) and hovering capabilities.

As shown in [49, 52], a hehcopter model has been shown to be nonlinear and non-minimum

phase. Although the idea of using approximate input-output linearization on helicopter

control has been successfully applied, it is not desirable to use the nonlinear controller

because the dimension of the system and the order of desired outputs trajectory are rather
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high. However, it has be shown that the dynamics can be partitioned into an "inner system"

(e.^.the attitude dynamics) and an "outer system" {e.g.the position dynamics) where the

outer system is differentially flat. In Chapter 3, a nonlinear controller based on outer

flatness is designed. The beauty of this control design is that the planning can be done

on a reduced order system, the outer system, by generating desired accelerations according

to a given output trajectory while the controller is guaranteed to have the system output

tracking the given output trajectory. The outer system can be regarded as the abstraction

of the whole system, and a formal treatment of the problem is shown in [83].

Therefore, we have a double integrator to represent the dynamics each output variable

of the outer system. Although the output, heading, can track a desired heading trajectory

and is not controlled in the outer system. To consider the dynamic behavior, we also

use a double integrator to represent the dynamics. Hence, the Dynamics can be greatly

simplified and modeled as:

X — Ux

y = Uy

z — Uz

—

Detector

The Detector can be considered as a computer vision system with limited range of

detection capability The computing time for vision algorithm together with the view angle

set an upper bound on the maximum possible cruise velocity. The detector communicates

with the FMS. When detection takes place, a preemptive signal is sent to the FMS to request

the FMS to perform investigation by navigating through a series of intermediate way points

as {PiyPi} where P{ is a point above the object and P2 is has the same coordinates as the

previous point but with lower altitude. Once the investigation is accomplished, the detector

will assert a signal to the FMS to indicate the end of investigation phase.



Flight Management System

The FMS consists of four layers, the strategic, tactical, and trajectory planners, and the

regulation layer, as described in Figure 5.3. Hierarchy is handled very naturally in Esterel,

as described in the previous section.

Strategic
Planner

Nominal
way points

Control
way points

Control mode,
Mode parameters

' Nominal way point
execution status

' Control way point
execution slatus

^g^regated

Regulation

Control signal

dynamics

Figure 5.3: System Architecture

The Strategic Planner is concerned with the planning and execution of the central

UAV mission. It designs a coarse, self-optimal route, which is stored in form of a sequence

way-points. This layer also takes care of the transition between the points, by acknowledging

the completion of a subtask and scheduling the next one. In our example the strategic

planner contains a set of way points P — P4}, where Pj € for i = 0,... ,4.

The Tactical Planner is responsible for handling contingent events among UAVs and

reacts to the detector by generating corresponding way points to trajectory planner. It is

capable of overruling the route proposed by the strategic planner, in case of safety critical

situations such as collision avoidance. Given the scenario, when an object of interest is

detected, the tactical planner react to the event generated by the detector and force a
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Figure 5.4: FSM representation of Tactical Planner

discrete transition to have it operated in the investigation mode as shown in Figure 5.4.

In investigation mode, given the way points {P{,PJ} from the detector, tactical planner

introduces a sequence of way points that will be tracked in order to complete the new

task. At the time instant when the object is detected, the current position is saved as

Pq and hence a subsequence is inserted as {Po,Pj,p2,P(,Po}- Once the investigation has

taken place by passing through all the way points specified in the subsequence, the se^ch

resumes from Pq.

Given the current and future way points, the Trajectory Planner generates a course

as a sequence of control mode to accomplish the reachability specifications. As defined in

Chapter 4, a control mode is defined as the operation of a given continuous control system

under a controller that is guaranteed to track a certain class of output trajectories. Different

outputs of interest correspond to different control modes. Since we are considered a reduced

dimension system defined in Dynamics, we can consider there are two controllers, position

controller and velocity controller as shown in Chapter 4, being designed for each direction

of motion. Hence, there are two modes for each direction of motion, and we have totally

eight control modes, namely:

In x-direction : (gf,rf),(g2,rf)

In y-direction : (9|,rf)

In .zr-direction : (gi,rf),

In V-direction : {qi,rf),{q^,r2)

It has been shown that it is feasible that in each direction of motion two control modes can

be switched to and fro and form a control mode graph. Since the dynamics considered in
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Dynamics axe decoupled, there are 4 disjoint control mode graph and hence 2^ possible
combinations of control modes.

In order to simplify control mode sequence generation, it is more desirable to the reduce

number of control modes. In helicopter flight instruction, the transition of maneuver is

restricted in proper sequence which is shown in Figure 5.5.

Idle

Up/Down

/
/ Left/Right

y 1 ^ y

Hover
Forward

Turn

3D Straight

Flight

2D Straight
Flight

Coordinated

Turn

Figure 5.5: Transitions diagram of helicopter maneuvers

Motivated by the flight instruction, a subset of the maneuvers are selected and each

maneuver can be translated into a set of control modes possibly with constraints on the pa

rameters. The maneuvers composed of control modes are Hover, Turn, Up/Down, Forward

and Left/Right:

Hover: | ((gf,rf), (gf.r?), (gf,rf), (gf,rf) )}

Turn: { ((gf,rf), (g]',r]'), (gf,rf), ) }

Up/Down: { ((gf,rf), (g5',r?), (9|,r|), (gf,rf) ) }

( ) with rf = atan2(0,rf),
( (9i,7'f),(g|,r|),(gf,rf),(gf,rf) ) with rf = atan2(r|,0), ^
( ) with rf = atan2(r|,rf) ^

( (92'̂ 2)>(9i»^i)>(9i>^i)'(9f)^f) ) with rf = atan2(0,rf) ± |,
( {Qi^rf),{q^,rl),{qf,rf),{qf,rf) ) with rf = atan2(r|,0) ± f,

, ( (92(92'^2)' (9i'^i)' ) with rf = atan2(r^,rf) ± f

Forward:

Left/Right: <
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In Hover, position modes are used in all four directions. Velocity mode is used in -^-direction,

but position modes axe applied to other directions in lYtm. Similarly, in Up/Down, only

velocity mode is used in ^:-direction but others are operated in position mode. In Forward,

position mode axe used in 2:-direction and ^-direction but neither in a;-direction nor in

^/-direction are operated in position mode. Furthermore, the desired motion direction in

a:,y-plane has to be aligned with the desired heading. In Left/Right, control modes axe

defined as in Forward but with an oflfeet between the desired motion direction in x,y-

plane and the desired heading where the sign of the oflfeet depends on the direction of motion.

Hence, by combining the decoupled control graphs, the corresponding control mode graph

is obtained as shown in Figure 5.6.

Left/Right

Up/Down

Ti = atan2(r2, rg)
±-^ 2

= atan2(r2, rj)

Hover Forward

Figure 5.6: Control mode graph of helicopter maneuvers.

Given (Px^pl^pl) as the point, and {p^,Py,pi) as the point, we would like to find a
sequence of maneuvers for reaching the point from the point. With loss of generality,

we assume that the helicopter is operated in Hover, i.e.{ (qi,Px)^ {Qi^Py)^ )

where V* defines desired heading at the point. Here, we present a solution of the



reachability problem by having

Hover

at ((gf,pi), (9i ,Py), (gfjPz), (^f,V*'))
Hover

at (iqi,pi:)AQiiPi)AQhpi)AQt '̂̂ '))
Hover

at ((gf(gi,pi),{qiM,(gf

Hover

at ((gf,ri), (g?,pj), (gf,pi), (gf,
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—> Up/Down

at ((gf,pi),(gi,pi),(gi,^!)^(gfV'O)
—>• !ZYtm

at ((gi,pL)>(gi>Py)i(gf^p^),{qt.rt))
Forward

((gf5̂ 2)' (g?>;4)' (gf ,pi), (gf»
if Py = Py

((gf^pj), (gl^.'̂ I)' (g^
if pj. = pi

((gf'^f)' (g!'''!)' (gf^pi). (gf^
otherwise

at ^

where ip'̂ ^ = atan2(py —py,px —Px) and the intermediate parameters rf, , rf and rf can
be chosen within the constraint sets to optimize a given cost function such as traveling time

and energy consumption. This solution , as shown in Figure 5.7, completely decouples the

maneuvers and performs them independently. Tactical Planner sends the acknowledgment

signal to the Strategic Planner which sends the next way point when the current way point

is reached.

Hover Up/Down Hover

Hirn

Hover Forward Hover

Figure 5.7: FSM representation of Trajectory Planner.

The Regulation Layer, together with the plant, represents the continuous part of the

system. The regulation layer has access to sensory information about the actual state of the



UAV to generate control signal to regulate the vehicle according to the control modes and

parameters given by trajectory planner. For each subsystem, there are two control modes,

namely position mode and velocity mode. Therefore, there are 8 controllers in total and at

any time there are four of them being used.

I'htihT niotlc-schomaric (nif<iRi)cShHlfhMocalhnst > 100 3501

•

Figure 5.8: System block diagram in Ptolemy

5.4 Implementation and Validation

The system is divided into blocks and each block is modeled as a FSM by specifying the

desired behavior. The individual modules are synthesized by POLIS and then composed in

Ptolemy to yield to complete system. The system architecture in the Ptolemy domain is
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shown in Figure 5.8. The stars represent the functional blocks of different modules. In this

section we give a description of the role of each of the functional blocks.

To validate the design, we carried out several simulations under different assumptions.

The behavior simulated was a search-and-investigate mission. The UAV should deviate

from the nominal path if the detector finds an object of interest. The initial states are set

to zero, i.e. idle position. The mission terminates when the UAV lands at the point p4

(10,8,0).
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Figure 5.9: Simulation result using synchronous model: x^y^z^ip fi:om top to bottom

First, as depicted in Figure 5.9, we simulated the behavior of the system under the

synchronous hypothesis, i.e.in the absence of delay due to commimication and computation
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Figure 5.10: Simulated 3D Trajectory

time. This corresponds to representing the system entirely in Esterel. This assumption is

often used to simulate the behavior of the system but yields poor implementations since

it requires implementing the system either in synchronous hardware or as a single task in

software. This results in overheads in space for hardware and in memory and sometimes in

running time for software.

After the behavior has been simulated and verified, a specific implementation has to be

selected. Our first architectural choice was to implement the algorithm entirely in software

on a RISC MIPS R3000 micro-controller with a simple round-robin scheme to schedule the

tasks. The synchronous assumption was maintained for the plant and the detector, thus

implying that their operation was considered as a single task for the operating system.

The simulation results in Figure 5.11 show that the timing constraint is met by the chosen

architectiure. Simulation of 8 minutes of actual running time of the system was obtained

with 5 minutes of simulation time. At first sight, this result seems surprising since simulation

required less time than the actual time that would have been required by the embedded

system. The explanation of this result is simple: the software is run on a workstation whose

processor is more powerful tham the micro-controller core.
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U

x10

Figure 5.11: Simulation Result after HW-SW partition: x^y,z,ip jfrom top to bottom

The timing results needed to verify the correctness of the implementation with respect

to the real time constraints are obtained using the performance model used for the con

troller. In particular, the number of cycles required by each instruction in the instruction

set of the processor have to be provided. Because of the complex architecture of modern

microprocessors, the POLIS group has developed a method to obtain the parameters of the

performance model by running on an evaluation board a set of tests.

The actual running time estimates provided by the simulation are not 100% accurate

but it has been possible to demonstrate that the accuracy of the estimation is acceptable

(the actual running time on the implemented system was within 20% of the estimation).
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Figure 5.12: Instability occurs in Z dynamics

Because of the speed of the simulation with the performance estimation models (which

include a model for the operating system and the scheduler as well), several different im

plementation choices can be tried. In particular, different micro-controllers and different

scheduling algorithms can be evaluated. Once several architectures have been validated,

the designer can choose the most suitable architecture, depending on cost efficiency trade

off consideration.

To exemplify this point, we implemented the system using a Motorola 68hcll, 8 bit

micro-controller and a round robin scheduler. The implementation yields an unstable sys

tem, as shown in figure 5.12. Analysis on the dynamical system shows that bandwidth of the

system is too high to achieve acceptable performance with a slow processor. In particular,

part of the design has to be implemented in hardware to meet the design specification with

such architectme. Further simulations show that the design specification is met if the reg

ulation layer is implemented with an ASIC. The switching condition between fiight modes

needs to be relaxed, since the state information is not available to the tactical planner at

all times.

5.5 Chapter Summary

A formal approach to reactive system synthesis using POLIS has been presented. A

design example of FMS of UAV has been exploited. For such a hierarchical system with

complex behavior, the behavior is specified in Esterel and compiled into a network of CFSMs

chosen as the MOO for describing a locally synchronous and globally asynchronous system.

Formal verification can be carried out with the CFSM model. After verification of the

desired design properties, partition of hardware and software can take place under the
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choice provided by the designer. Automatic synthesis of hardware, software and interface,

including the Real Time Operating System (RTOS), is then performed. In this experiment,

we found that a great value of the POLIS system is in the quick system-level analysis that

allows an architectural optimization that would not be possible otherwise especially for

complex systems such as the ones analyzed in this chapter.

The design is validated through simulation in Ptolemy environment. However, it is

clear that final validation has to be carried out in a prototype implementation of the entire

system since the high-level simulation carried out in the Ptolemy environment with POLIS

models and software synthesis methods is based on approximate performance models. It

is our intention to build such a system with the micro-processor selected in the evaluation

phase with the scheduUng algorithm tested in the simulation.



89

Chapter 6

Conclusions

Based on operational, financial and environmental considerations, large scale systems

ranging from automated highway systems, air traffic management systems, unmannedaerial

vehicle networks, communication networks and power distribution networks have been ad

vocated to have higher levels of automation. The controlof largescale systems is extremely

challenging since by nature the systems are distributed and highly dynamic, the environ

ments in whichthe systems reside in are usually rapidly evolving, and multi-objective design

specifications intensify the complexity of system design. One natural way to manage the

complexity of system design is by compositional methods. Of particular interest is multi-

modal control paradigm in which control systems are designed by hierarchically nesting of

composition of modes of operation such that each mode of operation is designed to cope

with a designated scenario with respect to a design specification while the organization of

modes of operation depends on the ordering of these specifications.

A multi-modal control system can be modeled as a hierarchical nesting of parallel and

serial composition of discrete and continuous components. Furthermore, a model of com

putation (MOC) governs the behaviors and interactions of components at each level of the

hierarchy. Hybrid systems are considered as formafisms used to describe a complex system

as combinations of MOCs. This naturally leads to the generalization of the design problem

for the control of large scale systems as a problem of multi-modal control synthesis/design
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in the modeling framework of hybrid systems.

Recent advances of embedded system technologies in sensing, computation and commu

nication have enabled the rapid realization of sophisticated, high-performance embedded

controllers. Hybridness is a characteristic of embedded control systems because every digi

tal hardware/software implementation of a control design is ultimately a discrete approxi

mation interacting through sensors and actuators with a continuous physical environment.

The model of computation defines the behavior and interaction of these components. In the

modeling framework of hybrid systems, the formal synthesis of embedded controllers can be,

in general, interpreted as generation of an architecture mapping from discrete/continuous

components to hardware/software components to ensure the implementations that are cor

rect by construction.

This dissertation is primarily focused on formal approach of hybrid system design and

embedded controller synthesis for multi-modal control. Special emphasis will be put on

scalability and interoperability to cover the complete design flow from architecture concep

tion, control law derivation, and mode switching synthesis all the way to the generation

of real-time embedded controller code. Throughout, a helicopter based unmanned aerial

vehicle (UAV) is used as a design example to demonstrate the effectiveness of the proposed

design paradigm for solving multi-modal control problem.

First, modal controllers for a nonlinear non-minimum phase helicopter model are de

signed. The vehicle model includes rigid body dynamics and a force & moment generation

process. Nonlinear control designs based on feedback linearization and differential flatness

are illustrated. Performance of different control designs are provided.

Second, a general framework is developed for the derivation of control modes switching

which satisfy reachability specifications. Control mode switching sequences and switching

conditions axe derived based on existing efficient methods for reachability computation

developed for hybrid systems. Furthermore, the controlled system can be modeled as a

hybrid automaton: a finite state machine with closed loop dynamics embedded in each

discrete locations.

Third, embedded system synthesis based on formal methodology is presented. The

system behavior at the top level is specified in synchronous language for describing reactive

system behaviors then translated to various MOCs in different design stages depending of
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the design properties of MOCs. Depending on the choice of architecture, the components

specified by the MOC are then mapped to hardware and software components. The design

framework allows for shorter prototyping time and to proof of correctness of the system

properties. An implementation of the complete system architecture is synthesized and the

performance is validated via simulation.

There are many areas for future research and development in the areas of nonlinear

control design, control mode switchingsynthesis, and embedded controller synthesis. Some

directions for future include the following.

Nonlinear Control Design. The controllers presented in Chapter 3 address the issue

in the control of nonlinear non-minimum phase system via approximation, but there are

more areas for further study. New control designs need to be developed to handle modeling

errors introduced by approximation, measurement noise, and external disturbance from the

environment. Controllers for the control of vehicle models including not only the rigid body

dynamics and force & moment generation processes but also the rotary wing dynamics and

actuator dynamics need to be created and designed.

Control Mode Switching Synthesis. The synthesis procedure presented in Chap

ter 4 produced hybrid controllers which satisfied reachability specifications. The procedure

should be improved to allow jumps in continuousstates betweencontrolmodes. The applica

bility of the proposed procedure to classes of dynamical systems depends on the availability

of algorithms for reachability computation. New algorithms need to be developed to cover

wider classes of dynamical systems. The structure of the hybrid controllers varied with

given specifications. New control design should be created so that the controller structure

remains invariant with respect to specifications.

Embedded Controller Synthesis. Embedded controller based on the proposed fiight

management system wassynthesized based on a given architecture and the simulation of the

system was performed using discrete event models. Hierarchical hybrid system simulation

needs to be used to simulate the interaction between discrete and continuous components

of the multi-modal system. Component-based design technique should be used to construct

the multi-modal system to enhance the scalability and modularity on system design.
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Appendix A

Appendix

A.l System parameters

All variables except for the state variables and inputs are nmneric constants, which

can be obtained by measurements and experiments. The foUowings are the values of the

constants.

h = 0.142413 ly = 0.271256 Iz = 0.271492

Im = -0.015 = 0 hM = 0.2943

hj' = 0.1154 It = 0.8715 m = 4.9

r^Q
= 0.004452 D% = 0.6304

dbia = 25.23

f^Q
= 0.005066 = 0.008488 9Mm

da\a
= 25.23

CM\ 6.4578 CMS = 100.3752 CTl = 0.1837

crs = 0.1545

The operation regions in radian for ais, bu and newton for Tm,Tt axe:

\ais\ < 0.4363 -20.86 <Tm < 69.48

\bis\ < 0.3491 -5.26 <Tt< 5.26
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A.2 Proof of Proposition 3.3.4

Define a 6 x 4 matrix

L{x) =

L{x) =

'''

0m

0

• Lg,L}he

It can be easily shown that L(x) can be decomposed as the product of two matrices, that

is,

(A.1)

r df^ 1
dw
d?

(A.2)

6x6 - dw - 6x4

One can observe the left matrix are nonsingular for all a: € X The right matrix has full

column rank for all a; G X, i.e. the column vectors are linearly independent, and it can be

shown by applying Gaussian elimination on columns.

Since Ak^k2k3k4{^) is constructed by extracting the rows of the matrix L{x) according

to the indexes A:i, • •• , A;4, we can define Akik2k3k4{^) = Ekxk2k3k4L(x)y where the extraction

matrix Ekik2k3k4 is defined as, in each row, it has a 1 in the position specified by the index

and zeros elsewhere. By substitution, we have

•^kik2k3k4{^) —Ekik2k3k4
i-R
m

Ai

0
dw
dP*

- dw '

Ar

(A.3)

It is clear that

Ta,nk{Akik2k3k4{x)) < min{rank(>lL),rank(Aij)} = 4.

In order to provethat Akik2k3k4 (2^) iias rank equal to 4, wehave to showrank(i4fcjfc2fc3fc4 (2^)) ^

4. The lower bound of Sylvester's inequality theorem is achieved if the rows oi Al lie in

the left null space of Ar. By checking the rank of the matrix constructed by appending the

basis of left null space of Ar with the transpose of the row vectors of Ax,, one can verify

symbolically that the vectors of row space of Ai are linearly independent with the vectors

in the left null space of Ar. Hence, we have 4 < rank{Ak^k2k3k4 (a^)) and the result is applied

to all 15 possible combinations. Since the upper and lower bound are equal, we prove that

rank(Ak^k2k3k4{^)) = 4 for all a; GX. •
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