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MODEL CHECKING FOR HYBRID SYSTEMS

MIREILLE BROUCKE

Abstract. The goal of this paper is to extend model checking to hybrid systems
with non-trivial continuous d3rn£tmics. Our approach is to generalize the results of
Alur and Dill by exstmining the geometric structure of the bisimulation for timed
automata. This enables us to present a new methodology for obtaining finite bisim-
ulations. We demonstrate the meaningfulness of the method through several appli
cations: coordinated robots, coordinated aircraft, and hybrid systems with linear
dyn£unics. The method allows the characterization of the symbolic executiontheory,
making possible the development of edgorithms for sjunbolic model checking.

Keywords: hybrid automata, model checking, bisimulation, coordinated autonomous
agents, symbolic model checking

1. Introduction

The goal of this paper is to extend model checking to hybrid systems. Our approach
is to generalize the work of Alur and Dill on timed automata [1] to hybrid systems
with non-trivial continuous dynamics. We obtain results on bisimulations of hybrid
automata by examining the geometric nature of the bisimulation of timed automata.
This gives a new method to construct bisimulations, under a suitable compatibility
condition on the enabling and reset conditions and in the process we obtain new decid
ability results for the examples that are considered: coordinated aircraft, coordinated
robots, and hybrid systems with linear dynamics.

First let us briefly review the history of model checking. Verification was introduced
for finite state programs to determine automatically if the states of the program
satisfy a specification. A safety requirement ensures that a system does not exhibit
some undesired behavior. The complement is a livenessrequirement: that the system
exhibit some desired behavior. Pnueli proposed the use of temporal logic for the
specification of safety and liveness requirements [24]. The algorithmic verification of
finite-state systems was started in 1981 by Clarke and Emerson [7] and by Sifakis
[26]. The procedure is to convert a finite state program to a finite graph M. Given
a temporal logic formula <f>, the verification question is: do all sequences defined by
paths through M satisfy <^? The problem is termed model checking because we want
to know a M is a. model of (j). Vardi and Wolper [31] showed that one can construct a
Buchiautomaton that acceptssequences satisfied by formulas of PLTL (Propositional
linear-time logic). If the program is viewed as a finite state generator M and the
specification (j) as a finite state acceptor, then the model checking problem is reduced
to the automata-theoretic question of whether the language L{M) —L{(f>) is empty,
where L{M) is the language generated by M and L{<t>) is the language accepted by
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For hybrid systems, model checking is performed by abstracting thesystem to obtain
a finite quotient system. Bisimulation is the main step in constructing the quotient
system.

The need for new results on bisimulation is evident in three areas. First, modeling
checking has been announced as a method that can supplant simulation in the design
ofconcurrent systems [8]. In order to make this claim realizable for hybrid systems,
model checking must be able to handle non-trivial d3aiamics. At present, it is in
capable of doing so. Our positive results give encouragement to press ahead with a
program of model checking for hybrid systems. Second, although state space parti
tions have been an underlying assumption in several separate research efibrts such
as [28] and [5], no method to obtain partitions was given. Our results show that a
comprehensive methodology is within reach. Finally, model checking and the related
problem of controller synthesis are able to address problems that control theory has
been unable to address because of a lack of expressiveness of control theoretic mod
els. In particular, temporal logic enables a rich characterization of transient behavior
in time, when the system operates in a reactive mode with its environment, in con
trast with control theoretic specifications which have mostly focused on input-output
behavior. Temporal specifications also express communication and coordination re
quirements of multiple agents.

Inspite of this, few results on obtaining bisimulations or constructing partitions are
avEiilable. We summarize those works we axe aware of. The approach of [22] requires
an iterative scheme to compute the bisimulation and is built up from the theory of
ominimal structures. While their work is theoretically appealing, we feel there is
a simpler way to go about things, using easier concepts and more computationally
attractive methods. We obtain an anal3d;ical description of bisimulation that can
be understood as a gestalt. This has the intuitive benefit that it is an immediate
extension ofthe approach for timed automata. It relies on concepts that are accessible
to computer scientists and familiar in geometric control theory [15], namely local
coordinate transformations. Moreover the analytical description enables us to define
the symbolic execution theory for the hybrid automaton. The method of [13] uses
an over-approximation ofvector fields by differential inclusions. At present obtaining
the inclusions and the region over which it is valid is ad-hoc. The method is easiest
to implement in two-dimensions. We take the contrasting view that the vector fields
capture important information about the model, which the designer has taken some
trouble to identify, but the enabling and reset conditions are design parameters that
may be specified to the computational benefit of model checking.
In summary, we believe this work represents a breakthrough for model checking of
hybrid systems and we anticipate exciting new possibilities for extending its applica
tions.

The paper is organized as follows. In section 2 we define the syntax and semantics of
hybrid automata. Section 3 gives the main results on constructing bisimulations. In
section 4 we consider the benefit of using exterior differential systems for determin
ing bisimulations and for parallel composition. We present applications in section 5
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and discuss implementation of the method in section 6. Finally, we indicate future
directions of research in section 7.

2. Hybrid Automata

Notation x' refers to the updated value of a variable x after a transition is taken.
All manifolds, vector fields, curves and maps are of class C°°. Manifolds are assumed
to be connected, paracompact, and Hausdorff. C°°(M), Af(M)y eind f2^(M) denote
the sets of smooth real-valued functions, smooth vector fields, and A;-forms defined
on a msmifold M.

A hybrid system is a dyncimical system consisting of one or more components called
hybrid automata. A hybrid automaton is a tuple A = (Q,E, D, /, G, R) with the
following elements:

State space: Q = L x M consists of a finite set L of control locations and n con
tinuous variables x G M, where M is an n-dimensional differentiable manifold.

Events: E is a finite observation alphabet.
Vector fields: D : L —> X{M) is a function assigning an autonomous vector

field to each location. We will use the notation D{1) = //. For location /, the
dynamics are given by x = //(x).

Control switches: E is a set of control switches, e = (/,a, /') is a directed edge
between a source location I and a target location Vwith observation cr G E.

Invariant conditions: I : L 2^ is a. function assigning for each location an
invariant condition on the continuous states. The invariant condition 1(1) C M
restricts the region on which the continuous states can evolve for location 1.

Enabling conditions: G : E —¥ {ge}e^E is a function assigning to each edge an
enabhng (or guard) condition g C 1(1). We use the notation G(e) = g^.

Reset conditions: R \ E —{re}ee£; is a function assigning to each edge a reset
condition, rg : M 2^, where we use the notation R(e) = r^. We assume
^e(pe) Q 1(1) for each e = G E.

2.1. Semantics. A state is a pair (/,x) satisfying x G1(1). E(l) denotes the set of
edges possible at ZG L. Trajectories of A evolve in steps of two types. A a-step is
a binary relation CQx Qand we write (/,x) 4- (l\x') iff (1) e = (l,(j',l') GE,
(2) X G ^ej and (3) x' G re(x). Define <^{(x) to be the trajectory in location /,
starting from x and evolving for time t. A t-step is a binary relation G Q x
and we write (Z,x) A (V,x') iff (1) Z= r and (2) for Z> 0, x' = <l)t(x,a), where
Mx) = fi(^t(x,(T), a). A trajectory tt of A is a finite or infinite sequence of the form
^ : 9o ^ 91 92 . where for all Z> 0, G G E UR+. We assume the
trajectories are non-Zeno; that is, every trajectory of A admits a finite number of
c7-steps in any bounded time interval.

2.2. Example. Consider the hybrid automata of Figure 1. The invariants for loca
tions Zi,Z2,Z3 are x > l,|x| < l,x < —1, respectively. The dynamics in each location
are either afilne linear or linear. It has been shown that this hybrid automaton has
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Figure 1. Double scroll hybrid automaton.

a homoclinic orbit and by Shilnikov's theorem the system has a Smale horseshoe
implying the existence of a chaotic attractor [6].

3. Bisimulation

The concept of bisimulation was introduced by D. Park [23] in the context of concur
rent processes. Let Arepresent an arbitrary time passage. Given the hybrid system

a bisimulation of .4 is a binary relation ciiC Q x Q satisfying the condition that
for all states p, g € Q, if p ~ g and a € S U{A}, then
(1) ifp p', then there exists g' such that g g' and p' ~ g', and
(2) if g g', then there exists p' such that pp' and p' ~ g'.

Game-theoretic: Bisimulation cem be interpreted as a game between an automa
ton and its environment [11]. In this view, the protagonist and the environment
start at two states and take a- or t- steps, each time recording an observa
tion. The environment uses non-determinism advantageously to select a step
the protagonist cannot match. If the protagonist matches the observations of
the environment, the states are bisimilar.

Topological: Stemming from fundamental work by McKinsey and Tarski [29],
bisimulation was interpreted as a form of topological continuity by Jennifer Da-
voren [9].

Constructive: A constructive view and also a definition is that bisimulation is the
coursest stable refinement oi an observation equivalence [19]. One uses a Paige-
Tarjan type refinement algorithm [21] such that the fixpoint of the algorithm
gives the bisimulation partition. See for instance, [10], [22].

Algebraic: In an algebraic sense, bisimulation is a congruence; that is, an equiv
alence relation closed under concatenation, where by concatenation we mean
successive a- or t-steps of A.

Let be the set of equivalence classes of A bisimulation is finite if it has a finite
number of equivalence classes. Using a quotient system A~ is constructed. If 2:^ is
finite, the quotient system is the finite automaton

A:^ = ((3:^,SUA,£;^).

Qc. = L XMj^ are the cosets of g € is written g = [(/,a;)] for some I € L,
X E M where (l^x) € g. The transitions of defined by and denoted
are as follows. For g = [(^,a;)],g' = [(/',x')], g q' iff there exists (/,y) € g and
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Figure 2. Bisimulation for timed automata.

€ q! such that {l^y) (l\y') is either a t-step or a cr-step of A (for t-steps, q
and cl are contiguous). is referred to as an abstraction of A.

Remark 3.1.

1. The importance of ^4^ is that it captures the salient features of the dynamics
of in a time abstract model. The abstraction of time enables the reduction
from an infinite state space to a finite one. If the bisimulation is not finite
the reduction can still be done to an infinite automaton, and model checking
algorithms can be applied, but they may not terminate.

2. If initial conditions or final conditions are specified with A, then these
sets are quotiented by ~ as well.

Example 3.1. Though timed automata have been written about extensively, it is
illuminating to examine their bisimulation with a geometric lens. Timed automata
are a subclass of hybrid automata in which the continuous dynamics define the clock
floWy Xi = 1. Enabling and reset conditions are built up from finite conjunctions and
disjunctions of the formulas x%c where % € {<, <, =, >, >} and c € Z.
For y eR, let [t/J be its integer part and (y) its fractional part. Let L be the set
of locations, x € M" the clock variables, and the largest integer the ith clock is
compared to in an enabling condition. We say (^,x) ~ iff (1) I = I', (2) for all
i = 1,... ,n, Xj > rUt iff xj > mi, or [xjj = [xJJ, (3) for every Xi, < mi and Xj < m
{xi) < {xj) iff (xJ) < (Xj) and (xj) = 0 iff (xJ) = 0.
Figure 2 shows the bisimulation for timed automata projected to the Xj —Xj plane.
We observe the following features:

1. The bisimulation is defined on a compact region of the state space where the
interesting dynamics occur. Outside this region, the dynamics are suflB.ciently
benign that they can be handled by one equivalence class.

2. The partition is described as a gestalt rather than as an iterative procedure that
terminates at a fixpoint.

3. The partition uses hypersurfaces that are either invariants or transversals of the
fiow to build up equivalence classes.

4. The hypersurfaces are propitiously selected to be compatible with the syntax
of the enabling, reset, initial and final conditions. That is, the syntax of timed
automata does not imply a further refinement of the "proposed" partition.
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5. The hypersurfaces are defined by analytical expressions. The atomic expressions
provide analternative description of the bisimulation [8, p.280], and can be used
to define the symbolic execution theory [12].

3.1. Stable partitions and compatibility.

In this section we develop the construction of bisimulations for hybrid automata using
our geometric insights. First, we show how a concept of stable partitions with respect
to a fiow combined with a natural compatibility condition on the enabling and reset
conditions leads toa bisimulation. This step is rather straightforward. Assuming the
compatibility conditions are met, there is only constructing stable partitions.
For each I e L, let be an equivalence relation onlxM and let be the partition
defined by We say is a stable partition of the flow or defines a stable
partition of the flow <jf if {l,x) {l,x') implies that for all ?/ GM, t > 0, if y= (j)[{x),
then there exists y' e M and t' > 0 such that y' = <l>[,(x') and {l,y) {l,y').
Let e = {l,a,V) € E and V = {P^ | / GL}, a set of stable partitions defined by
equivalence relations Given c:;' dX I ^ L, we say is compatible with
if if^x) G{1} Xpe implies [(/,a;)] G{1} x g^. That is, the enabling condition is a
union of cosets of Similarly we say is compatible with if{l,x) G implies
[(^a;)] G The analogous definition applies to Qf For e = (l.crj) we say that
re is compatible with if {V,x') G{/'} x re(x) implies [(/',x')] G{/'} x re(x), and
[(/,a;)] = [{l,x')] implies r^ix) = re(x'). Finally, we say A is compatible with {—^}
if for each e e E, g^ and rg are compatible with respectively, and for each
leL.U^ is compatible with and and Qf are compatible with

Lemma 3.1. Given hybrid automaton H and {~'} defining a set of stable partitions
with respect to the flows ofH, suppose H is compatible with {^: '̂}. Then ~C Q x Q
defined by: (/,x) ~ {I'tx') iff (1) I = V, and (2) (/, x) {l\x'), is a bisimulation for
H.

Proof. Let ~ bean equivalence relation satisfying conditions (1) and (2) and suppose
(Z, x) ~ (l',x'). This implies I = Vand (/,x) {l,x').

Suppose (^,x) (/,y) is a t-step of A. Because defines a stable partition, there
exists y' € M and > 0 such that y' = 0j,(x') and {l,y) {fy'). Hence (/,y) ~
{hy')-

Suppose (/,x) A (/,y) is a cr-step of A. This implies x G for e = (I, a, I). Since Pe
is compatible with x' £ g^. Since r^ is compatible with we can find y' Gre{x')
such that [(/,y)] = [{ly')], since re(x) = re{x'). Hence (/,y) ~ (l,y'). •
Remark 3.2.

1. The definition of stable partition says two equivalent points can visit the same
next equivalence class, not that they will. Thus, it applies to differential inclu
sions as well as vector fields.

2. The compatibility definitions are the natural ones to ensure that bisimulation is
preserved over (7-steps. One could also take the view that the enablingand reset
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conditions are given in aji arbitrary form. For safety controller synthesis staurting
from had states, to obtain the bisimulation one over-approximates the enabling
and reset conditions by compatible ones. For reachability analyses starting from
good states, one under-approximates. The approximative view is described in

[2].
3. If initial and final regions are specified with ^4, then they must also satisfy a

compatibility condition with the partitions.

3.2. Foliations and first integrals.

We build stable partitions using foliations, flow boxes and first integrals. We assume
knowledge of some differential geometry (see [32]).

Given an n-dimensional manifold M a smooth foliation of dimension p or codimension
q = n —pis a. collection of disjoint connected subsets F = {sa} whose disjoint union
forms a partition of M. The foliation satisfies the property that each point of M has
a neighborhood U and a system of coordinates y : U W xR^ such that for each
Sq, the (connected) components of {U HSa) are given by

Vp+i = Ci

Vp+q — Cg

where c,- 6 M. Each connected subset is called a leaf of the foliation, and each leaf is
a submanifold of dimension p in M. See [16] for more background on foliations.

We want foliations whose leaves are regular submanifolds. The Pre-Image theorem
[32, p. 31] provides a way to construct regular submanifolds, £ind, in particular, the
pre-image of a submersion defines a fohation with regular leaves. A foliation globally
defined by a submersion is called simple.

Let / 6 X(M). We define two types of simple co-dimension one foliations with
respect to /, called tangential and transversal foliations. For this we require a notion
of transversality of foliations. Let TjP be the field of tangent spaces to the leaves
of F. A map h : M N is transverse to a foliation F of AT if for every x € M,
h^TxM -\-Th{x)F = Th{x)^j where /i» is the push-forward map of h. A submanifold W
on M is transverse to foliation F of M if the inclusion map i '.W M is transverse
to F. A foliation F' is said to be transverse to F if each leaf of F' is transverse to F.
A foliation in general does not admit a transversal foliation, but for each x E M there
exists a neighborhood of x such that F restricted to the neighborhood has a local
transversal foliation. A tangential foliation F of AT is a co-dimension one foliation
that satisfies f{x) GT^F^x G M; that is, / is a cross-section of the tangent bundle
of F. A transversal foliation F± of M is a co-dimension one foliation that satisfies
fix) ^^FyxeM.

Let {Fj} be a collection of n —1 tangential foliations on 17 C M and one transversal
foliation F„ := F± on U, which, additionally, satisfies a regularity condition: for each
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^ ^ + '̂ xF-n — • For simple foliations the following lemma provides
an algebraic test for regularity.

Lemma 3.2. Let M be an n-dimensional manifold and define :M^ R, z= 1, ...n
a collection of submersions on M. If dhi are linearly independent on UCM, \hen
the foliations defined by are independent on U.

We will not use all ofthe leaves ofa foliation, buta finite subset ofthem. We discretize
a foliation as follows. Let h : M M. he the submersion of a simple co-dimension one
foliation F. Given an interval [a, 6], a gridsize A= ^ > 0with fc € Z+ , define the
finite coUection of points = {a, a -f A,... ,6}. Then, h-\Ck) is the discretization
ofFonh-i([a,6]).
Abisimulation can be constructed using foliations by elaborating the following steps:

1. Find {n - 1) simple co-dimension one tangential foliations on C/ c M, for each
fiJeL.

2. Construct either a local or global (on U) transversal foliation for each //.
3. Check the regularity condition on U.
4. Discretize the foliations using a gridsize A.

To obtain tangential foliations we use local first integrals. Afirst integral of x= f(x)
is a function ^ : M R satisfying Lf^ = 0, where is the Lie derivative of ^
along /.

Theorem 3.3 (Flow Box). Let f be a vector field on M with f{x) ^ 0. Then there
exist coordinates y defined on a neighborhood V of x such that

f = on V.
dyn

Here is our main result on stable partitions.

Theorem 3.4. Given f € X{M), compact UCM, and coordinates y, if{y,U) is a
flow box for X, there exists a stable partition with respect to f on U.

Proof By the Flow Box theorem, there exists a diffeomorphism h : t/ ->• V c M",
where V= [-1,1]", such that x = f{x) expressed in y = h(x) coordinates is

yi=0,y2 = 0,...if„ = l. (3.1)
There exist n - 1 independent functions yi = ci,... ,2/„_i = Cn-i that are first
integrals of (3.1), and they define (n— 1) independent submanifolds, passing through
each y = (ci,... ,Cn-uyn)- Asubmanifold transversal to the flow of(3.1) isgiven by
Vn ~ On'

Fix k GZ"*" and let A = ^. Define

Cjk = {0,±A,±2A,... ,±1}. . (3.2)

Each yi = c iox c e Ck, i = I,... ,n defines a hyperplane in E" denoted and a
submanifold Wi^c = h~^{Wi ff). The collection of submanifolds is denoted

Wfc = { IcGCfc,i€{l,... ,n} }. (3.3)
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Figure 3. Partition for The leaves of the tangential foliations form
boundaries that are invariants of the flow.

U \ Wk is the union of disjoint open sets "14 = {V}}.
We define an equivalence relation on R" as follows, x x' iff
(1)x^V iff x' f V, and
(2) if x,x' € V, then for each i = 1,... ,7i, Xj G (c,c + A) iflF x' G (c,c + A), and
Xi = c iff xj = c, for all c G C^.

We define the equivalence relation ~ on {/} x M by x ~ x' iff h{x) h(x'). ^
is clearly a stable partition with respect to because the invariant submanifolds
enclose trajectories starting at equivalent points so that they can only visit the same
next equivalence class. •

Remark 3.3.

One can show that the closure of an equivalence class of ~ is a union of equiva
lence classes of This implies that the interior of an equivalence class is either
the empty set or the class itself. The picture of ~ is something like Figure 3.
The equivalence classes axe the open line segments, points, interiors of cells, etc.
Suppose a stable partition has been constructed for a smooth vector field X
on M using the steps outlined above. Let Y on JV be a smooth vector field
topologically conjugate to X] that is, there exists a homeomorphism h taking
orbits of X through x G M to orbits of Y through h{x) G N and preserving
the sense of the orbit. Then h can be used to construct a stable partition with
respect to Y. First, if p is a first integral of X then goh~^ is a first integral of Y
since Lyigoh'^) = d{goh~^){h^X) = dg-X = Lxg- In this manner, tangential
and transversal foliations are mapped through h to tangential and transversal
foliations of F, respectively. If the foliations of X are independent so are the
foliations of Y. Also, since h maps fixed points of X to fixed points of y, a
stable partition defined on U C M for X non-vanishing on U is well-defined for
h{U) C N and Y is non-vanishing on h(U).
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4. Exterior differential systems

Anatural setting for finding first integrals is provided by exterior differential systems
[27, 3]. Let Q{M) = with the wedge product Abe the exterior algebra on
M. d: Q^(M) is the exterior derivative. Recall that u G is exact
if there exists an oc G ^(Af) such that lj = da. A set of independent one-forms

... ,0;" generates a Pfaffian system P = {a;^ ... ,w"} = {J] fkOJ^\fk € C°°{M)}.
The Pfaffian system satisfies the Probenius condition if dio* is a linear combination of

Theorem 4.1 (Frobenius). Let P = be a Pfaffian system with one-
forms satisfying the Probenius condition for i = 1,... ,n. Then there exist coordinates
hi,... jhji such that P —— •^d/ii,... ,dhjf^.

In this case the Pfaffian system is said to be completely integrable and the hi are
the first integrals of P. Thus, the Probenius theorem provides an alternative and
equivalent route to existence of local first integrals as the Flow Box theorem. We
have found it useful in applications to work with systems in Pfaffian form. Also, it is
easy to state results about parallel composition of hybrid automata in terms of the
vector fields in Pfaffian form. We give such a result next, but we remark that this is a
first step: interesting extensions are possible using the theory of exterior differential
systems.

4.1. Parallel composition. Bisimulation for hybrid systems is, in general, not
closed under parallel composition of automata. We give a sufficient condition on the
Pfaffian form ofthe continuous dynamics ofeach control location so that iftwo hybrid
automata have a finite bisimulation, then so does their parallel composition.
Suppose we have hybrid automata Ai = (Qi, Ei, A, Ei,U, Ri) , i = 1,2 with state
spaces Qi = Li X M" and L2 x M^, respectively. We label the components of
the continuous variables of Ai, xi,... ,Xn, and of A2, x„+i,... ,x„+^. The parallel
composition of Ai and A2 is

Ai XA2 = (Qi XQ2, El UE2, D, E, /, G, R)

D : L1XL2 X(Mi XM2) assigns vector field [// ///]^ to location (/,I'). / : Li xL22M1XM2 assigns invariant I{1) x I{1') to location (/,/'). e = ((/i,/2),o",€ E if
one of the following is true:

1. G El \ E2 and Ci = (Zi, <7, Zj) G Li.
Then g^ = x M2 and re(x^,x^) = [rei(x^) where x^ GMi and x^ GM2.

2. (7 GE2 \ El and 62 = (Z2, cr, I2) ^ -^2.
Then ge = Mi x g^^ and re(x\x^) = [x^

3. (7 GEl nE2, ei = (Zi,(7,Zi) G Li and 62 = (Z2,cr,Z2) G L2.
Then g^ = g^^ x g^^ and reix^.x^) = [rej(x^) re^ix^)]^.

Theorem 4.2 (Parallel Composition). Given Ai andA2, suppose bisimulations exist
using the stable partitions method on Ui C Mi and U2 C M2. If for each pair
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(li, lj) E Li XL2, there exists a one-form of the Pfaffian system at U

h(dxi^... , dxn) — = 0,

and a one-form of the Pfaffian system at Ij

h {dxji^\^ ••• )dXfi^jjf) = 0,

such that the one-form

h{dX\^ ••• ? h (^dXji+li • ' ' j^^n+m) ~

is exact, and aij is independent of the first integrals of fi. on Ui and fi. on U2,
then, assuming the appropriate compatibility conditions are satisfied, a bisimulation
of Ai X A2 can be constructed.

Proof Since the bisimulations of Ai and A2 have been constructed with the stable
partitions method, we have n —1 first integrals for each /^., li e Li and m —1 first
integrals for each fi^, Ij € L2, giving n + m —2 first integrals for the vector field / =
[fii fijV' To construct a stable partition on Ui x U2 we require n+m —1independent
first integrals and the missing one is supplied by aij. To see that T/ay = 0, observe
that

dx'

f'{x') ~ •' •' —h ,dXn+m)
where fi is the ith component of / and i € I,... ,nm. •

5. Applications

In this section we present several applications. We show how to obtain the bisim
ulation for timed automata and linear systems in Jordan form. Then we look at
problems of coordinated autonomous agents, which make a compelling case for the
need for a paradigm shift in control design and verification. Some examples are co
operating automated vehicles, aircraft, underwater vehicles, and mobile robots. We
show how bisimulations can be constructed for coordinated aircraft and coordinated
mobile robots.

5.1. Timed automata. A timed automaton has dynamics in Pfaffian form given
by

dxi —dt = 0

dXn —dt = 0.

There are n —1 independent tangential foliations defined by the submersions:

Xi — X2 = Ci

Xfi—l Xji — Cfi—i.
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where c,- 6 M. Note that the leaves of each foliation have dimension n — A
transversal foliation is

though the partition of [1] uses more transversal foliations because of the nature of
the enabling and reset conditions:

Xi = di

Xfi — dj^.

Each of the leaves of the transversal foliations are transverse to every integral curve.
Since thedynamics ofeach location isthesame, thestable partition obtained from the
foliations is the same, so the enabling conditions and reset conditions are compatible
between locations.

5.2. Mobile robots. Consider the coordination problem of twomobile robotsA and
B, operating in a closed workspace of a factory. The robots are modeled using hybrid
automata, with each control location corresponding to an atomic maneuver, such
as "move forward", or "change direction". Each location of the automaton has the
kinematic model of the associated maneuver. We assume in each automaton location,
the control inputs are constant, but they are allowed to change instantaneously upon
switching locations. The kinematic model for each robot, converted to chained form
[20] is the following:

Xi = Ui

X2 — 112

Xi — X2U1

3/4 3/3Uj .

There are three tangential foliations given by the equations

U2
X2 Xi = C2

Ui

Ui 2

UiV 3 Ui
X4 "t" „ I ] X2 X2Xi — C4.

3 \U2j U2

and a transversal foliation given by:

3:1 = Ci.
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To show these foliations define a bisimulation for each robot, we must check the
regularity condition:

Dh =

_2£i
ui

0

0

1

«2
X2

0 -S^3+(^) Xr
1

This matrix has full rank so long as ui ^ 0 and U2 ^ 0. Thus, the partition for each
robot is defined globally on .

When we take their parallel composition, an extra tangential foliation is introduced:

UibXia "^IAXiB ~ ^AB'

A calculation similar to the next example shows that a bisimulation for the parallel
composition exists.

5.3. Planar aircraft. Consider the coordination problem of two aircraft A and
B flying at a fixed altitude, which was studied in the hybrid systems context in
[30]. Each aircraft is modeled by a hybrid system in which an automaton location
corresponds to an atomic maneuver performed with constant control inputs. The
control inputs are chzinged instantaneously upon switching control locations. The
state p is an element of the special euclideangroup SE(2), and X is an element of its
algebrase(2). Assuming the aircraft does not exercise it's pitch control, the kinematic
dynamics of Eiircraft A are given by p = gX where

9 =

and

X =

cos (j) —sin <f) X
sin cos (j) y

0 0 1

0 —Ui U2
Ui 0 0

0 0 0

<j) is the yaw angle, and the inputs Ui,U2 control the yaw and velocity, respectively.
There are two tangential foliations given by equations

Uix —U2sm<l) = Cx

Uiy -\-U2Cos(f) = Cy

and a transversal foliation given by

Letting the state variables and inputs of aircraft Bhe <f>B^XB,yB,UiB, and U2b, analo
gous expressions for the tangential and transversal foliations are obtained for aircraft
B. An additional tangential foliation is found for the parallel composition of the two
systems given by

'^ib4>a —'^ia4>b —Cab-
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We check the regularity condition on the five tangential foliations and either of the
two trcinsversgJ foliations. Namely,

0

0

Dh- ^ ^ "IB w yj -uiA
—U2B cos

-U2b sin (l)B
1

This matrix has full rank so long as u\Ai'̂ ib ^ 0, so the partition is defined globally
on R'* XT^. If, in addition, ^ is rational, afinite bisimulation on C/x 1^, for compact
U exists.

UiA 0 —U2a cos (I)a 0 0

0 UiA -U2A sm(t>A 0 0

0 0 UlB 0 0

0 0 0 UlB 0

0 0 0 0 UlB

0 0 0 0 0

5.4. Linear systems in Jordan form.

In [2] we presented the analytical description ofthe bisimulation for hybrid automata
with linear dynamics in Brunovksy normal form and in diagonal form. These results
can be generalized to Jordan form. For each I € L, the procedure is the following:
(1) for each type of elementary Jordan block derive expressions for the local first
integrals, defining a set of tangential foliations, (2) for each pair ofelementary Jordan
blocks derive an expression for the coupling first integral, defining another tangential
foliation, and finally, (3) derive an expression for the submersion corresponding to a
foliation transverse to the linear flow.

We consider the linear system

X = Ax (5.1)

where A G is of the form A = diag[J^ ••• and are ele
mentary Jordan blocks corresponding to the real (repeated) eigenvalues and complex
(repeated) eigenvalues of A^ respectively. Following the proposed procedure, we flrst
derive the local first integrals for and J^.

5.4.1. Real Eigenvalues. Consider the elementary Jordan block given by

A 1

r =

where A € R. The solution of x = with initial condition c G R"* is

xtx(t) = e

1 ^

^ ^ 2! ••• (m-l)!
1 t ...

1 t

1

(5.2)

(5.3)
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We obtain m —1 first integrals ... , as follows. Prom the solution of Xm we
find

At _
e =

The solution of Xm-i combined with (5.4) gives

^ ^m—1 Ci7i_i

Substituting (5.5) in (5.4) we obtain the first integral

:= Xm exp = d^-i
♦Crri

(5.4)

(5.5)

(5.6)

where dm~i G M. The remaining m —2 first integrals are found by substituting
(5.4) and (5.5) in the solutions for X\ through a;m-2- Carrying out this operation
recursively, we obtain the first integrals

^;n-2

771—O

q,r
m—k

^m-2 ^m-l
—<im-2

^m—3

Xrri

X,

2®^
^m—2Xm—l ^m—1

< 3x^

fc-2^m-k 1^m-\ ^ ^m-1
• ail

= dm-k

(5.7)

(5.8)

(5.9)

where dj G M. We show these are first integrals by an inductive argument. First,
D^rn-2 • J^'x = 0. Suppose ' J^'x = 0 for j = 2,... , fc - 1. Then

D'^rn-k ' J^'x =
a^m—fc+1

Xm

k-1 fc-2

•^m-1

(k - l)!x^-i ^ (j - i)!aJ
*^m-l

-1 ^m-k+j
771

= 0.

5.4.2. Complex Eigenvalues. Consider the elementary Jordan block G given
by

where

D =

D lo

a —b

b a

h
D

Io =
1 0

0 1

(5.10)
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Following [14],J:he solution of x = is found by converting to the complex domain.
Let 2 : R —>• i-i = —1, and consider i = Bz^ where

/i 1

1

M J

^ = o + z6.

We identify C 2 with M"* by the correspondence

(21, . . . ,2^ = (Xi + 2X2, ... , + iXm)'

The solution of i = ^2 is

m

p-k

T
j=k

(5.11)

We obtain m - 1 first integrals ... , as follows. First, from the solutions of
Xm-i and Xm we derive the useful expressions:

Let

Evaluating X3+ gives

=

<4-1+ c;
l^m—1 ~l~ ^^mXm

<4-1+ <4
^m—lXm 1

e®'cos bt =

sin bt =
^m—1 d" ^

=.

X;b- =

m

XTn—kXjn—l d" ^m—ifc+l^m

®m-l +
Xm—kXm Xfn^k^iX^^i

<Cm-l + Xl,

t =
Xm—ZXm—l d~ Xjn—2Xm 8^171—1 d~ Cjn—2Cm

Xm-l + X] Cm-1 + C

(5.12)

(5.13)

(5.14)

(5.15)

Equipped with (5.12) - (5.15) we can find m - 1 first integreds. Considering the last
two equations of x = J^x and using polar coordinates, we obtain a first integral

.-1 <= ^xl, + exp (-aJ^3+) =d„_i (5.16)

where d^-i ^ The remaining m —2 first integrals are found by evaluating Xk+
and Xk- for = 3,5,7,... ,m - 1 and substituting (5.12) - (5.15) in the solutions for
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Xm to xi- Considering the evaluation of Xk- we obtain the first integrals

m—2 Xs- = dm-'.

fc-3
2

^m-A:+l •" ^k~ ~ ^ = dm-k+1-
3=1

Considering the evaluation of Xk+, we first obtain the first integral

<-3 + X^-2
^m-1 +

-Xi^ = dm--

The remaining first integrals for fc = 5,7,... are

1
m—5

I.m—k

= X^+--Xi^ = cU.

fc-S

2

••= - E = dm-,
i=i

pi

17

wherep = -y. We can verify by a recursive argument einalogous to the real repeated
case that these are first integrals.

5.4.3. Coupling integrals. It remains to find the first integrals describing the coupling
between elementary Jordan blocks. We consider the pairs (7**,^**), (J**, J*^), and

For the coupling between a and a block, it sufiices to find a coupling first
integral for the system

X =

AGO

0 a —6

0 6a

X. (5.17)

Using polax coordinates X2 = r cos X3 = r sin 9, we have r = ar, from which it is
seen that

Xi{xl + X3) 2 = d

where d € R. For the coupling between two blocks it suffices to find a first integral
for the system

X =
Ai 0
0 A2

X

which corresponds to the last row of each block. We obtain

A2X1 —A1X2 = d.

(5.18)
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For the coupling between two J'̂ blocks it suffices to consider the system

ai -hi
6i 0i

X =

<12

62
—62

CI2

X. (5.19)

Converting to polar coordinates, we have 61 = hi and ^2 = ^>2) so

62 arctan(—) —61 arctan(—) = d.
Xz

5.4.4. Transversal foliation. A expression for the submersion defining the transversal
foliation is found by considering a particular instance of the A matrix. Because of
the diagonal structure of the Jordan form, an initial candidate is := Xm = dmy
but better candidates are often available which are independent ofthe first integrals
over a larger domain.

In two dimensions there is a canonical choice for the transversal foliation given by
the first integral of a complementary vector field. Suppose we have x = Aix with
Ai non-singular and we want to find A2 such that for all x, Aix and A2X are not
colinear. That is, there does not exist AGMsuch that \Aix = A2X. Equivalently,
A~^A2 has no real eigenvalues (it always involves a rotation). We select

0 -1
A2 = Ai

1 0

A first integral ofx = i42X defines ofa transversal foliation ofx = Aix.
Finally, in practice it is often advantageous to introduce extra transversal foliations
or submanifolds (as in timed automata) in order to achieve compatibility conditions
or to keep the equivalence classes from being too large.

5.4.5. Decidahility of hybrid systems with linear dynamics. Let ^ = {'̂ i}ie{i,...,n}ieL
be the set of submersions obtained in the steps above.

Theorem 5.1. Let A he a hybrid automaton with linear dynamics in Jordan form
andlet he such thatfor each I ^ L, {^j, ••• , form a setofeuclidean coordinates
on /(/). IfA is compatible with the equivalence relations {~/} defined using then
the reachability problem for A is decidable.

6. Implementation

In this section we discuss the implementation of our method. There are two steps:
(1) automatic generation of stable partitions, (2) construction of A^. The essence
of the first step is to automatically generate local first integrals. We rely on the
Prelle-Singer procedure [25], which has been implemented in computer algebra pack
ages [17]. Building the automaton A^ involves labeling equivalence classes of the
stable partitions, checking compatibility conditions, and defining transitions. Both
in this approach and the approximative approach of [2], determining the edges of
corresponding to cr-steps of A can be stated as a problem of existential quantifier



MODEL CHECKING FOR HYBRID SYSTEMS 19

elimination. We are in the process of developing an efficient quantifier elimination
algorithm which exploits the structure of foliations and this will be reported on sep
arately. (We have not even touched the computation geometric view of bisimulation,
in which the bisimulation partition is a cell decomposition.)

6.1. Automatic generation of first integrals. Prelleand Singer [25] showed that
if a differential equation has an elementary first integral (using elementary functions
sin, cos, exp, log, arctan, etc.) they must be of a special form. This lead to a
semi-decision procedure for finding first integrals. It's extension to vector fields with
transcendental terms was described in [17]. We outline the procedure for nth order
differentieil equations following [18].

Consider the difierential equation x = /(x), x € R". and define the differential
operator D= YJLi /i^- The Prelle-Singer procedure involves the following steps.

(1) Set N = 1.
(2) Find all monic, irreducible polynomials Qi with degrees < N such that gi divides

Dgi.
(3) Let Dgi = gihi. Decide if there are constants n,- not all zero such that =

0. If such Ui exist, then IIJ^j^"^ is a first integral. If no such n,- exist then go to
the next step.

(4) Increase N by 1.

The procedure is a semi-decision procedure because an effective bound on N is un
known. Step (2) is the most involved and is discussed in [17].

6.2. Symbolic model checking. The size of the automaton is exponential in
the munber of parallel components of the hybrid system and the dimension of the
continuous state space. Therefore, rather than enumerating all the states of the
symbolic approach explores only the parts of the state space that are relevant and
it does so using a symbolic representation of the state space. This approach has
reported remarkable results for hardware verification [4]. S3nnbolic model checking
involves computing a fixpoint of a functional on the state space. The symbolicanalysis
is performed by iterating on a Pre {Post) operator and uses a set of formulas to
represent regions of the state space.

Let <S be a set of formulas in the variables g € Q. A region is a set of states R Q Q.
Let {{/? denote a set of formulas that define R. We define the operators Pre : 2^ x
E U{A} —> 2^ and Post: 2^ x E U{A} -> 2^ by

Pre{R, a) = {q € Q \ Bq' € R . qq^}

Post{R,a) = {q' e Q \ 3q e R . q q'}.

Following [10], A is effective ifthere is a class offormulas S which permits the symbolic
analysis of A; namely

1. the emptiness problem for each predicate of S is decidable,
2. S is closed under boolean operations and Pre and Post operations,
3. l|(3^tlQ°€<S.
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Suppose the tangential and transversal foliations on U for each I e L axe defined by
submersions = a. Let S be the class of formulas

with % = {<,<,=,>,>}, I € L, i = 1,... ,n, zuid all finite conjunctions £ind
disjunctions of these expressions.

Theorem A with S is effective.

Proof. We observe that: (1) the regions Q®, Qf can be represented as predicates of5
by the compatibility assumption, (2) llPre(i?, a), iPost{R, a) e S for JP € S, by the
compatibility of and r^ and the stable partitions construction, (3) the emptiness
problem for S is decidable. Indeed, consider a predicate defining a closed region:
3a:.(ci < ^i(x) < di) A•••A(c„ < < dn)- This predicate is equivalent to the
quantifier free expression (ci < di) A•••A(c„ < d„). •

7. Conclusion

This paper contributes a new methodology for model checking of hybrid systems under
natural compatibifity conditions of the enabling and reset conditions, which repre
sents a breakthrough from current capabilities that have been limited to timed and
linear rate automata. Implied by our results are decidability results for the examples
considered: coordinated aircraft, coordinated robots, and linear hybrid systems.
Model checking may provide a vast improvement in efficiency over simulation-based
approaches for validating hybrid system performance. Nevertheless, there is some way
togo before the theory can be turned topractical benefit. Algorithm development and
attention to applications in embedded systems design and coordinated autonomous
agents where this method applies are obvious next steps in our research.
The paper suggests some areas for future theoretical investigations. First, the paper
develops a local geometric theory of bisimulation. A global theory is needed. "In
spired adhoccery" suggests patching together local partitions similar to the gluing of
coordinate neighborhoods in a manifold using diffeomorphisms. Another approach is
to use Lie group symmetries. An exciting new horizon is to present a unified theory
ofhybrid systems with symmetries by treating at once the group symmetries at the
automaton level [8, Ch. 14] and the group symmetries of the vector fields. We plan
to report on these directions in future papers.
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