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Abstract

Text / Graphics and Image Transmission
over Lossy Bandlimited Links

by Jeffrey Michael Gilbert

Doctor ofPhilosophy in Electrical Engineering
University ofCalifornia at Berkeley

Professor Robert W. Brodersen, Chair

This thesis describes the application of image compression and networking techniques to

the transmission of text / graphics and imagedataoverbandlimitted and lossy links. While much

research has focused on image and data compression, this thesis proposes that compression alone

is not suffrcieat, and that transformations into progressive formats and e^licit link scheduling can

significantly improve performance over bandlimitedand lossy links. Analyses and solutions are

proposed for both application-independent and application-specific scenarios. Techniques includ

ing bitmap and drawing primitive-based approaches, as well as a novel hybrid scheme, are pre

sented. Image compression techniques optimized for text / graphics bitmaps are presented. The

application-independent techniques are then applied to the acceleration of the delivery of World

^de Web pages over modem and wireless links. Application-specific techniques are illustrated

using the example of a web-based VLSI layout viewer. Various design points trading off band

width utilization, error tolerance, and client complexity and power consumption are presented.

Architectures, algorithms, as well as prototyping techniques and development fimneworks are pre

sented for many ofthe approaches. Lastly, unifying themes and requirements are synthesized and

their implications to network protocol design are discussed.

Robert W. Brodersen, Chairman ofCommittee



Table ofContents

PART I Introduction

CHAPTER 1 Introduction ......................................................................1

1.1. Thesis Overview................................................................................................................. 3

1.2. Common Themes................................................................................................................ 3

1.2.1. Optimization from End-User Perspective............................................................................... 4
1.2.2. Global Ordering / Reordering............................................................................................... 4
1.2.3. LocalProgressive ImageTransformations............................................................................. 4

1.3. Existing Techniques............................................................................................................ 5
1.3.1. Problems of Stale Data......................................................................................................... 5

1.3.2. ProblemsofNot UsingUser Intent to GovernOrdering.......................................................... 5
1.3.3. Problems ofTCP/IP over Wireless........................................................................................ 6

1.4. Thesis Organization........................................................................................................... 7

PART II Application-Independent Transmission

CHAPTER 2 Ovem'ew........................................................................... 9

2.1. Overview............................................................................................................................. 9

2.1.1. Remote InteractiveComputation......................................................................................... 10

2.1.2. Multimedia Collaboration.................................................................................................. 13

2.2. Previous Work................................................................................................................... 13

2.2.1. X Window System............................................................................................................. 13
2.2.2. Xremote........................................................................................................................... 15

2.2.3. Low-BandwidthX (LBX).................................................................................................. 16

2.2.4. Higher BandwidthX (HBX) 16

2.2.5. Microsoft Terminal Server................................................................................................. 17

2.2.6. GrqrhOn Bridges.............................................................................................................. 17
2.2.7. VirtualNetworkComputing............................................................................................... 18



CHAPTER3 Primitive-BasedApproach......,^..,,..........,.............,,,.,,,. 19

3.1. Introduction..................................................................................................................... 19

3.2. Bandwidth and LatencyCharacteristics of Primitive-Based Systems.............................. 21
3.2.1. Latency Due to Queuing Delays................................................„.....................,....,.,..„„..„. 21

3.2.2. Latency Penalty Due to Loss............................................................................................... 22

CHAPTER 4 Bitmap-BasedApproaches,.....,,....,..,.......,,.,........^......,., 25

4.1. Conventional Bitmap Approach....................................................................................... 25
4.1.1. Assessment of Conventional Uncompressed BitmapApproach.............................................. 26

4.2. InfoPad B/W Bitmap System............................................................................................27
4.2.1, Pros and Cons ofUncompressed Bitmap System.................................................................. 28

4.2.2, Asymtotic Reliability ........................................................................................................ 29

4.3. Improved Bitmap using Virtual FramebufiFer....................................................................30
4.3.1. Rate and Flow Control.......................................................................................................33

4.3.2. Analysis ofVirtual Framebuffer Performance..............................................................^.......34

4.3.3. Integration ofVirtual Framebuffer into Transport Control Protocol.........................................37

CHAPTER 5 Color Text / Graphics, and Video Support. 43

5.1. Bandwidth Requirements ofUncompressed Color .......................................................... 43

5.2. Full-Motion Color Video Support via a Separate Display................................................44
5.2.1. Lossy Vector Quantization for Image and Video Compression............................................... 44

5.2.2. VQ Video Encoding 47

5.2.3. Fast Fixed-Codebook VQ Transcoding................................................................................49

5.2.4. MPEG to VQ Video Transcoding ....................................................................................... 51

5.2.5. Live VQ Mdeo Display ofMBONE Transmissions............................................................... 52

5.3. Motivation for Unified Text, Graphics, & Video Display.................................................52

5.4. Uncompressed Framebuffer, Compressed Sends.............................................................. 53

CHAPTER 6 CompressedFramebuffer Approach.............................. 55

6.1. Minimizing Client Hardware and Power Consumption.................................................... 55

6.2. Requirements..................................................................................................................... 56
6.2.1. In-Place Modification of Compressed Data.......................................................................... 56

6.2.2. Update-Independence for ErrorTolerance............................................................................ 57

6.2.3. Must Work for Text/ Graphicsand Image/ Video................................................................. 57
6.2.4. Must Work for all Possible Screen Configurations ................................................................57

6.2.5. MustbeTailored to Typical Screen Contents....................................................................... 58
6.2.6. Decompression Mustbe LowComplexity / Cost ................................................................ 59

6.3. Pseudo-Color or Colormapped Display as Compressed Framebuffer............................. 59

6.4. A CompressedFramebufferCompression Method- TGVQ........—................................ 60
6.4.1. Local vs. Global ColorDiversity.........................................................................................60
6.4.2. Micro-Colormaps ..............................................................................................................61
6.4.3. Vector Quantization of Micro-Colormaps andPatterns.......................................................... 61

U



6.4.4. Detoinining Block Size 63
6.4.5. Requirement Satisfaction 64

CHAPTER 7 HybridApproach ............................................................ 75

7.1. ^4ottv£ttioii 73

7.2. Approach..........................................................................................................................* 76

7.3. Master Operation............................................................................................................... 77
7.3.1. Primitive Squashing........................................................................................................... 77
7.3.2. Dense PrimitiveRendering................................................................................................. 79

7.3.3. Rqiresenting RegionCopies...................................................................^.......................... 79

7.4. Slave Operation..........................................................».........................................»....~.... 80

7.4.1. ProgressiveImageTransmission......................................................................................... 81
7.4.2. Primitive Reordering......................................................................................................... 82

7.5. Benefits / Conclusions...................................................................................................... 83

CHAPTER 8 Text/ Grapklcs Image Compression....,.,...,,.,.,..,,,..,,,,....85

8.1. Introduction............^.............................................................................^.......................... 85

8.2. Image CodingOverview86
8.2.1. Discrete-ToneImages........................................................................................................ 87

8.3. Previous Research / Existing Standards............................................................................ 87
8.3.1. One-Dimensional Dictionary-Based Techniques................................................................... 88

8.3.2. Two-Dimensional StatisticalTechniques........................................................................^.... 89

8.4. Flexible Automated Block Decomposition....................................................................... 91

8.5. Accelerating the Search.................................................................................................... 94
8.5.1. Big Fill, No Copy Search................................................................................................... 95

8.5.2. Fast Match Lists................................................................................................................ 95

8.5.3. Bounded Search Depth...................................................................................................... 97

8.5.4. Coarse / Fine Matching...................................................................................................... 99

8.6. Entropy Coding Techniques............................................................................................ 100
8.6.1. What to Code....................M............................................................................................ 100

8.6.2. Transforming the Parameters........................................................................................... 100

8.6.3. Hufhnan Coding............................................................................................................. 102

8.7. Results............................................................................................................................. 102

8.8. Conclusion .......................................................................................................................110

CHAPTER 9 Development & Analysis Environment......................... Ill

9.1. Introduction......................... ............................ ..................................................... Ill

9.2. Networking Environment.................................................................................................ll2

9.3. Emulator .... ................................................... .................................113

9.3.1. Operation.......................................................................................................................115

9.3.2. Text / Graphics DisplaySupport ..................................................„....................................116

9.3.3. Audio and Videosupport.............................................................................^....................119
9.3.4. Traffic Monitoringand Control and DebuggingHooks...................................................... 121

ill



9.4. Text / Graphics Server 123

9.5. Video Support.... ......................................... ................... ..............................123

PART III Application-Specific Transmission

CHAPTER 10 Optimization of Webfor Bandlimited Links...,,...,,,,,,,,. 127

10.1. Introduction..................................................................................................................... 127

10.2. Motivation 128

10.3. Background / Previous Work 129
10.3.1. Previous Work in Web Acceleration131

10.4. Quantifying Web Page Downloading.............................................................................. 131
10.4.1. An Exampleof Concurrent HTTP/1.0-Style Loading.......................................................... 132

10.4.2. An ExampleofSequential HTTP/1.1 -Style Loading........................................................... 134

10.4.3. HTML Compression....................................................................................................... 134

10.5. Globally Progressive Interactive Web Delivery.............................................................. 135
10.5.1. Globally Progressive Transmission................................................................................... 135

10.5.2. LocallyProgressive Delivery.......................................................................................... 137

10.5.3. Globally Progressive Delivery 138

10.5.4. Interactive Operation..............................„.................................................„..................... 142

10.6. TransportProtocol Prototyping via WebProxies and Java Applets................................143
10.6.1. Proxy Operation.............................................................................................................. 144

10.6.2. HTTP Proxy Design......................................................................................................... 145

10.6.3. Image Proxy Design..........................................^............................................................. 146

10.6.4. Image Applet Design .................................................................................................... 148

10.6.5. Proxy / Applet Performance....................^........................................................................ 149

10.7. Conclusions and Future Directions................................................................................. 151

10.7.1. Integrationwith Existing Web Infrastructure...................................................................... 152

10.7.2. TransparentContent Negotiation....................................................................................... 152

10.7.3. Scalability through Server / Proxy Caching ofProcessed Data............................................. 153

CHAPTER 11 Application-Level Link Management,,,,,,,, 155

11.1. WebChip - An Interactive Java-based VLSI Layout Viewer.......................................... 155

11.2. Techniques to Increase 158
11.2.1. DisplayTechniques.......................................................................................................... 158

11.2.2. Loading Techniques....................................................................................................... 160

11.3. Techniques to Deal with Work In Progress.............—.................................................... 161
11.3.1. Hiding SlowLoading...................................................................................................... 161
11.3.2. Hiding SlowDisplay....................................................................................................... 161

11.4. Conclusions and Future Work......................................................................................... 162

IV



CHAPTER 12 Development Environment 163
12.1. Netem - Network

12.2. SpeedSurfer - PCClient-Side Proxy —...................................... 165
12.2.1. Client-Side •••••• 167

12.2.2. Link Management Using Client-Side andServer-SideProxies169

12.3. SuifServ- SpeedSurfer Server/ ProgressiveProxy..........„......«..««......«.............»..—170

PART IV Conclusions

CHAPTER 13 Conclusions and Future 173

13.1. NetworkRequirements................................................................................................ 173
13.1.1. Lightweight, Independent Streams................................................................................... 174
13.1.2. Explicit Message Interdependence................................................................................. 174
13.1.3. Dynamic Reprioritization oftheStreams........................................................................... 175
13.1.4. Message Unqueing 175
13.1.5. Rate, Flow, andCongestion Control................................................................................. 176
13.1.6. Notification ofPacket Arrival........................................................................................... 176

13.2. Conclusions..................................................................................................................... 176

13.3. Future Directions............................................................................................................. 177

APPENDIX A Software Documentation ..............................................7^7

A. 1. Codebook2ras (1)........................................................................................................... 187

A.2. emu (1)............................................................................................................................ 189

A.3. imgcomp2d (1)................................................................................................................ 194

A.4. mpeg2vq (1).................................................................................................................... 197

A.S. netem (1)......................................................................................................................... 203

A.6. send_vq(l)...................................................................................................................... 206

A.7. show[vq]codebook[y](1215

A.8. SurfServ(l) 216

A.9. vq_play(l) 219

A.10. vq2codebook (1)........................................................................................................... 224

A.11. XlnfoPad(l) 225

A. 12. raw_video (5)........................................... ........—.................................................... 227

A.13. vq(5) 230



APPENDIX B The WebChip Applet 235

B.1. Motivation 235

B.2. Operation Tutorial 237
B.2.1. New Window/ Close Window 237
B.2.2. Showing / HidingControl Buttonsand Labels 237
B.2.3. The SelectionBox........................................................................................................... 238
B.2.4. Expand/Unexpand.......................................................................................................... 238
B.2.5. Zooming and Panning................................................................................................... 238
B.2.6. Redisplay .••.......axa.4.239
B.2.7. Status

B.2.8. Design File Loading Status Indicator 239

B.2.9. Display Mode Choice Button............. .............. 240

B.3. Configuration .,..i 240
B.3.1. Style Files ....................................................................................................................240

APPENDIX c The SpeedSurferApplication 247

C.1. SpeedSurfer Operation....................................................................................................247
C.1.1. Connection Page 248

C.1.2. Stats Page......... ................ .............. .................................... 249

C.1.3. Loading Graph Page ....................................................................................................... 249

C.1.4. Ports Page~...............................„.................................................................................... 252

C.2. Proxy-Proxy Link Protocol.............................................................................................. 253

VI



List ofFigures

FIGURE 1.1. Browsing in a well-connectedTCP-friendly environment 6
FIGURE 1.2. Browsing over a TCP-averse modem or wireless link 6
FIGURE 2.1. Remote computationmodel 10
FIGURE2.2. Challenges posedby text / graphics and imagetransmission problem 12
FIGURE 2.3. Xremote architecture 15

FIGURE 3.1. Conventionalprimitiveapproach 20
FIGURE 3.2. Latency due to queuing delays 22
FIGURE 3.3. Latency penalty due to loss 23

FIGURE 4.1. Conventional bitmq) £q)proach 25

FIGURE 4.2. InfoPad text / graphics server context 27

FIGURE 4.3. Improved bitm^ ^roach using virtual frmnebufferarchitecture 31

FIGURE 4.4. "N^tual firamebuffer 32

FIGURE 4.5. Reduced latency due to adaptive bandwidth compression (ABC) 35

FIGURE 4.6. Reduced latency due to loss 36

FIGURE 5.1. InfoPad full-motion VQ video support Detailed in [15] 44

FIGURE 5.2. Vector quantized (VQ) video encoding 47

FIGURE 5.3. Single firame from the video clip and luminance (Y) codebook adapted to it.... 48

FIGURE 5.4. Gain / shape codebook used for fast VQ encoding 49
FIGURE 5.5. Comparison ofadaptive and fast codebooks 50

FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding 51

FIGURE 6.1. Typical screen imageconsisting ofmultiple graphical£q)plications 58
FIGURE 6.2. Block decomposition into pattern and micro-colorm^ (MCMap) 62
FIGURE 6.3. Compression rate dependence on block size 63

FIGURE 6.4. Pattern code novelty and reuse versus block size 64

FIGURE 6.5. Using local color diversity to make text / graphics vs. video decision 67

FIGURE 6.6. Automatic text / graphics and image / video merging using color diversity. 69

FIGURE 6.7. Two typical images compressed with TGVQ 70
FIGURE 6.8. A typical screendump with and without some continuous-tone regions 71

FIGURE 6.9. Rough architectureofcompressed frmnebuffer TGVQ decoder. 72
FIGURE 7.1. The hybrid approach: pending primitive grtqih 77
FIGURE 7.2. Primitive squashing: removal of unneeded primitives 78
FIGURE 8.1. Typical image and its redundancies 92

Vll



FIGURE 8.2. Automatic block decomposition 94
FIGURE 8.3. Match lists used for fast match 96

FIGURE 8.4. Hashed matchlists - the two pairs ofpatternseach hash to the same 97
FIGURE 8.5. Coarse / fine matching 99
FIGURE 8.6. Discrete-tonepseudo-color test images 103
FIGURE 8.7. Bi-level test images 103
FIGURE8.8. Hybrid discrete / continuous tone test images 104
FIGURE8.9. Gr^h of compression rates for varioustechniques 104
FIGURE8.10. Bitplanedecomposition of screendump image 108
FIGURE 8.11. Block decomposition ofscreendump2 image 109
FIGURE 8.12. Bitplane decompositionofscreendump2image 110
FIGURE 9.1. InfoPad development environment 112

FIGURE 9.2. InfoPad terminal emulator 114

FIGURE 9.3. InfoPad emulator text / graphics pop-up controls 117

FIGURE 9.4. InfoPad emulator audio / video pop-up dialog 120

FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs 122
FIGURE 10.1. Web-pageloading graph using concurrentloadingofup to 4 connections 133
FIGURE 10.2. Web-page loadinggrt^h ofsequential loadingprotocol 133

FIGURE 10.3. Concurrent loading and HTML compression 135
FIGURE 10.4. Sequential loading and HTML compression 135

FIGURE 10.5. Example ofprogressive images 137

FIGURE 10.6. Simul. loadingw/ locally progressive images(w/ HTML compression) 138
FIGURE 10.7. Sequential loadingwith locallyprogressive images(w/ HTML compression) 138
FIGURE 10.8. Globally byte-wiseprogressive loading (w/ HTML compression) 139
FIGURE 10.9. Globally layer-wiseprogressive loading (w/HTML compression) 139
FIGURE 10.10. Globally progressive loading with images scrolled to during loading 141
FIGURE 10.11. Interactive loading with image interactively selected by user 141
FIGURE 10.12. Web proxy / Java applet fiemework 144

FIGURE 10.13. Example of HTML modification to embed image applets 145
FIGURE 10.14. Image applet design 148

FIGURE 10.15. Performance evaluation setup 150

FIGURE 10.16. Trace ofconventional HTTP/1.0 concurrent loading 150

FIGURE 10.17. Collected trace ofproxy / applet operation 150

FIGURE 11.1. Example layout viewed with WebChip 156

FIGURE 12.1. Example diagnostic printouts 166

FIGURE 12.2. Two views of server-side proxies 167

FIGURE 12.3. Two views ofclient-side and server-side proxies for better link control 167
FIGURE B. 1. Effects ofstyle files on layout presentation 241

FIGURE B.2. Style file used to produce image in Figure 11.1 242

FIGURE C.1. SpeedSurfer coimection page 248

FIGURE C.2. SpeedSurfer stats page 248

FIGURE C.3. Example SpeedSurfer log file 250
FIGURE C.4. SpeedSurfer loading girq)hpage 251

FIGURE C.5. SpeedSurfer ports page 252

vm



List ofTables

TABLE 8.1. EflEect of search depth limits on compressiontime and rate 97
TABLE 8.3, Compression times for dictionary-based techniques on 168MhzSunUltra2. 106
TABLE8.5. JBIG Bitplanedecompression 107
TABLE 10.2. Summaryof conciurent and sequential loading 134
TABLE 10.3. Summary of delivery methods and performances 140

TABLE 10.4. Performance ofJava / proxy system on example CNN Interactive page 149
TABLEC.1. Proxy-proxypacket protocol 254

IX



X



Acknowledgments

Firstly, I would like to expressmy sincerest thanks to my thesis advisor.Prof. Bob Broder-

sen, for the direction, freedom, advice, and questioning that has helped to make the past six years a

remarkablelearningand growing experience. It is safe to say that I have learned manythings from

him that I could not have gleaned in a classroom or from a textbook. I would also like to thank

him for often having more confidence in my abilities than I myself had. (And this is no easy

task...) And finally thanks to him for objectively, and without compromise, wearing the many hats

that were required in the final months of my education.

Thanks to Prof. Jan Rabaey for being my secondary, non-thesis, pseudo-advisor and serving

asa role model for me to learn theartofteaching from. Being a Graduate Student Instructor (GSp

for EE141 was definitely one of the most challenging and demanding experiences of my graduate

years, but receiving the Outstanding GSI award was one ofmy proudest achievements, and I don*t

think that it would have been possible without Jan. Most importantly Fd like to thank Jan (and

Marlene, the Jansgroup social coordinator - see below for more information), for letting me be an

honorary "Jan's Group" member for his group's recreational retreats! Some day I may take him up

XI



the challenge to telemark as he snowboards, though itmay be ata time that we can reminisce about

thegood olddays of O.OOlfim technology.

Thanks to Dr. Alice Chiang for her role as amentor and for her support over the past 9years

at MIT Lincoln Laboratory and the Teratech Corporation, Her combination ofcreativity and tech

nical excellence, and confidence in me, has in no small way helped my intellectual growth and

cunosity. I have fiill confidence inthe future ofthe Teratech corporation.

I would like to thank the other members of my thesis committee: Prof. Eric Brewer and

Prof. Paul Wright. Fd like tothank Eric for the insight into my research hehas shared with me. In

particular I'dlike to thank him for not letting me settle on the compressed fiumebuffer approach of

Chapter 6 and to instead seek a more challenging problem, resulting in the hybrid approach of

Chapter 7. I must thank Paul for the support and encouragement over the past years through Info-

Pad, quals, and theManagement ofTechnology (MOT) program. I would also like to thanV Prof.

Randy Katz for chairing my qualifying examination -1just wanted him to have a practice run for

his role as department chair!

Thanks to Prof. Nelson Morgan for his support of some of my earlier investigations into

speech recognition as well asduring my GSI ofEE225d. It was a great experience fi-om which I

learned a lot. I would like to thank Prof. Anthony Joseph, Prof. Avideh Zakhor and Vivek Goyal

for their helpful comments and suggestions on two papers I wrote based on some of my thesis

research.

On the administrative side, I'd like to thank Ruth Gjerde, Heather Brown, Sheila Hum

phreys, andTom Bootforkeeping theEECS system running smoothly andmaking great strides to

improve thequality of life for students. I have not met someone aswilling todrop everything for a

student at any time as Tom.

xu



Funding for this research was supplied in part by DARPA and BWRC members Cadence,

Bicsson, Hewlett Packard, Texas Instruments, ST Microelectronics, Lucent, and Intel. I was the

recipient of an NSF Graduate fellowship for Fall 1994 through Spring 1997. And I must thank

Herschel Smith again for funding my year at Cambridge just prior to Berkeley. That year has

made a change in my life that will be with me for many, many years to come.

I am thankful to have had the privilege of interacting with some truly interesting, motivated,

and bright students over my years at Berkeley. It would be impossible to name them all without

having to publish this thesis in at least two voliunes, but someof the BWRC folk that I will not

soon forget follow. The dinner AnalogRF crew: Dennis Yee, Chinh Doan, Brian Limketkai, and

Sayf Alalusi. Thanks Chinh for putting up with my constant quest for sushi - I will think of you

whenever Pm *'not"having Mexican food! Thanks to Brian for making sure that someone out-ate

me! Thanks to Sayf for keep the gym momentum going just when we started slacking. I'd really

like to thank Dennis for the informal education in wireless communication at the RSF ""class-

room". Pumping iron while learning about out-of-band blockers and the benefits ofDC notches in

wide-band CDMA systems - it just doesn't get any better! Thanks for humoring my constant ques

tioning and for some great advice over the years.

Thanks to the limch / weekend crew: Marlene Wan, Josie Ammer, and Varghese "George"

George (or was it George Varghese George? -1 never could get it straight...) Thanks George for

being a great friend and roommate. I can think offew people I would have rather lived with for the

past 4 years. Thanks to Marlene for being a constant source of entertainment - even if on a rare

occasion it was at her expense...:) I must thank Marlene and George for their imdying encourage

ment over the past years as I decided what I wanted to do when I grew up. Thanks to Josie for hav

ing seen the error ofher ways at MIT and becoming a bear! (Ok, I guess Misha had a small part in

xm



this...) Thanks for teaching me wall climbing and the beginnings ofhockey skating and justbeing

a "super nice" person.

Some other BWRC folk that have made my time here much more enjoyable are David

Sobel, Danny Patel, Johan Vanderhagen, Andy Klein, Vandana Prabhu, Chris Taylor, Trevor Per-

ing, IanO'Donnell, Tom Burd, and Chris Rudell. I must thank Dave for making sure that there

was always someone more "Harvard" than me aroimd. :) You'd better return to complete your

Ph.D.!

Preparation for my qualifying examwasperhaps one of the most educational aspects of the

past 6 years, and would not have been one tenth as meaningful if not for the active role that so

many of the elder grads played in it. In particular David Lidsky, Lisa Guerra, Ole Benz, and Karl

Petty jump to mind as having providedmuch time, guidance, and support.

Many thanks to TrinaChang for beinga terrific friend and perhaps the most understanding

person I will ever meet. Her support over the past year has been imwavering and I am deeply

indebted to her for that. She will certainlymake a fantastic M.D. (or travel agent/ sushi chef if she

chooses to go with her true passions!)

Thanks to (Prof.) Harry Gakidis for providing me with a constant source of business-ven

ture divisions. When this thesis is valuable some day solely for mentioning his name in the acks

because he becomesa multi-billionaire, he will have the last laugh! Seriously, prof, don't give up

the dream. Thanks for dropping everything at any time to give me advice or just cheer me up and

prevent me from "digging my own grave" on many, many occasions.

Thanks to my brother Len and sister-in-law Tam for advice on many topics from work to

life. And thanks to mom and dad, without whom this would not be possible:) I finally made it!!!

XIV



PART I Introduction

CHAPTER 1 Introduction

The explosive growth of the Internet as well as the increasing proliferation of wireless and

broadband communication have caused significant shifts in the way people work, play, and com

municate. Information access is the application of the new millennium. The days of computer

screens equated with chunky green letters on a black 8" screen are over; vibrant images, full-

motion video, and intuitive graphical user interfaces are a must for most applications. But support

ing these rich multimedia displays remotely requires judicious selection of which information to

send as well as how to send it. Compression is not enough.

However, interactively accessing this multimedia information, by its very nature, requires

transmission of the text, graphics, images, and videos in real-time from a remote server to users'

machines. This transmission is often over modem or wireless links of limited bandwidth and reli

ability. Transmission over the Internet introduces additional bandwidth constrictions and opportu

nities for data loss. Thus it is crucial to efficiently code and schedule the transmission of the

multimedia data over the link. Compression is not enough.
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Additionally, the push towards smaller, lighter, yet more powerful portable devices for

everything from web browsing to stock portfolio management and teleconferencing is necessitat

ing some fundamental paradigm shifts. Conventionally, applications used on these portable

devices have to run locally on the devices. This constrains the size of the devices based on the

computational and storage requirements of the applications. However, the InfoPad project [14]

has shown that this constraint is not necessary if the applications arenot run locally, but instead

run remotely on a well-connected compute-server with client-server communication achieved via

wireless links. This then shifts the burden to the design of networking and image compression

protocols and algorithms to interactively send the multimedia data from the server to the client.

Interactivity requires low latency, which in turn requires careful selection of the type of graphical

updates to sendand when to send them. Compression is not enough.

While Internet access used to be confined to the world of academia, today, thanks to the

World Wide Web, it has becomea significant consumer reality, andhas tightly woven its wayinto

almost every aspect of life. HTML, HTTP, and TCP/IP provide a flexible method of delivering

multimedia content However, many users connect to the Internet via slow modem links using

Internet Service Providers, and an increasing number are connecting via lossy wireless links

Unfortunately, the original web protocols were designed for well-connected workstations and are

not particularly network fiiendly. This leaves home and untethered surfers with a suboptimal

setup. Yet, as shown in this thesis, if these protocols are designed to optimize interactive remote

operation, through a combination of compression and networking techniques, the situation for

surfers is greatly improved. Compression is not enough.

Most previous research attempts to improve upon text / graphics and image transmission

through either lossy or lossless compression techniques. As this thesis will show, in most cases,

simply compressing the information transmitted is not sufficient to obtain interactive operation



over bandlimited lossy links - link scheduling and image transformation are required to reduce

latencies and improveend-user experience. Compression is not enough.

LI. Thesis Overview

This thesis examines text / graphics and image transmission techniques for scenarios rang

ing from operating generic applications over wireless links to surfing the web over modems to

application-specificmethods of improvingintCTactivity over bandlimitedand lossy links. The the

sis examines each ofthe scenarios, presets an analysis ofthe challenges and difficulties, and pro

poses and quantifies solutions combiningimage compressionand networking techniques. Finally,

the commonalities of the text / graphics and image transmission tasks are discussed.

For many of the areas, various design points trading off bandwidth utilization, error toler

ance, and client complexity and power consumption are presented. Architectures, algorithms, as

well as prototyping techniques and development frameworks are also presented.

This work found its origin in the InfoPad project [14] as an application-independent means

to deliver the text / graphics and video data to a remote wireless black and white terminal, as

described in Chapter 4. Its scope has grown to include more sophisticated, larger color image-

enabled remote terminals, as well as other areas, such as the acceleration ofweb transmission over

bandlimited lossy links and application-specific acceleration methods.

1.2. Common Themes

There are several themes that pervade the many variations of text / graphics and image

delivery discussed in this thesis:



• Optimization from end-user perspective

• Global ordering / reordering

• Local progressive image transformations

1.2.1. Optimization from End-User Perspective

Interactive transmission of text / graphics and image data is a user-based activity, i.e. the

text, graphics, and images aretransmitted because theuser wants to seethem. It is critical to keep

the goal of the user in mind when analyzing and designing transmission systems. Too oftentotal

transfertimesarereduced through compression techniques alonewhile a farbetteruser-experience

can be delivered by determining which limited information is of use to the end-user right away,

and which information is either not neededor is not neededinitially.

Thus the key is to determine which informationis critical, and this often requires determin

ing user-intentions. Often only a small part ofa large object is required since the amount of infor

mation that a person can scrutinize at any given time is limited, despite the fact that the amount of

information that can be scanned is large.

1.2.2. Global Ordering / Reordering

The order of the data delivery can significantlyeffect the end-user experience. Often global

reordering techniques can qiuckly deliver the most time-critical information at the expense of

delaying non-critical information which may only affect final viewing.

1.23. Local Progressive Image Transformations

While reordering the delivery of the various text / graphics objects or images can yield sig

nificant improvements, often finer granularity manipulation yields further improvements. Thus

parts of the objects need to be reordered or interleaved. Howeva:, it is required that the "more

important" parts are sent first, followed by the "less important" parts. Progressive codings can be

used to separate the more important from the less importantparts. Conventionalprogressive cod-



ingsare used on images to separate the components by spatial resolution or frequency. Applica

tion-specific progressive coding can separateglobalproperties from fine details.

1.3. Existing Techniques

There is almost always a trade-ofFbetween reduced time-to-market and optimized perfor

mance. Reduced time-to-market favors modularity and optimized performance favors cross-

boundary application-specific optimization. However, it is arguable that current solutions favor

the former at the expense of the latter. One of the goals ofthis dissertation is to derive a new level

of modularity which could be reused to exploit commonalities across multimedia transmission

applications while obtaining the high performance required by these applications.

Current solutions to remote text / graphics and image transmission typically consist ofdeter

mining all of the data that needs to be pres^ted, and sending it through a reliable mechanism such

as TCP/IP. When the user generates more updates via interaction, the results of these are queued

up, never to be discarded until successfully received by the remote terminal. This results in a sub-

optimal solution for several reasons.

13.1. Problems ofStale Data

By using a reliable mechanism such as TCP/IP for transport and passing all data to be dis

played throng it, data that is not useful will still be transmitted, and thus consume valuable band

width. While in a bulk file transfer, all data is useful, with text / graphics and image transmission,

often data becomes stale ifnew data to display in the same region is generated.

13.2. Problems ofNot Using User Intent to Govern Ordering

Additionally, not all text / graphics and image data is created equally. Transmission oftext /

graphics and image data is typically in an interactive setting where the user has particular goals
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and intentions. Using these intentions requires intelligent data reordering and often receding.

Simply queuing alldata intheorderthat it was generated byapplications cancause imdue delays.

133. Problems ofTCP/EP over Wireless

The InternetTransmission Control Protocol (TCP/IP) is quite effective at sustaining multi

ple connections across the heterogeneous and time-varying Internet, as well as across local area

networks. It is adaptive and scalable due to its congestion control mechanisms and end-to-end

implementation. It is designed for networks whereloss is primarily due to congestionand central

ized management is not possible or practical. Whilethis describes the Intemet and many LANs, it

does not aptly describe the situation presented by modem or wireless links at the last hop.

Figure 1.1 and Figure 1.2 depict the difference.



Thisdifference in topology hassignificant consequences in termsofTCPend-to-end perfor

mance while web browsing or performingother operations using standard TCP/BP based connec

tions. In the well-connected case, TCP/IP works as designed to allow hosts to establish links that

are as high capacity as is fair in some global sense. Connections quickly "learn" what their fair

share of bandwidth is. However, in the case of browsing over a modem or wireless link, many

problems occur due to the interaction of the last hop with TCP's congestion and flow control

mechanisms.

While research has addressed some of the issues involved with using TCP/IP over wireless

links [8], substantial furtherbenefits can be achieved in high-lossenvironmentsthrough optimiza

tion at the application-level. For instancesof text / graphicsand video transmission, eliminating

false-depend^cies in the data streamscan significantlyreduce latencies.

1.4. Thesis Organization

The rest ofthis thesis is organized as follows: Chapter 2 introduces application-independent

text / graphics and image transmission, presenting uses and previous work. Chapter 3 describes

conv^tional primitive-based approaches which communicate graphical information using draw

ing primitives. Chapter 4 then contrasts this with bitmap-based approaches which transmit the

screen updates using rendered bitmaps. Chapter 5 extends the bitmap-based approach from mono

chrome implementations to color implementations including full-motion video support, consider

ing bandwidth and reliability limitations. Chapter 6 then seeks to further reduce client power and

cost through a compressed framebuffer approach. Chapter 7 proposes a final approach to applica

tion-independent text / graphics and image transmission which is a hybrid containing the best of

the primitive-based and bitmap-based approaches. Chapter 8 details the image compression

requirements for images of text / graphics and presents a novel compression technique designed



for that class ofimages. Chapter 9gives a view ofthe development and analysis environment used

for the research described intheprevious chapters. Chapter 10 begins thepart of this thesis dedi

catedto application-specific transmission by discussing optimization of web protocols for band-

limited links. Application-level linkmanagement is then discussed in Chapter 11 in the context of

an interactive Java-based VLSI layout viewer. Chapter 12 gives a view ofthedevelopment envi

ronment used to support the application-specific transmission research. Finally Chapter 13 con

cludes the thesis by distilling the networking requirements of text / graphics and image

transmission, summarizing the findings of the thesisresearch, and presenting future directions.



PART II Application-Independent
Transmission

CHAPTER 2 Overview

2.1. Overview

Application independent text / graphics and image transmission is used for remote rendering

in a generic manner that is not tailored to a particular application. Text, graphics, and images are

specified in the most general terms such as "Draw the string 'Hello' at (100,230) in Helvetica

llptfont." Applications describe the graphics they desire to present in this generic manner, leav

ing it to a centralized text / graphics system to effect the rendering. One advantage of this

approach is that its flexibility allows almost any application to be supported. Additionally, it is

highly modular in that applications need not know the details of how rendering occurs, or whether

the display is local or remote. Thus improvements to the rendering system will improve the per

formance ofall applications. However, due to this flexibility and modularity, application-indepen

dent transmission is the most difticult to implement efficiently.
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Two principal uses of application independent text / graphics and image transmission are

Remote Interactive Computation and Multimedia Collaboration.

2.1.1. Remote Interactive Computation

Remote interactive computation refers to the technique whereby an interactive application

runs on a remote serverwhile its display information is sent to a local client and keyboard or pen

input is sent back from the client to the server as shownin Figure 2.1. Thus it extendsthe conven

tional client-servermodel of only sharing applicationsand data one step further. To the end-user,

if the display data can be delivered rapidly enough, it appears as if the applications are running

locally. However, remote operation has several advantages:

1. Computationaleconomies scale with burstyusage

2. Lightweight / inexpensive clients

3. Ubiquity ofaccess

4. Facilitates portable operation (ala InfoPad)

5. Protects sensitive equipment and storage

6. Centralization ofadministration

7. Allows "leasing / renting" ofcomputation

Remote computation allows corhputational support ofmany users to be centralized in a sin

gle server or set of servers. In this way, the capabilities required to execute compute-intensive

application need not be replicated at each client. If the peak demands of the clients are high, yet

usage of resources is bursty and independent, centralizationallows the resources to scale with the
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average client demands, and not thepeak client demands. Similar advantages of scale havebeen

obtainedin UC Berkeley's Networkof Workstations (NOW)Project [2,21].

Remote computation allows complex tasks to be accomplished using only low-perfor

mance, low-cost clients. This can result in a reductionin total system cost and size. Additionally,

this facilitatesubiquity of access sinceonly simpleclientsneed to be replicated. Client simplicity,

in turn, enables portable client operation.

By reducing the computeand storagerequirements of the clients, portableoperationis facil

itated. The InfoPadproject [14], as described below, extendsthe remote computation concept by

reducing the clients to little more than framebuffers with radios. In this way, ultra-low power,

lightweightoperation is possible since componentcount and battery requirementsare dramatically

reduced.

Remote computation also allows centralization of sensitive equipment to increase security

and robustness. Since execution is remote, all storage is also moved away from the clients. Thus

hard-disk failures, a constant threat to laptop computers, can be dramatically reduced since the

disks are no longer moved. Additionally, sensitive information can be more readily safeguarded if

it is kept in a single stationary location.

The inherent centralization of resources can greatly simplify system administration. No

longer do all changes need be propagated to all clients, but rather the servers can be updated. As

the complexity and capability of the clients is reduced, the configuration requirements are also

reduced. Thus the "total cost of ownership" decreases.

Remote computation enables new economic / pricing structures. Using the remote compu

tation model, computation is transformed from a product into a service. In this way, users can pay

11
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for computation on an as-needed basis and adaptation to varying needs is more agile. Addition

ally, this could reduce the recurring need to upgradeuser equipment.

2.1.1.1. Challenges Posed by Text / Graphics and Image Transmission Problem

Some of the challenges associated with text / graphics and image transmission are listed in

Figure 2.2. While the user requires fast drawing to displaycomplex screens, this is difficultusing

a limited bandwidth connection. Similarly, the user's desire for rapid responseto retain interactiv

ity is thwarted by non-negligible link latencies.

The wireless environment presents additional challenges. While users demand reliable

operation, the wireless link is often not privy to these demands. Similarly, the desire to operate

portably for hours or days is often hindered by the limited capacity to weight ratio of existing bat

teries.

2.1.1.2. Connectivity Requirements Changed, not Created

It is important to note that although remote computation does require connectivity to send

the display updates, many oftoday's applications involve informationaccess. Thus connectivity is
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required at some level anyhow. Remote computation is simply moving the connectivity partition

butnotadding newrequirements per se. In many cases, using remote computation allows existing

applications to be reused in new and varyingenvironments.

2.1.2. Multimedia CoUaboration

Multimedia collaboration is the process whereby several geographically separated parties

can participate in electronicmeetingssharingaudio,video,and text / graphics information. While

the audio and video primarily communicate the images and soimds of the participants, the text /

graphics content can be shared whiteboards, pre-prepared slide presentations, or even shared

jointly-controlled application executions. This text / graphics content is similar in nature to the

text / graphics content producedby remote computation. In fact it can often be effectedusing the

remote computation model.

2.2. Previous Work

2.2.1. X Window System

The X Window system [62,63,64] was developedat MIT as part of project Athena begin-

q^ngin 1984, and gained significant popularity due to its free distribution. The X W^dow system

allows distributed graphical computing in UNIX environments. It has been ported to many variet

ies of UNIX, including Linux and Solaris, and supports a range of graphics display hardware of

varying capability, bit-depth, and acceleration. The X Window System operates in a client-sever

model where the X server is run on a machine physically connected to a display monitor. Client

applications can be run either remotely via TCP/IP or on the same machine. Keyboard and mouse

input is sent to the clients from the server and text / graphics commands are sent back from the cli

ents to the server.

13



The XTOidow system is designed with a highly layered architecture. The Xprotocol is at

the lowest layer and describes the actual primitive commands such as draw line, draw text, clear

area, etc. There area setof toolkits thatare layered onthe basic Xprotocol toprovide higher-level

abstractions such as menus and other look-and-feel widgets. Some programming languages such

as Tel have been designed with toolkit extensions toX,such asTk. Lastly, thebasic X architecture

decouples the look-and-feel ofthe system from the base architecture by introducing window man

agers whose solepurpose is to define the way thattheuser interacts withthesystem. These win

dowmanagers are separate processes which run independently from the main system and can be

freely interchanged.

The X protocol is drawing-primitive based which is described in the next chapter. This

helps bandwidth efficiency but the encodings used arenotvery compact since X is not designed

for bandwidth-limited environments. This typically leads to inadequate performance over band-

limited links such as modems. Theencoding is also quite error-sensitive, requiring a reliable pro

tocol such as TCP/IP for proper operation.

A couple of architectural features improve interactivity of the X protocol. The first is the

use ofgraphics contexts which store state whichpersists across multipledrawing primitives. The

graphics contexts include current foreground and background drawing colors, font information,

etc. This avoids respecifyingthe informationin each drawing primitive request. Another feature

to improve interactivityover higher latency links is the use of asynchronous operations. Drawing

commands sent to the server are pipelined and identifiedusing sequence numbers. Responses and

error codes are returned to the clients asynchronously and matched up using the sequence num

bers. This reduces the total latency experienced by a sequence of commands to one round-trip

time.
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2^.2. Xremote

Xremote is transformation of the X protocol designed to efficiently send X over serial lines

[20,22]. The Xremote protocols works by running two proxies - one on each side of the slow

seriallineas shownin Figure 2.3. Clients thenconnect to theclientproxyusing individual TCP/IP

connections as they would connect to a conventional X server. The cli^t proxy communicates

with the server proxy via a managed, compressed protocol over a single serial connection. The

server proxy then forms multipleconnectionsto the X serverjust as the clients typicallywould.

The Xremote proxies are useful over serial lines because they both aggregate multiple X

connections into a single stream, and additionallyperform compression over the link. The com

pression entails several steps, the most important of which are delta-encoding and LZW compres

sion. First, the X messages are delta-encoded whereby each message that is 64 bytes or shorter is

compared to the previous 16 messages which were also 64 bytes or shorter. If a new message can

be represented more compactly as a modification of a previous message, this representation is

used. This is useful as many messages, such as mouse movements, are used many times with very

similar contents. LZW dictionary compression[71] is then performed to exploit further redun

dancy in the delta-compressed stream. LZW compression finds repeated byte patterns and repre

sents them more compactly. Xremote uses a reliable datagram transport protocol for transmission

over the serial connection.
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Xremote's overall compression is typically about 2.4:1 bytypically achieving 3:1 compres

sionontext-based messages and 1.6:1 ongeometric messages [22].

2.23. Low-Bandwidth X (LBX)

Low-Bandwidth X [19,27,73] extends upon Xremote by using techniques to further com

press some ofthedata stream, aswell as techniques to avoid transmission ofsome data entirely.

Some of the compression techniques usedby LBXinclude the use of CCITT Group 4 FAX

compression for monochrome bitmaps [61]. This lossless compression technique exploits 2-

dimensional redundancies in imagesto reducethe numberof bits requiredto codethem. Addition

allymany graphics primitives arereceded using1-byte operands instead of 2-byte operands when

ever possible.

Theamountof data sent fromthe X serverback to the client is reducedby cachingof large

data queries, such as keyboard maps, and just sending tags used to identify the data items. The

type and size of the caches are negotiated upon connection of the LBX client to the server. Addi

tionally, some constants which are typically queried from the server are handled locallyor cached

by the LBX proxy. Lastly, the munber of motion events used to report mouse cursor movement

can be limited to prevent excessive latency and uplink bandwidth utilization.

Like Xremote, LBX uses delta encoding and stream compression, but LBX uses the Zlib

compression library [28] based on LZ77 coding instead of LZW compression [71]. The Zlib

library typically compresses more effectively than LZW and also has patent-free status.

23.4. Higher Bandwidth X(HBX)

Danskin [22] further analyzed the work of Xremote and proposed improvements using sta

tistical compression techniques on the X traffic in his HBX (Higher Bandwidth X) protocol. This
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protocol improves upon Xremote's compression by about a factor of 3 to achieve roughly 7.5:1

overall compression relative to the standard X protocol on typical traces.

HBX uses arithmetic coding coupled with predictive models to compactly represent the X

traffic. Different models are used for the various drawing primitive parameters. For instance, a

polygon drawing primitive would be receded by first converting all vertex coordinates to be rela

tive and then statistically predicting later coordinates based on earlier ones. Text is predicted using

the PPMC method using hierarchical predictive models [47,10]. Bitmap images are compressed

using context pixels to determine statistical predictions for the current pixel, in a manner similar to

JBIG [4,43,61]. Small images, which are often reused, are cached at the server to avoid retransmis

sion whenever possible.

2^^. Microsoft Terminal Server

The Terminal Server edition of Microsoft Windows NT 4.0 Server supports application

independent text / graphics and image transmission, allowing multiple independent remote ses

sions on a single server [46]. The client machines display the remote data using a thin-client appli

cation. The protocol used for data communication is the Remote Desktop Protocol (RDP), also

used in the Microsoft NetMeeting multimedia conferencing tool [45].

The Citrix Corporation has developed some low-bandwidth extensions to the terminal

server protocol which are used in its Independent Computing Architecture (ICA). [16]

2.2.6. GraphOn Bridges

The Graphon corporation has developed a Bridges technology to replace its previous Go

Global offering [35]. Go Global losslessly compressed X traffic from Unix workstations to thin

PC clients.
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2.2.7. Virtual Network Computing

AT&T's Wtual Network Computing (VNC) is a freeware application that allows remote

operation ofX Windows and Microsoft Windows [5]. VNC uses bitmap updates, as described in

Chapter 4, including a copy-block update to transmit thescreen changes. VNC also uses various

image compression techniques to reduce the amount ofdata required for the bitmap updates.
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CHAPTERS Primitive-BasedAppwach

3.1. Introduction

The primitive-based approach to remote text / graphics transmission involves sending draw

ing primitives which describe symbolically what to draw. These primitives are often the same

drawing primitives used by the applications to describe their content.

Figure 3.1 depicts the operation of a typical primitive-based text / graphics system. Each

application connects to the text / graphics server individually and sends its content as graphics

primitives requests. The text / graphics server is responsible for combining these requests into a

single stream which is sent to the remote client. The text / graphics server is also responsible for

decoding user input, such as mouse or pen movements, and forwarding it to the correct applica

tion, as well as providing session and access control.

The primitive approach places two important requirements on the transport system:

1. Lossless transmission

2. Order and integrity must be preserved
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The transport system must be lossless because if any primitives are lost, this can have sig

nificant ramifications for the entire image. For instance, if a "clear screen" is dropped, the

entire display would beincorrect. Typically, primitive-based systems also use notions ofgraphics

contexts comprised of "current pen" and "current font" information. If commands to change these

graphics contexts are dropped, then all subsequent primitives which use these contexts will be

effected.

The transport system must preserve order and integrity. If primitives are reordered then

their meanings can be dramatically altered. Often there are direct dependencies between two

primitives; for instance, if a "set current color red" and "draw line from 0,0

to 10,10" are swapped, the color of the line drawn would not necessarily be red. If a

"copy rectangle" is swappedwith commands used to initialize the area being copied, this

too would yield an incorrect result.
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Thus transport-level protocolsmust ensure that the data stream is correctonce it makes it to

the text / graphics subsystem. Standard protocols such as TCP/IP[42] can satisfy the above

requirements, even when using lossy links, and are thus typically used. However, this can result in

significant increases in latency as shown in the next section.

3,2. Bandwidth and Latency Characteristics ofPrimitive-Based
Systems

Primitive-based systems have the advantage that their bandwidth requirements are typically

low since primitives can usually be specified compactly. However, the use ofprimitive-based sys

tems can result in significant latencies to the end-user when used over lossy and/or bandlimited

links.

3^.1. Latency Due to Queuing Delays

In a primitive-based system, the applications specify the primitives used to rend^ their

graphical display. The text / graphics server must send each of these primitives, in order, to the

remote terminal to assure proper display. Since all primitives must be sent, transmission over a

bandlimited link can result in queuing delays as shown in Figure 3.2. The figure depicts the result

ofa remote user scrolling through a list of foods over a slow link which can only transmit two text

items per time step. The positions the user is scrolling to are shown on the left side of the figure

while the data received by the remote terminal are shown on the right side. At time T=0, the user

has selected the top of the list and thus desires for the first four entries, Apple, Banana, Chicken,

and Dessert, to be displayed. However, due to bandwidth limitations, only Apple and Banana can

be sent over and Chicken and Dessert are queued to be sent over. At time T=l, Chicken and Des

sert are received by the remote terminal but now the user desires to see Fudge, Gum, Ham and Ice,
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and thus they must be queued up. At time T=2, the user has selected the final position viewing

Pizza, Quiche, Rice, and Salt, but it is not until time T=5 that this appears. Thus queuing delays

result in significant latencies for the user.

3.2.2. Latency Penalty Due to Loss

In order to understand the effect of data loss on latency, it is necessary to first review the

operation ofrehable protocols.

3.2.2.1. Reliable Protocols

As previously presented, the primitive-based system relies on an end-to-end guarantee that

order and integrity of data will be preserved. If the link is lossy, a reliable protocol can be used to

assure that data is not lost or reordered. These reliable protocols work by detecting packet losses

at the receiver and requesting retransmissions firom the sender. If a given packet is detected as
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having been dropped, it is re-requested by the receiver. The reliable protocol then holds all data it

receives corresponding to packets which should follow the lost packet, until the lost packet is suc

cessfully received. Thus the application receives ail data in order and without loss, but with

increased latency ifpackets are lost.

3.2.2.2. Latency of Loss

The effect of reliable protocols on the transmission of text / graphics data is shown in Figure

3.3. The figure depicts the transmission of four drawingprimitive packets - labeled A, B, C, and D

in response to a button push on the remote client. In the figure, the four packets are transmitted in

order, but packet B is lost in transmission, either due to signal degradation or congestion. The

drawing ofpacket A proceeds without delay, incurring only the single round-trip latency necessary

for the remote client to request an action, and the text / graphics server to effect that action. How-



ever, packets B,C, and D all incur at least a two-round trip delay since the loss of B needs to be

detected andsent to the text / graphics server forretransmission^ This results in reduced interac

tivity.

1. Note that protocolssuch as SNOOP [8] can reduce this to a single traversal over the wired netwoik, but an additional
round-trip up to the basestation is still required.
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CHAPTER 4 Bitmop-BcisedAppwaches

4,1, Conventional Bitmap Approach

The conventional bitmap-based approach is depicted in Figure 4.1. In the conventional bit

map-based approach, drawingprimitives from all applications are combined and rendered by the

text / graphics server. The communication between the applications and the text / graphics server

is performedusing primitivesas before, but the communication between the text / graphics server

and remote terminal uses rendered bitmaps.
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The bitmap-based text / graphics server operates similarly to aconventional text / graphics

serverattached to a framebufifer. Thetext/ graphics server maintains its ownframebufifer in mem

ory since the information ina given primitive often does not contain enough information todeter

mine all pixels in an update. For example, the "copy block" primitive requires the current

contents ofthe screen for proper operation. Additionally, since bitmap updates are typically sent

asrectangular blocks orunions ofsuch blocks, primitives which would not completely modify all

pixels ina block - such as"draw circle" or"draw text" - require the old pixel values tobe

known foruseintheupdate packets. The connection between thetext/ graphics server andremote

terminal is established using either a reliable link or a reliable transfer protocol layered on top of

an unreliable link.

Assessment of Conventional Uncompressed Bitmap Approach

The conventional bitmap approach, as described, has one primary advantage, which is

reduced complexity requirements intheremote terminal. Since thetext/ graphics server performs

all rendering, the remote terminal needs only know how todisplay bitmap updates. Thus all draw

ing algorithms, intermediate state, and font information is confined to the text / graphics server.

Asdescribed below, theInfoPad project exploited thisto develop low-power, lightweight portable

clients.

However, the conventional bitmap approach suffers from lowerbandwidth efficiency which

translate intogreaterlatency usinga givenbandwidth linkas compared to the primitive approach.

This is because typically the bitmaps are less compact than the primitivesused to generatethem.

Both the latency due to queueing delays and the latency due to loss previously described would

still apply to the conventional bitmap system as described.
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The InfoPad project [49] delivers ubiquitous portable computing using the remote interac

tive computation model described in Section 2.1.1. All applications are executed on a central

compute cluster while display updates are sent to wireless portable "pads" as shown in Figure 4.2.

Pen and audio information is sent back to the compute servers to allow user interaction. In order to

obtain hours of operation using lightweight batteries, the InfoPad hardware is kept as simple and

efficient as possible. Through careful system design, the pad hardware is reduced to a multimedia

terminal with highly optimized data paths for heavily used functions such as the text / graphics and

video. The text / graphics server forms the bridge between the custom low-power terminal hard

ware and the generic applications.

The text / graphics hardware subsystem is little more than a monochrome framebuffer that

also decodes data packets specifying bitmap screen updates. The screen updates are sent as data

packets with headers specifying the x, y, width, and height of a rectangular update region, as well

as a data portion specifying the uncompressed bitmap. One bit is required for each pixel of data.

The header and data are independently encoded, optionally using an error protection coding and

checksum mechanism to protect against and detect bit errors.
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Typically the graphics packet headers use error protection while the graphics packet data do

not. (The exception is the implementation ofasymtotic reliability described below.) This means

that if thepacket header isinerror then the packet will not beprocessed. Ifthe packet header isin

error, the location or size of the update will not be correct, and thus the data will not be useful.

However if a localized error occurs inthedata, individual pixels might beincorrect butthebulk of

the data will be correct and thus useful.

4.2.1. Pros and Cons of Uncompressed Bitmap System

While this simple bitmap update scheme does require significant bandwidth to support

interactive applications, it offers some advantages insystem performance and simplicity.

First, aspreviously stated, it allows forlow-power hardware decoding. The entire datapath

for decoding thepackets andplacing them into the fimnebuffer is readily implemented in custom

logic resultingin very lowpowerconsumption. All protocol decoding consumed 1.9mW and the

text / graphics framebuffer consumed 0.5mW [15].

Secondly, it reduces channel robustness requirements since data can be corrupted or lost

without significant implications to system performance. The bitmap packets are independent, in

that the loss or corruption of a given packet will effectthe regionof the screen it is targeting, but

not subsequent updates. Thismeans that if packets are dropped, it is not necessary to have them

retransmitted andreceived before processing subsequent update packets. Thus a reliable transport

protocol is not required and the latency due to loss of Section 3.2.2. is avoided. This is to be con

trasted with the primitive approachofChapter 3 where an error in one primitivemi^t effect many

later primitives. Additionally, if individual data bits in the packet are incorrect, the display errors

will be small and localized. While the errors might be perceptible, they will rarely effect the over

all intelligibility ofthe screen.
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4.2.2. Asymtotic Reliability

Although it is acceptable forsome temporary pixel errors to occur inorder to greatly reduce

latency, it is desirable if the "long-term" display is correct. Long-term error-free transmission

mustbe designed not to prevent low-latency operation andshould be possible if excess link band

widthis available. In thiswaythe userobtains thebestof both worlds- low-latency anderror-free

display. The process by whichslightly incorrect datawill be displayedinitiallyyet eventually the

display will be error-free is called asymtotic reliability[36].

Asymtotic reliability, as described in [36], is achieved byusinga low-latency unreliably pri

marydisplayof data as previously described, combined with a background higher-latency reliable

transport. In this way, a fast "best effort" is made whichmay result in some scatteredbit-errors,

followed shortly by one or more "refresh" updates which will be higher latency but will not intro

duce errors. The asymtotic reliability system reduces complexity requirements in the remote ter

minal since no uplink acknowledgments are necessary. Additionally, it can be used as a scalable

information dissemination mechanism since only downlink traffic is used, any number ofreceivers

can participate.

The refresh packets are sent at a low rate, in the background, using a higher level of error

correction as well as error detection. The higher level of error correction reduces the probability

that an error will occur. Error detection is used to suppress the display ofpackets ifany error does

occur. This error detection is critical to assure asymtotic reliability. Since only error-free packets

are processed, asymtotically all errors on the screen will be corrected. Smaller packet sizes are

used for the refresh packets since the packets must be error-free to be useful and the probability of

one or more errors in a packet is exponential in the packet size.
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4,3. ImprovedBitmap using Virtual Framehuffer

While the system previously described allows remote operation ofa wide variety ofapplica

tions on a lightweight portableterminal, it does requirea high-bandwidth commimications linV for

interactive operation. Intuitively, since each drawing request results in the transmission ofone or

more screen update packets,actions that causemanyupdates to the screenin a shortperiodoftime

can easily result in a backlog ofthe communications channel.

The key to efficient text / graphics transmission is to determine which information the user

wants to see and how to send this information. In the case of remote text / graphicsrendering, the

user only wants to see current information. Thus if a user scrolls througha long list, they typi

cally only want to see where they end up. If a user is viewing a progress bar, they only want to see

the current value of it. Ifthe user is participating in a video conference, they typically only want to

see the most current image. The task is then to determine how to send only current information in

such a way that a limited bandwidth link does not cause backlogs, and errors do not result in

increased latency. Another way to view the problemis that the applicationsare typicallydesigned

for a high-bandwidth environments but the communications link is low-bandwidth.

One critical observation is that transmission oftext / graphics information over bandlimited,

lossy links is a form ofremote-rendering just as transmission ofvideo is. Two mechanisms which

facilitate operation over bandlimited lossy links are data compression and data reordering. While

video transmission techniques have used both of these aspects, text / graphics compression has so

far been typically restricted to data compression only^ Thus in order to provide better perfor

mance, intelligent data reordering must occur.

1. One exception, in particular, is [37].
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The virtual framebuffer architecture, shown in Figure 4.3 achieves this goal. In this archi

tecture, the text / graphics server is split into two halves - the master and slave - which are coupled

through an auxiliary buffer called a virtual framebuffer. The master communicates at full speeds

with the applications and tracks the current contents of the screen on the virtual framebuffer. The

slave then watches the virtual framebuffer and sends on any changes to the remote terminal.
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Thevirtual framebuffer, shown in Figure 4.4, consists of two arrays whose sizematches the

sizeof remote terminal's display. The first array contains theactual pixel data being displayed and

is continuallyupdated by the masterandread by the slave. The screen is thendivided into a set of

blocks with oneflag inthesecond array assigned to each block. These flags are used to indicate if

the blocks have been updatedby the mastersincethe last read by the slave. Theblocksize is cho

sento be small enough such thatgranularity of updates is not too coarse, and large enough such

that there are not so many blocksthat the overhead of checking the blocks is noticeable. For effi

ciency reasons, row update flags are used to indicate if any blocks in a given row have been

updated while a global update semaphore is used to block the slaveuntil the master has updated

something.

The mastercommunicates with the applications at full workstation speeds. It responds to

primitivedrawingrequests by rendering to the virtual framebuffer pixel buffer. Whenthe master

draws on part of the virtual framebuffer, it also sets the updatedregions' *^lpdated" flags. If the

flags were already set, theyremain set. In this way multiple updates are combined, reducing the

amount of data sent to the remote terminal.
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The slave runs in its own threadand asynchronouslyscansthe virtual frame buffer from top

to bottom in raster scan order. When it encounters blocks on the screen whose updated flags are

set, it clears the flags and sends the data to the remote terminal. The slaveuses region growing to

form larger rectangular blocks from sets of contiguous blocks. This reduces the per-block over

head in transmission to the remote terminal.

The slave can also scan the virtual framebuffer in non-raster scan order to prioritize the dis

play of certainparts ofthe screen. For instance it can scan the regionsurroundingthe cursor more

often than the rest of the screen since that area is typically of greater interest to the user. The spa

tial independenceofthe bitmap representation allows this.

43.1. Rate and Flow Control

The output of the slave can then be subjected to rate or flow control to match the link char-

act^stics. Since it is decoupled from the master and applications, the slave's execution can be

blocked without impacting application performance. The initial implementation in the InfoPad

system used a rate-control system to limit the text / graphics traffic to be under a given rate. This

rate is less than the capacity of the radio channel and can be dynamically changed. It was then

expanded to include negative acknowledgments (NACK) described in Section 4.3.3.1., and can be

extended to acknowledgment (ACK) based flow control as described in Section 4.3.3.2. Initially

asymtotic reliability was used to reduce client complexity and protocol requirements.

Asymtotic reliability is readily integrated into the virtual framebuffer architecture by having

the slave send refresh packets at a given rate while also sliding normal updates. Adaptive band

width control is performed by setting the refresh rate as a number ofbytes per complete slave pass

through the virtual framebuffer and setting a minimum interval between complete passes through

the framebuffer. Establishing the refresh rate in terms of bytes per complete slave pass causes the
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amount of bandwidth dedicated to refresh to automatically reduce as the amount of foreground

traffic increases. It also scales withthe sizeof the *^ipdated" area such that if a smallarea of the

framebuffer is rapidly updated, refresh of the rest of thescreen will still proceed rapidly, butif a

large area of the framebuffer is continuallymodified, more bandwidth will be dedicated to its dis

play, at theexpense of slower refresh. Setting a minimum interval between complete passes estab

lishesa maximum framerate andcanbe usedto reduce bandwidth utilizedif a small region of the

screen is updated very rapidly. At a minimum, it makes sense to set the transmitted fiame rate to

be no higher than the frame rate / refresh rate supported by the remote display device.

43.2. Analysis ofVirtual Framebuffer Performance

In this section, the benefits of the virtual framebuffer technique are explored by analyzing

the reduction in latencies due to queuing delays and loss.

43.2.1. Reduced Latency Due to Queuing Delays

Using the virtual framebuffer approach, latency due to queuing delays is boimded and dra

matically reduced by the virtual framebuffer architecture through a process called adaptive band

width compression (ABC). ABC is a direct result of the virtual framebuffer architecture's ability

to combine multiple writes to the same region of the screen. Recall that if the master writes to the

same region of the virtual framebuffer before the slave has had a chance to send on the contents,

the earlier updates are overwritten by the latest update. Thus effectively the bandwidth going into

the virtual framebuffer is the high bandwidth of the application and coming out is the lower band

width that the link can support.

The example depicting latency due to queuing delays is revisited in Figure 4.5. Again the

link capacity is set to two lines per time step. At time T=0, the user has selected the first four

entries in the list. The slave starts siding from the top, only having time to send the first two lines
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- Apple and Banana. At time T=1 the user has selected to see Fudge through Ice. The slave is now

reading the bottom half of the screen and would send over Ham and Ice. Chicken and Dessert

would never be sent. At time T=2, the user has selected to see Pizza through Salt. The slave is

now at the top of the screen and Pizza and Quiche would be sent. Fudge and Gum were thus over

written before they could be sent. Finally at T=3, the user has not caused any further updates and

the slave is at the second half of the screen and can send over Rice and Salt. At this point, all

regions of the scr^n have been communicated and all updated flags are cleared. Thus using the

virtual framebuffer technique, the user has a complete, correct picture of the screen only one time-

step after they cease input activity, while the conventional primitive and old bitmap techniques

require three additional time steps.

As a numaical example of the improved interactivity, consider user scrolling through a doc

ument in a 500x500 pixel monochrome window over a 500 kbps link. Each frame would require

250 kbits of data or about a half-second to send. Thus if the user scrolls five times in a second, it
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will take an additional 1.5 seconds for all of the data to be delivered. If they continueat this rate

for 5 seconds, it will take an additional 7.5 seconds for the final data to be delivered. Using the

virtual fi-amebuffer system the lag would always be at most the time to update the screen or 0.5

seconds in this case.

43.2.2. Reduced Latency Due to Loss

Figure 4.6 shows how the virtual ffamebuffer approach using asymtotic reliability results in

reduced latencies due to packet loss. As in the example of Figure 3.3, the figure depicts what will

happen if the second (B) of four packets is lost. The three packets which were successfully com

municated (A, C, D) are displayed with a single round-trip latency while only the dropped B

packet is delayed. Using asymtotic reliability, it would be delayed until a refresh packet could

deliver the data. Using more sophisticated methods described below, the latency can be further

reduced.



433. Integration of Virtual Framebuffer into Transport Control Protocol

The virtual fiamebuffer can be integrated into the transport protocol for fiirth^ increases in

throughput and reliability. Conventional transport protocols, such as TCP/IP, order individual

packets in a stream with a sequ^ce number. They use these sequence numbers to assure that

every packet in the stream, and thus every byte in the stream, is successfully communicated in

order. Since conventional transport protocols have no knowledge ofthe underlying data, their goal

has to be to successfully transmit the entire stream ofdata. This leads to two problems:

1. Once data enters the transport layer, it will consume bandwidth.

2. Since no dependency information is known, it is assumed that all data
is dependent on all other data and thus all ordering must be preserved.

However, in the case of the virtual framebuffer, the location on the screen that an update

corresponds to contains valuable information that can be used to remedy the above problems. The

integration of the virtual framebuffer with the transport layer works as follows: Instead of having

a separate buffer to store data that has been committed but not yet acknowledged, the virtual

fiamebuffer serves as the holding buffer. The update flags indicate which data must be sent and

thus the actual data need not be copied. Thus actual packetization of the data does not occur imtil

just before the packet is going to be sent over the network. In this way, old data cannot be queued

up since old data is superseded as previously described. The virtual framebuffer can be used to

implement a negative acknowledgment (NACK) or positive acknowledgment (ACK) based sys

tem as described next.

433.1. Negative Acknowledgments (NACK)

The InfoPad downlink traffic consists of text / graphics, video, and audio data. While the

total available bandwidth to the pads is fixed at approximately500kbps, the portion dedicated to

each type of data varies based on the amount of traffic dedicated to the others. For instance, ifno
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otho* streams were present, text / graphics could use the fiill 500kbps link, but if a 300kbps VQ

video clip (see Section 5.2.) isplaying, the amount available totext / graphics drops to200kbps.

The separate multimedia streams arenot combined untila gateway which follows the text /

graphics, audio, andvideo *type servers". This makes itmore difficult forthetypeservers tomea

sure the amount of traffic generated by other sources. In addition to long-term rate adaptation,

short term management of the traffic is necessary. Sincethe gatewaycombines the varioustraffic

streams, it is able to determine when the net rate exceeds the link capacity. The gatewaybuffers

data, and thus if the total incoming traffic is greater than the outgoing rate limit, packets in the

buffer will be aged. These "old" packets can be dropped to assure that the backlog of data is

bounded. The gateway then sends negative acknowledgments(NACKs) back to the sender. These

NACKs canthenbe integratedquiteeasilyintothe virtualframebuffer architecture by simplyhav

ing the slaveset the '̂updated" flags of the regioncorresponding to the packet that was NACKed.

Thus the NACKindicatesthat the data specified in the packetsis still outstandingand thus mustbe

sent again. Note that if, in the intoim, part or all of the region specified by the packet was modi

fied again, theupdatedflag wouldalready be set and thusno extrabandwidth will be consumed by

the retransmission.

Note that with the simple scheme above, superfluous retransmission could occasionally

occur that would waste bandwidth, but not produce an incorrect result. An example is as follows:

1. Region ofscreen is updated and transmitted as update A.

2. Same region is updated and transmitted as update B.

3. Update A is removed by gateway and NACK is retumed.

4. Region is invalidated, thus causing resend ofregion.

5. Region is retransmitted as update C which is identical to update B.

6. Update B received correctly.

7. Update C received correctly.
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Thus an additionalupdatepacket is sent becausea region is updatedbetweenbeing sent and

NACK'ed. However, since current data is always sent, extra update packets will never cause the

incorrect results to be shown. An extension to the basic NACK algorithm could include keeping a

sequence number, as described below in the ACK scheme, to avoid extra retransmissions in the

above case: If a region is updated after a packet is sent, all retransmissions due to that packet are

aborted.

43.3.2. Positive Acknowledgments (ACK)

While negative acknowledgments allow for rapid notification of congestion, they are not

well suited for packet loss or error notification for the following three reasons:

1. It is often difficult to detect the absence of a packet.

2. NACKs can increase congestion if sent over the bandlimited medium.

3. If the NACKs are sent via a lossy medium, they too can be lost.

For these reasons, positive acknowledgments (ACK) are preferred. This was not imple

mented intheInfoPad system but could beused in similar systems^

The ACK-based system works by tracking the update packets sent to the remote terminal

and having the remote terminal send back acknowledgments ofeach graphical update packet or set

of such packets. In this way, the text / graphics server can track which updates have been success

fully communicated to the remote terminal and retry any that have not. As before, no intermediate

storage buffers are used since the only data that is useful is the most current data, which can be

found in the virtual fimnebuffer. Also as before, multiple updates to the same region are combined

whenever possible, discarding old updates.

1. Notethat the ideas in this section, unlikethosein the previoussection,have not been implemented but are provided
as an extension of implemented woric.
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Inorder to track the reception ofeach packet, a sequence ID isused. The sequence ID is

incremented for each transmitted packet such that itwill be unique to all packets that could be in

flight. The virtual firamebuffer includes a sequence ID and transmit time field for each block as

described below. Each block in thevirtual framebuffer also hasa status field that canindicate one

ofthree states;

1. Not updated

2. Update required

3. Update in flight

The **not updated" state is used when the contents on the remote terminal are current and

thus the local contents in the virtual framebuffer have not been updated recently. When anupdate

does occur, via the master, the status ofthe block ischanged to'Hipdate required". No sequence ID

is associated with the block in either the not updated or update required states. Once the slave

detects that the block has been updated, it generates a graphical update packet, assigns it a

sequence ID and transmits the packet. The sequence ID and time of transmission are recorded in

the virtual framebuffer and the block's state is changed to '̂ update in flight". When an acknowl

edgment ofthe update isreceived from theremote terminal, allblocks covered bytheacknowledg

ment whose sequence ID still matches the ID of the acknowledgment are changed to the **not

updated" state.

If anyof the blocksare updatedbetween the timethatthe update packet is sentand the time

that acknowledgment was received, the master will then revert their state back to the '̂update

required" state andtheirsequence ID field is no longer relevant. When theslave detects that they

have to be sent, it will generate a new update packet with a new sequence ID. All links to the old

update packet in flight will be forgotten since this would be stale data. Thus when the old

acknowledgment packet is received, its sequenceID will not match the sequenceID of the blocks
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and their state will not be changed to ^^ot updated** until an acknowledgment of the most recent

update is received

If data is lost or corrupted, it must be resent This can be detected by the absence of an

acknowledgment of the packet. The absence is detected with via a time-out - i.e. if the acknowl

edgment is not received within a certain amount of time from the transmission of the packet, the

packet is assumed to have been lost. Additionally, if packets transmitted alter the packet in ques

tion are acknowledged, but the packet in question has not been, then it may be safe to assume that

the packet has been lost. If the network can cause out-of-order delivery to occur then this must be

considered before assuming that a packet has been lost. Much research based on TCP/IP has

addressed these issues.

The packet loss detection can be incorporated into the slave*s scanning process. As the

slave scans to see if any blocks have been updated, it can also check if any blocks are in the

**update in flight** state and should be treated as lost. In this case, they are implicitly switched to

the "update required**state and a new update packet is generated.

The acknowledgment protocol must differ from byte-stream reliable protocols such as TCP/

IP. TCP/IP uses cumulative acknowledgments; a TCP/IP receiver sends back the sequence ID of

the latest packet which has been successfully received and had all previous packets in the sequence

also successfully received. In this way, each acknowledgm^t of a given packet also acknowl

edges all prior packets. This can be useful if an acknowledgment is dropped as later acknowledg

ments may accomplish the acknowledgment. However, in our case, this would create false-

dependencies. Thus each packet must be individually acknowledged. A bit-vector rqiresentation

can be used to acknowledge multiple packets in a single acknowledgment. I.e. an acknowledgment

packet could contain the sequence ID ofthe first and last packet to be acknowledged and then a bit

vector specifying which of the intermediate packets should also be acknowledged. The acknowl-
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edgment ofa given packet could be contained in multiple acknowledgment packets to protect

againstlossof acknowledgment packets.

Graphical updates whose data ispartially corrupt but still usable could bedisplayed but not

acknowledged. In this way, the user could obtain a mostly-correct display very rapidly and the

fully correct display would follow as soon as the retransmission is successful.
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CHAPTER 5 Color Tcxt / Gvaphics, and
Video Support

5.1. Bandwidth Requirements ofUncompressed Color

The bitmap approach previouslydescribed, as demonstrated in the InfoPad project, 3delded

an interactive display supporting an effective graphical user interface. However, the 640x480

monochrome display requires several hundred kilobits per second of bandwidth for interactive

operation. While a color display is preferable from user and application perspectives, it does sig

nificantly increase the demands on the communications link. Without using compression, the

monochrome display requires one bit per updated pixel. Thus a 200x200 window, updated at 10

frames per second (fps), would require 400kbps - which is feasible using high bandwidth indoor

radios. However, using a true-color display, each pixel requires 24 bits - 8 for red, 8 for green, and

8 for blue. Thus the same 200x200 window updated at 10 Q)s would require almost 10Mbps, or

given the same 400kbps link, an update rate of less than one half of a frame per second would be

possible. Using a conventional 8-bit per pixel paletized display, about 3.2Mbps is required for a

lOfps update rate and 400kbps will allow slightly more than one frame per second - neither of

which yields a good system solution.
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5.2. Full-Motion Color Video Support via a Separate Display

One way to enable full-motion color video, while not impacting the display of text / graph

ics used in applications, is to retain the monochrome display for text / graphics and use a separate

display for full-motion color video. The InfoPad project used this approach to allow independent

research into text / graphics and video delivery. From the perspective ofwireless link research, the

text / graphics traffic necessitated low latency delivery of bursty traffic, while the video traffic

required high, but more or less uniform, bandwidth.

5.2.1. Lossy Vector Quantization for Image and Video Compression

The InfoPad project used lossy Vector Quantization (VQ) to dehver full-motion color video

with minimal power consumption and hardware costs^ [15]. Vector quantization entails repre-
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senting groups of pixels, such as 4x4 pixel blocks, within the image using a single index into a

"codebook". The codebook contains sets of the groups of pixels. Since the number of bits

required to specify the codebookindex is much smallerthan the number ofbits to specify the col

ors of the pixels in the group, compression is achieved. However, since not all possible combina

tions of pixels can be represented in the codebook, the compression is lossy. (If all combinations

were represented then the codebook index would have to be as large as all of the pixels in a group

combined.) Typically each group of pixels in the input image is assigned the index of the code-

book entry which has the group of pixels that is most similar to it, as determined by a minimnin

mean squared coding error.

While vector quantization does not yield the highest quality video for a given bit rate, it

does perform significant compression with low-complexity decompression. The coding is asym

metric in that compression is computationally intensive but decoding is not. Since the decoder is

typically a portable device, and coding of movies needs only be performed once, it is well suited

for a remote wireless portable device. Additionally, vector quantized video does not cause error

propagation within each frame or across frames. Bit errors are localized to a particular region and

will not persist into the next frmne. However, bit errors in codebook updates will persist across all

frames that use the codebook entries that are in error.

Decoding of the vector quantized bit stream can be performed in hardware as a set of mem

ory lookups and an optimized coordinate space transformation. The InfoPad low-power hardware

decoding operates with a power consumption of less than 2mW. VQ encoding can be computa

tionally intensive since a codebook search has to be performed for each group of pixels in the

image. However, techniques described below show how trade-offs between coded image quality

1. While this section presents my work in real-time VQ video transcoding, it should be clear that the choice of VQ dis
play, the hardware, coding, and format were determined by Chandrakasanand Brodersoi before my joining the
group.
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and encoding time can be achieved through the choice ofthe codebook and codebook search algo

rithm. Both high complexity (low-speed), high-quality coding, as well as low-complexity (high

speed), lower quality compressiontechniquesare described.

The details of theInfoPad VQ video decoder implementation are shown in Figure 5.1. A

display of 128x240 pixels is generated from a modified luminance (Y) / chrominance (IQ) color

space where the I and Q have been decimated by 2 in both the horizontal and vertical directions.

Thedecimation is to exploit thereduced sensitivity to chrominance information of thehuman eye

to reduce system bandwidth requirements. The exact coefficients used to convert the YIQ into

RGB were determined as a compromise between hardware power savings and the benefits of

decoupling and subsampling the chrominance components with respect to the luminance compo

nents. The 128x240 Y image and64x1201 andQ images areeachgenerated through vectorquan

tizationdecoding via a table lookup. All vectors in the system are 4x4 sample blocks where this

corresponds to 4x4 pixels in the case of theY component or 8x8pixels in the caseof the I and Q

components, due to upsampling. The vectors for the Y, I, and Q images are selected firom three

256-entry codebooks. Thus the images are specified by 32x60 8-bit Y codes and 16x30 8-bit I

and Q codes. Typically the codebooks are updated infi-equently so that only the Y, I, and Q codes

are updatedon a fimne by fimne basis. Thisrequires 2880bytes total, allowing 30 fps operation

givena 690kbps downlink. If the vectorquantization is notused, and thevideo is specified by 24-

bit true-colorpixels, each fi-ame would consume 92160 bytes,requiring morethan 22 Mbps for a

30^s videostream. Sinceonlythe codebook andindices areretained in memory, and decompres

sion is performed onthefly, memory requirements aresignificantly reduced^

1. Note that this approach, while implemented in hardware as a compressed fmmebufTer, is treated in this chapter and
not Chapter 6b^use dievideo issent incomplete frames, and thus none ofthe issues related toindepaidmt manip
ulation of subr^ons of the display are relevant
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FIGURE 5J. Vector quantized (VQ) video encoding

5.2.2. VQ Video Encoding

The steps required to encode a VQ video stream are shown in Figure 5.2. Since the VQ

video compression format does not use inter-frame compression, such as motion compensation,

the input frames are encoded independently. The input video frame is first resized to the size of

the VQ display, 128x240. For fast coding, describedbelow, a half-sized image is produced. Next

the image is converted into the YIQ color space via matrix multiplication or a table-lookup equiv

alent. Finally the image is quantized by consideringeach ofthe 4x4 sample blocks in the Y, I, and

Q image planes separately, and selecting the entry in the appropriate codebook that exhibits the

least mean-squared error. The codebook can be chosen adaptively from the video clip or statically,

yielding higher image quality and reduced coding time respectively.

5.2.2.1. Adaptive VQ Encoding

Adaptive VQ encoding entails generating the codebook based on the video sequence to be

coded. In this way the codebook will most effectively represent the images in the video. A single
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FIGURE 5J. Single frame from the video clip and luminance (Y) codebook adapted to it.

codebook can be used for the entire video or else the codebook can be periodically updated on a

scene-by-scene basis, or whenever the coding error exceeds a given threshold. In either case, the

number of frames used to determine the codebookis typicallyhmited to reduce the time to gener

ate the codebook.

The K-means clustering algorithm is used to generate a representative codebook from a

sequence of input frames. All 4x4 blocks in the frames of the input video are considered as train

ing vectors. The Y, I, and Q codebooks are generated separately.

The K-means clustering algorithm adapts the codebook as follows: An initial codebook is

used to code the input vectors. Then each codebook entry is recomputed as the average of all

image vectors for which it is the best match. Thus eachcodebookentry is modified to better repre

sent the vectors that match it. All vectors are then recoded and the codebook is updated until the

total coding error stops decreasing. The initial "seed" codebook can be specified externally or

defaults to the static codebook used for the fast coding described in the next section.

Some extra steps are used to ensure that the codebook best represents the diversity in the

image. The 256 codebook entries are compared to each other, and if two are too similar then one is
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FIGURE 5.4. Gain / shape codebook used for fast VQ encoding.
It consists of 56 solid gradients and 50 each of vertical, horizontal, and both diagonal
gradients.

^fireed" up for use by some other vector. The vectorswhich matched the freed codebookentry are

thenassigned to the one that it wassimilarto. Next,the unusedcodebookentries are filled with the

input image vectors which had the greatest codingerror, to ensure codebook diversityand reduce

the worst-case coding error. Figure 5.3 shows the luminance (Y) codebook adaptedfrom a video

sequence.

5.23. Fast Fixed-Codebook VQ Transcoding

As presented, the VQ videoencoding time is dominatedby the time to search the codebook.

In excessof 10million pixel differencing operations are requiredper frame for the 128x240 video

format. This results in a coding rate of only a few frames per second using optimized C code on a

Sun UltraSparc 2 workstation. However, the search can be acceleratedby tailoring the codebook

design for fast search.

Gain / shape codebooks orthogonalize the "shape" of the codebook entries from the extent

or "gain" of the entries. In this way if there are a few basic shapes, and the best gain for each



i^ast

Codebook

'•-K

Preset

Codebook
Adaptive
Codebook

T^i-

FIGURE 5.5. Comparison of adaptive and fast codebooks.
Left uses fixed, fast codebook, while center uses another video's codebook, and right
uses a codebook adapted for the video in question

shape can be quickly deteraiined, then matching can be greatly accelerated. The gain / shape code-

book used is shown in Figure 5.4. It consists of56 solid gradients and 50 each ofvertical, horizon

tal, and both diagonal gradients. The best match is determined by subsampling the 4x4 pixel

blocks by two and using each of the four values to select the best gain for each of the five shapes in

a single lookup. The indices used for fast match lookup are shown in the figure. Tables map the

index value or indices values to the best codebook for each shape. The error is then computed for

the best candidates of each of the five shapes and the codebook entry giving the least error is cho

sen. Because the gradients in the fixed codebook are smooth, half-resolution comparison is possi

ble. Hie fast coding method can achieve 30fps coding for real-time compression

Figure 5.5 shows a comparison of the image quality delivered by coding frames from two

video clips using three methods: fast coding, coding to a codebook adapted to another video clip,
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FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding

and coding to a codebook adapted to the video clip in question. As can be seen, the fast coding

method yields a coarser looking video, coding to another video can result in some artifacts, while

adapting to a particular video results in the most aestheticallypleasing image.

5.2.4. MPEG to VQ Video lyanscoding

Due to the abundance of MPEG video clips, an MPEG to VQ Video Transcoder was

designed both as a source of VQ videos to demonstrate the pad as well as to serve as a vehicle to

explore issues in VQ coding techniques. The data flow used to transcode MPEG to VQ videos is

shown in Figure 5.6. MPEG natively generates separate luminance and chrominance images

where the chrominance images have been subsampled by two in each direction. The MPEG and

VQ color spaces differ, however, as the MPEG color space was optimized solely for human visual

perception while the VQ color space also considers hardware color space conversion complexity.

The utilities used to generate VQ video clips are detailed in Section 9.3.3. and Appendix A.
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5.2.5. Live VQ Video Display ofMBONE IVansmissions

VQ video encoding was also integrated into the MBONE video gateway (VGW) [1] to

allow live viewing of MBONE transmissions. The fast coding method allows real-time display.

The GUI oftheMBONE applications can bedisplayed inmonochrome onthemain text / graphics

screen.

5.5. Motivationfor UnifiedText, Graphics, & Video Display

In orderto minimizepowerconsumption and complexity whilesupporting bothgeneral pur

pose user-interface based applications, as well as streaming video, the InfoPad system, as previ

ously described, employs separatetext / graphicsand streaming videodisplays. The text / graphics

display is a 640x480 monochrome, conventional framebuffer-based display. This allows individ

ual pixel addressability to enable most user-interface based tasks, such as a shared whiteboard,

handwriting recognition, and web browsing. The monochrome nature allows timely delivery of

even uncompressed bitmap updates given a moderately high bandwidth wireless link. The mono

chromedisplay is not suitable forfull-motion video, andthusan auxiliary display supporting color

and compression is required. For this purpose, a separatevector quantized full-motion color dis

play was used.

While using separate displays is quite effective to demonstrate the individual components,

the low-power consumption achievable, as well as the capabilityofremote operationofboth user-

interfaceandstreamingvideo tasks, it requiresspecialapplications to display the streaming video,

only one video can be displayed at a given time, and the size and quality of the video is con

strained. Additionally, the user-interface based applications cannot enjoy the benefits of color.

Thus it is advantageous to have a single display which can seamlessly display both user-interface

based graphics as well as full-motion video.
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5.4, UncompressedFramebuffer, CompressedSends

One approach to improvethis situation is to compress the bitmap updates before transmit

ting them. Thus the same basic infrastructure is used, though the updates are compressed before

transmission and uncompressed at the receiver end. This can significantly reduce bandwidth

requirements. Though it should be noted that this often renders corrupt packets useless. Different

degrees of compression and channel coding allow a trade-off between bit rate requirements and

error tolerance. Much research has focused on compression of continuous-tone images such as

photographs. Some techniques include JPEG [40] and Wavelets [60]. Chapter 8 will present

background and a new technique for compression of discrete-tone images such graphs, text, and

most graphical user interfaces.
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CHAPTER 6 CompfTSSsedFramebuff^
Approach

6.1. Minimizing Client Hardware and Power Consumption

While the compressing bitmaps for transmission reduces the bandwidth requirements

imposed on the communications linkj it does not reduce the amount of storage required on the

remote client. This then impacts the power consumption and cost ofthe portable terminal. As pre

sented previously, the storage requirements of a color screen are 8 to 24 times that of a mono

chrome screen.

As Chandrakasan [15] demonstrated with the compressed VQ video display, further reduc

tion in portable client power consumption and complexity can be achieved through the use of a

compressed framebuffer.

A compressed framebuffer stores the data to be displayed in compressed form, and decom

presses the data "on the fly" during the monitor refresh readout. In this way, the storage require

ments are reduced. Additionally, since the amount ofmemory per fimne is reduced, the bandwidth

requirements from the memory can be reduced, and this can result in lower power consumption if

the decompression technique is also "low-power".
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However, retaining only a compressed framebuffer means that all possible display configu

rations cannot berealized and thus the compression technique must becarefully designed toavoid

excessive visual distortion. This chapter discusses the application ofthe compressed framebuffer

approach to text / graphics display.

6.2. Requirements

A compressed framebuffer imposes constraints upon the choice of compression algorithm

that do not exist if the compression algorithm is usedonlyfor transmission of the images. This

section describes some of those additional constraints. (Note that additional transmission-only

compression can be applied beyond the compressed-framebuffercompression.)

6.2.1. In-Place Modification of Compressed Data

Compression algorithms, particularly lossless data compression algorithms, often 3deld

reductions in data requirements by exploiting inter-symbol correlation. Thus, the fact that one

symbol can be predicted, at least in part, from a previous symbol, means that it can be stored more

compactly if this prediction is incorporated into the coding. Only the information that cannot be

predicted needs to be stored. However, this means that the later symbols depend on the earlier

ones, and cannot be individually decoded.

However, the data in a framebuffer is modified in a random-access manner when a particu

lar part of the screen is modified. It is typically not acceptable to send the entire contents of the

screen to update a small region. Additionally, since the uncompressed framebuffer is not present,

the modifications cannot be performed in the imcompressed domain.
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The combination of these two factors requires that the modification ofa region ofthe screen

does not result in the insertion or deletion ofdata in the framebuffer, but rather simply the modifi

cation.

6.2.2. Update-Independence for Error Tolerance

In Section 3.2.2. it was demonstrated that a large latency penalty is incurred ifthe update of

one block is dependent on that of preceding blocks. While the updates of blocks in an imcom-

pressed fi*amebufFer are independent, most compression algorithms exploit spatial redundancy

between regionsof the image, and thus wouldbe subject to the latencydue to loss. Thus the com

pressionalgorithm must be designed such that the interdependence between updates is minimized

or trade-offsbetween interdependence level and bandwidth utilization can be controlled.

6.23. Must Work for Text / Graphics and Image / Video

As previously noted, the unified firamebuflfer contains both discrete-tone text / graphics

regions as well as continuous-tone image / video regions. Thus either the same compression algo

rithm must work for all regions of the screen or else several compression schemes must be imple

mented with an automated way to select the best one for a given region.

6.2.4. Must Work for all Possible Screen Configurations

One ofthe advantages ofthe compressed fimnebuffer is reduced storage requirements. This

requires that all possible screen configurations, when compressed, will fit into the firamebuffer

memory. Since no lossless compression will always result in data reduction, lossy compression or

a lossy mode must be used. Furthermore, the minimum worst-case compression ratio is dictated

by the ratio ofthe uncompressed firamebuffer size to the compressed fiamebuffer size.
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FIGURE 6.1. Typical screen image consisting of multiple graphical applications

6.2.5. Must be Tailored to Typical Screen Contents

As with all image compression techniques, the compression algorithm must be tailored to

the types of updates encountered using remote rendering. While the VQ video coding used for the

full-motion video display allows for a significant reduction in framebuffer size and bandwidth

requirements, and does satisfy the above requirements, its lossy nature and design for continuous-

tone images would be inadequate for most applications, as most user-interface components would

be rendered unintelligible. A typical screen image is shown in Figure 6.1. This image contains

text and graphics as found in many GUI applications.



6.2.6. Decompression Must be Low Complexity / Cost

The second advantage ofthe compressedframebufferapproachpresented was a decrease in

power consumptionand complexity. For this to be the case, the on-the-fly decompressionmethod

must be low-power and low complexity, or else all gains achievedthrough the compression will be

negated.

6.3. Pseudo-Color or ColormappedDisplay as Compressed
Framebuffer

One type of compressed fimnebuffer that is often used in computer displays is called a

pseudo-color or colormapped framebuffer. The term "8-bit color'* display typically refers to this.

Most personal computer or workstation framebuffers are either colormapped or support a color-

mapped display mode as it significantly reduces memory requirements as compared to uncom

pressed or true-color modes.

Colormapped displays use both a framebuff^ and a colormap (or color LookUp Table -

LUT). Instead of storing the red, green, and blue values for each pixel, the framebuffer stores an

index into the colormap. The colormap is a small (typically 256-entry) array of color descriptors

which contain the red, green, and blue value of the colors. In this way, each pixel in the frame-

buffer only requires 8 bits. Since the colormap contains only 256 entries, it is small as well. If 8

bits are required for the red, green, and blue intensity index then the colormap would be 256*3 =

768 bytes and the main framebuffer would be 1*>^dth*Height bytes. This is to be contrasted with

a display where each pixel has its red, green, and blue values specified, which would require

3*Width*Height bytes. Both storage and bandwidth requirements for the framebuffer are reduced.

Since graphics memory often does not reside directly on the processor bus, access to it can be quite

costly. The use ofcolormapped displays can reduce this cost.
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The maindrawback of the colormapped display method is that the numberof colorsthat can

be displayed simultaneously is limited. Applications must then compete for allocation of thecol-

ormap entries since it isa shared global resource. Acentrahzed text / graphics server performs this

function. Applications must be able to operate even if they cannot reserve all colors that they

request, and thus operate with whichever colormap entries are active. Often image display appli

cations dither between colors inthe colormap toemulate colors that are not inthe colormap.

Colormapped displays have another advantage in addition to reduced memory size and

bandwidth requirements. Using colormapped displays, a technique called palette animation canbe

used to perform smooth animation without the useof auxiliary buffers. Palette animation exploits

thefact that multiple pixels on the screen can bechanged simultaneously bysimply changing one

or a few colormap entries. Thusnew frames of an animation sequence are written to the screenin

such a way that they map to the same setofcolors as the old frame until a rapid colormap update

occiu's and the colors ofthe new frame are made visible.

6.4, A Compressed Framehujfer Compression Method - TGVQ

Thissection describes a compression technique which canbe applied to text/ graphics data,

typicallyyielding lessthana bit perpixelstorage requirement, andsatisfies all of the requirements

outlined in Section 6.2. Thetext / graphics compression technique is also well suited for integra

tion with a lossycontinuous tone image compression technique as shownin Section 6.4.5.3. The

text / graphicscompression algorithm is basedon hierarchical vectorquantization and is thus des

ignated TGVQ.

6.4.1. Local vs. Global Color Diversity

Typical text / graphics images can contain high global color diversity but almost always

contain low local color diversity. Color diversity is the number ofcolors present in a region. Thus
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global color diversity is the total number of colors present in the entire image while local color

diversity is the numberof colorspresent in a small localregionof the image. Globally an image

mightuse many colors,particularly if there are continuous-tone regionsin the image. However, in

any small discrete-toneregion in the image,only a few colorsare used repeatedly.

The conventional colormapped framebuffer technique described in Section 6.3. relies on the

assumption that the global color diversity of an imagecan be limitedto 256 colorswithout causing

significant visual degradation. However, limiting globally to 256 colorsdoes impose restrictions

on the images - which can result in some degradation particularly for the display of continuous-

tone images. Additionally, limitingto 256 colorsstill results in 8 bits per pixel which is too high

for many applications as described in Section 5.1. Exploitinglimited local diversity, however, can

result in even greater savings, as will be demonstrated.

6.4.2. Micro-Colormaps

A new technique called micro-colormaps exploits limited local diversity by assigning indi

vidual colormaps to small blocks within the framebuffer as shown in Figure 6.2. In this way, since

the number of unique colors in each block is typically quite small, only a few bits per pixel are

required. For instance, ifonly four unique colors are used in an 8x8 block, only two bits per pixel

are required for the pixels in the block. The colors used in the block are listed in the block's micro-

colormap while the arrangement ofthe colors, called the pattern^ is stored in the main framebuffer

portion. Each block thus needs an indication ofwhich micro-colormap it uses, as well as the num

ber ofbits per pixel (though these two are related).

6.43. Vector Quantization of Micro-Colormaps and Patterns

While the above exploits limited local color diversity to effect some compression, by

exploiting spatial locality and redundancy via vector quantization, further coding gains can be
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FIGURE 6.2. Block decomposition into pattern and micro-colormap (MCMap).
The two blocks on the right share the same micro-colormap and pattern while the two
on the left share only the same micro-colormap. The pattern and micro-colormap for
the lower left block is shown.

achieved. The key observation is that both the same micro-colormaps and patterns are typically

used across the image multiple times; the same sets of colors typically find themselves used

together in multiple blocks, and often in the same configuration.

Vector quantization entails storing micro-colormaps and pattern blocks in two tables or

codebooks, and having the blocks in the image contain indices that refer to the entries in the two

codebooks. In this way, multiple blocks which use the same micro-colormap can share the mem

ory required to store the colors, and blocks which use the same pattern entry can share that mem

ory. This vector quantization is a lossless process as the micro-colormap and patterns are stored

exactly. Thus conceptually, the framebuffer consists of an array of W/BlockSize by H/BlockSize

pattern and micro-colormap pointers as well as micro-colormap and pattern codebooks of fixed

total sizes. The amount of memory required for each entry will depend on the number of colors in

the micro-colormap the bit depth used in the pattern. The amount of memory dedicated for the

codebooks is determined by examining the amount of memory required to render typical images

and then adding some "slack" factor. In this way, typically some part of the codebook will be "in
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This graph shows the dependence of the various components of the coding rate on the
chosen block size. 16-bit indices and 18-bit colors are assumed.

use" and the rest will be "free" - as is required for in-place modification as described next. The

micro-colormap and pattern codebooks can be kept in the same memory or different memory

banks. The former allows for reduced total memory requirements while the later can slightly

reduce the size of indexes required to specify codebook entries. The rest of this section assumes

that a single unified codebook is used.

6.4.4. Determining Block Size

The choice of block size will clearly effect the compression rate. The stacked chart in Fig

ure 6.3 shows the effect of varying the block size on the compression rate for the sample image in

Figure 6.1. The chart shows the contributions of the four components: the pattern index, the

micro-colormap index, the pattern codes, and the micro-colormap codes. This assumes 16-bit

indices and 18-bit color. The pattern and micro-colormap indices each take 16 bits per block in

order to be able to address a large enough codebook. Thus with a block size of 1x1 pixel, the over

head is 16 bits per pixel but as the block size increases, the contribution of the indices decreases
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until it is only 1/16 bitperpixel per index at a block size of 16x16 pixels. The micro-colormap

data requires very little storage since a few micro-colormaps are reused many times. The storage

requirements are typically less than 1/100bit per pixel.

The storage requirements of the pattem bits increase with increased block size. This is

becauseas the blocks grow in size, the average number of timesthat a particular pattemis seenin

the imagedecreases since theblock "uniqueness" increases. Thus thegains ofthevector quantiza

tiondecrease. Figure 6.4shows thereduction inpattem code reuse, or theincrease incodenovelty

as the block size is increased for the imagein Figure 6.1. Thenet combination of the four compo

nents levels off at a block size ofabout 7x7 or 8x8 and stays fairly constant at a rate of 0.8 to 0.9

bits per pixel for the sample image.

6.4.5. Requirement Satisfaction

This section describes how the requirements described in Section 6.2. are all satisfied by the

compression scheme described above.
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6.4.5.1. In-Place Modification of Compressed Data

The compression system allows in-place modification as described in Section 6.2.1. In-

placemodification works as follows: Local copies of the codebook and index framebufifers are

keptby the text / graphics server. While the indexfi^ebuffers are spatially mapped suchthat the

locations always correspond to a particular region on the screen, the codebook is only mapped

based on which indices point to it. Thus entries in the codebook are assigned dynamically in a

manner similar to dynamic heap memory allocation. Since multiple indices can point to the same

locations in the codebook, reference coimts are required to determine when particular regions of

memory are no longer in use. The referencecountsare incremented when an entry is referred to

by a new block, and decrementedwhai that block no longerrefers to it. Thus the smn ofall refer

ence counts is the number ofblocks in the image.

When a section of the screen is modified, the colors in each block are examined to deter

mine the unordered sets ofcolors constituting the micro-colormaps. Ifa micro-colormap with the

required colors for a given block is already present, it can be reused. In this case, the new block's

micro-colormap index is set to the index of the existing micro-colormap. Otherwise, a new micro-

colormap entry is '"allocated" in the codebook, its contents are sent to the remote terminal and then

the new block's micro-colormap index is set to the index of the new micro-colormap entry. In

either case, the reference counts are updated as described above.

6.4.5.2. Update Independence for Error Tolerance

If a transport protocol incorporating explicit dependencies is used as described in Section

13.1.2., the dependencies between an index update and the preceding codebook update used to set

up the codebook entry should be noted. Thus an index update will not be effected by the terminal

until the codebook update it required has taken place. Additionally, a codebook update is depen

dent upon the index that was pointing to it being updated. Thus if this is not explicitly coded, it is

65



advantageous to reuse codebook entries in a LRU (least recently used) manner. This also pro

motes reuse ofcodebook entries if an aitry is briefly not used but then later reused.

6.4.53. Must Work for Text / Graphics and Image / Video

While the algorithm, as described, is lossless, andthus couldnot result inguaranteed com

pression rates, with the addition of a video coding, this can be achieved. The text / graphics vs.

image / video decision can be made in a manner closely related to the text / graphics coding

method in a way such that those regions that would not compress well with the text / graphics

method would be selected as image / video.

Each block can classified as text / graphics vs. image/ video by using the local color diver

sity used to determine the micro-colormaps. By simply counting the number of colors in a given

block,and appljdng somecontinuity constraints, an effective text / graphics vs. image / videodeci

sion can be made. Figure 6.5 plots the local color diversity of a typical image with both text /

graphics and image / video regions using 8x8 pixel blocks. Blocks with more than 4 colors are

classified as "image / video" while those with less than or equalto 4 imiquecolorsare classified as

*text / graphics". In this way, thoseblocks with high color diversity, which would require large

and often unique micro-colormaps and patterns, will be coded using a lossy coding. Continuity

constraints prevent small high-diversity patches fi'ombeing interpreted as image / video and small

low-diversity patches fi'om being interpreted as text / graphics.

Figure 6.6 shows an example of automatic text / graphics and image / video merging based

on color diversity. The top image is a section of the original image firom Figure 6.5 while the bot

tom image has the blocks with color diversity greater than 4 replaced with a crude image coded

version. The image coding entailed conversion to YUV space, decimating Y by 3x3 and U and V

by 6x6. The three intensities were then coded at 6 bits per sample for a net coding rate of 1 bit per
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pixel. Ascan beseen, even this crade coding does notintroduce excessive image degradation since

itisonly occurring incontinuous-tone regions. Note that continuity constraints are not imposed so

some isolated text / graphics regions, such as on the web browser buttons, are detected as being

image regions and are coded using the lossy coding. Using a more sophisticated coding such as a

DCT-based approach used inJPEG [40] would result inhigher image quality and/or greater com

pression rate.

6.4.5.4. Must Work for All Possible Screen Configurations

While the lossless text/ graphics coding described above cannot bound compression, when

coupled with the lossy image / video coding, the overall system memory requirements can be

boimded. Thus if the memory usage of the lossless portions everexceeds theallowable amounts,

blocks canbeconverted to thelossy format which will always fit. Forexample, using 8x8 blocks

ontypical text / graphics screens asdescribed next, thelossless coding codes at less than 1bitper

pixel. Thecrude lossyimage coding previously described codes at 1bit per pixel. Thus if 2 bits

per pixel of memory were available thenall possible screen configurations couldbe stored.

The flexibility ofTGVQ method allowsdetail to particularregions to be tailored as desired.

In particular if small regions of the screen require high fidelity, they can be losslessly coded

regardless ofwhether they are text / graphics or image / video.

6.4.5.5. Must be Tailored to Typical Screen Contents

Figures 6.7 and 6.8 show typical images and their compression rates. In the case of both

screendumps in Figure 6.7 as well as the screendump without the continuous-toneimages in Fig

ure 6.8, the compression algorithm results in coding less than one bit per pixel. Even with some

continuous-toneregions, as in the top image of Figure 6.8. The compression rate is still under 2

bits per pixel. If a separate lossy coding for continuous-tone regions is used, as described in
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FIGURE 6.9. Rough architecture of compressed framehuffer TGVQ decoder.
Note that any number of the memoriesshown could be combined into single uniHed
memory.

Section 6.4.5.3., the compression rate would be further reduced and bounded. Thus if the frame-

buffer is allocated 2 bits/pixelthen typical images can be fully losslessly encoded.

6.4.5.6. Decompression must be Low Complexity / Cost

The TGVQmethod is readily implementable in hardware. Its implementation would bear

many similarities to the VQ Video described in [15]andreferredto previously in Section5.2..Fig

ure 6.9 shows a rough architectureof the compressed frnmebuffer system and some of the princi

ples of opo^tion are briefly describedhere. Also note that while multiple separate memoriesare

show, they could be combined into a single unified memory to promote reuse between the two

codebook arrays, but at the possible expense of power consumption due to tighter access time

requirements.

A counter cycles through the two index memories in order to retrieve the indices for the

blocks as the image is scanned. These indices are used to select codebook entries from the two

codebooks. The coimter output is also distributed to the pattern codebook memory so that it can

produce the correct line within the pattern. A block combiner indexes the pixels from the pattern

memory into the MCMap to produce the rendered pixels. It could also incorporate a lossy image
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codingtechniquefor videoas previously described. Sincethe system works"open-loop**, latency

is notproblematic, and thiscan be used to reducepowerconsumption thoughpipelining.
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CHAPTER? HybridApproach

7.1. Motivation

In Chapter 3, the pnmitive-based approach is presented which allows for good bandwidth

utilization, but can result in high latency due to loss or queuing delays. In Chapter 4, Chapter 5,

and Chapter 6, bitmap-based approaches are discussed which significantly reduce latencies, but at

the expense of less efficient bandwidth utilization. This then leads to the question of whether a

hybrid approach can yield the benefits ofboth the primitive and bitmap approaches as shown in the

table below:

Bandwidth

Utilization

Perceived

Latency
Client

Complexity

Conventional Primitive Good Bad Ok

Conventional Bitmap Bad Bad Good

Improved Bitmap Ok Good Good

Hybrid Approach ? Good ? ?Good? ?Ok?

This chapter presents some ideas and directions on the implementation of such a hybrid

approach.
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7.2, Approach

Inord^ to obtain the best ofboth thebitmap and primitive approaches, a hybrid scheme is

employed. The primitive approach obtains its bandwidth efRciency by retaining and transmitting

thedrawing requests in thecompact primitive form, while the bitmap approaches deliver reduced

latencies by reducing false-dependencies and eliminating updates that are superseded before they

can be transmitted. The two key concepts required to combine these are primitive dependency

tracking andprimitive squashing.

The architecture proposed is the virtual framebuffer architecture presented in Section 4.3.

with the modification thatthevirtual fiamebuffer is not a bitmap-based buffer but rather a primi

tive-based fi'amebuffer. While the primitive approach simply queues the drawing requests ina sin

gle linear list, the hybrid approach explicitly notes dependencies by arranging the queued

primitives ina setof directed acyclic graph (DAG) structures called ihependingprimitive graph.

The primitive fiamebuffer stores the primitives that have been requested by an application but

havenotyet been sentandacknowledged firom theremote terminal. Each primitive also hasa flag

indicating whether it has beai yet transmitted to, but not acknowledged by, the r^ote terminal.

Other mformation such as the time of transmission and graphics context information may be

recorded. A secondary bitmap-based bufferis usedto satisfy application image queries. Thebit

map buffer contains the ciurent rendered contents of the screen as with the bitmap-based virtual

fi'amebuffer architecture.
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FIGURE 7.1. The hybrid approach: pending primitive graph.
Primitives that have been queued for transmission to the remote client, but not
transmitted and acknowledged, are arranged in a set ofdirected acyclic graphs with
links explicitly denoting dependencies and overlap.

7.5. Master Operation

When a new drawing primitive is received from an application, the master places it as a

child of all drawing primitives that must be rendered before it. This would include any previous

primitive which geometrically overlapped the primitive in question. Figure 7.1 shows an example

of a calculator image and its dependency graph. The calculator is comprised of a solid back

ground, a surrounding border, a number area and a set ofkeys. Each key consists of a solid back

ground, a border, and a label. The keys do not overlap with each other or with the number area.

The master also renders the primitives to the bitmap buffer so that later application queries

for the current contents of the screen can be satisfied locally. The existence ofa fully rendered bit

map buffer also allows sessions to be suspended and resumed.

7J.1. Primitive Squashing

While the bitmap-based approach automatically replaces old updates with new ones via

Adaptive Bandwidth Compression as described in Section 4.3.2.1., the hybrid approach, via the

master, must do this manually. When a new primitive is added to the pending primitive graph, it is

placed as a child ofall previous primitives which overlap it. Before placing the new primitive, the
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FIGURE 7.2. Primitive squashing: removal of unneeded primitives.
\^en a new primitive obscures previous primitives that have not beensent to the
client, the previous primitives are removed since their effect has been nuliified. The
above shows what happens when a newobject(thesquare/circle combo) is drawn,
obscuring some old primitives.

graph is examined and if the new primitive completely obscures any existing primitives, they are

removed. If they have been sent already, but notacknowledged, they are forgotten. If they have

not been sent, theywill not be sent. In this way, redundant primitives willnot consume valuable

link bandwidth. The process ofremoving stale primitives iscalledprimitive squashing.

Onlyprimitives whose removal would notalterthefinal display rendering canbe removed.

In particular, if a non-opaque primitive such as XOR area completely covers an earlier pending

primitivesuchas a line,box, or text, that earherpending primitive cannot be removedas it would

change the final display. However, if thisis thai completely covered with a lateropaque primitive,

the earlier opaque and non-opaque primitives canbe removed sincetheywillno longereffectthe

fmal display.
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13J1. Dense Primitive Rendering

The virtual framebufFer architecturedecouplesthe application from the remote terminal and

protocolsused to communicate with tiie remote terminal. Thus both operations on single primi

tivesand multipleprimitives canbe effected. Sincethe primitives are queued in the pendingprim

itive graph until being sent, during heavy usage, the pending primitive graph could contain many

pending primitives.

While primitives are typicallya more compactrepresentation than bitmaps, ifan application

drawsvery fine detail, or uses manyspatiallysmall primitives, a bitmaprepresentation of a given

high-detail area may be more compact than the pending primitives specified by the application.

This is particularlypossible if bitmap compression as previouslydescribed is used. To this end,

the hybrid approach can dynamically convert pending primitives to a pending bitmap update.

Since the master knows the exact screen contents, it can create a bitmap write primitive that speci

fies the current contentsof a particularregion, and use it to squash all underlying primitiveupdates

specified by the application. If later primitives are queued before the bitmap update is delivered,

the new primitives are rendered into the virtual bitmap fimnebuffer and the updated image super

sedes the previous one. This can be used to boimd bandwidth requirements for high-detail images.

Furthermore, progressive image delivery techniques as described below can be used.

73 Representing Region Copies

Bit Block Transfers (called BitBlt or Bit Blits) which cause a source region ofthe screen to

be copied to a destination region of the screen, need to be noted both at their source and destina

tion. For the destination region, they appear like any other primitive and can be opaque if they are

a direct copy, or non-opaque if they are to be combined with a logical operation such as AND or

XOR. BitBlts must also be noted at the source as a dependency since the block copy must be exe

cuted after all queued primitives in the region it references but before any subsequent primitives
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that may further modify the region. This is because the application issuing the copy request

assumes that its primitives will be executed in orderand thus all primitives requested before the

copy will have completed but none of the primitives requested after the copy will have begun.

Thus a special copy link is needed which notes both source and destination.

BitBlts prevent squashingofthe sourceregion acrossthe sourcereferencein order to assure

that thecopied state referenced isrendered. However, the destination region can cause thecopy to

be squashed just as other primitives are squashed. If the destination region warrants squashing

then the BitBlt primitive is removed and its reference to the source is removed. This could then

allow further squashing if it was prevented by the existenceof the source reference.

7.4. Slave Operation

The slave scans the primitive framebuffer as before, and sends any primitives that are not

children of (dependent on)anyotherqueued, butnot sent, primitives. Theordering of this scan is

flexible as willbe discussed below. Oncetheprimitives aresent, theyaremarked as such andthen

any of their children can be sent. The dependencies are also transmitted withthe primitives such

that if anyprimitive is lost, onlythose later primitives which depend onthe lost primitive arenot

rendereduntil the lostprimitive is retransmitted successfully. However, the rendering of indepen

dent primitives need not be delayed.

The primitives are coded in a format that is appropriate for transmission to the remote client.

Compression and error-corrective coding can be used to trade off error-tolerance, bandwidth

usage, and client computational requirements.

A particular primitive is removed as soon as it and all primitives it dependends on are

acknowledged. When an acknowledgment for a particular primitive is received from the remote
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terminal, that primitive is markedas acknowledged, and if it is not the dependent of any unac

knowledged primitives, it is removedfrom the poiding primitive graph. Additionally, ifit had any

dependents which were acknowledged but not removed because the parent was not yet acknowl

edged, they are removed as well.

7.4.1. Progressive Image Transmission

While the image display requests issued by the application are queued as single primitives,

they do not have to be sentto the remoteterminalas such. Multiple-pass hierarchical transmission

is often quite useful for bandlimited or lossy links since it allows the user to quickly get a coarse

idea ofwhat is on the screen. If transcoding occurs in the text / graphics server, applications need

not be designed for operationover a slow link. Oftenapplications, such as AdobeFrameMaker ®,

use image primitives for text rendering in order to retain full control over typesetting and font

style. These applications are difficult to operate remotely over bandlimited links if image trans

mission is not efficiently handled. Additionally, standard video player or video conferencing

applications can be used remotely if the image transmission to the remote terminal is performed in

a bandwidth-conscious manner.

Progressive image transmission can be effected by having the slave, or some independent

lower-priority thread, transcode and compress pending images into progressive formats. For con

tinuous-tone images, spatial-frequency decomposition such as that used in progressive JPEG and

wavelets could be used. For discrete-tone images, interlacing similar to interlaced GIF and PNG

would be more appropriate and yield superior image quality at a given bit-rate. The choice of

whether to use progressive images and which type to use could be made based on the server CPU

load, client capabilities, link bandwidth availability, and type of image.
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Oncethe images havebeentranscoded, eachpending primitive has associated with it a set

of flags indicating which layers have been sent. The layers are sent independently and theremote

terminal acknowledges the receipt ofparticular image layers, and not justthe entire image primi

tive. The images can be divided further spatially such that particular parts of particular layers

couldbe independently sent and acknowledged. This isparticularly useful inconjunction with the

cursor-targetedupdates via primitivereordering describedin the next section.

Thevarious layers areprioritized differently with respect to other images andotherdrawing

primitives. Typically higher detail-level layers would only be sentafter all other primitives have

been transmitted, as theyare onlyneededfor final image quality. In this way, if an animation or

movieisplaying, other regions of thescreen such astheplayer's GUIor other applications willnot

experience excessive delay m updating. The high-detail layers typically consume the greatest

number of bytes yet deliver the smallest delta in image utility. Lottery scheduling [69] couldbe

used to assure thathighresolution images arenotdelayed indefinitely in thepresence of othercon

tinuous activity.

Caremustbe takenifotherprimitives dependon the transcoded imagesincethe other prim

itives cannotbe rendered until all layers in the image are rendered. Altematively, the dependent

primitives can be re-raidered after each successive layer of the image is rendered. Also, if the

image is laterthe source of a BitBlt, the image mustbe fully rendered before the BitBlt can pro

ceed.

7.4.2. Primitive Reordering

As previously mentioned, using the virtual framebuffer architecture, the order in which

primitives are sent firom the text / graphics server to the remote terminal is independent ofthe order
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that the applications send the primitives to the text / graphics server. This can help to reduce the

net latency due to loss as well as the delayfor the user to see the data they are interested in.

The latency due to loss can be reduced by sending primitives in an ordering that as few

primitives as possible are dependent on other in-flight primitives. If a long stream of dep^dent

primitives are transmitted and one of the earlier primitives is lost, the subsequent primitives must

be delayed until the lost primitive is successfully retransmitted. However, ifmultiple independent

streams are transmitted then losses will only delay the update of smaller regions of the screen.

While dependencies cannot be removed, by sending primitives in a "breadth-first" manner as

opposed to a "depth-first" manner, the numb^ of outstanding dependencies can be reduced and

improved performance in a lossy environment will result.

Additionally, the updates can be targeted such that regions of user-interest receive greater

bandwidth. One way to infer user-interest is to assume that the cursor area is ofhigher priority and

prioritize updates to that region before updates to other regions. In this way, even a low-bandwidth

link supporting a complex display can retain interactive operation of a graphical user interface

since typically the most responsiveness is required around the location of the cursor. A similar

concept is applied to World Wide Webtransmission described in Section 10.5.4.

7.5. Benefits / Conclusions

Thus it has been demonstrated that the hybrid approach combines the best of both the bit

map and primitive approaches by simultaneously reducing bandwidth requirements as well as

reducing latency due to queuing and loss. By further separating the applications from the conunu-

nications link, generic applications can be used in a bandwidth and loss aware manner. Progres

sive image techniques and information reordering allow limited resources to be directed at the

goals of the user.
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CHAPTER 8 Text / GvapMcs Image
Compression

8.1. Introduction

In the past chapters, application-indepoident text / graphics and image transmission archi

tectures have been proposed While these architectures varied in bandwidth, latency, and client

complexity requirements, all of the techniques transmitted images at least some of the time and

could thus benefit from image compression techniques. Hie primitive-basedapproach of Chapter

3 used image transmission whenever the application chose to send images. The bitmap-based

approaches of Chapter 4 and Chapter 5 transmitted images for all updates. The compressed-

framebuffer approach of Chapter 6 could use additional image compression to reduce bandwidth

requirements beyond the compressionaffordedby the compressed framebuffer algorithm. Finally,

the hybrid approach of Chapter 7 used image transmissionwhenever the application chose to send

images, as well as when many dense primitives were drawn.

This chapter gives some background on image compression techniques suited for transmis

sion of text / graphics images and proposes a new algorithm specifically tailored to this class of

images. It will be shown that dictionary-based image compression techniques determine and
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exploit redundancy inimages bydecomposing theinput image into repeated sequences and coding

them as such. Conventional approaches such as Graphical Interchange Format (GIF) and Portable

Network Graphics (PNG) are restricted to 1-dimensional repeating pattems. The technique

described inthis chapter. Flexible Automatic Block Decomposition (FABD), performs two-dimen

sional block decomposition toexploit arbitrarily-sized rectangular repeating blocks. Several opti

mizations are used toreduce the computation required for the block matching toapproximately the

same as traditional one-dimensional techniques. Employing simple entropy coding techniques to

thecompression of typical text/ graphics images, a coding rate of0.03- 0.20 bppcanbeachieved.

This is 1.5 to 5.5 times more compact than GIF and up to 3.8 times more compact than PNG

Decompression is fast and simple, as is required in a web browsing or remote portable terminal

environment [32].

8.2. Image Coding Overview

The basis of all lossless image compression techniques is the detection and exploitation of

redundancy in the image to be compressed. The detection typically involves predicting parts of

the image yet to be coded from those that have been previously coded and general knowledge

about the class of images being compressed. The exploitation of the redundancy is effected by

sending only the novel aspects of the data so that the more '̂predictable" the image by a given

algorithm, the greater the achievable compression.

For instance, if it was known that a synthetic input image always consisted of a discrete set

of squares of varying size, location, and color, then this couldbe exploitedby codingthe image as

a few parameters, namely the number, size, location, and color of the squares and the color of

backgroimd. Thus the size ofthe compressed image would be independent ofthe number ofpixels

in the image and the compression could be quite substantial.
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However, if the image coder only expects the input images to consist of solid horizontal

lines, the"square" images would have to becoded as many horizontal lines. While thiswould typ

icallybe moreefficient than codingeachpixel individually, it would not be as efficient as coding

as squaressincemanyhorizontally lineswouldbe required for each square. Thus as compression

algorithms contain more information about an image class, they can compress the images more

effectively.

8.2.1. Discrete-Tone Images

Discrete-tone images are those in which the pixel intensities do not vary smoothly, as in a

photograph, but rather assume a smalldiscreteset of values. Discrete-tonecolor images are com

puter generated and include screendumps, diagrams, and renderings of text - the types of images

used in the transmissions systems described in this thesis.^ These synthetic images typically

exhibit significant redundancyin that largeareasof the imageare solid or consist oflines or shapes

which can be predicted fi'om other places in the image. Solid regions can be specified compactly

as in the square example above, and text and symbolsfrom one area in the image can be predicted

from those in another area since identical patterns of pixels will appear for the same letters and

words.

8.3. Previous Research / Existing Standards

Two existing approaches to the image compression problem are one-dimensional dictio

nary-based techniques (used in algorithms such as J6IG) and two-dim^ional statistical tech

niques (used in algorithms such as GIF and PNG). Each exploits certain aspects of the input

images and has strengths and weaknesses.

1. Continuous-tone imagescan be quantizedor ditheredto a discreteset of tones but will still exhibit characteristics of
continuous-tone images. Scanned bi-level images are similar to dithered continuous tone images in many ways.
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83.1. One-Dimensional Dictionary-Based Techniques

Dictionary-based image compression techniques find repeating sequences in images by cre

ating a "dictionary" of common strings and thencodingthe sequences by their index into the dic

tionary. Theimage is considered a single, albeitlong,sequence.

The Lempel ZivWelch (LZW) data compression algorithm maintains anexplicit dictionary

of recently used strings. The dictionary initially contains only the single symbol sequences forall

symbols. Thecodingproceeds by findingthe longest sequence in the dictionary that matches the

next symbols to be coded. The dictionary is grownby addinga new sequence consisting ofthe old

sequence with the addition of the symbol that follows it (as determined by the decoder once the

next sequence is received). In this way, the dictionaryhas a 'prefixclosed' property wherebythe

prefix of everysequence in the dictionary is also in the dictionary. Thus the encode and decodo*

can both buildthe same dictionary automatically without it being explicitly sent. Thedictionary

can be reset or frozen by the compressor. Compuserve's GraphicalInterchangeFormat(GIF) uses

the LZW compression algorithm on the pixelvalues in the image in standard left to right, top to

bottom raster-scan order.

Since GIF uses a 1-dimensional coding, horizontal patterns are effectively compressed but

vertical patternsare not; while horizontallyadjacent pixels appear consecutively in the scan order,

vertically adjacent pixels are separated by large gaps consisting of the rest of the pixels in the line.

For instance, a solid blue horizontal line appears as several consecutive blue pixels while a solid

blue vertical line would cause several isolated instances of blue pixels, separated by the scan line

width. Additionally, a text character would have to rq)resented as many horizontal patterns

instead ofa single two-dimensional pattem. The method described in this chapter overcomes both

ofthese shortcomings.
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TheLempel Ziv 77 QJLll) datacompression algorithm works by considering the data to be

encoded as the dictionary. Listead of specifying sequences as indexes into a dictionary, the

sequences are specified as parts of the data stream whichhave alreadybeencodedby sendingtheir

"length"and "distance". For example,a sequence could be specified as "17 symbolsstarting 34

symbols from the last symbol coded" where its lengthwould be 17 and its distance would be 34.

Additionally, single symbolscan be coded in casethey are not present in the recent history. Porta

ble Network Graphics (PNG) [59] combines LZ77 with Huffinan coding [39] of the length and

distance parameters to more compactly code common values. Additionally PNG performs sub-

bytepixelpackingso that for imageswith 1,2, and4-bitpixels,multiplepixelsare joined into one

byte beforecompression. As with GIF / LZW, horizontal patternsare effectively compressedbut

vertical patterns may not be and would thus suffer from the same problems. PNG performance

typically outperforms GIF by 10-30% and additionally has improvedprogressive displaycapabili

ties and patent-free status.

8J.2. Two-Dimensional Statistical Techniques

Statistical prediction has been effectively used to compress images by using a context

around a given pixel to predict its value. When the value is often the same as the predicted value,

little additional information must be sent and low coding rates can be achieved.

The Joint Bi-Level Image Processing Group's JBIG codes pixels in a bi-level image using a

10 or 12 bit context and arithmetic coding [4,43,61]. The neighboring pixels are used to estimate a

probability distribution for the current pixel. This distribution dictates the codes to be used for 0

and 1 pixel values. Using arithmetic coding, codes can be fractions ofa bit. If a particular pixel is

predicted as being more likely to be a 0, the 0 code will be shorter than one bit in length while the

1 code will, by necessity be greater than 1 bit. In this way, ifthe prediction comes true, only a frac

tion ofa bit will be required for the pixel. When the prediction is not correct, a pixel will require
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more than one bit. The more skewed the probability, the shorter the "likely" code isand the longer

the ^Hmlikely" code is. Additionally, the "likely" code will occur more often and the **unlikeiy

code will occur less frequently. The combination of these two effects results in fewer total bits

being required for coding. JBIG can be applied to grayscale or pseudo-color images using bit-

plane decomposition. As will be shown in Section 8.7. and Figure 8.12, this can lead to redun

dancy and poor coding when a similar structure appears across several bit-planes. However,

despite this problem, JBIG performs well on both bi-level and color images. Its performance is

particularly impressive on scanned and dithered images.

While JBIG uses statistics adaptedover the entire image, eachpixel must be coded individ

ually. This is to be contrasted with the dictionary based techniques which can code entire

sequences of pixels using a single code word. For instance, for a single character to be codedby

JBIQ a code for each pixel has to be specified. Whileeach code couldbe a fractionofa bit in size,

this is to be contrasted to 1-dimensional dictionary-based techniques where roughly one code

would be required per scanline of the character or a 2-dimensional dictionary-based technique,

such as that in this chapter, where one code wouldbe required per entire character or for several

characters.

The Piecewise-Constant (PWC) imagemodel [6] extends statistical codingbeyond bi-level

images. In this model, arithmeticcodingis usedto code the pixel colors ofa palette image by pre

diction based on neighboring pixel colors. It assumesa model ftiat imagesconsist ofsmall regions

of pixels of the same color. The statistical firamework is constructedthrough the use of four per-

pixel questions:

• Q1: Is the current pixeFs color identical to that ofa specified rectilinear connected neighbor?

• Q2: Is the current pixel's color identical to that ofa specified diagonally coimected neighbor?

• Q3: Is the current pixel's color identical to a guessed value?

• Q4: What is the current pixel's color?
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Using context-based arithmetic coding, the answers to these questions can be coded effi

ciently. As soon as one question is answered affirmatively for a given pixel, the other questions

need not be answered. Q1 and Q2 exploit the fact that pixels are often the same color as neighbor

ing pixels while Q3 exploits the fact that often in a region a small set of pixels are used. In this

way a "guess" pool is kept of recently seen pixel colors^ Finally if Q1 through Q3 are all

answered negatively, another method, such as linear prediction, must be used to answer Q4. Since

statistical methods are employed, dithered images can be coded efficiently. However, as with

JBIQ global statistics are used but each pixel must be coded individually.

Other approaches to bi-level image coding have focused on the subset of images consisting

of primarily typed or printed text [18,38]. Image segmentation into **marks" is used to locate and

individually code the characters. The residual is then coded in a lossy or lossless manner. While

this allows full two-dimensional matching, this explicit segmentation limits the class ofapplicable

images to those similar printed text. (Non-segmentable regions can be coded using other tech

niques.) Additionally the size of the segments is typically limited to single characters, reducing

potential coding gains compared to using larger regions. The segmentation is required to make the

matching computationally feasible by restricting the pattern matching to occur at fixed "mark"

boundaries.

8.4. Flexible Automated Block Decomposition

In order to obtain high lossless compression rates, it is necessary to determine and exploit

the redundancy found in the input image. While GIF and PNG implicitly assume that the redun

dancy is one-dimensional, and JBIG and PWC code pixel-by-pixel, assuming some local two-

dimensional redundancy as well as global statistical redundancy, it is apparent from looking at

1. This is similar but developed independently from the color age notion introducedin Section 8.6.2.1.
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synthetic images that much block-level global two-dimensional redundancy is present - whole

blocks are repeated throu^out the image. These blocks may be in the form of text or shapes.

Additionally, large solid blocks are a form of redundancy and their efficient coding can aid com

pression.

The FABD algorithm, described in this chapter, decomposes an input image into two-

dimensional blocks by scanning the image from left to right, top to bottom and dividing the image

into a set of three types of blocks:

1. Copied blocks

2. Solid fill blocks

3. Punts

Figure 8.1 shows a typical image with the three types of blocks. Copied blocks (shown in

with vertical lines) are regions of the image which appear verbatim before the current location. No

restrictions are placed on the size or location of the source and destination blocks except that the

start of the source block must appear before (above or on the same line and to the left of) the start



ofthedestination block. Solidblocks(shown withhorizontal lines)are regionsin the image which

consist of a single color. Finally, punts (show with hashed box) are the areas in the image which

do not fall into eitherof the first two categories. Thisdecomposition can leadto efficientcodingif

the blocks are large such that a small number of blocks are required to represent an image. By

parameterizing the image in termsof these threetypes of blocks, efficient entropy codingis possi

ble.

Decomposition proceeds in a greedy manner from the top-left of the image to the bottom-

right until allpixels have been accounted for. The area currently being classified iscalled thedes

tination region. Forcopies, the location being copied from is called thesource region. Thedesti

nation region is increased in sizeuntil it nolonger is consistent with a solid fillor block copy. All

width andheight combinations aretried tomaximize thenumber of uncodedpixels covered by the

block. Sincethe regions arearbitrarily sizedrectangles, overlap is possible. Oncea pixelhas beoi

covered by oneblock, it is neitheradvantageous nordetrimental to recode it

Figure8.2shows the resultof automatic blockdecomposition. Pixels in a blockdenotepix

els fromthe samecopyor fill blockthough the particular colors are not important. For copies,the

source of the copies is not shownandfor fills, the coloris not shown. Punted pixelsare shownin

white. The decomposition leads to average block sizes of 200-400 pixels so that a compression

rate of 0.1 bpp canbe achieved if the blocks can be coded at 20-40 bitsper block. Typical images

result in only about 1%pixels puntedwhich, even at a coding of 3 bits/pixel, only accounts for

0.03 bits/pixel.
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FIGURE8.2. Automatic block decomposition.
Solids blocks denote regions of same copy or fill. White pixels are punts.

S.S. Accelerating the Search

While it may be evident that the previouslydescribeddecomposition could lead to effective

compression, it is not immediately clearthat it can be donein a timelymanner. As stated, the algo

rithm requires a full block search over the entire image for each pixel coded, requiring

'y 'y

W *H *BlockSize comparisons and supporting instructions. For a 1000x1000 pixel image with

anaverage block size of200 pixels, 2*10^^ comparisons would be required, which on a lOOMIPS

machine wouldtake several weeks. However, the BlockSizefactor drops out since search is only

performed on pixelsnot yet coded, reducing the time to severalhours. This is still not acceptable

for many applications. The optimizations described in this section reduce the time to a matter of

seconds.

Typically implementations of a GIF encoder [57] compress at rates of approximately 200-

400 kilo-pixels per second (kps) on a SunUltraSparc 2. For the 1OOOx 1000 pixel image, this results

in compression in 2.5 to 5.0 seconds. Without optimization, the FABD algorithm would code at



approximately O.lkps. However, using the four optimizations presented here, the rate can be

increased to that ofGIF, 200-4001q)s.

8.5.1. Big Fill, No Copy Search

For large solid regions, the search for a copy match is not necessaiy since the solid regions

can be coded quite efficiently as fills, and thus coding them as copies jdelds little benefit. Addi

tionally,the search is likely to be lengthy since the solid regions are likely to match a large portion

of the destination region. In regions covered by fill blocks of at least 20 pixels in width or height

or 50 pixels in area, the copy search can be suppressed with negligible loss in compression. This

typically increases the compression speed by a factor of5 to a rate of 0.51q)s.

8.5.2. Fast Match Lists

Although blocks can be any size, most useful blocks are larger than some minimum size

such as 4x4. Otherwise stated, a source location is only worth investigating if a 4x4 region

anchored by the source matches a 4x4 region surrounding the destination location. A minimum

size of 4x4 was empirically determined to have a negligible effect on compression performance

while increasing speed. Larger miniinunn sizes can result in faster compression, but lower effi

ciency.

To exploit this observation, the following optimization is performed: First, all overlapping

4x4 blocks in the image are categorized by pattem by placing all 4x4 blocks ofthe same pattem in

fast match lists. The lists are sorted in reverse raster-scan order (bottom to top, right to left). Next,

block decomposition is performed. However, to perform the copy search for each destination, it is

no longer necessary to search over all possible source locations. Instead it is sufficient to search
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FIGURE 8J. Match lists used for fast match.
Four patterns are shownhorizontallyand the locationstheyare found in the imageare
shown vertically.

over those with the same initial 4x4 block, saving much time^ Using the fast search lists reduces

the search timefrom 30 minutes to between 10seconds and 10minutes depending on the image.

The fast match lists must be generatedquickly. An efficientway to representthe match lists

is to create a list ofall used 4x4 patterns and associate with each member ofthis list another list of

pointers to where thepatternsareusedin the image. (SeeFigure8.3.) Thelistof patternsis called

a head list while the patterns themselves are called heads. These heads form the beginning of

match lists which link the destination locations together.

To generate the list of lists, the image is scanned from left to right, top to bottom. The 4x4

patt^ at each pixel is compared to each of the heads, and if it matches, the pixel's location is

prepended to the beginning ofthe head's match list. If it does not match any, a new head is created

with the pattern.

The heads are kept sorted in order of last match so that if a pattern repeats, it will be found

quickly. Hashing functions allow the head list to be split into multiple shorter head lists using a

14-bit hash on the value of the 4x4 pixel patterns (see Figure 8.4). These optimizations allow the

fast match list to be generated in a second or two for typical images.

1. Note that the degenerate case of largesolidregionsis handledby the optimization of Section8.5.1.
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Max Search

Depth
Screendump

bits/pixel

Screendump
compress

time

Papers
bits/pixel

Papers
compress

time

10 0.144 bpp 2.6 sec 0.108 bpp 3.9 sec

50 0.128 bpp 2.9 sec 0.086 bpp 4.6 sec

100 0.126 bpp 3.2 sec 0.083 bpp 5.4 sec

200 0.125 bpp 3.6 sec 0.080 bpp 6.2 sec

500 0.124 bpp 4.4 sec 0.078 bpp 7.9 sec

1000 0.124 bpp 5.2 sec 0.078 bpp 9.4 sec

100000 0.123 bpp 34.4 sec 0.077 bpp 82.6 sec

TABLE 8.1. Effect of search depth imits on compression time and rate

The net result of the fast-match lists is a speedup of 3-200x to yield a typical coding rate of

1.5 kps to 100 kps. The wide variation is due to the dependence of the searchtime on the input

image. In particular, if thereare manyblocks with the same4x4 patterns, the block matching can

take significantly longer.

8.5.3. Bounded Search Depth

Evoy candidate location in the list has a high probability of yielding a block copy match.

Since the fast match lists are ordered from bottom to top, physically closer candidates will be
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searched first Asthecompression time is largely determined by copy block search time, it allows

a trade-ofif between compression time and resultant bit rate. Limiting search depth proves to be

very effective in reducing the compression time while not noticeably impacting thecompression

rate. Limiting also prevents troublesome regions in the image firom taking too long. A limit of

1000 does not sacrifice compression while keeping the compression time usually well under a

minute. Limits as low as 50 dramatically reduce the compression time while only minimally

impacting thecompression rate. Table 8.1 shows theeffect in terms ofcompression rateandtime

ofdifferent limits ontwo typical images. Theresults in Section 8.7. aregiven forlimits of 100 and

1000. As compressed datais generated on the fly, the limitcouldbe dynamically variedto match

computetimeandcompressed datarate on an outgoing channel for interactive appUcations. The

bounded search depth results in a speedup bya factor of 1.5 to 50 yielding a coding rateof 75kps

to 150 kps. Thus the coding rate becomes much less image dependent.
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8^.4. Coarse / Fine Matching

The time to perform the block search can be further reduced by using fast-match lists of

Section 8.5.2. to perform the actual blockcomparisons (as well as specifyingwhich blocks should

be compared as just described.) Recall that the fast-match list membership of a given block

uniquely determines the colors of the 4x4 pixels at a given area. Thus a comparison of the per-

block fast-match list pointer can be used to quickly compare the entire 4x4 blocks. A two-stage

processis used wherebya first coarsepass grows all candidate regions4x4 pixelsat a time in order

to get the best match size (modulo 4) in a fraction of the time. (See Figure 8.5.) Then once the

best coarse match is found, a refmement pass determines the exact size of the largest match. In

this way the pixel-level comparison needs only be performed for one block instead of many, result

ing in a speed increase by a factor of 1.5 to 3 to yield a net coding rate of 200-400kps, which is

similar to one-dimensional decompositions such as LZW and LZ77 used in GIF and PNQ

Although the final block size accuracy is not compromised due to the refinement pass, the best

match determined by the coarse phase could in some cases not be the true best match which would



result ina non-optimal choice ofblocks. However, results show that the impact on compression

performance is typically less than 1%.

8.6, Entropy Coding Techniques

The block decomposition stage generates a parameterization ofthe input image interms of

block copy, fill, and punt primitives. Although there are many fewer blocks than pixels, these

parameters still have to be coded efficiently. This is the job of the entropy coder. A simple

entropy coderbased on Hufhnan codes was used to verify the potential utility of the two-dimen

sional flexible blockdecomposition. Moresophisticated entropycoders could resultin further cod

ing gains.

8.6.1. What to Code

The blockdecomposition generates the following threetypesof primitives:

CopyBIock(c/es7_.v, desf_j', width, height, src_x, src_y)
SolidBlock(J6..s7_A-, clest_\\ width, height, color)
PuntBlock(£/fc'.yr_A, numPixels, pixel1, pixel2,..., pixeLN)

The dest_x and dest_y fields are not transmittedas they are implicit in the order that the data

is transmitted. For copy blocks,thedimensions andsourcelocationhaveto be transmitted, for fill

blocks the dimensions and colorhaveto be transmitted, and for pxmt blocks the pimted pixelval

ues have to be sent.

8.6.2. IVansformmg the Parameters

While the block decomposition is a transformation of the pixel data into a new parameter

space, which results in more efficient coding, additional transformations of the parameters aid in

entropy reduction. A few transformations will be discussed here.
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8.6.2.1. Color Age

The input images consist of 8-bitpseudo-color pixels. The colors of puntedpixels, and to

some extent filled blocks, exhibit a large degree of spatial locality. It is common for only a few

unique colors to be used in a given region. Text regions typicallyuse only two colors. However,

throughout the image, different sets ofcolors might be used. Thus it is beneficial to code a relative

propertyofthe colors instead ofthe colors themselves. Givena stream ofpixel colors:

red, blue, brown, brown, brown, red, brown

the color age is the number ofunique colors present between a given instance ofa particular

color and the previous instance ofthat same color. In the above case the color ages are:

red=?, blueF=?, brown=?, brown=0, brown=0, red=2, brown=l

It is not possible to determine the color age of the first three colors since they depend on the

previous colors encountered. To initialize the system, the color history is set such that the initial

color age ofeach color is its pixel color.

As evidence of the utility of the color age technique, using adaptive Hufhnan coding, the

average number ofbits to encode the fill and punt colors in the screendump image drops from 3.63

and 3.05 using the actual colors to2.03 and 1.62 using color age^

8.6.2.2. Relative Copy Source

Spatial locality suggests that blocks will often be copied from nearby regions. Thus, the rel

ative sources will be small and non-uniformly distributed, and hence have lower entropy. Addi

tionally, many images, particularly ones with text, have significant spatial structure that can be

modeled by coding the source location relatively. For the screendump image, coding the source x

1. Lempel-Ziv compression of punted pixels did not appear to yield better compression.
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coordinate relatively reduces its entropy from 7.58 bits/pixel to 7.26 bits/pixel and coding the

sourcey coordinate relatively reduces its entropy from7.41 bits/pixel to 5.56bits/pixel.

8.63. Huffman Coding

After the parameters are transformed, conventional entropy coding techniques are used to

exploit the skewed probability distributions present. AdaptiveHuffman codes are used since the

alphabet sizesare largeenoughnot to requirearithmetic coding. The variousparameters are coded

independently. Joint coding of height and width did not perform as well due to undersampling

effects: when pairs ofparameters, such as block width and height, are consideredjointly, there are

more unique symbols, and thus the overhead of introducing new symbols is greater. Using joint

coding, the number of symbols is proportionalto the product ofnumber values of each parameter

while using independentcoding, the munber of symbols is proportional to the sum. Joint coding

might be more advantageous for large sample sets (i.e. large images) and ifthere was a strong cor

relation between two parameters.

8.7. Results

The FABD algorithm was evaluated on several images which typify the class of images

described in Section 8.2.1. Calculator^ textedit, paper^ and screendump^ shown in Figure 8.6, are

discrete-tone snapshots of the type used in remote computation. The first three show single appli

cations while screendump shows a number ofapplications running. These images stress the com

pression algorithm on both simple and complex images. PaperS, paper5_bigy and paper9, shown

in Figure 8.7, are bi-level images generated from PostScript® files, differing in density and con

tent which will allow performance variations over varying image detail to be analyzed. PaperS

contains a typical page oftext in a proportional font at 130dpiwhile Paper5_big contains the same
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FIGURE 8.7. Bi-level test images

text rendered at 200dpi. Paper9 is a simple circuit schematic rendered at 150dpi. Finally,

screendump2 and netscape, shown in Figure 8.8, are primarily discrete-tone images that have
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FIGURE 8.8. Hybrid discrete / continuous tone test images

Compression Rate Comparison

Image

Netscape
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• PWC

• FABD100

OFABD1000

FIGURE8.9. Graph of compression rates for various techniques.
FABDIOO and FABDIOOO refer to FABD using maximum search depths of 100 and
1000 respectively.

some sizable continuous-tone regions. These are useful to analyze performance of the algorithm

on images not completely in the anticipated domain.

The compression levels obtained by FABD, GIF, PNG, JBIG, and PWC are shown in Fig

ure 8.9 and Table 8.2. The ratios indicate FABD's compression advantage over the other tech

niques. The top and bottom FABD results for images correspond to maximum search depths of



FABD GIF PNG JBIG PWC

Bpp Bpp Ratio Bpp Ratio Bpp Ratio Bpp Ratio

calculator

(456x298)

0.176
0.446

2.540
0.177

1.010
0.228

1.298
999

???

0.177 2.525 1.004 1.290 ???

paper

(836x993)

0.091
0.283

3.127
0.242

2.673
0.102

1.128
0.115

1.272

0.091 3.104 2.653 1.119 1.263

screendump
(1152x900)

0.124
0.467

3.767
0.309

2.497
0.177

1.430
0.146

1.181

0.126 3.711 2.460 1.408 1.163

textedit

(593x646)

0.064
0.238

3.720
0.168

2.629
0.080

1.246
0.081

1.271

0.064 3.705 2.618 1.241 1.266

paper5
(1132x1465)

0.078
0.310

3.966
0.241

3.082 0.125 1.599
0.251

1.607

0.083 3.733 2.901 1.506 1.513

paper5Jbig
(1675x2168)

0.044
0.248

5.675
0.182

4.162
0.086

1.970
0.087

1.987

0.048 5.169 3.791 1.794 1.810

paper9
(1245x1611)

0.029
0.154

5.323
0.056

1.951 0.026 0.888
0.025

0.869

0.031 4.926 1.806 0.822 0.804

netscape

(741x938)

0.426
0.717

1.684
0.537

1.263
0.651

1.529
0.352

0.827

0.427 1.680 1.260 1.525 0.825

screendump2
(1152x900)

0.650
1.166

1.794
0.794

1.221 1.252 1.925
0.526

0.809

0.652 1.789 1.218 1.921 0.807

TABLE 8.2. Compression rates for various techniques.
The top numbers in each pair correspond to FABDmax depth of 1000while the
bottom correspond to a FABDmax depth of 100. The ratio is the other method's
coding rate divided by FABD's.

100 and 1000 respectively. A depth of 100 typically sacrifices at most 10% of the compression

obtained using a depthof 1000. Table 8.3 shows the time required by the techniques to compress

the images. The breakdown of the bit usage for FABD coding of each image is shown in

Table 8.4.

Since FABD is non-progressive, the JBIG compressionwas also performed in the non-pro

gressive mode which delivers better compression than the default progressive mode. The JBIG

bitplane decomposition is shown in Table 8.5.
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FABD 100 FABD 1000 GIF PNG

Time

(Sec)
Rate

(Pix/Sec)
Time

(Sec)
Rate

(Pix/Sec)
Time

(Sec)
Rate

(Pix/Sec)
Time

(Sec)
Rate

(Pix/Sec)

calculator

(456x298)
0.4 340,000 0.8 170,000 0.3 450,000 0.4 340,000

paper

(836x993)
2.5 33,0000 4.6 180,000 2.3 360,000 2.1 400,000

screendump
(1152x900)

3.2 320,000 5.2 200,000 2.9 360,000 3.2 320,000

textedit

(593x646)
1.1 350,000 1.6 240,000 1.1 350,000 1.1 350,000

paper5
(1132x1465)

5.4 310,000 9.4 180,000 4.3 390,000 7.4 220,000

paper5Jbig
(1675x2168)

10.4 350,000 18.0 200,000 9.8 370,000 18.4 200,000

paper9
(1245x1611)

4.8 420,000 7.2 280,000 5.5 370,000 10.1 200,000

netscape

(741x938)
2.3 300,000 3.9 180,000 1.9 370,000 2.1 330,000

screendump
2

(1152x900)
4.4 240,000 6.4 160,000 2.9 360,000 3.2 320,000

TABLE 8J. Compression times for dictionary-based techniques on I68MI1ZSun Ultra 2.

It is readily apparent that the algorithm outperforms the one-dimensional dictionary-based

techniques GIF and PNG on all images, dramatically so on most images. FABD outperforms the

two-dimensional statistical JBIG on all but one image and PWC on all but three images. It is

worthwhile to discuss the performance on the images grouped by type of image.

FABD outperforms GIF on the discrete-tone images calculator, paper, screendump, and

textedit by a factor of 2.5 to 3.8 due to its ability to exploit the two-dimensional redundancy. It

similarly out compresses PNG by a factor of about 2.5 on three of the fom images. However, its

compression is similar to PNG on the small calculator image as it cannot find many large two-

dimensional regions. It compresses 12% - 43% more efficiently than JBIG and 16% - 27% more
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Total

Rate

(bpp)

Copy Blocks Fill Blocks Punt Pixels

Blocks

Ave

Size

(bits)

Net

Effect

(bpp)
Blocks

Ave

Size

(bits)

Net

Effect

(bpp)

Pixels

(% of
total)

Ave

Size

(bits)

Net

Effect

(bpp)

calculator

(456x298)
0.176 357 22.67

0.060

(34%)
398 12.30

0.036

(20%)
3439

(2.5%)
2.36

0.060

(34%)

paper

(836x993)
0.091 1652 27.73

0.055

(60%)
899 13.51

0.015

(16%)
4897

(0.6%)
2.29

0.014

(15%)

screendump
(1152x900)

0.124 2233 25.97
0.056

(45%)
1818 13.83

0.024

(19%)
15591

(1.5%)
2.21

0.033

(27%)

textedit

(593x646)
0.064 429 27.22

0.030

(47%)
349 14.91

0.014

(22%)
2077

(0.5%)
2.56

0.014

(22%)

paper5
(1132x1465)

0.078 3283 28.48
0.056

(72%)
1563 12.22

0.012

(15%)
4822

(0.3%)
1.75

0.005

(6%)

paper5_big
(1675x2168)

0.044 3900 29.88
0.032

(73%)
1787 13.17

0.006

(14%)
4972

(0.1%)
1.78

0.002

(5%)

paper9
(1245x1611)

0.029 1237 28.92
0.018

(62%)
855 14.81

0.006

(21%)
2619

(0.1%)
1.91

0.002

(7%)

netscape
(741x938)

0.426 1352 25.25
0.049

(12%)
1701 14.17

0.035

(8%)

48636

(7.0%)
4.57

0.320

(75%)

screendump2
(1152x900)

0.650 2544 25.64
0.063

(10%)
2769 15.14

0.040

(6%)

128113

(12.4%)
4.26

0.527

(82%)

TABLE 8.4. Bit breakdown for FABD1000.
Note that the results relating to copy and fill are per block while the punt is per pixel.
Fraction of contribution that is not copy, fill, block is overhead associated with block
type, colormap, etc.

Total

Rate

K bytes in
Bitplanes

calculator

(456x298)
0.228 bpp

1.3/1.1

1.1/0.2

netscape

(741x938)
0.651 bpp

11/7/6/6

7/6/6/7

paper

(836x993)
0.102 bpp 0.5/0.5/9.5

paper5
(1132x1465)

0.125 bpp 26

paper5Jbig
(1675x2168)

0.086 bpp 39

TABLE 8.5. JBIG Bitplane decompression

Total

Rate

K bytes in
Bitplanes

paper9
(1245x1611)

0.026 bpp 6

screendump
(1152x900)

0.177 bpp
12.8/3.8/3.1

1.8/1.5

screendump2
(1152x900)

1.252 bpp
22/19/20/19

21/21/22/19

textedit

(593x646)
0.080 bpp 3.3/0.2/0.3
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FIGURE 8.10. Bitplane decomposition of screendump image.
Original is on far left whUe the monochrome images formed from each of the 5 bit<
planes are shown to its right. The bit planes account for 12.8k,3.8k, 3.1k, 1.8k, and
1.5k bytes of the JBIG image respectively.

efficiently than PWC on these images based onJBIGand PWC'sinability to code multiple pixels

at once. The JBIG bit-plane decomposition of screendump is shown in Figure 8.10. As can be

seen from the figure as well as Table 8.5, most of the information is, by chance, in bitplane 0 so

there is not too much redundancy across bit planes and JBIG has a chance at efficient coding.

However, quite oftentext and otherstructures will be striped overmultipleplanes if its foreground

and background colors differ in more than one bit. In these cases, JBIG will be less efficient.

FABD allows 3.7 to 5.6 times more compact coding than GIF and 1.8 to 4.2 times more

compact coding that PNGon the bi-level imagespaper5,paper5_big, andpaper9. PNG*s superior

bit-packing compared to GIF is probably responsible for much of the difference in the results of

the two techniques. However, since there is a significant amount of two-dimensional repetition,

FABD outperforms both. FABD outperforms JBIG onpaperS andpaperS^big due to its ability to

exploit the repetitive patterns in the image at a hi^ level. While JBIG efficiently models each

pixel, FABD spots letters, words and sometimes phrases that are used more than once. As the res

olution is increased, the compressed file size does not increase dramatically since the number of

blocks remains roughly constant. The number of pixels more than doubled but only 15% more

blocks are required. JBIG very slightly outperforms FABD on paper9 because paper9 is so sim

ple, consisting of mostly horizontal and vertical lines, which JBIG can very accurately model at
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FlGURE8.il. Block decomposition of screendump2 image.
The white regions represent punted pixels.

the pixel level. PWC performs similarly to JBIG since in the case ofbi-level images, the two tech

niques are roughly equivalent.

JBIG is tailored to bi-level images so it is notable that FABD can achieve better compres

sion on this class of images. However, JBIG is well suited for scanned and/or half-toned images as

well, which FABD will not compress as compactly. These types of images have a probabilistic

regularity but low deterministic regularity. Most of the pixels can be predicted correctly but, many

cannot. Thus JBIG will incur a coding penalty for the wrong pixels but FABD will have to reduce

the size of the entire blocks, effectively incurring a penalty on all of the pixels in the block.

Lastly, netscape and screendump2 are primarily discrete-tone color images with some siz

able continuous-tone regions. FABD is still able to outcompress GIF and PNG on these images

due to its improved performance in the discrete-tone parts of the image. As seen in Table 8.4,

approximately 80% of the FABD bits are used for the 10% of the pixels which are pxmted. The

continuous regions of the images do not lend well to block matching and are thus punted. Figure

8.11 shows the block decomposition of screendump2 with punted pixels shown in white. In

screendump2, each punted pixel requires more than 4 bits to code. Since typically punts are rare, a
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FIGURE8.12. Bitplane decomposition of screendump2 image.
Original is in center while bitplane images surround it.

simple coder was used but for improved coding of hybrid images, a more sophisticated technique

could be used such as lossless JPEQ or possibly even a lossy coding. FABD still outperforms

JBIG by a factor of 1.5 to 2 on these images due to the fact that the images do not split well across

bit-planes, as seen in Figure 8.12. Additionally, the continuousregions are not well suited to JBIG

compression. However, the continuous regions are exactly what PWC is designed for and thus it

can code in 20% fewer bits than FABD.

8.8. Conclusion

This chapter describes how two-dimensional global structure can be effectively exploited to

achieve efficient coding of discrete-tone images. While GIF and PNG are limited to one-dimen

sional global structure and JBIG and PWC only use a local context, FABD is able to obtain the

best of both. Due to FABD*s lossless nature, efficient matching is possible. The two-dimensional

flexible automatic block decomposition provides a different method of compressing images which

outperforms one-dimensional dictionary and two-dimensional statistical techniques on many

images, and could be combined with more sophisticated entropy coding techniques to achieve

even greater performance.



CHAPTER 9 Development &Analysis
Environment

9.1. Introduction

Many ofapplication-independent compression techniques described in this part ofthe thesis

were prototyped in the context of the InfoPad project, previously described. This chapter

describes the development and analysis environment created during the InfoPad project which was

used to develop, debug, analyze, and improve the algorithms previously presented, as well as fur

ther the research of oth^s in the InfoPad research group working on topics ranging from wireless

networking protocols to CMOS high-bandwidth radio design.

The design environment allowed full development of the software infrastructure and appli

cations before the actual InfoPad hardware was deployed. In this way, the hardware and software

development could proceed concurrently. Additionally, debugging hooks in the system allow

emulation and analysis in the software domain that would be more difficult or impossible using the

actual hardware system.
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FIGURE 9.1. InfoPad development environment
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9.2. Networking Environment

Figure 9.1 shows the InfoPad development environment. Standard Unix / X applications

shown on the far left communicate with InfoPad-specific type-serverswhich translate the standard

protocols intoInfoPad-specific protocols. Thetype-servers operateon different types of data: pen,

audio, video, and text / graphics, and are described in sections that follow. The type-serverscom

municate the InfoPad-specific data over the InfoNetnetworking infrastructure. InfoNet manages

tasks such as routing and hand-off of networking data as well as overall pad state maintenance,

tracking and control. A nameserver database manager is used to keep track of the state of various

components in the system, including versioning information as well as operational status. The

InfoNet networking layer is typically overlaid on top of standard TCP/IP to allow the InfoPad net

work to run on multiple machines.

Remote terminals or "pads" can connect in one of two ways as shown on the right side of

the figure. Hardware pads connect wirelessly through hardware / software basestations. The base

stations connect to the rest of the network via standard IP protocols and to the wireless pads

through custom or commercial radios[49]. Each basestation is responsible for a particular cell and



ashardware padsmigrate between cells, theirconnections arehanded offviahifoPad-specific cell-

servers and gateways.

Alternatively, an all-software environmentcan be used by connectingto InfoNetwith a soft

ware InfoPad Terminal Emulator described below. The emulator uses the same protocols as the

hardware pads, allowingthe type-serversand InfoNet to operate exactly as if a hardware pad is in

use. However, the emulator displays its data on any X Window terminal, allowing greater avail

ability. Debuggingandanalysishooksallow performance characterizationand emulationcontrol.

9.3. Emulator

The InfoPad terminal emulator, shown in Figure 9.2, allows emulation ofthe InfoPad hard

ware terminals, debuggingofthe InfoPad software components, and analysis ofprotocol and sys

tem performance'. The emulator connects to the InfoPad network justashardware terminals via

basestations do, but instead presents its user interface to any X >\^dow terminal. The emulator

supports text / graphics, video, audio, and pen traffic as well as control messages. Several pop-up

windows described below control detailed aspects ofthe emulator operation.

The emulator is written as a hybrid C / Tcl/Tk application where Tcl/Tk code controls the

user interface and high-level control, and underlying C code is used to interface to InfoNet and

perform per-packet time-critical processing. This allows the flexibility and rapid prototyping

capabilities ofTcl/Tk with the low-level processing power ofC.

1. The emulator was originallydeveloped by Brian Richards.
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9J.1. Operation

The main window shown in Figure 9.2 emulates the text / graphics display as will be

described below in the next section. Below that are controls which give the user control beyond

that which the pad hardware supports.

On the right, the user can select which gateway and pad server number they want to connect

to. The "Gateway:" pull-down menu queries the name server to see which gateways are cur

rently running and displays their numbers and the version of the gateway code that they are run

ning. If the gateway or cellserver are down, this is indicated. The "Pad Server:" pull-down

menu queries the nameserver to display which pad servers are operational and their versions.

Finally the "Tablet Device:" pull-downallows the user to enter which port the pen tablet is con

nected to. The "Type:" pull-down menu allows selection ofthe tablet type and the **TABLET" tog

gle button controls whether a connection to the tablet is attempted.

The bottom row of indictors show further status information from the nameserver. Its loca

tion and time it was started are displayed. Below, the status of the currently selected pad, X (text /

graphics), pen, and audio server are displayed. It is retrieved from the Name Server periodically.

Wh«i any critical evoit occurs, such as selecting a new pad server or gateway, the emulator polls

for status more often for a while. The "update" button forces the status to be reread. The pull

down menus for "PS VERSION", "X VERSION", "PEN VERSION", and "AUDIO VERSION" control the

version ofthe respective servers which is used if they are auto-started by connecting to a pad clus

ter which is not running. The "KILLPAD" button kills the currently selected pad server, causing ter

mination ofall associated type servers as well.

The user can connect to and disconnect from a pad cluster using the "CONNECT" button.

The "REMOTE REFRESH" button causes the display to be updated. The "MOVE" button forces a

hand-off to a new gateway while the "poll" button indicates that the emulated receive signal
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strength has been queried by a cell server. The "OPTIONS", **text/graphics", **TRAFnc", "ber",

"aA^", "stats", "debug", and^T/G STATS" buttons invoke pop-up display presented below.

93.2. Text / Graphics Display Support

The text / graphics data is displayed in the main emulator window. The 640x480 mono

chrome mode used by the pad hardware is supported. Additionally, color modes of varying size

which support some of the techniques outlined in Chapter 4, Chapter S, and Chapter 6 are sup

ported to allow research into future protocols.

The pop-up dialogs shown in Figure 9.3 control various aspects ofthe operation ofthe text /

graphics subsystem. The Start-up Options dialog is used to set configuration options which are

sent to the nameserver and passed to the text / graphics servers when they are auto-started. The "X

CONFIG" field is used to set the X configuration file that is used to control pad user and session

preferences. It is used instead of login authentication. The "MODE" controls if the X server is

started in monochrome or a color mode while the "SCREEN SIZE" is used to select the size of the

emulated screen when a color mode is used. When the text / graphics server is running, it periodi

cally transmits the screen size and mode parameter to the emulator so that the emulated screen size

is adjusted properly. The "rate limit" and "max refresh" sliders are used to adjust the initial

rate limiting and refresh rates. These can be adjusted during operation using the traffic control and

monitoring popup described below. The "MAX PACKET SIZE" and "buffered writes" boxes are

used to control the packet size and whether the network interface is buffered. The "inter-packet

DELAY:" slider is used to limit the rate that packets are generated. Finally the "CURRENTLY RUN

NING:" line indicates the results from querying the name server as to the configuration of the cur

rently running text / graphics server.
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Thetext / graphics control dialog controls thecurrent emulated display mode. Theemulator

will emulate **Monochrome", "Colormapped 8-bit", or "JeffColor Deluxe" (TGVQ) dis

plays. The "Auto Detect Mode" enables decoding ofpackets from the text / graphics server

indicating which type of display is being used. The "Gamma:" box allows thegamma correction

factor to beapplied to theoftheemulated screen data tobeentered. Gamma correction is applied

on-the-fly. The "Invert Protected Pkts" and"Invert Regular Pkts" buttons allow regular

or protected packets to be inverted on the screenforeasier identification. Recall thatthe protected

packets are those which are used for asymtotic reliability refresh, have higher forward error cor

rection applied, and are dropped ifan error is detected in their data.

Emulation ofa terminalwindowwhich couldpotentially containanyconfiguration ofcolors

on an X Window displaypossibly with limited8-bit colormapped display requires on-thefly map

ping ofcolors. The Local Color \^sual section allows the user to select the mode that the emulator

text / graphicsX Window is displayed. The basic problemis that the emulatedterminal screen can

potentiallycontain any color. However, sincethe emulator runs as a standard X Window applica

tion, it cannot be guaranteed to be able to render all colors. The Local Color Visual box allows the

user to select the mode that the screen should be emulated. The emulator can run on 8-bit color-

mapped or 24-bit true-color displays. On 24-bit true-colordisplays, there is not a problem since

any possible color configuration can be rendered since eachpixel's red, green, and blue values can

be individually set. In 8-bit colormapped displays, the emulator can choose to co-exist with other

applications' colormap requests, in which case it can only use some fraction of the 256 physical

colormap entries, otherwise it can use its own colormap, so it can control all 256 colormap entries,

but the screen will flash when the mouse enters and exits the application since the emulator color-

map is only active when the cursor is in the emulator window. The former is chosen by deselect

ing the "PRIVATE COLORMAP" box while the latter is chosen by selecting it. If in 8-bit mode, the

"8-bit static" mode refers to a mode that a static color-cube of specified dimensions is allocated
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and colors to be displayed are chosen from this colorcube. "8-Bit Dynamic** mode stalls allo

catingcolors as the emulated display needs them, andanycolors thatcannot be allocated arerepre

sented by the closest color that can be allocated. "8-BlT DynaStat*' is a hybrid of the two

techniques that first allocates a static color-cube and then allocates additional requested colors

dynamically. In this way, a fixed base set ofcolors will always be present, but often exact matches

will be possible. Finally the "X SHARED MEMORY** button indicates if the X \Wndow shared

memory image transfer protocol should be used. If the emulator is running on the same machine

as the X server it is being displayed on (not to be confusedwith the text / graphics server servicing

the pad), the X shared memory protocol allows image data to be transferred in shared memory,

avoiding copying throughout the networking subsystem. This reduces the computation load of

r^dering, thus allowing higher fhune rates.

The "Text / Graphics Statistics** pop-up displays statistics of the text / graphics data

received. The "8-BlT PUTS'*, "4-BIT PUTS", "2-BIT PUTS", "1-BlT PUTS", and "BLOCK FILLS", and

"Average bits per pixel" are used for analysis of a compressed bitmap transmission algorithm.

Hiey display the percentage of pixels and blocks that are sent using 8,4,2, 1, and 0 bits per pixel

as well as the average bits per pixel. The "UPDATE rate" indicates the net pixel display rate aver

aged ovOT the last second, and the "FRAME RATE" indicates the frame update rate achieved calcu

lated from new-frame packets received from the text / graphics server. The "REGULAR",

"PROTECTED", "BOTH" selection indicates which types of update packets the above measurements

apply to.

933. Audio and Video support

The emulator supports emulation of pad audio input and output as well as VQ-video ou^ut

through the Audio / Video pop-up shown in Figure 9.4.. The audio is coded as 8 kHz, 8-bit p-law
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FIGURE 9.4. InfoPad emulator audio / video pop-up dialog

PCM coded samples, and is accessed directly through the Sun Workstation's /dev/audio

device. The uplink and downlink can be individually enabled through the "AUDIO PLAY" and

"AUDIO REC" buttons and an automatic mode is enabled through the "AUDIO AUTO" button,

whereby the audio is enabled as soon as the first downlink audio packet is received. Diagnostic

data is displayed if the ^VERBOSE" button is checked.

Low latency audio data, required for synchronized audio and video as well as effective

video conferencing, requires that the number of samples of buffered audio is kept low. The

"Downlink Buffer Size:" box allows the amoimt of data that is buffered in the emulator and the

/dev/audio device buffer to be limited. Ifmore data than is allowed is queued, the extra data is

dropped, emulating a limited size downlink buffer. By varying the size of this buffer, the effects

ofnetwork jitter and packetization can be explored and the requirements ofthe hardware downlink

audio buffer size can be determined.

The Audio / Video popup also controls the real-time color 128x240 VQ video display. The

actual displayof the VQ data is performedby the video utilityva plav described below, but the

emulator is responsible for controlling when vq_play is opened and closed as well as combining

video packets into completeVQ video framesand sending them to va plav. Thus the use of a

separate stand-alone applicationfor video display is hiddenfrom the user but allows greater mod-
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ularityanH codereuse. The VQ videowindow is openedand closedvia the **VlDEO PLAY** button.

If 'Video auto** is enabled then the VQ video window is opened whenever VQ video arrives.

The framerate can be manually limitedfor performance reasonsby enteringdie maximum desired

frame rate in the "Maximum Display Rate** box and selecting "Video Drop**. This can be used

to assure that emulation of the video screen does not impact the performance of the other sub

systems. Frames are dropped to assure that the aggregaterate does not exceed the specified limit

93.4. TVaffic Momtoring and Control and Debugging Hooks

Figure 9.5 shows the emulator traffic and debug dialogs which are used to monitor down

link traffic rates and latencies, optionally limit downlink traffic rates, and monitor uplink traffic

rates. At the top, the rate in packets per second, kilobits per second, and average bytes per packet

are shown for each of the individual uplink and downlink data types as well as the aggregate

uplink and downlink traffic. The text / graphics data is further subdivided into regular and pro

tected traffic where as previously described, the protected traffic is used for asymtotic reliability

and is dropped if in error.

Below the traffic rate display, a measurement of the latencies of the downlink traffic is pre

sented. Minimum, average, and maximum latencies over the past second are displayed. This

information is obtained by comparing time-stampsplaced in the packets by their senders with the

time that the packets are processed by the emulator. Clock skew,which could occur if the packets

are sent by a different Unix host than the emulator is running on, is removed by assuming that the

lowest-latency packet ever received during the lifetime of the emulator-pad connection will be 0

ms. This is based on the assumption that most delays are due to queuing and not transport delays.

The latency measurements are particularly useful when combined with the downlink rate limiting.
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FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs

The "DOWNLINK RATE LIMIT'*, "T/G RATE LIMIT", and "VIDEO RATE LIMIT" sliders are used

to control the downlink sender rates by sending messages to the gateway, text / graphics server,

andvideo server (sen<i_vq described below) requesting ratelimiting. Thesliders are logarithmic

to allow fine control overa largerange of rates. The far rightposition is '̂unlimited" whereby the

senders are instructed not to limit their data generation.

The Debug Hooks popup is used to expose various debugging hooks in the emulator. In

particular text / graphics packet statistics can be gathered and information about incoming T/G
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packets can be displayed. The Flow Control options allows the user to select if latepackets are

dropped as the gatewaywoulddropthemfor flow control. The "RETRANSMIT SKIPPED PACKETS"

controls if NACK packets are sent back to the sender. Finally"PRINT TIMESTAMP ADJS" displays

the timestamp offsets used to cancel out clock skew. The BER Injection is used in conjunction

with the BER popup window (not shown) which can be used to automatically corrupt the data

stream at a specified Bit Error Rate to observe the effects on protocol reliability.

9.4. Text/ Graphics Server

The Text / Graphics algorithms were developed by augmenting an X Window server to sup

port the Split Xdesign^ The XWindows server was amenable tomodification due toits modular

architecture and freely available source code. The X Windows server is designed to be ported to

different display adapters, and thus the InfoPad port is implemented as a new display adapter.

Upon initialization, a new slave thread is spawned which communicates via InfoNet to the pad.

The virtual framebuffer is placed in shared global memory and semaphores and mutexes are used

for synchronization. The manual page for XInfoPad can be found in Appendix A.11..

9.5. Video Support

The VQ video subsystem of the InfoPad system was developed using a set ofutilities which

generate VQ video clips, play the clips on standard workstations, play the clips through the Info

Pad network to an emulator or hardware pad, and manipulate and display the clips. The manual

pages of the applications to perform these tasks are listed in Appendix A and the applications are

described below.

1. Note that Richard Han and/or Brian Richards did the original work on the integration of InfoPad hooks into the X
server aldiough I expanded upon it significantlythrough the implementationof the virtual framebuffer algorithms,
color support, aswell assupport oftransmission ofblock, inst^ ofjust line, packets.
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VQvideo files usedto save andexchange theVQvideo clipsarestored ina custom filefor

mat detailed inAppendix A. 13. {vq (5)). The video format allows arbitrary dimension video clips

with codebook updates both at the beginning and throughout the video clip. The latter would

allow for new VQ codebooks tobe sent between major scenes for improved image quality. Video

files canalso beexchanged inaRAW format, described inAppendix A. 12. iraw_yideo (5)\ which

allows for arbitrary dimensions of the Y, I, and Q components. These RAW videos can then be

transcoded intoVQ videos as described below. Thus theyare a useful interchange format which

allows non-InfoPad applications to generate VQ videos.

VQ videos can be generated from MPEG and RAW clips using mpeg2vq as detailed in

Appendix A.4. {mpeglvq (1)\ inpeg2vq allowsresizing of videoclipsandtranscoding frompar

ticularsubregions of the source clip. It allows the video frame rate to be specified as wellas fimne

dropping to obtaina desired frame rate. mpeg2vq can generate adaptively-coded or fast-coded

video clips as discussed in Section 5.2.. Additionally, video clips canbe coded to an existing arbi

trary codebook.

VQ andRAW videoscan be playedon standard X workstations usingvqj>lay as detailed in

Appendix A.9. (yq^play (1)).

VQ clips coded for a 128x240display can be s^t to an InfoPad terminal or emulator using

the send_vq utility as described in AppendixA.6. (send_vq (])). send_vq can be used to inject

text / graphics, audio, and other typesofdata into the InfoPad networkfor general purposedebug

ging. Rate limiting options can be specified to prevent overflow on bandlimited links and code-

book information can be included or overridden. send_vq will also deliver synchronized audio

and video if an audio file is specified.
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VQ codebooks can be displayed and extracted using the Codebook2ras,

show [vq] codebook [y], and vq2codebook utilities as describedin App^dix A.1.,Appen

dix A.7., and AppendixA.10.. Codebook2ras convertsa codebook into a Sun Rasterfile which

can then be viewed. The codebook images in this thesis were generated with that utility,

show [vq] codebook [y] is a shortcut to extract and display the codebooks. Finally

vq2 codebook extracts a codebook from a VQ video clip. This codebook can then be sent man

ually using send_vq or another video can be codedto this codebook usingmpeg2vq as previ

ously described.
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PART III Application-Specific
Transmission

CHAPTER 10 Optimization ofWebfor
BandlimitedLinks

10.1. Introduction

This chapter applies the techniques and methodology developed for application-indepen

dent text / graphics and image transmission to the web. Since web browsing is an interactive pro

cess and downloading a web page can take several seconds to several minutes over slow links, the

information presented to the user during this time is important. New metrics and visualization

techniques to illustrate and quantify web page loading are presented. Given the insight afforded

by the metrics, a methodology to improve web access using a new technique, globally progressive

interactive web delivery, is proposed. This technique views the web delivery process as the remote

display of a web page, similar to application-independent transmission previously described, and

entails applying progressive coding to the document transmission process in its entirety. It also

allows the user to explicitly direct link bandwidth to images of interest. This globally progressive
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interactive framework has been prototyped without modifying either existing web browsers or

servers throughthe use ofa web proxy and browser-sideJava applets. The fiumework allows for

both protocol and image compression research in a platform-independent manner Methods for

integrating the architecture into existing web infiustructure for greater performance andability to

scale are discussed [31].

10,2. Motivation

Delivery is everything. "The web experience" is muchmore than the web pages visited - it

also encompasses the speed of access and the quality of information delivered. While browsing

over a T3 line can be highly productive, web access over dial-up or wireless modems often leads to

the phenomenon known as the "World Wide Wait". Network congestion and bottlenecks within

the Internet can also limit the gains ofa high-speed last link. However,as will be shown, web per

formance overthese slow links can be dramaticallyimprovedthrough efficient link schedulingand

data compression tailored to web transmission. Although some previous work has accelerated

web access through lossy image compression [25][41][65], this, by necessity, results in a reduction

in image quality. Transport protocol modifications designed to reduce the total web page delivery

time [52][9][54] also improve web performance, but further gains can be achieved by combining

image coding and networking techniques as described in this chapter.

It is important to view web browsing as a form of remote display, similar to the application-

independent transmission described previously in this dissertation. Browsing is not the bulk trans

fer of information for off-line storage, but rather the "real-time" rendering of a web page on a

remote client. Thus the speeds at which various parts are rendered are useful metrics to gauge the

browsing exp^ence.
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Webbrowsing is an interactive process where the user often has specificgoals when brows

ing. The goals may be to read the text, glance at all ofthe pictures,or closelyexamine a single pic

ture. In order to maximize the utility to the user, it is important to incorporate these goals as best

as possible. Currently the level of interaction is limited to aborting the downloading of a page or

suppressing all image downloads until they are explicitly requested. Thus, the user is at the mercy

of the delivery system and must wait for the image or images of interested to be delivered. A

method is proposed for incorporating feedback to allow the user to guide the bandwidth utilization

throughout the downloading process: by simply moving the mouse cursor into an image's window,

the image will gain full use of link bandwidth.

Incremental deployment is essential in global Internet applications such as the web. It is

infeasible to expect all existing web browsers and servers to be converted. Two levels of incre

mental deployment of the protocols are proposed. Firstly, by deploying intermediate proxies to

perform image and protocol conversion, the improved delivery system can be used on slow links

with modified web browsers to view content on conventional web servers. Secondly, a web proxy

/ Java applet prototyping framework is used which does not require the web browsers or servers to

be modified. The proposed system is benchmarked and a discussion of the strengths and weak

nesses ofthe framework is presented.

10.3. Background /Previous Work

Webpages are multi-object documents. They consist of a main HTML ol^ect, which con

tains the text and formatting information, and zero or more additional objects such as inline images

and Java applets. The main HTML object contains references to other objects by specifying their

uniform resource locator (URL). These objects are retrieved individually by the web browsa:

from the web server using the HyperText Transfer Protocol (HTTP).
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HTTP/1.0 [11] uses a separate TCP connection toretrieve each object. Several concurrent

connections are maintained between the browser and server to load multiple objects at once in

order to hide TCP connection establishment and slow-start [42] delays. However, this increases

overhead and network congestion, thus impacting scalebility [66]. Typically the number ofopen

connections is limited to about 4.

HTTP/1.1 [23] improves upon the delivery protocol through support of persistent connec

tions [54] between the servers and browsers. Byusing a single connection to sequentially deliver

allof theHTML and images ina web page, the connection establishment and slow-start delays can

be amortized over the cost of theentire page, theconnection packet overhead canbe reduced, and

better responsiveness to network congestion isachieved. HTTP/1.1 also supports compression of

theHTML objects via the deflate coding ofthe public domain zlib compression library [28]. (This

isa hybrid LZ77 [72] / Hufftnan coding [39]). When appUed toHTML data, it can typically result

in a greaterthan3xreduction in the sizeof theHTML file [52].

TCP sessions [9][53] have been proposed to allow sharing of state between related TCP

connections, such as those connecting thesame hostpair, at thetransport layer. If anyconnection

in the session experiences congestion, all connections can reduce their windows. In this way the

network-fiiendly behavior of HTTP/1.1 can be obtained while decoupling sensitivity to losses

between differentimage transfers. Additionally, only the server-side TCP stack needs to be modi

fied - no browseror server modificationsare necessary.

The MUX protocol [51], a work in progress which is part of the next generation HTTP

effort (HTTP-ng) [50], provides a methodto layer lightweight multi-session deliveryon top of a

reliable stream-oriented transport such as TCP. The MUX protocolcan be used by multiple appli

cations to share the same transport stream as the main HTTP connection in an apphcation indepen

dent manner.
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The WebTP project [70] is addressing transport requirements of the World Wide Web

through their 'TJser-Centric Web Transport Protocor. This is a receiver-driven architecture to

improve upon scaling of web-servers while retaining TCP-friendliness. It uses rate-based flow

control and does not require hard state at the sender.

103.1. Previous Work in Web Acceleration

UC Berkeley's Transend [25][26], Intel's QuickWeb [41], and Spectrum's FastLane [65]

improve upon web access over slow links by reducing image size via lossy compression^ Web

proxies are used to transform the images through resolution and color reduction. Users of Quick-

Web have noted that it can cause significant degradation of image quality [44] and the service has

been discontinued. Use ofFastLane also results in image quality degradation [7]. The three sys

tems allow the user to explicitly load the original undegraded images, but no further user interac

tion is supported. In contrast, the globally progressive interactive system described here does not

cause reduction of the fmal quality ofthe images delivered, and allows greater user interaction.

10.4, Quantifying Web Page Downloading

Since downloading web pages can take from several seconds to several minutes using

modem links, the information presented to the user during this period is critical. For instance, if it

requires one minute to download a page, it is clearly better to have most of the text and images

present after 10 seconds with the remaining filling in over the minute, than to have nothing until

the whole page appears at the one minute mark. Yet in both cases the total time to load the page is

the same. Thus the total time to load a given page is often not an accurate measurement ofthe

utility of the loading process.

1. Transendis also designedto operatewithclientsof varyingcomputational and displaycapabilities and perform other
types ofmanipulations.
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Object Name Bytes Object Name Bytes

HTML index.html 41,261 Image1 horoscopes120.gif 4,313

Image2 ad_info.gif 92 Image3 stilL_468x60.gif 9,374

Image4 ciminLjogo.gif 2,225 Imaged icon_arrowJefl.gif 261

Imaged white.gif 35 Image7 roofjop.gif 1,205

Image8 searchL_infose.gif 441 Image9 right__comer.gif 102

LnagelO top_ruins_ap.jpg 17,774 Imaegl 1 customL_clint.jpg 6,112

Imagel2 videojtransp.gif 170 Tmagel3 cniuwebsite.gif 2,980

Imagel4 web_services.gif 11,623 Imageld custonuairow.gif 137

Image!6 ty_generic.gif 1,291 Imagel7 health2.gif 2,124

ImagelS thumbnailjpg 2,580 Imagel9 weekJlit_review.gif 986

Imge20 diana.jpg 2,507 Image21 infoseekJogo.gif 555

Image22 pointcastgif 6,983 Image23 redL468.gif 10,486

TABLE 10.1. Contents of typical web page (CNN Interactive - www.cnn.com).
Shading denotes images not initial visible when viewed on a 1024x768 screen.

In order to fully encapsulate the loading process as viewed by the user, it is necessary to

visualize and quantify the loading ofthe constituent parts ofthe page, and not just the time to load

ever3rthing. A web-page loading graph can be used to more precisely illustrate and quantify the

effects ofdifferent transfer protocols on a typical web document. The CNN Interactive (tm) home

page (http://www.cnn.com/) will be used as an example. The constituent objects are listed in

Table 10.1 in order of their appearance and the shaded entries correspond to images that the user

would have to scroll to see when using a 1024x768 pixel web browser window because they are

not initially visible.

10.4.1. An Example of Concurrent HTTP/l.O-Style Loading

Figure 10.1 shows a web page loading graph ofthe document loaded using the conventional

HTTP/l.O-Style concurrent loading protocol. The graphs in this section display timings using a

simulated constant 3KB/sec link similar to a 28.8kbps modem, in order to best illustrate the perfor-

132



Image3
Image6
Image9

Imagel2
image i 5
Image 1^
Imacel i

-1—•—•—'—'—1—•—•—'—1—•—^^^—r

i- llnitiaUy
L r^on-screen "•

—'—«—•—I—1—•—•—•-

All on-screen
images loaded

1 1Initially
L 1off-screen
* 1 .... 1 .... 1 .... 1

1

1

Bsn : loaded/̂

—1 1 111,1 U 1 1-

10 20 30
Time (seconds)

40

FIGURE 10.1. Web-page loading graph using concurrent loading of up to 4 connections

HTML

Images
Image6
Image9

Imagel2
Image. a
image!8
Invmc: 1

• 1—1—. . , , . —.—I—1—.—1—.—1—1—^—1—1—1—1—1—1—

••

L

•|
•

-

- •

' . . 1 .... 1 .... 1 ... .

10 20 30

Time (seconds)
40

FIGURE 10.2. Web-page loading graph of sequential loading protocol

mance of the different loading styles apart from implementation specifics. The results shown in

Section 10.6.5. are based on actual data collected from our prototype proxy / applet system. The

objects in the page are listed on the vertical axis while time traverses the horizontal axis, with the

lifter gray used for images outside of the viewable window. The bars indicate the time during

which a particular object is being delivered.

In order to quantify the loading process, it is useful to define the following metrics: the time

that the HTML is loaded, the time that initially visible images are loaded, and the time to load the

entire page. The time to load the HTML determines how long it will take to view the text on the

page, and the time to load the initially visible images determines when the user thinks that the page

has loaded. In the example we can see that the HTML is loaded within 30.6 seconds, all visible
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Time to text

Time to visible

document
Time to entire

document

Concurrent 30.6 sec 36.9 sec 42.4 sec

Sequential 14.3 sec 28.2 sec 42.4 sec

Cone, w/comp. 6.6 sec 29.4 sec 31.8 sec

Seq. w/comp. 3.7 sec 17.7 sec 31.8 sec

TABLE 10.2. Summary of concurrent and sequentialloading

imagesare loaded within 36.9 seconds, and the entire pageis not loaded until42.4 seconds have

elapsed.

10.4.2. An Example of Sequential HTTP/l.l-Style Loading

The web-page loading graph for the same web document loaded using the conventional

HTTP/1.1-style loadingprotocol isshown inFigure 10.2. Using the sequential loading,

the total time to load the entire web document remains 42.4 seconds but the time to see the visible

images hasdropped to 28.2 seconds, simply byreordering the data being sent. Additionally, the

time to seethetext is reduced to 14.3 seconds - less than halfofthetime required using concurrent

loading. Thus, despite the fact that the total loading time is the same as the previous case, the

delivery orders have very differentconsequences for the user.

10.4.3. HTML Compression

If HTML compression is used, the sizeof theHTML object in our example is reduced by

abouta factorof 4, from41261 to 9950. Thecorresponding web-page loading graphs areshownin

Figure 10.3 and Figure 10.4. While the total timeto loadthe document is onlyreduced by about

25% from 42.4 seconds to 31.8 seconds, the time to see the text is reduced by a factor of4 and the

time to see the entire visible part of the document is reduced by about 20% and 40% for the con

current and sequential modes respectively. However, the delivered document is identical to the

original. These results are summarized in Table 10.2.
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10.5. Globally Progressive Interactive Web Delivery

Once metrics and methodology are in place to examine web document delivery, it is possi

ble to investigate alternatives. Although sequential transmission is an improvement over concur

rent delivery, using progressive and interactive techniques, significant improvements can be

realized.

10.5.1. Globally Progressive Transmission

Progressive image transmission entails sending a layered coding consisting ofa low quality

version initially, followed by refinements. Thus, after the initial bytes are received, a complete,

albeit non-aesthetically pleasing, version can be displayed, and as time progresses, the image qual-
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ity improves. Progressive techniques are ideally suited for transmission of human-viewed data

over band-limited links since they allow the user to quickly deduce the salient features and only

require the user to wait for the full load times to see full detail.

10.5.1.1. Existing Progressive Image Formats

Progressive image formats are already common on the web. CompuServe's lossless Graph

ical Interchange Format (GIF) [17] has an "interlaced" mode inwhich rows are sent ina progres

sive manner. Portable Network Graphics (PNG) [59], a graphics format which has been formally

accepted as a standard MIME type by theWorld Wide Web Consortium, has a mode that is pro

gressive in both rows and columns to achieve better subjective qualityafter a smaller amountof

data has been received. Both GIF's and PNG's progressive modes result in some reduction in

compression rate due to the increase in local entropy. PNG also enjoys a patent-free status and

typically achieves 5%-25% better compression than GIF [56] by using zlib's T.7.77 / Hufl&nan

compression instead of GIF's Lempel Ziv Welch (LZW) [72][71] compression andpacking sub-

byte pixels.

TheJoint Picture Expert Group's JPEG includes a lossy DCT-based coding technique which

has a progressive modethat divides layers by spatial frequency and quantization level [56]. The

number of layers andtheircomposition canbevaried, andarespecified in the image header. Fig

ure 10.5 shows an example comparing JPEG's non-progressive and progressive (PJPEG) modes.

The baseline JPEGquantization levels areused, resulting in a coding rate of 1.84bits/pixel which,

from an informal survey, is typical ofJPEG images on the web. As can be seen from the lower set

of images, a very crude version ofthe image is available after receiving only 8% ofthe progressive

data. After 19%,enough detail is available to easily discem the contents ofthe image. Subsequent

data provides further detail, with the later layers only becoming noticeable under closer inspection.
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1055 bytes 2522 bytes 4228 bytes 7441 bytes 13095 bytes

FIGURE 10^. Example of progressive images.
JPEG (top) and PJFEG (bottom) showing display of incomplete data. Image was
quantized to JPEG default level yielding 1.84 bits/pixel coding.

It is important to note that this is exactly what lossy image compression proxies such as Quick-

Web, TranSend, and Fastlane rely upon - by performing lossy image compression they are remov

ing some of the fine detail, similar to that in the final layers of PJPEG While the degradation is

not severe to cursory inspection, it does reduce the final image quality. However, by using pro

gressive techniques, the end quality need not be sacrificed at all.

10.5.2. Locally Progressive Delivery

Progressive image formats are of limited benefit when using standard loading protocols

since they are locally progressive - each image is progressively coded but the document as a whole

is not. Otherwise stated, the loading process itself is not progressive. Figure 10.6 and Figure 10.7

show web page loading graphs of locally progressive images loaded concurrently and sequentially.

The lighter parts to the left correspond to coarser layers while the darker parts to the right corre

spond to refinements. For illustrative purposes, the layers have been divided according to the divi

sion of the lower images in Figure 10.5.
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The amountof time to deliver enoughof all of the images to see a certain numberof layers

in each image canbe usedto quantify theprogressive delivery. Ascanbe seen from Figure 10.6,

the time to concurrently load at least the first layer of eachof the images is 10.1 seconds, to load

the first two layers is about 12.7 seconds, three layers is 15.3 seconds, four layers is 20.5 seconds,

and the time to load all layers for all visible images is still 29.4 seconds. Figure 10.7 shows that

the layers in each image for the sequential case are loaded in rapid succession since the images

have access to the full link bandwidth.

10.53. Globally Progressive Delivery

However, by using globallyprogressive loading, further benefits can be achieved. Globally

progressive loading considers the whole document as a progressive object and displays a coarse
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version followed by more refined visions. In the case of a web document, the HTML might be

considered the coarsest layer since it is required to decode the rest of the document and conveys

the bulk of the information. The next layer of the document would include the first layer of all

images and subsequent layers ofthe document would include subsequent lay^s ofeach image. By

using globally progressive loading, the user is very quickly presented the text and coarse versions

of all visible images and can rapidly proceed to analyze the page's contents. This is particularly

useful when combined with interactive loading described in the next section.

Figure 10.8 shows globally progressive loading using a byte-wise equality metric such that

the scheduling attempts to keep the number oftransmitted bytes ofeach visible image similar, and

Figure 10.9 shows globally progressive loading using a layer-wise equality metric dictating that a
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Protocol Timings

HTML
Compr

Concur/
Sequen Progressive Text

Visible
Layer 1

Visible
Layer 2

Visible
Layer 3

Visible
Layer 4

Visible
All Layers

Complete
Document

No Cone No 30.6 sec n/a n/a n/a n/a 36.9 sec 42.4 sec

No Sequen No 14.3 sec n/a n/a n/a n/a 28.2 sec 42.4 sec

Yes Cone No 6.6 sec n/a n/a n/a n/a 29.4 sec 31.8 sec

Yes Sequen No 3.7 sec n/a n/a n/a n/a 17.7 sec 31.8 sec

Yes Cone
Locally

Progressive
6.6 sec 10.1 sec 12.7 sec 15.3 sec 20.5 sec 29.4 sec 31.8 sec

Yes Sequen
Locally

Progressive
3.7 sec 15.8 sec 16.0 sec 16.3 sec 16.8 sec 17.7 sec 31.8 sec

Yes Both

Bytewise
GlobaUy

Progressive
3.7 sec 6.8 sec 9.6 sec 123 sec 15.1 sec 17.7 sec 31.8 sec

Yes Both

Layerwise
Globally

Progressive
3.7 sec 4.8 sec 6.3 sec 8.2 sec 11.7 sec 17.7 sec 31.8 sec

TABLE lOJ. Summary of delivery methods and performances

given layer in one visible image should not be loaded imtil the previous layers are loaded in all

other visible images. While the layer-wise metric allows earlier layers to be loaded for all images

sooner, the byte-wise metric is typically preferable since it allows link scheduling to be indepen

dent of image coding and also prevents large images from severely delaying smaller images. For

these reasons, the byte-wise metric is used in our prototype system described in Section 10.6..

Table 10.3 shows a summary of the comparison between locally and globally progressive

loading. As can be se^, the time to load all visible layers is the same for the sequentially loaded

locally progressive case as the globally progressive cases, but in the locally progressive case, the

benefits of progressive loading are minimal, hi the simultaneously loaded, locally progressive

case, there is a delay imtil the base layers of some ofthe later images are loaded, as well as a delay

in finishing the visible images due to competitionwith images that are not visible. However,in the

globally progressive cases, the text is shownvery quickly, followed immediately by coarse ver

sions ofall images and then refinements.
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If an image that is not initially displayed is made visible during the loading process, it is

boosted to the same priority as the other visible images so that bandwidth is initially dedicated to

only that image until it has loaded to the same degree as the other images. Then all visible images

resume loading in unison. An example is shown in Figure 10.10. In this example, images 12, 13

and 14 were previously off screen but then scrolled into view after about 12 seconds. Similarly,

thepriority of images that are scrolled offscreen can bereduced^

1. However,detecting images scrolling off-screenis not possible using the Java prototype.
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While the above assumed strict priority scheduling, a stochastic algorithm such as Lottery

Scheduling [69] could be used to assure progress ofall images. Additionally, techniques such as

Class Based Queuing (CBQ) [24] could be used to increase flexibility and allow more complex

policies. Web page designers could also incorporate delivery and image transcoding hints into

imagetags to assertmore control overthe delivery process.

Globally progressive delivery isalso well suited totake advantage ofnetworks withvariable

Quality of Service (QoS). There is an implicit ordering of the importance of the data with text

being most important, initial bytes or layers of images being a little less important, later bytes or

layersbeingstill less important, andoff-screen images being evenless important. Whileit is cur

rently used to prioritize data within the web cormection, it could also be used to prioritize data

transmission across multiple cormections, web or otherwise. For instance, if text over any web

connectionis given higher prioritythan imagesover any webconnection, then even as the network

becomes congested, the textdelivery performance willnot suffer as much. Likewise, if off-screen

images aregiven lower priorities, the downloading of long pages by some users will nothamper

the interactive operation of other users. The prioritization could be used within a web server to

ensure timely servicing oftext and coarse image requests.

10.5.4. Interactive Operation

While globally progressive loading rapidly delivers coarse versions of all visible images,

the user must still wait for all refinements, even if they are only interested in a single image in

detail. However, by allowing the user to easily instruct the system as to which image they are

interested in, this image can be loaded more quickly by dedicating all available link bandwidth to

it. Since the layers are loaded in synchrony, the user is able to quickly determine which image or

images are most interesting. One method for incorporating user image preference is to detect

when the mouse cursor is inside a particular image, and give that image priority. Figure 10.11
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shows the effect ofselectingimage 3 after its two first layers have been displayed. As can be seen,

in this way,the entire refined image can be loaded by the 10 secondmark, a little more than half of

the time required in the absence ofuser intervention. Further interactivitycould include targeting

exactly which parts of the image are transmitted first. Explicit targeting may be useful in cases of

large images where semantic quality requires high fidelity, such as maps.

When interaction is allowed, the amount ofdata buffered in the connection between the web

server and web browser must be limited in order to allow rapid response. Once the user preference

is detected and transmitted to the web server (or proxy), the high-priority image can be queued, but

this data will not reach the browser until all other data queued in that connection has been deliv

ered (unless out-of-band signalling or more sophisticated transport protocols are used). For

instance, using a 28.8k baud modem connection, in order to obtain a one-second response time, at

most 3.6K bytes can be buffered even in the absence of network congestion. The buffered data

consists of the data queued in the kernel buffers as well as the packets queued in the network rout

ers. Kemel-level scheduling of the images can be used to eliminate delay due to the former[55]

while TCP window-size limiting would have to be used to reduce the latter. Severely limiting the

amount of queued data can reduce link utilization, particularly for hig^-bandwidth, high-latency

links such as satellite links.

10.6. Transport Protocol Prototyping via Web Proxies and Java
Applets

In order to prototype the globally progressive interactive delivery scheme, a proxy-based

architecture allowing full control over image delivery and display was designed. This architecture

can be used as a test-bed to develop and e^erimentally deploy a range ofnetwork protocols not

restricted to HTTPor evenTCP. Additionally, non-standard imagecompressiontechniques can be

used over the link.
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10.6.1. Proxy Operation

While conventional web proxies can transform the content of the web pages, they must

work within the confines of the HTTP protocol specifications. For instance, they cannot alter the

number of connections that the browseropens, changethe ordering of the requests, or respondto

fine-grained user interactivity - thus precluding implementation of a protocol similar to the one

just described. However, through the use of Java applets to load and display the images on the

page, much greater control is possible. A block diagram of the framework is shown in Figure

10.12.

The globally progressive interactive delivery is best implemented by using a single multi

plexed, prioritized connection between the web browser and web server or proxy. However, in the

case of the proxy / applet system described here, separate HTML and image connections are

required to allow the HTML to go directly to the browser core while the images are sent to the

Java applets over a single multiplexed connection.
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Original HTML:

For my homepage, click <A HREF=/~me> here <IMG
SRC=home. gifx / A>

Modified HTML:

For my homepage click <A HREF=/~me> here
<A HREF="-me">

<APPLET CODE="Speedlmage.class"
WIDTH=54 HEIGHT=39

ARCHIVE="http://proxy.com/Speedlmage.jar"
CODEBASE="http://proxy.com/">
<PARAM NAME=imageHostPort VALUE=9999>
<PARAM NAME=src

VALUE= "http: / /home. com/-me/home. gif ">
<PARAiyi NAiyiE=href

VALUE="ht tp://home.com/-me">
</APPLET>

</A>

ncuRE 10.13. Example of HTML modification to embed image applets

10.6.2. HTTP Proxy Design

The HTTP Proxy substitutes Java applet tags for image tags, as shown in Figure 10.13, as it

sends pages to the browser, causing applets to appear where the images were. The applets are sup

plied the URL of the image to display as well the host name and port of the Image Proxy. If the

width and height are not specified in the IMG tag, they are determined by prefetching the image

and decoding its header since the applet dimensions must be specified in the APPLET tag (unlike

IMG tags where the dimensions should be specified.) HTML compression is achieved via HTTP/

1.1 transport encoding.

10.6.2.1. Streaming HTML Conversion

One important technique used in both the HTTP Proxy and the Image Proxy is that of

streaming conversion. Streaming conversion entails converting both images and HTML text "on-
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the-fly" whenever possible, instead of jSrst retrieving the entire objects before processing them.

This is critical if the response from the web server is slow due to network congestion or server

loading. If the proxy waits fortheentire object tobereceived before sending anypartof it out, the

time for the user to receive any part of it will be substantially increased, and the total time to

retrieve the object can be doubled. For the HTTP Proxy, streaming conversion means that the

HTML is transformed and compressed on the fly. Whilecompression and simple textual substitu

tion wouldnot be problematic, incorporating image size information in applet tags requires asyn

chronous retrieval and parsing of image headers to determine their sizes.

10.6.2.2. Link Scheduling

The HTTP Proxy performs limited link scheduling by tracking the amoimt ofdata outstand

ing in HTML and non-HTML (typically image) links. It does not send data on non-HTML links

until the amountofHTML data outstandingis belowa given threshold. The image proxy also sup

presses custom image data until the amoimt of HTML data outstanding is below a given threshold

in order to effect the text prioritization needed for globally progressive transmission as described

in Section 10.5. The fine-grain inter-imageschedulingtakes place in the Image Proxy.

10.63. Image Proxy Design

The Image Proxy is responsible for retrieving images from the web servers, transforming

them, and sending them over the custom managed link to the Image Applets. A strict priority

round-robin system is used with priorities dynamically specified by the Image Applets depending

on whether they are on-screen and where the cursor is.

10.63.1. Image Conversion

As the images are retrieved, their type is determined from the HTTP meta-data. Type-spe

cific conversionis performed to generateprogressiveversions. JPEG images are converted to Pro-
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gressive JPEG(PJPEG) using the Independent JPEG Group's JPEGlibrary [40]. Thisconversion

is losslessand does not significantly effect compression rate. GIF images are convertedto a loss

less format similar to interlaced PNG

Additionally, conversion from GIF to PJPEG is attempted and the PJPEG image is used

whenever a high-quality lossy JPEG conversion results in a reduction in size compared to the

PNG-like coding. By keeping the JPEG quality setting high, discrete-tone images not well suited

to lossy compression will compress less compactly with JPEG than with a lossless coding such as

GIF or PNQ and thus the lossless coding will be used. However, photographic images are often

stored on web sites in lossless GIF while lossy JPEG coding dramatically reduces the size of the

image while not resulting in any perceptible degradation. Since progressive coding is used, a high

quality setting can be used while still allowing quick delivery ofa coarse version of images.

10.63.2. Streaming Image Conversion

As described previously, an important aspect ofeffective proxy operation is forwarding data

as soon as possible to reduce user-perceived delay. However, conversion to progressive formats

requires the entire image to be present. In order to minimize delay, the original data is streamed to

the browser until the entire image is loaded and converted. A switch to the progressive coding is

done wh^ advantageous. For the case of JPEG to PJPEG conversion, a heuristic ofrequiring less

than half of the data being sent is used. For the case of GIF to PJPEG conversion, the size of the

PJPEG data has to be less than the number of bytes of the GIF image remaining. Typically the

total increase in the amount of data sent due to streaming image conversion is not large, yet it can

substantially improve perceived latoicy.
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10.633. Link Scheduling

TheImage Proxy explicitly manages the linkto theImage Applets. Theimage priorities are

determined bythe Image Applets (described next) as dictated by the globally progressive interac

tivedelivery scheme, andcommunicated to theImage Proxy. Within a priority class, images send

ingprocessed data (progressively coded images) aregiven priority to those sending improcessed

data since the unprocessed data may have to beflushed, aspreviously described, if theprocessing

proves to be advantageous.

10.6.4. Image Applet Design

Image Applets request the data for their images from the proxy and display it. They are

nearly indistinguishablefrom images they replace, respondingto mouse clicks to follow web Hnkg

as standard images do. The Image Applets also respond to keyboard commands to create new

windows which are copies of the imagesas well as zoom and pan within the images. Thus the

document is an active entity that can be manipulated.

Figure 10.14 shows the internal architecture of the Image Applets. There is one applet per

image on the page, though the images communicate through shared static objects. Static Java

objects are shared among all applets running in the same Virtual Machine - i.e. all applets running

in the same browser. In particular, a shared image database is used to track which images have
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Text 5.1 sec

Visible Layer 1 10.1 sec

Visible Layer 2 12.3 sec

Visible Layer 3 14.4 sec

Visible Layer 4 16.9 sec

Visible All Layers 20.0 sec

Complete Document 33.3 sec

TABLE 10.4. Performance of Java / proxy system on example CNN Interactive
page

been loaded already and allows the same image to be shown in multiple applets without requiring

the image to be loaded more than once. The loading of the images is centralized via a single Java

thread which contacts the Image Proxy and manages all browser-proxy communication.

10.6.5. Proxy / Applet Performance

In order to evaluate both conventional and proposed globally progressive interactive loading

protocols, the SpeedSurfer client-side proxy described in is used as shown in Figure 10.15. The

client PC was a Pentium 11/266 PC running Microsoft Internet Explorer 4.0 web browser under

Windows NT 4.0 and connected to the Intemet via a 28.8k baud modem. The web proxy and local

web server ran on a Sun UltraSparc 2 workstation.

The web page loading graph depicting loading the example page from a local server using

conventional HTTP/1.0 is shown in Figure 10.16. The initial vertical line in each object*s row

indicates when the HTTP request is issued while the bars indicate response timing. The loading

pattem has similarities to both Figure 10.1 and Figure 10.2 due to the interaction of the multiple

simultaneous TCP/IP connections. Althoughup to four requests are open simultaneously, due to

TCP/IP's adaptive congestion control, new flows receive less bandwidth than existing connections

until equilibrium is reached.

The graph of loading the page using the globally progressive interactive technique via the

proxy / applet prototype is shown in Figure 10.17 and summarized in Table 10.4. The perfor-
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Time Amount

(sec) (bytes)
1.543 1460

2.855 2540

Time Amount

(sec) (bytes)
3.956 1460

4.857 2540

Time Amount

(sec) (bytes)
5.098 1960

TABLE 10^. Data Reception of HTML Object of Figure 10.17.
Packet times are in seconds since request.

mance is improved significantly over conventional loading but is slightly slow^ than predicted.

Comparing Figure 10.17 to Figure 10.8 illustrates a few notable differences. The increased time to

text can be seen in the segmentation of the HTML object bar indicating unsteady flow ofdata due

to TCP/IP slow-start. The TCP/IP data reception timing shown in Table 10.5 further verifies this.

The increased time to the first layer of images is an artifact of the Java implementation: the web

browser does not start the Image Applets until the entire web page has been loaded and thus their

requests are delayed.

The time to perform on-the-fly compression and image conversion did not contribute signif

icant overhead. Gzip compression of the 41261 byte HTML object to 9950 bytes required only

0.10 seconds while conversion ofthe 17774 byte / 47600 pixel top_juins_ap.jpg image fi-om JPEG

to PJPEG required 0.12 seconds. Conversion of the same image firom GIF to PJPEG would

require 0.16 seconds. These all result in converted data rates ofapproximately 1 Mbit/second and

thus a high performance workstation can support the compression and conversion for roughly

thirty 28.8k baud modems. Caching and distributed computing could further increase scalability.

10,7. Conclusions and Future Directions

With the explosive growth of the Internet and increasing proliferation of low-bandwidth

wireless access, efficient and expedient delivery of web content has become more important than

ever. This optimized delivery is only possible through carefully analysis of the factors affecting

loading speed. As has been shown, by viewing web delivery as a form of remote display, and
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combining networking and image compression techniques, significant gains have been demon

strated. Additionally, thispoint ofview yields opportunities forfurther developments asdescribed

below.

10.7.1. Integration with Existing Web Infrastructure

While the WebProxy / Java Applet architecture described in the previous section is useful

to evaluateand optimize the globally progressive interactive web delivery, further gains can be

achieved by incorporating the methodology into existing web servers, proxies, and browsers and

by building upon current HTTP protocols and related work described in Section 10.3.. Public-

domain open-source browsers and servers / proxies provide a state-of-the-art starting point [3],

[48], [72]. The functionality of the Image Applets can be directly incorporated into the browser

while the functionality of the web proxy can be integrated into the web server/ proxy.

Interoperability is achieved through protocol negotiation on connection. A mechanism such

as MUX can be used to support transmission ofmultiple images over a single link. One disadvan

tage of MUX using TCP is its use of a single buffered connection, which forces multiplexing to

occur before buffering. This can result in additional buffering delay, impacting interactive switch

ing of image priorities as described previously. Altematively, TCP sessions could be employed if

explicitly prioritized queuing is added [55]. TCP sessions have the advantages ofapplication inde

pendence and removing false-dependencies across images. However, the use of TCP sessions

requires servra* kemel modifications and may result in greater kernel overhead and resource utili

zation since a new TCP connection is required for each image.

10.7.2. liranspareiit Content Negotiation

The globally progressive interactive web delivery requires the ability to access both

transcoded versions of images as well as the original. The imderl3dng protocol must be able to
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specify which image conversions should occur. While HTTP/1.0 provides very crude content

negotiation via "accept" headers, it lacks sufficient expressive capabilities, which can lead to

name-space conflicts. Transparent Content Negotiation, however, as described in [23] allows fora

more flexible, powerful mechanism which allows ^Variants" of an object to be described and

named differently than the original object.

Integration of an automatic content conversion mechanisms into a web proxy or server also

allows delivery of improved formats, such as PNQ JBIG [4], [61], or wavelets [60], while retain

ing originals in the highly compatiblelegacy formats - GIF and JPEG The web servers or proxies

can automaticallynegotiate with the browser to determinethe best mutually supported format, and

perform conversion. In this way, the latest image coding techniquescan be used without sacrific

ing compatibility.

10.73. Scalability through Server / Proxy Caching of Processed Data

Since the same progressive image codings are used for both high-bandwidth and low-band-

width links, transcoded images can be cached and reused. When coupled with streaming conver

sion, this allows conversions to be delayed when the load on the server gets high, and yet assure

that performance is never worse than without the conversions. However, if several users access a

given web site via different web proxies, the objects on the site must be converted by each of the

proxies. By integrating the functionahty of the proxy into the server, the server / proxy can pro

cess the objects on the site only once per creation or update, regardless of how many geographi

cally separated users access the objects. By transmitting the converted objects over the Intemet,

the delay ofthe wide-area access is mitigated by the globally progressive interactive delivery. The

same scalability for dynamically created objects cannot be obtained but most images are not

dynamically created, even at sites that use dynamically created content.
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CHAPTER 11 Application-LevelLink
Management

In this chapter, techniques for optimizing the transmission of text / graphics information for

a specific application are presented and compared to the application-independent methods previ

ously described. While the application-independent techniques ofPart n allow any application to

be used remotely, further gains are often achievable by optimizing for the particular application.

The specific application that is used as a case study in this chapter is a Java-based VLSI layout

viewer called "WebChip'*. This application is chosen because it is both information- and display-

intensive and requires interactive operation.

ILL WebChip - An Interactive Java-based VLSILayout V^e^/^er

WebChip is Java-based VLSI layout viewer that allows users to embed active layouts in

their web pages instead of only using static images. It is information-based as it is designed to

view a large layout database remotely. It is also display-intensive, particularly considering it is

designed to operate on a relatively restricted Java virtual machine. While the implications ofWeb

Chip in terms of application-specific text / graphics and image transmission are described in this

155



4Bb..'••>ll0<..-"-4W« .

'̂'̂ 5linMBa.,,,,ff!.... ^
h.%.. B -. m m M M' •'p'

.-rrsrrp-r^:^,-^?-;!-:-:?^,

•iW.ijiilijiii^fjl'̂ '

Wii iiW,

r?rf!'f • W-> '"*- :*• •»---* W W..,^

^ Hi ."i %•"%' "y-JiWiiiWi-j • j. p

iSJ fti

FIGURE il.i. Example layout viewed with WebChip

chapter, fiirther details about its use and operation can be found in Appendix B (The WebChip

Applet).

WebChip, like other instances of application-specific text / graphics and image transmis

sion, could be designed as a local client that did not know about remote transmission and instead

relied upon a text / graphics server to perform application-independent transmission as described

in earlier chapters. While this would allow full functionality, typically with reduced design time, it

would also result in severely degraded interactivity, increased bandwidth utilization, and increased

latency over low-bandwidth links.

Using application-independent transmission would require all layout data to be fiilly ren

dered before transmission and thus whenever the particular desired view changed, the image

would have to be re-transmitted. Application-specific transmission allows client-side caching of

view-invariant data, such as layout cells. Also, rendered data in the form of primitive draw com-



mands or bitmaps, is typically lesscompact thenthe source datait came from, sinceit has greater

expressive capability.

The WebChipapplication is used to present application-level techniques to hide the effects

of slow networking and image rendering. Many of the issues in application-independent text /

graphicsand image transmissionas well as web-specificdeliveryfind parallels in application-spe

cific domain as described below.

There is a need to combine compression and link scheduling to most effectively utilize the

limited bandwidth link. Compression alone will yield some benefit, but only in conjunction with

link scheduling can very low-bandwidth links be managed.

Progressive techniques can be used, as before, to assure that the user is delivered the coars

est information first, so that in a very short amount oftime a crude version ofthe entire layout can

be seen. While in the case of web delivery, a crude version refers to reduced spatial resolution, in

the case of a layout viewer, this refers to seeing only higher-level cells. The data within the cells

could also be arranged progressively.

As with the application-independent and web-specific cases, it is critical to infer user intent

to guide the use of the limited bandwidth link. In the case of the layout viewer, the intent is mani

fest in the choice of cells to layout cells to expand. This information is then provided to the net

working layer so that the expanded cells are given higher loading priority and their data is

transferred sooner.

In order to retain interactivity during the loading process, the user interface, networking,

and rendering layers of the application must be decoupled. In this way, the user interface will not

block because the application is waiting on data from the network, or because the application is in

the middle ofa compute-intensive drawing operation. Once this decoupling has occurred then the
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constraints on the networking and rendering layers can be relaxed while still achieving interactiv

ity.

Even large, highly detailed VLSI layouts canbe viewed interactively over a slow linlf The

key is that at any given time the user's immediate requirements of data are typically modest,

although they do need the ability to view the entire layoutwhen desired.

11.2. Techniques to Increase Speed

11.2.1. Display Techniques

The simplest way to produce stipples is usingthe AWT drawimage to copy pre-determined

swaths of semi-transparent stipples. The swaths are basically sets of IndexedColorMap images.

Rendering is limited to withinthe window and clip rect to avoidunnecessary computations. Sub-

cells are only recursed into if they contain some part in the current clip rect or window. This has

the advantage of relative simplicity although the swaths have to be generated and determining

where on the screento draw layers is non-trivial given a hierarchicaldesign with transformations.

This method is too slow, particularly under Unix. Unix currently uses interpreted Java

whilethe PC implementations usejust-in-timecompilation. More importantly in Unix,the display

is handled by anotherprocess - the X server, and each drawingrequest is very costly. Under Win

dows 95/NT on a PC, the drawing can be performed by the Java application directlyusing Direct-

Draw, and thus the overhead is substantially less. By running the **top" utility in Unix, it is clear

that in AWT mode, the X server is indeed consuming the bulk ofthe cycles.

11.2.1.1. Image Blocks

Performance can be improved upon by performing the rendering to a byte array in Java on a

cell by cell basis. Once a cells has been rendered into a byte array, it is displayed using a single
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drawimage request. In this way, far fewer drawingrequestsare made, histead ofusing the AWPs

semi-tran^arent copy, the block mode routines that generate the byte data use something more

akin to stippled rectangle drawing. The code has been unrolled and optimized to achieve respect

able performance, even under interpreted Java.

11^.1.2. CelllmageCaching

A more architecturally significant improvement comes by a technique dubbed cell image

caching. Most designs are hierarchical while currently most display programs display "flattened".

If many copies of a given cell are displayed, the cells are rendered one at a time. This can lead to

very slow rendering of large expanded layouts.

Instead, it is beneficial to save the image ofa cell once it is rendered at a given magnifica

tion, and then upon having to render it again later, the image can be retrieved instead ofhaving to

redraw the layers from scratch. Since hierarchical designs include rotated and flipped subcells,

either the cell image rendering has to be able to rotate and flip the images, or else an image has to

be cached for each rotation. WebChip uses the latter option due to Java's lack of support for rota

tion. Not all browsers supported the 10argument drawimage which allows flipping. There can be

up to 8 different combinations of rotations and flips. The transform matrix is examined to deter

mine the orientation.

In the case ofstippled drawing, the stipple pattems must always align or else different layers

in different cells can obscure each other. It sufficesto roundout the box sizes to die basic granu

larityof the stipple which is two. I.e. in the 8x8 stipples, most transparentpattems, except nwell,

repeat on a 2x2 basis.

A cell image caching system must be able to revert back to either non-cached blocks or

primitive AWT in case there is insufficient memory for the images, or the cell image rendering will

be more costly than the primitives. WebChip has both modes of fall-back.
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While cell image caching isvery useful for WebChip, allowing it in some cases torender

more rapidly than Magic orCadence, itcould also be extended to those tools. Itisageneric tech

niqueuseful fordealing withhierarchy.

11.2.2. Loading Techniques

Since the time to load layout over slow links isan important factor in interactivity, ways to

improve it were investigated.

11.2.2.1. Compression

The first way to reduce load-time istocompress the data being loaded. Magic files are plain

ASCn textwhich hastheadvantage ofbeing human-readable, butnotparticularly compact. Con

verting the layout into a binary form and doing application-specific compression would yield very

good compression at the expense of reducedportability. An alternativeis to use Java's GZIP com

pression support ontheASCII cells'.

WebChip supports reading both compressed and uncompressed layout files. If it does not

find one type then it looks for theother. Itassumes that most ofthe cells inaparticular design will

becompressed, ormost will not. If it finds one compressed file, it checked for thenext one being

compressed before reverting to searching for the imcompressed version.

11.2.2.2. Concurrent Loading

Additional reductions in loading time can be obtained by issuing multiple layout cell

requests simultaneously. This technique is commonly performed by web browsers when retriev

ing the images associated with a particular page. It amortizes the TCP/BP connect time cost. How

ever, openingtoo many connections simultaneously can resultin a loss in performance particularly

over a modem link as the connections are never able to stabilize. For these reasons WebChip is

1. This was suggested by Michael Shilman.
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currently set up to handle 3 concurrent loads. Additionally,by allowing the layout editor to issue

the requests in the order it sees fit, it can request the top cells that the user is trying to view.

113. Techniques to Deal with WorkIn Progress

As mentioned, even once all efforts have been made to accelerate loading and display, addi

tional mechanisms should be put in place to make the best ofthe speed that can be obtained. This

section describes ways to operate effectively with non-negligible load and display times.

113.1. Efiding Slow Loading

Conventional CAD systems load the design database and then use it. Web-based agents,

however should consider the loading process a significant part oftheir operation and thus allow the

user to interact and perform useful work during this time. WebChip does just this.

Typically cells are created when they are loaded. Instead, WebChip creates cells the first

time they are referenced. Then they are scheduled to be loaded as soon as possible. In the mean

time, however, the database is still consistent and can be manipulated. The display subsystem

knows how to render a cell that has not been loaded. (Typically their boimding box is drawn in

gray.) Additionally, the loading subsystem places a call-back to the rendering subsystem as the

cell is loaded so the user can get an up-to-date view.

113.2. Hiding Slow Display

Existing systems typically also consider the rendering process as something that starts and is

then completed before further interaction can occur. In very fast systems operating on small

designs, this is not a problem. However, on slower systems or very large designs, the user often

has to interrupt the display process. WebChipallows interaction even during display by maintain-
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ing a separate display thread for each active view window. The GUI interaction occurs in yet

another thread so that it is not blocked.

Proper accounting keeps the display thread focused on the correct task. This is how, for

instance, the selection box can be manipulated while redraw is in progress. (The actual mecha

nismformaintaining theselection boxistoactually create 4 Canvas objects foreach ofthe4 sides

and these are mapped over the view window.)

11.4. Conclusions and Future Work

This chapter has presented a method for interactive display of largeVLSI layouts overthe

web. The WebChip applet achieves thisthrough a number of optimizations focused on reducing

and managing load anddisplay time. Although the viewer is written in Java, similar techniques

could be used on any platform.
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CHAPTER 12 DevelopmentEnvironment

In this chapter, the development environment for the application-specific techniques is pre

sented. First presented is netem^ a network emulator which is used to model bandlimited channels.

Next presented is the SpeedSurfer client-side proxy which is used to perform client-side link mon

itoring and analysis. Last described is SurfServ^ the SpeedSurfer server-side proxy, which is also

used to prototype the globally progressive interactive web delivery as described in Section 10.6..

12,1. Netem - Network Emulator

netem, detailed in Appendix A.5. {netem (1)\ is a network emulator that can be used to

emulate bandlimited links in real-time in order to study the effects ofbandwidth limitations on sys

tem performance and user interaction, netem was used extensively in the development of the

Globally Progressive Interactive web delivery protocol described in Chapter 10, as well as the

WebChip VLSI layout viewer described in Chapter 11.

netem allows multiple simultaneous connections to be emulated, and operates at the

stream level. Currently only TCP/TP connections are supported and emulation occurs at the TCP/

IP connection level, netem emulates bandlimited links with fixed individual or total link capac-
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ity. It can also emulate transport latency. The modeling is performed with an emphasis on high

throughput rather than IP packet-level modeling accuracy. Thus to obtain highly accurate models

ofthe interaction ofmultiple TCP/IP streams, or their reactions to packet loss or congestion, atool

such as the Network Simulator - ns [68] should be used.

netem is configured by specifying a set ofconnections that it should forward and emulate

from the local machine to some remote host. For instance, consider that netem is running on a

machine called emhost.eecs.berkeley.edu. Itcould beconfigured toforward connections from port

1234 to port 23 on otherhost.eecs.berkeley.edu via the command:

netem 123 4=otherhost.eecs.berkeley.edu:2 3

This would allow emulation of tebet connections, which by default useport 23. If a user

now telnets to port 1234 of emhost.eecs.berkeley.edu, a telnet session to otherhost, through netem

is established. This wouldoperate the same asa directtelnetconnection to otherhost However, a

slow modem link can be emulated ifrate limitingis specified via:

netem -rate_limit_bps 25000
1234=otherhost.eecs.berkeley.edu;23

Now connections to port 1234of emhost are still forwarded to otherhost, but only at a max

imum datarate of25Kbps. Note thata typical 28.8kbps modem connection willresult in through

put closer to 20-25Kbps due to byte-level and packet-level synchronization and overhead and

prevailing phoneline and Intemet conditions. If multipleconnections to port 1234 of emhost are

established then the total rate ofall connections are limited to 25Kbps in order to simulatea shared

link. The -rate_limit_individual option can be used to allocate 25Kbps for each con

nection to emulate independent links.

Fixed latency can be specified via the -latency_ms option as in:
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netem -rate_limit_bps 25000 -latency_jns 200
1234=otherhost.eecs.berkeley.edu:23

This adds the addition restriction that data incurs a delay of 200ms while being forwarded.

This can emulate latency due to network queues and packetization delays.

In addition to forwarding connections to fixed addresses, netem can act as a web proxy and

determine which host to connect to via the data stream. The following command demonstrates

this:

netem -rate_limit_bps 25000 1234=web

Now if a web browser is used with its HTTP proxy set to emhost port 1234 then all web

pages viewed with the web browser are directed through the proxy and will consequently be sub

jected to rate limiting. In this way, the performance of a slow link can be experienced on a net

work without such slow links, and the effects ofdifferent networking protocols can be explored.

Netem can also print connection rate information as well as log the data being transferred on

the emulated connections by varying the - verbosity level. One such example is shown in Fig

ure 12.1. Other features and options are described in Appendix A.5. {netem (1)).

12.2. SpeedSurfer - PC Client-Side Proxy

The SpeedSurfer client-side proxy is a Windows 95/NT application that acts as a local cli

ent-side proxy as well as arbitrary TCP/IP connection forwarder. It can be used in conjunction

with SurfServ, described in the next section, to encapsulate multiple TCP/IP connections across a

lossy bandlimited link in an explicitly managed manner. Additionally, it can perform real-time

data flow analysis and generate real-time web-page loading graphs described in Section 10.4..
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Using buffer of size 128
Port mappings:

Port 1234 -> Web

Accepted client from 128.32.62.75 port 1794 as connection 0
Got (128) ""GET http://Badlands.EECS.Berkeley.EDU:8090/-gilbertj/
HTTP/1.0\r\n

Proxy-Connection: Keep-Havering
User-Agent: Mozilla/4.5 [en] (WinN" from client 0
Http server Badlands.EECS.Berkeley.EDU:8090 is 128.32.139.53 port
8090

Connection 0 is to Badlands.EECS.Berkeley.EDU:8090 to perform:
GET /-gilbertj/ HTTP/1,0

Sending to server 0 "GET /-gilbertj/ HTTP/1.0\r\n
Proxy-Connection: Keep-Alive\r\n
User-Agent: Mozilla/4.5 [en] (WinN"
Finished writing 90 to server
Got (128) "T; I)\r\n
Pragma: no-cache\r\n
Host: Badlands.EECS.Berkeley.EDU:8090\r\n
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ima"
from client 0

Finished writing 128 to server
Got (95) "ge/png, */*\r\n
Accept-Encoding: gzip\r\n
Accept-Language: en\r\n
Accept-Charset: iso-8859-1,*,utf-8\r\n
\r\n" from client 0

Finished writing 95 to server
Got (128) "HTTP/1.0 200 Document follows\r\n
Server: CERN/3.OA\r\n
Date: Mon/ 20 Mar 2000 18:44:42 GM!r\r\n

Content-Type: text/html\r\n
Content-Length: " from server 0
Finished writing 128 to client
Got (128) "4108\r\n
Last-Modified: Mon, 07 Jun 1999 00:24:28 GMT\r\n
\r\n

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">\r\n
<html>\r\n

<h" from server 0

Finished writing 128 to client
Got (128) "ead>\r\n

<meta http-equiv="Content-Type" content="text/html; char-
set=iso-8859-l">\r\n

<meta name="Author" content="Jeff Gilbert"" from server 0
Finished writing 128 to client
Got (128) ">\r\n

<meta name="GENERATOR" content="Mozilla/4.5 [en] (WinNT; U)
[Netscape] ">\r\n

<title>Jeff Gilbert's Home Page</title>\r\n

FIGURE 12.1. Example diagnostic printouts.
Generated by netem 1234oweb -verbosity 31 -rate_liinit_J:9s 20000
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FIGURE \22. Two views of server-side proxies.
The view on the left is semantic while the view on the r^ht is closer to actual
implementation.

Internet
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FIGURE 12J. Two views of client-side and server-side proxies for better link control.
Again the view on the left is semantic while the view on the right is closer to actual
implementations. Note that the proxy server should be placed near the ISP for optimal
performance if it cannot be replicated at each ISP.

While a summary of the SpeedSurfer application is presented here, details of its operation can be

found in Appendix C (The SpeedSurfer Application).

12.2.1. Client-Side Proxies

Conventional (server-side) web proxies only reside on the web-server side of slow links as

shown in Figure 12.2. In order to use these proxies, the address of the web proxy is specified to a
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web browser. The browser then sends all requests to the proxy instead of the address of the

requested web page. While this setup means that the client does not have torun any special soft

ware, it also means that the protocol going over the slow orlossy link must bethe protocol that the

web browser understands. This can significantly limit the flexibility and power ofthe system. The

Java applets described in Section 10.6. are one way to obtain greater flexibility without browser

modification but are limited to web delivery, and have limited interface capability and perfor

mance constraints.

However, if a web proxy is run on the client's side of the link as well, as shown in

Figure 12.3, thenthe datatravelling overthe modem or wireless linkcanbe fullycontrolled to best

exploit thecharacteristics of the link. In thisscenario, theweb browser is toldthatthere is a proxy

located on the client's machine. Thus all requests are routed through the client-side proxy. The

client-side proxy, in turn, knowshow to contact the server-side proxy. Although the user has to

run a proxy on the same side of the slow link as the browser, the actual web browser need not be

modified. Additionally, the client and server proxies are standard applications and the network

infinstructure need not be modified.

The same proxy architecturecan be used for non-webconnections. Most applications such

as telnet, ftp, and X Windows can be instructed to connect to a different location - one ofthe client

proxy's ports, to effect the connection. A single client proxy can accept connections on multiple

ports to handle multiple services. Since all (or most) connections over the constrained link go

through the client and server proxies, centralized link management is possible, leading to more

efficient link utilization.
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12.2.2. Link Management Using Client-Side and Server-Side Proxies

The cli^t-side proxy architecture can be used to investigate linkmanagem^t from a net

working perspective sinceall outgoing network connections arepassed through the client/ server

proxypair. Thus all traffic ovct the limited bandwidth links canbe centrally controlled. In partic

ular, linlf aggregationwas exploredwhereall incomingTCP/IP connections are combined into one

persistent connection with the server-side proxy.

Multiplexing the multiple transient streams through one persistent TCP/IP connection has

sevml benefits in terms of increasingperformance. It eliminates the per-connection TCP/IP con

nection establishment ov^head and slow-start delays. It also reduces cont^tion between the mul

tiple connections. Additionally, the combination and prioritization of the links can be controlled

by the two proxy servers. In the case of web access, it can be used to experiment with coercing

HTTP/1.0 connections into an HTTP/1.1-like stream.

Furthermore, some of the overhead of TCP and IP headers of small packets can be amor

tized over multiple connections since the information needed to demarcate the various streams in

the single TCP connection is much less than the overhead if each was its own TCP connection.

Additionally, since there is a single dominant stream, it is safe to disable the Nagle algorithm

which can delay packetization.

Finally, since the TCP/IP connections between the web server and browser have been

divided into two parts on the server side, buffering can occur at the servor-side proxy. The server-

side proxy smooths out the bursty traffic that comes from the remote web servers over the Internet.

When a direct connection is made from the web browser to the servers, this kind ofbufftmng can

not occur effectively as losses due to congestion in the Intemet will cause degradation in link per-
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formance. The client / server proxy pair could be used to perform lossy or lossless source coding

or ^cryption without modifying either the end-server or end-client.

TheSpeedSurfer and SurfServ proxies are used to analyze a performance limitation in the

Berkeleydial-in modempool. By multiplexing multiple independent web connections and limit

ing the amoimt of data queued for transitover the modem linkto 2000 bytes, extraneous TCP/IP

errors andtime-outs areeliminated, allowing transmission at about 90%of the linkcapacity com

pared to only about 50% link capacity without the proxies. [30]

In addition to adding more flow control to the TCP/IP connection, UDP packets could be

used insteadto allow full redesign of the reliableprotocol. Thiswouldlikely be necessary for ade

quateperformance over a wireless link. Alternatively otherflavors of TCP/IP suchas Vegas could

be investigated. Based on the previous observations, it seems that Vegas would be much better

suited since it avoids forced congestion and packet loss.

12,3. SurfServ - SpeedSurfer Server / Progressive Proxy

SurfServ, detailed in Appendix A.8. {SurfServ (1)\ is a unix-based application that per

forms the necessary connection establishment, multiplexing, and demultiplexing to support the

SpeedSurfer client-side proxy. The SurferServ is optimized to handle multiple SpeedSurfer ses

sions efficiently. Simple techniques such as minimizing data copying and efdcient use of selectQ

make it possible for the SurferServ to have a minimal load on the CPU. Each session with a dis

tinct SpeedSurfer client is forked into a new process so that the connections will not adversely

affect each other, and also to get aroimd the per-process limitation of 64 open files. The Speed

Surfer sessions are long-lived so that the impact ofthe new process creation is minimal.
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SurfServ also acts as the server-side proxy for the Globally Progressive Interactive Delivery

prototype described in Section 10.6. It performsthe HTMLimageto applettag translationas well

as managingthe image delivery links hrom the Java applets. The connection to the web servers is

made using HTTP/1.1 with persistent connections whenever possible, reducing the number ofnew

web browser connections. Thus a new process can be used for each new connection and a new

process is used for connection to the Java applets. This reduces open-file limitations. Individual

light-weight threads are used to perform the progressive image transcoding so that the transcoding

ofone image does not impact that of another.
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PART IV Conclusions

CHAPTER 13 Conclusions and

Future Directions

13,1. Network Requirements

There are many common themes which pervade the various types of text / graphics and

image transmission described in this thesis. This section distills the common networking require

ments in effort to propose new services which will allow modular reuse of these capabilities. By

coupling the applications more closely with the network protocols, but keeping the packet-level

scheduling in the operating system, the necessary agility can be retained while not sacrificing efH-

ciency.

In this section, messages refer to the atomic unit of communication where a part of a mes

sage is ofno value imtil the whole message is received. (Others have referred to this as an atomic

data unit.) A stream refers to one ordered set ofmessages where in-order delivery ofthe messages
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is required. A packet is theunit of data physically transferred over thenetwork and a connection

subsumes theentire setof data transferred for theapplication.

13.1.1. Lightweight, Independent Streams

One recurring theme seen throughout this thesis isthat text, graphics, and image data trans

mission involves multiple lightweight streams. The granularity and size depend on the particular

application. For thecase ofthe web, the streams are simply the objects inthe web page. Applica

tion-specific instances define their own granularities - the WebChip application uses independent

streams for each VLSI layout cell. For the case of the bitmap-based approaches, the ultra-light

streams correspond to the individual blocks in the image. The conventional primitive approach

allows one stream per application. The hybrid approach uncovers much more packet indepen

dence allowingdisjoint sets ofprimitives to occupy separate streams.

Uncovering parallelism andremoving false dependencies is almost always beneficial. Par

allel computer architectures require this for efficiency, multiple-issue microprocessors can exploit

it, networking canexploit it to better cope with packet loss. Byexposing thetrue dependencies to

thenetworking layer, theapplication need notindividually manage the sub-streams butcanenjoy

the benefits of their management.

The MUX protocol [51] described in Section 10.3.1. implements lightweight streams over

TCP/IP which does expose the interface to applications, but layering upon TCP/IP introduces

false-dependencies in that the use ofa single TCP/IPstreamwill cause losses in one sub-stream to

delay data in another sub-stream.

13.1.2. Explicit Message Interdependence

In the case ofthe hybrid approach, simple streams do not suffice to expose all dependencies.

More complicated directed acyclic graphs are required to express the fact that some primitives can
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be dependent on multiple other streams. Thus more complex message interdependence exists.

Streams are a special case where th^e are linear dependency graphs, and thus general purpose

interdependencies can be used to describe streams as longas eiSiciency is not compromised.

Explicit packet interdependence can also be used to improve sending of individual images

in web transmission if the independentregions in the data are noted. This can expose further par

allelism and further reduce latency due to loss (see Section 3.2.2.) in hig^y lossy environments.

13.13. Dynamic Reprioritization of the Streams

Interactive text / graphics and image transmission requires dynamic reprioritization of the

data streams to obtain low latency over bandlimited and/or lossy links. E^licit prioritization

allows better link management to assure that the data that needs to arrive quickly is delivered first.

In the case of application-independent transmission, it allows low-bandwidth, high-impact data

such as text and non-image graphics primitives to be delivered quickly. It also allows regions of

interest, such as where the cursor is, to be delivered more quickly than other areas. For web trans

mission, it allows on-screen images, to be delivered before off-screen images and images where

the cursor is to be delivered before other on-screen images. Application-specific instances such as

WebChipuse prioritization to assure that base cells are transferred before underl3dng cells.

13.1.4. Message Unqueing

In addition to reprioritizing messages, some cases, such as the application-independent

transmission, benefit fi-om being able to unqueue messages that have been enqueued earlier. This

is primarily used for removal of redundant messages when one text / graphics primitive or bitmap

update is superseded by a later one. In these cases, correctness still is maintained if the earlier,

stale packet is delivered, though it will consume additional bandwidth. Thus as soon as the text /

graphics server knows that the message is no longer usefiil, it will unqueue it. In this way, if the
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message isqueued in thenetwork buffers, it can beremoved before it is sent, and if it hasalready

been sent, no bandwidth will be wasted attempting retransmissions if it is not delivered. This was

also proposed as implicit annihilation in [37].

13.1.5. Rate, Flow, and Congestion Control

While applications desire tight control over how their share of available bandwidth is used,

they still need to coexist in a global Internet with other traffic streams. Thus the smn oftheir traf

fic must behave like one or multiple TCP/IP streams to promote fair resource utilization. This also

allows applications which run over varying networks to adapt to the network and conditions. Care

must be taken to prevent loss due to wireless link corruption from being contused with packet loss.

Techniques to adapt TCP/IP to wireless links, such as SNOOP, can be used while retaining the

multi-stream architecture [8].

13.1.6. Notification of Packet Arrival

As we have seen in the bitmapped and hybrid approaches, the applications often keep addi

tional state associated with data in flight, and must be notified ofthe delivery ofthe data in order to

firee the state. Thus they often need feedback fi'om the transport system when successful data

delivery occurs. Additionally, if reliable transmission at the network level is not used then a time

out notification back to the application is useful.

13.2, Conclusions

Compression is not enough.

Hiis thesis has shown that image and data compression alone are not sufficient to obtain

interactive pmTormance over many bandlimited and lossy links. Link scheduling, progressive

techniques, and suppressionof staledata in conjunction with image and data compression yield a
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far more effective strategy for compensatiiig for bandwidth limitations and data loss. It is critical

to viewinteractive text / graphicsand imagetransmission as a user-based activityand optimizethe

results as experiencedby the user. This entails determiningwhich information the user is most

interested in and sending it first, and realizing that this interest can change dynamically over time.

Increasedconcurrencyofdelivery ofdata on various parts ofthe image is required to allowed con

tinued interactivity in the face of reduced connectivity. When these steps are taken, interactive

operationusing a largescreen or ofa largedesign significantlyimprovesover low bandwidth,high

error-rate links.

13,3. Future Directions

While Section 13.1. defines some criteria for a network protocol that would be useful to a

wide range oftext / graphics and image applications, there are still many details to be resolved and

an implementation has yet to be developed and deployed.

Similarly, Chapter 7 describes a hybrid approach to text / graphics and image transmission

with many ideas and motivations grounded in previous completed work, but the hybrid approach

itselfhas not been implemented. It would be useful to implement the hybrid approach into a thin

client and either a modified X server, as used in the InfoPad system, or Windows Terminal Server,

to allow bandwidth-efficient remote access to windows applications over wireless lossy links.

Chapter 10 describes how web access over slow and/or lossy links can be improved by

using globally progressive interactive web delivery. Analysis and a Java / proxy prototype are pre

sented, as are the drawbacks of the prototyping method. More seamless deployment on a large

scale can be achieved by integrating the client-side functionality into a popular web browser and

integrating the server-side functionality into a popular web server and proxy. Several ofthe advan-
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tages are described in that chapter. Additionally, by using the improved networking services previ

ouslydescribed, improved performance, particularly over wireless links, canbe achieved.

This future research could further confirm that although compression isan important ingre

dient inefficient text / graphics and image transmission over bandlimited lossy links, compression

is not enough.
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APPENDIX A SoftwareDocuifiefitatioit

A.l. Codebooklras (1)

NAME

codebook2ras - VQ Video Codebook to Sun Rasterfile Converter

SYNOPSIS

codebook2ras < codebook_file > codebook_picture.rs

DESCRIPTION

This short program converts VQ Video codebooks into a form suitable for viewing or fur
ther manipulation. (For manipulation, rasttopnm followed by any ofthe pnm* tools works
well.) The codebook files can be generated from vq(5) files via vq2codebookn) and
viewed via many views, particularly xloadimage and xv.

OPTIONS

It does not take any command line arguments. Input must come from the standard input
and the output goes to standard output.

OPERATION

Codebook2ras arranges the data in the codebook so that it is easier to interpret (i.e. in 4x4
block, etc) with the Y codebook on top of the I codebook, which is on top ofthe Q code-
book. The whole resultant image is 324x1004.
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SEE ALSO

showcodebookr1)mDeg2vq(1 send vq^1 vq plav(1̂ vq(5^

AUTHOR

Jeff Gilbert <gilbertT@eecs.berkelev.edu>
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A.2. emu (1)

NAME

emu - InfoPad Emulator

SYNOPSIS

emu [- Gatewayld] [- Padid] options...

DESCRIPTION

The InfoPad emulator is a Tcl/Tk application which emulates the pad at the protocol level.
Messages as they would appear over the radio link are interpreted and generated. The
emulator connects to a gateway which independently connects to the various servers. The
emulator displays both text / graphics output as well as VQ video on a separate popup
window. (See also vq^lay man page). Pad audioinput and output are also emulated using
the workstation's microphone and speaker ports. (Currently only Sun SparcStations are
supported. ) Pen input can be generate either by using the mouse or an external tablet.
(Many brands oftablet are supported.) Keyboardinput is also available to aid in develop
ment.

Additional debugging aids include a display of the radio traffic statistics into and out of
the emulator (or pad). This can be used to analyzebandwidth requirements. The effective
downlink audio buffer size can be varies to determine the buffering necessary compensate
network jitter.

The emulator is tightly coupled with The Name Server to allow the auto-start version of
the various servers (pad, t/g, pen, and audio) to be selected during operation. The status of
the servers and gateway is continually displayed to quickly identify which are running.
Pull-down menus locate running gateways and available pad servers.

OPTIONS

-showjtraffic

Causes the traffic window to be displayed initially. Otherwise the TRAFFIC button
has to be hit to display it. This can be useful for automated demos.

-show_av

Causes the A/W window to be displayed initially. Otherwise the PJW button has to be
hit to display it. This can also be useful for automated demos.

-tablet <tablet type> <tablet device>

Enables tablet support for the pen emulator. <tablet type> must be: scriptel, gazelleO,
gazelle1, wacom_old, or wacomjud. <tablet device> must be the UNIX file name of
the tablet device - for example /dev/ttya.
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-helpp

Lists the above options. Note that -help will not work as Tcl/Tk intercepts itbefore the
emuapplication can getat it. Any invalid command-line option will work.

OPERATION

When emuis started, it displays the mainwindow which consists of the emulated black
and white text / graphics display with various widgets below itwhich control the operation
of the emulator. If a GatewayId andPadid are both specified on thecommand line then
the emulator connects to the specifiedpadserver through the specifiedgateway at start
up. Otherwise the emulator comes up in an unconnectedmode.

The following buttons, menus,and text entrywidgets at the bottomof the windowcontrol
the emulator operation:

QUIT

Quits the emulator. ^11 disconnect first ifnecessary.

CONNECT

The indicator inthe connect button isonif the emulator is currently connected toa pad
serverthrough a gateway. If thereis nocurrent connection, (i.e. theindicator is ofO
pressing CONNECT button attempts toconnect to thepad server and gateway speci
fied in thetextentry boxes. If there is already a current connection (i.e. theindicator is
on) then the connection is broken.

REMOTE REFRESH

Causes an xrefresh to be sent to the text / graphics server to force a full refresh ofthe
display.

STATS

Displays a pop-up with neatBER and CELL POWER bars which can bemanipulated
butactually do nothing as ofyet. They were putinbyoriginal author for functionality
not yet fully implemented. It did not hurtanything andmay well prove useful soon so
I did not remove it.

TRAFFIC

Displays the traffic pop-upwhichshows packets/sec, kilobits/sec, and averagebytes
per packet for each ofthe uplink and downlinkdata types as well as the overall down
link and uplink statistics. The display is updated every second.

AUTO REMAP

Selects automaticremapping, which like the STATS box has all ofthe hooks necessary
to allow handoff(??) but is not supported by the rest ofthe system. Currently ifAUTO
REMAP is on then when it get polling packets the cell power bars in the STATs win
dow are randomly varied.

POLLED
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This button is actually just used as an indicator ofthe reception ofpolling packets.
These are generated automatically by the pad server. When received, the POLLING
button is flashed. They are received periodically whenever there is an active connec
tion.

MOVE

Causes the current connection to be broken and a connection to the new padserver and
gateway specified in their text entry boxes to be established.

AY

Displays the A/V (audio and video) pop-up window which allows control ofthe audio
and video emulation. The window has the following controls:

Audio Play - Ifon then downlink audio is sent to workstation /dev/audio.

Audio Rec - Ifon then uplink audio is read from workstation /dev/audio.

Audio Auto - Ifon, the audio play and rec are turned on upon reception ofdownlink audio
data and turned offupon disconnection. By default, this is selected. Note that only one
program can be cormected to a Sparc's /dev/audio at a time so ifAF is running, the emu
cannot connect to the speaker and microphone. A message will be displayed and audio-
less operation can continue.

Verbose (audio) - Logs audio downlink buffer information to the console ifselected.

Downlink Buffer Size - Selects the amount ofaudio data that can be buffered in the emu

lator. This should be set to the amount ofbuffering which would occur between the gate
way and the pad Codec (thus it includes Tx chip fifo and audio chip fifo.) Altering this
allows determination ofthe proper buffer size required to tolerate network jitter but also
not delay the audio too much.

Video Play - Displays the VQ Video window for downlink VQ video. The vq plavCH pro
gram is used for this. Clicking on it again closes the window.

Video Auto - Ifon, the video window is opened upon reception ofany VQ Video data and
closed upon disconnection. By default, this is selected.

\^deo Drop - When selected, the Maximum Display Rate value is used to make sure that
only that many frames per second are sent to the vq_play program. Additional frames are
discarded in the emulator. It is necessary to use frame dropping to prevent the vq^lay
program and X Windows server from consuming too much CPU time making the emula
tion unrepresentative. Setting it to about 15 frames per second still gives reasonable per
formance without causing a bottleneck.

IfVideo Drop is not selected then all video data received is sent to the vq_4)lay program
and the emulator can block waiting to write into its pipe to vq^play. By default, it is
selected.

TABLET
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Enables and controls tablet support. Iftablet is selected then the TYPE menumust be
set to the tablet typeand InfoPad pen emulation using the tabletoccurs. The Tablet
Device text eniiy box should besettothedevice (for example /dev/ttya) that thetablet
is connected to.

GATEWAY

This pull-down menu and text entry box allow selection of the gateway tocoimect
through. Anumber can beentered directly into the text box orelse the current running
gateways(from the name server) are listed in the pull-downifthe left mouse button is
clicked on the Gateway button.

Thestatus of thecurrently selected gateway andcell server are displayed to theleftof
theword "Gateway". Thestatus is either **not running" if neither are running, "run
ning" ifbotharerunning, "CS down" if thegateway is upbut thecell server is down,
or "GW down" if the opposite is true.

PAD SERVER

This pull-down menuand text entrybox allowselection ofthe pad serverto connect
to.A number canbe entered directly into thetextboxor elseall registered padservers
are listed in the pull-down menu if the left mouse button is clicked on the Pad Server
button. Theirstatusis also shownin the menu(unless it is onDemand.)

TABLET DEVICE

Selects the unix deviceto connectto for the tablet. The pull-down menuhas a few
common choices.

SERVER STATUS AREA

The status ofthe currently selected pad, X (text / graphics). Pen, andaudio server are
displayed at the bottom of the main emulator window. It is retreived from the Name
Server periodically. When anycritical event occurs, such as selecting a newpad server
or gateway, the emulatorpolls for statusmore oftenfor a while. Additionally, the
UPDATE button forces the status to be reread.

The Pulldownmenus for "PS Version", "X Version", "Pen Version", and "Audio Ver
sion" control the version oftherespective servers which is usedifthey areautostarted
by connecting to a pad which is not running.

KILLPAD

This buttonkills the currently selected pad server. Thiscauses(or should cause)the x,
pen, and audio servers to go down as well.

ENVIRONMENT

The environment variable EMUVERSION controls which version ofthe emulator is
started. If this is not set then it will default to vcurrent, which is the most current stable
version.

The DISPLAY environment variable should be set to where the emulator window should

go.

192



SEE ALSO

vq plav(l)

BUGS

Uplink audio can stop unexpectedly under high downlink video traffic. Ifthis happens,
simply go to PJV window and stop and restart the AUDIO REC.

The vq_play program blocks on input ifno video data is sent to it so it will not redraw
itself in response to an X paint request. Need to send stay alive packets out to VQ play.

AUTHOR

Currently maintained and improved by Jeff Gilbert <gilberti@eecs.berkelev.edu>

Initial work and developement until about October 1994by
Brian Richards <richards@eecs.berkelev.edu>
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A.3. imgcomp2d (1)

NAME

imgcomp2d - Two-dimensional fast automatic block decomposition compressor /
decompressor

SYNOPSIS

imgcomp2d [options] filename

DESCRIPTION

imgcomp2d is the compressionprogram used to performresearch into the Flexible Auto
matic BlockDecomposition (FABD) algorithm. The application performs compression,
decompressionand also generatesdiagnostic images whichdepict the size and location of
copy and fill blocks. The applicationallows many parameters ofthe compressionto be
tailored to investigate tradeoffsbetween compressiontime and efficiency.

OPTIONS

-help

Show this message

-compress

Compress ras->FABD

-xmcompress

Uncompress FABD->ras

-compressjtest

Compress, imcompress & verify

-write_in_ras

Write input ras file to stdout

-no_write_jout

Don't write any output file

-testjbit_jpack

Test bit packing code

-make_jdiagjmage

Make diagnostic image

-make_diag_image_slow

Slower method
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-make_diagJmage_really_slow

You guessed it...

-save_jdistribs

Usedwith-make_diag_image to saveparamdistributions to files

-inin_fill_wid_no_search n

Minimum fill width,

-min__fill_hei_no_search n
-min_fill_area_no_search n

height and area to avoid copy search

-min_copy_block_width n
-min__copy_block_height n
-min_copyJblock_size n

Minumumcopy block width, height, and unmarkedpixels to consider.

-max__copyJblock_width n
-max_copy_block_height n

Maximum copy block width and height to consider

-min_filLblock_area n
-min_fill_block_size n

Minimumwidth*heightand unmarkedpixels for a fill

-max_fill_block_width n
-max_fill_block_height n

Maximum fill block width and height to consider

-max_matches_to_try n

This is the maximum number ofmatches for each block to try

-one_pass_mode n]

Single more accurate pass

-twoL4)ass_moden

Coarse size mod 4x4 pass followed by mode accurate pass on winner (default)

-verbosity n

0=quiet, highei=noisier
l=Just summary info
2=Also show progress
3=Also save stats to statdoc

4=Also print as go along
5=Print too much stuff
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SEE ALSO

"Gilbert, Jefifrey M. and Robert W. Brodersen. "Alossless 2-D image compression tech
nique for synthetic discrete tone images." 1998 IEEE Data Compression Conference.
Snowbird, Utah. 28 Mar -1 Apr 1998. p.359-368.

BUGS

What's a bug?

AUTHOR

Jeff Gilbert <gilberti@eecs.berkelev.edu>
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A,4. mpeglvq (1)

NAME

mpeg2vq - MPEG and RAW to InfoPad VQ and RAW Video Transcoder

SYNOPSIS

mpeg2vq [mpegjBle] [options...]

DESCRIPTION

The MPEG and RAW to VQ and RAW Video transcoder converts MPEG or RAW files
into VQ or RAW video format files (see vq(5) and raw videof5)V The mpeg decoding
capabilites ofthe transcoder are taken from mpeg_play. MPEG files can be converted
directly to VQ or else the RAW format can be use as an intermediary. This could be for
further processing or inspection and additionally the RAW file format can be generated by
extemal sources which would like to be shown on InfoPad. A RAW-to-RAW conversion is

possible but would only be useful for resizing or resampling in L, Cr, Cb space.

Many different modes ofoperation are supported, allowing coding speed and accuracy to
be traded off. A fast coding technique can be used to code at frame rate while adaptive
codebook methods allow higher quality for ofi'-lineVQ file generation. Frames can also
be dropped to code a 30 Q)s movie at 15 §)s to reduce network and bandwidth require
ments at playback.

GENERIC OPTIONS

-help

Print help message describing options.

-raw_in

Read in a RAW video file (raw videotS'^'l instead MPEG

-nob

Skips over MPEG type B fi-ames in source ifreading MPEG

-nop

Skips over MPEG type P fimnes in source ifreading MPEG

-eachstat

Shows MPEG statistics if reading MPEG

-quiet

Suppresses diagnostic messages.

-max;_fi:ames <number>
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Convert only <number> frames. The rest are discarded.

-frames_per_sec <niimber>

This valueis placedin the VQ or RAW file as the desired firame rate. If this is not
specifiedthenthe value is takenfrom the source file. Ifthe source file alsodoes not
contain frame rateinformation then a default of 30frames persecond is used.

-skip_every <number>

Causes thespecified number of frames tobe skipped forevery frame that is
transcoded. Thus -skip_eveiy 9 causes only 1 out of 10 frames to be transcoded result
ing in a reduction in bandwidth requirements of 10. To halve theframe rate, use -
skip_every one. Theframe rate recorded inthefile is automatically corrected. Defaults
toO.

-src_geometry <w>x<h>+<x>+<y>

Describes the rectangle within the MPEG or RAW source movie from which the
imageshould be taken. Thiscanbe used to zoom into a particular partof the source
image. Defaults to the full size ofthe source. If the source contains luminance and
chrominance planesat different resolutions then the largest dimensions are used as a
reference and the others are scaled accordingly.

-dest_geometry <w>x<h>

Specifies thedimensions of the target VQscreen or RAW file. ForVQ, this is mea
sured in descompressed pixels - i.e. the number ofY pixels - and defaults to the Info-
Padvideo screen dimensions of 128x240. ForRAW outputs, this is with respect to the
largest plane (usually the luminanceplane) and defaultsto the source dimensions. The
relative sizes of theluminance andchrominance planes ina RAW output filecanbe set
using the -raw_ratios option below.

VQ OPTIONS

-dump_codebook

For VQ,specifies that the codebook should be placedat the beginning of the VQ file.
This is on by default.

-noLjdump_codebook

For Vq, specifies that the codebookshould not be placed in the VQ file.

-codebook_file <filename>

Code to an existing codebook file. A full codebook search method is used which is
slower (a few framesper secondon a Sparc10) than the fast codingmethod(20-25 ^s
on a SparclO, over 25-40 §)s on a spare 10) but obtains better results ifthe codebook is
good. Codebookscan be extracted from vq(5^ files usingvq2codebook(1V The vq files
(and hence codebooks) can be generated with this programusing codebookadaptation
(see -adapt_frames below).

-fast_coding
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Uses a fast codebook hand-constructed out ofdifferent shapes and intensity variations.
It conists ofsolid blocks, horizontal, vertical, and diagonal gradations. Since mpeg2vq
knows the exact hierarchical nature ofthe codebook, it is able to quickly determine
which entry is best matched. Most ofthe transcoding time is spent decodingthe
MPEG This option is on by default. If it is on, it implies -halfres_codingunless -
fullres_coding is specified.

-uniform_coding

Uses a codebook consistingofsolid entries- i.e. each ofthe 4x4 pixels has the same
value. This results in a very blocky VQ picture and is mostly only good for debugging
purposes. It is also very fast.

-halfres_coding

Causes image to be coded at half-resolution. Thus ifthe destination format is 128x240
(i.e. InfoPad) - a 64x120 image is computed and broken into 2x2 blocks. This results
in an increase in coding speed but should not be used except for with fast and uniform
coding as it will introduce errors unless the 4x4 codebook blocks are smooth. This is
on by default with fast and uniform coding but can be overridden with -fullres_coding.

-fiillres_jcoding

Opposite of-halfres_coding. Causes images to be coded at their full resolution. Should
be used with any full codebook search as implied with -codebook_file or -
adapt_frames.

-no_VQconv

Suppresses the VQ conversion step. Only the MPEG decoding is performed. Can be
used to tell how much time is going into the MPEG decoding and how much is going
into image resizing and VQ coding.

-adapt_frames number

Enables codebook adaptation. The codebook is determined by running a K-means type
adaptive algorithm to generate a representative set ofvectors for the codebook. The
first number offrames are used for adaptation. The adapted codebook is then saved in
the VQ file and also used for coding. The -adapt_^lobal_threshold option below can
be used to for the codebook to be recomputed in the middle of the movie.

-adapt_global_threshold <number>

Causes codebook (re)adaptation to occur ifthe coding error ever exceeds the specified
threshold. The codebook is re-adapted and placed in the vq file so the the player or
hardware decoder knows that is has changed. This could be used for scene-level code-
book adaptation. Currenly not supported well by hardware due to flashes on the screen
that happen during codebook updates, adaptjframes must also be specified.

-errorjtolerance <number>

This is used with fiill-codebook search methods (either via -adapt_frames or -
codebookjfile. It causes the search for the best codebook entry to stop when the error
drops below the specified limit. Since the codebook entry that was used in the previous
frame is used as the initial guess for the current frame, this allows quicker coding espe-
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cially for movies where some parts ofthe image are stationary. Setting this too high
can result in a reduction in codingquality, coding

-print_vqL_error

Causes the VQ coding error for each frame (for each ofY, I, and Q) to bedisplayed.

RAW OPTIONS

-raw_out

Specifies towrite raw video instead of VQ. Identical to -raw_ratios 2 2 1111. (see
below).

-raw_ratio <LJi> <L_v> <Cr_h> <Cr_v> <Cb_h> <Cb_v>

Specifies to write raw video instead of VQbutusing a particular ratio of L (lumi
nance), Cr (red chrominance),and Cb (blue chrominance) frame sizes. The exact value
ofthe numbers does notmatter, onlytheirratio. TheratiosofL_h : Cr_h: Cb_h gives
the ratioof thewidths of theL, Cr,and Cbframes in the raw output frame. Similarly,
the ratios of L_y: Cr_v: Cb_vgives the ratio ofthe heights ofthe L, Cr, and Cb
frames in therawoutput firame. Specifying a zero height or widthfora particular plane
causes it not to be present in the out. A standard 4:1:1 encoding (whichis default) is
specified via2 2 1 1 1 1.A 4:2:2 encoding would be 2 1 1 1 1 1.A grayscale image
(luminance only) can be produced using 1 1 0 0 0 0.

Ifa filename is not specified then the standard input is assumed.

OPERATION

The operationof the transcoder canbe brokendowninto five distinctpieces: MPEGor
RAW decoding, Image resizing, colorspace conversion. Vector Quantization, and Code-
bookAdaptation (optional). If RAW videois generated instead ofVQ, thelastthreepieces
are not used.

-> 1) MPEG or RAW decoding

Mpeg2vq starts by decoding the MPEG or RAW file into a virtual frame buffer. For
MPEQ tWspart was taken directly from mpeg_play. The fi:ume buffer is in luminance-
chrominanceformat with separatebuffers for L (luminance), Cr (red chrominance),
and Cb (blue chrominance). The L buffer is at twice the resolution ofthe Cr and Cb
buffers in both dimensions. (Just as the VQ's Y is at twice the resolution in both
dimensions ofthe I and Q buffers.) The image frame buffers are sized according to the
source MPEG's dimensions.

For RAW video file decoding (or really just reading), the L, Cr, and Cb buffers are
sized in accordance with the size ofthe image planes in the file. Ifimage planes are not
present in the file, they are simply not read.

-> 2) Image resizing

The next step is to resize the images into the size needed for the VQ coding or RAW
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file output For VQ, if -fullres_codingis in effect then the L buffer is resized to the -
dest_geometrysize, and the Cr and Cb buffersare resized to halfofthis size (although
they start out halfas large in each direction anyhowso the rescaling is by the same
amount.) If-halfi-e$_coding is in effect then all imagebuffers are reduced further by a
factor of two in each direction.

For RAW output, the images are resized to the size specified by dest__geometry and the
raw_ratios. The dest_geometry defaults to the source geometry and the raw_ratios
default to 4:1:1. For RAW output, the process is complete and the resized image buff
ers are written out.

-> 3) Colorspace Conversion (VQ only)

For VQ, next the Cr and Cb image buffers are converted into I and Q space using a lin
ear combination. Cr/Cb space differs slightly firom I/Q space.

-> 4) Vector Quantization (VQ only)

Finally for VQ, the resized, colorspace-converted Y, I, and Q fi-ame buffers are passed
to the vector quantization module which attepts to fit the 4x4 pixel blocks (or 2x2 for
half-res coding) to the current codebook. This can be with the fast, uniform, or full
search methods. This generates a set ofcodes which are written into the VQ file.

-> 5) Codebook Adaptation (VQ only - optional)

If selected via the -adapt_fi:ames option (and possibly -adapt_global_threshold as
well), the codebook is adapted to the set ofpixel vectors to derive a codebook well
suited for the particular images present. This is done by considering all 4x4 pixel clus
ters ofa given type (Y,I, or Q) over all firames to be adapted as a set ofregular 16 ele
ment vectors.

The codebook adaptation requires an initial estimate ofthe codebook. This is the code-
book that would be used if -adapt_fi'ames was not specified: the fast (deterministic)
codebook if -fast_coding, or an existing codebook if -codebook_file was specified.

The K-means clustering algorithm adapts the codebook as follows: The codebook is
used to code the vectors. Then each codebook entry is recomputed as the average ofall
image vectors for which it is the best match. Thus the codebook entries are modified to
better represent the vectors that it is representing. Then the vectors are receded and the
codebook recomputed until the total coding error stop decreasing.

A couple ofextra steps are used to ensure that the codebook represents the diversity in
the image. Firstly, the 256 codebook entries are compared to each other and if two are
too similar then one is "fireed" up for use by some other vector. The vectors which
matched to the fi'eed codebook entry are then assigned to the one that it was similar to.
Next, the unused codebook entries are filled with the input image vectors which had
the greatest coding error. This is done to ensure codebook diversity.

ENVIRONMENT

None.
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SEE ALSO

vq plav(1) send vq( H va2codebook(1^codebook2rasr1 showcodebook( 1̂ showvocode-
bookCHraw videor5Wq(5'^

BUGS

Does nothave aspectjpad and aspect_crop options which will either pad the image with
black on thesides or crop offexcess in order to make sure that theaspect ratio is correct.

If-adapt_frames is specified asmoreframes thanthere actually are, it willnottranscode at
all.

Much betterimage quality could be achieved if thepadcould receive codebook updates
in-line inbetween scenes and the -adapt_global_threshold could be used.

AUTHOR

Jeff Gilbert <gilberti@eecs.berkelev.edu>

Based on UCB mpeg_play application for MPEG decoding.
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A.5. netem (1)

NAME

netem - Flow-level network emulator

SYNOPSIS

netem [options] [proxy_4)ort[u]=server_spec...]

Server_spec is one of:

web Web proxy
<server_45ort> Fixed port on same host
<server_host>:<server_port> Fixed host on another host
Add u to proxy_port to use UDP instead ofTCP {not implementedyet)

DESCRIPTIGN

netem is a multi-connection flow-level network emulator that can be used to emulate

bandlimited links with fixed individual or total link capacity and/or transport latency.
Netem can also print connection rate information as well as display the data being trans
ferred on the emulated connections. The modeling is done at the connection level and not
the packet level with an emphasis on high throughput rather than packet-level modeling
accuracy. Thus the intracacies ofTCP/IP are not modeled but it will give a good idea of
how applications and algorithms will react to link limitations. Netem will forward arbi
trary network coimections as well as web proxy requests.

OPTIONS

-help

Show this message

Rate Limiting Options:

-rate_Jimit_bps n

Limit rate to n bps

-limitjtotal

Limit total rate through gateway (default)

-limit_invidivual

Limit on a per-connection basis

-bufFer_size_ms n

Amoimt ofdata to buffer ifrate limiting
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-minjbufifer_size n
-max_bufFer_size n

Minimum and maximum number ofbytes to buffer

-buffer_size n

Give exactbuffer size in bytes

-tcp_connect_time_ms n

Wait n ms after TCP connection after TCP connection

-udp_packet_overheadLms n

Addn msdelay to UDP packets delay to UDP packets {not implementedyet)

-latencyjms n

Delay all packets at least this much

PacketDropping Options (UDPonly - not implementedyet):

-packet_drop_rate O.XXXX

Drop this fraction ofpackets

-bit_drop_rate O.XXXX

Drop packets containing any errant bits according to this fraction ofbits

Other options:

-verbosity n

What to print. bit-OR these:

l=Show (dis)cormections
2=Show xfer sizes

4=Show xfer data

8=Show errors

16=Show traffic rates

(default is 25)

-max_connections n

Maximum number ofconnections to support at once

-findLfree_4)roxy_4)ort

Try successive proxy ports ifbusy (default)

-no_find_free_proxy_port

Don't find_free_proxy_port
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SEE ALSO

SurfServ(n Gilbert, Jeffrey M. and RobertW. Brodersen. "GloballyProgressive Interac
tive WebDelivery."Proceedings 1999 IEEE Infocom. New York. 21-25 Mar 1999.

BUGS

UDP forwarding / limiting not implemented yet

AUTHOR

Jeff Gilbert <gilberti@eecs.berkelev.edu>
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A.6. send^q (1)

NAME

send_vq - VQ Video Player and T/Q Audio, and Radio Tester for InfoPad

SYNOPSIS

send_vq [input_file] [options...]

DESCRIPTION

send__vq is utilitythat allows direct interfacing to the InfoPad peripherals either via the
InfoPadnetwork or directly through the GPIB interface. It has twoprimary purposes.
First, it isused to test the network, pad hardware, and emulator. Itis also us^ to play VQ
videos on the pad (as opposedto vq plavfll whichplays them on a workstation).

As a tester, send_vq can write videos to the VQ video screen, sound files to the audio
downlink port, test graphics patterns to the text / graphics, and arbitrarydata to the radio
transmitter. It canread and display or storedata from the audiouplink port,pen port, and
radio receiver. It allows for fixed rate control over the GPIB and can routemessagesvia
the ARM processor in a basestation board to a remote pad. It also has a bandwidA test
mode to determinethe maximumbandwidth the the GPIB hardware can support on the
downlink side.

As a VQ video player, send_vq parsesthe vq(5Iformat generated by mpeg2vqni allowing
both codebook andframe datato be sent. It cando ratecontrol, including frame dropping
if it sees it is gettingbehind. Additionally, synchronized audio canbe played coordinated
with the video. SendLvq can also be used to generate a C include file to be linked in with
the ARM code to specify a default VQ codebookon power-up.

GENERAL OPTIONS

-help

Print help message describing options.

-gpib__id<number>

Specifies that direct interface to the GPIB should be used. The <number> is the GPIB
talker/listener address. (Hardware is currently set for 4). Setting the environment vari
able GPIBID to a number makes the GPIB connection a default ifneither -gpib__id nor
-pad_id are specified. The command-line options always override the environment
variables. Both uplink and downlink tests are supported over the GPIB interface.

-padjld <number>

Specifies that test should be performed over the InfoPad network. The <number>
specified is the ID ofthe pad server to send data to. Setting the environment variable
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PADID to a number makes the network connection a default ifneither -gpib__id nor -
pad_id are specified. Thecommand-line options always override theenvironment
variables. Note that onlydownlink tests are available over the network connection.
Uplink tests must be p^ormed using adirect GPIB connection.

-show__gpib_data

Show GPIB data packets being sent. For debugging purposes.

-loop

Repeat the specified test. Only valid for downlinktests (including VQ video playing).
Inputmust not come fi*om standardin for video,audio, and radio downlink tests.

-quiet

Don't print quite so much diagnostic infomationto stderr. This is the default - override
with -no_quiet.

-no_quiet

Print lots o' stuff to stderr. Information depends on the test.

-gpib_rate_limit <kbps>

When sending over GPIB, set a cap on the rate ofdownlink data. The number is spec
ified in kilo-bits per second and should be a multipleof8. Note that for large packets,
this can become approximate and you should check the rate that it says that it is send
ing at, shown at the end ofthe test. This is independent firom video rate control. (Video
rate control is more accurate as well)

-gpibjbuffer_size <n>

Buffer size that the GPIB rate limiting uses for accounting purposes. It should larger
than the packets that will be transmitted but no larger than die buffering on the actual
pad.

-send_via_arm

Send GPIB packets to the ARM (acting as the TX chip) to send over the radio. Use to
send over GPIB to remote pad. Packets will still be tagged with correct destination (via
type field.) You almost definitely have to use -gpib_rate_limit (above) ifyou use -
send_via_arm.

-singlejbyte_packets

Use old single byte GPIB protocol. Used for testing a long time ago. Probably ofno
use to anyone now.

UPLINK TEST OPTIONS

These options are used for all (audio, pen, radio) uplink tests. Uplink tests may only be
performed directly over the GPIB.

-gpib_gcrl <hex_num>

Specifies the value, in hex, to be programmed into the GPIB Control Register 1 for

207



uplinktests.This controls several modes of operation ofthe GPIB interface. The
default is currently 88.

-gpib__gcr2 <hex_num>

Specifies thevalue, inhex, tobeprogrammed into theGPIB Control Register 2 for
uplink tests. This controls several modes ofoperationof the GPIB interface. The
default is currently 84.

-gpibjbase_addr <hex_num>

IP Busbaseaddress (in hex) for GPIB controller. Thisis where peripherals will be
instructed to send their data when it should go to the host. The default is 70.

VTOEO OPTIONS

-rate_control

Times when video fi'ames are send and waits if it is ready too soon for the next firame
ordrops fi*ames ifit is too late. The fi^e rate is specifi^ in the vq(5) file but can be
overridden by the -fi-ame_rate option.

-rate_limit

Will wait to play fi^es to makesure that it is not playingtoo fast but will not drop
any fi-ames if it is playing too slow.This option is the default but can be overridden by
the -rate_control and -no_rate_limit options.

-no_rate_limit

Disables firame rate control - i.e. plays the video at peak channelbandwidth.

-fi:ame_rate <§)s>

Override the fi-ame rate specified in the VQ file. Affects -rate_control and -ratejimit.

-no_codebook_updates

Causes codebook updates found in vq^S") stream (including initial codebook informa
tion) to be ignored, lypically used to play videos that have been coded with a code-
book that is known to the pad already (such as with the -fastjcoding option of
mpeg2yg£l}). In this way the codebook does not have to be sent and there are no
chances ofcodebook corruption.

-codebook_jfile <name>

Sends the specified codebook (even if -no_codebook_updates is specified) before
sending the VQ file. Note that unless the -no_codebook_updates is specified and the
VQ file contains a codebook (as most do) then the initial codebook will immediately
be overwritten by the ones in the VQ file. Codebook files can be generated via
vq2codebook(1\

-no_resend_codebooks_on_error

Usually, ifsending over the GPIB and an error is encountered, the fiill codebook is
resent as the GPIB error could have been firom a power-down or board reset. To pre
vent this fi*om happening, use this flag.
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-video__sound_file <file>

Specifies an audio file to play with video. The audio file is in Sun8-bit u-law, 8 kHz
.au format. The audio is send to the AF server specified by AUDIOFILE or DISPLAY.
This can be either an AF runningon a workstation, or the InfoPadAudio Server,which
is an AF server which sends its audio to the pad. The audio is synchronized to the
videoin that the au file is played at exactly8000samples per second so ifthe -
rate_jcontrol flag is specified, the video rate canbe controlled exactly. The -
videcLjdelayjsound option(below) can be usedto adjust the relativestartingpoints of
the audio and video for a perfect match.

-video_delay_sound <ms>

Thisoptionsis used to specify a delay between when the videoand audio are sent.
This can be used to compensate for network, hardware, and recording latencies. The
number is specified as the number ofmilliseconds to delay the audio relative to the
video. Negative values cause the audio to be sent before the video.

-all__y__code<n>

The -all_y_code option causes all Y codebookdata to be changedto the specified
value before being sent off. Thus a normal codebookupdate would cause the entire Y
codebook to be changedto the value specified. <n>is in actualhardwareformat - i.e.
an integer between 0 and 63 with 0 representingblack and 63 white. Setting the entire
Y codebook to one value causes it to ignore the Y frame data, removing the Y frame
bufier from the test path.

-allJLcode <n>

The -allJLcode option causesall I codebookdata to be changed to the specified value
before being sent off. Thus a normal codebook update would cause the entire I code-
book to be changed to the value specified. <n> is in actual hardware format - i.e. a 1
bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towardsmore yellow) and 32 through 63 representing -0
through -31 (tending towards more cyan). Setting the entire I codebook to one value
causes it to ignore the I frame data, removing the I frame buffer from the test path. For
example, to see the video in black and white (Y only), specify -allJLcode 0 -
all_q_code 0.

-all_q_code <n>

The -all_q_code option causesall Q codebook data to be changed to the specified
value before being sent off. Thus a normal codebook update would cause the entire Q
codebook to be changed to the value specified. <n> is in actual hardware format - i.e. a
1bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towards more magenta) and 32 through 63 representing -0
through -31 (tending towards more lime-green). Setting the entire Q codebook to one
value causes it to ignore the Q frame data, removing the Q frame buffer from the test
path.

-all_yjdata<n>

Sets all Y frame data sent to one value. <n> is the value (between 0 and 255) to set the
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Y frame data to. All accesses to the Ycodebook should then betothe specified loca
tion and the screen (at least as far as the Yplane isconcerned) should be the repeating
pattem ofthe selected entry.

-allJLdata <n>

Sets all I frame data sent toone value. <n> is the value (between 0 and 255) to setthe
I fi^e data to. All accesses to the 1codebook should then be to the specifi^ location
and the screen (atleast as far asthe 1plane is concemed) should bethe repeating pat
tem ofthe selected entry.

-all_qjdata <n>

SetsallQframe datasenttoonevalue. <n>is thevalue (between 0 and 255) to set the
Q firame data to. All accesses to theQ codebook should thenbe to thespecified loca
tion andthescreen(at least as faras theQ plane is concemed) should be therepeating
pattem ofthe selected entry.

-gen_codebook_prom_include

Ifthis flag is specified then a C include file containingthe codebook data in a format
suitable for the pad ARM codeis written to the standard out. It contains the packets to
be send to the Video chip to initialize the codebook.

-videoJbase_addr <hex_num>

For GPIBoperation, send_vqhas to know how to addressthe video packetsgoing over
the IP Bus. This corresponds to the address of the video chip. (The lower four bits are
always 0.) The value is specified in hex and its default is 60. For InfoPad network
operation, this is not used.

AUDIO TEST OPTIONS

-test_audio

Specifiesthat a downlinkaudio test is to be performed. The input file (or the standard
input ifno input file is specified) is interpreted as being a 8kHz, 8-bit u-law audio file.
It is sent out at a rate-controlled 8kHz.

-record_audio <dest_file>

Does audio uplink test. The audio chip is initialized to record and send data over the
GPIB to the host. The host then records the data (8 bit, 8kHz) in the specified
<dest_file>. Ifthe file name starts with a "+" then the output is sent both to the file
(after removing the '*+") as well as the /dev/audio ofthe host. This uplink test, as well
as all uplink tests, can only be performed directly over the GPIB.

-record_audioLj)en <dest_file>

Same as above by tries to interpret and display pen packets if they are interleaved.
Probably will not work as it was a hack.

-test_audio_in

Test audio uplink printing status messages to the screen. Does not record data.

210



-recordLaudioLjsendLvideo <dest_file>

Tests simultaneous audiouplinkwithvideodownlink. The <dest_file> is againthe file
to rec5ord the data in. The video is taken from the supplied file name or standard in oth
erwise. May or may not work - it was a hack.

-audio_base_addr <hex_num>

For GPIBoperation, sendLvq has to knowhow to address the audio chip over the IP
Bus for both data and control - i.e. the address ofthe audio chip. (The lower four bits
are always 0.) The value is specified in hex and its default is 40. For InfoPad network
operation, this is not used.

RADIO TEST OPTIONS

-test_xmit

This flag specifies test transmitter mode. This can test the TX chip (or ARM) over the
radio or wired link. The input file (or standard input) describes the packets to be sent.
The packets are directed to the GPIB on the other end ofthe link so that the -testjrecv
and -test_recv_timestamp options can be used at the other end to recover the data.
(This test cannot be run using the InfoPad network infrastructure.) The -loop option
(above) can be used to repeatedly send the packets. The -gpib_rate_limit option
(above) should be used to limit the transmit rate as no flow control is employed. This
test can only be performed using the direct GPIB method. The file is in ASCII with
each packet represented by a single line and numbers within the line to are 2 digit hex
(lower and upper case letter are ok) numbers. The following sample specifies four
packets to be sent for a total of 15 bytes (plus IPN and radio headers):

01 02 03 04 05 06

07 08 09 OA

OB OC

12 34 56

-test_xmit_timestamp

This test is as above except that additionally the transmit time ofeach packet is
recorded and printing, along with the transmitted data, to standard out. The time is
given both relative to the first packet as well as to the previous packet sent. The output
should be piped to a file or else the significant delays may occur while printing it to the
screen in real-time. The transmit timestamp is useful in conjuction with the receive
timestamp (see -test_recv_timestamp) to determine fifoing delays and mis-ordering. A
sample output from -test_xmit_timestamp looks like this:

00000000 ms ( +0 ms) ( 6 bytes): 01 02 03 04 05 06
00000001 ms ( +1 ms) ( 4 bytes): 07 08 09 OA

00000003 ms ( +2 ms) ( 2 bytes): OB OC
00000004 ms { +1 ms) ( 3 bytes): 12 34 56

-test_recv

This is the receiver end of the radio / wired link test. This can be run on the receiver
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side any time before the transmit test (above) is run on the transmit side (in order not
to lose any packets.) This test must berunusing a direct gpib connection - i.e. notbe
using the InfoPad network. It will output to standardout in the same format that the -
test_janit expects: ASCII with onepacket per line and each byterepresented as a 2
characterhex number. In this way, the file transmittedand the file received can be
compared using thediffcommand. The output should bepiped to a file or else thesig
nificant delays may occur while printing it to the screen in real-time.

-testjrecvjtimestamp

Sameas abovebut the output file includes timestamps andmessage sizes as with the -
test_xmit_timestamp option. Thiscanbe usedtoquickly scanwhichpackets are of
incorrect sizeand alsowhatthe relative timings are. To convert a filewith timestamps
(generatedby this command) to one without - suchas generatedby -test_recvand used
by -test_xmit and -test_xmit_timestamp, the following sed command will work:

sed "s/.*: //g" INPUT_FILE_NAME

BANDWIDTH, TEXT / GRAPHICS, and PEN TEST
ING OPTIONS

-testjbandwidth

Runs a test of the GPIB downlink bandwidth. (This test caimot be run over InfoPad
Network.) Sends packets (all bytes 0) ofvarying size over GPIB link and measures
time it takes. It tests for packets oflength4 bytes to 1megabyte. It automatically
determines how many packets to sendto get accurate results. The progress is reported
as it goes along and then a summary, like the following, is printed (this was fi'om a
slow machine):

-testjtg

Packet Size Packets/Sec KBytes/Sec KBits/Sec

4 679.947 2.720 21.758

8 679.496 5.436 43.488

16 386.124 6.178 49.424

32 376.748 12.056 96.447

64 591.566 37.860 302.882

128 521.651 66.771 534.170

256 221.645 56.741 453.929

512 306.220 156.785 1254.278

1024 177.285 181.540 1452.321

2048 115.004 235.529 1884.234

4096 59.150 242.277 1938.218

8192 15.795 129.390 1035.119

16384 16.649 272.783 2182.260

32768 5.525 181.039 1448.309

65536 3.086 202.272 1618.173

131072 1.528 200.263 1602.102

262144 0.888 232.913 1863.307

524288 0.431 226.084 1808.669

1048576 0.242 253.708 2029.666
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Runstext/ graphics downlink test Thetestexercises all fourgraphics primatives of
the T/Gchip. Firstanimage ofa prototype padis displayed using theBlock(B)mode.
Then the horizontal (H) mode is used to make a little lined pattern in the center. Next,
another small section is drawn using the vertical (V) mode. Next a reverse-video
image ofthe prototype is shownusingthe Protected Block(PB)mode. Then a small
area isscroll^ around using the block mode again. Finally, the whole image is
scrolled around using the block mode. The downlink bandwidth used for this last test
is printed out. Use -pausejtime option (below) to have it pause between tests. Use -
no_quiet (above) to print info about tests being performed. The T/G tests can be run
over InfoPad Network or directly through GPIB.

-pausejtime <secs>

This specifies the number ofseconds to pausebetween graphics tests. Defaults to 1.

-tgjbase_addr <hex_num>

For GPIB operation, send_vq has to knowhow to address the t/g packets going over
the IP Bus. This correspondsto the addressof the t/g chip. (The lower four bits are
always 0.) The value is specified in hex and its default is 50. For InfoPad network
operation, this is not used.

-test_pen

Used to test the pen uplink. The pen chip is configured and pen packets are printed to
the screen. This test, like all other uplink test, must be performed over the GPIB
directly.

-penjbasejaddr <hex_num>

For pen uplink tests, which must be over the GPIB, send_vq has to know how to
address the pen chip to configure it. The number here is the base address the lower
four bits are always 0. The value is specified in hex and its default is 30. For InfoPad
network operation, this is not used.

Ifan input file is not specified but the particular test (or VQ send) requires it then the stan
dard input is assumed.

FILES

/tools/ui/movies/adapt_vq and /tools/ui/movies/fast_vq

Contains sample VQ files that were converted using mpeg2vqn\ The MPEG source
files are in /tools/ui/movies/mpeg.

ENVIRONMENT

The GPIBID and PADID environment variables are used ifeither -gpibjid nor -padjid are
specified. Ifthey are not and GPIBID is set to a number then testing is performed over the
GPIB to a board whose talker/listener address is the number. IfPADID is set to a number

then the tests are run through the InfoPad network through the specified pad server.
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Ifsyncronized video and audio are requested via the -video__sound_file flag, the audio
goes through AudioFile (AF). The AF libraries look use AUDIOFILE to determine where
tosend theaudio. It should be setthesame way you would setyour DISPLAY variable. If
AUDIOFILE is not set then DISPLAY is used.

SEE ALSO

emu(nmpeg2va(nvQ nlavfn

BUGS

None, ofcourse.

AUTHOR

JeffGilbert <gilbertj@eecs.berkeley.edu>
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A.7. sho-w[vq]codebook[y] (1)

NAME

showcodebook, showcodebooky, showvqcodebook, showvq-
codebooky - VQ Video Codebook Display Utilities

SYNOPSIS

••••••••

\mmmmmr-

showcodebook codebook_filename

showcodebooky codebook_filename

showvqcodebook vq_video_filenaine

showvqcodebooky vq_video_filename

DESCRIPTION

These tiny scripts just pipe the output of codebook2ras( 1) into the xloadimage viewer for
X, optionally zooming in on the Y part of the codebook and optionally stripping the code-
book out of a vq(51 video file. (^vq2codebook(n can also do this).

OPTIONS

Showcodebook and showcodebooky must be supplied the name of a codebook file (one
that could be fed into mpeg2yq(JQ). showvqcodebook and showvqcodebooky must be sup
plied the name of a VQ video file (one that could be played with vq plavCli or

OPERATION

Since codebook2ras generates a SUN rasterfile which xloadimage can display, it is basi
cally a no-brainer. It does specify -gamma 2.25 to xloadimage to gamma correct and make
the image more readable. Showvqcodebook and showvqcodebooky first pass the vq file
through vq2codebook to extract the codebook. Showcodebooky and showvqcodebooky
pass options to xloadimage to make it only show the Y part of the codebook.

SEE ALSO

codebook2ras('n mDeu2va('li send vafDva nlavfl") vofS)

AUTHOR

Jeff Gilbert <2ilberti(S),eecs.berkelev.edu>



A.8. SurfServ(l)

NAME

SurfServ - Server forSpeedSurfer coimection proxy as well asserver forGlobally Pro
gressive Interative WebDelivery transformational proxy.

SYNOPSIS

SurfServ [options]

DESCRIPTION

SurfServ is both a server for the SpeedSurferproxy applicationas well as for the Globally
Progressive Interative Web Delivery transformational proxy. Most of the options are
related to the Globally Progressive InterativeWebDelivery transformational proxy since
the client-side SpeedSurfer application provides controls most of the operation ofthe
server. Coimection ofeither type are accepted on the same port and the type ofcormection
is determined by initial handshaking sequence.

As a server for the SpeedSurfer proxy, SurfServ accepts connections from one or more
SpeedSurfer clients and will make coimectionson behalfof them. The SpeedSurfer /
SurfServ pair can be used to force all coimections through a single TCP/IP host. The pair
can also perform detailed link traffic analysis for web data and display aggregate flow
information for all types ofdata.

As a transformational proxy for the Globally Progressive Interative WebDelivery, Surf
Serv appears like a standard web proxy, accepting HTTP/1.0 or HTTP/1.1 coimections
from web browsers. For HTML coimections,it transforms image tags into Java applet
tags. It then also supports connections back from the Java applets and will manage a sin
gle explicitly multiplexed link to deliver the images to the applets as defined by the Glo
bally Progressive Interative Web Delivery algorithm.

OPTIONS

-help

Show this message

-portn

Port to listen on

-webProxy host:port

Forward all proxy requests here

-no_image_applets

Don't use applets for images
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-no_include_image_size

Don't add size to unsize images

-no_compress_html

Don't compress HTML (HTTP/1.1)

-no_html_4)riority

Don't give priority to HTML

-force_image_applets

Use applets whenever possible

-max_htnil_for_non_html n

Max # bytes ofhtml that can be queued to queue non-html

-max_htmL_in_Jflight n

Max # bytes ofhtml buffered

-max_image_in_flight n

Max # bytes ofimages buffered

-max_speedimg_in_flight n

Max # bytes ofcustom buffered. Further limited via down link window

-browser_j)ort_offset

Amount to add to proxy port

-applet_jdir_url

Where to get speedlmage applet. Default is
http://badlands.EECS.Berkelev.EDU:809Q/~gilberti/ttt

-scans scan_file

Progressive scan file to use otherwise use default

-verbosity n

What to print. bit-OR these:

l=Show proxy connections

2=Show errors

4=Show connects/disconnects

64=Some debugging

128=More debugging

(default is 71)

-max_sessions n

Maximum number of connections & sessions to support at once

-find_free_4)roxy_4)ort
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Try successive proxyports ifbusy (default)

-send tuning packets

Send timing packets that SpeedSurfer will log

-dont_send_tiniing4)ackets

Don'tsendtiming packets that SpeedSurfer will log

SEE ALSO

netemtn Gilbert, Jeffrey M. andRobert W. Brodersen. "Globally Progressive Interactive
Web Delivery." Proceedings 1999 IEEE Infocom. New York. 21-25 Mar 1999.

BUGS

None that Fd care to discuss

AUTHOR

Jeff Gilbert <tdlberti@.eecs.berkelev.edu>
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A.p. vq^lay (I)

NAME

vq_4)lay - VQ and RAW Video Player
for X Endows

SYNOPSIS

vq_play [vq_or_raw_file] [options...]

-n.:'

DESCRIPTION

vq_play is used to display VQ video (see vqC5)) or RAW video (see raw video(5f) format
files under X •\^^dows on a standard workstation. It is based on mpeg_j)lay and can also
handle MPEG files if passed a command-line switch. All of the display modes of
mpeg_45lay are supported (i.e. dithering, shared-memory etc) for playback of VQ, RAW,
and MPEG files. Gamma correction and zooming are additionally supported for all three
types as well. For VQ and RAW file playback, it additionally supports frame rate control.

NOTE: The parts of this man page which describe mpeg_play features are taken from the
mpeg_play man page. See authors section for list of those responsible for mpeg_play.

GENERIC OPTIONS

-help

Print help message describing options.

-dither dither_option

Selects from a variety ofdither options. The possible values are:

ordered - ordered dither.

ordered2 - a faster ordered dither. This is the default.

mbordered - ordered dithering at the macroblock level. Although there is a noticeable
decrease in dither quality, this is the fastest dither available.

fs4 - Floyd-Steinberg dithering with 4 error values propogated.

fs2 - Floyd-Steinberg dithering with 2 error values propogated.

fs2fast - Fast Floyd-Steinberg dithering with 2 error values propogated.

hybrid - Hybrid dithering, a combination ofordered dithering for the luminance chan
nel and Floyd Steinberg 2 error dithering for the chrominance channels. Errors are
NOT propogated properly and are dropped all togethor every two pixels in either
direction.

hybrid2 - Hybrid dithering as above, but with error propogation among pixels. 2x2 - A



dithering technique using a2x2 pixel area for each pixel. The image displayed is 4
times largerthan the originalimageencoded. Random error terms are addedto each
pixel to breakup contoursandgradients.

gray - Grayscale dithering. The image is dithered into 128 grayscales. Chrominance
information is thrown away.

color- Full color display (only available on24bitcolor displays).

none - no dithering is done, noimage isdisplayed. Used to time decoding process.
mono - Floyd-Steinberg dithering formonochrome displays.

threshold - Floyd-simple dithering formonochrome displays.

-l_range num_colors

sets thenumber ofcolorsassigned to the luminance component whendithering the
image. The product ofl_range, cr_rangeand cb_rangeshould be less than the number
ofcolors on the display.

-crjrange num__colors

sets thenumber ofcolorsassigned to thered component of thechrominace rangewhen
dither ing the image. The productofl_range, cr_range and cb_range shouldbe less
than the number ofcolors on the display.

-cb_range num_colors

sets the number ofcolors assigned to the blue component ofthe chrominace range
when dither ing the image. The product ofLrange, cr_range and cb_rangeshouldbe
less than the number ofcolors on the display.

-loop

makes the player loop back to the beginning after reaching the end.

-noLjdisplay

dithers, but doesnot display, usually used for testing andtimingpurposes.

-quiet

Suppresses diagnostic messages

-shmem_ofif

Don't use X shared memory for imagebuffer. Usingsharedmemory is fasterbut can
sometimes cause problems.

-gamma correction_val

Specify the amount to gamma correct the images. Gamma correction warps (bright
ens) the image to compensate for the non-linear effects ofmonitors. Sun monitors
require about a 2.25 gamma correction while other displays, such as LCD or Live-
Board may require more or less. If this option is not specified then the
VQ_PLAYjGAMMA environment is checked for and used. If it does not exist then a
default gamma correction of2.25 is used. Note that this gamma correction is applied
to mpeg videos played with the -mpeg option so aliasing mpeg_play to 'vq_play -
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mpeg'canbe used to ganuna ccirectwhenyoumpeg_play. A gamma correction value
of 1.0 implies no correction.

-zoom percentage

Display the the image percentage/100.0 times wider and taller than it actually is. Per
centages below 100cause the image to appearsmaller on the screen while percentages
above 100 cause the image to appear larger. The default is 100which causes the image
to appear exactly the same size. NOTE: resizing is not available for MPEG images. To
zoom an MPEG image, pass it through mpeg2vqtn with the -raw_out flag and pipe to
vq^lay with the -raw flag. Then zooming and rate control will be available.

-xzoom percentage

Set only the width zoom factor.

-yzoom percentage

Set only the height zoom factor.

-ratejimit

Limit playback speed to the frame rate specified in the vqtS'̂ file or by the -frame_rate
option. The playback speed may be slower as frames are not dropped with this mode.
Does not work with MPEG playback. Convert to raw first via mpeg2vq(n -raw_out
and pipe to vq_play with the raw flag.

-rate_control

Constrain the playback speed to the exact frame rate specified in the VQ file or by the
-framejrate option. If the playback is going too slow then frames are dropped to keep
on schedule. Does not work with MPEG playback. Will usually not work unless the
source is a file and not a pipe.

-frame_rate n

Override the VQ file's specified frame rate. Only meaningful with -rate_limit or -
rate_jcontrol. Does not work with MPEG playback.

VQ OPTIONS

-vq

Specifies that file is a VQ file. (I.e. negates -mpeg and -raw). Since this is the default,
this option will probably not be needed.

-VQCodebook filename

Initial VQ codebook to use for lookup. Mostly for use with VQ files which do not have
codebook information (i.e. generated with mpeg2vqflVs -no_dump_codebook option.
VQ files with codebooks at the beginning will override this option. Not valid if-mpeg
is specified.
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RAW OPTIONS

-raw

Specifies that the input file follows the raw videotS^ file format

MPEG OPTIONS

-mpeg

Specifies that fileis an MPEG file. Allofthe MPEG decoding capabilities of
mpegj)lay are built in to vqjplay as well as gamma correction.

-eachstat

Shows MPEG statistics. Requires -mpeg.

-nob

Skips over MPEG type B firames in source. Requires -mpeg.

-nop

Skips over MPEG t3q)e P fi-ames in source. Requires -mpeg.

Ifan input file is not specified then the standard input is assumed.

NOTES

The displayis automatically stretched vertically to account for theunusual aspectratio of
the InfoPad display (128x240.)

FILES

/tools/ui/movies/fast_vq

Contains sample VQ files that were converted using the fast coding method of
mpeg2vq(n. These all use the same codebook but can be generated in realtime.

/tools/ui/movies/adapt_vq

Contains sample VQ files that were adaptively coded using mpeg2vq. These have to
be generated off-line but ofcourse can be played in real-time.

/tools/ui/movies/mpeg

The mpeg files fi:om which the VQ files were converted.

ENVIRONMENT

If-gamma is not specified then the environment variable VQ_PLAY_GAMMA is used as
the gamma correct value. If it is not does not exist then a default value of2.25 is used.
This is pretty good for Sun monitors.
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SEE ALSO

mpeg2vq(n send vqfO vq2codebookn^ codebook2ras(n showcodebookn) showvq-
codebookrn vqfS'̂

BUGS

None.

It might be nice to be able to show the image larger (enlarge before dither) but this is not
high priority.

AUTHORS

Addition ofVQ and RAW support as well as gamma correction and zooming to
mpeg_play (yielding vq^lay) by JeffGilbert <gilbertj@eecs.berkeley.edu>.

—> mpeg_play written by:

Ketan Patel - University ofCalifornia, Berkeley, kpatel@cs.berkeley.edu

Brian Smith - University ofCalifornia, Berkeley, bsmith@cs.berkeley.edu

Henry Chi-To Ma - University ofCalifornia, Berkeley, cma@cs.berkeley.edu

Kim Man Liu - University ofCalifornia, Berkeley, kliu@cs.berkeley.edu

Steve Smoot - University ofCalifornia, Berkeley, smoot@cs.berkeley.edu

Eugene Hung - University ofCalifornia, Berkeley, eyhung@cs.berkeley.edu
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A.IO. vq2codebook (1)

NAME

vq2codebook - VQ Video file Codebook Extractor

SYNOPSIS

vq2codebook [vq_file] [options...]

DESCRIPTION

This tiny script just extracts the codebook fi-om the specified vqCS^ file and writes it to the
standard out. This can then be fed back into the mpeg2vq(l) program to transcode new
videos to an existing video's codebook. Alternatively it can be fed into codebQok2ras(1̂ to
generate a SUN rasterfiles for use in documentation. (Use showvacodebookf1) to just
view the codebook being used in a VQ file.)

OPTIONS

If a vq file name is not specified, standard in is assumed.

OPERATION

The script assumes that the codebook follows directly after the VQ header (as it will if it is
generated with mpeg2vq) so it simply extracts the 12288 bytes following the 44 byte
header.

SEE ALSO

codebook2ras('n mt)ee2vQ(l) send vqCT) showcodebookf 1) showvacodebookn

AUTHOR

Jeff Gilbert <£nlberti(S)eecs.berkelev.edu>



A.11. XlnfoPad(l)

NAME

XInfoPad - Modified X server used as InfoPad Text / Graphics server

DESCRIPTION

XInfoPad is the modified X server used as InfoPad Text / Graphics server. It connects to
applications as a standard X server but sends display to the specified PadServer using the
virtual framebuffer approach for adaptive bandwidth control. Packets are formated
according to InfoPad specifications and communicated using InfoNet networking rou
tines.

SYNOPSIS

XInfoPad [:<display>] [options]

NON X-STANDARD OPTIONS:

(The standard options to X servers are not presented here - see X (1) man page)

-padLid N

InfoPad emulation, on Pad N

-ipn_rate_limit kbps

Rate-limit the downlink traffic. 0 means unlimited. Default is 200.

-ipnjunbuflferedLwrite

Use IPNWrite instead of IPNWriteBuffered

-ipn_interpacket_delay us

Wait this many us after an IPN send

-max_4)acket_size n

Maximum number ofbytes in IPN packet. Default is 512.

-refresh_rate kbps

Maximum background refresh rate. Default 10kbps.

-invert_video

Invert video. Default no.

-send_everything

Constantly send whole framebuffer - not just updates

-allow mark filename XXXX.C
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Only allowmark requests from these mfb/cfb files

-deny_mark_filename XXXX.C

Don't allowmark requests from these mfb/cfb files

-dont_grow_marks

Don't grow marks to cover whole 32x1 orregion before merging. Useful debugging
-show_mark_requests

Show mfb/cfb mark requests

-show_mark_flushes

Show mfb/cfb mark flushes

-show_merged_marks

Show mfb/cfb merged marks

-show_offscreens

Show also mfb/cfb mark/flushed offscreen

-show_sentJblocks

Show blocks sent by InfoSlave

-show_only_filename XXXX.C

Show only requests from these mfb/cfb files

-show_skipJ51ename XXXX.C

Don't show requests from these mfb/cfb files

SEE ALSO

codebook2ras(11 mpeglvof1^send vqH"> showcodebookf1') showvacodehnnW11
yg plavnWors^

AUTHOR

The Split X topology was originally developedby RichardHan, Brian Richards, and
TrevorB. TheXInfoPadserverusing the virtualframebuffer architecture wasdeveloped
by Jeff Gilbert <gilberti@.eecs.berkelev.edu> since -1995.
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A.12. raw^yideo (5)

NAME ;

V raw__video - InfoPad file format for
RAW (non-VQ, non-

* MPEG) Video files P""

SYNOPSIS

#include <raw_vid_file_fiTit.h>

OVERVIEW

The RAW Video file format is used primarily as a means ofusing non-MPEG video
sources in the InfoPad environment. The RAW file format allows images specified in raw
luminance and chrominance pixels to be used by the transcoder (mpeg2vq(n') and video
player (vq plavCni. (Luminance pixels are also know as L or Y while the chrominance is
know as I and Q, Cr and Cb, or U and V. MPEG's definition of Cr Cb is used.) The size of
the three image planes is arbitrary. I.e. MPEGWQ type 4:1:1 ratios where the Cr (I) and
Cb (Q) are sampled only a quarter as densly can be specified as well as 4:2:2 or any other
combination. Additionally, grayscale movies can be specified by setting the Cr and Cb
fi'ame dimensions to 0. A fiume rate can also be specified to allow vq_4)lay to rate control
and mpeg2vq to put this into the vql51 file.

The RAW \fideo file has two parts: a header containing fi'ame size and rate information (as
well as additional optional header information) followed by the fiame data. All fiames
contain full updates of any of the planes (L, Cr, Cb) that are non-zero sized. Thus the file
looks like:

HEADER

EXTRA HEADER DATA

L DATA FRAME 0

Cr DATA FRAME 0

Cb DATA FRAME 0

L DATA FRAME 1

Cr DATA FRAME 1

Cb DATA FRAME 1

or in the case ofgrayscale:

HEADER

EXTRA HEADER DATA

L DATA FRAME 0



L DATA FRAME 1

L DATA FRAME 2

L DATA FRAME 3

HEADER

The header is defined by the following structure:

/* All niimbers should be in net order */

typedef struct _Raw_video_file_header {
u_long magic_nuinber ;
u_short maj or_versi on;
u_short minor_version;
u_long width_L;

u_long height_L;
u_long width_Cr;
u_long height_Cr;

u_long width_Cb;

u_long height_Cb;
u_long iinage_type;
u_long frames_per_sec;
u_long extra_data_len;

} Raw_video_file_header;

The magic_numberfield always contains thefollowing constant:

#define RAW_VIDEO_MAGIC_NUM 0x52415756 /* 'RAWV' */

The major_yersion and minor_version fields contain major and minor version that the file
conforms to. Currently 1 and 0 respectively.

Next the L, Cr, and Cb dimensions are specified via widthJL, height_L,width_Cr,
heightjCr, widthjCb, and height__Cb, fields. These are specified in pixels and can be arbi
trarily sized with respect to each other.Additionally settingany ofAe widths and heights
to 0 denotes that that plane is not present in the data. Any ofthe three planes may be omit
ted, although most commonly either all three will be present for fiill color, or else just the
luminance (L) plane will be present and the chrominance (Cr and Cb) planes will be
absent.

imagejtype currently must be 0 but may at some time be used to support other image for
mats or colorspaces.

fi*ames_per_sec is the number of firames per second that the video was recorded at. It is a
32 bit integer but is stored * 65536 so it can be as high as 65536 fi-ames per second and has
the accuracy of l/65536th ofa frame per second. The last field in the header is
extra_data_len which is used to specify the size ofadditional header information which
followes the header. This could be used to add a firame offset table or other information to
the VQ file.

After the header is the optional header data. This data is ignored by vq_play and send_vq.
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FRAME DATA

The framedata consiststhe pixels from the L, Cr,and Cb frames in standardraster order.
The header dimensions determine the number ofbytes expected. All data are single
unsignedbytes. The L data ranges from 0 being darkest to 255 being white while the Cr
and Cb data are biased around 128. If Cr or Cb data is not present (i.e. Cr_width=0 or
Cb_width=0), it is assumed to be all 128's while ifL data is not present it is assumed to
be all O's.

SEE ALSO

vq plav(t) mpeg2vq(11vq(51

AUTHOR

Jeff Gilbert <gilberti@eecs.berkelev.edu>
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A.13, vq(5)

NAME

vq - InfoPad file format for VQ \^deo
files

SYNOPSIS

#include <vq_file_fint.h> snaHH

OVERVIEW

The VQ file format is used by the InfoPad VQ Video programs as a means of specifying
video streams. The file format is rich enough to be used for other types ofVQ files or to
add extensions to the existing video. The video transcoder tmpeg2vqn>) and VQ video
player tvq plavO ri both can operate on VQ files of any frame size. The video send utility
(send_vq(i}), however, requires a fixed size due to hardware constraints.

First the general format will be described, followed by how it should be filled in for Info
Pad hardware compatible files.

The vq file has three parts: a header containing fi-ame size and rate information (as well as
additional optional header information) followed by codebook update sections interleaved
between video data sections. The codebook update sections can specify that no entries are
to be updated. Thus the file looks like:

HEADER

EXTRA HEADER DATA

CODEBOOK UPDATE SECTION

VIDEO FRAME DATA

CODEBOOK UPDATE SECTION

VIDEO FRAME DATA

CODEBOOK UPDATE SECTION

VIDEO FRAME DATA

HEADER

The header is defined by the following structure:

/* All numbers should be in net order */

typedef struct VP file header {

u_long magic_nuinber ;
u_short major_version;
u_short minor_vers ion;
u_long width;

u_long height;



u_long frame_size;
u_long codebook_entries;
u_long codebook_entry_size;
u_long fraines_per_sec;

u_long extra_data_len;
} VP file header;

The magic_numberfield always contains thefollowing constant:

#define VQ_MAGIC_NUM 0x49505651 /* 'IPVQ' */

The major_version and ininor_version fields contain major and minor version that the file
conforms to. Currently 1 and 0 respectively. The width and height fields are measured in I
and Q entries which are one eighth the number ofuncompressed pixels. So for the InfoPad
hardware resolution of 128x240 this would be width= 128/8=16 and height=240/8=30.
firamesize is the size ofa fi'ame in bytes which for InfoPad VQ is width * height * 6.
(Since Y is at double the resolution in both directions, there are 4 Y bytes per 11 and 1 Q).
codebook_entries is the number ofentries in all codebooks. For InfoPad, this is
256*3=768. codebook_entry_size is the size in bytes ofeach entry. For InfoPad, this is 16
bytes. (One byte for each pixel in the 8x8 block.) fi^es_^er_sec is the number of firames
per second that the video was recorded at. It is a 32 bit integer but is stored * 65536 so it
can be as high as 65536 firames per second and has the accuracy of l/65536th ofa fi-ame
per second. The last field in the header is extra_data_len which is used to specify the size
ofadditional header information which followes the header. This could be used to add a

fi-ame offset table or other information to the VQ file.

After the header is the optional header data. This data is ignored by vq^lay and send_vq.

CODEBOOK UPDATES

The header and optional header data are followed by pairs of codebook update and fi'ame
data sections. The codebook update sections may contain as litde as a single integer speci
fying that no codebook updates happen before the next fi'ame. Altematively any number
ofsection in the codebook may be updated. The format of the codebook update sections is
as follows:

ENTRIES_TO_UPDATE

If ENTRIES_TO_UPDATE != 0

FIRST_ENTRY_NUM

CODEBOOK DATA

ENTRIES_TO_UPDATE

If ENTRIES_T0_UPDATE != 0

FIRST_ENTRY_NUM

CODEBOOK DATA

ENTRIES_TO_UPDATE = 0

ENTRIES_TOlUPDATE and FIRST_ENTRY_NUM are both 32-bit integers (in net byte
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order). ENTRIES_TOlUPDATE indicates howmany entries in the codebook are to be
updated. It must notbenegative orexceed thecodebook_entries (768 for InfoPad) value
specified in theVQ file header. A 0 value indicates thatthe codebook update section is
done and the fiame data will follow.

Note that anyprogram thatreads VQ files (such as vq plavHl and send vqCn'l should
check to see ifENTRIES__TO_UPDATE is the magic number #defined as
VQ_MAGIC_NUM (0x49505651 = 'IPVQ') expected for the magic_numberfield in the
header. Ifthis is the case, it should assumethat two (or more) VQ files have been concati-
nated together. It should parse the new header,possibly making sure that it is consistent
with the oldoneor making manynecessary modifications (likeresizing theplaywindow),
and procede. In this way, larger VQ files can be createdby simpleconcatinationofa num
ber of smaller clips.

FIRST_ENTRY_NIJM specifies the first codebook entry to be updated (in this block) and
should be between 0 and codebook_entries - ENTRIES_TQ_UPDATEto specify a valid
region. For the InfoPad hardware, entries 0 through 255 specify the Y codebook, entries
256 throu^ 511 specify the I codebook, and entries 512 through 767 specify the Q code-
book.

CODEBOOK DATAis codebook_entiy_size (16 for InfoPad) * ENTRIESJTOJUPDATE
bytes ofcodebookdata. For InfoPad, the codebookdata is organizedin 16byte blocks in
A to P order in the file:

A B C D

E F G H

I J K L

M N 0 P

The Y Codebook values are 0..255 unsigned binary - 0=black, 255=white. The I and Q
Codebook values are 0..255 offset binary: 128 means 0,127 is -1,129 is 1 etc. Note that
this is slightly different from the InfoPad hardware: it uses 6 bit sign-magnitude format
aligned to 6 bits. The send vqtH program will, however, correct the format in order to
keep the VQ file format as simple and flexible as possible.

FRAME DATA

The frame data consists ofthe new frame ofY data followed by the new frame ofIQ data.
(The I and Q data is interleaved due to hardware design.) The Y frame data consists of
width * height (from header ) * 4 bytes ofY frame data (one byte per 4x4 block) present in
normal scan order - top left to top right down to bottom right. The IQ frame data consists
ofwidth * height (from header) * 2 bytes of IQ frame data. The reason that this is half as
many bytes as the Y frame data is that the I and Q are subsambled by 2 in each direction
(for a reduction by 4 in data) but both the I and Q are present, making the reduction only
by a factor of2. The I and Q data are interleaved in foursomes of2 apiece - i.e:

IIQQ IIQQ IIQQ...
0101 2323 4545
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where the 0,1,2,3,.- again correspond to the normalscan order.

SEE ALSO

vq plav(l) send ygfll mpeg2vq(n vq2codebook(ncodebook2ras(O showcodebookdl
showvqcodebookC11 raw videot51

AUTHOR

JefFGilbert <gilberti@eecs.berkelev.edu>
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APPENDIX B The WebChipApplet

This appendix describes the details of the WebChip applet, used to illustrate concepts in

application-level link managementdescribedin Chapter 11.

B.L Motivation

The web has proven to be an effectivemedium for exchanging information and documenta

tion. It has been an invaluable aid in enabling researchers and industry to share information. Its

use in Electronic Design Automation (EDA) is also expanding rapidly.

However, curroitly it does not provide an adequate solution to the probl^ of displaying

integrated circuit layout in a manner that is readily accessible to a large number of people with

varying compute and network resources. Integrated circuit designers willing to document layout

on the web are limited to placing static GIF images oftheir design in the pages. Alternatively they

can leave a link to the actual layout files for others to download and run with their particular layout

editor. This is, ofcourse, contingent upon the user having access to a compatible viewer or editor.

Even if so, it can be a time consuming process at best.
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With the WebChip Interactive Java VLSI Layout \^ewer, the designer can now embed the

actual layout inthe web pages and remote users are able toactively navigate the layout byzoom

ing, panning, and expanding and unexpanding subcells. WebChip accepts standard Magic layout

files and does rapid rendering of hierarchical designs including the sub-cell transformations,

arrays, labeljustification, and layer display. WebChip is tailored to the task ofremote access and

customizable to work with any fabricationprocess.

Interactive viewing of large layouts over the web brings up a number of interesting chal

lenges whichWebChip addresses. One set of challenges relatesto obtaining the greatestviewing

speed and lowest latency possible. One factor which impedes this is the bandwidth limitation of

the link connecting the user to the remote web server. Often this is a slow modem or wireless link

which wouldnot seem congenial to large layout databases. Another problem is that even when the

local host receives the data, it has to be able to render it quickly to obtain interactive navigation.

However, the local machine may not have sufficient compute power, or in case of the web, the

local machine may be using interpreted Java which further hampers performance. In order to

address these issues, a display optimization called cell image caching was developed, which

greatly accelerates the display of hierarchical layouts. In many cases, WebChip, written in Java,

can display fully expanded layout faster than Magic's or Cadence's layout editor! The technique

ofcell imagecaching,however, could be applied to existing conunercial tools as well to yield even

faster display. In order to address the issue of loading speed, compression and link scheduling are

used to deliver the layout data to the local host.

No matter how well data is transferred and the display is optimized, it will inevitably still be

too slow in some circumstances. However, this problem can be masked by allowing the user to

deal with "work in progress". They should be able to effectively navigate all portions ofthe layout

that they have received even during the loading process. Additionally, to mitigate slow redrawing.
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the user must be able to interact with the system even while it is still busy displaying somethiag

else^

B.2. Operation Tutorial

Although no Magic code is used in WebChip, the GUI was modeled in some ways after

Magic, as Magic is the best layout editor! The WebChip viewer uses Magic files for input. It can

used gzipped magic files to reduce load time. (Described in Section 11.2.2.1..) It could be modi

fied to also accept GIF or other formats but Magic delivered all of the necessary functionality.

Many ofthe issues in interactive web-based operation, ofcourse, do not have a parallel in the stan

dard Magic implementation.

B.2.1. New Window / Close Window

To start our tutorial, open another view of the sample layout. This can be done in a multi

tude of way: Either click on the New Window button on the applet at the top ofthis page, type an

"o" anywhere in the same applet or type an "o" in the following copy ofthe same applet:

The window can be resized and the layout will grow or shrink to keep the same amount in

view while maintaining a 1:1 aspect ratio. Windows can be closed either by using the standard

window manager hooks or else by clicking on the Close Window button or typing "O'* in them.

B.2.2. Showing / Hiding Control Buttons and Labels

If you opened a new window fiom the applet directly, you will notice that the control but

tons are not present. Taping space in the applet toggles the display of the control buttons and

labels. (This works both on the embedded version as well as stand-alone copies.)

1. I believe that neither Magic nor Cadence do this.
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B.23. The Selection Box

To effect many of the WebChip commands, a region has to be selected. This is done by

dragging the mouse with the left mouse buttonpressed. A white selection rubberband box will

appear. Clicking in thewindow will make it goaway. (This differs slightly fi-om Magic as Magic

does not allow a drag but rather chcks to set box comers.)

B.2.4. Expand / Unexpand

The layout viewer is a hierarchical viewer. It only showsthe layout and subcells in a given

cell if they are "expanded." Initiallyall subcells are "unexpanded" so that a box with this top cell

and instance name appears, indicating the layout bounds. Drag a box in the layout window that

crosses some unexpanded subcell. Now press **x" or click on the Expand button. The cells under

it are expanded. If you drag a box around the whole layout and press **x", all subcells are

expanded. (This can be specified as the default by setting the applet parameterdefaultExpandto

anything.)

To unexpand a region, drag the box so it crosses or contains the cell to be imexpanded and

press "X" or click on the Unexpand button. (The expand / imexpand semantics are exactly as in

Magic.)

B.23. Zoommg and Paimmg

Zooming into a specified area can be performed by dragging a box around the area and typ

ing "z" or clicking on Zoom Area. To magnify the current region of interest, type "f or click on

Zoom In. Similarly, to zoom out, the "Z" key or Zoom Out button can be used. Zoom Full or the

'T" key sets the zoom to see the full layout. Lastly, the arrow keys can be used to pan left, right,

up and down. Ifthe shift key is used, it moves in bigger jumps while the control key causes move

ment in smaller jumps.
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B.2.6. Redisplay

Finally, control-L canbe usedto refresh the screen if ever necessaiy (or just to investigate

the drawing speed)

B.2.7. Status Panel

Below the buttons is displayedthe name of the top cell in die design followedby a dash and

the location of the design. In our case, the name of the design is http://Infopad.EECS.Berke-

ley.EDU/~gilbertj/Coursework/ee244/project/cor_at4 and the top cell is correlat. (This is a dual

64x64image correlator that I built as part of a PC-based real-timeface recognitionsystem for my

undergraduatehonors thesis. See the thesis [34] or conferencepaper [33] ifyou are interested!)

B^.8. Desig;n FUe Loading Status Indicator

As the files are loading, the status is shownbelow the design name. Note that it loads up to

3 design cell files concurrently.

Loading multiple cells concurrently can help amortize TCP connection times as is com

monlydone by web browses. Using a single managedstreamwould have all ofthe benefits that it

has for the web as outlined in Chapto: 10. Also note that as the design is loading, the cells that are

visible (i.e. all of their ancestors have been expanded) will be displayed in gray until they are

loaded. Once they are loaded, the outlines tum yellow if they are unexpanded or the layout is

shown if they are expanded. Meanwhile, feel free to navigate the design as it is loading!

All design cell information is managed coitrally such that ifmultiple instances of the Web-

Chip applet reference the same design, they will share the same database. Thus the multiple

instances do not use more memory or incur the load-time penalty multiple times. By specifying a

different initial zoom region to different WebChip applet instances, multiple views of the same

layout can be included at low computational cost and without additional bandwidth utilization.
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B.2.9. Display Mode Choice Button

Lastly, the mode choice button which now indicates "Cached Block Mode" allows the user

to change the display method beingused. This is described in Section 11.2.1.

B.3. Configuration

Several applet parameters control WebChip. The file parameter is usedto specify the top-

level URL of die file to load. This is also the design name. (Thedesign name without the top-

level cell name is shown in the control panel.) The URL can specify a .mag magic file or a

.mag.gz gzipped magic file or not have any extension as described in Section 11.2.2.1.

The style parameter is used to specify a URL for the display style. See below for more on

style files.

The noControlButtons and noControlLabels options are used to specify whether the control

buttons and labels should initially appear. The space bar will always toggle this. It is useful when

embedding many layoutsor small ones to not have the control buttons and labels as they consume

space.

The defaultExpand controls the initial state of subcells. If it is not set to anything then sub-

cells are initialized as unexpanded until explicitly expanded. If it is set to anything then they are

expanded by default. This allows the initial view to appear similar to a die photo.

B3.1. Style FUes

The style files control all display aspects of WebChip, including layer colors, stipple pat

terns, crossing, and outlining. The style files also allow backgroimd color, sub-cell color, and

unloaded cell colors to be specified. The files are standard ASCII and can be customized to viewer
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FIGURE B.I. Eflects of style files on layout presentation.
The two figures are of the same layout but different style files.

preference as well as different technologies. Figure B.I shows an example of two different style

files used on the same design.

The style file is similar in format to Magic technology files. The file must start with the lit

eral LayoutStyleFile. This is followed by two numbers specifying the stipple height and width

which should be 2, 4, or 8. This is followed by a set of color and layer definitions. WebChip

draws layers as some combination of a stipple pattern, an optional solid outline, and an optional

solid cross. The layer stippling is specified in terms of a swath the size of the stipple. Each pixel

in the swath can be some opaque color or transparent. While the style file could be specified in

terms of RGB or transparent for each pixel in each stipple, an extra level of indirection was intro

duced to aid in style file design. The indirection is accomplished by having a set of user-named

colors and then specifying the stipple and layer information in terms of the named colors. The file

is similar to a magic tech file in that sections are demarcated with « section ». Here section can

be "layer LayerName" or « colors» corresponding to layer and color definitions. C++ style //

comments can be included (thanks to the Java tokenizer) and sections and colors can be redefmed.



LayoutStyleFile
88 // Stipple size

•« colors »
trans transparent
background 0 0 0
label 255 255 0
subcell 255 255 0
missingCell 128 128 128

red 255 0 0
green 0 255 0
blue 0 0 255
purple 255 0 255
black 0 0 0
white 255 255 255

polled 255 0 0
mlBlue 60 101 185
mlBlue 100 120 255
m2Purple 125 88 157
m2Purple 255 128 255
m2Purple 230 120 255
ndi££Green 0 255 0
pdi££Brown 200 150 75
ndcDrkGm 30 110 110

ndcCross 30 120 120
pdcGray 100 110 120
pdcCross 110 120 130
nwellGray 128 128 128
pcPurp 200 100 200
pcOut 100 100 100
vial 175 124 255
vial 230 120 255
via2 0 0 0
nscl 30 110 110
nsc2 100 120 255
pscl 200 150 75
psc2 100 120 255

« layer metall »
mono_stipple mlBlue

00000000
10101010
00000000
10101010
00000000
10101010
00000000
10101010

mono_stipple mlBlue

« layer metal2 »
mono_stipple in2Purple

mono_stipple m2Ptu:ple

« layer in2contact »
outline via2
color_8tipple

trans vial trans vial trans vial trans
vial trans vial trans vial trans vial
trans vial trans via2 trans vial trans
vial trans via2 trans vial trans via2
trans vial trans vial trans vial trans
vial . trans vial trans vial trans vial
treutis via2 trans vial trans via2 trans
via2 trans vial trans via2 trans vial

« layer polysilicon »
mono_stipple polyRed

« layer polycontact »
cross pcOut
mono_stipple pcPurp

« layer ndiffusion »
mono_stipple ndiffGreen

« layer pdi£fusion »
inono_stipple pdiffBrovm

« layer nwell »
mono_stipple nwellGray

10000000
0

« layer ndcontact »
cross ndcCross

mono_stipple ndcDrkGm

FIGURE B Style file used to produce image in Figure 11.1.
Continued on next page.
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« layer pdcontact »
outline pdcCrcss
cross pdcCross
mono_8tipple pdcGray

10101010
11111111

10101010
11111111
10101010
11111111

10101010
11111111

« layer ntransistor »
color_stipple

ndi££6reen trans
trans

polyRed
trans

polyRed
trans

polyRed
trans

ndi££Green
trans

polyRed
trans

polyRed
trans

polyRed

polyRed
trans

ndi££Green
trans

polyRed
trans

polyRed
trans

trans

polyRed
trans

ndif£Green
trans

polled
trans

polyRed

polyRed
trans

polyRed
trans

ndi££Green
trans

polyRed
trans

trans

polled
trans

polyRed
trans

ndi££Green
trans

polyRed

polyRed
trans

polyRed
trans

polyRed
trans

ndi££Green
trans

trans

polled
trans

polyRed
trans

polled
trans

ndi££Green

« layer ptransistor »
color_stipple

pdi££Brown trans polyRed trans poljdled trans polyRed trans
trans pdif£Brown trans polyRed trans poljdled trans polyRed
polyRed trans pdi££Brown trans polyRed trans polyRed trans
trans polyRed trans pdi££Brovm trans polyRed trans polyRed
polyRed trans polyRed trans pdi££Brovm trans polyRed treuis
trans polyRed trans polyRed trans pdi££Brown trans polyRed
polyRed trans polyRed trans polyRed trans pdi££Brown trans
trans poljdled trans polled trans polyRed trans pdi££Brovni

« layer nsubstratencontact »
outline nsc2
color_stipple

nscl trans nscl trans nscl trans nscl trans

trans nscl trans nsc2 trans nscl trans nsc2

nscl trans nsc2 trans nscl trans nsc2 trans

trans nscl trans nscl trans nscl trans nscl

nscl trans nscl trans nscl trans nscl trans

trans nsc2 trans nscl trans nsc2 trans nscl

n8c2 trans nscl trans nsc2 trans nscl trans

trans nscl trans nscl trans nscl trans nscl

« layer psubstratepcontact »
outline psc2
color_stipple

pscl trans pscl trans pscl trans pscl trans

trans pscl trans psc2 trans pscl trans psc2
pscl trans psc2 trans pscl trans psc2 trans

trans pscl trans pscl trans pscl trans pscl
pscl trans pscl trans pscl trans pscl trans

trans psc2 trans pscl trans psc2 trans pscl
P8c2 trans pscl trans psc2 trans pscl trans

trans pscl trans pscl trans pscl trans pscl

« layer error_p »
mono_stipple white

00000000

FIGURE B2. Style file used to produce Image in Figure 11.1. Continued from previous page.
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The colors can bespecified in terms ofred, green, and blue triples orthe literal transparent.

For example:

« colors »

green 0 255 0

trans transparent
polyColor 255 0 0

would define thecolor green as expected, define a color named trans tobetransparent and

define polyColor to be red.

The colors are used insubsequent layer sections aswell asto control certain global defaults

and colors. The background color is used to setthebackground color of the layout. (It is impor

tant that this is in the style file since the background has to go withthe other colors.) The label

color is used as a default color for labels. This can be overridden on a per-layer basis as well as

shown below. The subcell color is used to determine what color to draw unexpanded subcell

boxes and labels in. Finally, the missingCell color is used to determine in which color to draw

cells that could not be foxmd or have not been loaded yet. Note that all of these colors can be an

RGB triple or the literal transparent. For instance, to notshow missing cells, the following line

should be placed in a colors section:

missingCell transparent

Once the colors are defined, the layers can be defined. Each layer has 4 attributes: label

color, outline color, crosscolor, andfill stipple. The firstthree aredefinedby single lines specify

ing the literal and a predefined color while the fill stipple can be defined in one of three ways. If

no stipple information is included then it is transparent. Otherwise it can be defined as a

color_stipple in which each pixel in the stipple is defined as a color (which can be transparent.)

Lastly, mono_stipple is an abbreviation used for the common case where a stipple is just one color
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and transparent. Here thecolor is specified followed by a series of I's and 0*s of the size of the

stipple.

The following illustratespart of a typical style file:

LayoutstyleFile
4 4 // This is the

« colors »

trans transparent

red 255 0 0

green 0 13 34

white 255 255 255

pdcGray 100 110 120

pdcCross 110 120 130

brown 200 150 75

« layer ptransistor »
outline green
color_stipple brown

trans

red

red

trans

brown

trans

trans

« layer pdcontact »
outline pdcCross
cross pdcCross
mono_stipple pdcGray 10 10

1111

10 10

1111

red

trans

trans

trans

trans

red

brown

brown

If WebChip encounters layout data on a layer not included in the style file, a warning is

printed and layout on that layer is ignored.

The order ofthe layers in the style file determines the order that they are drawn and thus the

order ofprecedence. The stipples should be carefidly arranged such that all likely combinations of

layer overlaps produces viable results. For instance if metal1 and metal2 have the same stipple

pattems but different colors, when they overlapped, whichever one was drawn last would be hid

den. Thus the stipple pattems should be at least partially offset.
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APPENDIX c The SpeedSutferApplication

This appendix describes the operation of the SpeedSurfer client-side proxy application and

the format used to communicate with the SurfServ server-side proxy. These are both presented in

Chapter 12.

C.l. SpeedSurfer Operation

SpeedSurfer is a Windows NT-based client-side proxy as described in Section 12.2., written

using Microsoft's Visual C++ development environment and Microsoft Foundation Classes

(MFC). SpeedSurfer is a standard user-mode application and does not require special installation.

The only step needed to browse through the SpeedSurfer is to set the web browser's Proxy setting

to localhost port 2000. (The port 2000 is user-selectable as shown in Section C. 1.4.).

SpeedSurfer manages the GUI as well as the client proxy interface. It is readily config

urable and can automatically initiate contact with the server-side proxy. SpeedSurfer allows for up

to S user-configurable tunnels in addition to the web proxy. It allpws web proxy chaining who-eby

the connections are forwarded to another proxy rather than going to the web server specified by the

web address. SpeedSurfer also analyzes the traffic rates delivered to the web browser facilitating
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evaluation. It can be run in "enabled" mode which implements the fiill proxy-proxy system or

"disabled" mode where the SpeedSurfer routes HTTP traffic directly through it, maintaining mul

tiple transientconventional TCP connections for analysis purposes only.

C.1.1. Connectioii Page

The connection page (see Figure C.I) is used to control the SpeedSurfer*s basic mode of

operation. At the top the user can selectwhetherto disable the SpeedSurfer(but still enable statis

tics gathering), or if it is enabledwhatmode to runtheproxy-proxy linkin. Currently onlythe two

TCP options are implemented. The managed / conventional TCP refers to whether the additional

flow control is used. The user can also specify where the SurferServ can be found. When the

mode is changed from Disable SpeedSurfer to one of the other modes and the Apply button is

pressed, the SpeedSurfer initiates contact with the SurferServ.
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Rate limiting may be implementedat a later time. The number of active links and current

uplink and downlink rates are displayed.

C.1.2. Stats Page

The stats page, shown in Figure C.2 displays network traffic statistics in real-time. It dis

plays the current uplink and downlink traffic ratesand numberof active linksas well as informa

tion about the current web page load. This information includes the duration of the load, the

number of transfers (data items) thus far encountered, the number of uplink and downlink bytes

transferred, and average uplink and downlink traffic rates over the load. Lastly, it displays the

TninimiiTn, average, and maximum response latency and size. The response latencyis defined as

the duration between the web browser delivering a request and getting the first byte of response

data. A new web page download is detected whoiever there are no connectionsthrough the web

proxy port for more than 1 second.

The "Log to File" button can be used to send collected data into a log file for later post pro

cessing. The graphs in Chapto* 10 are generatedoff-line using such a log file. The logs contain

time-stamped itemization of when coimections are established, what items are requested, detailed

timing of data transfer, as well as when the connections are closed. A sample log file is shown in

Figure C.3.

C.13. Loading Graph Page

The loading graph page, shown in Figure C.4., shows real-time presentations of the loading

graphsused to quantify web page loading time in Section 10.4. Three views of the loading graph

are supported - ''TOTAL BYTES", "TOTAL RATE", and "LOADING GRAPH" as depicted in the figure.
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0 startAt 0

0 request GET /-gilbertj/ HTTP/1.1
0 host badlands.eecs.berkeley.edu:8090
0 recv 182 at 841

0 recv 2920 at 2043
1 StartAt 2083

2 StartAt 2103

0 recv 4096 at 2994

0 recv 1176 at 3214

1 request GET /-gilbertj/me_harry_jim_small.jpg HTTP/1.1
1 host badlands.eecs.berkeley.edu:8090
2 request GET /-gilbertj/eegsa_small.gif HTTP/1.1
2 host badlands.eecs.berkeley.edu:8090
1 recv 184 at 3655

0 recv 1257 at 3965

0 doneAt 3965

0 total 9631

GET /-gilbertj/ HTTP/1.1 size 9631
2 recv 181 at 3985

1 recv 1460 at 5047

1 recv 1460 at 5127

2 recv 542 at 5367

2 doneAt 5367

2 total 723

GET /-gilbertj/eegsa_small.gif HTTP/1.1 size 723
1 recv 1176 at 6249

1 recv 1460 at 6749

1 recv 1460 at 7250

1 recv 1176 at 7260

1 recv 1460 at 8252

1 recv 1460 at 8752

1 recv 1176 at 9253

1 recv 1864 at 9443

1 doneAt 9483

1 total 14336

GET /-gilbertj/me_harry_jim_small.jpg HTTP/1.1 size 14336

0 StartAt 0

0 request GET /-gilbertj/cnn2/ HTTP/1.1
0 host badlands.eecs.berkeley.edu:8090
0 recv 183 at 851

0 recv 2920 at 1983

1 StartAt 2003

1 request GET /-gilbertj/cnn2/cnn.js HTTP/1.1
1 host badlands.eecs.berkeley.edu:8090
0 recv 4096 at 2684

0 recv 1176 at 2864

0 recv 4096 at 3595

1 recv 183 at 3675

FIGURE C3. Example SpeedSurfer log file
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FIGURE C.4. SpeedSurfer loading graph page.
Three views shown: total b^es (topleft), totalrate (topright) and loading graph
(bottom center)

Each figure has time across the X axis. The three types of graphs can be zoomed using the mouse

to view particular regions in greater detail.

The TOTAL BYTES Optiongraphs the total number of bytes of web traffic received since the

beginning ofthe web transfer. This is, by definition, is a monotonic non-decreasing function. The

instantaneous rate ofdata delivery is the slope ofthe line. Thus flat portions indicate stalls.

The TOTAL RATE option graphs the short-term averaged rate of data transfer across all con

nections. Thus it is the derivative of the total bytes graph. The size ofthe sampling window is
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controlled by the INTEGRATION TIME (MS) field. This allows the trade-off of graph detail and

amount ofsampling noise to be adjusted.

The LOADING GRAPH option shows the web page loading graph of Section 10.4. in real time.

The LINE RATE (BPS) field is used to input the line rate to adjust the length ofthe bars in the graph.

This is required since the bars represent the amount oftime a transfer corresponds to but in reality

all that is known is the number of bytes that are transferred. The line rate is the constant for this

conversion.

C.1.4. Ports Page

The ports page, shown in Figure C.5, allows the user to select incoming and outgoing ports.

In the example, if a connection is made to localhost:2001 then a connection will be made to Bad-

lands.EECS.Berkeley.EDU:23. If the mode set in the connectionpage is not "Disabled" then this

connection will be set up through the proxy-proxy link and the connection will originate from the
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server proxy. Thus, to hold a telnet session to Badlands through the proxy mechanism, the user

would just run telnet, setting the host to localhost and port to 2001. The maximum number of

simultaneous connections can also be set. If this many links are already in progress then no new

ones will be accepted. Finally, a remote web proxy can be specified to allow the web proxy chain

ing.

C.2. Proxy-Proxy Link Protocol

As previously mentioned, the clientproxy and server proxy communicatevia a custom pro

tocol that allows embedding of multiple connections in the link, as well as maintaining fiow con

trol. Additionally, an echo packet facilityallowsthe client proxy to determinethe round-trip time

as well as the numberofbytes in transitby measuringthe differences betweenpacket transmission

and reception times. The protocolusedbetweenthe two proxies will be briefly described here for

the purpose ofbetter illustrating their operation.

The protocol is design to push as much of the complexity as possible into the client proxy

to keep the serverproxy scalablesincemultiple simultaneous sessions may be running on a given

server. Additionally, this eases design since all GUI interaction occurs in the client proxy. The

CPU burden presented by both proxies is minimal though the addition of compression would

increase the necessary computation.

The proxy-proxy link is a single TCP/IP connection with the stream consisting of control

and data packets of a form understood by the two proxies. The packet formats are shown in

Table C.1. The server proxy is a generalpurposemultiplexor / demultiplexor that does not under

stand HTML or HTTP at all. All data parsing is performed by the client proxy. Currently link-
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Field Size Meaning

Packet header present at beginning ofall packets
Sync 2 bytes Must be 0x24CE. Used to assure synchronization
Msg 2 bytes Control packet type or data link ID

Len 2 bytes Length ofremaining bytes in message

Clientlnit message is sent from client->server on connection. Could containsetupinfo.
Header 6 bytes See above. Msg=CLIENT_INIT, Len=0

Serverlnit message is sent from server->client in response to Clientlnit. Could have more info.
Header 6 bytes See above. Msg=SERVERJ[NIT, Len=0

NewLink message sent from client->server to establish new link.
Header 6 bytes See above. Msg=NEW_LINK, Len=6 + hostNameLen

ID 2 bytes ID for new connection.

PortNum 2 bytes TCP Port Number ofnew connection

Priority 1 byte Priority - not currently used

windowSize256 1 byte Used for link flow control - not currently used
Hostname N bytes Name ofhost to connect to

CloseLink message sent in either directionto signal link closure
Header 6 bytes See above. Msg=CLOSE_LINK, Len=2 + errorStrLen
Id 2 bytes ID of link to close

ErrorStr N bytes For server->client gives reason for closure. Empty for no error.

CloseAck message sent server->client to allow ID reuse
Header 6 bytes See above. Msg=CLOSE_ACK, Len=2
ID 2 bytes ID of link closed

EchoMsg message echoedby server andused by clientfor diagnostics - like ping packet
Header 6 bytes See above. Msg=ECHO_MSQ Len=N

Data N bytes Genericdata. Client uses timestampand downlinkBytesRcvd.

Window messageused to imposeadditional flowcontrol(currently downlinkonly)
Header 6 bytes See above. Msg=ECHOLMSGt Len=4

NewTotal 4 bytes Allowable total bytes sent this session. -1 for no flow control

TABLE c.i. Proxy-proxy packet protocol
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level flow control is not used but is provisioned. This is not a problem unless applications on

either end ofthe link are slower than the link, which is typically not the case.
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