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Abstract

Text / Graphics and Image Transmission
over Lossy Bandlimited Links

by Jeffrey Michael Gilbert

Doctor of Philosophy in Electrical Engineering
University of California at Berkeley

Professor Robert W. Brodersen, Chair

This thesis describes the application of image compression and networking techniques to
the transmission of text / graphics and image data over bandlimitted and lossy links. While much
research has focused on image and data compression, this thesis proposes that compression alone
is not sufficient, and that transformations into progressive formats and explicit link scheduling can
significantly improve performance over bandlimited and lossy links. Analyses and solutions are
proposed for both application-independent and application-specific scenarios. Techniques includ-
ing bitmap and drawing primitive-based approaches, as well as a novel hybrid scheme, are pre-
sented. Image compression techniques optimized for text / graphics bitmaps are presented. The
application-independent techniques are then applied to the acceleration of the delivery of World
Wide Web pages over modem and wireless links. Application-specific techniques are illustrated
using the example of a web-based VLSI layout viewer. Various design points trading off band-
width utilization, error tolerance, and client complexity and power consumption are presented.
Architectures, algorithms, as well as prototyping techniques and development frameworks are pre-
sented for many of the approaches. Lastly, unifying themes and requirements are synthesized and

their implications to network protocol design are discussed.
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Robert W. Brodersen, Chairman of Committee
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PART1 Introduction

CHAPTER 1 Introduction

The explosive growth of the Internet as well as the increasing proliferation of wireless and
broadband communication have caused significant shifts in the way people work, play, and com-
municate. Information access is the application of the new millennium. The days of computer
screens equated with chunky green letters on a black 8” screen are over; vibrant images, full-
motion video, and intuitive graphical user interfaces are a must for most applications. But support-
ing these rich multimedia displays remotely requires judicious selection of which information to

send as well as how to send it. Compression is not enough.

However, interactively accessing this multimedia information, by its very nature, requires
transmission of the text, graphics, images, and videos in real-time from a remote server to users’
machines. This transmission is often over modem or wireless links of limited bandwidth and reli-
ability. Transmission over the Internet introduces additional bandwidth constrictions and opportu-
nities for data loss. Thus it is crucial to efficiently code and schedule the transmission of the

multimedia data over the link. Compression is not enough.




Additionally, the push towards smaller, lighter, yet more powerful portable devices for
everything from web browsing to stock portfolio management and teleconferencing is necessitat-
ing some fundamental paradigm shifts. Conventionally, applications used on these portable
devices have to run locally on the devices. This constrains the size of the devices based on the
computational and storage requirements of the applications. However, the InfoPad project [14]
has shown that this constraint is not necessary if the applications are not run locally, but instead
run remotely on a well-connected compute-server with client-server communication achieved via
wireless links. This then shifts the burden to the design of networking and image compression
protocols and algorithms to interactively send the multimedia data from the server to the client.
Interactivity requires low latency, which in turn requires careful selection of the type of graphical

updates to send and when to send them. Compression is not enough.

While Internet access used to be confined to the world of academia, today, thanks to the
World Wide Web, it has become a significant consumer reality, and has tightly woven its way into
almost every aspect of life. HTML, HTTP, and TCP/IP provide a flexible method of delivering
multimedia content. However, many users connect to the Internet via slow modem links using
Internet Service Providers, and an increasing number are connecting via lossy wireless links.
Unfortunately, the original web protocols were designed for well-connected workstations and are
not particularly network friendly. This leaves home and untethered surfers with a suboptimal
setup. Yet, as shown in this thesis, if these protocols are designed to optimize interactive remote
operation, through a combination of compression and networking techniques, the situation for

surfers is greatly improved. Compression is not enough.

Most previous research attempts to improve upon text / graphics and image transmission
through either lossy or lossless compression techniques. As this thesis will show, in most cases,

simply compressing the information transmitted is not sufficient to obtain interactive operation




over bandlimited lossy links - link scheduling and image transformation are required to reduce

latencies and improve end-user experience. Compression is not enough.

1.1. Thesis Overview

This thesis examines text / graphics and image transmission techniques for scenarios rang-
ing from operating generic applications over wireless links to surfing the web over modems to
application-specific methods of improving interactivity over bandlimited and lossy links. The the-
sis examines each of the scenarios, presents an analysis of the challenges and difficulties, and pro-
poses and quantifies solutions combining image compression and networking techniques. Finally,

the commonalities of the text / graphics and image transmission tasks are discussed.

For many of the areas, various design points trading off bandwidth utilization, error toler-
ance, and client complexity and power consumption are presented. Architectures, algorithms, as

well as prototyping techniques and development frameworks are also presented.

This work found its origin in the InfoPad project [14] as an application-independent means
to deliver the text / graphics and video data to a remote wireless black and white terminal, as
described in Chapter 4. Its scope has grown to include more sophisticated, larger color image-
enabled remote terminals, as well as other areas, such as the acceleration of web transmission over

bandlimited lossy links and application-specific acceleration methods.

1.2. Common Themes

There are several themes that pervade the many variations of text / graphics and image

delivery discussed in this thesis:




* Optimization from end-user perspective
* Global ordering / reordering
¢ Local progressive image transformations

1.2.1. Optimization from End-User Perspective

Interactive transmission of text / graphics and image data is a user-based activity, i.e. the
text, graphics, and images are transmitted because the user wants to see them. It is critical to keep
the goal of the user in mind when analyzing and designing transmission systems. Too often total
transfer times are reduced through compression techniques alone while a far better user-experience
can be delivered by determining which limited information is of use to the end-user right away,

and which information is either not needed or is not needed initially.

Thus the key is to determine which information is critical, and this often requires determin-
ing user-intentions. Often only a small part of a large object is required since the amount of infor-
mation that a person can scrutinize at any given time is limited, despite the fact that the amount of

information that can be scanned is large.

1.2.2. Global Ordering / Reordering

The order of the data delivery can significantly effect the end-user experience. Often global
reordering techniques can quickly deliver the most time-critical information at the expense of

delaying non-critical information which may only affect final viewing.

1.2.3. Local Progressive Image Transformations

While reordering the delivery of the various text / graphics objects or images can yield sig-
nificant improvements, often finer granularity manipulation yields further improvements. Thus
parts of the objects need to be reordered or interleaved. However, it is required that the “more
important” parts are sent first, followed by the “less important™ parts. Progressive codings can be

used to separate the more important from the less important parts. Conventional progressive cod-




ings are used on images to separate the components by spatial resolution or frequency. Applica-

tion-specific progressive coding can separate global properties from fine details.

1.3. Existing Techniques
There is almost always a trade-off between reduced time-to-market and optimized perfor-

mance. Reduced time-to-market favors modularity and optimized performance favors cross-
boundary application-specific optimization. However, it is arguable that current solutions favor
the former at the expense of the latter. One of the goals of this dissertation is to derive a new level
of modularity which could be reused to exploit commonalities across multimedia transmission

applications while obtaining the high performance required by these applications.

Current solutions to remote text / graphics and image transmission typically consist of deter-
mining all of the data that needs to be presented, and sending it through a reliable mechanism such
as TCP/IP. When the user generates more updates via interaction, the results of these are queued
up, never to be discarded until successfully received by the remote terminal. This results in a sub-

optimal solution for several reasons.

1.3.1. Problems of Stale Data

By using a reliable mechanism such as TCP/IP for transport and passing all data to be dis-
played through it, data that is not useful will still be transmitted, and thus consume valuable band-
width. While in a bulk file transfer, all data is useful, with text / graphics and image transmission,

often data becomes stale if new data to display in the same region is generated.

1.3.2. Problems of Not Using User Intent to Govern Ordering

Additionally, not all text / graphics and image data is created equally. Transmission of text /

graphics and image data is typically in an interactive setting where the user has particular goals
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and intentions. Using these intentions requires intelligent data reordering and often recoding.

Simply queuing all data in the order that it was generated by applications can cause undue delays.

1.3.3. Problems of TCP/IP over Wireless

The Internet Transmission Control Protocol (TCP/IP) is quite effective at sustaining multi-
ple connections across the heterogeneous and time-varying Internet, as well as across local area
networks. It is adaptive and scalable due to its congestion control mechanisms and end-to-end
implementation. It is designed for networks where loss is primarily due to congestion and central-
ized management is not possible or practical. While this describes the Internet and many LANS, it
does not aptly describe the situation presented by modem or wireless links at the last hop.

Figure 1.1 and Figure 1.2 depict the difference.




This difference in topology has significant consequences in terms of TCP end-to-end perfor-
mance while web browsing or performing other operations using standard TCP/IP based connec-
tions. In the well-connected case, TCP/IP works as designed to allow hosts to establish links that
are as high capacity as is fair in some global sense. Connections quickly “learn” what their fair
share of bandwidth is. However, in the case of browsing over a modem or wireless link, many
problems occur due to the interaction of the last hop with TCP’s congestion and flow control

mechanisms.

While research has addressed some of the issues involved with using TCP/IP over wireless
links [8], substantial further benefits can be achieved in high-loss environments through optimiza-
tion at the application-level. For instances of text / graphics and video transmission, eliminating

false-dependencies in the data streams can significantly reduce latencies.

1.4. Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces application-independent
text / graphics and image transmission, presenting uses and previous work. Chapter 3 describes
conventional primitive-based approaches which communicate graphical information using draw-
ing primitives. Chapter 4 then contrasts this with bitmap-based approaches which transmit the
screen updates using rendered bitmaps. Chapter 5 extends the bitmap-based approach from mono-
chrome imjﬂementations to color implementations including full-motion video support, consider-
ing bandwidth and reliability limitations. Chapter 6 then seeks to further reduce client power and
cost through a compressed framebuffer approach. Chapter 7 proposes a final approach to applica-
tion-independent text / graphics and image transmission which is a hybrid containing the best of
the primitive-based and bitmap-based approaches. Chapter 8 details the image compression

requirements for images of text / graphics and presents a novel compression technique designed




for that class of images. Chapter 9 gives a view of the development and analysis environment used
for the research describéd in the previous chapters. Chapter 10 begins the part of this thesis dedi-
cated to application-specific transmission by discussing optimization of web protocols for band-
limited links. Application-level link management is then discussed in Chapter 11 in the context of
an interactive Java-based VLSI layout viewer. Chapter 12 gives a view of the development envi-
ronment used to support the application-specific transmission research. Finally Chapter 13 con-
cludes the thesis by distilling the networking requirements of text / graphics and image

transmission, summarizing the findings of the thesis research, and presenting future directions.
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CHAPTER 2 Overview

2.1. Overview

Application independent text / graphics and image transmission is used for remote rendering
in a generic manner that is not tailored to a particular application. Text, graphics, and images are
specified in the most general terms such as “Draw the string ‘Hello’ at (100,230) in Helvetica
lipt. font.” Applications describe the graphics they desire to present in this generic manner, leav-
ing it to a centralized text / graphics system to effect the rendering. One advantage of this
approach is that its flexibility allows almost any application to be supported. Additionally, it is
highly modular in that applications need not know the details of how rendering occurs, or whether
the display is local or remote. Thus improvements to the rendering system will improve the per-
formance of all applications. However, due to this flexibility and modularity, application-indepen-

dent transmission is the most difficult to implement efficiently.
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FIGURE 2.1. Remote computation model

Two principal uses of application independent text / graphics and image transmission are

Remote Interactive Computation and Multimedia Collaboration.

2.1.1. Remote Interactive Computation

Remote interactive computation refers to the technique whereby an interactive application
runs on a remote server while its display information is sent to a local client and keyboard or pen
input is sent back from the client to the server as shown in Figure 2.1. Thus it extends the conven-
tional client-server model of only sharing applications and data one step further. To the end-user,
if the display data can be delivered rapidly enough, it appears as if the applications are running

locally. However, remote operation has several advantages:

Computational economies scale with bursty usage
Lightweight / inexpensive clients

Ubiquity of access

. Facilitates portable operation (ala InfoPad)
Protects sensitive equipment and storage
Centralization of administration

Allows “leasing / renting” of computation

NS WD -

Remote computation allows computational support of many users to be centralized in a sin-
gle server or set of servers. In this way, the capabilities required to execute compute-intensive
application need not be replicated at each client. If the peak demands of the clients are high, yet

usage of resources is bursty and independent, centralization allows the resources to scale with the
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average client demands, and not the peak client demands. Similar advantages of scale have been

obtained in UC Berkeley’s Network of Workstations (NOW) Project [2,21].

Remote computation allows complex tasks to be accomplished using only low-perfor-
mance, low-cost clients. This can result in a reduction in total system cost and size. Additionally,
this facilitates ubiquity of access since only simple clients need to be replicated. Client simplicity,

in turn, enables portable client operation.

By reducing the compute and storage requirements of the clients, portable operation is facil-
itated. The InfoPad project [14], as described below, extends the remote computation concept by
reducing the clients to little more than framebuffers with radios. In this way, ultra-low power,
lightweight operation is possible since component count and battery requirements are dramatically

reduced.

Remote computation also allows centralization of sensitive equipment to increase security
and robustness. Since execution is remote, all storage is also moved away from the clients. Thus
hard-disk failures, a constant threat to laptop computers, can be dramatically reduced since the
disks are no longer moved. Additionally, sensitive information can be more readily safeguarded if

it is kept in a single stationary location.

The inherent centralization of resources can greatly simplify system administration. No
longer do all changes need be propagated to all clients, but rather the servers can be updated. As
the complexity and capability of the clients is reduced, the configuration requirements are also

reduced. Thus the “total cost of ownership” decreases.

Remote computation enables new economic / pricing structures. Using the remote compu-

tation model, computation is transformed from a product into a service. In this way, users can pay

1
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FIGURE 2.2. Challenges posed by text / graphics and image transmission problem

for computation on an as-needed basis and adaptation to varying needs is more agile. Addition-

ally, this could reduce the recurring need to upgrade user equipment.

2.1.1.1. Challenges Posed by Text / Graphics and Image Transmission Problem

Some of the challenges associated with text / graphics and image transmission are listed in
Figure 2.2. While the user requires fast drawing to display complex screens, this is difficult using
a limited bandwidth connection. Similarly, the user’s desire for rapid response to retain interactiv-

ity is thwarted by non-negligible link latencies.

The wireless environment presents additional challenges. While users demand reliable
operation, the wireless link is often not privy to these demands. Similarly, the desire to operate
portably for hours or days is often hindered by the limited capacity to weight ratio of existing bat-

teries.

2.1.1.2. Connectivity Requirements Changed, not Created

It is important to note that although remote computation does require connectivity to send

the display updates, many of today’s applications involve information access. Thus connectivity is
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required at some level anyhow. Remote computation is simply moving the connectivity partition
but not adding new requirements per se. In many cases, using remote computation allows existing

applications to be reused in new and varying environments.

2.1.2. Multimedia Collaboration

Multimedia collaboration is the process whereby several geographically separated parties
can participate in electronic meetings sharing audio, video, and text / graphics information. While
the audio and video primarily communicate the images and sounds of the participants, the text /
graphics content can be shared whiteboards, pre-prepared slide presentations, or even shared
jointly-controlled application executions. This text / graphics content is similar in nature to the
text / graphics content produced by remote computation. In fact it can often be effected using the

remote computation model.

2.2. Previous Work

2.2.1. X Window System

The X Window system [62,63,64] was developed at MIT as part of project Athena begin-
ning in 1984, and gained significant popularity due to its free distribution. The X Window system
allows distributed graphical computing in UNIX environments. It has been ported to many variet-
ies of UNIX, including Linux and Solaris, and supports a range of graphics display hardware of
varying capability, bit-depth, and acceleration. The X Window System operates in a client-sever
model where the X server is run on a machine physically connected to a display monitor. Client
applications can be run either remotely via TCP/IP or on the same machine. Keyboard and mouse
input is sent to the clients from the server and text / graphics commands are sent back from the cli-

ents to the server.
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The X Window system is designed with a highly layered architecture. The X protocol is at
the lowest layer and describes the actual primitive commands such as draw line, draw text, clear
area, etc. There are a set of toolkits that are layered on the basic X protocol to provide higher-level
abstractions such as menus and other look-and-feel widgets. Some programming languages such
as Tcl have been designed with toolkit extensions to X, such as Tk. Lastly, the basic X architecture
decouples the look-and-feel of the system from the base architecture by introducing window man-
agers whose sole purpose is to define the way that the user interacts with the system. These win-
dow managers are separate processes which run independently from the main system and can be

freely interchanged.

The X protocol is drawing-primitive based which is described in the next chapter. This
helps bandwidth efficiency but the encodings used are not very compact since X is not designed
for bandwidth-limited environments. This typically leads to inadequate performance over band-
limited links such as modems. The encoding is also quite error-sensitive, requiring a reliable pro-

tocol such as TCP/IP for proper operation.

A couple of architectural features improve interactivity of the X protocol. The first is the
use of graphics contexts which store state which persists across multiple drawing primitives. The
graphics contexts include current foreground and background drawing colors, font information,
etc. This avoids respecifying the information in each drawing primitive request. Another feature
to improve interactivity over higher latency links is the use of asynchronous operations. Drawing
commands sent to the server are pipelined and identified using sequence numbers. Responses and
error codes are returned to the clients asynchronously and matched up using the sequence num-
bers. This reduces the total latency experienced by a sequence of commands to one round-trip

time.
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2.2.2. Xremote

Xremote is transformation of the X protocol designed to efficiently send X over serial lines
[20,22]. The Xremote protocols works by running two proxies - one on each side of the slow
serial line as shown in Figure 2.3. Clients then connect to the client proxy using individual TCP/IP
connections as they would connect to a conventional X server. The client proxy communicates
with the server proxy via a managed, compressed protocol over a single serial connection. The

server proxy then forms multiple connections to the X server just as the clients typically would.

The Xremote proxies are useful over serial lines because they both aggregate multiple X
connections into a single stream, and additionally perform compression over the link. The com-
pression entails several steps, the most important of which are delta-encoding and LZW compres-
sion. First, the X messages are delta-encoded whereby each message that is 64 bytes or shorter is
compared to the previous 16 messages which were also 64 bytes 61' shorter. If a new message can
be represented more compactly as a modification of a previous message, this representation is
used. This is useful as many messages, such as mouse movements, are used many times with very
similar contents. LZW dictionary compression[71] is then performed to exploit further redun-
dancy in the delta-compressed stream. LZW compression finds repeated byte pattefns and repre-
sents them more compactly. Xremote uses a reliable datagram transport protocol for transmission

over the serial connection.
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Xremote’s overall compression is typically about 2.4:1 by typically achieving 3:1 compres-

sion on text-based messages and 1.6:1 on geometric messages [22].

2.2.3. Low-Bandwidth X (LBX)
Low-Bandwidth X [19,27,73] extends upon Xremote by using techniques to further com-

press some of the data stream, as well as techniques to avoid transmission of some data entirely.

Some of the compression techniques used by LBX include the use of CCITT Group 4 FAX
compression for monochrome bitmaps [61]. This lossless compression technique exploits 2-
dimensional redundancies in images to reduce the number of bits required to code them. Addition-
ally many graphics primitives are recoded using 1-byte operands instead of 2-byte operands when-

ever possible.

The amount of data sent from the X server back to the client is reduced by caching of large
data queries, such as keyboard maps, and just sending tags used to identify the data items. The
type and size of the caches are negotiated upon connection of the LBX client to the server. Addi-
tionally, some constants which are typically queried from the server are handled locally or cached
by the LBX proxy. Lastly, the number of motion events used to report mouse cursor movement

can be limited to prevent excessive latency and uplink bandwidth utilization.

Like Xremote, LBX uses delta encoding and stream compression, but LBX uses the Zlib
compression library [28] based on LZ77 coding instead of LZW compression [71]. The Zlib

library typically compresses more effectively than LZW and also has patent-free status.

2.2.4. Higher Bandwidth X (HBX)

Danskin [22] further analyzed the work of Xremote and proposed improvements using sta-

tistical compression techniques on the X traffic in his HBX (Higher Bandwidth X) protocol. This
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protocol improves upon Xremote’s compression by about a factor of 3 to achieve roughly 7.5:1

overall compression relative to the standard X protocol on typical traces.

HBX uses arithmetic coding coupled with predictive models to compactly represent the X
traffic. Different models are used for the various drawing primitive parameters. For instance, a
polygon drawing primitive would be recoded by first converting all vertex coordinates to be rela-
tive and then statistically predicting later coordinates based on earlier ones. Text is predicted using
the PPMC’ method using hierarchical predictive models [47,10]. Bitmap images are compressed
using context pixels to determine statistical predictions for the current pixel, in a manner similar to
JBIG [4,43,61]. Small images, which are often reused, are cached at the server to avoid retransmis-

sion whenever possible.

2.2.5. Microsoft Terminal Server

The Terminal Server edition of Microsoft Windows NT 4.0 Server supports application
independent text / graphics and image transmission, allowing multiple independent remote ses-
sions on a single server [46]. The client machines display the remote data using a thin-client appli-
cation. The protocol used for data communication is the Remote Desktop Protocol (RDP), also

used in the Microsoft NetMeeting multimedia conferencing tool [45].

The Citrix Corporation has developed some low-bandwidth extensions to the terminal

server protocol which are used in its Independent Computing Architecture (ICA). [16]

2.2.6. GraphOn Bridges

The Graphon corporation has developed a Bridges technology to replace its previous Go
Global offering [35]. Go Global losslessly compressed X traffic from Unix workstations to thin

PC clients.
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2.2.7. Virtual Network Computing

AT&T’s Virtual Network Computing (VNC) is a freeware application that allows remote
operation of X Windows and Microsoft Windows [5]. VNC uses bitmap updates, as described in
Chapter 4, including a copy-block update to transmit the screen changes. VNC also uses various

image compression techniques to reduce the amount of data required for the bitmap updates.
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CHAPTER 3 Primitive-Based Approach

3.1. Introduction

The primitive-based approach to remote text / graphics transmission involves sending draw-
ing primitives which describe symbolically what to draw. These primitives are often the same

drawing primitives used by the applications to describe their content.

Figure 3.1 depicts the operation of a typical primitive-based text / graphics system. Each
application connects to the text / graphics server individually and sends its content as graphics
primitives requests. The text / graphics server is responsible for combining these reqﬁests into a
single stream which is sent to the remote client. The text / graphics server is also responsible for
decoding user input, such as mouse or pen movements, and forwarding it to the correct applica-

tion, as well as providing session and access control.

The primitive approach places two important requirements on the transport system:

1. Lossless transmission
2. Order and integrity must be preserved
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FIGURE 3.1. Conventional primitive approach

The transport system must be lossless because if any primitives are lost, this can have sig-
nificant ramifications for the entire image. For instance, if a “clear screen” is dropped, the
entire display would be incorrect. Typically, primitive-based systems also use notions of graphics
contexts comprised of “current pen” and “current font” information. If commands to change these
graphics contexts are dropped, then all subsequent primitives which use these contexts will be

effected.

The transport system must preserve order and integrity. If primitives are reordered then
their meanings can be dramatically altered. Often there are direct dependencies between two
primitives; for instance, if a “set current color red” and “draw line from 0,0
to 10,10” are swapped, the color of the line drawn would not necessarily be red. If a
“copy rectangle” is swapped with commands used to initialize the area being copied, this

too would yield an incorrect result.
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Thus transport-level protocols must ensure that the data stream is correct once it makes it to
the text / graphics subsystem. Standard protocols such as TCP/IP[42] can satisfy the above
requirements, even when using lossy links, and are thus typically used. However, this can result in

significant increases in latency as shown in the next section.

3.2. Bandwidth and Latency Characteristics of Primitive-Based
Systems

Primitive-based systems have the advantage that their bandwidth requirements are typically
low since primitives can usually be specified compactly. However, the use of primitive-based sys-
tems can result in significant latencies to the end-user when used over lossy and/or bandlimited

links.

3.2.1. Latency Due to Queuing Delays

In a primitive-based system, the applications specify the primitives used to render their
graphical display. The text / graphics server must send each of these primitives, in order, to the
remote terminal to assure proper display. Since all primitives must be sent, transmission over a
bandlimited link can result in queuing delays as shown in Figure 3.2. The figure depicts the result
of a remote user scrolling through a list of foods over a slow link which can only transmit two text
items per time step. The positions the user is scrolling to are shown on the left side of the figure
while the data received by the remote terminal are shown on the right side. At time T=0, the user
has selected the top of the list and thus desires for the first four entries, Apple, Banana, Chicken,
and Dessert, to be displayed. However, due to bandwidth limitations, only Apple and Banana can
be sent over and Chicken and Dessert are queued to be sent over. At time T=1, Chicken and Des-

sert are received by the remote terminal but now the user desires to see Fudge, Gum, Ham and Ice,
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and thus they must be queued up. At time T=2, the user has selected the final position viewing
Pizza, Quiche, Rice, and Salt, but it is not until time T=5 that this appears. Thus queuing delays

result in significant latencies for the user.

3.2.2. Latency Penalty Due to Loss

* In order to understand the effect of data loss on latency, it is necessary to first review the

operation of reliable protocols.

3.2.2.1. Reliable Protocols

As previously presented, the primitive-based system relies on an end-to-end guarantee that
order and integrity of data will be presérved. If the link is lossy, a reliable protocol can be used to
assure that data is not lost or reordered. These reliable protocols work by detecting packet losses

at the receiver and requesting retransmissions from the sender. If a given packet is detected as
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having been dropped, it is re-requested by the receiver. The reliable protocol then holds all data it
receives corresponding to packets which should follow the lost packet, until the lost packet is suc-
cessfully received. Thus the application receives all data in order and without loss, but with

increased latency if packets are lost.

3.2.2.2. Latency of Loss

The effect of reliable protocols on the transmission of text / graphics data is shown in Figure
3.3. The figure depicts the transmission of four drawing primitive packets - labeled A, B, C, and D
in response to a button push on the remote client. In the figure, the four packets are transmitted in
order, but packet B is lost in transmission, either due to signal degradation or congestion. The
drawing of packet A proceeds without delay, incurring only the single round-trip latency necessary

for the remote client to request an action, and the text / graphics server to effect that action. How-
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ever, packets B, C, and D all incur at least a two-round trip delay since the loss of B needs to be

detected and sent to the text / graphics server for retransmission!. This results in reduced interac-

tivity.

1. Note that protocols such as SNOOP [8] can reduce this to a single traversal over the wired network, but an additional
round-trip up to the basestation is still required.
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CHAPTER 4  Bitmap-Based Approaches

4.1. Conventional Bitmap Approach
The conventional bitmap-based approach is depicted in Figure 4.1. In the conventional bit-

map-based approach, drawing primitives from all applications are combined and rendered by the
text / graphics server. The communication between the applications and the text / graphics server
is performed using primitives as before, but the communication between the text / graphics server

and remote terminal uses rendered bitmaps.
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FIGURE 4.1. Conventional bitmap approach.
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The bitmap-based text / graphics server operates similarly to a conventional text / graphics
server attached to a framebuffer. The text / graphics server maintains its own framebuffer in mem-
ory since the information in a given primitive often does not contain enough information to deter-
mine all pixels in an update. For example, the “copy block” primitive requires the current
contents of the screen for proper operation. Additionally, since bitmap updates are typically sent
as rectangular blocks or unions of such blocks, primitives which would not completely modify all
pixels in ablock - such as “draw circle”or “draw text” - require the old pixel values to be
known for use in the update packets. The connection between the text / graphics server and remote
terminal is established using either a reliable link or a reliable transfer protocol layered on top of

an unreliable link.

4.1.1. Assessment of Conventional Uncompressed Bitmap Approach

The conventional bitmap approach, as described, has one primary advantage, which is
reduced complexity requirements in the remote terminal. Since the text / graphics server performs
all rendering, the remote terminal needs only know how to display bitmap updates. Thus all draw-
ing élgorithms, intermediate state, and font information is confined to the text / graphics server.
As described below, the InfoPad project exploited this to develop low-power, lightweight portable

clients.

However, the conventional bitmap approach suffers from lower bandwidth efficiency which
translate into greater latency using a given bandwidth link as compared to the primitive approach.
This is because typically the bitmaps are less compact than the primitives used to generate them.
Both the latency due to queueing delays and the latency due to loss previously described would

still apply to the conventional bitmap system as described.
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4.2. InfoPad B/W Bitmap System

The InfoPad project [49] delivers ubiquitous portable computing using the remote interac-
tive computation model described in Section 2.1.1. All applications are executed on a central
compute cluster while display updates are sent to wireless portable “pads” as shown in Figure 4.2.
Pen and audio information is sent back to the compute servers to allow user interaction. In order to
obtain hours of operation using lightweight batteries, the InfoPad hardware is kept as simple and
efficient as possible. Through careful system design, the pad hardware is reduced to a multimedia
terminal with highly optimized data paths for heavily used functions such as the text / graphics and
video. The text / graphics server forms the bridge between the custom low-power terminal hard-

ware and the generic applications.

The text / graphics hardware subsystem is little more than a monochrome framebuffer that
also decodes data packets specifying bitmap screen updates. The screen updates are sent as data
packets with headers specifying the x, y, width, and height of a rectangular update region, as well
as a data portion specifying the uncompressed bitmap. One bit is required for each pixel of data.
The header and data are independently encoded, optionally using an error protection coding and

checksum mechanism to protect against and detect bit errors.
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Typically the graphics packet headers use error protection while the graphics packet data do
not. (The exception is the implementation of asymtotic reliability described below.) This means
that if the packet header is in error then the packet will not be processed. If the packet header is in
error, the location or size of the update will not be correct, and thus the data will not be useful.
However if a localized error occurs in the data, individual pixels might be incorrect but the bulk of

the data will be correct and thus useful.

4.2.1. Pros and Cons of Uncompressed Bitmap System
While this simple bitmap update scheme does require significant bandwidth to support

interactive applications, it offers some advantages in system performance and simplicity.

First, as previously stated, it allows for low-power hardware decoding. The entire datapath
for decoding the packets and placing them into the framebuffer is readily implemented in custom
logic resulting in very low power consumption. All protocol decoding consumed 1.9mW and the

text / graphics framebuffer consumed 0.5mW [15].

Secondly, it reduces channel robustness requirements since data can be corrupted or lost
without significant implications to system performance. The bitmap packets are independent, in
that the loss or corruption of a given packet will effect the region of the screen it is targeting, but
not subsequent updates. This means that if packets are dropped, it is not necessary to have them
retransmitted and received before processing subsequent update packets. Thus a reliable transport
protocol is not required and the latency due to loss of Section 3.2.2. is avoided. This is to be con-
trasted with the primitive approach of Chapter 3 where an error in one primitive might effect many
later primitives. Additionally, if individual data bits in the packet are incorrect, the display errors
will be small and localized. While the errors might be perceptible, they will rarely effect the over-

all intelligibility of the screen.
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4.2.2. Asymtotic Reliability

Although it is acceptable for some temporary pixel errors to occur in order to greatly reduce
latency, it is desirable if the “long-term” display is correct. Long-term error-free transmission
must be designed not to prevent low-latency operation and should be possible if excess link band-
width is available. In this way the user obtains the best of both worlds - low-latency and error-free
display. The process by which slightly incorrect data will be displayed initially yet eventually the

display will be error-free is called asymtotic reliability [36).

Asymtotic reliability, as described in [36], is achieved by using a low-latency unreliably pri-
mary display of data as previously described, combined with a background higher-latency reliable
transport. In this way, a fast “best effort” is made which may result in some scattered bit-errors,
followed shortly by one or more “refresh” updates which will be higher latency but will not intro-
duce errors. The asymtotic reliability system reduces complexity requirements in the remote ter-
minal since no uplink acknowledgments are necessary. Additionally, it can be used as a scalable
information dissemination mechanism since only downlink traffic is used, any number of receivers

can participate.

The refresh packets are sent at a low rate, in the background, using a higher level of error
correction as well as error detection. The higher level of error correction reduces the probability
that an error will occur. Error detection is used to suppress the display of packets if any error does
occur. This error detection is critical to assure asymtotic reliability. Since only error-free packets
are processed, asymtotically all errors on the screen will be corrected. Smaller packet sizes are
used for the refresh packets since the packets must be error-free to be useful and the probability of

one or more errors in a packet is exponential in the packet size.
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4.3. Improved Bitmap using Virtual Framebuffer

While the system previously described allows remote operation of a wide variety of applica-
tions on a lightweight portable terminal, it does require a high-bandwidth communications link for
interactive operation. Intuitively, since each drawing request results in the transmission of one or
more screen update packets, actions that cause many updates to the screen in a short period of time

can easily result in a backlog of the communications channel.

The key to efficient text / graphics transmission is to determine which information the user
wants to see and how to send this information. In the case of remote text / graphics rendering, the
user only wants to see current information. Thus if a user scrolls through a long list, they typi-
cally only want to see where they end up. If a user is viewing a progress bar, they only want to see
the current value of it. If the user is participating in a video conference, they typically only want to
see the most current image. The task is then to determine how to send only current information in
such a way that a limited bandwidth link does not cause backlogs, and errors do not result in
increased latency. Another way to view the problem is that the applications are typically designed

for a high-bandwidth environments but the communications link is low-bandwidth.

One critical observation is that transmission of text / graphics information over bandlimited,
lossy links is a form of remote-rendering just as transmission of video is. Two mechanisms which
facilitate operation over bandlimited lossy links are data compression and data reordering. While

video transmission techniques have used both of these aspects, text / graphics compression has so

far been typically restricted to data compression only!. Thus in order to provide better perfor-

mance, intelligent data reordering must occur.

1. One exception, in particular, is [37].

30



Application -
Application - >

svpicaion < 7
Terminal
e e e g raonwe e . e N LA T T R T e e A
| Master |
| | | |
r Writes to Virtual Framebuffer | N Reads from Virtual F ramebuffer]
f Operates at Workstation speed | f Operates at Link speed !
 Generic | f Tailored to wireless environmenq
L s Vi i e VR g e A it i | s s i i = et it i SRt i e |

Always send most current information

FIGURE 4.3. Improved bitmap approach using virtual framebuffer architecture

The virtual framebuffer architecture, shown in Figure 4.3 achieves this goal. In this archi-
tecture, the text / graphics server is split into two halves - the master and slave - which are coupled
through an auxiliary buffer called a virtual framebuffer. The master communicates at full speeds
with the applications and tracks the current contents of the screen on the virtual framebuffer. The

slave then watches the virtual framebuffer and sends on any changes to the remote terminal.
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FIGURE 4.4. Virtual framebuffer

The virtual framebuffer, shown in Figure 4.4, consists of two arrays whose size matches the
size of remote terminal’s display. The first array contains the actual pixel data being displayed and
is continually updated by the master and read by the slave. The screen is then divided into a set of
blocks with one flag in the second array assigned to each block. These flags are used to indicate if
the blocks have been updated by the master since the last read by the slave. The block size is cho-
sen to be small enough such that granularity of updates is not too coarse, and large enough such
that there are not so many blocks that the overhead of checking the blocks is noticeable. For effi-
ciency reasons, row update flags are used to indicate if any blocks in a given row have been
updated while a global update semaphore is used to block the slave until the master has updated

something.

The master communicates with the applications at full workstation speeds. It responds to
primitive drawing requests by rendering to the virtual framebuffer pixel buffer. When the master
draws on part of the virtual framebuffer, it also sets the updated regions’ “updated” flags. If the
flags were already set, they remain set. In this way multiple updates are combined, reducing the

amount of data sent to the remote terminal.
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The slave runs in its own thread and asynchronously scans the virtual frame buffer from top
to bottom in raster scan order. When it encounters blocks on the screen whose updated flags are
set, it clears the flags and sends the data to the remote terminal. The slave uses region growing to
form larger rectangular blocks from sets of contiguous blocks. This reduces the per-block over-

head in transmission to the remote terminal.

The slave can also scan the virtual framebuffer in non-raster scan order to prioritize the dis-
play of certain parts of the screen. For instance it can scan the region surrounding the cursor more
often than the rest of the screen since that area is typically of greater interest to the user. The spa-

tial independence of the bitmap representation allows this.

4.3.1. Rate and Flow Control

The output of the slave can then be subjected to rate or flow control to match the link char-
acteristics. Since it is decoupled from the master and applications, the slave’s execution can be
blocked without impacting application performance. The initial implementation in the InfoPad
system used a rate-control system to limit the text / graphics traffic to be under a given rate. This
rate is less than the capacity of the radio channel and can be dynamically changed. It was then
expanded to include negative acknowledgments (NACK) described in Section 4.3.3.1., and can be
extended to acknowledgment (ACK) based flow control as described in Section 4.3.3.2. Initially

asymtotic reliability was used to reduce client complexity and protocol requirements.

Asymtotic reliability is readily integrated into the virtual framebuffer architecture by having
the slave send refresh packets at a given rate while also sending normal updates. Adaptive band-
width control is performed by setting the refresh rate as a number of bytes per complete slave pass
through the virtual framebuffer and setting a minimum interval between complete passes through

the framebuffer. Establishing the refresh rate in terms of bytes per complete slave pass causes the
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amount of bandwidth dedicated to refresh to automatically reduce as the amount of foreground
traffic increases. It also scales with the size of the “updated” area such that if a small area of the
framebuffer is rapidly updated, refresh of the rest of the screen will still proceed rapidly, but if a
large area of the framebuffer is continually modified, more bandwidth will be dedicated to its dis-
play, at the expense of slower refresh. Setting a minimum interval between complete passes estab-
lishes a maximum frame rate and can be used to reduce bandwidth utilized if a small region of the
screen is updated very rapidly. At a minimum, it makes sense to set the transmitted frame rate to

be no higher than the frame rate / refresh rate supported by the remote display device.

4.3.2. Analysis of Virtual Framebuffer Performance

In this section, the benefits of the virtual framebuffer technique are explored by analyzing

the reduction in latencies due to queuing delays and loss.

4.3.2.1. Reduced Latency Due to Queuing Delays

Using the virtual framebuffer approach, latency due to queuing delays is bounded and dra-
matically reduced by the virtual framebuffer architecture through a process called adaptive band-
width compression (ABC). ABC is a direct result of the virtual framebuffer architecture’s ability
to combine multiple writes to the same region of the screen. Recall that if the master writes to the
same region of the virtual framebuffer before the slave has had a chance to send on the contents,
the earlier updates are overwritten by the latest update. Thus effectively the bandwidth going into
the virtual framebuffer is the high bandwidth of the application and coming out is the lower band-

width that the link can support.

The example depicting latency due to queuing delays is revisited in Figure 4.5. Again the
link capacity is set to two lines per time step. At time T=0, the user has selected the first four

entries in the list. The slave starts sending from the top, only having time to send the first two lines
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FIGURE 4.5. Reduced latency due to adaptive bandwidth compression (ABC)

- Apple and Banana. At time T=1 the user has selected to see Fudge through Ice. The slave is now
reading the bottom half of the screen and would send over Ham and Ice. Chicken and Dessert
would never be sent. At time T=2, the user has selected to see Pizza through Salt. The slave is
now at the top of the screen and Pizza and Quiche would be sent. Fudge and Gum were thus over-
written before they could be sent. Finally at T=3, the user has not caused any further updates and
the slave is at the second half of the screen and can send over Rice and Salt. At this point, all
regions of the screen have been communicated and all updated flags are cleared. Thus using the
virtual framebuffer technique, the user has a complete, correct picture of the screen only one time-
step after they cease input activity, while the conventional primitive and old bitmap techniques

require three additional time steps.

As a numerical example of the improved interactivity, consider user scrolling through a doc-
ument in a 500x500 pixel monochrome window over a 500 kbps link. Each frame would require

250 kbits of data or about a half-second to send. Thus if the user scrolls five times in a second, it
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FIGURE 4.6. Reduced latency due to loss

will take an additional 1.5 seconds for all of the data to be delivered. If they continue at this rate
for 5 seconds, it will take an additional 7.5 seconds for the final data to be delivered. Using the
virtual framebuffer system the lag would always be at most the time to update the screen or 0.5

seconds in this case.

4.3.2.2. Reduced Latency Due to Loss

Figure 4.6 shows how the virtual framebuffer approach using asymtotic reliability results in
reduced latencies due to packet loss. As in the example of Figure 3.3, the figure depicts what will
happen if the second (B) of four packets is lost. The three packets which were successfully com-
municated (A, C, D) are displayed with a single round-trip latency while only the dropped B
packet is delayed. Using asymtotic reliability, it would be delayed until a refresh packet could

deliver the data. Using more sophisticated methods described below, the latency can be further

reduced.
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4.3.3. Integration of Virtual Framebuffer into Transport Control Protocol

The virtual framebuffer can be integrated into the transport protocol for further increases in
throughput and reliability. Conventional transport protocols, such as TCP/IP, order individual
packets in a stream with a sequence number. They use these sequence numbers to assure that
every packet in the stream, and thus every byte in the stream, is successfully communicated in
order. Since conventional transport protocols have no knowledge of the underlying data, their goal

has to be to successfully transmit the entire stream of data. This leads to two problems:

1. Once data enters the transport layer, it will consume bandwidth.

2. Since no dependency information is known, it is assumed that all data
is dependent on all other data and thus all ordering must be preserved.

However, in the case of the virtual framebuffer, the location on the screen that an update
corresponds to contains valuable information that can be used to remedy the above problems. The
integration of the virtual framebuffer with the transport layer works as follows: Instead of having
a separate buffer to store data that has been committed but not yet acknowledged, the virtual
framebuffer serves as the holding buffer. The update flags indicate which data must be sent and
thus the actual data need not be copied. Thus actual packetization of the data does not occur until
just before the packet is going to be sent over the network. In this way, old data cannot be queued
up since old data is superseded as previously described. The virtual framebuffer can be used to
implement a negative acknowledgment (NACK) or positive acknowledgment (ACK) based sys-

tem as described next.

4.3.3.1. Negative Acknowledgments (NACK)
The InfoPad downlink traffic consists of text / graphics, video, and audio data. While the

total available bandwidth to the pads is fixed at approximately 500kbps, the portion dedicated to

each type of data varies based on the amount of traffic dedicated to the others. For instance, if no
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other streams were present, text / graphics could use the full 500kbps link, but if a 300kbps VQ

video clip (see Section 5.2.) is playing, the amount available to text / graphics drops to 200kbps.

The separate multimedia streams are not combined until a gateway which follows the text /
graphics, audio, and video “type servers”. This makes it more difficult for the type servers to mea-
sure the amount of traffic generated by other sources. In addition to long-term rate adaptation,
short term management of the traffic is necessary. Since the gateway combines the various traffic
streams, it is able to determine when the net rate exceeds the link capacity. The gateway buffers
data, and thus if the total incoming traffic is greater than the outgoing rate limit, packets in the
buffer will be aged. These “old” packets can be dropped to assure that the backlog of data is
bounded. The gateway then sends negative acknowledgments (NACKSs) back to the sender. These
NACKSs can then be integrated quite easily into the virtual framebuffer architecture by simply hav-
ing the slave set the “updated” flags of the region corresponding to the packet that was NACKed.
Thus the NACK indicates that the data specified in the packets is still outstanding and thus must be
sent again. Note that if, in the interim, part or all of the region specified by the packet was modi-
fied again, the updated flag would already be set and thus no extra bandwidth will be consumed by

the retransmission.

Note that with the simple scheme above, superfluous retransmission could occasionally

occur that would waste bandwidth, but not produce an incorrect result. An example is as follows:

Region of screen is updated and transmitted as update A.

Same region is updated and transmitted as update B.

Update A is removed by gateway and NACK is returned.

Region is invalidated, thus causing resend of region.

Region is retransmitted as update C which is identical to update B.
. Update B received correctly.

. Update C received correctly.

R N
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Thus an additional update packet is sent because a region is updated between being sent and
NACK’ed. However, since current data is always sent, extra update packets will never cause the
incorrect results to be shown. An extension to the basic NACK algorithm could include keeping a
sequence number, as described below in the ACK scheme, to avoid extra retransmissions in the
above case: If a region is updated after a packet is sent, all retransmissions due to that packet are

aborted.

4.3.3.2. Positive Acknowledgments (ACK)

While negative acknowledgments allow for rapid notification of congestion, they are not

well suited for packet loss or error notification for the following three reasons:

1. It is often difficult to detect the absence of a packet.
2. NACKs can increase congestion if sent over the bandlimited medium.
3. If the NACKSs are sent via a lossy medium, they too can be lost.

For these reasons, positive acknowledgments (ACK) are preferred. This was not imple-

mented in the InfoPad system but could be used in similar systems!.

The ACK-based system works by tracking the update packets sent to the remote terminal
and having the remote terminal send back acknowledgments of each graphical update packet or set
of such packets. In this way, the text / graphics server can track which updates have been success-
fully communicated to the remote terminal and retry any that have not. As before, no intermediate
storage buffers are used since the only data that is useful is the most current data, which can be
found in the virtual framebuffer. Also as before, multiple updates to the same region are combined

whenever possible, discarding old updates.

1. Note that the ideas in this section, unlike those in the previous section, have not been implemented but are provided
as an extension of implemented work.
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In order to track the reception of each packet, a sequence ID is used. The sequence ID is
incremented for each transmitted packet such that it will be unique to all packets that could be in
flight. The virtual framebuffer includes a sequence ID and transmit time field for each block as
described below. Each block in the virtual framebuffer also has a status field that can indicate one

of three states;

1. Not updated
2. Update required
3. Update in flight

The “not updated” state is used when the contents on the remote terminal are current and
thus the local contents in the virtual framebuffer have not been updated recently. When an update
does occur, via the master, the status of the block is changed to “update required”. No sequence ID
is associated with the block in either the not updated or update required states. Once the slave
detects that the block has been updated, it generates a graphical update packet, assigns it a
sequence ID and transmits the packet. The sequence ID and time of transmission are recorded in
the virtual framebuffer and the block’s state is changed to “update in flight”. When an acknowl-
edgment of the update is received from the remote terminal, all blocks covered by the acknowledg-
ment whose sequence ID still matches the ID of the acknowledgment are changed to the “not

updated” state.

If any of the blocks are updated between the time that the update packet is sent and the time
that acknowledgment was received, the master will then revert their state back to the “update
required” state and their sequence ID field is no longer relevant. When the slave detects that they
have to be sent, it will generate a new update packet with a new sequence ID. All links to the old
update packet in flight will be forgotten since this would be stale data. Thus when the old

acknowledgment packet is received, its sequence ID will not match the sequence ID of the blocks
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and their state will not be changed to “not updated” until an acknowledgment of the most recent

update is received.

If data is lost or corrupted, it must be resent. This can be detected by the absence of an
acknowledgment of the packet. The absence is detected with via a time-out - i.e. if the acknowl-
edgment is not received within a certain amount of time from the transmission of the packet, the
packet is assumed to have been lost. Additionally, if packets transmitted after the packet in ques-
tion are acknowledged, but the packet in question has not been, then it may be safe to assume that
the packet has been lost. If the network can cause out-of-order delivery to occur then this must be
considered before assuming that a packet has been lost. Much research based on TCP/IP has

addressed these issues.

The packet loss detection can be incorporated into the slave’s scanning process. As the
slave scans to see if any blocks have been updated, it can also check if any blocks are in the
“update in flight” state and should be treated as lost. In this case, they are implicitly switched to

the “update required” state and a new update packet is generated.

The acknowledgment protocol must differ from byte-stream reliable protocols such as TCP/
IP. TCP/IP uses cumulative acknowledgments; a TCP/IP receiver sends back the sequence ID of
the latest packet which has been successfully received and had all previous packets in the sequence
also successfully received. In this way, each acknowledgment of a given packet also acknowl-
edges all prior packets. This can be useful if an acknowledgment is dropped as later acknowledg-
ments may accomplish the acknowledgment. However, in our case, this would create false-
dependencies. Thus each packet must be individually acknowledged. A bit-vector representation
can be used to acknowledge multiple packets in a single acknowledgment. I.e. an acknowledgment
packet could contain the sequence ID of the first and last packet to be acknowledged and then a bit

vector specifying which of the intermediate packets should also be acknowledged. The acknowl-
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edgment of a given packet could be contained in multiple acknowledgment packets to protect

against loss of acknowledgment packets.

Graphical updates whose data is partially corrupt but still usable could be displayed but not
acknowledged. In this way, the user could obtain a mostly-correct display very rapidly and the

fully correct display would follow as soon as the retransmission is successful.
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caapters  Color Text / Graphics, and
Video Support

5.1. Bandwidth Requirements of Uncompressed Color
The bitmap approach previously described, as demonstrated in the InfoPad project, yielded

an interactive display supporting an effective graphical user interface. However, the 640x480
monochrome display requires several hundred kilobits per second of bandwidth for interactive
operation. While a color display is preferable from user and application perspectives, it does sig-
nificantly increase the demands on the communications link. Without using compression, the
monochrome display requires one bit per updated pixel. Thus a 200x200 window, updated at 10
frames per second (fps), would réquire 400kbps - which is feasible using high bandwidth indoor
radios. However, using a true-color display, each pixel requires 24 bits - 8 for red, 8 for green, and
8 for blue; Thus the same 200x200 window updated at 10 fps would require almost 10Mbps, or
given the same 400kbps link, an update rate of less than one half of a frame per second would be
possible. Using a conventional 8-bit per pixel paletized display, about 3.2Mbps is required for a
10fps update rate and 400kbps will allow slightly more than one frame per second - neither of

which yields a good system solution.
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FIGURE 5.1. InfoPad full-metion VQ video support. Detailed in [15]

5.2. Full-Motion Color Video Support via a Separate Display

One way to enable full-motion color video, while not impacting the display of text / graph-
ics used in applications, is to retain the monochrome display for text / graphics and use a separate
display for full-motion color video. The InfoPad project used this approach to allow independent
research into text / graphics and video delivery. From the perspective of wireless link research, the

text / graphics traffic necessitated low latency delivery of bursty traffic, while the video traffic

required high, but more or less uniform, bandwidth.

5.2.1. Lossy Vector Quantization for Image and Video Compression

The InfoPad project used lossy Vector Quantization (VQ) to deliver full-motion color video

with minimal power consumption and hardware costs! [15]). Vector quantization entails repre-
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senting groups of pixels, such as 4x4 pixel blocks, within the image using a single index into a
“codebook”. The codebook contains sets of the groups of pixels. Since the number of bits
required to specify the codebook index is much smaller than the number of bits to specify the col-
ors of the pixels in the group, compression is achieved. However, since not all possible combina-
tions of pixels can be represented in the codebook, the compression is lossy. (If all combinations
were represented then the codebook index would have to be as large as all of the pixels in a group
combined.) Typically each group of pixels in the input image is assigned the index of the code-
book entry which has the group of pixels that is most similar to it, as determined by a minimum

mean squared coding error.

While vector quantization does not yield the highest quality video for a given bit rate, it
does perform significant compression with low-complexity decompression. The coding is asym-
metric in that compression is computationally intensive but decoding is not. Since the decoder is
typically a portable device, and coding of movies needs only be performed once, it is well suited
for a remote wireless portable device. Additionally, vector quantized video does not cause error
propagation within each frame or across frames. Bit errors are localized to a particular region and
will not persist into the next frame. However, bit errors in codebook updates will persist across all

frames that use the codebook entries that are in error.

Decoding of the vector quantized bit stream can be performed in hardware as a set of mem-
ory lookups and an optimized coordinate space transformation. The InfoPad low-power hardware
decoding operates with a power consumption of less than 2mW. VQ encoding can be computa-
tionally intensive since a codebook search has to be performed for each group of pixels in the

image. However, techniques described below show how trade-offs between coded image quality

1. While this section presents my work in real-time VQ video transcoding, it should be clear that the choice of VQ dis-
play, the hardware, coding, and format were determined by Chandrakasan and Brodersen before my joining the

group.
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and encoding time can be achieved through the choice of the codebook and codebook search algo-
rithm. Both high complexity (low-speed), high-quality coding, as well as low-complexity (high-

speed), lower quality compression techniques are described.

The details of the InfoPad VQ video decoder implementation are shown in Figure 5.1. A
display of 128x240 pixels is generated from a modified luminance (Y) / chrominance (IQ) color
space where the I and Q have been decimated by 2 in both the horizontal and vertical directions.
The decimation is to exploit the reduced sensitivity to chrominance information of the human eye
to reduce system bandwidth requirements. The exact coefficients used to convert the YIQ into
RGB were determined as a compromise between hardware power savings and the benefits of
decoupling and subsampling the chrominance components with respect to the luminance compo-
nents. The 128x240 Y image and 64x120 I and Q images are each generated through vector quan-
tization decoding via a table lookup. All vectors in the system are 4x4 sample blocks where this
corresponds to 4x4 pixels in the case of the Y component or 8x8 pixels in the case of the I and Q
components, due to upsampling. The vectors for the Y, I, and Q images are selected from three
256-entry codebooks. Thus the images are specified by 32x60 8-bit Y codes and 16x30 8-bit I
and Q codes. Typically the codebooks are updated infrequently so that only the Y, I, and Q co&es
are updated on a frame by frame basis. This requires 2880 bytes total, allowing 30 fps operation
given a 690kbps downlink. If the vector quantization is not used, and the video is specified by 24-
bit true-color pixels, each frame would consume 92160 bytes, requiring more than 22 Mbps for a

30 fps video stream. Since only the codebook and indices are retained in memory, and decompres-

sion is performed on the fly, memory requirements are significantly reduced’.

1. Note that this approach, while implemented in hardware as a compressed framebuffer, is treated in this chapter and
not Chapter 6 because the video is sent in complete frames, and thus none of the issues related to independent manip-
ulation of subregions of the display are relevant.
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5.2.2. VQ Video Encoding

The steps required to encode a VQ video stream are shown in Figure 5.2. Since the VQ
video compression format does not use inter-frame compression, such as motion compensation,
the input frames are encoded independently. The input video frame is first resized to the size of
the VQ display, 128x240. For fast coding, described below, a half-sized image is produced. Next
the image is converted into the YIQ color space via matrix multiplication or a table-lookup equiv-
alent. Finally the image is quantized by considering each of the 4x4 sample blocks in the Y, I, and
Q image planes separately, and selecting the entry in the appropriate codebook that exhibits tﬁe
least mean-squared error. The codebook can be chosen adaptively from the video clip or statically,

yielding higher image quality and reduced coding time respectively.

5.2.2.1. Adaptive VQ Encoding

Adaptive VQ encoding entails generating the codebook based on the video sequence to be

coded. In this way the codebook will most effectively represent the images in the video. A single
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FIGURE 5.3. Single frame from the video clip and luminance (Y) codebook adapted to it.

codebook can be used for the entire video or else the codebook can be periodically updated on a
scene-by-scene basis, or whenever the coding error exceeds a given threshold. In either case, the
number of frames used to determine the codebook is typically limited to reduce the time to gener-

ate the codebook.

The K-means clustering algorithm is used to generate a representative codebook from a
sequence of input frames. All 4x4 blocks in the frames of the input video are considered as train-

ing vectors. The Y, I, and Q codebooks are generated separately.

The K-means clustering algorithm adapts the codebook as follows: An initial codebook is
used to code the input vectors. Then each codebook entry is recomputed as the average of all
image vectors for which it is the best match. Thus each codebook entry is modified to better repre-
sent the vectors that match it. All vectors are then recoded and the codebook is updated until the
total coding error stops decreasing. The initial “seed” codebook can be specified externally or

defaults to the static codebook used for the fast coding described in the next section.

Some extra steps are used to ensure that the codebook best represents the diversity in the

image. The 256 codebook entries are compared to each other, and if two are too similar then one is
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FIGURE 5.4. Gain / shape codebook used for fast VQ encoding.
It consists of 56 solid gradients and 50 each of vertical, horizontal, and both diagonal
gradients.

“freed” up for use by some other vector. The vectors which matched the freed codebook entry are
then assigned to the one that it was similar to. Next, the unused codebook entries are filled with the
input image vectors which had the greatest coding error, to ensure codebook diversity and reduce
the worst-case coding error. Figure 5.3 shows the luminance (Y) codebook adapted from a video

sequence.

5.2.3. Fast Fixed-Codebook VQ Transcoding

As presented, the VQ video encoding time is dominated by the time to search the codebook.
In excess of 10 million pixel differencing operations are required per frame for the 128x240 video
format. This results in a coding rate of only a few frames per second using optimized C code on a
Sun UltraSparc 2 workstation. However, the search can be accelerated by tailoring the codebook

design for fast search.

Gain / shape codebooks orthogonalize the “shape” of the codebook entries from the extent

or “gain” of the entries. In this way if there are a few basic shapes, and the best gain for each
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FIGURE 5.5. Comparison of adaptive and fast codebooks.
Left uses fixed, fast codebook, while center uses another video’s codebook, and right
uses a codebook adapted for the video in question

shape can be quickly determined, then matching can be greatly accelerated. The gain / shape code-
book used is shown in Figure 5.4. It consists of 56 solid gradients and 50 each of vertical, horizon-
tal, and both diagonal gradients. The best match is determined by subsampling the 4x4 pixel
blocks by two and using each of the four values to select the best gain for each of the five shapes in
a single lookup. The indices used for fast match lookup are shown in the figure. Tables map the
index value or indices values to the best codebook for each shape. The error is then computed for
the best candidates of each of the five shapes and the codebook entry giving the least error is cho-
sen. Because the gradients in the fixed codebook are smooth, half-resolution comparison is possi-

ble. The fast coding method can achieve 30fps coding for real-time compression

Figure 5.5 shows a comparison of the image quality delivered by coding frames from two

video clips using three methods: fast coding, coding to a codebook adapted to another video clip,
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FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding

and coding to a codebook adapted to the video clip in question. As can be seen, the fast coding
method yields a coarser looking video, coding to another video can result in some artifacts, while

adapting to a particular video results in the most aesthetically pleasing image.

5.2.4. MPEG to VQ Video Transcoding

Due to the abundance of MPEG video clips, an MPEG to VQ Video Transcoder was
designed both as a source of VQ videos to demonstrate the pad as well as to serve as a vehicle to
explore issues in VQ coding techniques. The data flow used to transcode MPEG to VQ videos is
shown in Figure 5.6. MPEG natively generates separate luminance and chrominance images
where the chrominance images have been subsampled by two in each direction. The MPEG and
VQ color spaces differ, however, as the MPEG color space was optimized solely for human visual
perception while the VQ color space also considers hardware color space conversion complexity.

The utilities used to generate VQ video clips are detailed in Section 9.3.3. and Appendix A.
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5.2.5. Live VQ Video Display of MBONE Transmissions

VQ video encoding was also integrated into the MBONE video gateway (VGW) [1] to
allow live viewing of MBONE transmissions. The fast coding method allows real-time display.
The GUI of the MBONE applications can be displayed in monochrome on the main text / graphics

screen.

5.3. Motivation for Unified Text, Graphics, & Video Display

In order to minimize power consumption and complexity while supporting both general pur-
pose user-interface based applications, as well as streaming video, the InfoPad system, as previ-
ously described, employs separate text / graphics and streaming video displays. The text/ graphics
display is a 640x480 monochrome, conventional framebuffer-based display. This allows individ-
ual pixel addressability to enable most user-interface based tasks, such as a shared whiteboard,
handwriting recognition, and web browsing. The monochrome nature allows timely delivery of
even uncompressed bitmap updates given a moderately high bandwidth wireless link. The mono-
chrome display is not suitable for full-motion video, and thus an auxiliary display supporting color
and compression is required. For this purpose, a separate vector quantized full-motion color dis-

play was used.

While using separate displays is quite effective to demonstrate the individual components,
the low-power consumption achievable, as well as the capability of remote operation of both user-
interface and streaming video tasks, it requires special applications to display the streaming video,
only one video can be displayed at a given time, and the size and quality of the video is con-
strained. Additionally, the user-interface based applications cannot enjoy the benefits of color.
Thus it is advantageous to have a single display which can seamlessly display both user-interface

based graphics as well as full-motion video.
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5.4. Uncompressed Framebuffer, Compressed Sends

One approach to improve this situation is to compress the bitmap updates before transmit-
ting them. Thus the same basic infrastructure is used, though the updates are compressed before
transmission and uncompressed at the receiver end. This can significantly reduce bandwidth
requirements. Though it should be noted that this often renders corrupt packets useless. Different
degrees of compression and channel coding allow a trade-off between bit rate requirements and
error tolerance. Much research has focused on compression of continuous-tone images such as
photographs. Some techniques include JPEG [40] and Wavelets [60]. Chapter 8 will present
background and a new technique for compression of discrete-tone images such graphs, text, and

most graphical user interfaces.

53






cuarter 6  Compressed Framebuffer
Approach

6.1. Minimizing Client Hardware and Power Consumption

While the compressing bitmaps for transmission reduces the bandwidth requirements
imposed on the communications link, it does not reduce the amount of storage required on the
remote client. This then impacts the power consumption and cost of the portable terminal. As pre-
sented previously, the storage requirements of a color screen are 8 to 24 times that of a mono-

chrome screen.

As Chandrakasan [15] demonstrated with the compressed VQ video display, further reduc-
tion in portable client power consumption and complexity can be achieved through the use of a

compressed framebuffer.

A compressed framebuffer stores the data to be displayed in compressed form, and decom-
presses the data “on the fly” during the monitor refresh readout. In this way, the storage require-
ments are reduced. Additionally, since the amount of memory per frame is reduced, the bandwidth
requirements from the memory can be reduced, and this can result in lower power consumption if

the decompression technique is also “low-power”.
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However, retaining only a compressed framebuffer means that all possible display configu-
rations cannot be realized and thus the compression technique must be carefully designed to avoid
excessive visual distortion. This chapter discusses the application of the compressed framebuffer

approach to text / graphics display.

6.2. Requirements

A compressed framebuffer imposes constraints upon the choice of compression algorithm
that do not exist if the compression algorithm is used only for transmission of the images. This
section describes some of those additional constraints. (Note that additional transmission-only

compression can be applied beyond the compressed-framebuffer compression.)

6.2.1. In-Place Modification of Compressed Data

Compression algorithms, particularly lossless data compression algorithms, often yield
reductions in data requirements by exploiting inter-symbol correlation. Thus, the fact that one
symbol can be predicted, at least in part, from a previous symbol, means that it can be stored more
compactly if this prediction is incorporated into the coding. Only the information that cannot be
predicted needs to be stored. However, this means that the later symbols depend on the earlier

ones, and cannot be individually decoded.

However, the data in a framebuffer is modified in a random-access manner when a particu-
lar part of the screen is modified. It is typically not acceptable to send the entire contents of the
screen to update a small region. Additionally, since the uncompressed framebuffer is not present,

the modifications cannot be performed in the uncompressed domain.
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The combination of these two factors requires that the modification of a region of the screen
does not result in the insertion or deletion of data in the framebuffer, but rather simply the modifi-

cation.

6.2.2. Update-Independence for Error Tolerance

In Section 3.2.2. it was demonstrated that a large latency penalty is incurred if the update of
one block is dependent on that of preceding blocks. While the updates of blocks in an uncom-
pressed framebuffer are independent, most compression algorithms exploit spatial redundancy
between regions of the image, and thus would be subject to the latency due to loss. Thus the com-
pression algorithm must be designed such that the interdependence between updates is minimized

or trade-offs between interdependence level and bandwidth utilization can be controlled.

6.2.3. Must Work for Text / Graphics and Image / Video

As previously noted, the unified framebuffer contains both discrete-tone text / graphics
regions as well as continuous-tone image / video regions. Thus either the same compression algo-
rithm must work for all regions of the screen or else several compression schemes must be imple-

mented with an automated way to select the best one for a given region.

6.2.4. Must Work for all Possible Screen Configurations

One of the advantages of the compressed framebuffer is reduced storage requirements. This
requires that all possible screen configurations, when compressed, will fit into the framebuffer
memory. Since no lossless compression will always result in data reduction, lossy compression or
a lossy mode must be used. Furthermore, the minimum worst-case compression ratio is dictated

by the ratio of the uncompressed framebuffer size to the compressed framebuffer size.
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FIGURE 6.1. Typical screen image consisting of multiple graphical applications

6.2.5. Must be Tailored to Typical Screen Contents

As with all image compression techniques, the compression algorithm must be tailored to
the types of updates encountered using remote rendering. While the VQ video coding used for the
full-motion video display allows for a significant reduction in framebuffer size and bandwidth
requirements, and does satisfy the above requirements, its lossy nature and design for continuous-
tone images would be inadequate for most applications, as most user-interface components would
be rendered unintelligible. A typical screen image is shown in Figure 6.1. This image contains

text and graphics as found in many GUI applications.
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6.2.6. Decompression Must be Low Complexity / Cost

The second advantage of the compressed framebuffer approach presented was a decrease in
power consumption and complexity. For this to be the case, the on-the-fly decompression method
must be low-power and low complexity, or else all gains achieved through the compression will be

negated.

6.3. Pseudo-Color or Colormapped Display as Compressed
Framebuffer

Oné type of compressed framebuffer that is often used in computer displays is called a
pseudo-color or colormapped framebuffer. The term “8-bit color” display typically refers to this.
Most personal computer or workstation framebuffers are either colormapped or support a color-
mapped display mode as it significantly reduces memory requirements as compared to uncom-

pressed or true-color modes.

Colormapped displays use both a framebuffer and a colormap (or color LookUp Table -
LUT). Instead of storing the red, green, and blue values for each pixel, the framebuffer stores an
index into the colormap. The colormap is a small (typically 256-entry) array of color descriptors
which contain the red, green, and blue value of the colors. In this way, each pixel in the frame-
buffer only requires 8 bits. Since the colormap contains only 256 entries, it is small as well. If 8
bits are required for the red, green, and blue intensity index then the colormap would be 256*3 -
768 bytes and the main framebuffer would be 1*Width*Height bytes. This is to be contrasted with
a display where each pixel has its red, green, and blue values specified, which would require
3*Width*Height bytes. Both storage and bandwidth requirements for the framebuffer are reduced.
Since graphics memory often does not reside directly on the processor bus, access to it can be quite

costly. The use of colormapped displays can reduce this cost.
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The main drawback of the colormapped display method is that the number of colors that can
be displayed simultaneously is limited. Applications must then compete for allocation of the col-
ormap entries since it is a shared global resource. A centralized text / graphics server performs this
function. Applications must be able to operate even if they cannot reserve all colors that they
request, and thus operate with whichever colormap entries are active. Often image display appli-

cations dither between colors in the colormap to emulate colors that are not in the colormap.

Colormapped displays have another advantage in addition to reduced memory size and
bandwidth requirements. Using colormapped displays, a technique called palette animation can be
used to perform smooth animation without the use of auxiliary buffers. Palette animation exploits
the fact that multiple pixels on the screen can be changed simultaneously by simply changing one
or a few colormap entries. Thus new frames of an animation sequence are written to the screen in
such a way that they map to the same set of colors as the old frame until a rapid colormap update

occurs and the colors of the new frame are made visible.

6.4. A Compressed Framebuffer Compression Method - TGVQ

This section describes a compression technique which can be applied to text / graphics data,
typically yielding less than a bit per pixel storage requirement, and satisfies all of the requirements
outlined in Section 6.2. The text / graphics compréssion technique is also well suited for integra-
tion with a lossy continuous tone image compression technique as shown in Section 6.4.5.3. The
text / graphics compression algorithm is based on hierarchical vector quantization and is thus des-

ignated TGVQ.

6.4.1. Local vs. Global Color Diversity

Typical text / graphics images can contain high global color diversity but almost always

contain low local color diversity. Color diversity is the number of colors present in a region. Thus
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global color diversity is the total number of colors present in the entire image while local color
diversity is the number of colors present in a small local region of the image. Globally an image
might use many colors, particularly if there are continuous-tone regions in the image. However, in

any small discrete-tone region in the image, only a few colors are used repeatedly.

The conventional colormapped framebuffer technique described in Section 6.3. relies on the
assumption that the global color diversity of an image can be limited to 256 colors without causing
significant visual degradation. However, limiting globally to 256 colors does impose restrictions
on the images - which can result in some degradation particularly for the display of continuous-
tone images. Additionally, limiting to 256 colors still results in 8 bits per pixel which is too high
for many applications as described in Section 5.1. Exploiting limited local diversity, however, can

result in even greater savings, as will be demonstrated.

6.4.2. Micro-Colormaps

A new technique called micro-colormaps exploits limited local diversity by assigning indi-
vidual colormaps to small blocks within the framebuffer as shown in Figure 6.2. In this way, since
the number of unique colors in each block is typically quite small, only a few bits per pixel are
required. For instance, if only four unique colors are used in an 8x8 block, only two bits per pixel
are required for the pixels in the block. The colors used in the block are listed in the block’s micro-
colormap while the arrangement of the colors, called the pattern, is stored in the main framebuffer
portion. Each block thus needs an indication of which micro-colormap it uses, as well as the num-

ber of bits per pixel (though these two are related).

6.4.3. Vector Quantization of Micro-Colormaps and Patterns

While the above exploits limited local color diversity to effect some compression, by

exploiting spatial locality and redundancy via vector quantization, further coding gains can be
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FIGURE 6.2. Block decomposition into pattern and micro-colormap (MCMap).
The two blocks on the right share the same micro-colormap and pattern while the two
on the left share only the same micro-colormap. The pattern and micro-colormap for
the lower left block is shown.

achieved. The key observation is that both the same micro-colormaps and patterns are typically
used across the image multiple times; the same sets of colors typically find themselves used

together in multiple blocks, and often in the same configuration.

Vector quantization entails storing micro-colormaps and pattern blocks in two tables or
codebooks, and having the blocks in the image contain indices that refer to the entries in the two
codebooks. In this way, multiple blocks which use the same micro-colormap can share the mem-
ory required to store the colors, and blocks which use the same pattern entry can share that mem-
ory. This vector quantization is a lossless process as the micro-colormap and patterns are stored
exactly. Thus conceptually, the framebuffer consists of an array of W/BlockSize by H/BlockSize
pattern and micro-colormap pointers as well as micro-colormap and pattern codebooks of fixed
total sizes. The amount of memory required for each entry will depend on the number of colors in
the micro-colormap the bit depth used in the pattern. The amount of memory dedicated for the
codebooks is determined by examining the amount of memory required to render typical images

and then adding some “slack” factor. In this way, typically some part of the codebook will be “in

62



Compression rate dependancy on block size
OMCMap codes O Pattern codes B MCMap index H Pattem index

300 T

250

zw_— %
°
g 150 f—
2
m

1.00 p—

050 +— a5 T (e

000 ™ 2 3 4 5 6 7 8 9 10 [ n 12 13 14 15 16
B Pattomindex | 16.00 | 400 | 178 | 100 | 064 | 044 | 033 | 025 | 020 | 016 | 013 | 011 | 009 | 008 | 007 | 006
EMCMapindex | 16.00 | 400 | 178 | 100 | 084 | 044 | 033 | 025 | 020 | 016 | 013 | 011 | 009 | 008 | 007 | 0.06
OPattemcodes | 0.00 | 000 | 001 | 004 | 011 | 018 | 024 | 033 | 040 | 051 | 057 | 056 | 059 | 068 | 077 | 076
OMCMapcodes| 000 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001

Block Size (nx n)

FIGURE 6.3. Compression rate dependence on block size.
This graph shows the dependence of the various components of the coding rate on the
chosen block size. 16-bit indices and 18-bit colors are assumed.

use” and the rest will be “free” - as is required for in-place modification as described next. The
micro-colormap and pattern codebooks can be kept in the same memory or different memory
banks. The former allows for reduced total memory requirements while the later can slightly
reduce the size of indexes required to specify codebook entries. The rest of this section assumes

that a single unified codebook is used.

6.4.4. Determining Block Size

The choice of block size will clearly effect the compression rate. The stacked chart in Fig-
ure 6.3 shows the effect of varying the block size on the compression rate for the sample image in
Figure 6.1. The chart shows the contributions of the four components: the pattern index, the
micro-colormap index, the pattern codes, and the micro-colormap codes. This assumes 16-bit
indices and 18-bit color. The pattern and micro-colormap indices each take 16 bits per block in
order to be able to address a large enough codebook. Thus with a block size of 1x1 pixel, the over-

head is 16 bits per pixel but as the block size increases, the contribution of the indices decreases
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FIGURE 6.4. Pattern code novelty and reuse versus block size.
The graph shows the ratio of unique patterns to total number of blocks.

until it is only 1/16 bit per pixel per index at a block size of 16x16 pixels. The micro-colormap
data requires very little storage since a few micro-colormaps are reused many times. The storage

requirements are typically less than 1/100 bit per pixel.

The storage requirements of the pattern bits increase with increased block size. This is
because as the blocks grow in size, the average number of times that a particular pattern is seen in
the image decreases since the block “uniqueness” increases. Thus the gains of the vector quantiza-
tion decrease. Figure 6.4 shows the reduction in pattern code reuse, or the increase in code novelty
as the block size is increased for the image in Figure 6.1. The net combination of the four compo-
nents levels off at a block size of about 7x7 or 8x8 and stays fairly constant at a rate of 0.8 to 0.9

bits per pixel for the sample image.

6.4.5. Requirement Satisfaction

This section describes how the requirements described in Section 6.2. are all satisfied by the

compression scheme described above.




6.4.5.1. In-Place Modification of Compressed Data

The compression system allows in-place modification as described in Section 6.2.1. In-
place modification works as follows: Local copies of the codebook and index framebuffers are
kept by the text / graphics server. While the index framebuffers are spatially mapped such that the
locations always correspond to a particular region on the screen, the codebook is only mapped
based on which indices point to it. Thus entries in the codebook are assigned dynamically in a
manner similar to dynamic heap memory allocation. Since multiple indices can point to the same
locations in the codebook, reference counts are required to determine when particular regions of
memory are no longer in use. The reference counts are incremented when an entry is referred to
by a new block, and decremented when that block no longer refers to it. Thus the sum of all refer-

ence counts is the number of blocks in the image.

When a section of the screen is modified, the colors in each block are examined to deter-
mine the unordered sets of colors constituting the micro-colormaps. If a micro-colormap with the
required colors for a given block is already present, it can be reused. In this case, the new block’s
micro-colormap index is set to the index of the existing micro-colormap. Otherwise, a new micro-
colormap entry is “allocated” in the codebook, its contents are sent to the remote terminal and then
the new block’s micro-colormap index is set to the index of thg new micro-colormap entry. In

either case, the reference counts are updated as described above.

6.4.5.2. Update Independence for Error Tolerance

If a transport protocol incorporating explicit dependencies is used as described in Section
13.1.2., the dependencies between an index update and the preceding codebook updéte used to set
up the codebook entry should be noted. Thus an index update will not be effected by the terminal
until the codebook update it required has taken place. Additionaliy, a codebook update is depen-

dent upon the index that was pointing to it being updated. Thus if this is not explicitly coded, it is
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advantageous to reuse codebook entries in a LRU (least recently used) manner. This also pro-

motes reuse of codebook entries if an entry is briefly not used but then later reused.

6.4.5.3. Must Work for Text / Graphics and Image / Video

While the algorithm, as described, is lossless, and thus could not result in guaranteed com-
pression rates, with the addition of a video coding, this can be achieved. The text / graphics vs.
image / video decision can be made in a manner closely related to the text / graphics coding
method in a way such that those regions that would not compress well with the text / graphics

method would be selected as image / video.

Each block can classified as text / graphics vs. image / video by using the local color diver-
sity used to determine the micro-colormaps. By simply counting the number of colors in a given
block, and applying some continuity constraints, an effective text / graphics vs. image / video deci-
sion can be made. Figure 6.5 plots the local color diversity of a typical image with both text /
graphics and image / video regions using 8x8 pixel blocks. Blocks with more than 4 colors are
classified as “image / video” while those with less than or equal to 4 unique colors are classified as
“text / graphics”. In this way, those blocks with high color diversity, which would require large
and often unique micro-colormaps and patterns, will be coded using a lossy coding. Continuity
constraints prevent small high-diversity patches from being interpreted as image / video and small

low-diversity patches from being interpreted as text / graphics.

Figure 6.6 shows an example of automatic text / graphics and image / video merging based
on color diversity. The top image is a section of the original image from Figure 6.5 while the bot-
tom image has the blocks with color diversity greater than 4 replaced with a crude image coded
version. The image coding entailed conversion to YUV space, decimating Y by 3x3 and U and V

by 6x6. The three intensities were then coded at 6 bits per sample for a net coding rate of 1 bit per
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FIGURE 6.5. Using local color diversity to make text / graphics vs. video decision.

The original image, shown above, is primarily text / graphics with three image/video
regions. The local color diversity using 8x8 pixel blocks is shown below. Blocks with
more than 4 colors would be classified as image while those with less than or equal to 4
colors would be classified as text / graphics. Continuity constraints would prevent

small high-diversity patches from being interpreted as image/video and small low-
diversity patches from being interpreted as text / graphics.
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pixel. As can be seen, even this crude coding does not introduce excessive image degradation since
it is only occurring in continuous-tone regions. Note that continuity constraints are not imposed so
some isolated text / graphics regions, such as on the web browser buttons, are detected as being
image regions and are coded using the lossy coding. Using a more sophisticated coding such as a
DCT-based approach used in JPEG [40] would result in higher image quality and/or greater com-

pression rate.

6.4.5.4. Must Work for All Possible Screen Configurations

While the lossless text / graphics coding described above cannot bound compression, when
coupled with the lossy image / video coding, the overall system memory requirements can be
bounded. Thus if the memory usage of the lossless portions ever exceeds the allowable amounts,
blocks can be converted to the lossy format which will always fit. For example, using 8x8 blocks
on typical text / graphics screens as described next, the lossless coding codes at less than 1 bit per
pixel. The crude lossy image coding previously described codes at 1 bit per pixel. Thus if 2 bits

per pixel of memory were available then all possible screen configurations could be stored.

The flexibility of TGVQ method allows detail to particular regions to be tailored as desired.
In particular if small regions of the screen require high fidelity, they can be losslessly coded

regardless of whether they are text / graphics or image / video.

6.4.5.5. Must be Tailored to Typical Screen Contents

Figures 6.7 and 6.8 show typical images and their compression rates. In the case of both
screendumps in Figure 6.7 as well as the screendump without the continuous-tone images in Fig-
ure 6.8, the compression algorithm results in coding less than one bit per pixel. Even with some
continuous-tone regions, as in the top image of Figure 6.8. The compression rate is still under 2

bits per pixel. If a separate lossy coding for continuous-tone regions is used, as described in

68



R RN Sheld i

Do100/5000 | Y ) Tex: Editor 3.4 [bad
CFlle ) View ©) Edits

S viemenu.
Transmission
' Tramsmit |
" Lock |
- - peg e small
~ colld - 261 + normal | . RTVC
w9~ mpeg v large
Quality e .,.']‘,3:7: 2 Pon[ rm|

Session
Dest: 224.100.100.100 Port: 5000 ID: 823334752 TTL: 16
Name: Joff Gibert (UC Berkeioy) |
I Key: |
™ Mute New Sowrces I~ Seading Slides

Mﬁiﬂ!;;|k:p:ffinfmd-m..bumw. exdufresearchfappl icat {ons fma

I ——— : 7 -
224.100.100.100/5000 | Text Editor V3.4 [bad|

Jeff Glibert (UC Berkeley) File ) View ©) Edit

- " jpeg ~ small
W colid - h261 ~ senasl | o RTVC
v T mpeg ~ large
Qualit 1 3 = 2 M.-l Type..
Session

Deat: 224.100.100.100 Port: 5000 ID: 823834752 TTL: 16
Name: Joff Gilbert (UC Berkaley) |
I Key:

I Mate New Seurces T Sending Slides

Natscape: vq_play{1) manual page

i e e R

The... | Members| Colors | Dismiss |

FIGURE 6.6. Automatic text / graphics and image / video merging using color diversity.
The top image is a section of the original image from Figure 6.5. The bottom
image has the blocks with color diversity greater than 4 replaced with a crude
image coded version. The image coding entailed conversion to YUV space,
decimating Y by 3x3 and U and V by 6x6. The three intensities are then coded at 6
bits per sample for a net coding rate of 1 bit per pixel.
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FIGURE 6.7. Two typical images compressed with TGVQ. -
The top image requires 0.84 bits/pixel while the bottom requires 0.94 bits/pixel.
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FIGURE 69. Rough architecture of compressed framebuffer TGVQ decoder.
Note that any number of the memories shown could be combined into single unified
memory.

Section 6.4.5.3., the compression rate would be further reduced and bounded. Thus if the frame-

buffer is allocated 2 bits/pixel then typical images can be fully losslessly encoded.

6.4.5.6. Decompression must be Low Complexity / Cost

The TGVQ method is readily implementable in hardware. Its implementation would bear
many similarities to the VQ Video described in [15] and referred to previously in Section 5.2.. Fig-
ure 6.9 shows a rough architecture of the compressed framebuffer system and some of the princi-
ples of operation are briefly described here. Also note that while multiple separate memories are
show, they could be combined into a single unified memory to promote reuse between the two
codebook arrays, but at the possible expénse of power consumption due to tighter access time

requirements.

A counter cycles through the two index memories in order to retrieve the indices for the
blocks as the image is scanned. These indices are used to select codebook entries from the two
codebooks. The counter output is also distributed to the pattern codebook memory so that it can
produce the correct line within the pattern. A block combiner indexes the pixels from the pattern

memory into the MCMap to produce the rendered pixels. It could also incorporate a lossy image
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coding technique for video as previously described. Since the system works “open-loop”, latency

is not problematic, and this can be used to reduce power consumption though pipelining.
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Hybrid Approach

CHAPTER 7

7.1. Motivation
In Chapter 3, the primitive-based approach is presented which allows for good bandwidth

utilization, but can result in high latency due to loss or queuing delays. In Chapter 4, Chapter 5,
and Chapter 6, bitmap-based approaches are discussed which significantly reduce latencies, but at
the expense of less efficient bandwidth utilization. This then leads to the question of whether a

hybrid approach can yield the benefits of both the primitive and bitmap approaches as shown in the

table below:
Bandwidth | Perceived Client
Utilization | Latency | Complexity
Conventional Primitive Good Bad Ok
Conventional Bitmap Bad Bad Good
Improved Bitmap Ok Good Good
Hybrid Approach ? Good ? ? Good ? ?20k?

This chapter presents some ideas and directions on the implementation of such a hybrid

approach.
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7.2. Approach
In order to obtain the best of both the bitmap and primitive approaches, a hybrid scheme is

employed. The primitive approach obtains its bandwidth efficiency by retaining and transmitting
the drawing requests in the compact primitive form, while the bitmap approaches deliver reduced
latencies by reducing false-dependencies and eliminating updates that are superseded before they
can be transmitted. The two key concepts required to combine these are primitive dependency

tracking and primitive squashing.

The architecture proposed is the virtual framebuffer architecture presented in Section 4.3.
with the modification that the virtual framebuffer is not a bitmap-based buffer but rather a primi-
tive-based framebuffer. While the primitive approach simply queues the drawing requests in a sin-
gle linear list, the hybrid approach explicitly notes dependencies by arranging the queued
primitives in a set of directed acyclic graph (DAG) structures called the pending primitive graph.
The primitive framebuffer stores the primitives that have been requested by an application but
have not yet been sent and acknowledged from the remote terminal. Each primitive also has a flag
indicating whether it has been yet transmitted to, but not acknowledged by, the remote terminal.
Other information such as the time of transmission and graphics context information may be
recorded. A secondary bitmap-based buffer is used to satisfy application image queries. The bit-
map buffer contains the current rendered contents of the screen as with the bitmap-based virtual

framebuffer architecture.
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FIGURE 7.1. The hybrid approach: pending primitive graph.
Primitives that have been queued for transmission to the remote client, but not
transmitted and acknowledged, are arranged in a set of directed acyclic graphs with
links explicitly denoting dependencies and overlap.

7.3. Master Operation

When a new drawing primitive is received from an application, the master places it as a
child of all drawing primitives that must be rendered before it. This would include any previous
primitive which geometrically overlapped the primitive in question. Figure 7.1 shows an example
of a calculator image and its dependency graph. The calculator is comprised of a solid back-
ground, a surrounding border, a number area and a set of keys. Each key consists of a solid back-

ground, a border, and a label. The keys do not overlap with each other or with the number area.

The master also renders the primitives to the bitmap buffer so that later application queries
for the current contents of the screen can be satisfied locally. The existence of a fully rendered bit-

map buffer also allows sessions to be suspended and resumed.

7.3.1. Primitive Squashing

While the bitmap-based approach automatically replaces old updates with new ones via
Adaptive Bandwidth Compression as described in Section 4.3.2.1., the hybrid approach, via the
master, must do this manually. When a new primitive is added to the pending primitive graph, it is

placed as a child of all previous primitives which overlap it. Before placing the new primitive, the
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FIGURE 7.2. Primitive squashing: removal of unneeded primitives.
When a new primitive obscures previous primitives that have not been sent to the
client, the previous primitives are removed since their effect has been nullified. The
above shows what happens when a new object (the square/circle combo) is drawn,
obscuring some old primitives.

graph is examined and if the new primitive completely obscures any existing primitives, they are
removed. If they have been sent already, but not acknowledged, they are forgotten. If they have
not been sent, they will not be sent. In this way, redundant primitives will not consume valuable

link bandwidth. The process of removing stale primitives is called primitive squashing.

Only primitives whose removal would not alter the final display rendering can be removed.
In particular, if a non-opaque primitive such as XOR area completely covers an earlier pending
primitive such as a line, box, or text, that earlier pending primitive cannot be removed as it would
change the final display. However, if this is then completely covered with a later opaque primitive,
the earlier opaque and non-opaque primitives can be removed since they will no longer effect the

final display.
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73.2. Dense Primitive Rendering

The virtual framebuffer architecture decouples the application from the remote terminal and
protocols used to communicate with the remote terminal. Thus both operations on single primi-
tives and multiple primitives can be effected. Since the primitives are queued in the pending prim-
itive graph until being sent, during heavy usage, the pending primitive graph could contain many

pending primitives.

While primitives are typically a more compact representation than bitmaps, if an application
draws very fine detail, or uses many spatially small primitives, a bitmap representation of a given
high-detail area may be more compact than the pending primitives specified by the application.
This is particularly possible if bitmap compression as previously described is used. To this end,
the hybrid approach can dynamically convert pending primitives to a pending bitmap update.
Since the master knows the exact screen contents, it can create a bitmap write primitive that speci-
fies the current contents of a particular region, and use it to squash all underlying primitive updates
specified by the application. If later primitives are queued before the bitmap update is delivered,
the new primitives are rendered into the virtual bitmap framebuffer and the updated image super-
sedes the previous one. This can be used to bound bandwidth requirements for high-detail images.

Furthermore, progressive image delivery techniques as described below can be used.

7.3.3. Representing Region Copies

Bit Block Transfers (called BitBlt or Bit Blits) which cause a source region of the screen to
be copied to a destination region of the screen, need to be noted both at their sc;urce and destina-
tion. For the destination region, they appear like any other primitive and can be opaque if they are
a direct copy, or non-opaque if they are to be combined with a logical operation such as AND or
XOR. BitBlts must also be noted at the source as a dependency since the block copy must be exe-

cuted after all queued primitives in the region it references but before any subsequent primitives
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that may further modify the region. This is because the application issuing the copy request
assumes that its primitives will be executed in order and thus all primitives requested before the
copy will have completed but none of the primitives requested after the copy will have begun.

Thus a special copy link is needed which notes both source and destination.

BitBlts prevent squashing of the source region across the source reference in order to assure
that the copied state referenced is rendered. However, the destination region can cause the copy to
be squashed just as other primitives are squashed. If the destination region warrants squashing
then the BitBIt primitive is removed and its reference to the source is removed. This could then

allow further squashing if it was prevented by the existence of the source reference.

7.4. Slave Operation

The slave scans the primitive framebuffer as before, and sends any primitives that are not
children of (dependent on) any other queued, but not sent, primitives. The ordering of this scan is
flexible as will be discussed below. Once the primitives are sent, they are marked as such and then
any of their children can be sent. The dependencies are also transmitted with the primitives such
that if any primitive is lost, only those later primitives which depend on the lost primitive are not
rendered until the lost primitive is retransmitted successfully. However, the rendering of indepen-

dent primitives need not be delayed.

The primitives are coded in a format that is appropriate for transmission to the remote client.
Compression and error-corrective coding can be used to trade off error-tolerance, bandwidth

usage, and client computational requirements.

A particular primitive is removed as soon as it and all primitives it dependends on are

acknowledged. When an acknowledgment for a particular primitive is received from the remote

80



terminal, that primitive is marked as acknowledged, and if it is not the dependent of any unac-
knowledged primitives, it is removed from the pending primitive graph. Additionally, if it had any
dependents which were acknowledged but not removed because the parent was not yet acknowl-

edged, they are removed as well.

7.4.1. Progressive Image Transmission

While the image display requests issued by the application are queued as single primitives,
they do not have to be sent to the remote terminal as such. Multiple-pass hierarchical transmission
is often quite useful for bandlimited or lossy links since it allows the user to quickly get a coarse
idea of what is on the screen. If transcoding occurs in the text / graphics server, applications need
not be designed for operation over a slow link. Often applications, such as Adobe FrameMaker ®,
use image primitives for text rendering in order to retain full control over typesetting and font
style. These applications are difficult to operate remotely over bandlimited links if image trans-
mission is not efficiently handled. Additionally, standard video player or video conferencing
applications can be used remotely if the image transmission to the remote terminal is performed in

a bandwidth-conscious manner.

Progressive image transmission can be effected by having the slave, or some independent
lower-priority thread, transcode and compress pending images into progressive formats. For con-
tinuous-tone images, spatial-frequency decomposition such as that used in progressive JPEG and
wavelets could be used. For discrete-tone images, interlacing similar to interlaced GIF and PNG
would be more appropriate and yield superior image quality at a given bit-rate. The choice of
whether to use progressive images and which type to use could be made based on the server CPU

load, client capabilities, link bandwidth availability, and type of image.
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Once the images have been transcoded, each pending primitive has associated with it a set
of flags indicating which layers have been sent. The layers are sent independently and the remote
terminal acknowledges the receipt of particular image layers, and not just the entire image primi-
tive. The images can be divided further spatially such that particular parts of particular layers
could be independently sent and acknowledged. This is particularly useful in conjunction with the

cursor-targeted updates via primitive reordering described in the next section.

The various layers are prioritized differently with respect to other images and other drawing
primitives. Typically higher detail-level layers would only be sent after all other primitives have
been transmitted, as they are only needed for final image quality. In this way, if an animation or
movie is playing, other regions of the screen such as the player’s GUI or other applications will not
experience excessive delay in updating. The high-detail layers typically consume the greatest
number of bytes yet deliver the smallest delta in image utility. Lottery scheduling [69] could be
used to assure that high resolution images are not delayed indefinitely in the presence of other con-

tinuous activity.

Care must be taken if other primitives depend on the transcoded image since the other prim-
itives cannot be rendered until all layers in the image are rendered. Alternatively, the dependent
primitives can be re-rendered after each successive layer of the image is rendered. Also, if the
image is later the source of a BitBlt, the image must be fully rendered before the BitBlt can pro-

ceed.

7.4.2. Primitive Reordering

As previously mentioned, using the virtual framebuffer architecture, the order in which

primitives are sent from the text / graphics server to the remote terminal is independent of the order
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that the applications send the primitives to the text / graphics server. This can help to reduce the

net latency due to loss as well as the delay for the user to see the data they are interested in.

The latency due to loss can be reduced by sending primitives in an ordering that as few
primitives as possible are dependent on other in-flight primitives. If a long stream of dependent
primitives are transmitted and one of the earlier primitives is lost, the subsequent primitives must
be delayed until the lost primitive is successfully retransmitted. However, if multiple independent
streams are transmitted then losses will only delay the update of smaller regions of the screen.
While dependencies cannot be removed, by sending primitives in a “breadth-first” manner as
opposed to a “depth-first” manner, the number of outstanding dependencies can be reduced and

improved performance in a lossy environment will result.

Additionally, the updates can be targeted such that regions of user-interest receive greater
bandwidth. One way to infer user-interest is to assume that the cursor area is of higher priority and
prioritize updates to that region before updates to other regions. In this way, even a low-bandwidth
link supporting a complex display can retain interactive operation of a graphical user interface
since typically the most responsiveness is required around the location of the cursor. A similar

concept is applied to World Wide Web transmission described in Section 10.5.4.

7.5. Benefits / Conclusions
Thus it has been demonstrated that the hybrid approach combines the best of both the bit-

map and primitive approaches by simultaneously reducing bandwidth requirements as well as
reducing latency due to queuing and loss. By further separating the applications from the commu-
nications link, generic applications can be used in a bandwidth and loss aware manner. Progres-
sive image techniques and information reordering allow limited resources to be directed at the

goals of the user.
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caapTErR 8 lext/ Graphics Image
Compression

8.1. Introduction

In the past chapters, application-independent text / graphics and image transmission archi-
tectures have been proposed. While these architectures varied in bandwidth, latency, and client
complexity requirements, all of the techniques transmitted images at least some of the time and
could thus benefit from image compression techniques. The primitive-based approach of Chapter
3 used image transmission whenever the application chose to send images. The bitmap-based
approaches of Chapter 4 and Chapter 5 transmitted images for all updates. The compressed-
framebuffer approach of Chapter 6 could use additional image compression to reduce bandwidth
requirements beyond the compression afforded by the compressed framebuffer algorithm. Finally,
the hybrid approach of Chapter 7 used image transmission whenever the application chose to send

images, as well as when many dense primitives were drawn.

This chapter gives some background on image compression techniques suited for transmis-
sion of text / graphics images and proposes a new algorithm specifically tailored to this class of

images. It will be shown that dictionary-based image compression techniques determine and
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exploit redundancy in images by decomposing the input image into repeated sequences and coding
them as such. Conventional approaches such as Graphical Interchange Format (GIF) and Portable
Network Graphics (PNG) are restricted to 1-dimensional repeating patterns. The technique
described in this chapter, Flexible Automatic Block Decomposition (FABD), performs two-dimen-
sional block decomposition to exploit arbitrarily-sized rectangular repeating blocks. Several opti-
mizations are used to reduce the computation required for the block matching to approximately the
same as traditional one-dimensional techniques. Employing simple entropy coding techniques to
the compression of typical text / graphics images, a coding rate of 0.03 - 0.20 bpp can be achieved.
This is 1.5 to 5.5 times more compact than GIF and up to 3.8 times more compact than PNG.
Decompression is fast and simple, as is required in a web browsing or remote portable terminal

environment [32].

8.2. Image Coding Overview

The basis of all lossless image compression techniques is the detection and exploitation of
redundancy in the image to be compressed. The detection typically involves predicting parts of
the image yet to be coded from those that have been previously coded and general knowledge
about the class of images being compressed. The exploitation of the redundancy is effected by
sending only the novel aspects of the data so that the more “predictable” the image by a given

algorithm, the greater the achievable compression.

For instance, if it was known that a synthetic input image always consisted of a discrete set
of squares of varying size, location, and color, then this could be exploited by coding the image as
a few parameters, namely the number, size, location, and color of the squares and the color of
background. Thus the size of the compressed image would be independent of the number of pixels

in the image and the compression could be quite substantial.
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However, if the image coder only expects the input images to consist of solid horizontal
lines, the “square” images would have to be coded as many horizontal lines. While this would typ-
ically be more efficient than coding each pixel individually, it would not be as efficient as coding
as squares since many horizontally lines would be required for each square. Thus as compression
algorithms contain more information about an image class, they can compress the images more

effectively.

8.2.1. Discrete-Tone Images

Discrete-tone images are those in which the pixel intensities do not vary smoothly, as in a
photograph, but rather assume a small discrete set of values. Discrete-tone color images are com-

puter generated and include screendumps, diagrams, and renderings of text - the types of images

' These synthetic images typically

used in the transmissions systems described in this thesis.
exhibit significant redundancy in that large areas of the image are solid or consist of lines or shapes
which can be predicted from other places in the image. Solid regions can be specified compactly
as in the square example above, and text and symbols from one area in the image can be predicted

from those in another area since identical patterns of pixels will appear for the same letters and

words.

8.3. Previous Research / Existing Standards

Two existing approaches to the image compression problem are one-dimensional dictio-
nary-based techniques (used in algorithms such as JBIG) and two-dimensional statistical tech-
niques (used in algorithms such as GIF and PNG). Each exploits certain aspects of the input

images and has strengths and weaknesses.

1. Continuous-tone images can be quantized or dithered to a discrete set of tones but will still exhibit characteristics of
continuous-tone images. Scanned bi-level images are similar to dithered continuous tone images in many ways.
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8.3.1. One-Dimensional Dictionary-Based Techniques
Dictionary-based image compression techniques find repeating sequences in images by cre-
ating a “dictionary” of common strings and then coding the sequences by their index into the dic-

tionary. The image is considered a single, albeit long, sequence.

The Lempel Ziv Welch (LZW) data compression algorithm maintains an explicit dictionary
of recently used strings. The dictionary initially contains only the single symbol sequences for all
symbols. The coding proceeds by finding the longest sequence in the dictionary that matches the
next symbols to be coded. The dictionary is grown by adding a new sequence consisting of the old
sequence with the addition of the symbol that follows it (as determined by the decoder once the
next sequence is received). In this way, the dictionary has a 'prefix closed' property whereby the
prefix of every sequence in the dictionary is also in the dictionary. Thus the encoder and decoder
can both build the same dictionary automatically without it being explicitly sent. The dictionary
can be reset or frozen by the compressor. Compuserve’s Graphical Interchange Format (GIF) uses
the LZW compression algorithm on the pixel values in the image in standard left to right, top to

bottom raster-scan order.

Since GIF uses a 1-dimensional coding, horizontal patterns are effectively compressed but
vertical patterns are not; while horizontally adjacent pixels appear consecutively in the scan order,
vertically adjacent pixels are separated by large gaps consisting of the rest of the pixels in the line.
For instance, a solid blue horizontal line appears as several consecutive blue pixels while a solid
blue vertical line would cause several isolated instances of blue pixels, separated by the scan line
width. Additionally, a text character would have to represented as many horizontal patterns
instead of a single two-dimensional pattern. The method described in this chapter overcomes both

of these shortcomings.
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The Lempel Ziv 77 (LZ77) data compression algorithm works by considering the data to be
encoded as the dictionary. Instead of specifying sequences as indexes into a dictionary, the
sequences are specified as parts of the data stream which have already been coded by sending their
“length” and “distance”. For example, a sequence could be specified as “17 symbols starting 34
symbols from the last symbol coded” where its length would be 17 and its distance would be 34.
Additionally, single symbols can be coded in case they are not present in the recent history. Porta-
ble Network Graphics (PNG) [59] combines LZ77 with Huffman coding [39] of the length and
distance parameters to more compactly code common values. Additionally PNG performs sub-
byte pixel packing so that for images with 1, 2, and 4-bit pixels, multiple pixels are joined into one
byte before compression. As with GIF / LZW, horizontal patterns are effectively compressed but
vertical patterns may not be and would thus suffer from the same problems. PNG performance
typically outperformé GIF by 10-30% and additionally has improved progressive display capabili-

ties and patent-free status.

8.3.2. Two-Dimensional Statistical Techniques

Statistical prediction has been effectively used to compress images by using a context
around a given pixel to predict its value. When the value is often the same as the predicted value,

little additional information must be sent and low coding rates can be achieved.

The Joint Bi-Level Image Processing Group’s JBIG codes pixels in a bi-level image using a
10 or 12 bit context and arithmetic coding [4,43,61]. The neighboring pixels are used to estimate a
probability distribution for the current pixel. This distribution dictates the codes to be used for 0
and 1 pixel values. Using arithmetic coding, codes can be fractions of a bit. If a particular pixel is
predicted as being more likely to be a 0, the 0 code will be shorter than one bit in length while the
1 code will, by necessity be greater than 1 bit. In this way, if the prediction comes true, only a frac-

tion of a bit will be required for the pixel. When the prediction is not correct, a pixel will require
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more than one bit. The more skewed the probability, the shorter the “likely” code is and the longer
the “unlikely” code is. Additionally, the “likely” code will occur more often and the “unlikely”
code will occur less frequently. The combination of these two effects results in fewer total bits
being required for coding. JBIG can be applied to grayscale or pseudo-color images using bit-
plane decomposition. As will be shown in Section 8.7. and Figure 8.12, this can lead to redun-
dancy and poor coding when a similar structure appears across several bit-planes. However,
despite this problem, JBIG performs well on both bi-level and color images. Its performance is

particularly impressive on scanned and dithered images.

While JBIG uses statistics adapted over the entire image, each pixel must be coded individ-
uvally. This is to be contrasted with the dictionary based techniques which can code entire
sequences of pixels using a single code word. For instance, for a single character to be coded by
JBIG, a code for each pixel has to be specified. While each code could be a fraction of a bit in size,
this is to be contrasted to 1-dimensional dictionary-based techniques where roughly one code
would be required per scanline of the character or a 2-dimensional dictionary-based technique,
such as that in this chapter, where one code would be required per entire character or for several

characters.

The Piecewise-Constant (PWC) image model [6] extends statistical coding beyond bi-level
images. In this model, arithmetic coding is used to code the pixel colors of a palette image by pre-
diction based on neighboring pixel colors. It assumes a model that images consist of small regions
of pixels of the same color. The statistical framework is constructed through the use of four per-

pixel questions:

QI1: Is the current pixel’s color identical to that of a specified rectilinear connected neighbor?
Q2: Is the current pixel’s color identical to that of a specified diagonally connected neighbor?
Q3: Is the current pixel’s color identical to a guessed value?

Q4: What is the current pixel’s color?
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Using context-based arithmetic coding, the answers to these questions can be coded effi-
ciently. As soon as one question is answered affirmatively for a given pixel, the other questions
need not be answered. Q1 and Q2 exploit the fact that pixels are often the same color as neighbor-

ing pixels while Q3 exploits the fact that often in a region a small set of pixels are used. In this

way a “guess” pool is kept of recently seen pixel colors!. Finally if Q1 through Q3 are all
answered negatively, another method, such as linear prediction, must be used to answer Q4. Since
statistical methods are employed, dithered images can be coded efficiently. However, as with

JBIG, global statistics are used but each pixel must be coded individually.

Other approaches to bi-level image coding have focused on the subset of images consisting
of primarily typed or printed text [18,38]. Image segmentation into “marks” is used to locate and
individually code the characters. The residual is then coded in a lossy or lossless manner. While
this allows full two-dimensional matching, this explicit segmentation limits the class of applicable
images to those similar printed text. (Non-segmentable regions can be coded using other tech-
niques.) Additionally the size of the segments is typically limited to single characters, reducing
potential coding gains compared to using larger regions. The segmentation is required to make the
matching computationally feasible by restricting the pattern matching to occur at fixed “mark”

boundaries.

8.4. Flexible Automated Block Decomposition

In order to obtain high lossless compression rates, it is necessary to determine and exploit
the redundancy found in the input image. While GIF and PNG implicitly assume that the redun-
dancy is one-dimensional, and JBIG and PWC code pixel-by-pixel, assuming some local two-

dimensional redundancy as well as global statistical redundancy, it is apparent from looking at

1. This is similar but developed independently from the color age notion introduced in Section 8.6.2.1..
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FIGURE 8.1. Typical image and its redundancies.
The vertical lined blocks are copy blocks, the horizontal lined blocks are fill blocks,

and the hashed block is a punt.

synthetic images that much block-level global two-dimensional redundancy is present - whole
blocks are repeated throughout the image. These blocks may be in the form of text or shapes.
Additionally, large solid blocks are a form of redundancy and their efficient coding can aid com-

pression.

The FABD algorithm, described in this chapter, decomposes an input image into two-
dimensional blocks by scanning the image from left to right, top to bottom and dividing the image

into a set of three types of blocks:

1. Copied blocks
2. Solid fill blocks
3. Punts

Figure 8.1 shows a typical image with the three types of blocks. Copied blocks (shown in
with vertical lines) are regions of the image which appear verbatim before the current location. No
restrictions are placed on the size or location of the source and destination blocks except that the

start of the source block must appear before (above or on the same line and to the left of) the start
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of the destination block. Solid blocks (shown with horizontal lines) are regions in the image which
consist of a single color. Finally, punts (show with hashed box) are the areas in the image which
do not fall into either of the first two categories. This decomposition can lead to efficient coding if
the blocks are large such that a small number of blocks are required to represent an image. By
parameterizing the image in terms of these three types of blocks, efficient entropy coding is possi-

ble.

Decomposition proceeds in a greedy manner from the top-left of the image to the bottom-
right until all pixels have been accounted for. The area currently being classified is called the des-
tination region. For copies, the location being copied from is called the source region. The desti-
nation region is increased in size until it no longer is consistent with a solid fill or block copy. All
width and height combinations are tried to maximize the number of uncoded pixels covered by the
block. Since the regions are arbitrarily sized rectangles, overlap is possible. Once a pixel has been

covered by one block, it is neither advantageous nor detrimental to recode it.

Figure 8.2 shows the result of automatic block decomposition. Pixels in a block denote pix-
els from the same copy or fill block though the particular colors are not important. For copies, the
source of the copies is not shown and for fills, the color is not shown. Punted pixels are shown in
white. The decomposition leads to average block sizes of 200-400 pixels so that a compression
rate of 0.1 bpp can be achieved if the blocks can be coded at 20-40 bits per block. Typical images
result in only about 1% pixels punted which, even at a coding of 3 bits/pixel, only accounts for

0.03 bits/pixel.
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FIGURE 8.2. Automatic block decomposition.
Solids blocks denote regions of same copy or fill. White pixels are punts.

8.5. Accelerating the Search

While it may be evident that the previously described decomposition could lead to effective
compression, it is not immediately clear that it can be done in a timely manner. As stated, the algo-

rithm requires a full block search over the entire image for each pixel coded, requiring
W2*H2*BlockSize comparisons and supporting instructions. For a 1000x1000 pixel image with

an average block size of 200 pixels, 2* 10% comparisons would be required, which on a 100MIPS
machine would take several weeks. However, the BlockSize factor drops out since search is only
performed on pixels not yet coded, reducing the time to several hours. This is still not acceptable
for many applications. The optimizations described in this section reduce the time to a matter of

seconds.

Typically implementations of a GIF encoder [57] compress at rates of approximately 200-
400 kilo-pixels per second (kps) on a Sun UltraSparc 2. For the 1000x1000 pixel image, this results

in compression in 2.5 to 5.0 seconds. Without optimization, the FABD algorithm would code at
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approximately 0.1kps. However, using the four optimizations presented here, the rate can be

increased to that of GIF, 200-400kps.

8.5.1. Big Fill, No Copy Search

For large solid regions, the search for a copy match is not necessary since the solid regions
can be coded quite efficiently as fills, and thus coding them as copies yields little benefit. Addi-
tionally, the search is likely to be lengthy since the solid regions are likely to match a large portion
of the destination region. In regions covered by fill blocks of at least 20 pixels in width or height
or 50 pixels in area, the copy search can be suppressed with negligible loss in compression. This

typically increases the compression speed by a factor of 5 to a rate of 0.5kps.

8.5.2. Fast Match Lists

Although blocks can be any size, most useful blocks are larger than some minimum size
such as 4x4. Otherwise stated, a source location is only worth investigating if a 4x4 region
anchored by the source matches a 4x4 region surrounding the destination location. A minimum
size of 4x4 was empirically determined to have a negligible effect on compression performance
while increasing speed. Larger minimum sizes can result in faster compression, but lower effi-

ciency.

To exploit this observation, the folloﬁving optimization is performed: First, all overlapping
4x4 blocks in the image are categorized by pattern by placing all 4x4 blocks of the same pattern in
Jfast match lists. The lists are sorted in reverse raster-scan order (bottom to top, right to left). Next,
block decomposition is performed. However, to perform the copy search for each destination, it is

no longer necessary to search over all possible source locations. Instead it is sufficient to search
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FIGURE 8.3, Match lists used for fast match.
Four patterns are shown horizontally and the locations they are found in the image are
shown vertically.

over those with the same initial 4x4 block, saving much time!. Using the fast search lists reduces

the search time from 30 minutes to between 10 seconds and 10 minutes depending on the image.

The fast match lists must be generated quickly. An efficient way to represent the match lists
is to create a list of all used 4x4 patterns and associate with each member of this list another list of
pointers to where the patterns are used in the image. (See Figure 8.3.) The list of patterns is called
a head list while the patterns themselves are called heads. These heads form the beginning of

match lists which link the destination locations together.

To generate the list of lists, the image is scanned from left to right, top to bottom. The 4x4
pattern at each pixel is compared to each. of the heads, and if it matches, the pixel’s location is
prepended to the beginning of the head’s match list. If it does not match any, a new head is created

with the pattern.

The heads are kept sorted in order of last match so that if a pattern repeats, it will be found
quickly. Hashing functions allow the head list to be split into multiple shorter head lists using a
14-bit hash on the value of the 4x4 pixel patterns (see Figure 8.4). These optimizations allow the

fast match list to be generated in a second or two for typical images.

1. Note that the degenerate case of large solid regions is handled by the optimization of Section 8.5.1.
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FIGURE 8.4. Hashed match lists - the two pairs of patterns each hash to the same

Max Search Screendump Sz;ﬁ;izs"s'p Paper5 cf;’;)eris

Depth bits/pixel time bits/pixel time

10 0.144 bpp 2.6 sec | 0.108 bpp 3.9 sec

50 0.128 bpp 2.9 sec | 0.086 bpp 4.6 sec

100 0.126 bpp 3.2sec | 0.083 bpp 5.4 sec

200 0.125 bpp 3.6 sec | 0.080 bpp 6.2 sec

500 0.124 bpp 4.4 sec | 0.078 bpp 7.9 sec

1000 0.124 bpp 5.2 sec | 0.078 bpp 9.4 sec

100000 0.123 bpp 34.4 sec | 0.077 bpp 82.6 sec

TABLE 8.1. Effect of search depth limits on compression time and rate

The net result of the fast-match lists is a speedup of 3-200x to yield a typical coding rate of

take significantly longer.

Every candidate location in the list has a high probability of yielding a block copy match.

8.5.3. Bounded Search Depth

1.5 kps to 100 kps. The wide variation is due to the dependence of the search time on the input

image. In particular, if there are many blocks with the same 4x4 patterns, the block matching can

Since the fast match lists are ordered from bottom to top, physically closer candidates will be
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searched first. As the compression time is largely determined by copy block search time, it allows
a trade-off between compression time and resultant bit rate. Limiting search depth proves to be
very effective in reducing the compression time while not noticeably impacting the compression
rate. Limiting also prevents troublesome regions in the image from taking too long. A limit of
1000 does not sacrifice compression while keeping the compression time usually well under a
minute. Limits as low as 50 dramatically reduce the compression time while only minimally
impacting the compression rate. Table 8.1 shows the effect in terms of compression rate and time
of different limits on two typical images. The results in Section 8.7. are given for limits of 100 and
1600. As compressed data is generated on the fly, the limit could be dynamically varied to match
compute time and compressed data rate on an outgoing channel for interactive applications. The
bounded search depth results in a speedup by a factor of 1.5 to 50 yielding a coding rate of 75kps

to 150 kps. Thus the coding rate becomes much less image dependent.
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FIGURE 8.5. Coarse / fine matching.
The solid boxes represent 4x4 tiles that match exactly via coarse match while the
striped boxes represent regions of partial matches which would only be found through
refinement. The coarse match reveals 16x8 pixel match while refinement grows it to
18x11 pixels

8.5.4. Coarse/ Fine Matching

The time to perform the block search can be further reduced by using fast-match lists of
Section 8.5.2. to perform the actual block comparisons (as well as specifying which blocks should
be compared as just described.) Recall that the fast-match list membership of a given block
uniquely determines the colors of the 4x4 pixels at a given area. Thus a comparison of the per-
block fast-match list pointer can be used to quickly compare the entire 4x4 blocks. A two-stage
process is used whereby a first coarse pass grows all candidate regions 4x4 pixels at a time in order
to get the best match size (modulo 4) in a fraction of the time. (See Figure 8.5.) Then once the
best coarse match is found, a refinement pass determines the exact size of the largest match. In
this way the pixel-level comparison needs only be performed for one block instead of many, result-
ing in a speed increase by a factor of 1.5 to 3 to yield a net coding rate of 200-400kps, which is
similar to one-dimensional decompositions such as LZW and LZ77 used in GIF and PNG
Although the final block size accuracy is not compromised due to the refinement pass, the best

match determined by the coarse phase could in some cases not be the true best match which would
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result in a non-optimal choice of blocks. However, results show that the impact on compression

performance is typically less than 1%.

8.6. Entropy Coding Techniques

The block decomposition stage generates a parameterization of the input image in terms of
block copy, fill, and punt primitives. Although there are many fewer blocks than pixels, these
parameters still have to be coded efficiently. This is the job of the entropy coder. A simple
entropy coder based on Huffman codes was used to verify the potential utility of the two-dimen-
sional flexible block decomposition. More sophisticated entropy coders could result in further cod-

ing gains.

8.6.1. What to Code

The block decomposition generates the following three types of primitives:

CopyBlock(dest_x, dest_y, width, height, src_x, src_y)
SolidBlock(desz_x, dest_y, width, height, color)
PuntBlock(dest_x, dest_v, numPixels, pixell, pixel2, ..., pixelN)
The dest_x and dest_y fields are not transmitted as they are implicit in the order that the data
is transmitted. For copy blocks, the dimensions and source location have to be transmitted, for fill
blocks the dimensions and color have to be transmitted, and for punt blocks the punted pixel val-

ues have to be sent.

8.6.2. Transforming the Parameters

While the block decomposition is a transformation of the pixel data into a new parameter
space, which results in more efficient coding, additional transformations of the parameters aid in

entropy reduction. A few transformations will be discussed here.
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8.6.2.1. Color Age

The input images consist of 8-bit pseudo-color pixels. The colors of punted pixels, and to
some extent filled blocks, exhibit a large degree of spatial locality. It is common for only a few
unique colors to be used in a given region. Text regions typically use only two colors. However,
throughout the image, different sets of colors might be used. Thus it is beneficial to code a relative

property of the colors instead of the colors themselves. Given a stream of pixel colors:

red, blue, brown, brown, brown, red, brown
the color age is the number of unique colors present between a given instance of a particular

color and the previous instance of that same color. In the above case the color ages are:

red=?, blue=?, brown=?, brown=0, brown=0, red=2, brown=1
It is not possible to determine the color age of the first three colors since they depend on the
previous colors encountered. To initialize the system, the color history is set such that the initial

color age of each color is its pixel color.

As evidence of the utility of the color age technique, using adaptive Huffman coding, the

average number of bits to encode the fill and punt colors in the screendump image drops from 3.63

and 3.05 using the actual colors to 2.03 and 1.62 using color age!.

8.6.2.2. Relative Copy Source

Spatial locality suggests that blocks will often be copied from nearby regions. Thus, the rel-
ative sources will be small and non-uniformly distributed, and hence have lower entropy. Addi-
tionally, many images, particularly ones with text, have significant spatial structure that can be

modeled by coding the source location relatively. For the screendump image, coding the source x

1. Lempel-Ziv compression of punted pixels did not appear to yield better compression.
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coordinate relatively reduces its entropy from 7.58 bits/pixel to 7.26 bits/pixel and coding the

source y coordinate relatively reduces its entropy from 7.41 bits/pixel to 5.56 bits/pixel.

8.6.3. Huffman Coding

After the parameters are transformed, conventional entropy coding techniques are used to
exploit the skewed probability distributions present. Adaptive Huffiman codes are used since the
alphabet sizes are large enough not to require arithmetic coding. The various parameters are coded
independently. Joint coding of height and width did not perform as well due to undersampling
effects: when pairs of parameters, such as block width and height, are considered jointly, there are
more unique symbols, and thus the overhead of introducing new symbols is greater. Using joint
coding, the number of symbols is proportional to the product of number values of each parameter
while using independent coding, the number of symbols is proportional to the sum. Joint coding
might be more advantageous for large sample sets (i.e. large images) and if there was a strong cor-

relation between two parameters.

8.7. Results
The FABD algorithm was evaluated on several images which typify the class of images

described in Section 8.2.1. Calculator, textedit, paper, and screendump, shown in Figure 8.6, are
discrete-tone snapshots of the type used in remote computation. The first three show single appli-
cations while screendump shows a number of applications running. These images stress the com-
pression algorithm on both simple and complex images. Paper3, paper5_big, and paper9, shown
in Figure 8.7, are bi-level images generated from PostScript® files, differing in density and con-
tent which will allow performance variations over varying image detail to be analyzed. Paper5

contains a typical page of text in a proportional font at 130dpi while Paper5_big contains the same
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text rendered at 200dpi. Paper9 is a simple circuit schematic rendered at 150dpi.  Finally,

screendump2 and netscape, shown in Figure 8.8, are primarily discrete-tone images that have
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FIGURE 8.9. Graph of compression rates for various techniques.
FABD100 and FABD1000 refer to FABD using maximum search depths of 100 and
1000 respectively.

some sizable continuous-tone regions. These are useful to analyze performance of the algorithm

on images not completely in the anticipated domain.

The compression levels obtained by FABD, GIF, PNG, JBIG, and PWC are shown in Fig-
ure 8.9 and Table 8.2. The ratios indicate FABD’s compression advantage over the other tech-

niques. The top and bottom FABD results for images correspond to maximum search depths of
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TABLE 8.2. Compression rates for various techniques.
The top numbers in each pair correspond to FABD max depth of 1000 while the
bottom correspond to a FABD max depth of 100. The ratio is the other method’s
coding rate divided by FABD’s.
100 and 1000 respectively. A depth of 100 typically sacrifices at most 10% of the compression
obtained using a depth of 1000. Table 8.3 shows the time required by the techniques to compress
the images. The breakdown of the bit usage for FABD coding of each image is shown in

Table 8.4.

Since FABD is non-progressive, the JBIG compression was also performed in the non-pro-
gressive mode which delivers better compression than the default progressive mode. The JBIG

bitplane decomposition is shown in Table 8.5.

105



FABD 100 FABD 1000 GIF PNG

Time | Rate Time | Rate Time | Rate Time | Rate
(Sec) | (Pix/Sec) | (Sec) | (Pix/Sec) | (Sec) | (Pix/Sec) | (Sec) | (Pix/Sec)

5;?;?;% 0.4 | 340,000 | 08 | 170,000 | 03 | 450,000 | 0.4 | 340,000
(352:5;;3) 2.5 | 33,0000 | 46 | 180,000 | 2.3 | 360,000 | 2.1 | 400,000
i‘i‘flese;:;;’af)’ 32 | 320000 | 52 | 200,000 | 29 | 360,000 | 32 | 320,000
( ;;’;;e:fs) 1.1 | 350,000 | 1.6 | 240,000 | 1.1 | 350000 | 1.1 | 350,000

a 1338(?26 5) 54 | 310,000 y 94 | 180,000 | 43 | 390,000 | 7.4 | 220,000

paper5_big
(1675x2168) | 104 | 350,000 | 180 | 200,000 [ 9.8 | 370,000 | 184 | 200,000

(125?;5?11) 48 | 420,000 | 7.2 | 280,000 | 5.5 | 370,000 | 10.1 | 200,000

netscape
(741x938) 2.3 | 300,000 | 39 | 180,000 | 1.9 | 370,000 | 2.1 | 330,000

screendump
2 44 | 240,000 | 64 | 160,000 § 2.9 | 360,000 § 3.2 | 320,000
(1152x900)

TABLE 83. Compression times for dictionary-based techniques on 168Mhz Sun Ultra 2.

It is readily apparent that the algorithm outperforms the one-dimensional dictionary-based
techniques GIF and PNG on all images, dramatically so on most images. FABD outperforms the
two-dimensional statistical JBIG on all but one image and PWC on all but three images. It is

worthwhile to discuss the performance on the images grouped by type of image.

FABD outperforms GIF on the discrete-tone images calculator, paper, screendump, and
textedit by a factor of 2.5 to 3.8 due to its ability to exploit the two-dimensional redundancy. It
similarly out compresses PNG by a factor of about 2.5 on three of the four images. However, its
compression is similar to PNG on the small calculator image as it cannot find many large two-

dimensional regions. It compresses 12% - 43% more efficiently than JBIG and 16% - 27% more
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Copy Blocks Fill Blocks Punt Pixels
Total

Rate Ave | Net Ave | Net | Pixels | Ave | Net
(bpp) | Blocks | Size | Effect | Blocks | Size | Effect] (% of | Size | Effect
(bits) | (bpp) (bits) | (bpp) | total) | (bits) | (bpp)

calculator 0.060 0.036 | 3439 0.060
(456x298) 0.176] 357 |22.67 (34%) 398 |12.30 e | @.5%) 2.36 (34%)
paper 0.055 0.015 § 4897 0.014
(836x993) 0.091] 1652 |27.73 (60%) 899 |13.51 16%) | (0.6%) 2.29 (15%)
screendump 0.056 0.024 | 15591 0.033
(1152x900) 0.124] 2233 [25.97 (45%) 1818 |13.83 a9%) | (1.5%) 221 Q7%)
textedit 0.030 ' 0.014 § 2077 0.014
(593x646) 0.064] 429 |[27.22 @7%) 349 | 1491 2% | (0.5%) 2.56 22%)
paperS 0.056 0.012 } 4822 0.005
(1132x1465) 0.078] 3283 |28.48 (12%) 1563 |12.22 as%) | 0.3%) 1.75 (6%)
paper5_big 0.032 0.006 | 4972 0.002
(1675x2168) 0.0441 3900 }29.88 (73%) 1787 |13.17 14%) | (0.1%) 1.78 (5%)
paper9 0.018 0.006 § 2619 0.002
(1245x1611) 0.029] 1237 |28.92 (62%) 855 |14.81 1% | ©.1%) 1.91 (%)
netscape 0.049 0.035 | 48636 0.320
(741x938) 0.426] 1352 |25.25 (12%) 1701 | 14.17 %) | (7.0%) 4.57 (15%)
screendump? 0.063 0.040 | 128113 0.527
(1152x900) 0.650] 2544 |25.64 (10%) 2769 |15.14 %) 1(12.4%) 426 (82%)

TABLE 8.4. Bit breakdown for FABD 1000.
Note that the results relating to copy and fill are per block while the punt is per pixel.
Fraction of contribution that is not copy, fill, block is overhead associated with bleck
type, colormap, etc.

K bytes in

Bitplanes
asoaony | 02800 | 1707 | | aomey |00t | 6
(;I:tls;;g;) o6sibpp | 1l 0l iﬁrle;;:;(%)’ oa77epp | 12
hero03) | 0-102ep | 05705795 Sg‘l";‘;i‘;‘(’)‘(%z 1252 bpp gf ; ;? f > ; :g
. opers s | 0125 ber 26 ( 5‘;’;;‘?;2) 0.080bpp | 3.3/02/03
(Ifg?}‘;fz-lbgg) 0.086 bpp 39

TABLE 8.5. JBIG Bitplane decompression
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FIGURE 8.10. Bitplane decomposition of screendump image.
Original is on far left while the monochrome images formed from each of the 5 bit-
planes are shown to its right. The bit planes account for 12.8k, 3.8k, 3.1k, 1.8k, and
1.5k bytes of the JBIG image respectively.

efficiently than PWC on these images based on JBIG and PWC’s inability to code multiple pixels
at once. The JBIG bit-plane decomposition of screendump is shown in Figure 8.10. As can be
seen from the figure as well as Table 8.5, most of the information is, by chance, in bitplane 0 so
there is not too much redundancy across bit planes and JBIG has a chance at efficient coding.
However, quite often text and other structures will be striped over multiple planes if its foreground

and background colors differ in more than one bit. In these cases, JBIG will be less efficient.

FABD allows 3.7 to 5.6 times more compact coding than GIF and 1.8 to 4.2 times more
compact coding that PNG on the bi-level images papers5, paper5_big, and paper9. PNG’s superior
bit-packing compared to GIF is probably responsible for much of the difference in the results of
the two techniques. However, since there is a significant amount of two-dimensional repetition,
FABD outperforms both. FABD outperforms JBIG on paper5 and paper5_big due to its ability to
exploit the repetitive patterns in the image at a high level. While JBIG efficiently models each
pixel, FABD spots letters, words and sometimes phrases that are used more than once. As the res-
olution is increased, the compressed file size does not increase dramatically since the number of
blocks remains roughly constant. The number of pixels more than doubled but only 15% more
blocks are required. JBIG very slightly outperforms FABD on paper9 because paper? is so sim-

ple, consisting of mostly horizontal and vertical lines, which JBIG can very accurately model at
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FIGURE 8.11. Block decomposition of screendump2 image.
The white regions represent punted pixels.

the pixel level. PWC performs similarly to JBIG since in the case of bi-level images, the two tech-

niques are roughly equivalent.

JBIG is tailored to bi-level images so it is notable that FABD can achieve better compres-
sion on this class of images. However, JBIG is well suited for scanned and/or half-toned images as
well, which FABD will not compress as compactly. These types of images have a probabilistic
regularity but low deterministic regularity. Most of the pixels can be predicted correctly but, many
cannot. Thus JBIG will incur a coding penalty for the wrong pixels but FABD will have to reduce

the size of the entire blocks, effectively incurring a penalty on all of the pixels in the block.

Lastly, netscape and screendump?2 are primarily discrete-tone color images with some siz-
able continuous-tone regions. FABD is still able to outcompress GIF and PNG on these images
due to its improved performance in the discrete-tone parts of the image. As seen in Table 8.4,
approximately 80% of the FABD bits are used for the 10% of the pixels which are punted. The
continuous regions of the images do not lend well to block matching and are thus punted. Figure
8.11 shows the block decomposition of screendump2 with punted pixels shown in white. In

screendump?2, each punted pixel requires more than 4 bits to code. Since typically punts are rare, a
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FIGURE 8.12. Bitplane decomposition of screendump?2 image.
Original is in center while bitplane images surround it.

simple coder was used but for improved coding of hybrid images, a more sophisticated technique
could be used such as lossless JPEG, or possibly even a lossy coding. FABD still outperforms
JBIG by a factor of 1.5 to 2 on these images due to the fact that the images do not split well across
bit-planes, as seen in Figure 8.12. Additionally, the continuous regions are not well suited to JBIG
compression. However, the continuous regions are exactly what PWC is designed for and thus it

can code in 20% fewer bits than FABD.

8.8. Conclusion

This chapter describes how two-dimensional global structure can be effectively exploited to
achieve efficient coding of discrete-tone images. While GIF and PNG are limited to one-dimen-
sional global structure and JBIG and PWC only use a local context, FABD is able to obtain the
best of both. Due to FABD’s lossless nature, efficient matching is possible. The two-dimensional
flexible automatic block decomposition provides a different method of compressing images which
outperforms one-dimensional dictionary and two-dimensional statistical techniques on many
images, and could be combined with more sophisticated entropy coding techniques to achieve

even greater performance.
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caaptER9  Development & Analysis
Environment

9.1. Introduction

Many of application-independent compression techniques described in this part of the thesis
were prototyped in the context of the InfoPad project, previously described. This chapter
describes the development and analysis environment created during the InfoPad project which was
used to develop, debug, analyze, and improve the algorithms previously presented, as well as fur-
ther the research of others in the InfoPad research group working on topics ranging from wireless

networking protocols to CMOS high-bandwidth radio design.

The design environment allowed full development of the software infrastructure and appli-
cations before the actual InfoPad hardware was deployed. In this way, the hardware and software
development could proceed concurrently. Additionally, debugging hooks in the system allow
emulation and analysis in the software domain that would be more difficult or impossible using the

actual hardware system.
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FIGURE 9.1. InfoPad development environment

9.2. Networking Environment

Figure 9.1 shows the InfoPad development environment. Standard Unix / X applications
shown on the far left communicate with InfoPad-specific fype-servers which translate the standard
protocols into InfoPad-specific protocols. The type-servers operate on different types of data: pen,
audio, video, and text / graphics, and are described in sections that follow. The type-servers com-
municate the InfoPad-specific data over the InfoNet networking infrastructure. InfoNet manages
tasks such as routing and hand-off of networking data as well as overall pad state maintenance,
tracking and control. A nameserver database manager is used to keep track of the state of various
components in the system, including versioning information as well as operational status. The
InfoNet networking layer is typically overlaid on top of standard TCP/IP to allow the InfoPad net-

work to run on multiple machines.

Remote terminals or “pads” can connect in one of two ways as shown on the right side of
the figure. Hardware pads connect wirelessly through hardware / software basestations. The base
stations connect to the rest of the network via standard IP protocols and to the wireless pads

through custom or commercial radios[49]. Each basestation is responsible for a particular cell and
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as hardware pads migrate between cells, their connections are handed off via InfoPad-specific cell-

servers and gateways.

Alternatively, an all-software environment can be used by connecting to InfoNet with a soft-
ware InfoPad Terminal Emulator described below. The emulator uses the same protocols as the
hardware pads, allowing the type-servers and InfoNet to operate exactly as if a hardware pad is in
use. However, the emulator displays its data on any X Window terminal, allowing greater avail-

ability. Debugging and analysis hooks allow performance characterization and emulation control.

9.3. Emulator
The InfoPad terminal emulator, shown in Figure 9.2, allows emulation of the InfoPad hard-

ware terminals, debugging of the InfoPad software components, and analysis of protocol and sys-

tem performance!. The emulator connects to the InfoPad network just as hardware terminals via
basestations do, but instead presents its user interface to any X Window terminal. The emulator
supports text / graphics, video, audio, and pen traffic as well as control messages. Several pop-up

windows described below control detailed aspects of the emulator operation.

The emulator is written as a hybrid C / Tcl/Tk application where Tcl/Tk code controls the
user interface and high-level control, and underlying C code is used to interface to InfoNet and
perform per-packet time-critical processing. This allows the flexibility and rapid prototyping

capabilities of Tcl/Tk with the low-level processing power of C.

1. The emulator was originally developed by Brian Richards.
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FIGURE 9.2. InfoPad terminal emulator
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93.1. Operation

The main window shown in Figure 9.2 emulates the text / graphics display as will be
described below in the next section. Below that are controls which give the user control beyond

that which the pad hardware supports.

On the right, the user can select which gateway and pad server number they want to connect
to. The “GATEWAY:” pull-down menu queries the name server to see which gateways are cur-
rently running and displays their numbers and the version of the gateway code that they are run-
ning. If the gateway or cellserver are down, this is indicated. The “PAD SERVER:” pull-down
menu queries the nameserver to display which pad servers are operational and their versions.
Finally the “TABLET DEVICE:” pull-down allows the user to enter which port the pen tablet is con-
nected to. The “Type:” pull-down menu allows selection of the tablet type and the “TABLET” tog-

gle button controls whether a connection to the tablet is attempted.

The bottom row of indictors show further status information from the nameserver. Its loca-
tion and time it was started are displayed. Below, the status of the currently selected pad, X (text /
graphics), pen, and audio server are displayed. It is retrieved from the Name Server periodically.
When any critical event occurs, such as selecting a new pad server or gateway, the emulator polls
for status more often for a while. The “UPDATE” button forces the status to be reread. The pull-
down menus for “PS VERSION”, “X VERSION”, “PEN VERSION”, and “AUDIO VERSION” control the
version of the respective servers which is used if they are auto-started by connecting to a pad clus-
ter which is not running. The “KILLPAD” button kills the currently selected pad server, causing ter-

mination of all associated type servers as well.

The user can connect to and disconnect from a pad cluster using the “CONNECT” button.
The “REMOTE REFRESH” button causes the display to be updated. The “MOVE” button forces a

hand-off to a new gateway while the “POLL” button indicates that the emulated receive signal
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strength has been queried by a cell server. The “OPTIONS”, “TEXT/GRAPHICS”, “TRAFFIC”, “BER”,

“A/V”, “STATS”, “DEBUG”, and “T/G STATS” buttons invoke pop-up display presented below.

9.3.2. Text/ Graphics Display Support

The text / graphics data is displayed in the main emulator window. The 640x480 mono-
chrome mode used by the pad hardware is supported. Additionally, color modes of varying size
which support some of the techniques outlined in Chapter 4, Chapter 5, and Chapter 6 are sup-

ported to allow research into future protocols.

The pop-up dialogs shown in Figure 9.3 control various aspects of the operation of the text /
graphics subsystem. The Start-up Options dialog is used to set configuration options which are
sent to the nameserver and passed to the text / graphics servers when they are auto-started. The “X
CONFIG” field is used to set the X configuration file that is used to control pad user and session
preferences. It is used instead of login authentication. The “MODE” controls if the X server is
started in monochrome or a color mode while the “SCREEN SIZE” is used to select the size of the
emulated screen when a color mode is used. When the text / graphics server is running, it periodi-
cally transmits the screen size and mode parameter to the emulator so that the emulated screen size
is adjusted properly. The “RATE LIMIT” and “MAX REFRESH” sliders are used to adjust the initial
rate limiting and refresh rates. These can be adjusted during operation using the traffic control and
monitoring popup described below. The “MAX PACKET SIZE” and “BUFFERED WRITES” boxes are
used to control the packet size and whether the network interface is buffered. The “INTER-PACKET
DELAY:” slider is used to limit the rate that packets are generated. Finally the “CURRENTLY RUN-
NING:” line indicates the results from querying the name server as to the configuration of the cur-

rently running text / graphics server.
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FIGURE 93. InfoPad emulator text / graphics pop-up controls.
Top-left is the text / graphics start-up options dialog, top-right is the text / graphics
statistics dialog, and bottom center is the text / graphics control dialog.
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The text / graphics control dialog controls the current emulated display mode. The emulator
will emulate “MONOCHROME”, “COLORMAPPED 8-BIT”, or “JEFFCOLOR DELUXE” (TGVQ) dis-
plays. The “AUTO DETECT MODE” enables decoding of packets from the text / graphics server
indicating which type of display is being used. The “GAMMA:” box allows the gamma correction
factor to be applied to the of the emulated screen data to be entered. Gamma correction is applied
on-the-fly. The “INVERT PROTECTED PKTS” and “INVERT REGULAR PKTS” buttons allow regular
or protected packets to be inverted on the screen for easier identification. Recall that the protected
packets are those which are used for asymtotic reliability refresh, have higher forward error cor-

rection applied, and are dropped if an error is detected in their data.

Emulation of a terminal window which could potentially contain any configuration of colors
on an X Window display possibly with limited 8-bit colormapped display requires on-the fly map-
ping of colors. The Local Color Visual section allows the user to select the mode that the emulator
text / graphics X Window is displayed. The basic problem is that the emulated terminal screen can
potentially contain any color. However, since the emulator runs as a standard X Window applica-
tion, it cannot be guaranteed to be able to render all colors. The Local Color Visual box allows the
user to select the mode that the screen should be emulated. The emulator can run on 8-bit color-
mapped or 24-bit true-color displays. On 24-bit true-color displays, there is not a problem since
any possible color configuration can be rendered since each pixel’s red, green, and blue values can
be individually set. In 8-bit colormapped displays, the emulator can choose to co-exist with other
applications’ colormap requests, in which case it can only use some fraction of the 256 physical
colormap entries, otherwise it can use its own colormap, so it can control all 256 colormap entries,
but the screen will flash when the mouse enters and exits the application since the emulator color-
map is only active when the cursor is in the emulator window. The former is chosen by deselect-
ing the “PRIVATE COLORMAP” box while the latter is chosen by selecting it. If in 8-bit mode, the

“8-BIT STATIC” mode refers to a mode that a static color-cube of specified dimensions is allocated
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and colors to be displayed are chosen from this color cube. “8-BIT DYNAMIC” mode entails allo-
cating colors as the emulated display needs them, and any colors that cannot be allocated are repre-
sented by the closest color that can be allocated. “8-BIT DYNASTAT” is a hybrid of the two
techniques that first allocates a static color-cube and then allocates additional requested colors
dynamically. In this way, a fixed base set of colors will always be present, but often exact matches
will be possible. Finally the “X SHARED MEMORY” button indicates if the X Window shared
memory image transfer protocol should be used. If the emulator is running on the same machine
as the X server it is being displayed on (not to be confused with the text / graphics server servicing
the pad), the X shared memory protocol allows image data to be transferred in shared memory,
avoiding copying throughout the networking subsystem. This reduces the computation load of

rendering, thus allowing higher frame rates.

The “Text / Graphics Statistics” pop-up displays statistics of the text / graphics data
received. The “8-BIT PUTS”, “4-BIT PUTS”, “2-BIT PUTS”, “1-BIT PUTS”, and “BLOCK FILLS”, and
“AVERAGE BITS PER PIXEL” are used for analysis of a compressed bitmap transmission algorithm.
They display the percentage of pixels and blocks that are sent using 8, 4, 2, 1, and 0 bits per pixel
as well as the average bits per pixel. The “UPDATE RATE” indicates the net pixel displéy rate aver-
aged over the last second, and the “FRAME RATE” indicates the frame update rate achieved calcu-
lated from new-frame packets received from the text / graphics server. The “REGULAR”,

“PROTECTED”, “BOTH” selection indicates which types of update packets the above measurements

apply to.

9.3.3. Audio and Video support

The emulator supports emulation of pad audio input and output as well as VQ-video output

through the Audio / Video pop-up shown in Figure 9.4.. The audio is coded as 8 kHz, 8-bit pi-law
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. FIGURE 9.4. InfoPad emulator audio / video pop-up dialog
PCM coded samples, and is accessed directly through the Sun Workstation’s /dev/audio

device. The uplink and downlink can be individually enabled through the “AUDIO PLAY” and
“AUDIO REC” buttons and an automatic mode is enabled through the “AUDIO AUTO” button,
whereby the audio is enabled as soon as the first downlink audio packet is received. Diagnostic

data is displayed if the “VERBOSE” button is checked.

Low latency audio data, required for synchronized audio and video as well as effective
video conferencing, requires that the number of samples of buffered audio is kept low. The
“DOWNLINK BUFFER SIZE:” box allows the amount of data that is buffered in the emulator and the
)dev/ audio device buffer to be limited. If more data than is allowed is queued, the extra data is
dropped, emulating a limited size downlink buffer. By varying the size of this buffer, the effects
of network jitter and packetization can be explored and the requirements of the hardware downlink

audio buffer size can be determined.

The Audio / Video popup also controls the real-time color 128x240 VQ video display. The
actual display of the VQ data is performed by the video utility vg_play described below, but the
emulator is responsible for controlling when vq_play is opened and closed as well as combining
video packets into complete VQ video frames and sending them to vg_play. Thus the use of a

separate stand-alone application for video display is hidden from the user but allows greater mod-
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ularity and code reuse. The VQ video window is opened and closed via the “VIDEO PLAY” button.
If “VIDEO AUTO” is enabled then the VQ video window is opened whenever VQ video arrives.
The frame rate can be manually limited for performance reasons by entering the maximum desired
frame rate in the “MAXIMUM DISPLAY RATE” box and selecting “VIDEO DROP”. This can be used
to assure that emulation of the video screen does not impact the performance of the other sub-

systems. Frames are dropped to assure that the aggregate rate does not exceed the specified limit.

9.3.4. Traffic Monitoring and Control and Debugging Hooks

Figure 9.5 shows the emulator traffic and debug dialogs which are used to monitor down-
link traffic rates and latencies, optionally limit downlink traffic rates, and monitor uplink traffic
rates. At the top, the rate in packets per second, kilobits per second, and average bytes per packet
are shown for each of the individual uplink and downlink data types as well as the aggregate
uplink and downlink traffic. The text / graphics data is further subdivided into regular and pro-
tected traffic where as previously described, the protected traffic is used for asymtotic reliability

and is dropped if in error.

Below the traffic rate display, a measurement of the latencies of the downlink traffic is pre-
sented. Minimum, average, and maximum latencies over the past second are displayed. This
information is obtained by comparing time-stamps placed in the packets by their senders with the
time that the packets are processed by the emulator. Clock skew, which could occur if the packets
are sent by a different Unix host than the emulator is running on, is removed by assuming that the
lowest-latency packet ever received during the lifetime of the emulator-pad connection will be 0
ms. This is based on the assumption that most delays are due to queuing and not transport delays.

The latency measurements are particularly useful when combined with the downlink rate limiting.
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FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs

The “DOWNLINK RATE LIMIT”, “T/G RATE LIMIT”, and “VIDEO RATE LIMIT” sliders are used
to control the downlink sender rates by sending messages to the gateway, text / graphics server,
and video server (send_vq described below) requesting rate limiting. The sliders are logarithmic
to allow fine control over a large range of rates. The far right position is “unlimited” whereby the

senders are instructed not to limit their data generation.

The Debug Hooks popup is used to expose various debugging hooks in the emulator. In

particular text / graphics packet statistics can be gathered and information about incoming T/G
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packets can be displayed. The Flow Control options allows the user to select if late packets are
dropped as the gateway would drop them for flow control. The “RETRANSMIT SKIPPED PACKETS”
controls if NACK packets are sent back to the sender. Finally “PRINT TIMESTAMP ADJS” displays
the timestamp offsets used to cancel out clock skew. The BER Injection is used in conjunction
with the BER popup window (not shown) which can be used to automatically corrupt the data

stream at a specified Bit Error Rate to observe the effects on protocol reliability.

9.4. Text/ Graphics Server
The Text / Graphics algorithms were developed by augmenting an X Window server to sup-

port the Split X design!. The X Windows server was amenable to modification due to its modular
architecture and freely available source code. The X Windows server is designed to be ported to
different display adapters, and thus the InfoPad port is implemented as a new display adapter.
Upon initialization, a new slave thread is spawned which communicates via InfoNet to the pad.
The virtual framebuffer is placed in shared global memory and semaphores and mutexes are used

for synchronization. The manual page for XInfoPad can be found in Appendix A.11..

9.5. Video Support
The VQ video subsystem of the InfoPad system was developed using a set of utilities which

generate VQ video clips, play the clips on standard workstations, play the clips through the Info-
Pad network to an emulator or hardware pad, and manipulate and display the clips. The manual
pages of the applications to perform these tasks are listed in Appendix A and the applications are

described below.

1. Note that Richard Han and/or Brian Richards did the original work on the integration of InfoPad hooks into the X
server although I expanded upon it significantly through the implementation of the virtual framebuffer algorithms,
color support, as well as support of transmission of block, instead of just line, packets.
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VQ video files used to save and exchange the VQ video clips are stored in a custom file for-
mat detailed in Appendix A.13. (vg (5)). The video format allows arbitrary dimension video clips
with codebook updates both at the beginning and throughout the video clip. The latter would
allow for new VQ codebooks to be sent between major scenes for improved image quality. Video
files can also be exchanged in a RAW format, described in Appendix A.12. (raw_video (5)), which
allows for arbitrary dimensions of the Y, I, and Q components. These RAW videos can then be
transcoded into VQ videos as described below. Thus they are a useful interchange format which

allows non-InfoPad applications to generate VQ videos.

VQ videos can be generated from MPEG and RAW clips using mpeg2vq as detailed in
Appendix A.4. (mpeg2vq (1)). mpeg2vq allows resizing of video clips and transcoding from par-
ticular subregions of the source clip. It allows the video frame rate to be specified as well as frame
dropping to obtain a desired frame rate. mpeg2vq can generate adaptively-coded or fast-coded
video clips as discussed in Section 5.2.. Additionally, video clips can be coded to an existing arbi-

trary codebook.

VQ and RAW videos can be played on standard X workstations using vq_play as detailed in

Appendix A.9. (vg_play (1)).

VQ clips coded for a 128x240 display can be sent to an InfoPad terminal or emulator using
the send_vq utility as described in Appendix A.6. (send_vg (1)). send_vq can be used to inject
text / graphics, audio, and other types of data into the InfoPad network for general purpose debug-
ging. Rate limiting options can be specified to prevent overflow on bandlimited links and code-
book information can be included or overridden. send_vq will also deliver synchronized audio

and video if an audio file is specified.
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VQ codebooks can be displayed and extracted using the Codebook2ras,
show [vg] codebook [v], and vg2codebook utilities as described in Appendix A.1., Appen-
dix A.7., and Appendix A.10.. Codebook2ras converts a codebook into a Sun Rasterfile which
can then be viewed. The codebook images in this thesis were generated with that utility.
show[vg] codebook[y] is a shortcut to extract and display the codebooks. Finally
vg2codebook extracts a codebook from a VQ video clip. This codebook can then be sent man-
ually using send_vq or another video can be coded to this codebook using mpeg2vq as previ-

ously described.
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rart 1 Application-Specific
Transmission

cuarter 10 Optimization of Web for
Bandlimited Links

10.1. Introduction
This chapter applies the techniques and methodology developed for application-indepen-

dent text / graphics and image transmission to the web. Since web browsing is an interactive pro-
cess and downloading a web page can take several seconds to several minutes over slow links, the
information presented to the user during this time is important. New metrics and visualization
techniques to illustrate and quantify web page loading are presented. Given the insight afforded
by the metrics, a methodology to improve web access using a new technique, globally progressive
interactive web delivery, is proposed. This technique views the web delivery process as the remote
display of a web page, similar to application-independent transmission previously described, and
entails applying progressive coding to the document transmission process in its entirety. It also

allows the user to explicitly direct link bandwidth to images of interest. This globally progressive
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interactive framework has been prototyped without modifying either existing web browsers or
servers through the use of a web proxy and browser-side Java applets. The framework allows for
both protocol and image compression research in a platform-independent manner. Methods for
integrating the architecture into existing web infrastructure for greater performance and ability to

scale are discussed [31].

10.2. Motivation

Delivery is everything. “The web experience” is much more than the web pages visited - it
also encompasses the speed of access and the quality of information delivered. While browsing
over a T3 line can be highly productive, web access over dial-up or wireless modems often leads to
the phenomenon known as the “World Wide Wait”. Network congestion and bottlenecks within
the Internet can also limit the gains of a high-speed last link. However, as will be shown, web per-
formance over these slow links can be dramatically improved through efficient link scheduling and
data compression tailored to web transmission. Although some previous work has accelerated
web access through lossy image compression [25][41][65], this, by necessity, results in a reduction
in image quality. Transport protocol modifications designed to reduce the total web page delivery
time [52][9][54] also improve web performance, but further gains can be achieved by combining

image coding and networking techniques as described in this chapter.

It is important to view web browsing as a form of remote display, similar to the application-
independent transmission described previously in this dissertation. Browsing is not the bulk trans-
fer of information for off-line storage, but rather the “real-time” rendering of a web page on a
remote client. Thus the speeds at which various parts are rendered are useful metrics to gauge the

browsing experience.
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Web browsing is an interactive process where the user often has specific goals when brows-
ing. The goals may be to read the text, glance at all of the pictures, or closely examine a single pic-
ture. In order to maximize the utility to the user, it is important to incorporate these goals as best
as possible. Currently the level of interaction is limited to aborting the downloading of a page or
suppressing all image downloads until they are explicitly requested. Thus, the user is at the mercy
of the delivery system and must wait for the image or images of interested to be delivered. A
method is proposed for incorporating feedback to allow the user to guide the bandwidth utilization
throughout the downloading process: by simply moving the mouse cursor into an image’s window,

the image will gain full use of link bandwidth.

Incremental deployment is essential in global Internet applications such as the web. It is
infeasible to expect all existing web browsers and servers to be converted. Two levels of incre-
mental deployment of the protocols are proposed. Firstly, by deploying intermediate proxies to
perform image and protocol conversion, the improved delivery system can be used on slow links
with modified web browsers to view content on conventional web servers. Secondly, a web proxy
/ Java applet prototyping framework is used which does not require the web browsers or servers to
be modified. The proposed system is benchmarked and a discussion of the strengths and weak-

nesses of the framework is presented.

10.3. Background / Previous Work

Web pages are multi-object documents. They consist of a main HTML object, which con-
tains the text and formatting information, and zero or more additional objects such as inline images
and Java applets. The main HTML object contains references to other objects by specifying their
uniform resource locator (URL). These objects are retrieved individually by the web browser

from the web server using the HyperText Transfer Protocol (HTTP).
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HTTP/1.0 [11] uses a separate TCP connection to retrieve each object. Several concurrent
connections are maintained between the browser and server to load multiple objects at once in
order to hide TCP connection establishment and slow-start [42] delays. However, this increases
overhead and network congestion, thus impacting scalebility [66]. Typically the number of open

cgnnections is limited to about 4.

HTTP/1.1 [23] improves upon the delivery protocol through support of persistent connec-
tions [54] between the servers and browsers. By using a single connection to sequentially deliver
all of the HTML and images in a web page, the connection establishment and slow-start delays can
be amortized over the cost of the entire page, the connection packet overhead can be reduced, and
better responsiveness to network congestion is achieved. HTTP/1.1 also supports compression of
the HTML objects via the deflate coding of the public domain zlib compression library [28]. (This
is a hybrid LZ77 [72] / Huffman coding [39]). When applied to HTML data, it can typically result

in a greater than 3x reduction in the size of the HTML file [52].

TCP sessions [9][53] have been proposed to allow sharing of state between related TCP
connections, such as those connecting the same host pair, at the transport layer. If any connection
in the session experiences congestion, all connections can reduce their windows. In this way the
network-friendly behavior of HTTP/1.1 can be obtained while decoupling sensitivity to losses
between different image transfers. Additionally, only the server-side TCP stack needs to be modi-

fied - no browser or server modifications are necessary.

The MUX protocol [51], a work in progress which is part of the next generation HTTP
effort (HTTP-ng) [50], provides a method to layer lightweight multi-session delivery on top of a
reliable stream-oriented transport such as TCP. The MUX protocol can be used by multiple appli-
cations to share the same transport stream as the main HTTP connection in an application indepen-

dent manner.
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The WebTP project [70] is addressing transport requirements of the World Wide Web
through their “User-Centric Web Transport Protocol”. This is a receiver-driven architecture to
improve upon scaling of web-servers while retaining TCP-friendliness. It uses rate-based flow

control and does not require hard state at the sender.

10.3.1. Previous Work in Web Acceleration

UC Berkeley’s Transend [25][26], Intel’s QuickWeb [41], and Spectrum’s FastLane [65]
improve upon web access over slow links by reducing image size via lossy compressionl. Web
proxies are used to transform the imagés through resolution and color reduction. Users of Quick-
Web have noted that it can cause significant degradation of image quality [44] and the service has
been discontinued. Use of FastLane also results in image quality degradation [7]. The three sys-
tems allow the user to explicitly load the original undegraded images, but no further user interac-
tion is supported. In contrast, the globally progressive interactive system described here does not

cause reduction of the final quality of the images delivered, and allows greater user interaction.

10.4. Quantifying Web Page Downloading

Since downloading web pages can take from several seconds to several minutes using
modem links, the information preéented to the user during this period is critical. For instance, if it
requires one minute to download a page, it is clearly better to have most of the text and images
present aﬁér 10 seconds with the remaining filling in over the minute, than to have nothing until
the whole page appears at the one minute mark. Yet in both cases the total time to load the page is
the same. Thus the total time to load a given page is often not an accurate measurement of the

utility of the loading process.

1. Transend is also designed to operate with clients of varying computational and display capabilities and perform other
types of manipulations.
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Object Name Bytes | Object Name Bytes
HTML  index.html 41,261 jImagel horoscopes120.gif 4,313
Image2  ad_info.gif 92 |Image3 still_468x60.gif 9,374
Image4  cnnin_logo.gif 2,225 jImageS icon_arrow_left.gif 261
Image6  white.gif 35 jImage7 roof_top.gif 1,205
Image8  search_infose.gif 44] |Image9 right_corner.gif 102
Imagel0 top ruins ap.jpg 17,774 |Imaegll  custom_clint.jpg 6,112
Imagel2 video_transp.gif 170 |Imagel3  cnn_website.gif 2,980
Imagel4 web_services.gif 11,623 |ImagelS custom_arrow.gif 137
Imagel6 tv_generic.gif 1,291 JImagel7  health2.gif 2,124
Imagel8 thumbnail.jpg 2,580 |Imagel9  week_in_review.gif 986
Imge20  diana.jpg 2,507 |Image21  infoseek_logo.gif =~ = - 555
Image22 ' pointcast.gif " 6,983 fImage23 red_468.gif 10,486

TABLE 10.1. Contents of typical web page (CNN Interactive - www.cnn.com).
Shading denotes images not initial visible when viewed on a 1024x768 screen.

In order to fully encapsulate the loading process as viewed by the user, it is necessary to
visualize and quantify the loading of the constituent parts of the page, and not just the time to load
everything. A web-page loading graph can be used to more precisely illustrate and quantify the
effects of different transfer protocols on a typical web document. The CNN Interactive (tm) home
page (http://www.cnn.com/) will be used as an example. The constituent objects are listed in
Table 10.1 in order of their appearance and the shaded entries correspond to images that the user
would have to scroll to see when using a 1024x768 pixel web browser window because they are

not initially visible.

10.4.1. An Example of Concurrent HTTP/1.0-Style Loading
Figure 10.1 shows a web page loading graph of the document loaded using the conventional
HTTP/1.0-style concurrent loading protocol. The graphs in this section display timings using a

simulated constant 3KB/sec link similar to a 28.8kbps modem, in order to best illustrate the perfor-
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FIGURE 10.1. Web-page loading graph using concurrent loading of up to 4 connections
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FIGURE 10.2. Web-page loading graph of sequential loading protocol

mance of the different loading styles apart from implementation specifics. The results shown in
Section 10.6.5. are based on actual data collected from our prototype proxy / applet system. The
objects in the page are listed on the vertical axis while time traverses the horizontal axis, with the

lighter gray used for images outside of the viewable window. The bars indicate the time during

which a particular object is being delivered.

In order to quantify the loading process, it is useful to define the following metrics: the time
that the HTML is loaded, the time that initially visible images are loaded, and the time to load the
entire page. The time to load the HTML determines how long it will take to view the text on the
page, and the time to load the initially visible images determines when the user thinks that the page

has loaded. In the example we can see that the HTML is loaded within 30.6 seconds, all visible
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Time to visible | Time to entire

Time to text document document
Concurrent 30.6 sec 36.9 sec 42.4 sec
Sequential 14.3 sec 28.2 sec 42.4 sec
Conc. w/comp. 6.6 sec 29.4 sec 31.8sec
Seq. w/comp. 3.7 sec 17.7 sec 31.8 sec

TABLE 10.2. Summary of concurrent and sequential loading

images are loaded within 36.9 seconds, and the entire page is not loaded until 42.4 seconds have

elapsed.

10.4.2. An Example of Sequential HTTP/1.1-Style Loading

The web-page loading graph for the same web document loaded using the conventional
HTTP/1.1-style sequential loading protocol is shown in Figure 10.2. Using the sequential loading,
the total time to load the entire web document remains 42.4 seconds but the time to see the visible
images has dropped to 28.2 seconds, simply by reordering the data being sent. Additionally, the
time to see the text is reduced to 14.3 seconds - less than half of the time required using concurrent
loading. Thus, despite the fact that the total loading time is the same as the previous case, the

delivery orders have very different consequences for the user.

10.4.3. HTML Compression

If HTML compression is used, the size of the HTML object in our example is reduced by
about a factor of 4, from 41261 to 9950. The corresponding web-page loading graphs are shown in
Figure 10.3 and Figure 10.4. While the total time to load the document is only reduced by about
25% from 42.4 seconds to 31.8 secondg, the time to see the text is reduced by a factor of 4 and the
time to see the entire visible part of the document is reduced by about 20% and 40% for the con-
current and sequential modes respectively. However, the delivered document is identical to the

original. These results are summarized in Table 10.2.
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10.5. Globally Progressive Interactive Web Delivery

Once metrics and methodology are in place to examine web document delivery, it is possi-
ble to investigate alternatives. Although sequential transmission is an improvement over concur-
rent delivery, using progressive and interactive techniques, significant improvements can be

realized.

10.5.1. Globally Progressive Transmission

Progressive image transmission entails sending a layered coding consisting of a low quality
version initially, followed by refinements. Thus, after the initial bytes are received, a complete,

albeit non-aesthetically pleasing, version can be displayed, and as time progresses, the image qual-
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ity improves. Progressive techniques are ideally suited for transmission of human-viewed data
over band-limited links since they allow the user to quickly deduce the salient features and only

require the user to wait for the full load times to see full detail.

10.5.1.1. Existing Progressive Image Formats

Progressive image formats are already common on the web. CompuServe’s lossless Graph-
ical Interchange Format (GIF) [17] has an “interlaced” mode in which rows are sent in a progres-
sive manner. Portable Network Graphics (PNG) [59], a graphics format which has been formally
accepted as a standard MIME type by the World Wide Web Consortium, has a mode that is pro-
gressive in both rows and columns to achieve better subjective quality after a smaller amount of
data has been received. Both GIF’s and PNG’s progressive modes result in some reduction in
compression rate due to the increase in local entropy. PNG also enjoys a patent-free status and
typically achieves 5%-25% better compression than GIF [56] by using zlib’s LZ77 / Huffman
compression instead of GIF’s Lempel Ziv Welch (LZW) [72][71] compression and packing sub-

byte pixels.

The Joint Picture Expert Group’s JPEG includes a lossy DCT-based coding technique which
has a progressive mode that divides layers by spatial frequency and quantization level [56]. The
number of layers and their composition can be varied, and are specified in the image header. Fig-
ure 10.5 shows an example comparing JPEG’s non-progressive and progressive (PJPEG) modes.
The baseline JPEG quanﬁzation levels are used, resulting in a coding rate of 1.84 bits/pixel which,
from an informal survey, is typical of JPEG images on the web. As can be seen from the lower set
of images, a very crude version of the image is available after receiving only 8% of the progressive
data. After 19%, enough detail is available to easily discern the contents of the image. Subsequent

data provides further detail, with the later layers only becoming noticeable under closer inspection.
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FIGURE 10.5. Example of progressive images.
JPEG (top) and PJPEG (bottom) showing display of incomplete data. Image was
quantized to JPEG default level yielding 1.84 bits/pixel coding.

It is important to note that this is exactly what lossy image compression proxies such as Quick-
Web, TranSend, and Fastlane rely upon - by performing lossy image compression they are remov-
ing some of the fine detail, similar to that in the final layers of PJPEG. While the degradation is
not severe to cursory inspection, it does reduce the final image quality. However, by using pro-

gressive techniques, the end quality need not be sacrificed at all.

10.5.2. Locally Progressive Delivery

Progressive image formats are of limited benefit when using standard loading protocols
since they are Jocally progressive - each image is progressively coded but the document as a whole
is not. Otherwise stated, the loading process itself is not progressive. Figure 10.6 and Figure 10.7
show web page loading graphs of locally progressive images loaded concurrently and sequentially.
The lighter parts to the left correspond to coarser layers while the darker parts to the right corre-
spond to refinements. For illustrative purposes, the layers have been divided according to the divi-

sion of the lower images in Figure 10.5.

137



T v T T r T
P R ]

Image3 | } e — 1 ayer 3 loaded for all
Tmage6 | - Qu-screen images

Image9 | ' T ——————————
Imagel2 ' 1 ayer | loafled ™ e '

lmage iS¢ for all on-séreen

Layer Slodded

meze '8 F images | . L2 ca for all on-screen
0 10 20 30
Time (seconds)

FIGURE 10.6. Simul. loading w/ locally progressive images (w/ HTML compression)

HTML [ " ' ‘Layer ]
Image3 F ) g:cr2
Ima 2 : 9 = a3
geb | , ma [ayer 4
Image9 - : " = Layer 5
Imagel2 | : ” a1
imagcls B X ey
Sragels B . e
imase2] F . - e
. . e 1 A \ m—
0 10 20 30
Time (seconds)

FIGURE 10.7. Sequential loading with locally progressive images (w/ HTML compression)

The amount of time to deliver enough of all of the images to see a certain number of layers
in each image can be used to quantify the progressive delivery. As can be seen from Figure 10.6,
the time to concurrently load at least the first layer of each of the images is 10.1 seconds, to load
the first two layers is about 12.7 seconds, three layers is 15.3 seconds, four layers is 20.5 seconds,
and the time to load all layers for all visible images is still 29.4 seconds. Figure 10.7 shows that
the layers in each image for the sequential case are loaded in rapid succession since the images

have access to the full link bandwidth.

10.5.3. Globally Progressive Delivery
However, by using globally progressive loading, further benefits can be achieved. Globally

progressive loading considers the whole document as a progressive object and displays a coarse
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version followed by more refined versions. In the case of a web document, the HTML might be
considered the coarsest layer since it is required to decode the rest of the document and conveys
the bulk of the information. The next layer of the document would include the first layer of all
images and subsequent layers of the document would include subéequent layers of each image. By
using globally progressive loading, the user is very quickly presented the text and coarse versions
of all visible images and can rapidly proceed to analyze the page’s contents. This is particularly

useful when combined with interactive loading described in the next section.

Figure 10.8 shows globally progressive loading using a byte-wise equality metric such that
the scheduling attempts to keep the number of transmitted bytes of each visible image similar, and

Figure 10.9 shows globally progressive loading using a layer-wise equality metric dictating that a
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Protocol Timings

HTML |Concur /

Visible | Visible | Visible | Visible | Visible |Complete
Compr| Sequen

Progressive)| Text Layer 1|Layer 2|Layer 3| Layer 4| All Layers|Document

No | Conc | No ||30.6sec|] ma | na | nfa | na | 369sec | 42.4 sec
No | Sequen No 143sec| n/a n/a n/a na | 28.2sec | 42.4sec
Yes Conc No 6.6sec | n/a n/a n/a n/a 29.4sec | 31.8 sec
Yes | Sequen No 3.7 sec n/a n/a n/a n/a 17.7sec | 31.8 sec
Yes Conc Y 1l 6.6 sec [10.1 sec|12.7 sec|15.3 sec|20.5 sec| 29.4sec | 31 8 sec
Progressive|| ) ) ) ’ ’ )
Locally
Yes | Sequen Progressive 3.7sec [15.8 sec|16.0 sec|16.3 sec|16.8 sec| 17.7sec | 31.8 sec
Bytewise
Yes Both Globally || 3.7 sec | 6.8 sec | 9.6 sec [12.3 sec|15.1 sec| 17.7sec | 31.8 sec
Progressive|
Layerwise
Yes Beth Globally (| 3.7 sec | 4.8 sec | 6.3 sec | 8.2 sec |11.7sec| 17.7sec | 31.8 sec
Progressive

TABLE 10.3. Summary of delivery methods and performances

given layer in one visible image should not be loaded until the previous layers are loaded in all
other visible images. While the layer-wise metric allows earlier layers to be loaded for all images
sooner, the byte-wise metric is typically preferable since it allows link scheduling to be indepen-
dent of image coding and also prevents large images from severely delaying smaller images. For

these reasons, the byte-wise metric is used in our prototype system described in Section 10.6..

Table 10.3 shows a summary of the comparison between locally and globally progressive
loading. As can be seen, the time to load all visible layers is the same for the sequentially loaded
locally progressive case as the globally progressive cases, but in the locally progressive case, the
benefits of progressive loading are minimal. In the simultaneously loaded, locally progressive
case, there is a delay until the base layers of some of the later images are loaded, as well as a delay
in finishing the visible images due to competition with images that are not visible. However, in the
globally progressive cases, the text is shown very quickly, followed immediately by coarse ver-

sions of all images and then refinements.
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FIGURE 10.11. Interactive loading with image interactively selected by user

If an image that is not initially displayed is made visible during the loading process, it is
boosted to the same priority as the other visible images so that bandwidth is initially dedicated to
only that image until it has loaded to the same degree as the other images. Then all visible images
resume loading in unison. An example is shown in Figure 10.10. In this example, images 12, 13

and 14 were previously off screen but then scrolled into view after about 12 seconds. Similarly,

the priority of images that are scrolled off screen can be reduced!.

1. However, detecting images scrolling off-screen is not possible using the Java prototype.
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While the above assumed strict priority scheduling, a stochastic algorithm such as Lottery
Scheduling [69] could be used to assure progress of all images. Additionally, techniques such as
Class Based Queuing (CBQ) [24] could be used to increase flexibility and allow more complex
policies. Web page designers could also incorporate delivery and image transcoding hints into

image tags to assert more control over the delivery process.

Globally progressive delivery is also well suited to take advantage of networks with variable
Quality of Service (QoS). There is an implicit ordering of the importance of the data with text
being most important, initial bytes or layers of images being a little less important, later bytes or
layers being still less important, and off-screen images being even less important. While it is cur-
rently used to prioritize data within the web connection, it could also be used to prioritize data
transmission across multiple connections, web or otherwise. For instance, if text over any web
connection is given higher priority than images over any web connection, then even as the network
becomes congested, the text delivery performance will not suffer as much. Likewise, if off-screen
images are given lower priorities, the downloading of long pages by some users will not hamper
the interactive operation of other users. The prioritization could be used within a web server to

ensure timely servicing of text and coarse image requests.

10.5.4. Interactive Operation

While globally progressive loading rapidly delivers coarse versions of all visible images,
the user must still wait for all refinements, even if they are only interested in a single image in
detail. However, by allowing the user to easily instruct the system as to which image they are
interested in, this image can be loaded more quickly by dedicating all available link bandwidth to
it. Since the layers are loaded in synchrony, the user is able to quickly determine which image or
images are most interesting. One method for incorporating user image preference is to detect

when the mouse cursor is inside a particular image, and give that image priority. Figure 10.11
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shows the effect of selecting image 3 after its two first layers have been displayed. As can be seen,
in this way, the entire refined image can be loaded by the 10 second mark, a little more than half of
the time required in the absence of user intervention. Further interactivity could include targeting
exactly which parts of the image are transmitted first. Explicit targeting may be useful in cases of

large images where semantic quality requires high fidelity, such as maps.

When interaction is allowed, the amount of data buffered in the connection between the web
server and web browser must be limited in order to allow rapid response. Once the user preference
is detected and transmitted to the web server (or proxy), the high-priority image can be queued, but
this data will not reach the browser until all other data queued in that connection has been deliv-
ered (unless out-of-band signalling or more sophisticated transport protocols are used). For
instance, using a 28.8k baud modem connection, in order to obtain a one-second response time, at
most 3.6K bytes can be buffered even in the absence of network congestion. The buffered data
consists of the data queued in the kernel buffers as well as the packets queued in the network rout-
ers. Kemel-level scheduling of the images can be used to eliminate delay due to the former[55]
while TCP window-size limiting would have to be used to reduce the latter. Severely limiting the
amount of qqeued data can reduce link utilization, particularly for high-bandwidth, ﬁigh-latency

links such as satellite links.

10.6. T rdnsport Protocol Prototyping via Web Proxies and Java
Applets

In order to prototype the globally progressive interactive delivery scheme, a proxy-based
architecture allowing full contrbl over image delivery and display was designed. This architecture
can be used as a test-bed to develop and experimentally deploy a range of network protocols not
restricted to HTTP or even TCP. Additionally, non-standard image compression techniques can be

used over the link.
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FIGURE 10.12. Web proxy / Java applet framework

10.6.1. Proxy Operation

While conventional web proxies can transform the content of the web pages, they must
work within the confines of the HTTP protocol specifications. For instance, they cannot alter the
number of connections that the browser opens, change the ordering of the requests, or respond to
fine-grained user interactivity - thus precluding implementation of a protocol similar to the one
just described. However, through the use of Java applets to load and display the images on the
page, much greater control is possible. A block diagram of the framework is shown in Figure

10.12.

The globally progressive interactive delivery is best implemented by using a single multi-
plexed, prioritized connection between the web browser and web server or proxy. However, in the
case of the proxy / applet system described here, separate HTML and imagé connections are
required to allow the HTML to go directly to the browser core while the images are sent to the

Java applets over a single multiplexed connection.
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Original HTML:

For my homepage, click <A HREF=/~me> here <IMG
SRC=home .gif></A>

Modified HTML:

For my homepage click <A HREF=/~me> here
<A HREF="~me"”>
<APPLET CODE="SpeedImage.class”
WIDTH=54 HEIGHT=39
ARCHIVE="http://proxy.com/SpeedImage.jar”
CODEBASE="http://proxy.com/”>
<PARAM NAME=imageHostPort VALUE=9999>
<PARAM NAME=srcC
VALUE="http://home.com/~me/home.gif”>
<PARAM NAME=href
VALUE="http://home.com/~me”>
</APPLET>
</A>

FIGURE 10.13. Example of HTML modification to embed image applets

10.6.2. HTTP Proxy Design

The HTTP Proxy substitutes Java applet tags for image tags, as shown in Figure 10.13, as it
sends pages to the browser, causing applets to appear where the images were. The applets are sup-
plied the URL of the image to display as well the host name and port of the Image Proxy. If the
width and height are not specified in the IMG tag, they are determined by prefetching the image
and decoding its header since the applet dimensions must be specified in the APPLET tag (unlike

IMG tags where the dimensions should be specified.) HTML compression is achieved via HTTP/

1.1 transport encoding.

10.6.2.1. Streaming HTML Conversion

One important technique used in both the HTTP Proxy and the Image Proxy is that of

streaming conversion. Streaming conversion entails converting both images and HTML text “on-
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the-fly” whenever possible, instead of first retrieving the entire objects before processing them.
This is critical if the response from the web server is slow due to network congestion or server
loading. If the proxy waits for the entire object to be received before sending any part of it out, the
time for the user to receive any part of it will be substantially increased, and the total time to
retrieve the object can be doubled. For the HTTP Proxy, streaming conversion means that the
HTML is transformed and compressed on the fly. While compression and simple textual substitu-
tion would not be problematic, incorporating image size information in applet tags requires asyn-

chronous retrieval and parsing of image headers to determine their sizes.

10.6.2.2. Link Scheduling
The HTTP Proxy performs limited link scheduling by tracking the amount of data outstand-

ing in HTML and non-HTML (typically image) links. It does not send data on non-HTML links
until the amount of HTML data outstanding is below a given threshold. The image proxy also sup-
presses custom image data until the amount of HTML data outstanding is below a given threshold
in order to effect the text prioritization needed for globally progressive transmission as described

in Section 10.5. The fine-grain inter-image scheduling takes place in the Image Proxy.

10.6.3. Image Proxy Design

The Ifnage Proxy is responsible for retrieving images from the web servers, transforming
them, and sending them over the custom managed link to the Image Applets. A strict priority
round-robin system is used with priorities dynamically specified by the Image Applets depending

on whether they are on-screen and where the cursor is.

10.6.3.1. Image Conversion

As the images are retrieved, their type is determined from the HTTP meta-data. Type-spe-

cific conversion is performed to generate progressive versions. JPEG images are converted to Pro-
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gressive JPEG (PJPEG) using the Independent JPEG Group’s JPEG library [40]. This conversion
is lossless and does not significantly effect compression rate. GIF images are converted to a loss-

less format similar to interlaced PNG

Additionally, conversion from GIF to PJPEG is attempted and the PJPEG image is used
whenever a high-quality lossy JPEG conversion results in a reduction in size compared to the
PNG-like coding. By keeping the JPEG quality setting high, discrete-tone images not well suited
to lossy compression will compress less compactly with JPEG than with a lossless coding such as
GIF or PNG, and thus the lossless coding will be used. However, photographic images are often
stored on web sites in lossless GIF while lossy JPEG coding dramatically reduces the size of the
image while not resulting in any perceptible degradation. Since progressive coding is used, a high

quality setting can be used while still allowing quick delivery of a coarse version of images.

10.6.3.2. Streaming Image Conversion

As described previously, an important aspect of effective proxy operation is forwarding data
as soon as possible to reduce user-perceived delay. However, conversion to progressive formats
requires the entire image to be present. In order to minimize delay, the original data is streamed to
the browser until the entire image is loaded and converted. A switch to the progressive coding is
done when advantageous. For the case of JPEG to PJPEG conversion, a heuristic of requiring less
than half of the data being sent is used. For the case of GIF to PIPEG conversion, the size of th'e
PJPEG data has to be less than the number of bytes of the GIF image remaining. Typically the
total increase in the amount of data sent due to streaming image conversion is not large, yet it can

substantially improve perceived latency.
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FIGURE 10.14. Image applet design

10.6.3.3. Link Scheduling

The Image Proxy explicitly manages the link to the Image Applets. The image priorities are
determined by the Image Applets (described next) as dictated by the élobally progressive interac-
tive delivery scheme, and communicated to the Image Proxy. Within a priority class, images send-
ing processed data (progressively coded images) are given priority to those sending unprocessed
data since the unprocessed data may have to be flushed, as previously described, if the processing

proves to be advantageous.

10.6.4. Image Applet Design

Image Applets request the data for their images from the proxy and display it. They are
nearly indistinguishable from images they replace, responding to mouse clicks to follow web links
as standard images do. The Image Applets also respond to keyboard commands to create new
windows which are copies of the images as well as zoom and pan within the images. Thus the

document is an active entity that can be manipulated.

Figure 10.14 shows the internal architecture of the Image Applets. There is one applet per
image on the page, though the images communicate through shared static objects. Static Java
objects are shared among all applets running in the same Virtual Machine - i.e. all applets running

in the same browser. In particular, a shared image database is used to track which images have
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Text 5.1 sec Visible Layer 4 16.9 sec
Visible Layer 1  10.1 sec Visible All Layers 20.0 sec
Visible Layer2 12.3 sec Complete Document 33.3 sec

Visible Layer 3  14.4 sec

TABLE 104. Performance of Java / proxy system on example CNN Interactive
page

been loaded already and allows the same image to be shown in multiple applets without requiring
the image to be loaded more than once. The loading of the images is centralized via a single Java

thread which contacts the Image Proxy and manages all browser-proxy communication.

10.6.5. Proxy / Applet Performance

In order to evaluate both conventional and proposed globally progressive interactive loading
protocols, the SpeedSurfer client-side proxy described in is used as shown in Figure 10.15. The
client PC was a Pentium I1/266 PC running Microsoft Internet Explorer 4.0 web browser under
Windows NT 4.0 and connected to the Internet via a 28.8k baud modem. The web proxy and local

web server ran on a Sun UltraSparc 2 workstation.

The web page loading graph depicting loading the example page from a local server using
conventional HTTP/1.0 is shown in Figure 10.16. The initial vertical line in each object’s row
indicates when the HTTP request is issued while the bars indicate response timing. The loading
pattern has similarities to both Figure 10.1 and Figure 10.2 due to the interaction of the multiple
simultaneous TCP/IP connections. Although up to four requests are open simultaneously, due to
TCP/IP’s adaptive congestion control, new flows receive less bandwidth than existing connections

until equilibrium is reached.

The graph of loading the page using the globally progressive interactive technique via the

proxy / applet prototype is shown in Figure 10.17 and summarized in Table 10.4. The perfor-
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FIGURE 10.17. Collected trace of proxy / applet operation
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Time Amount Time Amount Time Amount

(sec) (bytes) (sec)  (bytes) (sec) (bytes)
1.543 1460 3.956 1460 5.098 1960

2.855 2540 4.857 2540

TABLE 10.5. Data Reception of HTML Object of Figure 10.17.
Packet times are in seconds since request.

mance is improved significantly over conventional loading but is slightly slower than predicted.

Comparing Figure 10.17 to Figure 10.8 illustrates a few notable differences. The increased time to
text can be seen in the segmentation of the HTML object bar indicating unsteady flow of data due
to TCP/IP slow-start. The TCP/IP data reception timing shown in Table 10.5 further verifies this.
The increased time to the first layer of images is an artifact of the Java implementation: the web
browser does not start the Image Applets until the entire web page has been loaded and thus their

requests are delayed.

The time to perform on-the-fly compression and image conversion did not contribute signif-
icant overhead. Gzip compression of the 41261 byte HTML object to 9950 bytes required only
0.10 seconds while conversion of the 17774 byte / 47600 pixel top_ruins_ap.jpg image from JPEG
to PJPEG required 0.12 seconds. Conversion of the same image from GIF to PJPEG would
require 0.16 seconds. These all result in converted data rates of approximately 1 Mbit/second and
thus a high performance workstation can support the compression and conversion for roughly

thirty 28.8k baud modems. Caching and distributed computing could further increase scalability.

10.7. Conclusions and Future Directions

With the explosive growth of the Internet and increasing proliferation of low-bandwidth
wireless access, efficient and expedient delivery of web content has become more important than
ever. This optimized delivery is only possible through carefully analysis of the factors affecting

loading speed. As has been shown, by viewing web delivery as a form of remote display, and
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combining networking and image compression techniques, significant gains have been demon-
strated. Additionally, this point of view yields opportunities for further developments as described

below.

10.7.1. Integration with Existing Web Infrastructure

While the Web Proxy / Java Applet architecture described in the previous section is useful
to evaluate and optimize the globally progressive interactive web delivery, further gains can be
achieved by incorporating the methodology into existing web servers, proxies, and browsers and
by building upon current HTTP protocols and related work described in Section 10.3.. Public-
domain open-source browsers and servers / proxies provide a state-of-the-art starting point [3],
[48], [72]. The functionality of the Image Applets can be directly incorporated into the browser

while the functionality of the web proxy can be integrated into the web server / proxy.

Interoperability is achieved through protocol negotiation on connection. A mechanism such
as MUX can be used to support transmission of muitiple images over a single link. One disadvan-
tage of MUX using TCP is its use of a single buffered connection, which forces multiplexing to
occur before buffering. This can result in additional buffering delay, impacting interactive switch-
ing of image priorities as described previously. Altematively, TCP sessions could be employed if
explicitly prioritized queuing is added [55]. TCP sessions have the advantages of application inde-
pendence and removing false-dependencies across images. However, the use of TCP sessions
requires server kernel modifications and may result in greater kernel overhead and resource utili-

zation since a new TCP connection is required for each image.

10.7.2. Transparenf Content Negotiation

The globally progressive interactive web delivery requires the ability to access both

transcoded versions of images as well as the original. The underlying protocol must be able to
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specify which image conversions should occur. While HTTP/1.0 provides very crude content
negotiation via “accept” headers, it lacks sufficient expressive capabilities, which can lead to
name-space conflicts. Transparent Content Negotiation, however, as described in [23] allows for a
more flexible, powerful mechanism which allows “variants” of an object to be described and

named differently than the original object.

Integration of an automatic content conversion mechanisms into a web proxy or server also
allows delivery of improved formats, such as PNG, JBIG [4], [61], or wavelets [60], while retain-
ing originals in the highly compatible legacy formats - GIF and JPEG. The web servers or proxies
can automatically negotiate with the browser to determine the best mutually supported format, and
perform conversion. In this way, the latest image coding techniques can be used without sacrific-

ing compatibility.

10.7.3. Scalability through Server / Proxy Caching of Processed Data

Since the same progressive image codings are used for both high-bandwidth and low-band-
width links, transcoded images can be cached and reused. When coupled with streaming conver-
sion, this allows conversions to be delayed when the load on the server gets high, and yet assure
that performance is never worse than without the conversions. However, if several users access a
given web site via different web proxies, the objects on the site must be converted by each of the
proxies. By integrating the functionality of the proxy into the server, the server / proxy can pro-
cess the objects on the site only once per creation or update, regardless of how many geographi-
cally separated users access the objects. By transmitting the converted objects over the Internet,
the delay of the wide-area access is mitigated by the globally progressive interactive delivery. The
same scalability for dynamically created objects cannot be obtained but most images are not

dy