

Copyright © 2000, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTI-VALUED LOGIC NETWORK

MINIMIZATION AND IT'S APPLICATIONS

by

Yunjian Jiang

Memorandum No. UCB/ERL MOO/26

19 May 2000

MULTI-VALUED LOGIC NETWORK

MINIMIZATION AND ITS APPLICATIONS

by

Yunjian Jiang

Memorandum No. UCB/ERL MOO/26

19 May 2000

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Multi-valued logic network minimization and it's applications

by Yunjian Jiang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, in partial satisfaction of the requirements for the degree of Mcus-

ter of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Robert K. Brayton

Research Advisor

Date

Professor Kurt Keutzer

Date

Multi-valued logic network minimization and it's applications

Copyright 2000

by

Yunjian Jiang

Abstract

Multi-valued logic network minimization and it's applications

by

Yunjian Jiang

Master of Science in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Robert K Brayton, Chair

We address the optimization problem of a pure multi-valued logic network. Each node in

the network is a logic function with multi-valued inputs and a single multi-valued output.

We start with the minimization problem of a multi-valued relation and generalize binary

don't cares to partial cares for multi-valued logic. We then look at the observability of a

multi-valued function node in a combinational logic network. We give algorithms to generate

obserbability don't cares and partial cares for such a node. We propose an application of

such a multi-valued network: software compilation for embedded applications. We study

the interfacing issues between multi-valued logic networks and software codes, and the

minimization problems accounting for the target software implementation.

Ill

To Emma

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Multi-valued logic synthesis overview 1
1.2 Our motivation 2

1.3 Outline of this report 4

2 Partial care and multi-valued relation minimization 5

2.1 Two level multi-valued functions 5

2.2 Partial care minimization 7

2.2.1 Branch and Bound 7

2.3 Application to protocol synthesis 9
2.3.1 Protocol converter synthesis as a control synthesis problem 9
2.3.2 Protocol minimization 11

2.3.3 Experiments 13

3 Multi-valued logic network minimization 15
3.1 Preliminary 15
3.2 Observability in multi-valued logic networks 16

3.2.1 Maximal set of observability don't cares 16
3.2.2 Compatible set of observability don't cares 17
3.2.3 Maximal set of observability partial cares 19
3.2.4 Compatible set of observability partial cares 21

3.3 Don't care-based logic network minimization 22
3.3.1 MV-network optimization 22
3.3.2 Multi-valued image computation 24

3.4 Multi-level logic network encoding 25
3.5 Experimental results 27

4 Multi-valued logic for embedded compilation 30
4.1 Compiler optimization for embedded systems 30
4.2 Control dominated software optimization 31

CONTENTS VI

4.3 From code to MV-network 32
4.4 From MV-networks to code 33

4.4.1 MDD-based 34
4.4.2 Table-based : . . . 34
4.4.3 Experiments 37

4.5 Other applications 39

5 Conclusions and Future Directions 40

5.1 Conclusion 40
5.2 Future work 41

Bibliography 43

Vll

List of Figures

2.1 Multi-valued functions 6

2.2 Branch and bound-based partial care minimization algorithm 8
2.3 Protocol conversion problem 10

3.1 Calculation of compatible set of observability don't cares 20
3.2 CODC-based MV-network minmization algorithm 23
3.3 MV-network binary encoding algorithm 26

4.1 MV-network based software optimization flow 32
4.2 MV-network simulation 35

4.3 Memory organization for table valuation code 38

Vlll

List of Tables

2.1 Reactive modules and multi-valued logic 12
2.2 Example protocols and FIFO buffer 13
2.3 Protocol synthesis results 13

3.1 Characteristics of the examples 27
3.2 Experiments on MV-networks 28
3.3 Experiments on hardware examples from VIS 29

4.1 Comparison between one-hot and binary encoded tables 37

IX

Acknowledgements

Acknowledgements

I would like to thank my research advisor Prof. Robert Brayton, for his constant

support and guidance throughout this two years of study. It has always been exciting

and enlightening when we have our weekly discussions. I am also grateful to Prof. Kurt

Keutzer, whose professional insight has been encouraging and of great guidance. I also had

the chance to work with Prof. Sangiovanni-Vincentelli. His broad knowledge and experience

have provided keen suggestions. This work originates from Prof. Brayton's idea and started

as a joint EECS219B class project. I would like to thank MVSIS group members Subarna

Sinha and Minxi Gao for recent efforts in developing the MVSIS package. I would like to

thank all graduate students in 219B class, Fernando De Bernardinis, Rupak Majumdar,

Heloise Hwawen Hse, Niraj Shah and Scott Weber. Also I would like express my thanks to

my EECS249 project partner Yujia Jin and mentor Freddy Mang.

Life is in your breath.

- Zhuang

XI

Chapter 1

Introduction

Multi-valued logic can be used in hardware synthesis as a higher level representa

tion before the circuit is encoded into binary. There are optimization opportunities at this

stage that cannot be discovered in the binary domain. It can be used to solve the optimal

encoding problem for the synthesis of finite state machines (FSM). It also has application in

machine learning and fuzzy control. In this chapter, we review some of the research work in

the multi-valued logic synthesis literature and their state-of-the-art applications. Then we

describe our motivation in revisiting this area and the types of problems we are particularly

interested in. At the end we will outline the materials covered in this report.

1.1 Multi-valued logic synthesis overview

Most research work in multi-valued logic synthesis has been targeted for the op

timal state encoding problem for FSMs [VKBSV97]. For two-level implementation, Rudell

el at have studied multi-valued PLA minimization problem as an extension of ESPRESSO

[RSV88]. The problem addressed there is minimizing the sum-of-product representation of

a set of logic functions with both multi-valued inputs and outputs. The theory has been

well established and efficient software packages are available. Input variable pairing and

encoding are also studied there. This has been applied to the optimal encoding problem

with two-level implementations [VSV90] [VSV89].

For multi-level implementation, the synthesis problem formulated has been to min

imize a multi-level logic network, with one multi-valued variable appearing at the primary

input. The application is state assignment for FSM's with multi-level circuit implementa-

CHAPTER 1. INTRODUCTION 2

tion. Lavagno elat hava established the theory for algebraic decomposition andfactorization

for this type ofapplications [LMBSV90] and completed an implementation called MIS-MV.

Boolean relation minimization problem was introduced in [BS89b] and there has
been extensive research work in this area [BS89d] [BS89c] [BS89a]. An exact solution was

formulated as a binate covering problem. Because of the intrinsic complexity of the prob
lem, researchers have proposed heuristic algorithms [WB93a] [SSB93] [GDN92]. Symbolic
relations, as an extension of Boolean relations, have also been studied for the minimization

of interacting FSMs [LS90] [WB91b]. Further, observability Boolean relations were studied

for the minimization ofa combinational logic network with multiple output nodes [Sav92].
Also, symbolic relations were applied to the minimization ofa FSM in an interacting FSM

network [WB93b] [WGB96]. However, the complexity has hindered the application of such

well established theory in real industry synthesis flow.

In smnmary, driven by the application of state assignment for FSM's, the study

of multi-valued logic synthesis has been limited to two-level PLA minimization and multi

level network minimization with single multi-valued variable. Fora multi-level logic network

with arbitrary multi-valued variables, there has been little theory and application in the

literature. The reasons are: (a) The encoding problem from multi-value to binary is difiicult,

and often the optimization effects in the multi-value domain are obscured by the sub-optimal

encoding process, (b) For pure hardware implementation, it is not clear how much gainone

can achieve by applying optimization algorithms at multi-valued domain, (c) There is no

good multi-valued logic minimization package available for multi-valued networks.

1.2 Our motivation

We address the optimization problem of a pure multi-valued logic network. Each

node in the network is a logic function with multi-valued inputs and a single multi-valued

output. We propose an application of such a multi-valued network, software compilation

for embedded applications. We study the minimization problems associated with such a

multi-valued network with the target implementation accounted for in the cost metrics.

First, we consider the minimization of a multi-valued relation. The notion of don't

cares used in binary logic [SSL"""92] is generalized to multi-valued logic. These contain two

types of flexibility, incomplete specification and non-determinism. We define multi-valued

don't cares and partial cares to capture this flexibility. Multi-valued functions combined

CHAPTER 1. INTRODUCTION 3

with multi-valued partial cares are similar to Boolean relations in binary logic, where a

set of compatible functions are to be explored for the optimization. Hence, the algorithms

developed for Boolean relation minimizations, [BS89d] [WB93b], can be applied in partial

care minimization for a multi-valued function.

Second, we consider a multi-valued logic function node in a combinational network,

and give the algorithms for generating a compatible set of don't cares for each node. Ob

servability don't cares (GDC) for an MV-node is the set of minterms which, when applied in

the network, block the output values of that node, i.e. the primary outputs do not depend

on the values of that node. ODC's are useful in the minimization of the MV-fimction. Com

patible ODC's (CODCs) are the don't cares which do not depend on how the don't cares at

other MV-nodes in the network are used. The methods to compute ODC's and CODCs are

extended from the binary case [Sav92] [SB90] [SBT91]. Observability partial cares (OPC)

are the set of the minterms that block a subset of the output values, i.e. the primary output

can not distinguish any pair of values in that subset. OPC's provide additional flexibility

for the implementation of an MV-node. This is similar to observability Boolean relations

for binary networks. However, in order to use the OPC's, a multi-valued relation minimizer

needs to be applied. We give one method for generating OPC's.

There are different representations for multi-valued logic functions and relations

[BK99]. The most commonly used ones are: sum-of-product forms (SOP) and multi-valued

decision diagrams (MDD) for two-level logic and MV-networks for multi-level logic. Logic

representations affect the performance of synthesis algorithms. Recent work by Perkowski

[GP98] studies the effect of different representations and applies the proposed form to

machinelearning benchmarks. We use the notation and definitions from [Bra99] throughout

this report.

Third, we propose using multi-valued logic synthesis to optimize control dominated

software for embedded systems. Control variables in software programs are computed and

tested just as variables in multi-valued logic. This can potentially explore logical relations

between variables to restructure the control flow of a program. This is not usually con

sidered by traditional compiler optimization. So far, use of logic optimization for software

compilation has been limited to binary logic optimization, probably due to lack of an effec

tive MV-optimization package. Part of this thesis explores the interfacing between software

code and MV-networks.

CHAPTER 1. INTRODUCTION 4

1.3 Outline of this report

In Chapter 2 we discuss two-level multi-valued functions and relations. We pro-
pose a new way of examine a symbolic relation and define partial cares to capture the

flexibilities in implementation. We propose the applicationof multi-valued relations in con

trol synthesis. In particular, we look at the communication protocol converter synthesis

problem as a control synthesis problem. We apply multi-valued relation minimization to

the synthesis result and show the effectiveness. In Chapter 3 we discuss multi-level logic

network minimization problem. We give an algorithm to generate observability don't cares

for a node to provider functional flexibilities. We give a heuristic algorithm to encode in

termediate multi-valued variables into binary codes. We introduce some applications for

multi-level logic networks in Chapter 4. In particular, we study the problem of software

compilation for embedded applications and some interfacing issues between software code

and an MV-network. Wegiveconclusions and an outline for future research work in Chapter

5.

Chapter 2

Partial care and multi-valued

relation minimization

In this chapter we discuss the minimization problem of two level multi-valued

relations. We first review some of the definitions and notations for multi-valued relations.

Then we explore the fiexibilities that can be potentially used in the minimization. Finally

we conclude by describing one of the applications of multi-valued relation minimization.

2.1 Two level multi-valued functions

Consider a multi-valued function with multiple multi-valued inputs and a single

multi-valued output. A multi-valued relation is, like a binary relation, a one to many

mapping. Let Pi = {0,1,..., |Pi| - 1}, P2 = {0,1,..., IP2I - 1}, ..., Pn = {0,1,..., |P„| - 1}

be the input space, and Q = {0,1,..., |Q| —1} be the output space. The multi-valued relation

R : P\ XP2 X... XP„ —> 2^ maps each minterm in the input space, Pi x P2 x ... x P„, to a

set of values in Q, i.e. m € Pi x P2 x ... x P„,P(m) C 2^. We assmne that R is complete,

i.e. R{m) ^ 0, for all m. Associated with P is a set of multi-valued functions {fi} that are

compatible with P, fj -< P. The multi-valued minimization problem is to find an optimal

implementation of / that is compatible with P.

Gxample 2.1 Multi-valued relation Pi is defined in the following mapping table.

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATI0N6

Ri: {0,1}X {0,l,2}x {0,1,2} {0,1,2,3}

{0,1}

{0,2}

{0,3}

{1,3}

The mapping is shown graphically in Figure 2.1. As can be seen, two types of flexibility

are revealed, namely incomplete speciflcation and non-determinism. There are unspecified

minterms in the truth table, e.g. {0}x{0}x{0}, which can take any value in Q for the

mapping. This represents the traditional don't care minterms in binary logic domain. There

are also minterms that can take a subset of the values in Q, e.g. {0}x{l}x{2}—>^{0,1,3}.

We call these partial care minterms. This situation is not present in binary logic, where

each minterm can take either value 0 or value 1 if it is not a don't care.

Definition 2.1 (Don't Care) A minterm m E Pi x P2 x ... x Pn for multi-valued relation

R : Pi XP2 X... XPji ^ 2^ is a don't care, iff R{m) = 2^.

Definition 2.2 (Partial Care) A minterm m E P1XP2X ...x Pn for multi-valued relation

R: Pi XP2 X... XPn 2^ is a partial care, iff R{m) C 2^.

Don't cares are a special case of partial cares for multi-valued relations. Partial

cares can result from observability relations in a logic network, or special requirements

given by the designer. Consider an MV-node n, in a MV-network. There exists a set of

minterms, which when applied at the primary input space, allow output values of to be

within a subset of the values Vg G |x,| for n,. This set of minterms, when mapped into

\

q=3 \ \

\q=i^ \q=2y /
\^0 /

Pi X Pi X P3

f : Pi X Pi X PiQ

Don't care

' Non-determinism;

Partial care

Figure 2.1: Multi-valued functions

{0,1}X {0,l,2}x {0,1,2}

0 1

1 - 1

0 1

0-2

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATION?

the local input space of Ui, can be used to produce any value in the subset Vs for node

n,-. This provides additional flexibility in terms of the implementation of Ui, which does

not afiect the functionality of the network. In the hardware implementation,« a function

has to be deterministic and produce a single value for each input minterm. Therefore,

the synthesis process needs to explore the flexibility given by partial cares and produce

a deterministic function satisfying some optimality criteria. If the target application is

software, however, the functionality of an MV-node need not be determinized for the purpose

of output evaluation.

Definition 2.3 (Compatible) A multi-valued function f : Pi x P2 x ... x Pn 2^ is

compatible with an multi-valued relation R : PixP2X...xPn 2^ i/Vm € Pi XP2X... x P^,

f(m) e R{m).

Given an multi-valued relation R with the set of don't cares and partial cares,

the minimization problem for hardware implementation consists of two steps: (1) find a

multi-valued function / that is compatible with i?; (2) find an optimal implementation for

/, in terms of the number of product terms and/or the number of multi-valued literals. For

instance, the example given in Figure 2.1 can be optimized into the following function fi:

fi: {0,1}X {0,l,2}x {0,1,2} ^ {0,1,2,3}

1 - - ^ 0

0 - _ 1

2.2 Partial care minimization

The exact minimization problem can be mapped into a binate covering problem

directly. Or, if the multi-valued output variable is encoded into binary variables, the multi

valued relation becomes a Boolean relation. Exact and heuristic algorithms for Boolean

relation minimization [BS89d] [BS89a] [LS90] [WB91a] [WB91b] [WB93b] [GDN92], etc.,
can thus be used to minimize multi-valued relations. However, the objective function for

this minimization may not be the one desired for MV-logic.

2.2.1 Branch and Bound

Here we propose a simple branch and bound algorithm for minimizing a multi

valued relation using partial cares.

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATIONS

Algorithm [Partial care minimization]:

input: characteristic function P x Q B

output: P X Q B with minimal number of terms

local CARE: care set minterms

local PART: partial care set minterms

local DONT: don't care set minterms

Foreach pair of product terms u and v

If u[P] = v[P] then

u := u|v; remove v;

Foreach product term u

If |u[Q]| = 1 then push(CARE, u);

If |u[Q]| > 1 then push(PART, u);

Foreach product term u

v = u[P] X{all ONE'S}:

push(DONT, v);

DONT = DONT;

partial-branch-and-bound(CARE, PART, DONT);

End

partial-branch-and-bound (CARE, PART, DONT) :

Select next partial term u € PART;

Foreach output value q 6 u[Q];

push(CARE, u[P] X{q});

push(DONT, u[P] X{u[Q]\q});

cost = ESPRESSO(P X Q -> B);

If (cost < Ibound) then

Ibound = cost;

partial-branch-and-bound (CARE, PART, DONT);

else

unbound(PART, u, q);

Return

Figure 2.2: Branch and bound-based partial care minimization algorithm

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATION9

We use the characteristic function of the MV-relation as the media for minimiza

tion. The minterms are partitioned into three sets: care set, partial care set and dont care

set. Care set minterms are those completely specified minterms; dont care set minterms

are imspecified minterms ; partial care minterms are minterms that are specified to be

mapped to multiple output values. The algorithm iterates through all partial care terms

and branches on the output values in Q for each partial care term and bounds on the number

of product terms as a result from ESPRESSO. This process is shown in Figme 2.2.

2.3 Application to protocol synthesis

Two-level multi-valued logic minimization can be applied to the state encoding

problem for finite state machines, as described in the book [VKBSV97]. In this section we

propose an application to protocol synthesis as an instance of a control synthesis problem.

2.3.1 Protocol converter synthesis as a control synthesis problem

The protocol converter synthesis problem is the automatic synthesis problem of

a finite state converter between two incompatible communicating protocols. This problem

emerges from the need for system composition of reusable IP blocks, which function using

different communication protocols. We study the protocol conversion problem in the context

of synchronous hardware. In particular, we view the problem as an instance of the classical

synchronous controller synthesis problem:

Given: a module S and a specification module R.

Find: a controller C such that the composed system S||C refines R.

The general controller synthesis problem is known to be computationally intractable.

We restrict our attention to a subclass of the problem: neither P nor S have private states.

The problem is then reduced to transition invariant control synthesis with complete infor

mation. The complexity is linear in the size of the state space of P and the size of the

description of 5. Furthermore, by imposing these restrictions, symbolic methods can be

employed.

Multi-valued logic synthesis is used to minimize the textual description of the

generated controller. We distinguish three kinds of minimum controllers: minimum most

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATIONIO

general controller, minimum deterministic controller, and the minimum controller contain

inga subset ofbehaviors. All three kindsofcontrollers can be obtained by applyingtwo-level

multi-valued logic synthesis algorithms. Partial cares are utilized for minimizingcontrollers

of the latter two kinds. We apply the following simplifying assumptions to our scheme:

• At the functional level, the information being exchanged from protocols P and Q is a

bit stream;

• P and Q are synchronous and share a common clock;

• Bits are sent by an abstract message producer and received by an abstract consumer;

• The composition of protocol P and Q with the converter C, P \\ C \\ Q, exhibits a

FIFO buffer behavior at the top level;

• Invariant R, the FIFO buffer, is modeled without private variables;

• Protocols P and Q are modeled without private variables.

Data-in Data-out

Data

Producer
Protocol P C Protocol Q Data

Consumer

Valid-in Valid-out

Figure 2.3: Protocol conversion problem

We view a protocol as a mechanism for transferring bit streams between an ab

stract message producer and an abstract message consumer. As shown in Figure 2.3, we

require the producer to produce one bit of data in datain whenever valid in is asserted; the

consumer absorbs one bit of data whenever validout is asserted. We currently require that

the communication behave like a FIFO buffer, which reads datain and controls validin,

validout and data out- The protocol conversion problem can therefore be formulated as:

Given: specification for protocol P and protocol Q; specification for a

size-k buffer K;

Find: a converter C such that the composed system P||C||Q refines K.

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATIONll

This can be reduced to a control synthesis problem by setting

S = P||Q

R = K

The resulting controller C from control synthesis is the converter C for P and Q in the

protocol conversion problem. The algorithm used for transition invariant control synthesis

can be divided into 3 steps:

1. Find the maximum controllable region and the corresponding controller C transitions;

2. Find the maximum controllable initial region;

3. Find the reachable region of the maximum controllable region and the corresponding

controller C transition;

2.3.2 Protocol minimization

We use reactive modules [AH96] to model the communication system. Reactive

modules are a high level modeling language that has been used in formal verification. A

system is modeled as a set of modules. A module P has a finite set of typed variables,

denoted by Xp. A state of P is a valuation for the variables in Xp. Xp is partitioned

into two sets: the set of controlled variables cXrXp containing the variables whose values

are determined by the module P, and the set of external variables ext\Xp containing the

variables whose values are determined by the environment of P.

A module is composed of atoms, each of which controls a subset of the controlled

variables. Within each atom, the initial values and update values of the variables it controls

are specifiedusing initial and update guarded commands. A guarded command has the form

p —> 7, where the guard p is a Boolean predicate over primed and unprimed variables, and

7 is an assignment specifying the values assigned to all the controlled variables in the atom

when the guard is true.

The control synthesis result is the assignment strategy for controlled variables at

eachcontrollable state. We minimize the size, namely the number of guarded commands, in

the resulting reactive module. The reasons are: (1) the size of the reactive module directly

relate to the implementation cost, either in hardware or software; (2) smaller controllers

are more easily understood by protocol designers who may want to add further restrictions

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATI0N12

Reactive Module Multi-valued logic
Guarded commands Sum of product terms

External variables Primary inputs
Interface variables Primary outputs

Atoms Intermediate nodes
Non-determinism Partial cares

Table 2.1: Reactive modules and multi-valued logic

or requirements to the specification. Performance issues like delay or buffer size are not

addressed in the minimization. They are expressed in the specification module and the

controller satisfies those requirements automatically by construction.

Propositional reactive modules naturally resemble multi-valued sequential logic

networks, with state variables representing latched wires and atoms representing multi

valued intermediate nodes in logic networks. Each variable in a reactive module can be

treated as a multi-valued variable in multi-valued logic. The following mapping is used in

translating reactive modules into multi-valued logic.

The resulting controller is mapped to a two-level multi-valued logic circuit repre

sented by characteristic functions. The controllable states, i.e. an evaluation of observable

variables to the controller, are treated as the input part of the multi-valued function; the

updating strategies, i.e. assignments to controlled variables, are treated as the output part

of the multi-valued function. This is a multi-valued relation, i.e. for each minterm in the

input space there exists a set of minterms in the output space. The reason is that for each

controllable state there exists multiple updating strategies. For ease of minimization, the

characteristic function is further encoded into a multi-valued relation with only one output

variable that takes multiple values. The resulting relation is expressed in characteristic

function form for minimization.

The main objective in the minimization is the textual size of the reactive modules.

Three types of minimization approaches are used, which result in three 'smallest' controllers:

• Smallest most general controller: The characteristic function of the multi-valued re

lation is minimized directly with ESPRESSO [RSV88]. This approach keeps all

non-deterministic behavior of the controller.

• Smallest controller that contains a subset behaviors: This is a Boolean relation min-

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATIONIZ

Examples Number of variables
size-1 buffer

size-4 buffer

phase 2
phase 4

PCI

6

11

5 II 5
5 II 5
6 II 6

Table 2.2: Example protocols and FIFO buffer

Protocol conversion Before Espresso Partial Determinized

phase 2 Master || phase 4 slave 612 20 16 18

PCI Master || phase 4 slave 289 10 10 10

PCI Master || phase 2 slave 421 32 26 26

Table 2.3: Protocol synthesis results

imization problem where non-determinicity is preserved. We apply the partial care-

based MV-relation minimization algorithm in Figure 2.2 for this task.

• Determinized controller: This is a Boolean relation minimization problem where a

deterministic MV-function is to be found. Recent research of AURA by Luca Carloni

et al. that uses negative thinking scheme can be applied in this framework. Here we

applied a modified version of the algorithm in Figure 2.2.

2.3.3 Experiments

The control synthesis algorithm is implemented in MochafAHM+QS]. Multi-valued

logic synthesis algorithms are implemented in MVSIS[Be99]. Some of the characteristics of

the protocol examples we have used are shown in Table 2.2. The characteristics for the

converters we have generated are shown in Table 2.3. The numbers in the table are num

bers of sum of product terms, which relate to the number of guarded commands.

Protocol Formalization: From the perfect knowledge assumption, the converter C gen

erated in our process can observe all variables that P and Q are in contact with. However

in the real world, converter C can not see valid in-, data in, valid out^2ind data out- To resolve

data in, we require P to send out data in the same cycle that it receives one. Suppose datap

CHAPTER 2. PARTIAL CARE AND MULTI-VALUED RELATION MINIMIZATIONU

is the data signal that P uses to send data to the converter C, then datap = datain niust

always be true. Then within the converter C we can replace any occurrence of datain with

datap. Similarly, we can resolve dataout by requiring dataout = dataq^ where dataq is the

data signal that Q receives data from the converter. Generally no similar technique exists

for validin and validout because otherwise P and Q would just be space-less FIFOs with

unnecessary signals. Hence, to resolve this we need to relax the perfect knowledge assump

tion and use another controller algorithm. This may result in additional computational

complexity.

FIFO Formalization In formalizing the FIFO, the main problem is separating the FIFO

specification from the actual converter implementation. When deciding the controlled vari

ables for the converter C, we incorporate all variables from the environment including

variables from FIFO. Thus, the variables that the converter controls are dependent on how

the FIFO is specified. Because of this, the sequential dependency order for the variables in

the FIFO specification is crucial. If dependency is such that it is impossible to be achieved

by P and C7, then no converter will be generated. In the case between 2 phase to 4 phase

protocols for a Moore controller, we used a FIFO module specification in which signal s has

to be updated in the same cycle as signal validin. These two signal are controlled by P and

converter C separately. As a result, it is impossible for the Moore converter C to update

signal s in the same cycle as P updates its signal validin. Currently, we break down the

FIFO into 4 different atoms and specify each atom as a Moore machine whenever possible.

Aside from safety constraints, we have attempted to experiment with liveness

constraints. If we allow the buffer to stutter for an arbitrary number of cycles, the resulting

most general converter may contain a behavior that does nothing. This does not satisfy

liveness constraints. We introduce liveness by disallowing the buffer to stutter. Thus the

converter is guaranteed to promote data transfer by following exactly the cycle behavior

specified in the FIFO buffer. However, this additional liveness constraint will trim down

both useless and some useful controller.

In the minimization process, it is promising to combine the minimization algo

rithms with reachability analysis. Whenever a decision is made and some of the transitions

are pruned, some originally reachable states may become unreachable. This can result in

more improvement in the minimization performance.

Chapter 3

Multi-valued logic network

minimization

15

As pointed out in Chapter 1, multi-level multi-valued logic networks have various

applications. In this chapter, we describe algorithms to minimize such networks, which

explore the flexibility provided by logic observability in the network. We extend previous

work of observability don't cares in the binary domain and give some experimental results

for the proposed algorithms.

3.1 Preliminary

A multi-valued combinational logic network, or MV-network, is a network of nodes.

Each node represents a multi-valued function, or MV-function^ with a single multi-valued

output and multi-valued inputs. There is an directed edge from node i to node j, if the

function at node j explicitly depends on the output variable at node i. The multi-valued

intermediate variables are called MV-vaxiables.

The optimization problem of such a MV-network is to flnd an optimal partition and

interconnection of MV-nodes, each implementing a MV-function. The optimizing criterion is

a function of the total number of nodes and size of the MV-function contained in each node.

This cost function will depend on the final target of implementation. Because of the large

solution space, finding the optimal solution is more than NP-hard. Weare aiming for a set of

heuristic minimization methods, each focusing on a particular aspect of the implementation.

The assembly of these methods form optimizing scripts^ which can heuristically lead to a

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 16

good solution. Like in SIS [SSL'*'92], these methods include algebraic factorization and

decomposition, collapsing, resubstitution, don't care based minimization, node grouping

and splitting, variable pairing and encoding, et al. We have built up a software, framework

called MVSIS to carry out these optimization tasks.

3.2 Observability in multi-valued logic networks

Algebraic methods [Bra99] [GBOO] can be used to derive an appropriate structure

for the MV-network. Once the structure has been decided, the multi-valued function at

each node can be optimized according to the maximal permissible behavior allowed for

this node. The flexibility is given by satisflability don't cares (SDC), observability don't

cares (GDC) and observability partial cares (OPC). For the definition and application of

SDC and GDC refer to [Sav92]. Observability Boolean relations have been studied for

Boolean networks, e.g. [Sav92] [SB90] [SBT91] [DM90] [WGB96], but the computational

intensity has prevented the methods from being applicable for large circuits. Multi-valued

observability partial cares are a generalization to binary observability relations. This section

addresses the usefulness of multi-valued observability don't cares and partial cares, and the

methods to generate them.

3.2.1 Maximal set of observability don't cares

Let yi be the output variable, and {xi, ...,2:^} be the input variables of node i

Let yi G {0, ...,n}, and xj 6 {0, The MGDC for the input edge Xj, is the set of

minterms in the primary input space, such that the output MV-function yi is insensitive to

all values of Xj. This set of minterms can be used as don't cares for the minimization of the

MV-function Xj, since they have no eflect on the output value of yi. We first compute the

set of don't care minterms MODC^ in the local input space of t/j, under which the values

of Xj are indistinguishable. This gives the maximal GDC for edge Xj -> j/,. MODC^ can

be defined as follows:

MODC^{yi,Xj) —{'m\f{7n[xj = 0]) = ... = f{m[xj = GPi x ... x P,.} (3.1)

The form m[xj = A;],A: G {0,... ,tj}, means partially setting the value of Xj in

minterm m to k. The value of yi does not change, if we arbitrarily flip the value of xj

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 17

within the range {0,... ,tj} and keep the other parts of minterm m fixed. This gives the

condition that the function produced by Xj is totally blocked by the other inputs and can

not be observed at y,-. xj -> yi becomes a redundant wire for this set ofminterms. MODC^
can be computed using multi-valued cofactoring:

MODC'(vi,Xi) = /»„ •/», •.•/% + Sh •fix-+ fix •fix •••f\
3 3 3 3 xy -^3 3

= f:n4 (3-2)
1=0 ife=0 •'

/' is a binary function, Pi x ... x P,. —> B, which defines the set of minterms in

Pi X... XPr that produce output I for yi. Function f \ is the cofactor of binary function
Xj

with respect to literal Xj. It is independent of Xj and preserves the onset of /' whenever
XJ = k, i.e. XJ •fi, = xj • Function f^, •flyfi. defines the set of minterms in
Pi X... XPj. such that the output value for yi is always I no matter what value xj takes, i.e.,

the universal quantification over the values of xj. Formula (3.2) represents the complement

of the Boolean difference {df /dxj) in the multi-valued sense.

Theorem 3.1 (MODC) The binary function (3.2) computes the set of MODC minterms

for input edge xj, in the local inputs space of yi as defined in (3.1).

Proof. (Sufficiency) Let minterm m be in the function computed by (3.2). There exist /,

such that m G/'o */'i •••/It • Hence, m Gf\ and /(mfr, = k]) = I for all /: = 0,1,... , t.Xj Xj Xj Xj

(Necessity) Let minterm m be in the set defined in (3.1). There exist /, such that f{m[xj =

/:]) = Zfor all A: = 0,1,... , Z, i.e. arbitrarily toggle the value of xj in m does not change the

value of /(m), which is 1. Therefore, m G/'o */^ ***Xj Xj Xj

However, this set of don't cares may not be valid if the functions of other nodes,

{ri,... ,Xj_i,rcj+i,... ^Xr} are changed, in which case CODC's have to be used instead.

3.2.2 Compatible set of observability don't cares

The validity of MODC's for a particular input edge requires other input edges

to produce certain values. There may be cyclic dependencies in this relationship, thus

causing incompatibility. Consider node i, with input edges: xi,... ,Xj,... ,x/,... ,Xr. Let

Xj G {0,... ,Zj}, and xi G {0,... Let MODCj and MODCi be the maximal set of

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 18

observability don't cares for the input edges Xj and xi respectively. Let m, GPi x ... x
be a minterm in the local input space of y,, such that rriq GMODCj and m, GMODCi.

The primary input minterms that produces ruq will be used as don't cares for both xj and
xi. The optimization of Xj as a result of m, may destroy the validity of MODCi; and the

optimization of x/ as a result of m, may also destroy the validity of MODCj. Therefore

the minterm in MODCj, for the input edge Xj, is said to be compatible with xi, I ^ j, if it

is not a minterm in MODCi, or if MODCj does not depend on the value of xi, i.e.

MODCj' = {m|(m ^ MODCi) V(Vi,(m) € MODCj),m 6 MODCj)

By "Va;/" we denote the computation of universal quantification over all values of xi, the

result of which is a multi-valued cube. The interpretation of this relation is that: of all the

minterms, m GMODC{f,Xj), where / is insensitive to Xj, m is said to be compatiblewith

another input edge xi, if (1) either m is not a don't care for xi, (2) or no matter what value

is chosen for xi, f is still insensitive to Xj under m.

Prom a global optimization point of view, there may exist an optimal way of dis

tributing the set of observability don't care minterms to the input edges, but the complexity

of finding this is too much. Therefore we take a greedy approach, where the input edges

are implicitly ordered and the CODC for each input edge is computed by making the asso

ciated MODC compatible with all the preceding edges in the ordering. Given an ordering

Xi Xj ^ Xr, the CODC for edge Xj can be defined as follows:

CODC{yi,Xj) = {m GMODCj\il < j, (m ^ CODCi) V(for any value of xi, m GMODCj)

(3.3)

This approach gives the first edge the most fiexibility. The successive edges are

sacrificed in order to be compatible with previous ones. The GDC set for each node is

thus reduced for compatibility. However, this approximation gives reasonable results and

run time performance. In practice, the set of minterms in MODC can be represented

symbolically using MDD's [SKMB90] [KB90]. Also, the CODC set for each node can be

inherited by all input edges without modification. The formula thus can be constructed

with MDD operations:

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 19

CODC(yi,Xj) = Pi(P2(-Pj-i(MODC(yi,Xj))))-¥CODCy,

Pk(F) = CODC^,-F + Vxk-F

CODC^^ = J] CODC(yuXj) (3.4)
i£fan(mt{xj)

CODC{yijXj) is the edpe-CODC for edge Xj —> yi. CODCy^ is the computed

node-CODC for the fanout node i/j, represented in the primary input space. This is passed

to all fanin nodes of yi without modification. Pk{F) is the compatibility operation which is

applied to each fanin node of yi that precedes xj in the pre-assigned order. CODC{yi,Xj)

is computed for each fanout edge of node xj and they are intersected to give the CODC at

node Xj.

Theorem 3.2 (CODC) The set of minterms computed by (3.4) ore don't cares for node

Xj and they remain to be don't cares if the function of any other node changes within their

computed CODC's.

Proof. CODC^. is a set of don't care minterms because it is a subset of MODCxp
which by definition is a don't care for Xj. Let PI be the primary input space for the

network. Let relation g : PI —>• Pi x ... x P„ be the mapping from primary input space

to the local input space of yi. The changes of nodes other than xi,... ,rcr do not affect

the CODC set of Xj. Assume rci,... ,a:r are the only nodes that are changed after the

network optimization. Suppose there exists minterm 6 MODC^. that is no longer a

don't care for Xj after optimization. The mapping (mp/,m,) 6 g has changed as a result

of the minimization of nodes rci,... ,Xr, or in other words, mpj has been used as a don't

care by node x/, / 6 {0,... ,Xj, Xj+i,... ,Xr). This contradicts with (3.4).

3.2.3 Maximal set of observability partial cares

CODC's do not capture all the flexibility for MV-networks. For the input edge Xj
ofnode there are such minterms that yi is insensitive to only a subset ofthe values for Xj.
In other words, minterms under which a subset of the values for Xj is indistinguishable at

yi. These minterms are, by the definition given in Section 2, partial cares for the function

implemented at node Xj, and can also be used in the minimization ofXj. The maximal set
ofpartial cares for edge Xj -> yi can be defined on the power set, , ofthe values for Xj.

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 20

CODCi

CODC

Figure 3.1: Calculation of compatible set of observability don't cares

Let Xj GPj = {0,... ,m} and v = {ri,... , rt,} 6 2^^. Foreach subset of the values Vt G

for Xj, there exists a set of minterms St in the local input space, such that the values in

the subset vt can not be distinguished at the output j/j. We can compute the these sets of

minterms for each such subset values Vt. When mapped into the primary input space, St

represents the set of partial care minterms for node Xi, where Xi can take any value in vt.

OPC{f,v,Xj) = {7n\f{m[xj = n]) = ••. = f{m[xj = r„]), m GPi x ••• x P^}

MOPC(yi,Xj) = {(m,v)\m eOPC(yi,v,Xj),\fv (3.5)

OPC{f,v,Xj) gives the set of minterms in the local input space of /, such that

a subset v of the values for Xj are indistinguishable at i.e. the output function of

yi does not change, if we arbitrarily change the value of xj within the subset of values

V= {ri,... ,rt;}, while keeping the other parts of m fixed. Therefore, MOPC by definition

is a set of pairs, (7n,u), where m G Pi x ••• x P^, is a minterm in the local input space

of yi, and v G {ri,... ,ry} is a subset of the values for Xj. MOPC's can be computed by

multi-valued cofactoring, similar to (3.1).

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 21

MOPC(yi,Xj)

= 1] {fxy ' +fx'.i •/x;2 •••/xj" +•••+fx'.i 'fx^2 '"fx^y))
ve2^j

= El^'EII/xt) (3-6)
V^2^3yPj \ 1=0 kev •'

This computation can be expensive due to the power set summation. The OPC

needs to be computed for every subset of \xj\^ which is exponential. In practice multi-valued

variables usually have a reasonably small set of values to choose from, thus suggesting

the feasibility of (3.6). However algorithmic trade-offs need to be explored to assess the

practicality of MOPC. For instance, one can choose only the subsets of a certain size, or

subsets of particular values that axe of interest.

3.2.4 Compatible set of observability partial cares

Like observability don't cares, observability partial cares may also become invalid

if the functions of related nodes are changed. Similar to the approach used in CODC, we

can order the input edges for each node, and make the MOPC set compatible with each

preceding edge. However the computation of COPC is much more complicated than CODC

because subset values for each input edge have to be considered. The advantages of COPC

for MV-network minimization needs to be evaluated.

Consider input edges Xj and xi. Let {rrij.Vj) GMOPCj^ € MOPQ. Let

rriq e Pi X"• XPr he a, minterm in the input space of ?/,, such that, m, G3xj{mj),mg G

and mq[l] G vi,mq{j] G vj. Then it is possible that the same minterm in the

primary input space PI is used for both Xj and xi as a. partial care, thus destroying the

validity of both partial cares. Therefore, {rrij^Vj) GMOPCj is said to be compatible with

{mi,vi) G MOPCi if

[mjll] ^ Ui) V{mi[j] ivj)y (\/xi{mj) ^ mi) y {\fxj{mi) i mj)

The following computation can be applied to make MOPC's independent with

previous edges in the ordering, although some optimality is given up.

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 22

COPC(yi,Xj) = Pi(P2(-Pj-i[MOPC(f,xj)))) + COPCf

Pk{F) = E U {rrijlk] ^Vk)+ IJ (Va;fe(mife) ^mj)
'^{Tnj,vj)€MOPCj \Vvk€PPk V(mfc,t;fc)€MOPC|,

COPC^, = IJ COPC(yuXj) (3.7)
i^fanout{xj)

Proposition 3.1 (correctness of COPC) The set of minterms computed by (3.7) are

partial cares for node Xj, and they remain to be partial cares if the function of any other

node changes.

This computation is expensive because one has to compute the set of partial care

minterms for each subset of the multi-value range, which is exponential. The complexity of

the compatibility computation is the square of the average number of subsets. Therefore

some heuristics need to be applied.

3.3 Don't CcU'e-based logic network minimization

We give an algorithm to compute a set of CODC's for each node in a multi

level MV-network. The algorithm is an extension of the binary CODC computation from

[Sav92]. The computation ofMODC and CODC is implemented in MV-SIS [Be99]. MOPC

and COPC computations are expensive and require a multi-valued relation minimizer for

the optimization of each node; it is not implemented in the current version.

3.3.1 MV-network optimization

All computation is carried out using MDD operations [KB90]. A heuristic depth-

first search MDD variable ordering is implemented. The logic function of each node in the

network is represented by a multi-valued table structure, as defined in VIS [VIS96]. A table

is a sum of product representation of a multi-valued function. Each row is partitioned into

an input part and an output part, and represents a multi-valued cube.

The algorithm traverses the MV-network in a reverse topological order from pri

mary outputs to primary inputs. Each node in the network is traversed once. At each

node, the CODC set is computed for each fanout edge, and then intersected to give the

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION

Algorithm [CODC-based MV-network minimization]:

input: MV-network ntk

input: external don't care XDCj at each primary output j

local CODQ: CODC set for node i

local DQ: complete don't care set for node i

Traverse each node j in ntk in reverse DFS order

If j is primary output

CODCj = external don't cares (XDCj)

Continue:

For each fanout node k

D = MODC(fk,yj) computed using MDD universal quantification;

For each fanin node i of k that is already visited

End

D = [CODCi + Vyi] •D

D = D + CODCk;

CODCj = CODCj n D;

Collapse CODCj into primary input space

Remove the supporting variables not in the transitive fanin cone of yj

DCj = -«image(-iCODCj)

MINIMIZE(ONSETj,DCj)

Figure 3.2: CODC-based MV-network minmization algorithm

23

CHAPTER 3. MULTIVALUED LOGIC NETWORK MINIMIZATION 24

approximated CODC set for this node. Once calculated, the CODC set for each node

is inherited by each ofits own fanin nodes. The CODC set is mapped into the primary
input space by variable substitution, and then mapped into the local input space by image
computation. Given the DC set, the logic minimization of a multi-valued node is carried

out using ESPRESSO-MV [RSV88].

3.3.2 Multi-valued image computation

Two methods exist for imagecomputation, namely transition relation and recursive

range computation. We extend the recmrsive range computation from binary domain to

multi-valued domain. For binary image computation, the readers are referred to [Sav92].
Multi-valued cofactoring is used to reduce the computation in a recursive fashion.

In the local input space of node j/j, each input variable is cofactored by the com

plement of the don't care set A{x)^ which is an MDD in terms of primary input variables.

Thisarray ofcofactored functions give the transition functions that map the entire primary

input space PI into the local care set of node yi.

^A{x) [(/l)i4(x)» (/2)i4{x)i ••• 5(/r)A(z)]

A(x) = CODCy^j(x)

Each fk is the multi-valued function for one of the fanins, Xk, ofyi. Each fk is represented

by an array of MDD's; each MDD represents the onset for one of the values of fk- The

cofactor {fk)A{x) is obtained by constraining the MDD function for each value offk against

A(x). This is called the constrain computation. Once we have the range function, we apply
output cofactoring to carry out the recursive image computation:

= IMAGE{CODC%) = RANGEiF^i:,)) = RANGE{fuf2,... ,/r)

= RANGE{[0,f2,... ,fr]fo) + --- + RANGE{{\Pi\j2,... ,/r],|p,i)

= y°i-RANGE(lf2,... JrM + ••• •RANGE([f2,...

\Pl\

k=0

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 25

In the above formula, denotes the MDD function that evaluates to the O''* value

of fk, and yf denotes the literal for intermediate variable yi that takes the 0*'* value. The
range computation is recursively applied to the list of functions, until every one has been

cofactored. The final result is a set of cubes in the local input space of ?/», which can then

be used in the minimization of node y,.

3.4 Multi-level logic network encoding

In order evaluate how much value is added by multi-valued optimization in the

hardware synthesis fiow, we need to encode all MV-variables into binary codes and apply

binary optimization. A trivial encoding will obscure multi-valued optimization efforts. This

is an input-output encoding problem with multi-level implementation, which does not have

an established theory yet. Previous literature [VKBSV97] [VSV90] on the encoding prob

lem has been divided into four categories: input encoding, output encoding, input-output

encoding and state encoding. Each category has a two-level implementation and a multi

level implementation version. Research on the multi-level encoding problem has focused on

state encoding, where there is only one multi-valued variable appearing at both the primary

input and primary output. The theory of the input-output encoding problem for two-level

implementation has been well established and efficient software packages exist [VSV90].

The encoding problem we are facing here is formulated as follows:

Given: a multi-level MV-network, ntk, with a set of multi-valued primary inputs PI, a set of

multi-valued primary outputs PO and a set of multi-valued intermediate nodes NODE]

Find: a binary code, bin, for each MV-variable in PI, PO and NODE, such that the

following is minimized:

1. SntA cost{cubes^ literals)

2. Eiep/ Ibiriil -I- EiePO + T,ieNODE

The goal is to minimize the total number of cubes and literals in the network, using a number

of binary codes as small as possible. We give an algorithm that combines binary encoding

with observability don't care computation. The algorithm applies two-level input-output

encoding for each MV-node using methods given in [VSV90] [VKBSV97].

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION

Algorithm [MV-network encoding]:

input: MV-network ntk

input: external don't care XDCj at each primary output j

local CODQ: CODC set for node i

local BINji binary code for the output of node i

local Conj: face constraints for BIN;

Traverse each node j in ntk in reverse DFS order

If j is primary output

CODCj = external don't cares (XDCj)

MINIMIZE(ONSETj, CODCj)

BINj <- Output encoding using NOVA

Create face constraints for each input MV-variable

Continue;

For each fanout node k

CODCj = CODCj n CODCQ, k);

Conk •(— face constraint from node k

Conj = Conj U Conk

BINj ^ CONSTRAINT-SAT(Conj)

Distribute CODCj to BINj

End

DCj(BINj) = image(CODCj(BINj))

MINIMIZE(ONSETj, DCj(BINj))

If j i PI

Create face constraints for each input MV-variable

Figure 3.3: MV-network binary encoding algorithm

26

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 27

The algorithm traverses the MV-network from primary outputs to primary inputs.

At the primary outputs, external don't cares are used to minimize the MV-function; NOVA

is called to encode the output variable and generate face constraints for each. MV-input.

At an intermediate node, the face constraints are collected from each fanout node, and a

constraint satisfaction routine from NOVA is called to trade off the number of bits used

and the number of constraints to be satisfied. Once the code for this node is decided, the

MV-CODC is computed using the algorithm described in Figure 3.2; the MV-CODC is

then distributed to each binary bit. ESPRESSO-MV is then called to minimize the multi-

binary-output function after encoding. The minimization result generates face constraints

for each MV-input in turn. This procedme stops when all MV-nodes have been traversed.

A more aggressive approach is to generate the CODC set for each binary wire after the

face constraint satisfaction rather than generating MV-CODC all at once. This would give

more fiexibility to each binary wire. The trade off between these two approaches is to be

explored in the near future. We do not have an implementation for this yet.

3.5 Experimental results

example PI. PO. nodes

sort 8 8 32

matmul 8 4 12

max 8 1 15

testl 14 14 56

test2 40 40 120

test3 40 40 180

abp.sender 6 5 245

abp.receiver 6 5 175

elevator 13 10 645

bakery.proc 12 6 267

slider,nsf 9 9 325

Table 3.1: Characteristics of the examples

Some experiments are performed on a number of real and artificial MV-networks

examples. Table 3.1 shows the characteristics of the examples that we tried. PI is the

number of primary inputs; PO is the number of primary outputs; nodes is the number of

MV-nodes contained in the network. In the first set of examples. Sort, matmul and max

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 28

are small made-up examples; testl, test2 and testS are randomly generated MV-networks.

The second set of examples come from the multi-valued benchmark set distributed with VIS

[VIS96]. We extract individual combinational modules and remove the latches to obtain

associated MV-networks. For exsunple, 4-<irbit.cell is the module cell in benchmark 4-arbit

As can be seen, the VIS examples have a large number of nodes as a result of human

specification. We currently do not have an algebraic package to collapse small nodes into

larger ones.

example
H^cubes ^literals

original mv-simp mv-fullsimp original mv-simp mv-fullsimp
sort 432 234 234 2612 1518 1358

matmul 160 140 140 820 616 616

max 98 105 105 1414 301 301

testl 416 375 375 2645 2399 2397

test2 785 740 739 5096 4840 4829

test3 1617 1497 1468 10770 10015 9772

total 3508 3091 3061 23357 19689 19273

Table 3.2: Experiments on MV-networks

The CODC-based MV-network minimization algorithm is implemented in MVSIS

as command mv-fullsimp. As a comparison, we implemented command mv-simp, which calls

ESPRESSO-MV for each node directly without computing MV-CODC's. Table 3.2 and

3.3 shows the total munber of multi-valued cubes and multi-valued literals in the MV-

network. The multi-columns #cu6es and H^literal show the number of multi-valued cubes

and literals in the MV-network. Column original shows the number of specified term in

the original network; column mv-simp shows the number after applying command mv-simp;

column mv-fullsimp shows the number after applying command mv-fullsimp. The results

show that the algorithms presented above are able to reduce the product term representation

for each MV-node. This translates into implementation cost savings whether in software or

in hardware. As can be seen, the first set of examples provides little room for observability

don't care optimization, partly because of the small number of nodes in the network.

The experiments are performed on an Intel 500MHz machine with 128MB memory.

The run time ranges from 1-10 minutes depending on the size of the examples. There is

about a 40% average reduction in both cube count and literal count. The reason is that when

the multi-valued logic functions are initially specified using Blif-mv, they are designed for

CHAPTER 3. MULTI-VALUED LOGIC NETWORK MINIMIZATION 29

humans to understand, not for efficient implementation. At the time of this implementation,

multi-valued algebraic methods are not yet applied. If we combine a number of algebraic

methods and don't care minimization methods together in a script, like what has been done

in SIS, we expect much more powerful improvements.

H^cubes i^literals
example original mv-simp mv-fuUsimp original mv-simp mv-fullsimp

abp.sender 821 821 386 2536 2536 1313

abp.receiver 509 509 177 1597 1572 643

elevator 639 558 316 1508 1294 912

bakery.proc 886 868 168 2753 2558 505

slider.nsf 1251 1251 852 3591 3591 2393

total 4106 4007 1899 11,985 11,551 5766

Table 3.3: Experiments on hardware examples from VIS

Chapter 4

Multi-valued logic for embedded

compilation

30

Sincehardware implementation eventually has to resort to binary logic, multi-level

multi-valued logic networks have been primarily a topic of academic research. However,

there are various application domains other than hardware synthesis that can benefit firom

the powerful optimization techniques for multi-valued logic networks. In this chapter, we

describe some of the research we have conducted in this area.

4.1 Compiler optimization for embedded systems

An embedded system is an electronic component of a larger physical system, which

works in a reactive and time-constrained environment. The implementation of an embedded

system ranges from full hardware like ASIC and configurable logic, to pure software run

ning on a standard micro-processor. Hardware implementation is deployed for performance

requirements; software implementation is used for providing features and flexibility. As

technology developments advance, with the capability of integrating one billion transistors

in a single die [ntr99], embedded system-on-a-chip is becoming a reality.

The advances of embedded micro-processor architecture and IC technology of

fer software implementations with competing performance and costs. The increasing im

portance of time-to-market considerations gradually lead to engineering designs with a

larger share of software components. As a result, software synthesis is gaining researchers'

attention[Lee99]. As pointed out in [BCG''"99] and [ELLSV97], software synthesis is distin-

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 31

guished from software compilation according to the type of input specification. The term

software compilation is associated with machine code generation for C-like imperative, usu

ally non-concurrent languages; software synthesis is used to denote the translation from a

high-level specification that describes the function rather than implementation.

Here we propose a software compiler optimization scheme which utilizes advanced

multi-valued logic network minimization techniques. The target so far has been the opti

mization of a software implementation rather than synthesis from a higher level description.

We will see that even at this level, there is still plenty of opportunity for optimization if the

time of compilation can be relaxed, which is true for embedded applications. This section

describes how we model software using multi-valued logic and the algorithms we use for the

optimization.

4.2 Control dominated software optimization

We are targeting control dominated software applications for embedded systems.

As described by Lee [Lee99], hardware is composed of functional units that operate in par

allel and interact via synchronous or asynchronous communication; software is an assembly

of components that trade off the use of a central processor and communicate by leaving

traces of their execution on a stack or in memory. The intrinsic characteristics decide that

hardware is good at pure complex computations and software is good at control paths.

In the design space exploration of embedded system architectures, it is critical to

decide which components are to be implemented in hardware and which in software. Ten-

silica's [XTE] approach of building customizedinstructions and architectures for a specified

domain of applications, is essentially putting data computation into hardware in the form of

complex instructions, while leaving control paths within software by implementing simple

RISC instructions. Therefore a lion's share of software optimization opportunities lies in

the control part. This is the area where multi-valued logic minimization can be beneficial

in order to explore bit-level and instruction-level parallelism.

As shown in Figure 4.1, after the front-end lexical analysis and parsing, the

proposed optimizing compiler first decomposes the intermediate representation (IR) of the

program into a data evaluation part and a control part. The control part is then translated

into an MV-network representation, which is optimized using both algebraic and don't caire

based algorithms. The optimizing criteria are configured to reflect the cost of the final

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 32

Data Control

MV-network Optimization

CodeGen

Assembly

Figure 4.1: MV-network based software optimization flow

software implementation, accounting for both speed and code size. The code generation

step combines the data evaluation and control part and produces assembly code. Since we

are not exploring the architectural design space, we target our compiler for the series of

embedded processors from ARM [ARM].

There have been research attempts to apply logic optimization techniques to soft

ware compilation or software synthesis. POLIS [BCG''"97] mainly uses a BDD-based ap

proach. There, communicating finite state machines (CFSM) are used to represent the

control part once a similar partitioning is done from an high level specification like Esterel

[BG92]. The transition relations of the CFSM's are then converted into BDD's, which is

in turn optimized based on variable ordering techniques. Finally a set of if-then-else like C

codeisgeneratedfrom the BDD's [CGH''"95]. There are stilloptimization opportunities that

cannot be discovered by BDD variable ordering, as has been seen in hardware synthesis. We

would like to compare the MV-network based approach with POLIS BDD-based approach.

In [Edw97] [EdwOO], Edwards applies binary logic optimization to software synthesis from

synchronous specifications. The results have been very encouraging.

4.3 From code to MV-network

Motivating example: We are still experimenting with methods of transforming

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 33

control codes in embedded software into MV-networks for optimization of speed and code

size. The following is a simple example of a control dominated code jfragment and the

corresponding code after optimization. This is one of the optimization results we are trying

to achieve through MVSIS.

if (a=0) then

if (b=0) then

c := 0;

else

c := 1;

else if (a=l) then

if (b=0) then

c:= 2;

else

c ;= 0;

else if (a=2) then

if (b=0) then

c := 1;

else

c ;= 2;

if (a=0 b=0)|(a=l & b=l) then

c:= 0;

else if (a=0 ii b=l)|(a=2 & b=0) then

c := 1;

else if (a=l b=0)|(a=2 b=l) then

c:= 2;

Control variables in the original code are converted into multi-valued variables in MV-

networks; control structures and conditional branches are converted into MV-functions

stored in MV-nodes. Through multi-valued synthesis we explore the bit-level parallelism

and possibly some of the instruction level parallelism in the code.

4.4 Prom MV-networks to code

We have developed methods to convert a MV-network into software code either in

primitive C or in zissembly code by evaluating and simulating the MV-network. There are

two approaches: MDD-based and table-based.

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 34

4.4.1 MDD-based

Each MV-node in the network is represented using a multi-valued decision dia

gram (MDD) [KB90]. The output C code resembles the MDD structure, due to the direct

correspondence between MDD nodes and C primitives. Each MDD node is converted to

an if-then-else or switch-case struct and go-to statements. The unmodulized code may hin

der readability, but allows greater efficiency. This approach is similar to [CGH+95], where
an S-graph is used as an intermediate representation ofcontrol codes and variable ordering

techniques are applied. However, we expect the MDD-based approach to be a generalization

of the S-graph and BDD-based one.

4.4.2 Table-based

The function for each MV-node is represented in a sum-of-product form (SOP),

and stored in a table structure, which is used for representing BLIF-MV [BCH'̂ 91] format

in VIS [VIS96]. We simulate the function of a node by evaluating the given minterm at the

input against each cube contained in the SOP table.

Software codes are generated to simulate the MV-network following the procedure

shown in Figure 4.2. The generated code can be C or assembly. C is easy to generate, but

the final cost, speed and code size, can not be predicted precisely. We chose assembly for

the following reasons: first the core of the simulation code is simple and small, which can

be hand crafted efficiently; second the speed and code size can be accurately estimated as

a metric for the network minimization. We currently have an implementation for the ARM

RISC processor cores[ARM]. It is also relatively easy to retarget for other machines.

A table at a multi-valued node stores a sum-of-products, or a set of cubes, for each

output value. One of the output values is default and is omitted. The following example

MV-node has 5 inputs with 18 total number of input values and 4 output values, value 3

being the default.

rci X2 X4 X5 z

100 1001 0011 110 nil 0

010 0110 1001 100 1000 0

001 0111 0100 111 0110 1

101 0101 0010 001 1101 2

101 1100 nil 101 0001 2

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION

Procedure [Table-based MV-network simulation]:

input: MV-network ntk, input value Pl| at each primary input i

output: output value POj at each primary output i

heal o;: output value for node i

local vj: input vector for node i

Traverse each node i in ntk in DPS order

If i is primary input then

Oi = Pli

else

Obtain input vector vj;

For each output value k

For each cube C contained in the function of value k

If Vi G C then

Oj = k; break;

If i is primary output then

POi = Oi

else

For each fanout j of i

Update Vj with Oj ;

End

Figure 4.2: MV-network simulation

35

CHAPTER 4. MULTLVALUED LOGICFOR EMBEDDED COMPILATION 36

The core of the table-based network simulation code is to test if a particular
minterm is contained in a cube. This is achieved with a single AND instruction, based on

the fact that m€C<^m-C = (b. The cubes au:e stored in memory in complement form

so that only one AND instruction is need for the testing. We generate the following ARM
assembly code for this task:

value_start:

LDR R7, [R6,R4] ;load the last cube address for this output value
cube_start:

LDR R2, [R3,#4]! ;load the next cube (auto-increment)
TST R2,R1 ;test cube containment

BEQ found ;output value found
CMP R3, R7 ;test the cube address boundary
BNE cube_Stsort ;process next cube
ADD R4,R4, #4 ;increment value index

CMP R4,R5

BNE value_start ;process next value

The assumptions made here are: (1) The total number of input values for each table is less

than or equal to 32 so that they can be located inside a single register usually of the size 32-

bits in common embedded architectures. Given this assumption, the testing of a minterm

containment can be completed in a single ANDinstruction. (2) If there are K output values

for a table, then the functions for the first (iC - 1) values are stored in the table, the last

being the default. Since the functions for different values are disjoint, this approach results

in no sharing between values. We are also investigating an encoding scheme, where the

output values are encoded into binary codes and the cubes can be stored more efficiently.

However, every cube has to be tested for containment before the conclusion can be made

as to which value the output takes. Also since the fanout tables expect a one-hot encoded

MV-variable as input, a decoding function is needed before the output variable fans out.

Table 4.1 shows a comparison between the one-hot and encoded schemes.

The time it takes to evaluate the whole network is a function of the number of

nodes, the number of cubes, the number of values and fanouts for each node. The cost

function for the ARM assembly code in terms of the number of instructions for execution

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 37

Features One-hot Binary
sharing between values No Yes

total number of cubes Large Small

early decision Yes No

decoding overhead No Yes

Table 4.1: Comparison between one-hot and binary encoded tables

and the number of instructions for storage is shown as follows (one-hot version):

Speed = 3-CUBES-i-12.NODES-hlO-FANOUT-f B-VALUES-f-S

Size = 6NODES + 2-FANOUT-f-VALUES + 37

The memory organization for the generated assembly code is shown in Figure 4.3. The

core of the simulation is a fixed set of assembly instructions, while the data, i.e. cubes for

each table, is examined in a data stream. The advantages of this scheme are: (1) the core

instructions are hand tuned to be compact and efficient; (2) software pipelining techniques

can be applied to the core loops in order to reduce pipeline stall of common pipelined

architectures and exploit loop-level parallelism; (3) the core loop code is small enough to

be fit inside the instruction cache so that cache misses are reduced. The disadvantage is

the loop overhead and unavoidable memory load for each cube.

4.4.3 Experiments

There is a third method for evaluating MV-networks besides the MDD-based and

Table-based methods described above, i.e. look-up-table (LUT) based approach. This has

been used in FPGA technology mapping. The idea is to partition the network into regions,

each to be mapped into a LUT. Constrained by the size of the LUT, each region is limited,

and only, by the number of inputs and outputs. The software implementation of a LUT

is a constant array, which takes constant time to evaluate for a given input. However, the

LUT size, a truth table, is exponential in the number of inputs and outputs. The question

is how to trade off" the size of the LUTs and the speed of evaluation. Comparing the three

approaches of mapping a MV-node into software evaluation code, they are different trade

off schemes for time and space. Civen the same structuring of MV-nodes, represented in

the three different ways, the evaluation time and the storage space differ accordingly. (1)

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION

Instructions

Table Loop

Value Loop

Cube

Loop

Data

MV-Table Data

Table #1

Table #2

Figure 4.3: Memory organization for table valuation code

38

MDD representation: the average evaluation time is linear in the number of levels in the

MDD, which in worst case equals the number of input variables. The worst case evaluation

and average evaluation are about the same. However, the size of the MDD can potentially

explode if not treated carefully. (2) LUT representation: evaluation time is constant, but

memory storage size is exponential in the total number of variables. (3) Minimized sum-of-

product representation (one-hot output encoding): the average evaluation time is half the

number of cubes, while the worst case evaluation time is the total number of cubes. The

storage space is far less than exponential if the minimization is eflFective, but there is no

cube sharing between values. (4) Minimized sum-of-product representation (binary output

encoding): the average and worst case evaluation time equal the number of cubes. The

storage space is less than one-hot encoding because of possible sharing among values.

We have implemented the code generation scheme described in the previous section

for embedded ARM processors. We use the Armulator to simulate the performance and

code size of the produced assembly code. In the first set of experiments, we start from a set

of MV-network examples instead of pure C files. The characteristics of the MV-examples

is shown in Table 3.1.

CHAPTER 4. MULTI-VALUED LOGIC FOR EMBEDDED COMPILATION 39

4.5 Other applications

There axe many other interesting applications for multi-valued logic optimization

that are being studied by groups of people from both industry and academia. The more

traditional applications are in fuzzy control system designs and machine learning. More

recently, multi-valued logic synthesis is being applied to asynchronous designs by researchers

from Theseus Logic [THE]. In [LFS"'"], they consider a particular subclass of asynchronous

circuits, Null Convention Logic (NCL) [FB96], and suggests a design flow that is completely

based on commercial CAD tools. There, multi-valued logic network optimization techniques

are applied to synthesize a delay-insensitive combinational circuit.

As the synthesis techniques axe getting more mature, we believe that many more

applications will be found for multi-valued logic.

40

Chapter 5

Conclusions and Future Directions

In this chapter we summarize our contributions and point out some future direc

tions where this research can proceed.

5.1 Conclusion

We have investigated multi-valued logic minimization problem in both two-level

implementation and multi-level implementation. As a design effort we implemented a soft

ware test-bed called MVSIS, which is an assembly of optimizing packages like SIS. We

have studied the application of multi-valued logic minimization in software compilation for

embedded applications. We summarized our contributions below:

• We generalized the notion of don't cares used in binary logic to multi-valued logic,

which incorporates both incomplete specification and nondeterminism. We defined

partial cares for multi-valued relations to capture the flexibility given by nondeter

minism. For multi-level implementations, we extended the theory of binary observ

ability don't cares for multi-valued combinational logic networks, where each node has

many multi-valued inputs and a single multi-valued output. We developed a method

to construct multi-valued observability don't cares in a combinational network and

showed how to generate observability partial cares. Experimental results were given

to show the effectiveness of using CODC's for node minimization.

• As an application of multi-valued relation minimization using partial cares, we studied

the problem of protocol converter synthesis as a control synthesis problem. We showed

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 41

how the interface between two different synchronous protocols can be generated as an

environment that controls the system composed of the two protocols. The resulting

protocol converter can be optimized structurally rather than behaviorally using partial

cares. Some examples were given to show the performance the proposed scheme.

• As an application of multi-valued logic network minimization, we studied the problem

of software compilation for embedded applications. We proposed MV-networks as an

intermediate representation for control dominated software optimization and devel

oped methods to interface between software codes and MV-networks. We proposed

methods to generate assembly code from MV-networks for simulation and studied the

trade off between different schemes.

5.2 Future work

Some future research directions are:

Multi-level encoding: We built up a framework for multi-level multi-valued logic min

imizations in MVSIS. One research direction is to develop the theory and practice for the

encoding problem of multi-level multi-valued circuits, where each intermediate variable has

multiple values. The encoding of an intermediate wire will be constrained by the driving

node and all fanout nodes. A particular encoding can generate further don't cares through

dominance relations and equivalence relations between different binary codes. An efficient

encoding scheme will benefit both hardware implementation and software implementation.

Multi-valued network minimization scripts: We are developing a suite of optimizing

packages for manipulating a MV-network, including both algebraic and don't care-based

methods. This is being done in a fashion like SIS [SSL''"92], where a set of commands are

applied repetitively until no further improvements. The goal of minimization depends on

the final types of target implementation, but minimizing the number of cubes and literals

is generally beneficial for both hardware and software. Algebraic methods include divi

sion, factorization, collapsing, resubstitution and decomposition; don't care-based methods

include node minimization using observability don't cares and possibly partial cares; also

network structuring methods that are not present in SIS are table grouping and splitting.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 42

input variable pairing and encoding, input-output variable encoding, etc.. We believe that

such a multi-valued logic optimizing package will find it's application in various important

areas.

Multi-valued technology mapping: In the hardware world, there is only a limited

set of standard cell gates performing basic logicoperations, e.g. AND, OR, XOR. However

in software, the final implementation is a sequence of instructions that run on a standard

processor. Instruction sets for common RISC architectures include both logic manipula

tions and complex arithmetic operations. Until now, all proposed methods that apply logic

optimization to software compilation are able to use only a small subset of the available

instructions, i.e. logicoperations like AND, OR, XOR. We believe the following, if success

fully formulated and carried out, would be of great contribution: technology mappingfrom

multi-valued logic networks to complex instruction sets including arithmetic operations like

addition, subtraction, shifting and multiplication, etc..

Software synthesis: One distinguishing feature of embedded software from general

purpose software is that the application is part of a larger system and needs to interact

with other components concurrently in real time. The problems involved in this area of

embedded compilation are: how to deal with the concurrency between diflferent software

processes and between software and hardware components; how to perform timing analysis

and predict the worst case execution time of a software process; if timing constraints are

not met, how to reduce software critical path. These are problems that have been fully

understood and solved in the hardware world, but just brought up recently in the software

world. There have been studies of the above problems in various contexts. We believe that

a software framework or methodology can be built to tackle these problems systematically,

benefiting from the research in the hardware world. The key question is the interfacing of

different problem domains.

New embedded architecture: MV-network based software evaluation is pointing to a

new type of embedded architecture, where only a small set of logic instructions are needed

for the control path, while data computation are carried out using special or configurable

hardware. This may be much more efficient from a cost perspective for some applications.

43

Bibliography

[AH96] R. Alur and T. A. Henzinger. Reactive modules. In Proceedings of the 11th

Annual Symposium on Logic in Computer Science^ pages 207-218. IEEE Com

puter Society Press, 1996.

[AHM''"98] R. Alur, T. A. Henzinger, F. Y.C. Mang, S. Qadeer, S. K. Rajamani, and

S. Tasiran. Mocha: Modularity in model checking. In Proceddings of the Tenth

International Conference on Computer-aided Verification, 1998.

[ARM] ARM Inc. http://www.aurm.com.

[BCG"'"97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and

B.Tabbara. Hardware-Software Co-Design of Embedded Systems: The Polis

Approach. Kluwer Academic Press, 1997.

[BCG''"99] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. L.

Sangiovanni-Vincentelli, E. M. Sentovich, and K. Suzuki. Synthesis of software

programs for embedded control applications. IEEE Transactions on Computer-

Aided Design of Integrated Circuits, 18(6):834-49, June 1999.

[BCH+91] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. P. Kur-

shan, S. Malik, A. L. Sangiovanni-Vincentelli,E. M. Sentovich, T. Shiple, K. J.

Singh, and H.-Y. Wang. BLIF-MV: An Interchange Format for Design Verifica

tion and Synthesis. Technical Report UCB/ERL M91/97, Electronics Research

Lab, Univ. of California, Berkeley, CA 94720, November 1991.

[Be99] R. K. Brayton and etc. EECS219B class project. UC.Berkeley, 1999.

BIBLIOGRAPHY 44

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 1992.

[BK99] R. K. Brayton and S. P. Khatri. Multi-valued logic synthesis. In Proceddings
of the International conference on VLSI Design, 1999.

[Bra99] R. K. Brayton. Algebraic methods for multi-valued logic. Technical Report
UCB/ERL M99/62, Electronics Research Laboratory, University ofCalifornia,
Berkeley, Dec. 1999.

[BS89a] R. K. Braytonand F. Somenzi. An Exact Minimizer for Boolean Relations. In

Proc. of the Intl. Conf. on Computer-Aided Design, pages 316-319, November

1989.

[BS89b] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specifi
cation ofLogic Networks. In Proc. of the Intl Conf on VLSI, pages 231-240,

August 1989.

[BS89c] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Spec
ification of Logic Networks. In Proc. of the ML Conf. on VLSPSQ, Munich,

August 1989.

[BS89d] R. K. Brayton and F. Somenzi. Minimization of Boolean Relations. In Proc.

of the Intl Symposium on Circuits and Systems, pages 738-743, May 1989.

[CGH"''95] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. Synthesisofsoftware programs from CFSMspecifications. In Proc.

of the Design Automation Conf, June 1995.

[DM90] M. Damiani and G. De. Micheli. Observability don't care sets and boolean

relations. In Proc. of the Intl Conf. on Computer-Aided Design, 1990.

[Edw97] S. Edwards. The Specification and Execution of Heterogeneous Synchronous

Reactive Systems. PhD thesis. University of CaliforniaBerkeley, 1997.

[EdwOO] S. Edwards. Compiling esterel into sequential code. In Proc. of the Design

Automation Conf, June 2000.

BIBLIOGRAPHY 45

[ELLSV97] S. Edwards, L. Lavagno, E. A. Lee, and A. L. Sangiovanni-Vincentelli. Design

of Embedded Systems: Formal Models, Validation, and Synthesis. Proc. of the

IEEE, 85(3), March 1997.

[FB96] K. M. Fant and S. A. Brandt. NULL conventional logic: A complete and

consistent logic for asynchronous digital circuit synthesis. In Proceddings of

the International conference on application-specific systems, architectures and

processors, 1996.

[GBOO] Minxi Gao and R. K. Brayton. Semi-algebraic methods for multi-valued logic.

In Proc. of the Intl. Workshop on Logic Synthesis, May. 2000.

[GDN92] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic minimization of boolean

relations using testing techniques. IEEE Transaction on CAD, 1992.

[GP98] S. Grygiel and M. Perkowski. New compact representation of multiple-valued

functions, relations, and non-deterministic state machines. In Proceedings of

the 23st Design Automation Conference, 1998.

[KB90] T. Kam and R. K. Brayton. Multi-valued deisoin diagrams. Technical Report

UCB/ERL M90/125, Electronics Research Lab, Univ. of California, Berkeley,

OA 94720, December 1990.

[Lee99] E. A. Lee. Embedded software - an agenda for research. Technical Report

UCB/ERL M99/63, Electronics Research Laboratory, University of California,

Berkeley, Dec 1999.

[LFS*^] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous

design using commercial hdl synthesis tools. In Proceedings Sixth Interna

tional Symposium on Advanced Research in Asynchronous Circuits and Sys

tems (ASYNC 2000).

[LMBSV90] L Lavagno, S Malik, R Brayton, and A Sangiovanni-Vincentelli. MIS-MV:

Optimization of multi-level logic with multiple-valued inputs. In Proceedings

of the International Conference on Computer-Aided Design, 1990.

[LS90] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In Proc. of the

Intl. Conf. on Computer-Aided Design, pages 88-91, November 1990.

BIBLIOGRAPHY 46

[ntr99]

[RSV88]

[Sav92]

[SB90]

[SBT91]

The International Tecnology Roadmap

http: //www. itrs .net/ntrs/publntrs .nsf, 1999.

for Semiconductors.

R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for

pla optimization. IEEE Transaction on CAD, 1988.

Hamid Savoj. Don't Cares in Multi-Level Network Optimization. PhD thesis,

University of California Berkeley, Electronics Research Laboratory, College of

Engineering, University of California, Berkeley, CA 94720, May 1992.

H. Savoj and R. K. Brayton. The Use of Observabihty and External Don't

Cares for the Simplification of Multi-Level Networks. In Proc. of the Design

Automation Conf., pages 297-301, June 1990.

H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don't Cares for

Network Optimization. In Proc. of the Intl. Conf. on Computer-AidedDesign,

pages 514-517, November 1991.

[SKMB90] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for Discrete

Function Manipulation. In Proc. of the Intl. Conf. on Computer-AidedDesign,

pages 92-95, November 1990.

[SSB93] E. M. Sentovich, V. Singhal, and R. K. Brayton. Multiple Boolean Relations.

In Workshop Notes of the Intl. Workshop on Logic Synthesis, Tahoe City, CA,

May 1993.

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, R R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.

SIS: A System for Sequential Circuit Synthesis. Technical Report UCB/ERL

M92/41, Electronics Reseaxch Laboratory, Univ. of California, Berkeley, CA

94720, May 1992.

[THE] Theseus Logic Inc. http://www.theseus.com.

[VIS96] VISgroup. VIS: A system for verification and synthesis. In IEEE International

Conference on Computer-Aided Verification, 1996.

BIBLIOGRAPHY 47

[VKBSV97] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Synthesis

of Finite State Machines: Logic Optimization. Kluwer Academic Publishers,

1997.

[VSV89] T. Villaand A. L. Sangiovanni-Vincentelli. NOVA: State Assignment of Finite

State Machines for Optimal Two-Level Logic Implementations. In Proc. of the

Design Automation Conf., pages 327-332, 1989.

[VSV90] T. Villa and A, L. Sangiovanni-Vincentelli. NOVA: State Assignment of Fi

nite State Machines for Optimal Two-Level Logic Implementations. IEEE

Transactions on Computer-Aided Design of Integrated Circuits., 9(9):905-924,

September 1990.

[WB91a] Y. Watanabe and R. K. Brayton. Heuristic Minimization of Boolean Relations.

In Proc. of the MCNC Intl. Workshop on Logic Synthesis, volume I, May 1991.

[WB91b] Y. Watanabe and R. K. Brayton. Heuristic Minimization of Multiple-Valued

Relations. In Proc. of the Intl. Conf. on Computer-Aided Design, pages 126-

129, November 1991.

[WB93a] Y. Watanabe and R. K. Brayton. Heuristic minimization of multiple-valued

relations. IEEE Transaction on CAD, 1993.

[WB93b] Y. Watanabe and R. K. Brayton. The Maximum Set of Permissible Behaviors

for FSM Networks. In Proc. of the Intl. Conf. on Computer-Aided Design,

1993.

[WGB96] Y. Watanabe, L. M. Guerra, and R. K. Brayton. Permissible functions for mul-

tioutput components in combinational logic optimization. IEEE Transaction

on CAD, 1996.

[XTE] Tensilica Inc. http: //www. tensilica. com.

	Copyright notice 2000
	ERL-00-26

