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Abstract

Function/Architecture Optimization and Co-design of Embedded Systems

by

Bassam Tabbara

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Alberto L Sangiovanni-Vincentelli, Chair

Embedded systems are very prevalent in today's society and promise to be even

more pervasive and found in many of the things we interact with in our daily lives in the

future. These various and abundant applications not only require that the system be reliable

and cost-effective, they impose constraints on the hardware and the software components.

Invariably, the system must be efficient that is speed of execution of the software, and

performance of the hardware must be adequate; and it must be small in size if it is to fit

seamlessly in common objects; in other words code size of the software must be small, and

the area of the silicon for hardware must be within bounds.

Current co-design methodologies of control dominated embedded systems focus

on design at the hardware (HW) and software (SW) component abstraction level, and deal

primarily with improving design productivity. Such approaches have a very limited view of

the design problem and thus suffer from biased trade-off evaluation and limited optimization



opportunities resulting in inefficient HW and SW synthesis of the various reactive system

tasks.

Function Architecture Co-design is a new paradigm we proposed in recent years

for the design and implementation ofembedded systems. I present my work in developing

a function/architecture optimization and co-design formal methodology and framework for

control-dominated embedded systems that incorporates both data flow and control opti

mizations performed on a suitable novel intermediate design task representation in order to

not only enhance productivity of the designer and system developer, but also improve

quality of the final synthesis outcome.

I discuss here the function/architecture co-design methodology, focusing on design

representation, optimization, and synthesis. I show that performing data flow and control

optimizations at the high abstraction level can lead to sigmficant size and performance

improvements in both the synthesized hardware and software.

*rpfessor Alberto L Sangiova^i-Vincentell
ussertation Committee Chair
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Chapter 1

Introduction

Embedded systems are prevalent in today's society and promise to be even more

pervasive and found in many of the things we interact with in our daily lives in the near

future. Applications vary from today's airplane jet or car controllers, and communication

devices like cellular phones and pagers to the future's autonomous kitchen appliances, and

intelligent vehicles. The mega trend in semiconductor industry is that the Internet and

e-commerce will change our lives and impact the semiconductor industry even further; the

consumer e-commerce estimated at 31 Billion U.S. dollars in 1999 is expected to rise to 400

Billion in 2003 [48]. Much of the economic growth in the semiconductor industry, estimated

at 58 percent annual improvement in usable transistors and a greater than 20 percent annual

decrease in cost, stems from this consumerization of electronics which has created entirely

new markets as functionality and affordability continue to improve [104]. Some of the main

drivers of the consumer markets are the digital TV and the cellular phone. For the latter,

Dataquest forecasts that while 230 million handsets were shipped in 1999, 550 million are



expected to in 2003. Looking at the semiconductor market growth (1997 - 2002), the top 10

semiconductor applications are the Internet phone, DTV, xDSL modem, DVD player, ca

ble modem, automobile GPS, hand-held PC/Companion PC, chip cards, LAN switch, and

workstation; most are consumer and communication applications driving the market. Elec

tronics are also penetrating the automobile market in increasing numbers^. For example,

the electronic content of an automobile in 1998 was $852, including $153 of semiconductor

components. By 2002, the electronic content will increase to $1,105 with a semiconductor

content of $222. At the high-end, an S-class Mercedes can have $750 of semiconductor con

tent and up to 100 micro-controllers. In this automobile domain, electronics are replacing

mechanical systems, augmenting mechanical systems and adding increased functionality to

vehicles. Therefore, demand for improved processing of information is boimd to increase in

wireless intelligent transport systems.

These various commercial applications not only require that the system be reliable

and cost-effective, they impose constraints on the hardware and the software components

of the system. Invariably, the system must be efficient, that is speed of execution of the

software, and performance of the hardware must satisfy budgeted constraints, and the

system must be small in size if it is to fit seamlessly in common objects; code size of the

software must be small, and the area of the silicon for hardware must be within bounds.

Designing such an embedded system involves complex trade-offs among the traditional

design metrics such as size, power, and performance, in addition to other metrics specific

to the embedded domain such as cost and reliability. Sometimes metrics particular to the

target application itself are most important, for example in a car the exhaust emission and

'Data collected by Dataquest; paraphrased from Grenier in [48]



fuel consumption axe often of primary concern in the design of the drive controller.

1.1 Motivation

Embedded applications are demanding more and more "intelligence" on board ei

ther in the form of information processing power, or information translation for man-machine

interfaces such as touch, speech, and vision based input schemes [62]. This means that the

division between control and data is getting even more blurred in this domain. No more

is this apparent than in future wireless applications such as the ones being developed at

the Berkeley Wireless Research Center [14], and the Gigascale Silicon Research Center [45].

Such systems have a large set of constraints and demand considerable analysis. Figme 1.1

presented by Jan Rabaey at a recent GSRC workshop [96] outlines the design challenges of

the PicoRadio, a distributed energy efficient multi-hop wide-scope communication infras

tructure.

The increasing complexity of designs in general and embedded systems in partic

ular, as demonstrated by BWRC's PicoRadio, is responsible for the widening of the gap

between complexity and designer productivity as shown in Figure 1.2 from data collected by

SEMATECH in recent years [101]. Design productivity, however, should not be improved at

the expense of quality; application demands and market pressures not only require that the

product design cycle be fast and correct-in-the-first-time, the final implementation must be

reliable, cost-effective, and of good merit. Quality of a product (size, performance, energy

consumption, reliability) is also a crucial factor in the success or failure in a competitive

market.
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Design complexity is on the rise, and we seem to be approaching physical relia

bility limits in conventional technologies. Our recourse, in my opinion, must be a renewed

emphasis on design methodology. The costs of high-tech fabrication axe rising quickly and

only companies that truly understand the increasingly critical role of design will be able to

effectively compete in the coming era [104]. To support my opinion, I ask you, the reader,

to consider the following. If we assume our goal in design is to keep the fabrication lines

going [89] with quality products then I argue that there is a direct analogy between chip fab

lines and vehicle assembly lines. I make this analogy not only because of the similarity in

terms of a fabrication and assembly line as well as the addition of features (in cars and ICs)

over generations but because the car industry is often credited with the mass production

revolution at the turn of the 20th century, as well as the widespread successful implemen

tation of the concept of interchangeable part^\ two notions that I see a congruence among

EDA visionaries from industry and academia on the need to incorporate into design; these

perceptions usually go under the guise of: design re-use, and component-based design.

The vehicle making industry has been active since before the 1900's, a good half

century before the invention of the transistor, so we would do well to learn from its experi

ences and trials. Abernathy in the late 1970's, right about the time when the car industry

was quite mature and to take the analogy further as mature as the IC industry is now at the

turn of the 21st century^, performed a study on the productivity dilemma then faced by car

manufacturers. Abernathy argues, by analyzing car engine and part design, manufacture

and assembly plant data from 1900 till the mid 1970's from U.S., European, and Asian man-

^EliWhitney (1765-1825) is the originator of the idea during the industrial revolution of the 18th century
[47).

^Roughly speaking, without comparing growth rates



ufacturers, that the design and manufacturing processes have been improved throughout

that period by one of the following four innovation functions [1]:

1. Introducing new process capabilities,

2. organizing the process,

3. integrating an existing process, and

4. improving the overall process as a system.

Methodology in embedded system design is an evolving process. Metaphorically

speaking, methodology is the gene carrier or, more accurately, methodology embodies the

memes^ in the Dawkins terminology, information carriers of the evolving ideas [105]). We

cannot focus on just churning out chips using conventional design techniques; methodology

improvement in the form I stated above (new approaches, re-organization, and new integra

tion methods) must be on-going if we are to ensure success in our design activities, keeping

in mind that our goal is not just to produce (survive in the Dawkins metaphor), but rather

be able to generate quahty products (good offspring in the biological metaphor). To take

the evolution metaphor and this line of reasoning further, Sabel and Zeitlin argue in [99],

after analyzing the early evolution of western industrialization in the 1800's and 1900's,

that adjustment proceeds in economy by adaptation rather than "natural selection" since

we humans are sentient beings, and using our wits can devise the (direct or indirect) means

to meet our needs. We developers and designers must also adapt our design methodology

in a strategic fashion so that it tracks, and maximizes the benefit from, the improvements

^From the Greek root "Mimeme" for imitation
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in IC processing and manufacturing if we are to subsist in the increasingly complex design

world.

1.2 Research Overview and Objective

Current co-design methodologies of control dominated hardware software systems

focus on design analysis, validation, optimization, and synthesis at the hardware (HW) and

software (SW) component abstraction level. Such approaches have a very limited view of

the design problem and thus suffer from biased trade-off evaluation, limited optimization

capability and consequently inefficient HW and SW synthesis of the various reactive system

tasks.

T3q>ical hardware and software co-synthesis methodologies of control dominated

embedded systems focus primarily on improving productivity in the complex design process.

In most cases they rely on a low level Control Data Flow directed acyclic Graph (CDFG)

internal reactive task representation. This representation varies in form from one tool to

the next but being at this low abstraction level, this representation limits control and data

flow analysis and optimization to just manipulating computations along the paths of the

CDFG without considering optimizations across such paths in the task as a whole [115]. In

essence, the representation allows micro-architectural trade-offs to be evaluated, and leaves

macro-architecture and its interplay with the function largely unexplored.

Function Architecture Co-design is a new paradigm we proposed in recent years

[5] for the design and implementation of embedded systems. 1 elaborate in this document

on my research in, and development of, a function/architecture analysis, optimization,



and co-design framework for control-dominated systems that incorporates both data flow

and control analyses and optimizations, performed on a novel high level implementation-

independent task representation, inorder to improve synthesis quality inaddition todesigner

productivity.

The approach is applicable to any co-synthesis tool; I have incorporated this fimc-

tion/architecture optimization and co-design approach in the public domain co-design en

vironment Polis [94]. The data collected shows that performing such optimizations leads

to considerable size and performance enhancements in both the synthesized hardware and

software. It is my hope that the methodology introduced in this work, as well as my imple

mentation of the majority of these concepts can set the groundworkfor a new breed of tools

that raise the abstraction level of the current day tools, and that this dissertation can serve

to document the issues that must be considered in the methodology, the algorithms that

can be leveraged, and the techniques and approaches that are likely to become the pillars

of future co-design flows [100].

1.3 Dissertation Contribution

My dissertation builds on significant bodies of work in the optimization, high

level synthesis, and software compilation domains among others. My main theoretical

and methodological contribution is the proposal and realization of a novel formal func

tion/architecture optimization and co-design methodology and framework that

captures the notions of abstraction, decomposition, refinement, and architecture-driven tar

geted and constrained synthesis. The design method revolves around a theoretical formal
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analysis and optimization framework. The tangible contribution is the mutually rein

forcing optimization and co-design strategy for control-dominated embedded system

design which encompasses several new architecture-independent and architecture-dependent

guided (constrained) optimization for synthesis algorithms.

My innovations in the co-design process, presented and discussed in the disserta

tion, can therefore be divided into three major inter-dependent categories®:

1. Function/Architecture Organization and Representation of the embedded system de

sign process enveloping specification, analysis, and co-design.

2. Introduction of Optimization comprised of both data flow and control analysis, im

provement, and specialization into Co-design at all levels of architectural constraint

abstraction, and design refinement thus bolstering the function/architecture co-design

approach.

3. Improvement and (Forward and Backward) Vertical Integration of the Overall Co-

design Process: where conventional hardware/software co-design techniques are aug

mented, integrated and consohdated with the function/architecture optimization and

co-design method.

In the next Chapters, I will first lay the foundation for the function/architecture

representation, then discuss how I have introduced control and data flow optimization into

the: functional (architecture-independent), architecture constrained functional, and finally

the macro-, and micro- architectural abstraction levels. Before presenting results, and con

cluding, I establish vertical integration of the trade-off analysis and optimization method

^Borrowing the spirit of Abernathy's classification [1]
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with the previously known co-design techniques to form the improved function/architecture

optimization and co-design framework for embedded system design set forth by this disser

tation.

1.4 Dissertation Roadmap

In Part I of the dissertation I provide background, and then elaborate on the re

searchproblem, myformulation, methodology and solutionin Part II. The function/architecture

optimization and co-designflow, experimental results, and conclusions are presented in Part

III, as well as my conclusions, and an outline of opportunities I see (• ; future research and

development.



12

Chapter 2

System Level Design of Embedded

Systems

2.1 The Application Domain, and Design Tools

Embedded systems are informally defined as a collection of programmable parts

surrounded by ASICs and other standard components, that interact continuously with an

environment through sensors and actuators [5]. In today's world there is a wide prolifer

ation of such electronic devices in everything from tea kettles to life-critical systems. Up

till very recently, embedded systems have been designed in an ad hoc fashion based on

manual interference and guidance. With increasing complexity, formal methodologies that

incorporate HW/SW trade-off analysis and evaluation, and validation at the highest pos

sible abstraction level have become essential. Obviously, an overhead is incurred in this

top-down process: quality of the final output is typically traded-off with increased pro-



ductivity, but as I will show, this overhead can be again managed and put within bounds

if the methodology includes constraint-driven optimizations; the subject of the upcoming

Chapters.

2.2 Embedded System Design

The broad areas and concerns of the embedded system design methodology are

shown in Figure 2.1. I will cover and discuss in this work mainly the following major

areas: Design Representation, Evaluation {of the optimization, trade-off, and co-design),

and Synthesis.

Synthesis

Specification

Design
Representation

IW/SW Partitionint

Implementation

Evaluation

Figure 2.1: Major Roles in Embedded System Design

Hardware/Software Co-design (HSC) is a recent field that emerged out of the

pressures of the always shrinking time-to-market and the ever-increasing demand for more

"intelligence" on the embedded device. Optimization, however, has for the most part been
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neglected in the field in general; it is only addressed as part of synthesis; through logic

synthesis for hardware [102], and the recent introduction of software synthesis techniques

[7]. In this work, I focus on a synthesis-driven top-down co-design approach where opti

mization starting firom the highest abstraction level and constrained (bottom-up guidance

of) synthesis can boost productivity with an attention to quality.

2.3 System Level Design Validation of Embedded Systems

Design validation in general currently consumes a significant percentage of the de

sign team and takes months of simulation time. This validation strain is bound to increase

as the complexity of designs increases. In embedded system design this problem is com

pounded by the presence of numerous heterogeneous interconnected functional blocks that

are implemented in hardware or software. In my proposed embedded system design and

development methodology I will need to rapidly and relatively accurately evaluate trade-off

decisions, and co-design alternatives that result from optimization at the high level without

the need to fully synthesize the design at every iteration, so the need arises for develop

ing a suitable validation technique in order to be able to measure the consequences of the

trade-off decisions at the high level on the final implementation.

Embedded systems include hardware and software components cooperating to

gether to achieve a common goal, like implementing a cellular phone, controlling an engine,

and so on. Their validation according to the current design practice requires performance

simulation of both hardware and software, in order to assess the overall performance of the

system and to check the correctness of the interfaces. Hardware in an embedded target
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architecture is usually needed for performance while software is used for flexibility. It is

often quite desirable to be able to specify the design functionality and constraints at a high

level, and then synthesize the hardware, software, and the necessary interfaces. Verifying

the sometimes complex interaction between this mix of components is then the major task

that follows synthesis. Our aim is to validate an embedded system composed of hardware

and software components that are mixed together. In order to accomplish this goal our

immediate concern becomes modeling the combined hardware and software system func

tionality, and its target architecture in a manner that requires trading off several aspects of

the validation approach. These aspects are:

1. Accuracy, captures accuracy of our estimation and reliability of this information at

the current design abstraction level.

2. Throughput: determines how fast our simulation is i.e. how many simulation cycles

per CPU second the method can run; meaning how rapidly the method can generate

a response feedback to the query made to it.

3. Convenience: measures how much user intervention is required, how automated the

simulation process is, and how easy it is to generate test benches for the design.

The requirements of the validation environment to be used for performance eval

uation in the embedded system domain include [5]:

• Fast co-simulation of mixed hardware/software implementations, with fairly accurate

synchronization between the two components,
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• evaluation of different processor families and configurations; with different speed,

memory size, and I/O characteristics, and

• co-simulation of heterogeneous systems, in which data processing is performed si

multaneously with reactive processing, i.e., in which regular streams of data can be

interrupted by urgent events. Even though our main focus is on reactive, control-

dominated systems, we should to allow the designer to freely mix the representation,

vaUdation, and synthesis methods that best fit each particular sub-task.

2.4 Co-simulation Validation Framework

The basic idea behind my co-simulation validation framework is the use of VHDL

([56]) to model all the system components to be synthesized, regardless of their future

implementation, starting from an initial specification written in a formal language with a

precise semantics, which can be analyzed, optimized, and mapped both to software and

hardware. Figure 2.2 shows where this approach lies in the Accuracy vs. Throughput

trade-off curve. On the accuracy extreme lies platform emulation where code runs on

the actual processor interfaced to the real hardware. Functional timeless simulation is

on the throughput extreme, while in the middle is HW/SW Co-debug that relies on Bus

Functional Models (BFM) of the processor interfaced through an API, and typically an

IPG communication mechanism to the software that will run on the target; the BFM is

then interfaced to the HW HDL [50]. My approach is intended for high level performance

co-simulation so it falls in the area between functional, and HW/SW Co-debug.

Software and hardware models are thus executed in the same simulation environ-
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Figure 2.2: Accuracy and Throughput Trade-ofFs in HW/SW Co-simulation

ment, and for the software partition, the simulation code is very similar to the code that

will run on the target processor. Different implementation choices are reflected in different

simulation times required to execute each task (one clock cycle for hardware, a number of

cycles depending on the selected target processor for software) and in different execution

constraints (concurrency for hardware, mutual exclusion for software). Efficient synchro

nized execution of each domain is a key element of any co-simulation methodology aimed

at evaluating potential bottlenecks associated with a given hardware/software partition [5],

so the method also models the interfaces between among the HW, and SW tasks.

2.4.1 High-level Co-simulation Using VHDL

My approach to co-simulation is based on the decomposition of the system into

three classes of component models:
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1. Software tasks to be executed on some processor under the control of a Real-Time

Operating System (RTOS). The RTOS which handles commimication within the pro

cessor (i.e. scheduling and I/O), and with the rest of the system is also modeled.

2. hardware tasks communicating via a standardized protocol with the rest of the system,

as well as

3. existing pieces of hardware (software) IP, modeled in behavioral or RTL VHDL (C

Foreign Language Interface (FLI) in VHDL).

SWiJEstimatibh

liW/SW:p£U^

^ySW Co-Simulation
eiformance/trade-off Evaluatib

HW^KHmaidbn I

Figure 2.3: Estimation-based High Level HW/SW Co-simulation

Figure 2.3, outlines the basic idea of my estimation based approach. I build (auto

matically synthesize) a VHDL model for each task, the RTOS scheduler, and the interfaces.

Data flow functions are permitted in order to perform computations, and are usually de

scribed as VHDL or C routines, and modeled as VHDL function calls or through the C

Foreign Language Interface (FLI) of VHDL respectively. Complete details on this perfor-
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mance co-simulation framework are provided in [113].

2.5 Function Architecture Co-design Methodology

Systemlevel designs are typically composed of heterogeneous hardware (digital as

well as analog) and software components. Current design methods follow the traditional

hardware or software block development approach, and are inadequate for the future's

system level (board or IC) design demands. These outdated methods simply do not scale

in the large, and most often have a pre-conceived conventional hardware and software

implementation and interface scheme. This narrow and limited view leads to costly design

iteration, until a desirable design implementation is found, in today's system level design

dynamics that typically include: short time-to-market, rising cost of design, validation,

and manufacture, in addition to keen competitiveness that demands quality products. I

have developed on a novel top-down (synthesis), bottom-up (constraint-driven) systemlevel

design methodology. The Function Architecture Co-design Methodology put forth in this

work^ is shown in Figure 2.4.

The methodology revolves around three founding concepts:

1. Decomposition: In a top-down flow and heterogeneous design target architecture,

design space is large. In order to successfully find an optimal match between the

application function and its constraint metrics (e.g. power, performance, size), we use

the "separation of concerns" approach where the function is decomposed into units,

and the system constraints are broken up as well onto these system sub-units [100].

^Expanded from our initial introduction of this approach in [5] to include trade-offanalysis and opti
mization at the high level
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2. Abstmction and Successive Refinement: After the design function and architectural

constraints are decomposed, the co-design process begins where an "educated" func

tion/architecture formal trade-off method is applied leading to the "best" mapping

of the function onto the girchitecture and to the desired goal. This is achieved by

co-design and trade-off evaluation starting from the highest abstraction level, and

successive refinement of the function, guided by architecture model abstraction, down

to the lower levels. Successive refinement is the process of adding more detail to the

earlier abstraction level.

3. Target Architectural Exploration and Estimation: This is the bottom-up part where

the synthesis target architecture is analyzed, characterized, and estimated in order

to derive the architectural constraints that, together with user-specified constraints,

will drive the trade-off and optimization decisions at the high level in the top-down



approach. The formal trade-off method we describe can only succeed and converge

if it has a well-defined understanding of where it is heading. No system level design

methodology can be expected to achieve optimality by making design optimizations

and exploring suitable implementation choices without adequate modeling of the tar

get architecture. Estimation is therefore a crucial component in system-level design

where trade-offs need to be explored and evaluated at the high level without needing

to fully map every function variant onto every architectural option.

The methodology for embedded system architectural exploration we proposed in [5]

is shown in Figiure 2.5. Deriving the correct selection of an architecture at an early

stage of the design using constraints helps in reducing the number of iterations of the

design process, and decreasing the time to market. Moreover, working at the high

level adds flexibility, and the design can be easily re-targeted if new target platforms

become available.
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Figure 2.5: Methodology for Embedded System Architecture Exploration (from [5])
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• My co-design and synthesis approach is composed of the following main steps

described in the subsections to follow:

1. Function Architectme Co-design and Trade-off

2. Mapping Function on the Architecture

2.5.1 Function Architecture Co-design

If we can fully synthesize the architecture or if the target architecture itself is

parameterizable at the macro and/or micro levels (e.g. type and number of functional units

such as multiplies, adders, or Multiply-Accumulates (MACS) for the macro-level, and size

and access modes of the register file, cache, and memory for the micro-level) then we can

perform this function/architecture co-design step. On the other hand if fully synthesizing

or partially modifying the architecture is not an option then the architecture is fixed, and

our only recourse is to perform architecture independent function optimization and then

map the function onto this architecture in the "best" manner possible. Of course, the latter

restriction seriously curtails our ability to optimize the function to suit the architecture and

function/architecture trade-off aspects are limited severely. The reader must not interpret

my words to mean that I am advocating full flexibility, that will most likely make the

problem intractable, on the contrary my approach revolves around constraints; trade-off

evaluation needs guidance, but we must have alternatives to consider.
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2.5.2 Mapping the Function onto the Architecture

After the functional decomposition, and the architectural organization are fixed,

the second step in the function/architecture co-design methodology is mapping the function

onto the chosen architecture. The architectural organization can be a pre-designed collection

of components with various degrees of flexibilities as in the notion of platforms presented in

[42] by Ferrari and Sangiovarmi-VincentelH, and Chang et. al. in [22], The various tasks to

be implemented are "assigned" to the different portions of the architectural organization.

Previous "hardware/software co-design" approaches have relied solely on this mapping step

to achieve "optimality" where the hardware and software tasks are optimized separately

using different techniques and then mapped to the target. While the approach is valid, it

does not leverage any "co-design" in the full sense of the word as we propose in subsection

2.5.1 but rather "co-creation" hence the connotation of being at a low implementation level

as opposed to a design inception level where tasks are allowed to be "free" at the highest

abstraction level and not bound to a specific inu^lomentation.

2.5.3 Function/Architecture Co-design versus Hardware/Software Co-

design

As I alluded to earlier, I believe the term most commonly used today to describe

the embedded system design methodology is a misnomer. The community in this field, aside

from notable exceptions (such as [42]), has in general referred to hardware/software traue off

evaluation and implementation, shown at the very last stage of function/architecture co-

design in Figure 2.4, as "Co-design for Embedded Systems". In fact some even go as far as
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calling hardware/software co-debug as "co-design". I believe that a verylimitedset of trade

offs and optimizations can be done at this low level since most of the crucial function and

architecture decisions would have been made, and the design problem quite over-simpUfied.

Seems to me that choosing to move a SW task to HW because of performance considerations

for example is no different than choosing to use a more powerful processor (where HW can

be thought of in some sense as such an additional more powerful processor).

It is my hope that the upcoming Chapters in this dissertation will demonstrate why

I take issue with current misleading hardware/software co-design approaches, emphasize the

message of function architecture optimization and co-design, and demonstrate how we can

achieve our goal of matching the optimal function to the best architectxure.

2.6 Reactive System Co-synthesis

As I stated earlier, current co-design techniques have a serious shortcoming: they

are employed at a relatively low abstraction level. In this Section I show one of the ma

jor manifestations of this: poor synthesis output quality. Since software and hardware

co-synthesis strategies for control-dominated applications are mainly concerned with the

efficient (fast and compact) implementation of a reactive decision process [5], data flow as

pects are usually neglected; it is generally assumed that software compilers and hardware

Register Transfer Level (RTL) compilers will address these optimizations. The typical syn

thesis process, as shown in Figure 2.6, starts with design capture, followed by modeling and

representation using finite state machines extended with operations and data computations

referred to here as Extended Finite State Machines (EFSMs). The EFSM of each system
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Figure 2.6: Reactive System Co-synthesis

component module is then mapped in this flow onto a Control Data Flow directed acyclic

Graph (CDFG) which is then used to generate reactive hardware or software. A transition

of the EFSM is performed by executing a path in the CDFG when the task is invoked.

While the CDFG is ideal for representing the reactive tasks to be synthesized since

it can be used for both early size/speed estimation as well as synthesis of the hardware,

and code generation of the software, this representation hides much of the control flow

across invocations of the reactive module, and consequently data effects cannot be fully

propagated and adequately evaluated in a analysis based on the CDFG representation.

This fact limits data flow optimizations, as well as control optimizations that are data

dependent, to optimizations restricted to paths in the CDFG DAG without considering

the optimizations across such paths. I illustrate this point using the simple example of

Figure 2.7. The example shows an EFSM with a constant propagation opportunity that

would save a needless addition operation. The a = 5 operation of SO and the a = a +

1 of 81 can be combined into a single a = 6 assignment operation in 81, provided that

a is an internal variable whose value is available to^ the environment only after state 82.

This optimization cannot be easily identified in the low level CDFG representation using

conventional analysis techniques since it is distributed across two invocations of the reactive

task (first for state 80 and second for state 81).

Observable by
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Figure 2.7: Data Flow Optimization and the CDFG Representation

The key point to emphasize here is that it cannot be expected of hardware and

software compilers (as "conventional wisdom" leads one to believe) to statically discover

such an optimization that involves a run-time decision in the task CDFG representation.

The very simple example of Figure 2.7 shows that the implementation level CDFG repre

sentation puts a roadblock in the tracks of analysis techniques aimed at identifying such

potential optimizations. The CDFG has a shortcoming when it comes to representing op

timization opportunities that lie across task invocations. I aim to develop an equivalent

task representation that is better able to capture such opportunities and to present them

to optimization techniques that can identify and exploit these prospects.

I introduce in the next Chapter this design representation of each system task that

is able to capture the EFSM description, and is at the same time suitable for performing

data flow and control optimizations starting at this high design description level. I show in

Chapter 9 that performing data flow and control optimizations at the design representation

level will directly reflect positively on the size and performance of hath the synthesized

hardware and software. It will then become apparent that performing optimization at an
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abstraction level that is higher than the one on which current approaches operate has

a definite advantage in the output quality. Our optimization and co-design approach is

divided into 2 phases:

1. Architecture-Independent Phase: Task function is considered solely and control and

data fiow analysis is performed, followed by optimization. The optimizations here

are useful for both size and performance improvement since they involve removing

redundant information and computations.

2. Architecture-Dependent Phase: Optimizations in this stage rely on architectural in

formation to perform additional guidedoptimizations tuned to the target platform and

typically involve some estimation-based trade-off between the different design metrics

measuring implementation cost (such as size and performance).
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Chapter 3

Design Representation

We in the HW/SW Co-design field have been searching for some time now for

a unifying Hardware/Software Design Representation. Fellow researchers have developed

computational models especially suited for data processing applications (such as SDF [86]

or DDF [30]), or proposed a unified model for control and data flow modeling (such as [49]),

I am however targeting heterogeneous control-dominated embedded systems, and would like

to capture function, architecture and be able to manipulate, co-design, and trade with both

aspects. Figure 3.1 outlines this goal.

At the functional level, the search for a system level unifying design representation

has recently become the focus of the SLDL committee [10]; while in target a f.hitectures

there has been a shift towards flexible hardware architectures that can support a variety of

applications via programmability and reconfigurability as exemplified by the position paper

of Ferrari and Sangiovanni-Vincentelli [42]. Sangiovanni-Vincentelli also gives an abstract

definition of a platform and its interplay with the application it is intended to support as
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shown in Figure 3.2.

Figure 3.2 reflects the search for a common abstraction that both the application

(the "function" in our context here), and the architecture can "agree" on and trade-off'

to find the best platform instance for one or more intended application instances. This

recent change in focus also reflects the fact that we in the embedded domain are starting

to feel manufacture cost pressures where the demand is sometimes not sufficient for a large

volume production of a specific application device. This pressure is forcing the use of generic

parameterizable programmable and flexible platforms which can be used to tai'get several

application domains whose aggregation can create a reasonable profitable Integrated Circuit

(10) production volume.

My work focuses on "software-like" techniques for programmable components not

only because embedded software typically represents 50-90 percent of the design functional-
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ity^ but also because the most successful mass produced product ([11]) that the electronics

industry has been involved with is the micro-processor which represents the extreme in

generality for the target architecture. In the embedded domain, however, many constraints

(performance, power, area, cost, supply and demand) forbid the reliance on fully pro

grammable solutions. Productivity has its benefits, but it usually has a toll on creativity

as well [1]. Embedded design is as much an art as it is a science, and we cannot afford to

neglect designer talent i.e. quality in favor of production numbers i.e. quantity. Therefore

in order to capture the best of both worlds, productivity and innovative forte, I believe that

we should be looking for a flexible specialization or customization platform as opposed to

a mass produced one [99]. We need an adequate intermediate representation that captures

the developer's intent^ in order to be able to design for such a platform. We in the EDA

community must also develop a formal design methodology able to offer both flexibility

and efficiency, and tool support for system level design that will assist designers in creating,

and relieve them of the mundane tasks that stifle inventiveness.

Designer creativity in product enhancement such as the addition of features while

preserving efl&ciency at a low development cost is a major product differentiator. Without

newfangled ideas and features in product generations the basis of comparison with the com

petition will shift to price, and profit margins will fall. This is especially true for fabless

semiconductor design companies, and in fact Dataquest estimates that by 2005 the frag

mentation and conversion of fabbed semiconductor companies to a fabless/foundry structure

will be commonplace, and that the majority of top semiconductor companies will get rev-

^Quote taken from Coware Inc., SystemC Initiative
^As defined by the work on Intentional Programming of Simonyi [105]
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enue from 3 or less products. The two factors, cost and competition, actually feed on each

other. The shift to a foundry model is in response to the increasing cost of fabs. With the

rise of the foimdry model, the barriers to entry decrease resulting in the proliferation of

fabless semiconductor companies, thus creating intense competition at the chip design level

[48]. I believe that the fluid embedded market with its seemingly never ending imaginative

applications has been a technology improvement driver for many years, and must remain

so if we are to prevent market stagnation exemplifled by the saturation that the PC com

modity market is experiencing currently; while PCs composed the largest segment of the

semiconductor market they are quickly being replaced and surpassed by the consumer and

conmnmication applications.

This Chapter sets forth a novel unifying design representation for control-dominated

heterogeneous systems. While I do not claim this is the representation able to address all

our needs in embedded design, I believe that it is a sizable step in the right direction. I

will show that this particular representation has opened doors and new means for func

tion/architecture optimization and co-design, the embedded design approach proposed in

this dissertation, for rapid productive and effective discriminative design.

3.1 Background

3.1.1 Models of Computation

State-oriented models [88] are common in control-dominated systems. They de

scribe the function of a task by a set of states and a set of transitions between them.

Examples of such models of computation include:
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1. Petri net models [87]: are a graphical language for modeling design systems. They

have proven useful for describing work flows and assembly hnes, but they quickly

become incomprehensible for large complex systems.

2. Finite State Machine (FSM) models: consist of a set of states, and a set of transitions

connecting these states, along with a set of outputs. In Mealy machines outputs

depend on both state and current inputs for the transition, while Moore machines

associate outputs with the states themselves.

3. Hierarchical Concurrent FSM models (such as Harel's StateCharts [53]): decompose

a single FSM state into (possibly concurrent) sub-states, and thus have support for

both hierarchy and concurrency.

3.1.2 Polis Semantics and Model of Computation

I use the Polis co-designenvironment for reactive embedded systems ([28]) in order

to synthesize software and hardware, and analyze their performance. The underlying se

mantic Model of Computation (MOO) in Polis is based on Co-design Finite State Machines

(CFSMs) and a system is described as a network of CFSMs. Each CFSM is an Extended

FSM (EFSM) where the extensions add support for data handling and asynchronous com

munication. In particular, a CFSM has

• a finite state machine part that contains a set of inputs, outputs, and states, a tran

sition and output relations.

• a data computation part in the form of references in the transition relation to external,

instantaneous (combinational) functions.



CFSMl
C=>A

—• B=>CjO
—• (^-Zq

O CFSM2

7
V / (A=0)=>B

r»r<CFSM3

•b

35

Figure 3.3: System Representation in Polis: A Network of CFSMs

• a locally synchronous behavior, each CFSM executes a transition by producing a

single output reaction based on a single, snap-shot input assignment in zero time.

This sequence of sensing and acting is synchronous from its own perspective.

• a globally asynchronous behavior, each CFSM reads inputs, executes a transition, and

produces outputs in an unbounded but finite amount of time as seen by the rest of

the system. This is an asynchronous interaction from the systemperspective.

These semantics, along with a scheduling mechanism to coordinate the CFSMs,

provides for a Globally (at the system level) Asynchronous and Locally (at the CFSM level)

Synchronous (GALS) communication model. Each element of a network of CFSMs describes

a component of the system to be modeled, and defines the partitioning and scheduling gran

ularity. The design representation as a net* ' k of CFSMs is shown in Figure 3.3. Commu

nication between CFSMs is not by means oi shared variables (as in the classical composition

of Finite State Machines), but by means of events. Events are a communication primitive



36

that implements synchronized read, unsynchronized writeover a depth-1 single-entry (lossy)

buffer. Synchronized read is needed to capture the "reactiveness" of the CFSM tasks i.e. a

task only executes when events are present on its input ports, while unsynchronized write

is necessary with a bounded queue (size 1 for simplicity) so that the sender can continue

execution without waiting for the receiver [5]. This communication mechanism is both

powerful enough to represent practical design specifications, and efficiently implementable

within hardware, software, and between the two domains.

3.1.3 System Specification Language

I target heterogeneous control-dominated embedded system applications, so I as-

siune the design process starts initially with a functional decomposition that captures the

design intent as a network of Finite State Machine modules extended with data compu

tation (EFSMs) as described in [28], and [125]. Each module behavior is conveyed using

graphical entry or an FSM-based reactive language (for example Esterel) fi:ont-end. I have

chosen this specification approach because, in my opinion, it is the least intrusive upon

the separation of functional, and architectural concerns. While other modeling ap

proaches may have more powerful input description languages such as the C/C-i-+ approach

of CoWare [126], I believe that it is a mistake to add implementation detail (e.g. complex

types, pointers, "threads" etc ...) into the high abstraction level unless the power of such

mechanisms is curtailed, and used mainly for increased expressiveness; the work of Lavagno

and Sentovich in developing ECL [74], and previously Boussinot et. al. with Reactive-C

[20] is commendable in this regard. Low-level details must be left for later refinement stages

in function/architecture co-design, otherwise they will most definitely limit the scope of the
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potential co-design trade-offs that can be investigated at the system level. While several

researchers in the co-design field may not wholly agree with my previous statements, I am

quite adamant about this issue as is refiected in this work.

Esterel as "Front-end" for Functional Specification

Esterel [17] is a synchronous programming language developed for specifying re

active real-time systems. Synchronous programming languages are based on the perfect

synchrony assumption meaning that computations take zero execution time, as a conse

quence timing constraints cannot be modeled [91]. Esterel, however, is ideal for use as a

"front-end" for single task function specification since it contains reactive constructs that

support pre-emption. Esterel is one of the input languages in the Pohs co-design envi

ronment, and I will use it in this work to specify the function for each task, and use its

compiler to translate the reactive constructs into an EFSM. This EFSM is then used as

the task functional description that needs to be realized. Constructs in Esterel allow ease

of description using such formalisms as concurrency and sequencing at any nesting depth

without restrictions [16]. A very simple example in Esterel is shown in Figure 3.4^.

The front-end compiler takes this reactive, expressive and compact^ EFSM descrip

tion^ and builds an abstract description of the automaton for the described module, after

verifying that there are no causality cycles (e.g. instantaneous loops), non-determinism, or

non-reactivity in the description, and generates the Object Code (00) portable format that

captures the EFSM.

^Should be read from left to right
^Write Things Once (WTO) has been a goal in the design of Esterel.
®The power is that of an EFSM essentially (assuming all variables used in "host-language" function calls

are bounded).



module simple:

input inp: integer;
output outp: integer;
var

a := 0: integer ,
b := 0 : integer ,
0 := 0 : integer ,

X := 1 : integer ,
y := 1 : integer
in

await inp;

a := ?inp;
loop

a := b + c ;

loop

await tick ;
x:=x-f y;

x:=x+ y;

a := b -f c ;

a :=x;

if y = 1 then
emitoutp(a) ;

else

emitoutp(b) ;
end;

end;

a:=x;

end;

end.
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Figure 3.4: Simple Esterel Design Example

Reactive VHDL "Front-end"

Esterel however is not very transparent to the user; the semantics (i.e. meaning) of

the constructs may not always be apparent to a designer (particularly a hardware designer

used to RTL-like descriptions), so in our work we have also defined a "reactive" subset of

VHDL in the spirit of Synchronous VHDL by Baker [3], but even much simpler since weonly

attempt to capture the CFSM reactive model of computation semantics. By restricting the

expressiveness of VHDL, we have identified an FSMD VHDL policy of use that is sufficient

for the purposes of describing a set of interconnected CFSM tasks. Below is a small example

that outlines the basics of this policy.

Example 3.1.1 Simple Reactive VHDL Example

— System I/O
Entity system is

port( inp :in integer; ...);
End;

— Overall Composition

Architecture CFSM of system is
—types/constants



—commuiiicatioii signals
Begin

Taskl:

Process(inp, ...)
—local types/constants/variables
type S_Type is (SI, S2, ...);
variable State, Next_State : S.Tj^e := SI;

Begin
— sample inputs

— update state
State := Next_State;

Case State is

when SI => if (—) then Next.State := S2;
when S2 => ...

End Case;

End Process

Task2:
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End Architecture

We interpret such a description to mean that a system is an Entity with input and

output porfe, and an Architecture that models the CFSM network as a collection of CFSM

processes communicating through signals. The CFSM module represented by a process

in the overall system reacts to the list of signals in its sensitivity list. The behavior it

executes at each invocation is that of a Finite State Machine with Datapath (FSMD)®.

This interpretation is consistent with the VHDL modeling I described earher in Section 2.3.

The description, however, is as verbose as the EFSM itself, and does not oflFer any of

the benefits of compactness and readability that the Esterel front-end offers; a potential

exponential reduction in the FSM description.

®The workhorse of VHDL descriptions
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While the front-end does not play a crucial role in this work since I focus mostly on

the intermediate representation and the "badc-end" optimizations, I will assume when the

front-end does matter for the sake of clarity that an Esterel-like front-end is used (LUSTRE

[21] for example is another real-time language based on the same strong synchronicity

hypothesis but geared for a data-flow style of specification).

3.2 Novel Intermediate Design Representation

The models I have introduced earlier are intended to capture the model of com

putation, and not for optimization and synthesis. I made the point in Section 2.6 that

most of the current optimization and synthesis techniques are performed at the low ab

straction level of a DAG representing the various task execution flows. I have developed a

novel implementation-independent task representation referred to as Function Flow Graph

(FFG) equivalent to the EFSM representation, and is a specialization of the classical CFG

from the software domain. The FFG is Input/Output (I/O) scheduled, that is the represen

tation preserves the task's I/O semantics. The FFG describes the task's function as well as

its interaction with the environment i.e. when it reads inputs, and emits outputs.

The representation is therefore able to capture the behavior and I/O semantics of

the task, and is well suited for control and data flow analysis and optimization techniques

that, as we will see in the next Chapter, serve to optimize the function while preserving

the externally observable^ behavior of the task. The representation fits in the co-design

framework in the manner shown in Figure 3.5. The design is initially decomposed into a

By the environment (which includes other tasks in the system)
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set of communicating EFSMs, with a model of computation governing the composition.

The CFSM model of computation is one such model that can be used for this; no CFSM

semantics are present in the FFG model itself since our intent in this modeling is to be able

to "map" the FFG onto various computation models, and the CFSM model is only one of

these. After decomposition, the task semantics "in the large" are captured in the FFG i.e.

the FFG is able to describe the control and data flow much as the CFG does for the case

of a software program. The difference here is that the FFG is intended to capture reactive

behavior so it has the notion, a restriction of the CFG, of Input/Output semantics that need

to be preserved in the representation in addition to those of the regular data dependencies

between various computations.

The FFG as we will see has a further restriction on these operations that prevents

side-effects. This is the initial abstraction level at which we can perform various opti

mizations. The next abstraction level refines the previous with additional constraints; one

such consideration is the imposition of EFSM semantics onto the model. This essentially

means applying the scheduling that the front-end computed based on the user's functional

specification when building the EFSM onto the (initially unscheduled) FFG to obtain an

Attributed Function Flow Graph (AFFG) which elaborates on the FFG through the addition

of attributes thus extending the classical CFG; this is shown graphically in Figure 3.5. The

reader can therefore see how the architectural/application/domain constraints shape the

initial representation into one tuned for the particular target. We will be concerned here

with the control-dominated domain and will apply EFSM semantics to shape the FFG, but

the FFG model itself is quite general and can conceivably be used in other forms as well.



Next I describe the Function Flow Graph (FFG) in detail. I delay describing the AFFG to

Chapter 5.

Refinement

Architecture

Independent

Archilecture

Dependent

Functional pecomposition

Restriction

I/O Semantics

EFSM Semantics

Figure 3.5: Our Proposed Unifying Task Representation for Function/Architecture Co-
design

3.2.1 Functional Flow Graph

Definition 3.2.1 A Punction Flow Graph (FFG) is a triple G = (VjF, ATq) where [114}-

V is a finite set of nodes

^ ^ subset ofV x V, where (x,y) is an edge from x to y where x belongs

to Pred{y), the set of predecessor nodes of y.

• Nq is the begin or start node®. A single out edge connects Nq to the next FFG

node(s) (which represents the EFSM initial state(s)).

®This is the header, the standard linear programming trick of creating a super-source is quite useful in
the context of iterative solution methods (see Chapter 4).
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• Operations are associated with each node N.

• Operations consist of TESTs performed on the EFSM inputs and internal variables,

and ASSIGNs of computations on the input alphabet (inputs/internal variables) to

the EFSM output alphabet (outputs and internal (state) variables).

• TESTs and computations that read one or more EFSM inputs are marked as input

dependent computations, while ASSIGNs to EFSM outputs are marked as observable

output assignments. These operations define the task's interaction with the external

environment referred to in the sequel as Input/Output (I/O) Semantics of the

task represented by the FFG.

The task behavior is captured by the front-end and represented as an FFG. Every

set of operations is a node, a branch (conditional or a jump) necessitates the presence of a

target node for the branch. The FFG representation is based on the classical Control Flow

Graph® (CFG) where both control and data flow can be represented. Edges in the FFG

represent control flow between the nodes. FFG nodes are multi-entry (except for Nq which

is single-entry), single exit nodes in general. Although the front-end will create a sequence

of operations within each FFG node; this initial order of execution of operations is not fixed

in the FFG representation. Any order of operations in an FFG node is acceptable as long

as it is valid as defined in Definition 3.2.2 that follows.

Definition 3.2.2 An execution order a for operations within an FFG node is valid if:

• The data dependence of the input alphabet of operations is preserved between the initial

^Cyclic Graph
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order i generated by the front-end from the user's EFSM description, and the order

0, and

• the task I/O semantics are preserved i.e. the input sampling, and output emission

remains the same between the initial order i and the order a. In other words, if each

possible sequence of input sampling and output emission is called an I/O trace, then

orders i and a must be identical with respect to all possible I/O traces.

The FFG is the task representation I use for design analysis and optimization. It

is the abstract data structure on which the task control flow analysis is performed, and

data flow information is gathered. I focus in this Chapter on the representation itself, and

will refrain here from presenting an elaborate discussion of how analysis and optimization

algorithms determine and preserve such things as data dependence and I/O semantics; that

is the subject of the Chapters to follow.

3.2.2 C-Like Interchange Format

The concrete syntax or textual interchange format of the FFG is called the C-Like

Intermediate Format (CLIF). The format consists of an unordered (in the sense of data

independence outlined earlier) list of TEST and ASSIGN operations:

• TEST instruction

[if(condition)] goto label

• ASSIGN instruction

dest = unop(5rcl)



Function Flow Graph CUF
(FFG) I y=1 Textual Representation

SI: xsx + y;
X s X -f y,

aBb-i-c;
a = x;

condl B(y Bscstl);
oond2 B Icondl;
ll(cond2)gotoS}L0
output B a;
goto SI;r Loop'l

SILO: output Bb;
goto SI;

oatpatsb asb+c

83S

condlaOrBstsU)
cond2 s icondl

oatpol B a

cai)d2=3
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Figure 3.6: Simple FFG and Its CLIF Representation

dest = STcl binop src2

dest = func(arpl,orp2,...)

The braces around the conditional check in the TEST instruction {[if ...]) are

intended to indicate that TESTs can be broken into 2 parts: conditionals, and jumps.

FFG operations do not have any aliasing, that is there are no side effects (no pointers); they

either involve ASSIGNing to the target a result of a computation performed on one or two

source operands, typically referred to in the software compilation domain as quadruples, or

an assignment from a stateless arithmetic or Boolean function, or they consist of TESTing

a variable and performing a resulting action. All variables i.e. sources and destinations are

assumed to be "registers" in the abstract sense, meaning that a variable holds its value until

it is re-assigned a different value. This semantic of an operation in CLIF, i.e. an operation in

an FFG node, is consistent with that of imperative programming languages where variables

retain their value unless explicitly modified, and is needed for monitoring data flow, and for

supporting data flow analysis to be described in Chapter 4. This operation semantic has

no bearing on the actual final operation scheduling and register allocation but is rather a

simplifying abstraction at the functional level.
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The control transfer statement from a CLIF basic block to another is the goto

statement. Labels of the form identifier: indicate the start of a CLIF basic block

which is a goto target. Each CLIF block corresponds to a single FFG node. The format

has C syntax, and supports all the unary and binary arithmetic, Boolean, and relational

operators of C. A simple FFG graph, along with its equivalent CLIF textual representation

is shown in Figure 3.6. The Figure shows an FFG with three nodes and their associated

operations corresponding to the CLIF description on the side. The Figine also exhibits

typical opportunities for data flow and control optimizations such as eliminating the a =

b + c operation since it is useless (a is re-deflned before the result of the said operation is

used), and performing dead operation elimination on the (cond2 ==1) branch since y is

always equal to 1 upon entry to node SI, consequently cond2 is 0. While the Figure shows

"local" optimizations for simplicity, our goal is to address global versions of these types of

optimizations.

3.2.3 FFG Structural Forms

In this Chapter we think of the FFG as a CFG that captures the task behavior (or

"program description") and introduce only one additional consideration, that of identifying

(and keeping track of) the externally observable input/output behavior of the task. The

FFG however is more than a "program description". It is generated by the front-end from an

initial EFSM description, so the FFG is essentially the EFSM cast as a classical CFG. Each

EFSM state is represented in the FFG as a collection of nodes that model the computation,

and transition behavior of the input EFSM. The FFG can be built from the EFSM by the

front-end into either of two distinct structural forms: Tree form, and shared DAG form. The
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following sub-sections describe these 2 forms in detail; a formal definition ofthe relationship

between state attributes and the FFG in its 2 forms will be introduced in Chapter 5 (see

Definition 5.5.1).

FFG in Tree Form

The EFSM captured as an FFG is shown in Figure 3.7 in Tree form for a simple

example. In the TVee form, a single FFG node, out of the collection of nodes capturing an

EFSM state, is the start node for the state, and the rest are unique conditional or jump

target nodes. All the FFG target nodes that lie within a state are single entry and single

exit nodes thus forming the so-called "tree". Loops in this TVee form, exist only between

states, more accurately from an FFG Tree leaf node of some state to the start node of some

(other or same) state.

In the Figme, nodes labeled with an N refer to FFG nodes while states axe shown

with a label of 8. In fact what is displayed in the Figure is an Attributed FFG since the

states are attributes associated with the FFG nodes, and therefore this a refinement of the

FFG description, more on this later (in Chapter 5)^®. The number of nodes n in the Tree

FFG built from the EFSM generated by the front end is:

n = l + Ei€[i..;sr](l + 2*Ci)

where:

N = number of EFSM states

Ci = number of TESTs (i.e. conditionals) in EFSM state i

including the initial header node (JVq), a single FFG node as a place holder for state entry,

I stated earlier, the fact that nodes are partitioned into states is not relevant if we are thinking of
the "functional behavior", and not associating any state semantics.
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and two nodes for the True and False valuations for each conditional in the state.

Figure 3.7: EFSM in FFG Tree Form: A Simple Example

FFG in Shared DAG Form

A DAG form can also be built by the front-end where some FFG nodes that per

form a common functionality are "shared" within and between states as shown in the simple

example of Figure 3.8. Nodes that are shared form a Directed Acyclic Graph of computa

tions (therefore the name); these nodes can be shared between different computation paths

within a state, or among different states. In this form, in addition to the state start nodes,

a single FFG DAG start node denotes the start of a DAG, and FFG nodes may be multiple

entry single exit in general. Loops in this form (as in the Tree form) can only occur between

states i.e. from an FFG "leaf" node to a state start node. The number of nodes of the FFG

in the DAG form is considerably smaller than that of the Tree form because of the node
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sharing. The node sharing step is performed by the front-end (e.g. Esterel) while building

the FFG where same computation expressions are shared in calls to a generated DAG (see

[81]).

s,

Figure 3.8: EFSM in FFG Shared DAG Form: A Simple Example

3.3 Proof of Concept

The skeptical reader may not be convinced by the benefit of high level optimiza

tions and despite my earlier motivation in Section 2.6 this reader is still doubtful. So, in

this section I would like to go back to the very simple example of Figure 3.4 that has some

useless operations that open the potential for data flow and control optimizations, to put to

rest any suspicions about the usefulness of design representation level optimizations. Fig

ure 3.9 shows the CX/F textual representation outputted from the Esterel front-end (useless



statements are highlighted in bold face). To answer the question of whether the standard

compilation process (of software code) can capture all the potential optimizations, I show

in Figure 3.10 that follows a comparison result of two synthesis and compilation flows using

gcc with the highest optimization setting for software code size with and without the FFG

representation and the high level optimization approach.

Input inp;

Output outp;
int a, b, c;

int X,y:

int cstO = 0 ;

int csti = 1 :

goto S1;

SO; goto SO;
S1: a = cstO;

b = cstO;

0 - cstO;

x = cst1;

y = csti ;

goto S2;

intcond1,cond2,cond3: S2: condl-inp;
int cond4; cond2= Icondl;

if (cond2) goto S2L0;
a = Inp ;

a B b -f c;

goto S3;
S2L0: goto S2;

S3 : X= X+ y ;
x=x+y :

asb+c ;

a = X ;

cond3= ( y ==cst1 );
cond4 = !cond3:

if ( cond4 ) goto S3L1;
outp - a ;

goto S3 ; /* Loop V
S3L1: outpsb;

goto S3;

Figure 3.9: Simple Design Example in CLIF

simple' ^ ^
' ;^ (bytes) (bytes) : (%)

EFSM^CDFG->obj IQO 82.7 17.3

EFSM->FFG-»CDFG^obj 89.9 75.8 14.1

% Difference

S8..1% V •

10.1 6.9

• CLIF

G common

• ecc -03

Discovered Optimizations

Figure 3.10: Compilation Code Size Result With and Without FFG Level Optimizations
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It shouldbe clear to the reader that indeedthe compiler is working at a lower level

of abstraction and is not aware of the complete picture of the control flow; about 30 % of

discovered optimizations in the simple design example shown are due purely to high level

optimizations. This is againwhy the FFG representation and optimization at the high level

is quite beneficial.
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Chapter 4

Function Optimizations

Optimization is the process of improving a particular task or progress in order to

find the "best" way for performing the requirement. Let us first consider a simple example

of the following task (from real life, and quite a common occurrence at that): filling a tub

with hot water. The person performing this task has at his/her disposal two faucets: hot

and cold. If we assume that hot water is a valuable resource that cannot be wasted; the

optimization problem simply stated is that of finding the proper opening gauge for the hot

and cold water to achieve the task with minimal hot water expenditure. As you can imagine,

the problem becomes more interesting when the person has a time constraint for filling the

tub, or possibly an externally imposed schedule on the opening and closing of the faucets.

Of comrse, I argue that the best way to solve this is by using an intelligent controller to solve

this constrained optimization problem. Note that I assume throughout this work that the

environment imposes a known (finite) set of constraints over the lifetime of the controller

and a static analysis can be done once before the function and architecture are fixed. This



53

may not be the case in general for a constantly changing environment. In this latter case

techniques such as introspection [64], where the controller needs to reconfigure itself based

on the environmental demands through machine learning [89], need to be applied.

4.1 Optimization Methodology

In order to solve any decision problem "optimally", an optimization model must

be developed. Optimization models have been used for centuries since their purpose is quite

appealing [90]. A model is a representation of the problem that captmres its essence. It is

most often the case that we are attempting to model a non-isolated process; in this work, in

fact, I am concerned with reactive processes, that are running continuously and interacting

with their environment. I therefore represent the environment as a set of constraints to

be imposed on the process we are modeling. Optimization models can get large, and quite

complex. There are typically a considerable number of constraints to deal with, however

the problem can be managed by relaxing the constraints that are not tight, and optimizing

(i.e. getting the "best" possible solution) for the remaining constraints. This process is

adequate as long as we "keep an eye" on the relaxed constraints always making sure that

they are within bounds (or "budgets", if you will, are not exceeded). This is a well known

technique in constrained optimization where we optimize considering the tight constraints,

while meeting the lax ones.

The notion of relaxation is one of the main strategies in the solution process based

on the FFG model that I exploit in this work as captured by the dual concepts of: abstraction

and successive refinement. The former is intended to state the notion of scoping that is at
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any one stage in any analysis we can throw away irrelevant detail by extracting its essence,

and working at this coarse level. The latter is the process by which we consecutively add

more detail thus moving from one abstraction level to the next more detailed one. A closely

aligned concept is that of the separation of concerns where orthogonal issues axe dealt

with through separate abstraction and refinement processes thus simpfifying the procedure

as a whole. We have to make a lot of decisions when optimizing and synthesizing with

constraints, by knowing the proper ordering of optimization steps, and using the separation

of concerns^ followed by the aforementioned abstraction and successive refinement^ a good

deal of the problem complexity can be handled adequately and in an optimal manner.

In order to implement task optimizations on the FFG we need to identify opera

tions and variables that can be eliminated using a static and conservative procedure. To

that end I have developed an optimizer that examines the FFG in order to statically collect

data flow and control information of the task under analysis using an underlying data flow

analysis framework so that potential optimization opportunities can be identified. This

formal framework is presented in the next Section.

4.2 Mathematical Framework for Control and Data Flow

Analysis

Optimizations to be performed on the design representation involve solving a class

of problems each of which can be dealt with in a similar fashion. A solution is derived from

static information captured from the behavioral description itself. Of course it is impossible

to determine the exact execution of this behavior and its result before runtime since this
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clearly subsumes the halting problem [82]. These problems, called global data flow analysis

problems therefore involve static determination and collection of information distributed

throughout the design task [57]. Kildall ([65]) was the first to express this class of problems

in a general lattice theoretic framework. Kam and Ullman later generalized this firamework

in [58]. In the subsections to follow I provide background and explain what the data fiow

analysis framework is all about. To make the discussion relevant to us immediately, I talk

about the instances of frameworks that use the FFG (see Definition 3.2.1) as the control flow

graph, and use adequate terminology, by adapting the definitions of the classical sources

(cited where appropriate), and supplying my own set of theorems, and proofs that bolster the

various FFG optimization algorithms, and finally lead to the FFG Optimization Algorithm^

and its proof of optimality.

4.2.1 Data Flow Analysis (DFA) Framework

I limit myself here to describing frameworks that are intended to model forward

propagation problems, that is problems that gather and manipulate information in accor

dance with the flow of control in the behavior (from the "start" node towards its successors

in the FFG). For the rest of this document, I only consider such frameworks since I deal

almost exclusively with the iterative approach to solving data flow problems, and in this

case a backward flow can be modeled by simply reversing the fiow and making some mi

nor syntactic adjustments to the notions, so "conceptually" I can discuss here one type of

framework and use notations consistent with (and adequate for) it.

Our ultimate goal in optimization is to be able to manipulate information, prop

agating it throughout the behavior, and making some observations about it, in order to
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simplify the process of generating this information from the input when requested at the

outputs. Let us call this set of values for a particular problem instance, or information in

general I. Here, I put forth the following propositions^ about our endeavor in optimization

(and later on with some refinement in constrained optimization as well).

Proposition 4.2.1 Boundedness of Static Information A behavior has within it a

certain mojximum amount of static information. This information can be collected in an

additive fashion from the given behavior.

Proposition 4.2.2 Information Preservation Law Information must not be created or

destroyed by the process of information gathering or optimization. Information gathering

or optimization algorithms that obey this law are referred to as preservative. Preservative

optimization algorithms can only add or remove redundant information.

Proposition 4.2.3 Information Manipulation Safety Requirement Transformations

are said to be safe if they preserve the input alphabet (consisting of all the inputs and state

variables) to output alphabet (consisting of outputs and state variables) traces of the FFG.

The language of the optimized machine must be contained in that of the original machine,

and the behavior of the two machines must be indistinguishable based on exhaustive I/O

trace comparison.

Proposition 4.2.4 Information Validity Assertion A solution to an information-gathering

problem is under-determinate if it fails to report as strong an assertion as possible as op

posed to an over-determinate or aggressive solution that has strong (possibly invalid) asser

tions [82]. An under-determinate solution is always said to be valid.

^Axioms
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In one sentence^: Our goal in analysis and optimization is to gather in

formation in a preservative fashion about the behavior of a task then apply

preservative and safe transformations in order to find a valid solution. The

solution we seek is the best possible statically determined valid solution.

Let me begin the formal discussion by defining a semilattice (adapted firom [58]).

Definition 4.2.1 A meet semilattice is a set L with a binary meet operation A such that

for all a, b, c L:

aAa = a (idempotent)

a Ab = b Aa (commutative)

a A(5Ac) = (a A6) Ac (associative)

The meet can be extended to arbitrary finite sets where:

We can also define an order relation on the set of information or values in the

lattice L denoted by I where a> b means that a is "bigger" than 6, or equivalently b < a

means that b is "smaller" than a; we also have the notion of "equality" as shown in the

following definition.

Definition 4.2.2 Given a meet semilattice L and elements, a, b £ L, we say that:

a>b if and only if a Ab = b

a > b if and only if a Ab = b and a^b

Definition 4.2.3 A meet semilattice L is said to have a top element^ T G / i/ for all

X G L:

^The mission statement
^This is the one element of the lattice.
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Vx € I/, T A a: = a;

IVe assume that every meet semilattice has such a T element.

Definition 4.2.4 A join semilattice is a set L with a binary join operation V such that the

duals of the meet semilattice properties carry under this join [18].

Definition 4.2.5 A join semilattice L is said to have a bottom element^ X € / if for all

X € L:

XVx = xVx€l<

We assume that every join semilattice has such a X element.

{d2} {d3}

{di,d2} {di.dj} {d2,d3}

{dj, d2, d3}

Figure 4.1: Lattice of Subsets of Definitions (from [2])

To demonstrate the meaning of the definitions of values and the lattice order,

Figure 4.1, shows the lattice L of subsets of definitions where I is the set of all definitions in

the behavior. In other words the lattice L is the power set lattice on the set of downward-

"^This is the zero element of the lattice.
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exposed definitions in the behavior®. In order to take meets over finite sets I also need the

notion of a hounded semilattice defined as follows.

Definition 4.2.6 Given a meet semilattice L, a sequence of elements xi, X2, Xn in L

forms a chain if Xi > Xi+i for 1 <i <n. L is said to be bounded if for each x € L there

exists a constant b s.t. each chain beginning with x has length at most b.

The FFG behavior transforms information as it is traversed by performing com

putations on input data; this is more eloquently stated in the following definition.

Definition 4.2.7 ^4?! function f on the information In Q I labeling a node n^ N of G is

called a transfer function if it is a mapping from Reach(n) —> Pass{n), where I is the

set of values (or information) of a problem instance ordered by a semilattice L, Reach{n) is

the set of information entering node n € N, and Pass{n) is the set of information leaving

the same node. The set of transfer functions on I of L for each node in the flow graph G

is denoted by F.

The set F depends on the problem we axe solving (thus we have an instance of the

framework). It represents moving information from the input of a node (at the meet of all

in-edges) in the graph G to the output of the node (at the split of all out-edges). The meet

or join (as the case may be) is typically referred to as the confiuence operator.

I am now ready to introduce the notion of data flow frameworks. I ask the reader to

bear with me as I introduce these definitions, an example will follow shortly in Section 4.2.3,

and serve to make these notions concrete. Note that I will mostly focus on meet semilattices

'This is a simple and intuitive join semilattice.
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unless otherwise stated; it should be understood that the dual properties hold for join

semilattices.

Definition 4.2.8 A meet data flow analysis framework is a quadruple D = (G,L, A, jP)

where G is the behavior flow graph under consideration (FFG is one such instance) and L

is a semilattice with meet A, and F is a function space associated with L.

Definition 4.2.9 A particular (problem) instance of a data flow analysis framework D is

a pair Instance = (G, M) where M : N —* F is a function that maps each node N in V of

G to a function in F on the node label semilattice L of the framework D.

4.2.2 Monotone Data Flow Analysis (MDFA) Framework

I need some definitions to start with.

Definition 4.2.10 Function Properties Given a bounded semilattice L with meet A, a

set of functions F on L is said to be monotone if the following conditions are met:

1. Each f E F satisfies the following monotonicity condition:

Vx,y EL, f{x Ay)< f{x) Af{y)

2. There exists an identity function i in F s.t.

Vx E L,i{x) = X

3. F is closed under composition (a) that is for any two functions f and g in F:

f,g EF jog{x) E F where Vx E L,fog{x) = f{g{x))

I can now make the following observation that makes the meaning of monotonicity

more intuitive (from [58]).
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Property 4.2.1 Monotonicity Equivalence Property Given a semilattice L, let f be

afunction on L, then[^x,y e LJ{xAy) <f{x)Af{y)] - \^x,y e L,x <y f(x) < f(y)]

Proof. The key is to realize that x Ay <x, and x Ay <y. The proof follows

easily in either direction from the corresponding given monotonicity condition.

Definition 4.2.11 MDFA A meet monotone data flow analysis framework is a quadruple

D = {GjL,AfF) where G is the behavior flow graph under consideration (FFG in our case)

and L is a bounded semilattice with meet A, and F is a monotone function space associated

with L.

The framework can be used to manipulate the data flow information by inter

preting the node labels on nodes N in. V oi the control flow graph G as elements of an

algebraic structure L. We also have a variant of Definition 4,2.9 for the monotone data flow

framework.

Definition 4.2.12 MDFA Instance A particular (problem) instance of a monotone data

flow analysis framework is a pair Instance = (G, M) where M : N F is a function that

maps each node N in V of G to a function in F on the node label semilattice L of the

framework D.

Condition 1 of Definition 4.2.10 is what distinguishes a monotone framework from

a DFA. Kildall in [65], uses MDFA frameworks that have the additional property of dis-

tributivity on the set F as described in the definition that follows.
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Definition 4.2.13 Distributivity Property The set F is distributive if it satisfies the

following condition:

Vx,y, G L, V/ G F, f(x Ay) = f{x) A /(y)

Prom Definition 4.2.13 and condition 1 of Definition 4.2.10 we see that f ^ F

is distributive ^ / is monotone, so the monotone framework is more general; there are

problems that do not fit in the DFA framework but do fit in the MDFA model. In particular

constant propagation is one such data fiow problem [58]. A data flow framework for a

problem instance therefore involves a flow graph, a semilattice of values (information),

and a set of functions from the semilattice to itself. Properties of these components (e.g.

reducibility of the flow graph, monotonicity of the function space etc...) affect [82]:

1. Existence of an exact or approximate solution,

2. applicability of methods for arriving at this solution, and

3. complexity of the method used.

Point 1 is answered in the subsection to follow, while issues 2 and 3 are discussed

in the next. In a marked difference from most papers and texts on the subject, I present

the notions as they relate to join problems initially and then indicate the duals for meet

problems®. Note that in the following, I talk offixpoinis as the approximate solutions (since

I will eventually focus on the iterative method) the word should be taken in general to mean

intermediate result that approximates the true solution.

®Most texts use the intuitive reachingdefinitions (join) problemas I do, but then they explain all about
meets, this is quite confusing and I hope to circumvent it here.
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4.2.3 Solutions: Exact and Approximate

Definition 4.2.14 A minimum fixpoint (MFP) is a fixpoint which is smaller than or equal

to any other fixpoint.

Definition 4.2.15 We define the join over all paths denoted by JOP to be as follows. Let

PATH{n) denote the set ofpathsfrom the initial node Nq to node n e N in theflow graph

G, then the JOP at node n is [58]:

ypePATH{n) yjhere fp represents information collection for the problem in

stance along path p.

Reaching Definitions = ?

Lower

(Smaller)

Al

Lattice

Order

Al

Higher
(Larger)

MFP: {dp d2, d3,
VI

JOP: {d„d2,d3}

Figure 4.2: Reaching Definitions: MFP vs. JOP
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To explain the previous definitions let us consider again the example of Aho [2]

on Reaching Definitions as shown in Figure 4.2. Assume we are trying to find the reaching

definitions at node 7 in the Figure. During an iteration (or a search if you will) we might

get the solution (the MFP of this iteration) of {^1,^2,^3,^4} where our analysis procedure

has not realized yet that the definition ^4 is useless because, if we assume Figure 4.1 is the

optimal information representation we seek, the definition is killed before reaching node 7.

This solution is greater that the JOP. The notion of greater or bigger is that of the lattice

order > where: {di,d2jd3>d4} > {^1,^27^3}

A safe solution to the Reaching Definitions problem would therefore include every

definition in the solution since this over-estimate will result in fewer optimization opportu

nities but will not invalidate the result; however we will always use the MFP as the largest

solution we report, and keep looking for smaller solutions and hopefully reach the JOP.

Lemma 4.2.1 The MFP will always be a safe approximation to the JOP. Acceptable

solutions are at least as good as the MFP.

Proof. V fixpoints x > MFP by Definition 4.2.14. Therefore since the JOP

is reached by a sequence of steps that refine the MFP^, JOP < MFP, and the MFP is

always safe.

The MFP is the approximation normally discovered during an iteration [82]. In

general the "larger" or "higher" a solution is in the join semilattice the safer it is. The

"smaller" or "lower" a safe acceptable solution is in a join semilattice the better a solution

^We may never reach it by the method
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it is® (i.e. it hasmore data flow information). It should benoted here that the initial solution

for iteration will not usually be a safe solution. For example, in Reaching Definitions the

initial guess is that no definition reaches any node (i.e. we start offwith 0 for the reaching

definitions subsets at the nodes) which is an unsafe solution.

Definition 4.2.16 The optimal solution Xopt we are looking for in join problems is;

MFP > Xopt > JOP.

Similarly we can define the following for meet problems.

Definition 4.2.17 MFP Approximate Solution A maximum fixpoint (also denoted by

MFP and distinguished by the context) is a fixpoint which is greater than or equal to any

other fixpoint.

Definition 4.2.18 MOP Exact Solution We define the meet over all paths denoted by

MOP to be as follows. Let PATH{n) denote the set of paths from the initial node Nq to

node n e N in the flow graph G, then the MOP at node n is [58]:

/\pePATH{n) /p(T)

Definition 4.? Optimality Definition The optimal solution Xopt o,re looking for

for meet problems is. MFP < X^pt < MOP.

Of course we'd like Xopt to be as large as possible that is as far from the MFP and

as close to the MOP as possible. Ideally we would like to iterate to the true solution which

we hope to be the MOP however there are three potential problems that may prevent us

from accomplishing this (adapted from [82]):

^Dual holds for meet semilattices
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1. The true solution may not be expressible in lattice form: This is the case where

the MOP does not exist since approximations may have already occurred in the

modeling itself. This is quite conmion in aliasing ([9]) where it is very hard to make

safe assertions. In om: FFG representation we assume no aliasing, and thus free

the designer from worrying about this implementation detail ([89]) when describing

the intended function, so this does not come into play (see Section 4.7.1 for future

enhancements to the FFG).

2. The true solution may not be fixpoint computable: This is the case where the MOP

exists but the DFA framework instance itself cannot handle the situation adequately

(such as Constant Propagation in distributive frameworks [57]). In this case a more

elaborate DFA framework will need to be developed at a higher computation cost in

the analysis steps.

3. The true solution (MOP) takes too much (even infinite) computation: Aliasing falls

into this category where possibly the number of indirect referencing can be limited

but a large amount of computation is required for the analysis stage.

4.2.4 Iterative Algorithm for MDFA Instances

I have chosen in this work to use the iterative algorithm [2], which is typically

the algorithm used in optimizing software compilers^, for finding the "optimal" solution

of the framework formulation because it is general and applies to any graph G without

imposing any restrictions. Other approaches such as the elimination iterative approach,

The algorithm lends itself to efficient implementation.
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and the interval search approach require that the graph be reducible. Those approaches

can achieve in theory a speedup over the iterative scheme; in practice however it has been

shown by Kennedy [59] that typically this is not the case. Figure 4.3 shows a non-reducible

flow graph. I informally define reducibility in the following definition.

Figure 4.3: An Irreducible Flow Graph

Definition 4.2.20 Reducible Flow Graph A flow graph G is said to be reducible if

entry to every loop in G is through the loop's header only.

While compilers for a given language are aware of the control structures in the

input language (FORTRAN, C etc...) and can possibly make assumptions on the flow

graph, I do not make any assumptions on the FFG structure in the embedded domain since

we could potentially have a multitude and a variety of input languages, and I do not wish to

impose any demands on the front-end for handling non-reducible flow graphs if they exist

(such as node splitting techniques [2] to make the graph reducible). As mentioned earlier

I opt here to use a conceptually simple and general DFA engine in order to permit ease of

future expansion and building of algorithms and heuristics, and to port this work to other

endeavors (such as co-design or IP assembly [111]) that can benefit from such techniques

The algorithms in our simple DFA framework will of course run faster if the flow graph is
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reducible than non. The iterative algorithm for general data flow analysis frameworks is

shown next. While I present a meet forward flow algorithm, a join algorithm is quite similar

with A replaced by V, and T replaced by X.

Algorithm 4.2.1 (Iterative Algorithm for General Frameworks)

Iterative Algorithm for General Frameworks (6, F)

begin

foreach node n € do

Reach{n) = f„{T); /* Initialize */

end foreach

while 3m € G such that Reach{m) changed do

foreach node n € DFS{G) do

Reach{n) = Ap6Pred(n) Po,ss{P); /* Confluence Equation */

Pass{n) = fn{Reach{n)); /* Transfer Equation */

end foreach

end while

end

The algorithm is along the lines of its lattice theoretic foundation. For each node

in the flow graph we iteratively use the function f E F on the semilattice L of the problem

information I until we converge to a solution. The natural question that arises: Does this

algorithm ever halt ? Does the MFP improved with each iteration ever stabilize to Xopt

? The next Theorem answers these question in the affirmative. Note that DFS{G) stands

for a depth first ordered version of graph G; for the time being we can neglect this and

^"Shorthand forn 6 V" of G
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assume we are using some OTder with repetition to visit the nodes n GG that abides by the

condition to follow (taken from [58]). In the sequel I denote the algorithm result at node n

after step m by

Assumption 4.2.1 Node Visit Order The node order in Algorithm 4-2.1 is such that if

3 a node n GV —{Nq} where A[n] ApePred{n) fp(-^\p]) fl/tc have visited node ng in

the sequence, then 3 integer t > s such that m = n. Prom the previous statement: if after

visiting node na, A\jn] = Ap6Pred(n)/p('̂ b]) ^ ^0 then the sequence eventually ends.

Theorem 4.2.1 Halting and Optimality Theorem Algorithm 4-2.1 halts and will do

so in no more than n, where n is the number of nodes in G, iterations (of the while loop)

resulting in the best attainable solution.

Proof. Adapted from [57] and [58] By induction on m, the number of steps ap

plied in Algorithm 4.2.1:

V nodes g G G

According to the condition on the sequence of nodes being visited in Assumption 4.2.1, after

we apply the k-th step of Algorithm 4.2.1 either 3 an integer j s.t. < A^ '̂̂ l^[q]

for some node g G G or the sequence will halt. Since L is boimded and the FFG G has

a finite number of nodes n the sequence is guaranteed to end and the algorithm will

eventually halt. The result after the algorithm halts is the best or optimal solution Xopt in

the sense outlined earlier in Definition 4.2.19.

Theorem 4.2.1 states that the algorithm halts, and in the worst case can take

0{n^) steps to converge. Intuitively stated, the Theorem says that the "effect" of the
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information coming from any node n's predecessors is felt at n, in the worst case if infor

mation travels through all the nodes to get to n, essentially that all the other nodes are on

a valid information flow path (worst case happens when every node is connected to every

other node in the flow graph). But we can improve the average complexity of this algo

rithm. Since it has been foimd ([2]) that most of the useful information reaching a node n

gets there typically by an acyclic path while the loops kill information^ the performance of

the algorithm can be improved by finding a good visit order of the nodes n e G. As the

intuitive analysis earlier leads us the believe, studies (such as [54]) have shown that depth

first search provides an efficient ordering of the nodes of the flow graph where d -t- 2, itera

tions of the while loop in Algorithm 4.2.1 is sufficient for typical data flow problems, d being

the graph depth which is the maximum number of retreating edges in a DFS spanning tree.

I will not dwell on this the interested reader should consult the references; for our pxirposes

here I will always order the FFG graph G a priori in DFS order, and I can only add my own

experience with control-dominated embedded system designs (where loops are not typically

deeply nested) to Knuth's experience that d is on average 3 or less [69]. Another process

that we need in Algorithm 4.2.1 is the computation of the transfer functions fn at each

node n, next I describe how we can compute these functions.

Assumption 4.2.2 Information Transfer Functions In the MDFA frameworks we deal

with, we assume that any information processing function can be expressed as follows:

Vn G G, fn{Reach{n)) = {Reach{n) —Kill{n)) UGen{n), where:

Reach{n) zs the information reaching node n,

Kill{n) is the information killed or invalidated in node n, and

Using the Esterel front-end for specification for example
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Gen{n) is the information generated in node n

In summary, the algorithm applied to MDFA frameworks results in a unique so

lution Xoptj which is the MFP of a set of data flow equations where: Xopt < MOP. While

control flow can be inferred from the structure of the FFG flow graph, data flow information

can be collected by setting up and solving a system of equations that relate data at various

points in the FFG module behavioral description using set operations, and in fact most of

the information that we need can be collected and operated on using bit-vectors [2]. In the

context of the FFG and the problems we solve, M in Deflnition 4.2.9 is an algorithm for

extracting information from the operations (i.e. the quadruples see Chapter 3) associated

with each node N, and grouping it into a set which becomes the node label for the corre

sponding node in the data flow problem instance graph G; / at each node N can be fully

represented by the pair of equations describing information flow while the meet operator

for forward flow problems is set intersection f)-

4.3 The FFG Data Flow and Control Optimization Algo

rithm

Oin: optimization objective at this architecture^^-independent level can be stated

as follows

Proposition 4.3.1 Architecture-Independent Optimization Objective The optimization ob

jective at the architecture-independent level is redundant (useless) information elimination

^Implementation
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in the FFG. In other words, our goal is to represent the information in an optimized FFG

that has a minimal number of nodes and operations associated with these nodes.

The FFG Data Flow and Control Optimization Algorithm can be stated as follows.

Algorithm 4.3.1 (FFG Optimization Algorithm)

FFG Optimization Algorithm

begin

while changes to the FFG do

Variable Definitions and Uses

FFG Build

• Build Graph, Symbol Table, Instruction Table

• DFS order

• Node Reaching Definitions and Reached Uses

Reachability Analysis

• Unreachable Node Elimination

Normalization

Available Elimination

• Available Computation Determination

• Available Computation Elimination

False Branch Pruning

Copy Propagation

Dead Operation Elimination

end while

end
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It should be noted that while some of the aforementioned optimization steps can

be cast in a distributive data flow information gathering framework, the overall FFG opti

mization flow subsumes the constant propagation problem (combination of copypropagation

followed by normalization) and therefore can only be formalized using a monotone data

flow framework. A more rigorous analysis of the framework properties is presented in

Section 4.4. Before delving into the properties however, let us first see what these steps are

all about.

The reader should be aware that while most of these techniques are variants of the

classical ones they have all been specialized to our domain where reactive semantics

apply, and all are safe in the sense that they follow the Information Manipulation

Safety Requirement set forth in Proposition 4.2.3. In copy propagation for example,

input sources are never propagated since the sampling of inputs is governed by the MOC,

and is not something we are looking into at this level of abstraction (we will refine this in

Chapter 5). Computations that depend on inputs also have special handling, and output

assignments are also always preserved^^. In essence all interactions with the environment

are handled differently that regular operations. In the following discussion I will assume

this issue is clear and explain the basic operation of the steps.

4.3.1 Variable Definitions and Uses

In this step (performed at every iteration) we update the variable definitions and

uses and store the updated information in the symbol and instruction tables. A "definition"

An output is most likely never "used" if we were to apply the pure semantics of the DFA analysis, but
we should never throw such an assignment away.
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is where a variable is defined, a "use" is where a variable is used for example:

Example 4.3.1

a = b + c defines a, and uses b, and c.

Uses and definitions are the currency used and manipulated in the data flow anal

ysis.

4.3.2 FFG Build

In this step we build the FFG flow graph (initially from the behavior description,

and at every iteration to update the information within each node and remove the unreach

able nodes), as well as an updated symbol table containing all the variables in the FFG, and

an instruction table containing all the FFG (i.e. CLIF) statements, auxiliary data struc

tures. These data structmes provide a higher visibility for variables and FFG statements,

and therefore speed up, and simplify the implementation of the algorithms to be introduced

shortly. In addition to the analysis leading to building the FFG control structure, opera

tions associated with each node are broken up into a canonical representation of quadruples

(see Chapter 3, and Section 3.2.2 in particular).

We then perform a DFS ordering of the nodes in the FFG. Next we solve the

Reaching Definitions problem which is a forward flow join problem as discussed earlier in

this Chapter, followed by the Reached Uses problem. The former analysis is used to detect

uses of variables before their definition in which case the initial value is used^'*. The latter

is a reverse flow problem useful for detecting useless assignments; those assignments with

no reached uses. This is shown in Figure 4.4. The use of a is reached from the assignment

'''The Front-end flags the error when a variable in the specification is used but not defined.
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statement a = b + c if there is some path from the assignment to the usealong which a is

not redefined [76].

No definitions of a

Figure 4.4: Reached Uses

4.3.3 Reachability Analysis

Definitions and uses are also the currency used in the control flow analysis. Labels

(of nodes) are defined and used as shown in the following example:

Example 4.3.2

if (condition) then goto SlLl; de^nes the node label SlLl.

SlLl: a = b + c; uses the node label SlLl.

This simple example gives the reader some intuition on how reachability is ex

pressed in the definition/use currency: A label not defined is unreachable, whereas a label

defined but never used means we should fiag trouble ahead. Reachability is therefore a very

simple process performed as part of building and analyzing the FFG. I have just described

an incremental method for performing reachability based on the definition of labels. Alter

natively reaching definitions can be used to see if the definition of the initial FFG label (Nq)
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reaches any one point in the flow, if it doesn't then that point is declared nnreachable^®.

Unreachable node elimination involves marking the corresponding node for removal from

the flow graph, as well as all its associated operations, and definitions. Of course all the

labels reachable (i.e. defined) from this node only will be marked for deletion as well.

4.3.4 Normalization

Normalization is the process of making the representation canonical and making

all computations visible by identifying computations and storing them in a hashing table

and associating a unique definition with the operation. This step is very useful for the

following analysis and optimization steps since it simplifies the process of detecting similar

operations. The procedure is shown in the simple example that follows:

Example 4.3.3

Assume we have:

a = b + c;

d = f * a;

X = c + b;

It gets transformed after this step to:

T(b+c) = b + c;

" ^(6+c)»

T^a*f) = a * f;

d = T^a*f)>

T^b+c) = c + b; /* This is the same T^t+c) */

Current implementation in toolset
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X —7(6+c) »

Note the canonical ordering ofsource operands enforced (based on string hashing)

to identify similar operations. This step also performs simple algebraic simplification for

things likeaddition to 0 or multiplicationby 1 and 0 etc... Suchoptimizationsare crucialnot

only to the reductionof "silly" operations but alsoto the identification ofother optimizations

in the steps to follow. Constant Folding is also performed in this procedure.

4.3.5 Available Elimination

The Available Computation Determination is an implementation of the available

expression problem ([57]) that uses the previous step (normalization and variable defini

tion and uses) to identify available computations at each FFG node's input meet This is

a forward flow problem and therefore has the same time complexity as Algorithm 4.2.1.

Figure 4.5 shows how this analysis is performed and what it means.

AE —Available Expression

t:= a + 1

AE={a+l}

tl:= a+ 1

t2:= b + 2

AE = {a+l}

a := a * 5

t3 = a + 2

AE = {a+2}

AE = {a+l,b+2}

Figure 4.5: Available Expn

If we examine node Nz in the Figure we c. .oe that Ap^PrediNs) is

{oH-1,6-1-2} A{a-1-1} = {a-f 1} and therefore a+1 is available to node Nz i.e. Reach{Nz) =
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{a+1}. Now, Gen(Nz) = {a*5,a + 2} while Kill(Nz) = {a*5,a + l} since a is redefinedin

the first statement of iVa, therefore Pass(Nz) = {a+ 2}. Once the analysis step is complete

we perform an elimination step which is a linear scan of the FFG nodes that throws away

redundant computations (i.e. since they are available, we need not compute them again).

4.3.6 False Branch Pruning

Conceptually, this step is intended to remove false branches that get exposed as

data flow analysis is performed. The example shown in Figure 4.6 demonstrates this.

False
= Tru(

True

False
T, = True

True
c = d + e;

a = b + c;

Figure 4.6: False Branch Pruning

The second true branch for the operation T\ == True is never exercised and can

therefore be pruned. Purely control optimization approaches (such as HDD approaches

applied in [29]) cannot perform such an optimization since it depends on data semantics,

not to mention that these "data-value blind" approaches cannot hope to uncover this op

timization to begin with since no data flow analysis and optimization is done. While this

transformation can conceivably be implemented with a dedicated analysis that checks avail-
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able computations at each branch, practically I implement this transformation witha simple

linear in the FFG nodes i.e. 0{n) where n is the number of FFG nodes technique based on

redundancy addition as shown in Figure 4.7. I add redundant assignments at the head of

the true branch and false branch targets. While I have not performed the brancii pruning,

the following steps namely copy propagation and dead eUmination will eliminate the useless

branches for me as we will see shortly.

o

False

T, = False;

a = b + c;

T, = False; T, = True

T, = True;

Figure 4.7: Redundancy Addition

4.3.7 Copy Propagation

Copy propagation is the process of substituting equivalent variables and is imple

mented as a linear scan of the FFG nodes^®, it is useful for eliminating "intermediate"

computations and thus eliminating those variables as well. Copy propagation can also sim

plify the operations by substituting constant values for variables thus opening the potential

Of course it relies, as most everything else, on determination of definitions and uses which is an O(n^)
process
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for further simplifications. For example if we consider Example 4.3.3 again, after this step

it will be as follows, possibly optimizing away the variable a:

Example 4.3.4

3- "" 7(6+c) »

^(o*/) ~ ^(6+c) *

In the context of control for example we have seen the false branch pruning im

plementation, after this step we will have a situation like:

Example 4.3.5

'̂ {faise==true) ~ (/o/se —— true);

if goto lahel i

which evaluates to:

if (false) goto label; /* will be removed by dead elimination step */

4.3.8 Dead Operation Elimination

The best name for this step is redundancy elimination. Here a live variable analysis

is performed on the operation destinations. All the useless operations are removed after the

analysis; dead control is removed as well.

Definition 4.3.1 Live Variable A variable is live at any point p in the FFG behavior if

there is a subsequent use before a redefinition.
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4.3.9 Optimizing Function and Procedure Calls

Procedures are not supported in the FFG operations since typically procedures axe

meant for passing indirect variables and aliasing is not supported cmrently in the design

representation. Single-output functions are supported in the FFG (as an operation), and in

fact this is another specialization that all the above analysis and optimization algorithms

share: the handhng of such fimctions. At this architectiure independent level we make no

assumption on the functions, and treat them in a safe manner. In Chapter 5 we will see how

we can optimize more given the knowledge or assumption that these functions are stateless

arithmetic or relational functions. In the architecture-independent optimization phase we

can only "propagate" simplifications to the arguments of such functions, but we cannot

move computations in or out of the function boundary, nor can we move the function call

around because we fear changing the behavior semantics. In general we will assume that

functions written in the host language (e.g. "C" in the case of our Esterel or Reactive VHDL

front-end) will be optimized (the body is optimized, and possibly the complete function is

inlined) for synthesis by the target compiler. This is an adequate assumption since these

functions are not reactive but only perform a (usually single) computation function, and

the optimizer can do a good job in the optimization.

4.4 Properties of The FFG Optimization Algorithm

Now that I have outlined the main steps in the optimization algorithm, let us go

back and attend to stating and proving some properties of the algorithm.
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Theorem 4.4.1 Information Preservation and Safety Theorem The FFG Optimiza

tion Algorithm preserves the information embodied in the FFG behavior, and is safe (Refer

to Propositions J^.2.2 and 4-^-3 for the meaning of information preservation and safety).

Proof. Sketch Each step in the FFG Optimization Algorithm collects information,

or adds/eliminates redundant information and is therefore information preserving and safe

by construction^. The sequence of the above steps is information additive and is therefore

information preserving and safe.

The next assumption states that heuristically speaking the order of steps we have

applied is a reasonable, and more forcefully an optimal and efficient order.

Proposition 4.4.1 Optimal Order of Steps The order of steps as shown in the FFG

Optimization Algorithm is optimal and efficient since every step uses information from the

previous one, and follows it "naturally".

So the previous proposition states that since each step facilitates the job of the

next, and since in fact each step is dependent on the previous one then their composition

is a reasonable application order. Any other order would not have the required effect, and

would make the iteration take longer to converge. Let us now turn our attention to this

composition of the steps or the FFG Redundancy Identification and Removal Function to

identify properties of this function and consequently give formally the solution properties

of the overall flow^® which is the FFG Optimization Algorithm. To start off I need to

course each such step can be formalized in terms of its transfer functions / € F for the problem
instance, and a more rigorous proof can be called here to validate the "correct by construction" claim. The
inquisitive reader can refer to reference [57] for such a sample proof of available expressions.

^^Ofthe ordered composition of the algorithmic steps
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state and then prove the following lenrnia.

Lemma 4.4.1 Monotonicity Lemma Let \ he a semilattice of all the information cap

tured in an FFG behavior denoted by 2^, and si,S2, functions^^ on X. GA, V

1< 2< n, Si(xAy) < Si{x)Asi{y)] =» Vx,2/ GA[siS2...s„(a;A3/) < si52.-s„(a;) AsiS2...s„(2/)]

Proof. Given Vi Si(x Ay) < Si(x) ASi(y); Let us assume that Si...s„(x A

y) < Si...s„(x) ASi...Sn(y) then by the Monotonicity Equivalence Property (Property 4.2.1)

Si-i(si...Sn(x Ay)) < A5i...s„(y)), which leads to (from our assumption)

Si-iisi.-.SnM Asi...Sn(y)) < 5i_iSi...s„(a:) ASj-iSf...s„(y). The lemma follows by backward

induction on i.

My intent in the Monotonicity Lemma is to introduce the lattice A that "pulls

together" the individual lattices of the separate optimization steps^° in the FFG (>ntimiza-

tion Algorithm, in order to be able to speak of this composition in n theoretical fashion

considering an FFG G and a single Ato capture the behavior and its ormation. Simply

stated each of those steps can be applied on a restriction of A where the algorithm in the

respective step is only concerned with a subset or informally a part of the information em

bodied in A. While the lemma is stated in an abstract fashion, concretely what I aim to do

is associate each Sj with algorithmic step i in the ordered composition with repetition

of the FFG Optimization Algorithm. To revisit the Optimal Order of Steps proposition, the

reader should note that while we can conceptually think of the notion of a function fideal

that performs Total Redundancy Identification and Removal on A building an algorithm

'^Transformations or Optimizations
la Abstract Interpretation of Cousot in [34]
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to perform such a function is undecidable, so we resort to decomposing the problem into

several steps, and then say something about the optimality of the composition function or

algorithm A where Vm e G A[m\ = siS2—5n[7u]- Of coiurse the quality of the solution

A with respect to fideal is inferior but we have no way of actual comparison since A is

the "best" algorithm, in the sense of decomposing the problem given a set of analysis and

transformation steps that form the fundamental building blocks, we can build.

Theorem 4.4.2 Halting Theorem The FFG Optimization Algorithm halts.

Proof. By the halting proof of Theorem 4.2.1 each optimization step halts.

Since Ais bounded and G is finite, and the FFG Optimization Algorithm is preservative^^

by Theorem 4.4.1, the ordered composition of the optimization steps also halts.

Intuitively from Theorem 4.4.2 (again since A is bounded and G is finite, and

the steps do not add any new information) we can see that the final optimization step (a

function on A) may have to wait for n iterations where n is the number of FFG nodes until it

gets the proper information to do its job. By the Monotonicity Lemma, this gives an upper

bound complexity of 0(n) for the external iteration of the FFG Optimization

Algorithm.

Theorem 4.4.3 Safety Theorem The solution from application oftheYYG Optimization

Algorithm is safe^^.

Safety of the algorithm guarantees that we are conserving the I/O semantics by construction, but has
no real bearing on information preservation.

22 This is not to be confused with safety of the algorithm; please refer to appropriate definitions.
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Proof. Each step Si in the FFG Optimization Algorithm is a monotone function

on A and after apphcation t of a transformation step in the sequence of such steps we have:

fidealix Ay) < Ay)) < SiSi-i...Si{x) A

So we have a safe solution after each step. The final solution (when the algorithm halts) is

also safe.

Theorem 4.4.4 Closeness and Optimality Theorem The solution of the FFG Opti

mization Algorithm is as close as possible to the ideal solution and optimal /or the given

order of the optimization steps.

Proof. When the algorithm halts after applying m such optimization steps we

have:

{Sm-1"-Si{x Ay)) < Sl(x) AS}7iSni_i...Si(2/)

which states that the solution after each step is always smaller^^ with respect to the lattice

order. So, by monotonicity of the steps Si, the solution we obtain from the algorithm is

optimal for a given order of application of the optimization steps, and there is a sense by

which we can say we have reached the best possible solution (given this step application

ordering) when the FFG Optimization Algorithm halts.

Theorem 4.4.2 and the Monotonicity Lemma lead us to deduce that the outer

iteration is linear in the FFG nodes but (unlike Algorithm 4.2.1) there is no clear indication

as to how we can monitor this change and determine when the algorithm has converged (and

^^contracting
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therefore when we can terminate the iteration) instead of looping for all the nodes n €

and try to do better (on average of course) than the 0{n^) overall complexity. To address

this issue, I propose the following stopping criterion for the FFG optimization algorithm.

Corollary 4.4.1 Iteration Stopping Criterion Heiuristic If we iterate until all the

information from the first step in the sequence reaches the final step and there are no

changes in the operation count in the FFG, then most likely there is no further significant

change in the solution, and the algorithm can he stopped. It is our hope that indeed this is

the point at which the algorithm has converged.

Proof. Stopping Heuristic Validity Follows by generalizing the proof of The

orem 4.2.1 since at every iteration we compute a valid and safe solution (by Theorem 4.4.3),

and therefore we can terminate the process when the stopping criterion is satisfied obtaining

a safe and valid solution; we say the the FFG has been improved by redundancy identifica

tion and elimination.

Of course the worst case time complexity is the same as the FFG Optimization

Algorithm (0(n^)) in the FFG node number n, but the benefit of this algorithm is that

on average it is more likely to finish (and quite likely converge to the best solution we

are seeking) in a constant amount of time spent in the external loop; an overall O(n^)

complexity. O(n^) in the FFG nodes n is 0{s^) in the EFSM states s. This complexity is

what the low level synthesis algorithms spend to generate SW code or a HW netlist without

low-level optimizations, so it is quite desirable since it would not constitute an overhead. It

"helps" synthesis run faster in addition to improving quality.
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I conclude this section by presenting the FFG Improvement Algorithm '̂̂ based on

the Iteration Stopping Criterion-^ this is the fast approximate variant of the FFG Optimiza

tion Algorithm. OUTER_ITER is a constant set to the number of optimization steps in the

flow. The algorithm measures change by monitoring the number of operations in the FFG:

If no redundancy is removed after we wait for information to propagate from the first to

the last step (i.e. OUTER_ITER times) the algorithm completes.

Algorithm 4.4.1 (FFG Improvement Algorithm)

FFG Improvement Algorithm(iS, OUTERJTER^

begin

count = OUTERJTER; /* Initialize Stopping Countdown */

do

icount = FFG.operation_count();

Variable Definitions and Uses

FFG Build

Reachability Analysis

Normalization

Available Elimination

False Branch Pruning

Copy Propagation

Dead Operation Elimination

If (icount == FFG.operation-count()) then

count = count - 1;

Current default of the non-interactive version in the toolset



88

else

a)unt = OUTERJTER; /* Reset Stopping Countdown */

end if

while (count != 0)

end

Finally I'd like to conclude this section by pointing out that other less effective

but very fast stopping criteria can be devised, such as the following (O(n^) complexity, but

on average is constant based on the analysis of Algorithm 4.2.1).

Proposition 4.4.2 Very Fast Stopping Criterion Ij the operation count of the FFG

does not change during an iteration (see Algorithm 4'4-V iteration process can he

stopped.

The criterion is based on making OUTER_ITER = 1; we therefore have a contin

uum of trade-offs between quality and optimization time complexity overhead. We can for

example make OUTER_ITER be proportional to n where OUTERJETER = k *n, k < 1.

4.5 Tree vs. Shared DAG Form of the FFG

I have described in Chapter 3 how the given EFSM behavior can be represented in

the TVee or Shared DAG forms of the FFG. In this Chapter I have presented a complexity

analysis of the optimization flow that depends on the number of nodes n in the FFG. The

Shared DAG form of the FFG identifies common computations and pulls them together

and therefore has a much lower node count in practice than the Tree form where all the
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computations are explicit in Trees. Time and space complexity is therefore lower in the

DAG form, and the algorithm completes much faster with lower memory expenditure. The

trade-off however is that the size of the nodes (basic blocks in software compilation terms)

is much smaller in the DAG form than the TVee form. This fact makes optimizations less

effective for each state; a shared node will have multiple edges coming into it leading to

more potential for Kill-ing data, conceptually speaking, since the operations in the shared

node may depend on several execution contexts. So, we can expect to get a considerable

speed-up if we use shared DAGs, but a lower output quality.

As we will see in Chapter 5 Operation Motion is one optimization technique we

can use to smooth out the difference in output quality between these two extremes and

make it more of a continuum, at the expense of some extra processing in the analysis and

optimization phase. In the sequel I will typically (unless otherwise stated) assume that

we are working with the Tree form, and are not particularly concerned about the extra

time/space overhead in the required processing.

4.6 The Backdrop: Related Work in Optimization

In this Section, I position my work with respect to the bodies of research it is built

upon. Previous work in control optimization is mostly based on BDD [25] optimization

techniques for Control Flow Graphs (CFGs) such as [7]. The limitation of these optimiza

tions is that they neglect the data and are in fact, as I mentioned earlier, "data value

blind"; control optimizations that can result from data analysis (such as dead operation

elimination, and copy propagation for example) are not available to such techniques. The
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two most relevant bodies of work to my research are:

1. High Level Synthesis (HLS) for silicon compilation, and

2. Code optimization techniques for software compilation.

High level synthesis for silicon compilation has been an active research area in the

past two decades. The focus of such techniques however has been mostly on approaches

for scheduling, allocation, and binding of the specification (usually a Hardware Descrip

tion Language (HDL)) to the hardware implementation such as [46]. General optimization

techniques, for example common sub-expression extraction, and constant folding, are ap

plied in a local fashion. Bergamaschi recently proposed a design representation. Behavioral

Network Graph (BNG), for unifying the domains of HLS and Logic Synthesis [13]. His

work recognized the need for an internal design representation on which to perform data

path and control optimization before logic synthesis of hardware. The BNG, however, is

at an even lower abstraction level than the CDF DAG used for synthesis in the HW/SW

Co-design field and is therefore not suitable for our need of a unifying design representation

for software and hardware at the high abstraction level in the embedded optimization and

co-design domain, as I have argued in Chapter 3.

The literature is rich in data flow optimization techniques, most notably classical

optimization techniques of [65], [57], and recent work by [32], [2], and [118]. Most of that

work, however, has focused on hand-written code optimization and assembly generation

for a specific component processor and instruction set. As we have seen earlier, in my

work I specialize the aforementioned silicon and software compilation techniques to the

embedded systems domain since these techniques can be applied on any internal design
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representation, no matter what the abstraction level, and need not be restricted to the final

stages of software assembly code generation, or hardware synthesis.

4.7 Future Directions

4.7.1 FFG Extensions and Theoretical Implications

The FFG currently supports only the integer data type {Boolean type is repre

sented as a zero/non-zero integer). In the future the FFG should handle more data types

such as floats to support more elaborate mathematical operations as well as aggregates (i.e.

stnicts in SW and records in HW) to support such things that require a collection of in

formation (e.g. messages). Of course, as I stated earlier, this will require more complexity

in the analysis not just within similar type operations but more importantly between such

data types. In fact such analysis for complex data types may require the formulation of

a more elaborate DFA framework since an analysis might need both forward and reverse

flow information collection [2]. I touch on a variant (a simplified version) of this data type

optimization issue again in Chapter 5 where we use architectural information to optimize

the hit widths for the integers I have been assuming so far here.

As I mentioned earlier aliasing, that is allowing pointers in the FFG behavior,

can also be supported in the future. Of course strict limitations must be imposed on the

handling of such primitives. The FFG/CLIF design representation has some pointer support

currently, and the analysis is expanded to handle such cases, but the front-end does not

exercise this yet (so I neglected to elaborate on these facilities), since our goal, typically,

in the function specification is to minimize the level of implementation detail. I envision
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pointer operations as realization constraints that can be imposed later as a refinement where

implementation details^® start to be specified,

4.7.2 Optimization Heuristics

Aside from optimizations resulting from the extension of the FFG, and architecture

dependent optimizations I discuss in Chapter 5, there is a tremendous opportimity here for

devising new improvement heuristics. One such heuristic that I came across in a real design

in my experimentation is graph isomorphism checks. Of course graph isomorphism is an

unresolved problem, in the sense that no efficient algorithm for it has yet been found [63],

One potential method is to rely on BDD-like techniques where a canonical ordering of the

variables is enforced thus simpfifying the problem, but as I touched on earher there is a

large class of data dependent cases that cannot be identified in the BDD approach, and a

simple (not exhaustive) heuristic implementation of isomorphic graph subset identification

in the FFG and optimization would be quite useful.

These graph matching techniques [39], however, would require decomposing the

behavior captured in the FFG to a finer granularity than statements. A possibly more

adequate technique proposed by Vahid in [124] is that of searching for similar forms in an

encoded string. I believe this latter technique might be formulated more readily than the

former in the form of variable definitions and uses; I leave this investigation for the future.

'For execution performance enhancement for example
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4.7.3 Formal Verification and Abstract Interpretation

I think it is worthwhile to make the point that the data flow and control analysis I

have been discussing is (informally speaking) analogous to the issues in formal verification;

for example we typically answer questions about the existence and the validityof statements

in the behavior. In fact while formal verification typically works at the "bit" level and for

control mostly while the data is abstracted away (as in [55]), here we axe manipulating data

as well and making assertions that deal with both data and control. Cousot in [34] realized

(and provideda formal argument) that sincea data flow problemseeks to imcover behavior

information, the semilattice L of the framework is embeddable as a sublattice^^ of the lattice

of possible behavioral assertions. The operations on frameworks can then be interpreted

as operations on assertions in an abstract semantics for the behavior [82]. Determination

of behavior properties by abstract interpretation is formally equivalent to the algebraic

framework presented in this Chapter [82] (also see [80]).

While this brief discussion solidifies the correct by construction claim of the lattice

theoretic framework, in the future, I'd still like to explore the abstract interpretation frame

work further and see what that line of thought has to offer in terms of optimization as well

as formal verification avenues to answer queries about the behavior of a task represented

by the FFG.

In this Chapter, I have presentedseveral new variations on the classical algorithms

that leverage the FFG representation and axe particularly useful in the embedded systems

domain. I also presented the FFG Optimization Algorithm as it relates to function

A sublattice of a lattice is a subset that contains for any two elements their join and their meet.
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optimization. In the Chapters to follow, I introduce new constraint-driven algorithms for

function/architecture co-design inspired from the classical notions and algorithms I intro

duced in this Chapter. These algorithms will be integrated with the function optimization

algorithms to form the refinement stages of the Function/Architecture Optimization

Framework: macro-architecture and then micro-architecture aware optimization and co-

design algorithms.
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A conceptual figureof function/architecture co-design is shown in Figure 5.1. The

idea is to employ a suitable constrained task function representation that enables trade-off

and co-design at several abstraction levels between the function and architecture before

mapping the function onto the target architecture.

5.1 Function/Architecture Representation: AFFG

I use the Attributed Function Flow Graph (AFFG) to represent architectural

constraints impressed upon the functional behavior of an EFSM task. The AFFG is created

from the FFG by imposing architectural constraints or information given by the user or

obtained through analysis (e.g. through inference or profiling) in the manner shown in

Figure 5.2. The AFFG is, informally speaking, a "schedule-aware" FFG since it typically



Architenura]

Orgai^ation
Fum^ional

Decomrosition

processors
Function/Architecture

Representation

Figure 5.1: Function Architecture Co-design

has at the very least the state schedule attribute. Of course we will add more attributes as

we refine the AFFG^ but the known schedule is one of the key enabler attributes for the

architecture specialized optimization algorithms. The AFFG definition follows.

EFSM H FFG h- OFFG

Architectural

Information

AFFG

Architecture

Independent

Figure 5.2: Architecture Dependent Representation

CDFG

Definition 5.1.1 An Attributed Function Flow Graph (AFFG) is a triple G —{V^E,Nq)

'Attributes that document the refinement are also maintained e.g. source-level debugging information
(preserved for inputs and outputs in the current toolset).
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where:

• V is a finite set of nodes

• E = {{x,y)], a subset ofVxV, where (x,y) is an edge from x toy where x GPred{y),

the set of predecessor nodes ofy, and y G Succ{x), the set of successors of x.

• JVq G V is the start node (header that leads to the node(s) corresponding to the EFSM

initial state(s)).

• Operations are associated with each node N. The only order impost on these opera

tions is that of data dependency (to preserve functionality).

• Attributes are associated with nodes and operations within nodes. We assume that at

least a state attribute is obtained from the font-end.

The optimization algorithms presented in this work are therefore broken into 2

levels:

• Architecture Independent level: The FFG is analyzed and optimized as a collection

of operations as in the classical software optimization approaches except that I/O is

preserved (operations with inputs and outputs have specialized handling). For the

lack of additional knowledge we assume all the operations form a sequence ordered by

the front-end^. This optimization processes has been discussed in detail in Chapter 4.

• Architecture Dependent level: The I/O schedule and the state assignment are taken

into account, and nodes (and operations inside them) within states are optimized,

^That is, we manipulate operations as in the classical optimization approaches for sequential code gen
eration; of course this need not be the case since we need only preserve the I/O semantics but this is the
simplest way to deal with this issue without any guidance on what to do
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using the guides and constraints from these and other attributes overlayed onto the

FFG, followed by an allocation of registers and operations step. This stage is per

formed on the AFFG, the state scheduled refinement of the FFG, and is the topic of

this Chapter.

5.2 Function Architecture Co-design in the Macro-Architecture

In Chapter 4,1 discussed safe optimizations that can be performed by considering

the FFG behavior restricted only by preservation of the I/O semantics. In this Chapter

I consider the AFFG which has a set of attributes associated with the nodes and possibly

also with operations within those nodes. These attributes are either sohcited from the

user hke the state schedule, that is the schedule for the EFSM task executionj obtained

from the "front-end" (e.g. Esterel or Reactive VHDL as I have described in Chapter 3)

and used to qualify the AFFG nodes for example, or are obtained by inference or profiling

such as the cost of operations like addition and multiplication, and the visit probability of

AFFG node collections. These attributes, as we will see shortly, are the "costs" that guide

or constrain the optimization algorithms performed at this level. In the next Sections I

present my work in developing techniques for performing this constraint-driven optimization

for function/architecture co-design. My optimization objective is outlined in the following

proposition.

Proposition 5.2.1 Architecture-Dependent Optimization Objective The objective at the

architecture-dependent level is to optimize the AFFG task representation for speed of

execution first and size (area of hardware, code size of software) second given a set o/ar-
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chitectural constraints^. Since we have jnove information about the target application and

architecture we can also invoke constraint-driven redundeint (useless) information elimina

tion'̂ which will improve both our primary (speed) and secondary (size) objectives.

5.3 Operation Motion in the AFFG

The reader may be wondering why I have not mentioned the famous Conunon Sub

expression Elimination (CSE) as yet. I have presented its (not so famous) cousin Available

Expression Elimination (AEE); the difference between the two is that CSE has a reverse

flow. The objective in CSE is to move similar operations from blocks to their predecessors if

possible. So, in fact, this problem isbetter addressed in the mostgeneral term ofOperation

Motion in the context of the AFFG representation. Operation Motion is analogous to

Code Motion from the software domain a technique for improving the execution speed or

efficiency ofa program by avoiding unnecessary re-computations ofa value at runtime [67].

The primary goal of code motion is to minimize the number of computations on every

program path. I present here a technique for task runtime response improvement based on

the code motion (code hoisting) concept from the software (high level synthesis) domain.

Relaxed Operation Motion is a simpleyet powerful approach for performing safe and useful

operation motion from heavily executed portions of a design task to less visited segments

[116]. I introduce in this Section my algorithm, how it differs from other code motion

approaches, and its application to the embedded systems domain. Investigation results, to

be presented in Chapter 9, indicate that cost-guided operation motion has the potential to

^Additional domain information if you will
^Tuned; architecture/application driven
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improve task response time significantly.

5.3.1 Related Work

There is a body of work on code motion (hoisting) from the software (high level

synthesis) domain(s). The goal of code motion is to avoid unnecessary re-computations at

runtime [2]. The creation of temporary variables (i.e. registers) to hold these computations

typically improves runtime for most target architectures. Code must be relocated to valid

program points and this movement must be safe, in the sense that it must not change

what the program flow is intended to compute. The main strategy for code motion is that

of moving candidate operations (loop-invariants in particular) as early as possible in the

program as in [85] and [68]. In practice code movement to the earliest program points

can create pressure on the target architecture resources for example because of the limited

number of registers resulting in "spills" to main memory®. A more practical approach

involves also performing temporary lifetime minimization as in the work of Knoop [67].

Knoop's technique is the best-in-class method for performing code motion since it involves

unidirectional data flow analysiswith respect to the programflow® wherereducible programs

(see Chapter 4) can be dealt with in 0{nlog(n)) bit-vector steps (see [2]) where n is the

number of statements in the program in contrast to O(n^) complexity for previously known

approaches.

Hailperin in [51] extended Knoop's approach to incorporate cost into the code

motion process. However, the cost metric he uses is based on individual operations (i.e.

^Traversingthe memory hierarchy to get a value is typically slower than accessinga register
®i.e. forward or reverse
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*, +, ...) and does not account for the frequency of execution of the program portions.

The tactic's goal is to position the instructions in (safe) positions in the progreun where

the context possibly permits simplification of the particular operation under consideration

through constant folding, or operation strength reduction for example. Castelluccia et.

al. [27] used, in my opinion, a more adequate nmtime cost to optimize protocols but the

techniques they applied where based mainly on node re-ordering at the CDFG for synthesis

level and did not incorporate examination of data operations, I use similar cost guidance in

my operation motion technique as discussed in the next Section.

5.3.2 This Work's Contribution and Overview

My work incorporates cost into operation motion. The cost I introduce and fo

cus on mainly in this Chapter for illustration purposes is obtained from a task level static

analysis used to identify the most frequently visited segments of the task behavioral descrip

tion. Alternatively other target implementation costs can be used such as the task average

or worst-case execution time; the latter costs will be discussed in Section 5.3.5. My code

motion step itself, in addition to being cost-driven, is also faster than other approaches; it

has a time complexity of 0(n) in the number of statements in the description. To achieve

this simplicity, however, I give up slightly on size where for a brief period after this step

the space needed is O(n^). I also rely on code motion being part of a general optimizatioi

framework; in particular I need to use reachable variable definitions, and reached uses of

variables, an analysis that has a time complexity of O(n^). So, the framework's complexity

(0(n^)) is what dominates the overall complexity. Of course, for this increase in complexity

we can get much better optimization results than [67] since code motion is applied to all
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candidate operations simultaneously and is tempered by other data flow and control analy

sis and optimization steps that improve the final result even further. As will be described

shortly, the approach is therefore much simpler (conceptually and in practice) than other

approaches as it tackles operation motion broadly, and still performs the job adequately as

part of the comprehensive multi-step data flow and control optimization approach described

in Chapter 4.

My approach, dubbed Relaxed Operation Motion (ROM) because it accomplishes

its objective indirectly, is also specialized to the embedded system domain where we are

constrained by I/O schedule preservation, but where we can benefit from the user's insight

by soliciting assistance in the cost estimation mechanism since embedded systems have a

predictable (or pre-conceived typical) behavior. I have implemented my approach in the

function/architecture co-design framework that uses the Polis synthesis engines for output

generation.

5.3.3 Illustrative Example

In order to illustrate my approach 1 have adapted Knoop's "motivating example"

from [67] by making it reactive through the addition of inputs and outputs, and a loop

from the final node SIO back to SI so that the system would be running continuously.

This is shown in Figure 5.3. Variables a, b, c are declared internal, and initialized in SI

to a sampled input value, x, y, and z are declared as outputs and therefore fixed to their

respective states since we always preserve 1/0 traces before and after the optimization. As

in [67], our goal is to eliminate the redundant needless runtime re-evaluation of the a -1- 6

operation. 1 will focus my discussion on the nodes S8 and S9 since as we will see shortly
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they axe costly compare to neighboring nodes, and I will try to relocate the aforementioned

addition operation to other less costly nodes.

S4 y = a + b

y = a + b
a = c

x = a + b

z = a + b

a = c

X = a + b

SIO

Figure 5.3: Illustrative Example (from [67])

5.3.4 Cost-guided Relaxed Operation Motion (ROM)

The operation motion approach is incorporated as part of the comprehensive op

timization approach (ROM's overall complexity is 0{n^) in the AFFG nodes) and consists

of 4 main steps performed in order.

Algorithm 5.3.1 (Relaxed Operation Motion)

Relaxed Operation Motion
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begin

(a) Data Flow and Control Optimization: is a sequence of steps that optimize the FFG

(AFFG if cost-guided) representation as described in Chapter 4-

(b) Reverse Sweep: is the optimization step that I am mainly addressing in this Section

where code is relocated from one or more (A)FFG nodes to others. This step can either

follow the as early as possible approach, or be cost-guided. It consists of "indirect"

operation motion through:

i. Dead Operation Addition: where operations are added to all (or to selected based

on cost) FFG (AFFG) nodes,

a. Normalization and Available Operation Elimination: This optimization step effec

tively "moves the operation motion candidates from the targeted FFG (or AFFG)

nodes to other less costly nodes as a result of the preceding step.

Hi. Dead Operation Elimination: removes the useless additions performed in step (b)i.

(c) Forward Sweep: is optional. It tries to minimize the lifetime of temporaries (see

Section 5.5.3) by pushing them as close as possible to their use.

(d) Final Optimization Pass: performs the final clean up.

end

The O(n^) size explosion could happen in step (b)i since for every (A)FFG node

we can potentially add all the statements in the other nodes. Of course the directed or cost-

guided approach does not incur as large a penalty. Also, the complexity of our approach

compared to the best in class (similar for small n but difference is felt of course for large n)

should be weighed against the fact that we need to perform the use/definition computation

(see Chapter 4) anyway for other optimizations, and operation motion is not typically

^Evidently, on its own it just eliminates them from targeted nodes.
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performed in isolation of those operations if the goal is overall improvement in behavior

(information processing). If that fact is talcen into account then indeed my approach is

linear (i.e. 0(n)) since in that case ROM would effectively be dominated by step (b)i.

This, of course, makes sense since we trade-off size (i.e. we need memory) for speed. It can

therefore be seen that my approach comes "naturally" in an optimization framework, which

permits me to use relatively simple techniques to accomplish the task. The result after the

first optimization pass and the dead addition step is shown in Figure 5.4. Figure 5.5 shows

the result after available elimination, and the final pass. Forward sweep is not applied

here.

Optimization Pass

S8:

_T30 = a + b;

z = _T30;
a = c;

goto S9;
S9:

_T30 = a + b;

x = _T30;
goto SIO;

S7:

_T30 = a + b;
y = _T30;
_T30 = a + b;
_T29 = c + b;
_T30 = a + b;
goto 88;

88:

_T30 = a + b;

z = _T30;
a = c;

_T30 = a + b;

_T29 = c + b;
_T30 = a + b;

goto 89;

Dead addition

S9:

_T30 = a + b;

x = _T30;

_T30 = a + b;
a = c;

_T29 = c + b;

_T30 = a + b;

a = c;

goto SIO;

Figure 5.4: Result After Dead Addition

Note that in the final result the redundant computations in S8 and S9 are indeed

relocated up to Si (eai'liest, again forward sweep not applied). The final result is 60% better



Available Elimination

S8:

z = _T30;
a = c;

_T30 = a + b;
goto S9;

S9:

x = _T30;
a = c;

_T30 = a + b;

goto SIO;

Copy Propagation Optimization Pass

_T30 = a + b;

S8:

z = _T30;

a = c;

_T30 = c + b;
goto S9;

S9:

x = _T30;

a = c;

_T30 = c + b;

goto SIO;

81:

_T31 = a + b;

H = _T31;
_T29 = c + b;

88:

z =H;

H = _T29;
goto 89;

89:

x = H;

goto 810;
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Figure 5.5: Result After Available Elimination

in termsofoperation count® than Knoop's Lazy Code Motion of [67] ifwe count the remain

ing addition operations after ROM is performed. The improvement comes about because

ROM is part of a comprehensive optimization framework that consists of normalization,

copy propagation, and dead elimination to name a few (crucially) useful steps (see Chap

ter 4). If we examine the final output shown in Figme 5.5 we can see that normalization

for example identified that we only need have two operations in the FFG behavior: a + b,

and b + c only. All other computations can be referred back to these through the use of

copies and assignments (H in the final result of Figure 5.5). Knoop's technique is developed

in isolation and is therefore slightly faster (with less memory requirements) if compared

on the face of it; but if we are using ROM in the context of an optimization fiow all the

LCM's advantages disappear. ROM is the clear winning strategy; if Knoop's technique is

augmented with other analyses and optimizations in order to improve its result then ROM

Computations are replaced by assignments from the registers.
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becomes, in that case, the simpler and faster of the two approaches (with a small memory

trade-off).

5.3.5 Cost Estimation

We can have several cost metrics to guide ROM, in this Chapter I will use the

frequency of execution of behavior portions as such a metric, I will later present another

metric based on the worst-case execution (see Chapter 9 for results).

The expected number of times a certain part of a program is executed can be

determined once each branch probabiUty in the program is known [70]. It can be shown

that the number of times each basic block (and by analogy each (A)FFG node) is executed

can be calculated by solving a system of n Unear equations, where n is the number of

basic blocks ([2]), if the probabilities of control passing from one block to the next is given

[120]. This of course is a generalization of branch prediction, which only determines the

most probable outcome of a branch [27]. The probabilities of all the TEST outcomes in

the task are requested from the designer in an interactive fashion before the estimation

and subsequent optimization takes place. A Markov process can be used to model and

then compute statically the probabilistic control r ow execution as described in [128] where

it is also shown that this method is quite close to extensive profiling (assumed to be the

"exact" metric). Of course, the advantage is that this estimation approach involves much

less effort than profiling and is ( ite applicable in the embedded system domain where tasks

are expected to perform a spec: functionality and typically the designer has a good idea

of where most of the execution takes place.
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Bayesian Belief Networks

In order to identify the most frequently visited portions of the task's AFFG, I use

an approach similar to Markov processes but based on Bayesian BeliefNetworks (BBNs)

via the MSBN inference engine (Bayesian BeliefNet construction and evaluation tool) that

was available to me® from Microsoft Research [84]. The MSBN tool uses a version of the

proposed Bayes Net Interchange Format for representing belief networks.

Definition 5.3.1 A Bayesian Belief Network (BBN) is a Directed Acyclic Graph (DAG)

consisting of nodes, each with an associated Node Probability Table (NPT). Nodes represent

discrete random variables, while arcs connecting these nodes represent causal influences

(adapted from [93]).

The key feature of BBNs is that they enable us to model and reason about un

certainty. The advantage of BBNs is that they allow the capture of both subjective prob

abilities based on user knowledge or experience, and probabihties based on statistical data

in a unified framework [19]. BBNs also permit the automatic construction of a network

from a database of (possibly growing) experimental evidence, although the latter kind of

tools should still be considered as promising on-going research [19]. Figure 5.6 shows an

example of a BBN used to determine which is a more likely location for my graduation

party: indoors or outdoors.

The example BBN consists of 3 decision nodes:

• Attendance which has values of: [large,small),

• Weather which has values of: [sunny,rainy,cloudy), and

^Research License
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Figure 5.6: Bayesian Belief Network for Graduation Party Location

Graduation Party Indoors Outdoors

(large, sunny) 0 1

(large, rainy) 0.6 0.4

(large, cloudy) 0.3 0.7

(small, sunny) 0.2 0.8

(small, rainy) 0 1

(small, cloudy) 0.4 0.6
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Table 5.1: Graduation Peirty Node Probability Table (NPT)

• Graduation Party which has values of: (indoors^outdoors).

The NPT for the Graduation Party node is shown in Table 5.1. This is the input

model that I have decided on given my subjective knowledge that an indoor location is

costly, rain may force me to have the party indoors, and that an outdoor party is usually

inexpensive and can hold a large number of people. My decision is also influenced by other

factors like: people may not wish to stay out in the sun, and may prefer a small gathering

indoors (in the case of small attendance).

With this model, we can now use the BBN evaluation procedure to determine the

likelihood that the party will be outdoors. If the weather and attendance conditions have

a uniform distribution, and without any additional observations about the weather and/or

attendance the probability of having the party outdoors evaluates to 0.75. If however we

have the additional observation (from the weather forecast for example) that the weather will



110

be cloudy^and that attendance (from the RSVPs for example) is small then the probabihty

if an outdoors party drops to 0.6. Of course, this is just a very simple example where we

have a single NPT, the evaluation procedure becomes more involved and more useful once

we have multiple levels of decision in the BBN.

Visit Frequency Estimation Using BBNs

In order to compute the probabilities of execution in the task AFFG, I represented

the state transition relation consisting of current state, next state, and conditionals as shown

in the screen-shot of Figure 5.7. For the lack of any specific knowledge, I initially assign

equal probabilities to all the reachable states and then iterate the probability computation

until a fixpoint is reached. This is a heuristic intended to identify the effect of the behavior

structure on the state visit probabifities. The heuristic can always be applied especially in

cases when the user does not wish to exphcitly enter specific node probabifities, possibly

because of the lack of such knowledge, but would still like to perform optimizations in

potentially heavily executed portions of the behavior, such as loops where loop-invariant

operation motion can be performed for example, or re-convergence segments i.e. segments of

the behavior that are visited from various execution contexts where operation "replication"

on the different predecessor segments can result in runtime speedup, using guided ROM.

The reader should note that we need to perform the iteration on the probability

computation in our indirect relaxed iterative solution method since the Bayesian net

work is a static rather than a dynamic modeling tool (i.e. it has no concept of "future" or

eveniua/network state, feedback cycles cannot be constructed). Alternatively a direct solu-



tion method can be used, with the aid of a Markov process model^° that represents a linear

system of equations which can be solved using a matrix solver^^, to find the solution. We

chose to use here the indirect method based on Bayesian networks because the approach

does not require the direct solution of a large system of linear equations thus offering a

computational advantage, since all we really need is a rough relative visit frequency of the

states. This approach is also appealing because of the suitable level of interactivity with the

user since the method operates directly on the state transition network, and allows dynamic

update of observation evidence.

Figure 5.7: Belief Network for the Knoop Example (Courtesy Microsoft Research)

The frequency of execution results for the reactive version of Knoop (i.e. loop

from SIO back to SI added) with uniform probability of the conditionals (i.e. P(True) =

P{False) = 0.5) are shown in Table 5.2. The costs of S8, S9, (operation motion candi

dates) and S7 (target of operation motion) are highlighted thus outlining the potential for

cost-guided ROM if the state visit probability metric is used, assuming that indeed these hy-

^^There is a minor syntactic difference here where probabilities in a Markov process are on the arcs between
states instead of within as in the Bayesian Net.

^^For sparse matrices preferably for examples with a large number of states and conditionals



State Probability
SIO 0.15

SI 0.15

S3 0.15

S5 0.15

S9 0.1

S8 0.09

S2 0.07

S4 0.07

S6 0.046

S7 0.024
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Table 5.2: Frequency of Execution Distribution for Uniform Conditions

pothetical probabilities are valid, or that, heuristically speaking, this gathered information

is a "hint" of potential improvements based on the behavior (AFFG) structure knowledge.

Other Cost Metrics

I have focused here on a state visit cost approach at the task-level for guiding

the operation motion. Other metrics to guide specializations of this approach could be

addressing the average response time by focusing on the common path in the CDFG for

synthesis (see Chapter 7) where typically the 80/20 rule applies (80% of the execution is in

20% of the behavior) [27]. Another cost guidance could be the worst-case response metric

which can be identified at the CDFG level (longest structural path for example), or through

analysis at the task level, where abstract interpretation ([34]) is applied, as in the work of

Balarin [4].



Cost-guided Relaxed Operation Motion (ROM) Flow

The (constrained optimization) ROM flow is shown in Figure 5.8. On the left, we

see the "interactive" profiling component where the user's guidance is requested, and an in

ference engine (MSBN for example, or a solutiontechnique basedon Meirkov analysis) deter

mines the cost. These costs are then used (right side of Figure) in the function/gLrchitecture

optimization framework to change the functional description at the macro-arrhitectural or

ganization level (since this is a transformation that operates across state:- y leveraging

the ROM technique I have developed.

Cost Estimation

User Input Profiling

Inference

Engine

Design
Optimization

\(^ck-end)y

^'Attributed^
V FFG V

^Relaxed^
Operation Motion

Figure 5.8: Optimization with ROM
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5.4 Other Constraint-Driven Optimization Techniques

There are several works on optimization techniques given application or architec

tural constraints such as the work of [27] in protocol optimization. The techniques (like

node restructuring to optimize runtime or size) are control-oriented and typically require

low-level knowledge about the performance of the function once decomposed and mapped

onto the target architecture itself (at the very least the macro-axchitectoie and quite often

the micTTo-architecture as well). The Polls synthesis back-end provides for such optimiza

tions, and I will elaborate on this further in Section 7.2.1. I should note also that, in the

spirit of platforms shown in Figure 3.2, an abstraction of these constraints can be quite

useful in making it possible to apply such techniques at the (A)FFG task representation

level itself where there can possibly be a high value outcome of such trade-offs much hke

the ROM approach has been able to do; I get into these aspects at the macm-architectural

level in the next Section, and postpone the micrio-architectural level aspects for later.

5.5 Optimizing the Function to be Mapped onto the Macro-

Architecture

Let us now consider additional function optimizations that can be performed given

some architectural information before mapping the function onto the architecture.

5.5.1 Copy Propagation

In Chapter 4, I have mentioned how I had to specialize the global optimization

techniques I have discussed earlier to be safe and preserve the I/O semantics of the EFSM.
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However, we can relax this somewhat at this stage since are now given more information

about the EFSM schedule. This schedule has been overlayed on top of the FFG resulting

in the AFFG. So the question is: What more optimizations can we do given this additional

knowledge ? To answer this question let us first examine the restrictions we had imposed

on inputs and outputs in the FFG task using the following simple example.

Example 5.5.1

input in;

31:

ti = in;

a = f1 + ^2»

b = fi + fa;

The operation ti = in remains as is, and in cannot be propagated down, tl ;is

potentially saving the temporary ti, because in is an input and cannot be "touched" if we

are to preserve the I/O semantics that is for all we know changing the example to be as

follows,

Example 5.5.2

input

81:

ti = in; /* Will be removed by dead elimination */

a = in + ^2 J
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b = in + <3;

might in fact change the intended behavior since we now have two samplingsof the

input in instead of one sampling i.e. we are sampling it at two different times and have no

guarantee that in does not change between these 2 samplings. We can now however relax

these strict I/O assumptions since we are already aware of the EFSM execution schedule.

To take this one step further we are also aware of the macTTo-architectme model we are

targeting^^: the reactive CFSM. So in the case of Example 5.5.1 in fact we can transform

it into Example 5.5.2 since the CFSM samples its inputs at the start of the state (we are

using the AFFG associated meaning to the labels, whereas we had not done so previously

in the FFG), and holds this value until the next state (see Chapter 3). So, as long as we

remain true to the reactive CFSM semantics we can perform copy propagation along each

state's computation path and in fact come up with the AFFG Optimization Algorithm that

preserves input and output semantics at the state boundary.

Algorithm 5.5.1 (AFFG Optimization Algorithm)

AFFG Optimization Algorithm/G/

begin

while changes to the AFFG do

Relaxed Copy Propagation

end while

end

'For Polls MOC, other engines would require adequate specializations as well



The Relaxed Copy Propagation step is performed as follows:

Algorithm 5.5.2 (Relaxed Copy Propagation)

Relaxed Copy Propagation

begin

foreach state s G G do

Copy = 0;

map.propagate_copy(G, s, Copy);

end foreach

end

Algorithm 5.5.3 (map_propagate.copy)

map_propagate_copyCG, n, Copy^

begin

copy_propagate(n, Copy); /* perform propagation */

Copy.oppendCfind-Copies(n)^; /* Scan all the operations in n */

foreach m G Succ{n) do /* DPS for speedup */

if m G States{G) then

return; /* Stop processing along this computation chain */

else

raap_propagate_copy(G, m, Copy); /* recur */

end if

end foreach

end

117
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The main distinction between algorithms on the AFFG and those I presented

earlier for the FFG is that here we have a concept of a state: We know where it starts,

where it ends, and all the nodes that belong to this state along its various transitions-, this

is stated formally in Definition 5.5.1 that follows. The reader should note that the ROM
I

algorithm described earlier in the Chapter does not need to be "relaxed" since it was already

operating at the state boundary level^^, however, it does benefit as part of the overall opti

mization scheme that incorporates the improved copy propagation (normalization and dead

elimination) since the number of operations are reduced (speed aspect) and new candidate

opportunities are exposed (quality aspect).

5.5.2 Scheduling

The major differentiation between my work, and tjrpical high level synthesis ap

proaches (using HDLs for example) is the fact that I do not try to do all of: decomposition

of the user's design description, scheduling, and resource allocation automatically where the

user can only provide guidance constraints. I have separated this process into a front-end

that captures the designer intent by building an EFSM description of the design where the

schedule is solicited from the user either directly as in the case of the Reactive VHDL specifi

cation, or indirectly as in the case of the exponentially more expressive Esterel specification

mechanism (see Chapter 3). A back-end then optimizes this function and co-designs it with

architectural and application constraints.

course the ROM algorithm is quite general, and it could be applied at a finer granularity level if we
associated cost to the AFFG individual nodes as opposed to states which are collections of nodes. I think
the reader should be convinced (by now!) of the value of techniques that can be refined (tuned) no matter
what the functional (architectural) abstraction level is.
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State Scheduling

Once the AFFG is built, we already have a valid state execution schedule of the

task's behavior execution. In particular this is the one schedule that the user speci

fied^^. Thestate scheduling step isavailable by construction solicited in some sense from the

user, and made concrete by the front-end; so we need not perform a prohibitively expensive

analysis to find a valid schedule that may not be what the user had in mind^®.

Definition 5.5.1 State in the AFFG A state 5 in the AFFG G consists of a collection

of nodes n £ G. The set of states is denoted by Sg' Node Ns G G labeled with state s is

the state start node. A path p from Ns to a node Nt where t 6 Sg is said to be a transition

path from s to t.

If the AFFG G is in Tree form then states partition the set of nodes V of G:

• Each node in G must belong to state i.e. VAT eV ofG, 3s,s e Sg such that N e s,

and

• a node in G cannot belong to two states i.e. for any two states r, s G Sg, o-nd a node

N eV ofG,Ner=^N^s.

If the AFFG G is in Shared DAG form then states divide V of G into intersecting sets of

nodes such that each set (collection of nodes) corresponds to a single state s G Sg' In this

case:

DAG nodes must belong to at least two sets of nodes, while

'̂'Assuming the front-end is expressive enough to capture user intent, as well as semantically correct to
build a proper EFSM for the control design. This is indeed the case for Esterel, while in the Reactive VHDL
front-end the user is asked to explicitly build the states.

^^Typically in high level synthesis the user provides resource allocation constraints to guide this process
which makes the analysis intractable; constrained scheduling is NP-hard.
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• the rest of the nodes i.e. "Tree" and "state start" nodes must belong to a single node

set.

A state in the AFFG is therefore represented by a start label (a node in the

AFFG), and a collection of nodes that represent the computations performed along any

state transition to the next state as shown in Figure 5.9. For example state So in the figure

is associated with the state start node Nq] Sq consists of a collection of AFFG nodes, has a

set of next states {Si and 52), and several transition paths that compose the state transition

relation. Note that the Tree form of the AFFG is used in the Figure.

Figure 5.9: State in the AFFG
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Operation Macro-Scheduling

Resource constraints limit the number of and binding of operations to resources

in the final implementation [38]. However, I will not at this high level deal with micro-

scheduling issues which make the problem quite intricate. I leave the resource allocation

and scheduling to the lower level phases (performed by software or hardware compilers),

and focus here on another useful process that I call operation macro-scheduling. The goal

in this step is to malce the definition of any computation within a state a unique indicator

of the operation. If the FFG is in Tbee form, this process will not change anything since

its job would be subsumed by Normalization (see Chapter 4). In the case of the Shared

DAG form of the FFG, normalization will handle most but not all such occurrences since

an operation may depend on which path it is reached from (i.e. the execution context).

Algorithm 5.5.4 (Operation Macro-Scheduling)

Operation Macro-Scheduling

begin

foreach state s € G do

Seen = 0;

count = 0;

check_operations(G, 5, Seen, count);

end foreach

end

Algorithm 5.5.5 (check-operations)

check-Operations(G, n, Seen, count^

begin
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Iseen = Seen; /* seen at this level so far */

Changed = 0;

/* make operation identifier unique if seen, and append to seen, increment count, fix uses in

node */

Changed = make-unique(n, Iseen, count);

update_node_uses(n, Changed);

foreach m € DFS{Succ{n)) do /* DPS traversal */

if m e States{G) then

return; /* Stop processing along this computation chain */

else

check_operations(G, m, Iseen, count); /* recur */

end if

end foreach

end

In words, Algorithm 5.5.4 shown above does the following: Starting from a state

s in the AFFG, we traverse the successor nodes in the AFFG (examining their associated

operations as we go) in depth first order denoted by Z?F5(s)^® until we hit the next state

boundary if we encounter a normalized computation more that once along a state transi

tion path then we maJce the definition identifier (destination of operation) of the second

occurrence unique. The end result is that we have a guarantee that an operation defi

nition is a exclusive indicator of an operation that must be scheduled in the following

micro-architecture stage.

'DFS ordering of the nodes in the AFFG starting from node s
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5.5.3 Allocation

I leave "operation" micro-scheduling and sharing to the later micro-axchitecture

optimization stage (see Section 6.5.1), and focus here on determining whether computations

need to have a register for correct functionality once a state transition relation (TREL) is

built^^. Algorithm 5.5.6 below shows the register allocation process. The sub-sections to

follow will detail the steps it is composed of.

Algorithm 5.5.6 (Register Allocation Algorithm)

Register Allocation Algorithm

begin

foreach node n € G do

foreach state g G G do

Seen = Identify Operations /* Candidates */

Build Frontier /* Next State Boundary */

Register Allocation and Creation

end foreach

end foreach

end

Identify Operations and Build Frontier

In this step we scan all the computations in a state q in the AFFG, and collect the

destination definitions as candidates that need to be registered. During this traversal process

as we are exploring the state we stop at the next state boundary. The states composing this

^We are not going to build the TREL yet, this step must be performed before building.
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boundary are collected in a Fr(mtier{q) as shown in Figure 5.10 (Figure used in Register

Allocation Algorithm as well). This frontier is of crucial importance since it reflects the

schedule we have associated with the AFFG, and is what will shape our register allocation

requirements.

^0 " n

N.
\ N,

\

/ T(b^) = b +C; /•define V
/ b = a;/*kiU*/ \
i if(condl)gotoSl; j
\ if (cond2) goto S3; /
\goto 82;

I

Sx 6 Frontier(So)

Frontier(Sp)
{S|, $2,..S3}

T(^)= b +c\
'•'c = d;

AFFG node

^ could alsobea Slate)

Needs register

Figure 5.10: State Frontier and Register Allocation

Register Allocation

In order to perform register allocation, I have devised a new meet DFA problem

on the AFFG called Available Definitions. This algorithm assumes that all the previous

steps are performed (namely normalization on the FFG, and operation macro-scheduling

on the AFFG), and uses the information that was gathered in those steps, and is tuned for

maximum speedup improvement as will be described shortly. The input to the algorithm
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is the AFFG G, and the Frontier{q) for the state q we are processing; the frontier is of

course the one built in the earlier step.

Algorithm 5.5.7 (Build Available Computations)

Build Available Computations Frontier{q))

begin

foreach node n € G do

Reach{n) = All definitions in AFFG; /* Initialize */

end foreach

foreach state s € Frontier{q) do

Reaches) = 0; /* Initialize */

while there are changes do

foreach node n € DFS{s) do

Pass{n) = {Reach{n) —0)IJGen{n); /* Transfer Equation */

Reach{n) = f\p^pred{n) •Pass(P); /* Confluence Equation */

end foreach

end while

foreach node n € DFS{s) do

foreach definition dE n

If (d € Seen and not(d E Reach{n)) and not(d E GeniinY^)) then

/* Allocate register */

create-register(d) unless d is a register;

end if

Actually we check if it is defined before the use in question only, but I took the liberty of simplifying the
pseudo-code; I insert a subscript I to distinguish from Gen(n).
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end foreach

end foreach

end foreach

end

The Transfer Equation Pass{n) = {Reax:h{n) —KiU{n))\JGe7i(n) reflects the

fact that we are looking to see if there is a deflnition in this frontier state or not; note

that I simplify the computation in the Algorithm by using Kill(n) = 0 because in this

case Kill(n) = Gen(n) since I am looking for definitions (again operations have unique

definitions in this stage), and the result of the two equations is the same. If there is no

deflnition in this frontier state^^ then we need to register the operation from the previous

state. If the definition is computed in the frontier state then we can just use the result

immediately (i.e. the mapper (of the function onto the architecture) will generate a com

binational circuit in hardware or instruction in software instead of creating a register and

then a copy instruction). This idea is also shown in Figure 5.10. Furthermore, the reader

may realize that in some cases there might not be a real need for adding a register (i.e.

the function is not necessarily compromised if the register is not added); it could be that

even if along some path in the frontier there is no re-definition (and this is what led us to

decide on recommending that the earlier definition be registered), the earlier definition is

in reality never "killed" and therefore always available, yet the Algorithm as shown does

create a register (of course this is always safe). Algorithm 5.5.7 can be modified to include

such information (with additional analysis in building the Kill of the frontier to determine

whether operands of the operation in question are modified thus forcing the need to register

other words, in some frontier state
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or not), but the resulting algorithm will not be maximizing the speedup^® but it would save

needless registers. Again we see how optimization and constraints come into play; for our

purposes here we will gdways use of Algorithm 5.5.7 for maximum speedup^^

Register Creation

This step uses the result of the available computations, and then checks if a com

putation is defined in a node before it is used; this corresponds to routine create.regis'ter

in Algorithm 5.5.7. If the test fails then a register is recommended byadding a hint (i.e. an

notating the AFFG) to thearchitecture mapping phase asshown in thisexample. Assuming

we initially had the following situation:

Example 5.5.3

output outp;

int a, h, c;

SI: /* state we are processing */

Tf^b+c) = b + c; /* operation definition: T^b+c) */

h = sl; /* operation T^b+c) is Killed */

82; /* state S2 G FTontier{Sl) */

outp = T(b+c);

^®We will always assume a register is faster than inlining (i.e. performing the computation again) here,
this is architectural information we are assumed given, if that is not the case a differently tuned technique
must be used.

Current default in the toolset
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For proper functionality we must now create a register, this is accomplished by

associating a "hint" with this operation in the AFFG indicating that this should be reg

istered, textually it can be expressed as follows (in textual form; in reality registers are

attributes on the respective variables):

Example 5.5.4

SI;

^(6+c) = b + c;

•^^(6+c) - ^(6+c)>

b = a;

82: /* state S2 G Fr(mtier(S\) */

outp = ;

5.6 Function Architecture Co-design in the Micro-Architecture

System level design has a fractal nature; the problem has the same dimensions

no matter at which abstraction level we examine it [100]. Function/architectme co-design

can be performed at the micro-architecture level [89] in much the same manner as we

described earlier at the macro-architectural level. In this Section, I introduce techniques

geared towards this trade-off process between the intended functional behavior and the

architectural primitives that implement it. I will revisit this issue in Section 6.5.2 where

we try to find an optimal mapping of the function onto the components malcing up the
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architecture by leveraging more on the appHcation domcdn, and architectural specifics.

5.6.1 Operator Strength Reduction

An effective optimization in both runtime and size of hardware and software is

strength reduction of operators in the AFFG quadruples. Given architectural estimate

information about an operation's area, power, and performance cost we can optimize the

function so that it performs better while preserving the functionality, by selecting a cheap

operation or a cheap set of operations, if we consider the following example where we have

a sequence of operations in the AFFG, annotated with a cost:

Example 5.6.1

output x;

= 3 * b; /* MUL: 10 units */

t2 = ti + a,/* ADD: 2 units */

X = t2; /* ASSIGN: 1 unit */

then reducing the multiplication operator in tl = 3*b, to the equivalent tl = b + b + b

would be quite beneficial, the example would change to:

Example 5.6.2

expT\ = b + b;

tl = expr\ + b;
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*2 = tl + a;

X = <2;

Another example of strength reduction is changing operations like x = x - 1 to

DECREMENT (x) where we give the architectural optimization a "hint" to optimize resources

when performing said operation on x. The effect of such optimizations will be felt if there are

conditions (and/or loops) in the execution such that we visit these operations many times

over the Ufetime of the task (see Section 5.3.5). So given some high level estimates of the

architectural primitives supported by the architecture we can perform a number of peephole

optimizations to try to get to the best matching of the operation or a neighborhood of opera

tions to the given library in an optimal fashion. Of course we can only have some heuristics

at this level where we apply a sequence (i.e. ordered set) of transformations to improve

the result. While it may seem that such optimizations can have some limited improvement

only, the reader should note that any educated algorithm that improves the AFFG in a

local fashion, for example the algorithm might scan all the operations in the AFFG and

replace constant multiplications by shifts or additions, is useful as a hill-climbing feature

in the AFFG Optimization Algorithm shown earlier as Algorithm 5.5.1, where we can, once

convergence is reached, apply this step to "shake things up" if you will, and perform another

optimization loop to convergence. With this technique we can leverage simple techniques

to potentially uncover larger reduction in redundant information^^. To be able to do this

step we have to rely on architectural estimation (or profiling and/or inference based on user

knowledge as we did in the ROM algorithm).

Algorithm 5.6.1 {Hill-Climbing AFFG Optimization Algorithm)

inefficient information representation
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Hill-Climbing AFFG Optimization Algorithmic^

begin

shakeJt.up = True;

AFFG^opt:

while changes to the AFFG do

Perform AFFG Optimization Algorithm Steps

end while

if (shakeJt_up) then

shakeJt-up = False;

Operator Strength Reduction

goto AFFG.opt:

end if

end

5.6.2 Instruction Selection

The discussion in the previous subsection was an example of how architectural

constraints feed back information to the function so we can massage it to better match

the architecture. This can also go the other way where at the functional level we can

identify useful sets of operations to have in the architecture, and recommend that these

instructions in the case of software, or resources in the case of hardware, be made available.

This is called Instruction Selection where the function feeds information in the form of

candidate primitives to the architecture. While this technique is not beneficial from a

hill climbing perspective it will become useful in optimal mapping of the function onto a



suitable architecture as described in Section 6.5.2. Both directions are displayed visually

in Figure 5.11 which shows how the AFFG is the transfer medium through which this

information transfer and optimization happens.

Decomp(«iiion

processors

Instruction Selection

''tl=3*b^
l2= tl+a

v£init x(t2)y

AFFG

DecomDOsition

Operator Strength Reduction

Figure 5.11: Operator Strength Reduction, and Instruction Selection

5.7 Future Directions

Many opportunities for future improvement and expansion of the function/architecture

optimization and co-design engines remain, and my discussion here has only scratched the

surface in tuned optimizations.

5.7.1 Optimization Opportunities

To give an example of further optimization and co-design opportunities, let me go

back to the relaxed I/O constraint specialization for CFSMs. While I have presented in Sec

tion 5.5 (Algorithm 5.5.1) the benefit (reflected in variable reduction) of copy propagation.
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that gdgorithmneglects to account for the potential of Algebraic Identity Simplification,

the Improved AFFG Optimization Algorithm below tries to optimize such silly computa

tions as in + 0 into in by incorporating a new specialized normalization^^ step. Similarly

Available Expressions can be relaxed to make expressions that depend on input valuations

available if possible based on the CFSM sampHng criteria.

Algorithm 5.7.1 (Improved AFFG Optimization Algorithm)

Improved AFFG Optimization Algorithm(Gj

begin

while changes to the AFFG do

Relaxed NormsJization

Relaxed Copy Propagation

end while

end

5.7.2 Wire Removal for Hardware Synthesis

In this subsection I would like to give a direction for future work where the DFA

analysis techniques and their lattice-theoretic mathematical foundation framework can be

applied to hardware logic synthesis; in particular I focus here on the wire removal problem

identified by Khatri in [61]. The goal in wire removal is to attempt to reduce the number of

^^Normalization presented earlier in Chapter 4 is safe and doesnot manipulate suchconstructs
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wires between individual circuit components either by removing wires if they are coveredby

the remaining wires, or identifying a better set of wires in terms of a design metric (possibly

number of wires, or total wire length) that can replace the original wires while keeping

the functionality the same. The motivation of course is that global wires are costly in the

context of Deep Sub-Micron (DSM) and we'd like to minimize them. This problem has

been attacked using the notion of Sets of Pairs of Functions to be Distinguished (SPFDs)

[106], a generalization of CODCs which stand for Compatible Set of Observability Don't

Cares, in the context of multi-level and multi-valued Boolean networks. SPFDs capture the

flexibility that can be used to implement a node in the Boolean network, and don't cares

are used to reflect that the output node is not controllable or that the input change effect

is not observable at this output.

Our goal in optimization is finding the best way to organize and use information,

and this is an invariant whether we are trying to find the best set of operations, gates, or

wires to implement a function in an optimal fashion. So, I contend here that, since it's all

about information representation and manipulation, the SPFD notion can be abstract^ and

generalized to equivalent notions at the operation level instead of the current wire leveP^,

and subsequently generalized to the FFG node level, and then, if need to be, to the AFFG

state level. In the SoC IP^^-assembly domain, because of shear complexity logic synthesis

cannot hope to have as large an impact as it would inside the IP modules. We need to

carry these notions of flexibility to a higher abstraction and a larger granularity, we cannot

talk about values of "signal wires" we must start to talk about uses, and definitions of

level if you will
^^Intellectual Property
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"avenues" of communication such as collections of wires, busses, registers and the like.

This is where I believe a DFA analysis framework that supports the notions of information

processing and is safe and based on an adequate design representation (such as the AFFG

for heterogeneous control-dominated designs) can have a tremendous impact. To makethis

discussion concrete let us consider the following simple example.

Example 5.7.1

input inl, in2;

output out;

int X, y;

X = inl;

y = in2;

ti = x;

out = ti + t2;

In this example out is the output we are considering with immediate fanin ti and

<2- Therefore ti, and x are two alternate wires for computing out; one can be replaced by

the other becauseof someproximity considerations (say x is preferred because it is available

in a "close" register). The notions ofobservability carry as well, for example changes in in2

are not observable at the output out. Also we can say that any valuation of y (or in2) is in

the Satisfiability Don't Care (SDC) of computation output out. SPFDs carry as well in the

notion of function/implementation co-design where we can identify sets of operations that
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result in the same {safe) but bettei^^ computation at the output. The example is shown

graphically in Figure 5.12.

out

Figure 5.12: Flexibilities: Illustrative Example

I have made the case here that many of the problems we solve at lower abstract

levels for, likely, a measly benefit can be turned into high powered function/architecture (or

'Less wiring to do in this context for example
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function/implementation for purposes of this subsection) approaches if they are applied at

the high level within a framework (the DFA framework is one instance) used to formulate

the problems in a genersd enough fashion. I have used the wire removal problem and a

simple non-rigorous but intuitive argument as a demonstration of this. Research into this

problem is left to the future^^ ([HI])-

27Courtesy: Abdallah Tabbara, NexSIS group
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Chapter 6

Architectural Optimizations

6.1 Target Architectural Organization

6.1.1 Abstract Target Platform

I would like first to provide the reader with a concrete description of the basic

architectural organization or abstract platform that my synthesis based flow targets. I will

refer to this as the macro-architecture. I use the word macro in the sense that no specific

implementation for any of the system design tasks (HW or SW) has been decided on, nor

have any of the physical components (e.g. ASIC/FPGA for HW, micro-controller or micro

processor of specific data bit width and so on) of such an implementation been selected^.

Stated more eloquently, this abstract platform has the following:

1. Flexibilities:

• Any processor, micro-controller, or DSP can be used to run the software.

'This is a refinement of my earlier use of the word macro.
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An unlimited number of hardware platforms can be part of the architecture.

Any hardware platform can be used as long as the proper interface glue is physi

cally present, or a reconfigurahle medium is available so that synthesis can gener

ate adequate interfaces. The platform can be fully programmable as in the case

of ASIC, fully reconfigurahle as in the case of an FPGA, or fixed (pre-defined

blocks, or an interconnection of LSI/SSI/MSI components for "glue logic").

The interface mechanism can consist of a user defined pool of resources in

cluding: bus address and data bit widths, memory map for SW to HW interface,

interrupts for HW to SW interface, and general I/O ports for direct communi

cation, as well as dedicated ports for configuration purposes of the SW.

The interface between SW tasks, as well as scheduling of the tasks can be done

by an automatically generated RTOS supporting several policies, that uses the

given pool to build the I/O drivers and services. Commercial kernels can also be

interfaced to. See Section 7.6 for a complete discussion of this, as well as means

of optimizing these services.

2. Limitations:^

A single SW platform or partition is assumed. (This Hmitation can be lifted

with multiple invocations of the synthesis engine, but is somewhat tricky, and

not fully supported.)

A single generic EISA^-like bus architecture with fixed-field decoding'̂ is as-
^These are not limitations on the model of computation, or task-level (CFSM) semantics, just current

limitations on what the synthesis engine can do, work is on-going to lift these in the future.
^Extended Industry Standard Architecture
''The memory map must be known ahead of time in order for synthesis to generate adequate decod'"-s.



sumed, no other bus communication mechanisms are supported by default. The

user can however lift this restriction by building what I call arbiter CFSMs; the

work of Passerone in [92] is a good starting point, after adequate generalization,

for automatically building such machines.

SW Partition

.RTGS.

Processor

HW Partition

HWj

:wr
% ' y .

HW,: i\HW|

Figure 6.1: Abstract Target Platform

Conceptually, the architecture in the large is shown in Figure 6.1. Next, I refine

this architectural organization to describe the default task level macro-architecture that the

Polis synthesis engine builds, and then present in the next Section the final implementation

structure.

6.1.2 Architectural Organization of a Single CFSM Task

The default task level macro-architecture that the synthesis flow builds for each

task represents the CFSM transition function as a composition of;

• A reactive block and,

• a set of combinational data-flow functions^.

^Functions should not have side effects, and their execution must complete in a bounded amount of time.
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Data flow functions are implemented as arithmetic and logical expressions in the

target language for SW, or library for HW. The reactive block specifles a multi-output

function from a setofinput variables (some ofwhich can beoutputs ofdata flow functions)

to a set of intermediate index outputs. The function that is assigned to each CFSM output

under any set of inputs is the one selected by those intermediate outputs, A single state

from a simple CFSM is shown in Figure 6.2, and its task-level architectural organization is

shown in Figure 6.3®.

a = INC(a); Ca= RESET(a)

emit(y)

clfja,b,c)

Figure 6.2: A Simple CFSM

The control flow decision making is contained within the reactive block shown in

c a = b Sy

0 0 0 0

0 1 0 0

1 0 1 1

1 1 2 2

'For the single state, registers at outputs not shown
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where the value 0 for s corresponds to no operation (or, equivalently, to feeding back the

current value of a and y respectively), the value of 1 implies that a is incremented and y is

not emitted (i.e., assigned value 0) and the value of 2 implies that a is reset to 0 and y is

emitted (i.e., assigned value 1).

Reactive Controller

EQ
9_EQ_b

INC INC_a

RESET.a

MUX

RESET

Figure 6.3: Task Level Control and Data Flow Organization

This is the default structure that synthesis builds for each task; it is an immediate

natural reflection of the CFSM's

• reactive semantics in the reactive controller,

• FSM nature in the transitional structure of the machine, and

• extended FSM expressiveness with the associated data computations.

As we will see, this control and data flow structure does not necessarily have to be

mapped as is to the final implementation, but is only a starting one that can be reflned with
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control decomposition optimization techniques at the task level described in this Chapter,

as well as functional level decomposition and clustering at the system compositional level^

as described in Chapter 8.

6.2 CFSM Network Architecture: SHIFT

The Software Hardware Intermediate FormaT (SHIFT) is a representation format

for describing a network of EFSMs. It is a hierarchical netlist [5] of:

• Co-design Finite State Machines (CFSMs): finite state machines with reactive behav

ior

• Functions: state-less arithmetic, Boolean, or user-defined operations.

As I alluded to earlier in Chapter 3, a CFSM execution consists of four phases:

1. Idle, await trigger inputs

2. Sample inputs when invoked

3. Compute chain of operations

4. Emit outputs, return to Idle mode

A CFSM in SHIFT is therefore composed of input, output, state or feedback

signals with initial values, as well as a transition relation (TREL) that describes the reactive

behavior. Functions are used in the TREL to ASSIGN computation results to valued

outputs. A function can be thought of as a combinational circuit in hardware or a function

^i.e. CFSM level
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(with no side effects) in software. The CFSM network of SHIFT is shown in Figure 6,4

where the implementation architecture after the tasks are mapped onto the architectural

organization is displayed.

Scheduler

CFSM1

CFSM
CFSM5

CFSM6

HW partition 1

fortS 1 I I
CFSM7

e8

•>( CFSM3
SW partition

HW partition 2

Figure 6.4: CFSM Network Architecture in SHIFT

6.3 Architectural Modeling

Architectural modeling is performed using an auxiliary specification (AUX)

that can describe the following information:

• Signal and variable type-related information (definition of types used in the "front-

end" (e.g. Esterel), re-definition of integer signals and variables, definition of unsyn-

chronized valued signals),

• definition of the value of constants, and
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• creation of a hierarchical netlist, by instantiating and interconnecting the CFSMs

described in SHIFT.

6.3.1 Data Type Modeling

Data type modehng includes the following (adapted from Polis [94] manual):

• Definitions of user-defined types declared in the Esterel modules. The Esterel "firont-

end" allows the designer to declare such types, but their definition must be external.

Suppose, for example, that declarations like:

type i-gy;

type intSbit;

type uintSbit;

type float;

occur in one of the CFSM modules behavioral description. Then the following lines

in the auxihary file can define those types:

typedef enum { red, green, yellow } rgy
typedef mv 128 intSbit
typedef nb unsigned 8 uint8bit
typedef nb 31 float

The first type is enumerated, the second is signed and fits in 8 bits, the third is

unsigned and also fits in 8 bits. The last declaration says that the "float" type is

signed and fits in 32 bits (31 plus 1 for the sign).

• Re-declaration of Esterel integer variables as integer subranges or as user-defined types.

Suppose, for example, that declarations like:



module m:

input a: integer;

veoc b, c, d: integer in
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occur in the behavioral description. Then the following statements for the data types

mv a 128

mv b, c unsigned 256 in m

specify that those variables don't have the default number of bits for the integer

data type in the target architecture, but 8 bits (a is signed, while b is unsigned). The

in m clause specifies that the subrange declaration apphes only to variables b and c

of module m. The nb statement defines the number of bits that the variable can take

(plus one if signed), while the mv statement defines the number of values (positive

values if signed). Of course, nb is more informative for power-of-two ranges.

• Re-declaration of Esterel signals as pure values^, without the control information, by

using the following syntax:

value a

specifies that signal a is actually a pure value, that cannot be awaited or watched.

This is especially useful for hardware CFSMs, because it saves one wire, otherwise

used to indicate the presence of a signal.

• Definition of the value of constants using the define statement:

define CONST.MEASURE 1000

^The Esterel sensor data type serves an equivalent purpose for input signals, but it cannot be used for
output signals.
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6.3.2 Component Interconnection

We can also instantiate and interconnect the CFSMs specified in the SHIFT file.

Suppose that the following module was declared in Esterel:

module example:
input i(integer);
output o(integer), done;
constant norm;

Then the following netlist describes two cascaded instances of example^ called exl and ex2

respectively. Note that internal interconnection signals like ol_to_i2 need not be declared

(but the types of the interconnected signals must match).

net two.examples:

input il;
output o2, donel, done2;
module example exl [i/il, o/ol_to_i2, done/donel, norm/125]; 7,impl=HW;
module example ex2 [i/ol_to_i2, o/o2, done/done2, norm/250]; 7.impl=SW;

SHIFT attributes, defining for example the implementation of each CFSM or hi

erarchical unit, can be specified as part of each module statement (a hardware or software

implementation) as shown in the example above with the 7,impl indicator.

6.3.3 HW and SW Primitive Operation Library

Primitive, unary and binary operand, data flow functions, which are the basic

building blocks for computations, consisting of arithmetic (such as ADD, SUB, MUL, ...), and

relational operators (such as EQ, GE, LT, ...) are represented in SHIFT as mentioned earlier

as sub-circuits whose computation is assigned to outputs by the reactive controller. The

data flow functions implemented in SW as arithmetic and logical expressions in the target
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language are benchmarked for the target processor, and estimates are built for a set of

execution parameters as will be described in Section 7.9. In the case of HW they are

implemented as BLIF networks, which are also mapped and subsequently characterized for

the target hardware component library [102].

6.3.4 Limitations of Current Modeling and Future Improvements

The combined SHIFT/AUX architectural modeling has 2 major limitations:

• It provides for a component interconnection scheme instead of an architectural view.

• It models the system after a strict control/data path architectural decomposition in

the SHIFT macro-architecture as described earlier.

The modeling is therefore limited to capturing the SHIFT macro-architecture, and

a set of "micro-architectures" represented by the cost associated with operations, and the

ability to specify data types and token bit widths in AUX. What is really needed in general

is to provide the user with an architectural modeling capability. Most of the work in this

area has focused either on special architectures (DSPs as in [107] and [50], Control/Data

Flow as in [113], or Application Specific Integrated Processors as in [52]). In the future it

might be possible to examine the basic elements of these methods and languages (LISA,

ISDL, etc..) and define a foundation basis for a VHDL-based modeling language. VHDL

is a standard language and many well supported tools for efficient synthesis and simulation

are commercially available. This makes integration of automatically synthesized modules

with external blocks (perhaps designed with different methodologies) quite straightforward.

Using VHDL also permits us to leverage my system level co-simulation methodology de-
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scribed in Section 2.3, thus expanding the capabilities of that method by providing more

accurate and less restricted architectural estimates.

I would like to also state here that at high abstraction levels, VHDL may also be

too detailed. For example we may need to express that a large set of implementations are

valid as long as they abide by a set of variations such as partial-order reductions (i.e. all

I/O traces equivalent under a given set ofpartial ordering constraints are equal), symmetry

reductions, "ignoring" part of output traces during the response to an exception, and so

on. The notion of conformance between various implementations would then be that every

finite sequence ofobservations that may result from executing the detailed implementation

may also result from executing the more abstract "golden" specification. VHDL cannot be

solely used for such architectural (i.e. valid implementation set) specification. Propositional

and temporal logics must be used as in the work ofTabbara in [117], that employs Linear

Temporal Logic, for specifying the requirements that valid implementations of the design

must fulfill. A VHDL modeling and validation framework can be used in conjunction with

the latter for detailed modeling and validation (as in [117]).

In the rest of this ChapterI use the SHIFT macro-architecture as a user-provided

target constraint, and perform some optimizations on this organization. I also describe

micro-architectural optimizations guided by the micro-operation execution ami size esti

mates, as well as the data type sizes provided by the user in the form of the AUX descrip

tion.
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6.4 Mapping the AFFG onto SHIFT

In order to perform synthesis, the AFFG is mapped into the SHIFT representa

tion. The mapping is performed by projecting the AFFG representation onto SHIFT thus

decomposing the AFFG behavior of each task into a single reactive control part, and a set

of data path functions consistent with the default SHIFT macro-architecture. The Mapping

AFFG onto SHIFT algorithm is shown next. AUX parameter in the algorithm stands for

architectural modeling information as presented earlier in Section 6.3.1, while G is the task

AFFG.

Algorithm 6.4.1 (Mapping AFFG onto SHIFT Algorithm)

Mapping AFFG onto SHIFT AlgorithmCG, AUX^

begin

foreach state s € G do

build_trel(s.trel, s, s.start_node, G, AUX);

end foreach

end

The build.trel recursive routine builds the state transition relation including

performing some book-keeping to determine whether a state needs to be self-triggered. A

self-triggered transition is required in order to preserve the task reactivity when a state

has no triggering conditions^ which are conditional tests that depend on the input. The

self_trig function call shown below inside build.trel checks for this and adds, if need

be, the self-trigger transition to the TREL as well as a trigger output to all the states fanning

into the state under consideration in order to activate this state transition, build.trel also
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generates the list of data flow functions which includes both HW/SW library primitives like

ADD, EQ, etc... as well as user-deflned functions. This is shown in the algorithm below

that demonstrates the key notions®. Label{n) for n G(? is the set of labels associated with

node 71, in the context of the AFFG, these are the attributed operations linked to the node.

Algorithm 6.4.2 (build.trel)

build_trel(trel, 5, n G G, G, AUX^

begin

Itrel = Copy of All Elements in Trel;

foreach operation op G Label{n) do

/* Mapping and Decomposition */

if {op == (ARITHMETIC or RELATIONAL)) then

/*dest = srcl binop src2, or dest = \mop(srcl) */

Srcl = get^ource(ltrel, tjp.srcl);

Src2 = get^ource(ltrel, op.src2);

createjsubckt(dest = Srcl op Src2);

else if (op == FUNCTION) then

foreach src in op.aigs do

5rcs. oppend(get_source(ltrel, src));

end foreach

create_subckt(dest = FUNCTION (Bros))/

else if (op == ASSIGN) then

®Pseudo-code has been simplified to get the idea across; for the sake of precision I would like to mention
here that the Shared DAG form of the AFFG introduces several additional dealings and book-keeping for
instances of operations and the creation of multiple instances of sub-circuits from a single AFFG operation
based on the path being traversed; these are not shown explicitly here.



if (op.dest == OUTPUT IEVENT) then

add_treLentry(ltrel, op.trgt, OUTPUT IEVENT);

else if (cjp.dest == INTERNAL) then

addj:egister(op.trgt); /* create register */

add_treLentry(ltrel, fjp.trgt, INTERNAL);

end if

else if {op == CONDITIONAL) then

/* if (srcl) ... */

self_trig(s, Itrel, op.srcl); /* self-trigger */

split_trel(ltrel, t^.srcl); /* split on false/true of src */

else if {op == JUMP) then

/♦goto trgt; */

if (op.trgt € States{G)) then

add_treLentry(itrel, op.trgt, NEXT-STATE);

end if

end if

end foreach

foreach m G DFS{Succ{n)) do

if m G States{G) then

store_treUine(5, Itrel); /* Line in TREL table */

return; /* Stop processing along this computation chain */

else

build_trel(ltrel, 5, m, G, AUX); /* recur */

end if

152
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end foreach

end

Theroutines get_source and add_register reflect the SHIFT macro-architecture,

where computations within a state have a combinational immediate nature and variables are

registered so that their state can be sampled at the next task invocation (i.e. in next CFSM

state). Consider the following example:

Example 6.4.1

input ...

output out;

int a, b, c, ;

81:

Dl:

32:

c = a; /* register here */

goto Dl; /* shared DAG */

T(5+c) = c + b; /* subckt 1: a + b */

out = r(5+c);

T(^b+c) = c + b; /* subckt 2: c -f- b */

out = T(^h+c)>
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For subckt 1 we need to use get_source(c) to access the value of a and effectively

compute out = a + b by creating the Tinst^t,+c) = a + b subckt instance, while in the

case of subckt 2 we only need create subckt 2 immediately since there are no assignments

within the TREL before this computation, and the c operand has the correct value since

we created a register at the register label. This scenario is shown in the example for

the Shared DAG form of the AFFG, since copy propagation is unable to reduce copies like

the shown c = a by copy propagation because of the numerous control edges coming into

the AFFG node containing the operation (i.e. varied contexts); this does not occur if the

Tree form is used (see Chapter 3, and Chapter 4) where 2 separate computation instances

get created^®. It should be noted that the ROM algorithm presented in Chapter 5 can

minimize the number ofsuch instances by moving operations'^ (if possible) to places where

copy propagation can do its work.

Several optimizations can be performed on the AFFG and the resulting SHIFT

description during this mapping process given knowledge of the intended target. These

optimizations refine the mapping steps in Algorithm 6.4.2 and are the topic of discussion

in the next Section'^.

^°Vahid in (123] refers to what I call instanceshere as clones (also generalized to procedures).
^^That is "cloning" [123]
^^Thus far, I have not said why we need the AUX parameter (information) in the routines
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6.5 Architecture Dependent Optimizations

So far we have seen in Chapter 4 how the techniques used in software code opti

mization and high level synthesiscan be applied to the task representation in the embedded

domain, and "specialized" to the domain restrictions. Ifwe aregiven additional architectural

information, then we can do more restrictions and specializations leading to an increased

level of optimization before mapping onto the final target as we have seen in Chapter 5. In

this section, I present some specializations as they relate to the Network of CFSMs model of

computation assumptions and restrictions that apply after mappingof the function onto the

architecture, and how these reflect on more potential optimizations that can be performed

during the mapping process.

6.5.1 Macro-Architectural Optimizations

Distributed Reactive Controller

In Section 6.1.2,1 presented the default task level architectural organization which

consists of a single reactive controller, a set of datapath circuits, and a multiplexer that

selects the value assigned to outputs. Our experience, in the Polis group, with large indus

trial examples has been that the reactive controller can become quite large, and the BDD

internally representing this control structure could consequently explode in size. If changing

the CFSM granularity (i.e. defining a new functional decomposition, see Chapter 8 for a

discussion) is not an option, then a more efficient organization in this case would be to

distribute the control by decomposing the controller. We cannot, however, use the default

structure as a starting point and then optimize it with BDD techniques such as variable re-
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ordering since we would not be able to build the BDD to begin with. Decomposing the large

reactive block and select multiplexer shown in Figure 6.3 for the CFSM of Figure 6.3 can

be handled by partitioning techniques (BDD partitioning) introduced by McGeer in [83] in

the area of cycle-based hardware simulation that deals with large FSM structures capturing

synchronous circuits. An implementation of this partitioning technique in the HW/SW Co-

design domain, and for the Polis CFSM model in particular, is being researched by Balarin

and Chiodo in [6] using the concept of Control Transition Relations (CTRs). The reactive

controller for each task is composed of many such CTRs, and data flow computations are

represented by Data IVansition Relations (DTRs). Both CTRs and DTRs compute a re

lation between the inputs and outputs; CTRs are reactive and operate on trigger inputs,

while DTRs operate on data inputs and have no side effects. To evaluate a DTR or CTR

for a given input means finding an output assignment that satisfies the Control or Data

transition relation. DTRs capture single computations while CTRs represent a set of con

trol conditions. CTRs can be merged to form larger control structures thus the similarity

to networks of BDDs as opposed to a single BDD. While this former approach is a valid

example of function/architecture optimization and co-design I would like to introduce here

another technique of mine that can be performed on the AFFG to alleviate this design

explosion problem. By using if-then-else (ITE) assignment operations where possible

in the AFFC representation, we can relieve this problem by moving some control into the

datapath. This serves to break up the reactive block, and the multiplexer. Consider the

following example:

Example 6.5.1



output out;

int a, b, c, d, e;

if (d) then

if (e) then

out = a;

else

out = b;

endif

else

out = c;

endif
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the out computation, and the if ... control statements can be replaced with:

Example 6.5.2

mt a^ bj c, dj e, 2"ouf»

"^out ~ ITE(e, a, b);

out = ITE(d, Touty c);

The process results in a smaller controller with a tree of multiplexers represented as

ITE sub-circuits on the side instead of the one large multiplexer fed by the single large reac

tive block. In BDD terms, ITE operators translate some control into the data-path as shown

in Figure 6.5 thus reducing the BDD size (even though the support increases). This tech

nique serves as an excellent demonstration of the radical power of the function/architecture

methodology. I am currently experimenting with the ITE substitution heuristic in con-
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Figure 6.5: Moving Control into the Datapath
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junction with operation motion in the ROM algorithm (see Chapter 5) since the ordering

ofthe TESTs affects the number ofITE statements (BDD variable ordering problem), and

computations can also hide candidate substitution opportunities.

SHIFT Sub-circuit Sharing

I have presented the normalization algorithm that helps identify similar computa

tion operations, as well as Available Expressions analysis in Chapter 4, and then refined this

in Algorithm 5.5.4 where Operation Macro-Scheduling is discussed. In this Section, I assume

that the former steps have been performed on the FFG, and then the AFFG respectively,

and discuss additional optimizations we can perform while mapping the AFFG onto the

SHIFT target. Let us consider the example shown on the top ofFigure 6.6.

SI

AFFG
CD

C

!»•_

Mapping

SHIFT

X

>
L '̂̂ Ia+b)
r

Out
>

Figure 6.6: Sharing Computations During the AFFG to SHIFT Mapping
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Available Expressions cannot eliminate the Ta+b sub-circuit from state S2 since

the assignment a = c Kills that expression from Pass{Sl). However if we are mapping to

the CFSM network target (SHIFT) where all the variables are considered to have state and

therefore all the variables are roistered then we can share the Ta+b sub-circuit in Si and

the similar computation Ta+b iii S2 since a, and b are registered as shown in the bottom of

Figure 6.6^^. If this transformation is used in the final output generation, it improves size

in both hardware and software but it reduces parallelism in the hardware, and the extra

output capacitance might potentially be detrimental to the hardware performance in some

cases. Using this optimization involves a size for speed trade-off.

Alternatively^^ we could have a variant of Algorithm 5.5.7 where we always reg

ister operations like Ta+b thus creating one sub-circuit instance in SHIFT and one register

for its output for each such occurrence. However, this latter approach may not be as wise

as we might initially think in terms of speedup in software since registers typically come at

a premium, and register spills can happen and are typically more costly than "inlining" a

computation since they involve memory access. So we cannot really make such a call on all

such computations. I therefore keep the original variation of Algorithm 5.5.7 that creates

registers to preserve functionality first, and perform some speedup in the cases where it

is more involved computationally to check for preserving functionality, and use a micro

architectural analysis and synthesis technique to permit or undo the sub-circuit sharing

optimization in the final output (see Section 6.5.2). Section 7.5 discusses how I handle this

during synthesis within the Polis engine.

^^Forcompleteness I show the registers of x and out in SHIFT as well, but these registers have no bearing
on this discussion.

*^That is, yet another improvement technique
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So, while the benefit of the sub-circuit shaving optimization cannot be determined

at this high level, in the mapping step I take the approach^® of sharing computations, thus

reducing the size of SHIFT. A reduction in the SHIFT design representation helps the

low level optimization and synthesis algorithms presented in Chapter 9; consequently this

is a good goal for the mapping. Whether this actually makes it to the final synthesized

output or not is irrelevant at this stage since the step is quite useful to do right now; the

micro-architecture optimization can deal with the actual synthesis later once we have more

information about the target.

Multiplexing Computation Inputs

If size of the hardware and software is of major concern, then multiplexing the

inputs of the SHIFT sub-circuits is an architectural change that can help reduce the number

of sub-circuits at the expense of more complex control. Let us consider Example 6.4.1 where

I showed the need for two subckt instances of the T^^^+c) operation: one for computing a +

b, and another for computing the original form if you will of c + b. This was necessitated

because after introducing the CFSM transition semantics the computation's operational

semantics in the AFFG needed to be refined so as to depend on the execution path, and we

ended up having to "replicate" the computation and tune it for each respective path. If we

change the SHIFT macro-architecture and permit the use of multiplexers at tho inputs of

sub-circuits then we can remedy this situation where the essence of the normalized T(^f,+c) ~

c + b computation is preserved independent of the context; extra control handles checking

which operand to pipe through to the sub-circuit. This is shown in Figure 6.7 where -c-

Default in toolset



changes depending on the control (i.e. AFFG path) if control is 1 then we pick subckt 1,

otherwise we pick subckt 2.

Control

{1.2)

(b+-c-)

Figure 6.7: Multiplexing Computation Inputs

Function Sharing

In SHIFT we assume (and require the user to abide by this assumption) that

functions are stateless, that is the function output depends solely on its inputs. If this is

the C£ise then we can share these function calls within a single state, and across states in

the flavor discussed earlier for computation sharing (i.e. given that the argument variables

are registered) thus generating an optimized SHIFT in the mapping step. Moreover, since

function calls are typically quite costly, this step is bound to be useful in general for both

size, and performance of the final output. I will always apply this technique while mapping

to SHIFT in general. A micro-architectural approach can undo this optimization on a case

by case basis for function instances, or inline the function call as discussed in the next

Section.
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Function Inlining

We currently rely on the target compiler to determine whether a function can be

inlined to improve performance (at the expense of code size) using heuristics. The typical

heuristic is as follows:

Proposition 6.5.1 Function Inlining Heuristic If the call overhead of a function f is

larger than the execution time of f's body then we can improve the performance by ii. :ing

function f in its caller.

Function inlining provides an opportunity for function/architecture co-design (see

Chapter 5) in the AFFG representation if similar heuristics are used to inline the function

early in the AFFG. The act of inlining opens the door for more task level optimizations

by breaking the boundary between the caller and the callee. This is a direction for future

exploration where algorithms for performing function inlining under code size constraints

such as the one proposed by Leupers in [77] and improved heuristics can be used and gen

eralized to encompass instances of function calls based on the context and the surrounding

operations in the AFFG.

6.5.2 Micro-Architectural Optimizations

Data Type Optimization

During the final mapping of the function onto the architecture as weare traversing

the AFFG, and building the CFSMs and the various interconnections and building bloc

of SHIFT, we can perform data type optimizations. Since the Esterel front-end, SHIFT

architectural modeling, and the AFFG data types are limited to the integer base type
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currently, I will focus the discussion on describing how we can optimize the number of

bits^® needed to represent a variable in a correct fashion. The approachand technique can

be easily extended in the future to perform data type optimization when intermixing several

data type primitives e.g. integer and float, and possibly generalized (made more powerful)

using interpolative (as in the work of Willems et. al. in [130]) or simulation-based (as in

the work of Sung et. al. in [109]) word-length determination techniques from the DSP code

generation domain. Consider Algorithm 6.4.2, and let MAXINTBITS be the maximiun

number of bits needed to represent an integer type on the target platform, then we can

optimize the number of bits as we traverse all the paths in the AFFG (i.e. covering the

entire behavior) using the following procedure:

Procedure 6.5.1 Bit Representation Optimization

1. Inputs: ore assigned the user specified number of hits in AUX, MAXINTBITS otherwise.

Events are represented with 1 bit (and are unsigned).

2. Constants; of value cst are represented byceil{log2{cst)) bits if indivisible by 2, and an addi

tional bit if divisible by 2, if unsigned)^, with an additional bit for the sign if the constant is

signed.

3. Variables' and Outputs' number of bits is initialized to 0.

4. Sub-circuit outputs; ore represented by 1 bit if they are relational (and set to be unsigned),

MAXINTBITS otherwise.

5. Function outputs; ore represented by the number of bits specified by the user, MAXINTBITS

otherwise.

'®EquivalentIy the number of values
'^Constants 0 and 1 are 1 bit each
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6. ASSIGN operation: is the workhorse of this optimization. Whenever we have an operation of

the form dest.var = src_veu:; then dest_vaar *s number of bits is decided as follows:

if (src-var.bits > dest-var.bits) then

dest-var.bits = src_var.bits;

dest_var.is_unsigned = src_var.is_unsigned;

else

/* do nothing */

end if

This method reduces the number of bits of internal variables (i.e. size of the

registers), as well as the number of bits of the outputs thus leading to a reduction in the

size of the interfaces between tasks in the case of HW tasks and HW to SW and SW to HW

communication, as well as reducing the number of communication buffers in the RTOS for

SW to SW communication (see Section 7.6).

Micro-Architecture Specialization Techniques

Once the macro-architecture is fixed there are several micro-architectural special

ization approaches intended to optimize the performance^® of the application function on

the target platform. These specializations have either a control-oriented, or data-oriented

focus. Within each camp we can identify several different emphases based on current re

search; these different techniques are still evolving, but I include here a broad classification

based on the literature (such as [41])

^®Taken to mean a specific design metric: size, power, speed



166

• Data Processing Enrichment

—Instruction Set (or Hardware Operation) Selection: where the software

instruction set (or hardware resources) is (are) tuned to the application, for

example by the addition of arithmetic operations such as multiply-accumulate

(MAC) instructions (as in [52]) or vector operations or components, or parallel

execution units.

—Functional Unit Adaptation or Concentration: where functional units are

targeted to the application. These functional units could be adapted or parame

terized for the application software (as in [79]), or have a concentration of func

tionality that is suitable for the application domain such as motion estimation,

string manipulation, or pixel-operations [41].

• Control Enhancement

— Control Decomposition and Clustering: where the functionality is broken

down or grouped together in order to specialize or optimize component control

[41].

— Communication Refinement: where the architecture communication struc

ture is optimized for the application, such as synthesizing adequate protocols

between components (as in [92]), or building specialized bus structures for per

formance or power considerations (as in [36]).

— Storage Improvement: where memory is restructured to optimize the access

times or energy expenditure. These optimizations typically address the number,
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size and distribution of memory banks, access ports and their access mechanisms,

as well as the memory hierarchy (as in [78]).

6.6 Future Directions

While I have in the previous Section cited leading eflForts in the architectural spe

cialization techniques, I would like to point out that most of these approaches do not perform

optimization and co-design of the function and architecture as I advocate in this work, but

axe mainly concerned with an optimal mapping of the function onto the architecture given

some idea on what the intended application function is, and a set of suitable architectural

choices. Function/architecture optimization and co-design in the micm-architectiu'e is still

in its infancy, and more research needs to be done in appropriate modeling of (and trade-off

between) the function, and architecture at this level similar to the optimization and co-

design at the AFFG level I have described in Chapter 5. The work of Choi ([31], and more

recently Benyamin ([12]) on ASIP synthesis is an example of research in this direction. Both

works stay away from common template matching techniques, and start from the function

and specialize it into a target architecture using a target compiler back-end (e.g. Trimaran

compiler [119]). Both research endeavors have some promising initial investigation results.
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Chapter 7

Hardware/Software Co-synthesis

and Estimation

7.1 Hardware/Software Co-synthesis

My proposed overall co-synthesis flow is shown in Figure 7.1. The CDFG is built

after performing the FFG task representation architecture independent optimizations, as

well as the architecture dependent AFFG optimizations, followed by the optimal mapping

step. After the AFFG is mapped onto an optimized CDFG we proceed with reactive

EFSM (A)FFG
Optimized

(A)FFG

Data Flow/Control

Optimizations

CDFG

Figure 7.1: Our Optimization and Synthesis Flow
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synthesis. In the next section I describe the CDFG representation, and the hardware

and software co-synthesis techniques of the PoUs co-design tool. A design environment

based on hardware/software co-synthesis allows the designer to specify the system in a

high level formal language (e.g. Esterel [16] front-end that our flow uses) by describing

the fimctionahty of each block and how blocks are connected together. Optimization and

co-design on the intermediate design representation is then performed and subsequently a

synthesis engine takes over by building an intermediate CDFG representation, and then

generating the best design implementation as shown in Figure 7.2

Graphical EFSM ESTEREL

SWCode +

RTOS

HW Synthesis

SW Estimation *artitionini HW Estimation

Performance/trade-off Evaluation

Logic Netlist

Programmable Board
- |iP ofchoice

FPGAs
FPICs

Figure 7.2: The Polis Design Flow

In this Chapter I describe the Polis co-design tool engines for:

• Software Synthesis A CFSM sub-network chosen for software implementation is

mapped into a software structure that includes a procedure for each CFSM behavior,

together with a simple Real-Time Operating System (RTOS). Synthesis of the CFSM

behavior procedure is described in more detail in Section 7.2 to follow, while RTOS

synthesis is described in Section 7.6.
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• Hardware Synthesis A CFSM sub-network chosen for hardware implementation

is directly mapped into an abstract hardware description format. This format can

be BLIF ([102]), VHDL, or XNF for implementation on Field Programmable Gate

Arrays (FPGAs).

7.2 Software CFSM Representation: The S-graph

Software synthesis in PoHsis based on a Control-Data Flow Graph (CDFG) called

S-graph [29]. The S-graph specifies the transition function of a single CFSM. Therefore it

requires only conditional branch and assignment as primitives (augmented with arithmetic

and relational expressions without side effects). An S-graph computes a function from a set

of finite-Yzdued variables to a set of finite-valued variables. The input variables correspond to

input signals^. Each signal is a control signal, a data signal, or both, and can be associated

with:

• a Boolean control variable, which is true when an event is present for the ciurent

transition, and

• an enumerated or integer subrange variable.

An S-graph is a Directed Acyclic Graph (DAG) consisting of the following types

of nodes:

• BEGIN, END are the DAG source and sink nodes, and have one and zero children

respectively.

'States, signals that are fed back in the CFSM network, are treated as a pair of input and output signals
connected together.
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• TEST nodes axe labeled with a finite-valued function, defined over the set of input

and output variables of the S-graph. They have as many children as the possible

values of the associated function.

• ASSIGN nodes are labeled with an output variable and a function, whose value is

assigned to the variable. They each have one child.

Traversing the S-graph from BEGIN to END computes the function represented

by it. Output variables are initialized to an undefined value when beginning the traversal.

Output values must have been assigned a defined value whenever a function depending on

them is encountered during traversal of a well-formed S-graph. It should be clear that an

S-graph has a straightforward, efficient implementation as sequential code on a processor.

Moreover, the mapping to object code, whether directly or via an intermediate high-level

language such as C, is almost 1-to-l.

7.2.1 S-graph Optimization

An S-graph is optimized for speed or size by re-ordering the nodes to minimize

depth or size respectively. The actual re-ordering algorithm is implemented as dynamic

variable re-ordering using the "sift" algorithm introduced in [98] on the BDD representing

the CFSM characteristic function. There are three classes of variable orderings [5]:

• Ordering each output after its support yields an S-graph where all the decision com

putation is performed by TESTs. ASSIGN nodes are labeled with the data flow

functions (see Chapter 6 for the SHIFT architectural organization).

• Ordering each output before its support yields an S-graph without TEST nodes. Each
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ASSIGN node is labeled with the logical and of the enabling condition for the output

multiplexer and the data flow functions.

• Other orderings give an S-graph with a mix of TEST and ASSIGN.

7.3 Polis Approach to Software Synthesis

The S-graph^ introduced in Section 7.2, is used as an intermediate data structure.

The S-graph, as mentioned earlier, has a direct representation in a simple C code^ subset

(consisting of assigns, tests, conditional and unconditional branches) referred to here as

CFSM-C. The software synthesis procedure follows these main steps:

1. Translation of a given CFSM into an S-graph.

2. S-graph optimization (See Section 7.2.1) and code-size estimation (see Section 7.9).

3. Translation of the S-graph into a target language (CFSM-C).

4. Scheduling of the CFSMs and generation of the RTOS (see Section 7.6).

5. Compilation into machine code to be run on the target processor (left to the target

compiler).

7.3.1 An Illustrative Example

I now introduce an example that will serve to illustrate the previously mentioned

SW synthesis techniques (and also referred to in Section 7.6). Figure 7.3 describes a simple

is assumed to be the language the target compiler takes as input to generate processor specific machine
code.
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CFSM, implementing a seat belt controller that turns on the alarm if the driver does not

fasten the seat belt 5 seconds after turning on the ignition key, and turns off the alarm

after 10 seconds, or when the seat belt is fastened. The corresponding S-graph is shown

in Figure 7.4. A fragment of the C code derived from an S-graph implementing it (i.e.

CFSM-C) appears in Figure 7.5. The macro de'tect_key_on_'to_belt_control returns 1

if the environment has sent the event key on to the CFSM. The macro emit.alarm emits

the alarm event to the environment. The statement v st = 2 updates the CFSM state,

and so on. The method for obtaining code cost estimates at the system level (size in bytes

and time in clock cycles) is discussed in Section 7.10.

BELT

*KEY=ON

*KEY=OFF ^
*KEY=ON X

♦BELT=ON *START WAIT ) \

*BELT=OFF 7 f*KEY=OFF^ \ \
/ *BELT=ON/ 1 \
U^=> m \ 1X f fEND=5=> 11(Jni^Ji OFF ) ^ fALARM=ON

(alarm) /
*alarm=on\

*END=10or y
*ALARM=OFF N *BELT=ON or jC

S. *KEY=OFF=>
^*^^ALARM=OFF^^^^^ *START

»END=5 *eND=10

Figure 7.3: The CFSM of the Seat Belt Alarm Controller
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START ;=0

ALARM := OFF

Figure 7.4: The S-graph of the Seat Belt Alarm Controller

7.4 Polis Approach to Hardware Synthesis

Hardware CFSM components of a design in POLIS are implemented as Finite

State Machines (FSMs) that consist of a combinational part for the next state logic of the

transition relation and the data path, and latches (all driven by the same clock) for the

outputs and states. The result is a logic netlist (generated using classical logic synthesis

techniques) that can be mapped to a specific technology.

7.5 Optimization and Co-design Guiding Co-Synthesis

In the earlier Chapters, I described high level optimization and co-design. Those

steps give "hints" to the subsequent synthesis through the use of statements like register,

static ... for registers, and inline for inlining function calls for example. Micro-



void belt_control()

{

/* check key_on event */

LI: if(detect_key_on_to_belt_contrGl)
goto L3;

else goto L2;

/* check CFSM state */

L3; switch (v St) {

case 1: goto L6;

case 0: goto L4;

case 3: goto L14;

default: goto L7;

)

L7: if (detect_e_tiiner_e_end_5_to_belt_control) {

)
else {

goto LO;

/* update CFSM state */
LIO: V St = 2; goto LO;

/* emit alarm */

L12: emit_alann(); goto L13;

LO:

return;

}

Figure 7.5: C Code for the Seat Belt Alarm Controller
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axchitectural analysis can also guide synthesis. In particular when synthesizing statements

in C for the SW, or BLIF for the HW, the synthesis engine must know whether to inline a

computation as in the following code segment:

Example 7.5.1

X = ADD(a, b);

out = ADD(a, b);

or whether it should register this computation as in the following code segment:

Example 7.5.2

regl = ADD(a, b);

X = regl;

out = regl;

Such decisions can be guided by a critical path analysis in software and hardware

using the estimation approach described in detail in Section 7.9. Research into proper

micro-architectural guidance is still on-going within the Polis framework [73], and 1 will not

get into it here; 1 will always inline all the computations^ (therefore opting for maximum

speedup with no register pressure) unless a register has been identified by the high level

optimization and co-design and an architectural hint to this effect is provided to synthesis.

^Default in Polis
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7.6 The Real Time Operating System

We have focused in our discussion so far on performing function/architecture oi>-

timization of the function and architecture. Communication is a very important aspect of

the architecture; in particular for the execution of the SW tasks, the Real-Time Operating

System (RTOS) plays a significant role in the performance and size of the final output. It

is therefore critical to optimize the RTOS for the specific architecture. Embedded systems

are typicsilly implemented as a set of communicating hardware and software components.

Typically severed software tasks share a single processor. An RTOS is usedto enable sharing

and provide a communication mechanism between such tasks. While commercial RTOSs

are available for most widely-used micro-controllers and they provide a significant reduc

tion in design time and often lead to more maintainable systems, they are typically quite

general and inefficient. Quite often, when performance is crucial, RTOSs are hand-coded

by an expert for a particular application. This approach is obviously slow, expensive and

error-prone. To that end, I present here an overview of some of the work I have per

formed in this regard with fellow Polis team members'̂ ([8], and [5]) and emphasize the

function/architecture co-design aspects of it, where the architectural constraints and the

task function guide the RTOS synthesis process to generate an efficient RTOS. We endeavor

to generate "low-level and simple C code" to implement the RTOS services but, as we will

see, there is always an advantage to writing the services at the assembly level, however since

our RTOS is built around the application itself we almost always generate a better OS in

terms of size, and get quite close to, and sometimes surpass, hand-tweaked RTOS building.

"^Courtesy: Felice Balarin, Attila Jurecska
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As we will see, our technique can quite easily overcome other "high-level" approaches to

RTOS design.

7.6.1 Overview of Scheduling Policies

Scheduling policies for real-time systems are generally classified as follows:

• static or pre-runtime, where tasks are executed in a fixed cyclic order. This order may

or may not contain repetitions in order to cope with different expected task activation

times and/or deadlines.

• dynamic or runtime^ where the order of execution is decided at run time. Generally,

the execution policy is priority-based, in that, at each instant, one among the set of

ready tasks is dynamically chosen according to a priority order. Priority, intuitively,

is a measure of "urgency" of each task, and can in turn be determined

— statically at compile time, or

— dynamically at run time.

Moreover, runtime scheduling can be

—preemptive if the currently executing task can be suspended when another task

of higher priority becomes ready, or

— non-preemptive otherwise.

The trade-off is in responsiveness and efficiency. However for control-dominated

applications, typically the time of task readiness is unpredictable so it is more adequate to

go with a runtime scheme that either polls the tasks periodically in a cyclic fashion or is
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interrupt based. The underlying theory behind scheduling for real-time systems will not

be reviewed in detail here, and the reader is referred to the discussion found in [5] and the

references therein.

7.6.2 RTOS Synthesis in Polis

I present here a brief overview of RTOS synthesis in Polis, where the RTOS ser

vices (scheduler, event/value buffers, interrupts, etc..) are tuned to the specific application

at hand. The RTOS generated by Pohs for a given network of CFSMs has two major

responsibilities:

1. Provide communication mechanisms (i.e. define detect and emit functions) among

CFSMs implemented in SW and between the SW partition the OS is running on and

HW partitions, and

2. schedule the execution of the SW tasks.

In Polis, the user can choose between two basic scheduling algorithms to coordinate

SW CFSMS: cyclic scheduling, and static priority based scheduling. It is also possible to

choose between preemptive and non-preemptive versions of static priority based scheduling.

In either case, the RTOS keeps track of events a SW CFSM is sensitive to, and will not

execute it unless at least one of those has occurred since the last execution of the SW CFSM.

Therefore for each SW CFSM, and each event it is sensitive to, the RTOS maintains a flag

which is set when the event occurs, and reset when that SW CFSM makes a transition

Emitting an event thus requires setting these flags for all potential consumers. Detecting

an event is implemented as a macro that checks if a flag is set. The value of an event is
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communicated through a shared variable. While the RTOS distributes information about

event occurrence to all the detecting CFSMs, it keeps only a single copy of the event value

in order to save memory. The event emission and detection capability described above

is sufficient for communication between SW CFSMs. For communication between the SW

and HW CFSMs a "rendez-vous" style of communication is used, where the RTOS synthesis

routines request the user to identify a pool of resources that the OS can use. These include:

ports^ ISR tables, as well as the memory map for memory-mapped I/O communication.

This RTOS synthesis, and evaluation flow in Polis is shown conceptually in the flowchart

of Figure 7.6.

CFSM

Network

HW/SW

Synthesis
^RTOS '
\Synthesi^

Physical
Prototyping

Resource

Programmable Board
|iP ofchoice
FPGAs
FPICs

Figure 7.6: RTOS Synthesis and Evaluation in Polis
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7.7 Interfacing Polls to Commercial RTOSs

The Polis generated RTOS can be substituted with an existing real-time kernel.

The integration requires some modification by the addition of a wrapper layer aroimd the

automatically generated C code for the SW tasks, creation of new I/O tasks, and addition

of code for initialization of the commercial RTOS services. Care must be taken to prop

erly implement the Polis communication model, and preserve the semantics of the CFSM

network Model of Computation (MOC).

In the next section, I present some data to demonstrate the effectiveness of tuning

the RTOS to the application. The commercial RTOS I have used for the comparison for

the Motorola 68HC11 platform is CMX which is a typical representative of commercially

available kernels. It offers over 60 functions that enable the user to create multi-tasking

applications for embedded controllers. Task, event, message, resource, timer, queue, and

memory management take place through calling of these functions. The scheduler is based

on pre-emption, and interrupts. Tasks can also cause immediate task switch if they become

at a higher priority than the currently executing one. For the ARM7 target architecture

I compare Polis against the open source version of VRTXoc [127]. The following changes

were done to the normally Polis generated code to integrate it with the chosen kernel:

• The original Polis routines for emitting events have been changed to kernel function

calls that signal events. To ensure that a SW CFSM is executed only if some relevant

event happens, it is wrapped with code that awaits (by a system call) any event

the CFSM task is sensitive to, sets proper event fiags, and then executes the Polis

generated behavior C code.
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• The original polling task, has been re-implemented as an independent task triggered

by a periodic external event (target or host timer for example).

• A new main program initializes the RTOS kernel by creating and triggering tasks and

peripherals (if needed).

7.7.1 Experimental Setup said Results

I compared Polis generated and commercial RTOSs in several areas, namely®:

task execution, event emission, distribution and detection, I/O operation execution, con

text switching, control and data code execution times, number of lost events, and code size.

I report here some representative results based on emulating the very simple seat belt con

troller application example® presented earlier in Chapter 7 using a round-robin scheduling

scheme for simplicity. For this small example I compared the RAM and ROM requirements

as well as the following execution metrics (the same I/O primitives have been used and no

events were lost):

• Context Switch: is the event sequence resulting from execution context transfer from

the running task to a ready one. To be more concrete this includes overhead of switch

from task to the RTOS and then to the other ready task.

• Schedule Latency: is the time taken for an event sensed to "activate" the task awaiting

it (i.e. task is ready) and the time taken for that task to switch from ready to running.

This includes the cost of Event Delivery.

present RTOS synthesis vs. commercial interface results here to explain the advantages and limitations
of the synthesis approach, I introduce the general co-synthesis results in Chapter 9.

use a small sized application in order to make the RTOS effects more dominant; application memory
requirements are negligible with respect to that of the RTOS.
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• Event Emission: Timeit takes the task to emitan output, meaning registering a new

event with the RTOS as a result of the task's execution.

Note that I do not report Event Detection that is the time it takes the task to

"check" event presence in its internal buffers since I opted to use the same interned buffers

to be fair in the comparison and this number will always be the same for both, synthesized

and interfaced to, kernels.

68HC11 Target Processor

In order to validate the Polis generated RTOS and compare it against the CMX

RTOS for the Motorola 68HC11 micro-controller I used the prototyping environment at Ca

dence Berkeley Labs^ [112] which consists ofa complete Polis based design flow to generate

the final software and hardware elements including boards with hardware components, and

instrumentation (e.g. logic analyzer, emulator) as shown in Figure 7.7. This setup allows

us to:

• compile, link, and download the software parts into the target,

• program the hardware parts into FPGAs, and

• debug in real-time the software code running on the target architecture.

The memory requirement comparison is shown in Table 7.1. While it is apparent

that the Polis RTOS is much smaller than CMX the difference in RAM requirements is not

clear at first glance. The details of the RAM requirements are shown in Table 7.2, which

shows that since in Polis we use a "high-level" approach for RTOS synthesis using C code,

'^Courtesy: Cadence Design Systems, Inc.
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RTOS

CMX

Polis

Improvement

Code (ROM) IData (RAM)
3191 4588

1391 4753

56.4 % -3.5 %

Table 7.1: Memory Requirement (in bytes) Comparison for 68HC11



RTOS Heap Stack Data

CMX 512 2048 1796

Pohs 4096 256 155

Improvement -87% 88 % 91 %

Table 7.2: RAM Requirement (in bytes) Comparison for 68HC11

RTOS Context Switch Schedule Latency Event Emission

CMX 29 230 9

Pohs 101 184 9

Improvement -71 % 20 % 0 %

Table 7.3: Execution Time (in fis) Comparison for 68HC11
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and CMX uses hand optimized assembly routines the heap requirements are much larger

in Pohs. This is made up for by the fact that we use function calls for scheduling whereas

CMX keeps the function activation records on the stack and therefore has a large stack size

expenditure. The datasection ®is about 12times larger in CMX since the RTOS is generic

and therefore has a larger number of functions, and global variables.

The execution metrics are reported in Table 7.3. It can be seen that while the Polls

RTOS is clearly superior in terms of code size, the high level synthesis approach cannot beat

the hand optimized assembly services. But it does come close in overall schedule latency

(of course the reader should note that this benefit will dwindle with larger applications that

have more tasks as context switch cost starts to dominate), in fact attention must be made

in the interfacing and wrapping since the performance is fairly close an extra event buffer

for example could throw the balance in favor of Polls.

®The other segments (interrupt vector table, register set) are the same and not shown



RTOS Code (ROM) Data (RAM)
VRTXoc

Polis

13676

5128

556

432

Improvement 58 % 22 %

Table 7.4: Memory Requirement (in bytes) Comparison for ARM?

RTOS Context Switch Schedule Latency Event Emission

VRTXoc 4 52 19

Polis 2 14 4

Improvement 50 % 72 % 79 %

Table 7.5: Execution Time (in /is) Comparison for ARM7

ARMulator for ARM7
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For the ARM7 architecture we used [44] the ARMulator from ARM's SDK 2.50

and compared Polis's RTOS against the open source version of VRTXoc [127]. The memory

comparison results shown in Table 7.4 display that here Polis's RTOS is also quite superior

to that of VRTXoc.

Table 7.5 shows the execution time comparison. It is clearly visible that here Polis's

RTOS performs better than VRTXoc as well. The explanation is quite simple. VRTXoc is

also written in C, and there is no "assembly vs. C" advantage compared to Polis RTOS.

The benefit of using application specific RTOS optimizations is clearly visible here; while

the method of task invocation in VRTXoc is inherently better (stack-based in VRTXoc vs.

function calls in Polis), the smaller number of functions in Polis more than accounts for the

potential performance drawback of its call strategy. Of course the advantage that VRTXoc

presents is that it has several communication mechanisms not currently supported in the

Polis automatically generated RTOS such as queues, and messages.
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7.8 Optimizing the RTOS

I have sofar discussed the effects oftaking the application intoaccount and tuning

the RTOS synthesis, and I compared the output of this procedure to conventional generic

kernels, I have not discussed the effects of function optimization (see Chapter 4) and

architectural optimization (see Chapter 6) on the RTOS. Function optimization can lead to

significant improvement in the size of the RTOS, as well as in runtime by targeting task

level optimizations. The idea is that optimizations which reduce local variable^ in the tasks

reduce:

• Buffers in the RTOS: for the valued shared variables that are the value communication

mechanism in the CFSM model. This is reflected in code size of the RTOS ROM.

• Stack Overhead: is reduced for the task since it has a small number of local copies of

these variables performing the "samphng" at each task invocation.

• Call Overhead: is reduced since the stack itself is reduced. This is a performance

improvement that favors function c2l11s i.e. the performance of a function call based

approach is improved relative to an RTOS approach that keeps everything on the

stack. Of course it should be noted that this optimization improves the memory

requirement of the latter approach since the size of the stack is reduced.

Architectural optimization helps in the RTOS size and speed by performing data

type optimizations as discussed in Section 6.5.2 thus reducing the data type size of the

communicated information, saving in the call stack overhead and the RTOS buffer sizes.

®As I discussed earlier, FFG level optimizations do not change the I/O behavior so no event buffers are
affected, but value buffers that store global shared variables are, and the number of these buffers can be
significant.
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The previous comments indicate therefore that optimizations at the task level can improve

significantly the RTOS performance whether it is an externally interfaced RTOS service or

an apphcation specificRTOS. Results on RTOS optimization due to task leveloptimizations

are reported in Chapter 9. The optimization analysis can also potentially lead to other

improvements in the apphcation specific approach as discussed next.

7.8.1 Future Directions

Our aim in the RTOS generation is to use application specific knowledge to improve

the RTOS quality over commercial kernels. Results show that our approach is competitive

to generic kernels, and our aim here has been to emphasize the need for taking the ap

plication demands and the function specifics into account, and not just take advantage of

the architectural features, which is where most kernels spend their time optimizing. I ex

pect that a synergy between function/architecture and application is key to optimizing the

RTOS, and my investigation supports this conclusion. From the experimentation, I have

identified several potential areas for further optimization, these include:

• Function Calls: Using function calls to call the tasks from the scheduler is a straight

forward approach for automatic synthesis, but it needs to be compared against other

approaches in particular task inlining where tasks are inlined in the scheduler. This

promises to be quite useful in a cyclic scheduhng scheme to reduce the context switch

overhead.

• Macros and Pointer Comparison: These are currently used in the Polis RTOS for

event detection within a task, and also for event emission. This approach seems to be
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quite successful in advanced architectures (e.g. ARM7 results) but it is less favorable

(especially since it demands memory) on simple architecture platforms (e.g. 68HC11

results).

• Optimization Analysis: This technique can beused to guide theRTOS synthesis (en

compasses the first two bullets). For example heuristics can decide whether to inhne

a task or not based on the task body, parameters, as well as the current scheduling

policy.

While mypresentation hereisapplicable to anySW partitionwitha specific RTOS,

the current Polis synthesis restriction requires a single SW partition. We hope to lift this

restriction in the futme and explore scheduling and communication schemes across these

SW partition boundaries.

7.9 Measuring the Final Implementation Cost

There are several ways to measure the effect of the optimizations and subsequent

synthesis of software on the final implementation:

• Rapid Prototyping, and Emulation: A rapid prototyping and emulation environment

was presented in Section 7.6 [112] for performing some experiments. While this is

the most accurate implementation cost measurement method it is the most time (and

resource) consuming, and is not suitable for rapid high level guidance, or quickresults

feedback, however, in somecases there is nosubstitute for this either from the accuracy

perspective or from the benchmarking view. The alternatives listed below require
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an initial benchmarking and validating overhead that must be done on the target

architecture before relying on the simpler (less accurate) approaches.

• Target Architecture Profiling: This approach is quite accurate but is also time con

suming, and needs to be performed for every application (in fact every optimization

must be followed by a synthesis rim) so it is quite laborious. Instrumentation tools

help alleviate the laborious aspects of this process. For example I will use in some of

my reporting the pixie instrumentation of the ATOM analysis tool [108].

• Software Estimation: is the least accurate between the previously mentioned tech

niques, but if it is conservative and fast, it can be quite useful for synthesis result

comparisons where relative improvement measurement is of utmost importance, and

the absolute value is of secondary importance. For getting the absolute measurement

there is no substitute to profiling or emulation.

Software estimation is the main technique I use to evaluate the final implementa

tion, and the result of the function/architecture optimization and co-design approach. In

this Section I give an overview of this approach.

7.10 Software Estimation

In our optimization and co-design framework, software cost estimation can be used

for rapid evaluation of synthesis quality and hardware/software co-simulation without the

overhead of full prototyping of the system.
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7.10.1 Overview of Software Estimation in Polis

In the Polis system, code cost (size in bytes and time in clock cycles) is computed

by analyzing the structure of each S-graph node, for example:

• the number of children of a TEST node (a different timing cost is associated with

each child), and

• the type of tested expression. For example, a test for event presence must include the

RTOS overhead for event handling, and reading an external value must include the

execution time of the driver routine.

A set of cost parameters is associated with every such aspect, and is used to

estimate the total cost of each node. For example the costs in clock cycles on a 68HC11

target processor using the Introl compiler for the simple CFSM shown earlier in Figure 6.2

are displayed on the corresponding S-graph nodes in Figure 7.8.

(begin)

letect(c,

a:=0 a := a + 1

emit(y)

(end)

Figure 7.8: A Simple S-graph Annotated with Execution Cost
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The parameters can be derivedeither automatically, or by hand (e.g., by inspecting

the assembly code after synthesis and compilation for the target processor) as shown in

Figure 7.9. In the former case, the processor library maintainer needs to compile a set of

benchmarks and analyze their size and timing by using a profiler for the target system.

Template
Set

Target
Compiler

I
Target

Evaluation Platform

Extracted

Parameters

Figure 7.9: Parameter Extraction Flow

7.10.2 Modeling the Synthesized Software

The key aspect of the software performance estimation method implemented in

Polis, referred to in this dissertation as the macro-modeling method, is the fact that

the software synthesis flow is aware of the structure of the program being synthesized.

The S-graph structure (see Section 7.2) is very similar to the final code structure, and

therefore helps in cost and performance estimation. The procedures generated by Polis

which implement the task behavior can be represented by a simple model as follows [110]:

(1) function ( )

{
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(2) Initialization oflocal variables (assignment statements);

(3) Directed Acyclic Graph of if, switch, and assignment statements;

(4) Event buffer cleanup and return',

}

The execution time T{jpi) and code size 5 of a procedure that follows the above

structure can therefore be modeled as (adapted from [5]):

^(Pi) = ^pp + + 1'structivi)

S ^pp"b ^^init ~i" ^struct

Where:

• Pi is an execution path of the procedure,

• Tpp is the execution time for entering and exiting the function ((1) + (4) in the above

procedure model),

• Tinit is the average execution time for initializing a local variable ((2)),

• A: is the number of local variables, and

• Instruct is the execution time for the structure of mixed conditional statements gen

erated from TEST nodes in the S-graph and assignment statements generated from

ASSIGN nodes ((3) in the above procedure model). Tstruct is therefore the execution

time along a path determinedby the structure of (3) and the CFSM inputs as sampled

by the RTOS at the beginning of the transition.

Similarly, Spp is the codesize for enteringand exiting the function, Sinit is the average code

size for initializing the local variables, and Sstruct is the total code size for (3). As mentioned
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previously, an S-graph and the C code generated from the S-graph have the same structure,

and the kind of C statement (i.e. if, switch, or assignment) depends on the type of the

corresponding node (TEST or ASSIGN) and the associated variable type in the S-graph.

The execution time and code size of each C statement that appears in the S-graph depend

on the kind of C statement, the code generated by the target compiler, and the performance

of the target CPU. Therefore, the Tstruct and Sstruct can be modeled as

TstTuctiPi) = CtinodeJypejof{i), variableJtypeJOf{i)),

Ct(n,v) above is the execution time for node type n and variable type v , and

Sstruct = Cs(nodeJypeJOf(i), variableJypeJOf(i)),

where Cs(n,v) is the code size for node type n and variable type v. The target software do

main can be modeled by a set of Ct{n, v) and Cs{n, v). The assumptions and simplifications

made in the previous equations include:

• the target compiler does not perform global optimizations and

• the effects of cache and pipelining are neglected which allows both Ct{n,v) and

Cs(n,v) to be represented by a set of fixed cost parameters for each S-graph con

struct^^.

A set of cost parameters can be obtained if this approach is followed by using

simple benchmark programs containing a mix of the 0 statements that appear in the task

and analyzing the execution time and code size of these programs on the target compiler

^®This is true of most embedded processors today
^^This is a more serious limitation, and will be addressed shortly.
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and the target CPU as was shown earlier in Figure 7.9. Also, Tpp, Tinu, Spp, and Sinit can

be determined beforehand, because they are constant and independent of the structure of

(3) since in Polis global shared variables areused for value communication, and therefore no

parameter passing is done^^, and the number ofthese variables is known apriori.

7.10.3 Cost Parameters

Estimationin Polis uses a parametricmodelof the target processor and its compiler

in order to estimate the execution time and code size. The method consists of two major

parts. First the cost parameters for the target system are determined. Second, those

parameters are applied to the S-graph^^, to compute the minimum and maximum number

of execution cycles and the code size. The execution cost for any S-graph path can also be

computed of course but is not automated currently. Each node is assigned two specific cost

parameters (one for timingand onefor code size), depending on the type ofthe nodeand the

type of the input and/or output variables of the node. Edges also have an associated cost,

as the then and else branches of an if statement generally take different times to execute.

The parameters for execution time or code size correspond to the kind of C statements

generated from a node in the S-graph:

• a TEST node detecting the presence of a signal (which yields an RTOS function

call),

• a TEST node branching on a multi-valued expression (which yields an if or switch

statement),

'̂ Otherwise these costswould vary depending on the number and sizes of theseparameters
'^That is the S-graph is annotated with these costs
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• an ASSIGN node emitting a signal (which yields an RTOS function call),

• an ASSIGN node which assigns an expression to a data signal (which yields an

assignment).

In the case of a TEST node with two outgoing edges, the cost parameters for each edge

(i.e. the true case and the false case) are stored explicitly. For a TEST node which has

more than two edges, the execution time for the fc-th edge is represented as Tswitch —

Chase + kCcasey by using two parameters Chase and Cease- The other parameters for the

execution time and code size are defined for

• pre-processing and post-processingfor a C function (together these correspond to Tpp

and <Spp),

• a branch operation (generated from a goto statement),

• initialization of a local variable (corresponds to Tinit and Sinit),

• average execution time and size for pre-defined software library functions, and

• the size of integer variables.

Synthesized programs may also contain primitive data fiow and user-defined func

tions. Estimation is done for the primitive data flow functions such as ADD, and EQ by

considering an average execution time and code size for these pre-defined functions '̂̂ . To

improve the accuracy of the estimation for a program which contains these functions, or

to model user-defined functions the estimator takes additional parameters for each such

This is quite reasonable for a RISC type of architecture
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function. These additional parameters are defined with a quintuple: (name, maximum

execution delay, minimum execution delay, code size, and result bit width). With this

mechanism, hand-written functions or externally synthesized code called by a CFSM can

be characterized for software cost estimation.

7.10.4 Modeling a new processor: ARM

In orderto model a new processor, it is necessary to extract the costparameters for

that processor. The cost parameters aredetermined for each target system (CPU, compiler)

by using a set of sample benchmark programs. Each if or assignment statement which

is contained in these functions has the same style as one of the statements generated fi:om

a TEST or an ASSIGN node in the S-graph. The analysis can be done either with a

profiler or an assembly level code analysis tool for the target CPU. If neither a profiler nor

an analysis tool are available, it is also possible to specify each cost parameter according to

the architecture manual of the target CPU, by predicting the code generation strategy of

the target compiler.

We have recently used the macro-modeling approach described earlier to estimate

the execution speed and code size on the ARM7TDMI and the ARM920T processors [23].

The latter processor has a 4-stage pipeline, as wellas a 16Kb data cache and a 16Kb instruc

tion cache. We added these benchmarked processors to the Polis library that consists of

the MIPS R3000, and the Motorola 68332, and 68HC11 processors^®. Our estimated results

were validated with the ARMulator, and for the ARM7 the estimates were off by a con

servative (pessimistic) 10%-20%. For the ARM9 architecture, with caching and pipelining

^®Has been made available for release



198

effects, the estimates were off by 20%-30%. This experience led us to several interesting on

going research directions to address the shortcomings of the estimation method as discussed

next.

7.10.5 Limitations of the Software Estimation Technique and Future Im

provements

Clearly a more accurate analysis technique (e.g. for handling pipeline and cache

effects), for example based on a cycle-accurate model of the processor [97][66], is needed

to validate the final implementation. But both early synthesis result evaluation as well as

the architecture exploration phase can be carried out much faster, as long as the accuracy

of estimation is acceptable for the task at hand. I am exploring opportunities for stati

cally modeling caching and pipeline effects by trying to capture the essence of some of the

optimization techniques used to improve performance/code size in pipelined and cached

machines. Our aim is to understand why and how these approaches affect performance,

size, and power. If this can be accomplished then we can not only optimize for a target

architecture but also have a better handle on cost with rapid heuristics based on the opti

mization techniques thus developing a synthesis for predictability approach [89] where final

output can be estimated quickly staticallyand accurately. These CDFG^® level optimization

techniques include:

• TEST node rescheduling: this is currently limited to variable sifting as described in

Section 7.2.1, and does not exploit re-ordering based on the common path. If the latter

is done, not only is the code better, this restructuring has been shown by Castelluccia

^®S-graph
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and Dabbous in [27] as well as the references in that work, to improve code cache

layout The idea is to order the most frequently executed branches to be consistent

with compiler predictions and the final code output that determines the locality of

this code in the cache. In fact this optimization, by the same argument, improves

pipelining as the pipeline does not have to be flushed after every failed prediction.

• Function call inlining: where we estimate using simple heuristics whether a function

call will be inlined or not and this can save considerably by which measure the esti

mation is off (possibly an order of magnitude in estimation error). A simple heuristic

that compilers use was introduced in Proposition 6.5.1.

• Sharing of computations: where we can perform some early analysis (possibly us

ing the optimization engines) to determine the likelihood that an operation will be

"inlined" (i.e. computed again) or "shared" (i.e. used from a register). We can

simply for example see what the high level optimizations discussed in Chapter 5 had

recommended or hinted must be done, and tune our estimate to that likely scenario.

That said, let me re-iterate the basic idea. The macro-modeling technique by

Suzuki ([110]) can be improved on slightly with statistical techniques but it is close to the

best that you can doat the high level statically as opposed to compilation-based techniques

as in [71]. The crucial improvement would then be to optimize program behavior so that

it is close to the "ideal" predicted by this method so as the prediction will not be too

off, and remain useful in the early design phases. Another simple improvement to the

macro-modeling technique would be expanding the parameters to consist of set of values

that capture different eispects for example with inlining, with/without a cache miss, etc...
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as in the work of [72]. We can also solicit user input (profiling is not an option for rapid

estimation, while early "guidance" from the user is) on probabilities of test conditions in

order to identify the common path in the CDFG, in the same spirit of what I did for

operation motion in Chapter 5 but where we compute frequency of path execution in the

CDFG that is identify the common case as opposed to the visit probabihty of the states

(collection of paths) in the AFFG.

7.11 Hardware Estimation

As described earlier CFSMs implemented in hardware are currently synthesized

assuming that each transition requires exactly one clock cycle, by using classical RTL and

logic synthesis techniques. Estimation is performed on the BLIF (mapped and un-mapped)

network representation using structural estimation techniques on the multi-level logic net

work (see [102] for details).
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Part III

Overall Co-design Flow, Results,

Conclusions, and the Future
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Chapter 8

Function/ Architecture

Optimization and Co-design Flow

In the previous Chapters, I layed the foundation for the formal function/architecture

optimization and co-design methodology. I presented a suitable abstract representation on

which function/architecture trade-off is performed through refinement of the function, and

abstraction of the architecture in Chapter 3. I then focused on discussing optimization

of both control and data and how I introduced it into the co-design process as a cru

cial player in the analysis and redundancy removal of the information embodied in the

function as it is constrained by the application and architecture demands. I overviewed

architecture-independent optimizations in Chapter 4, architecture/function trade-offs in

Chapter 5, and then mapping of the function onto the architecture in Chapter 6. Integra

tion with synthesis was presented in Chapter 7. In this Chapter, I would like to give the



overall picture^, and the complete Vertical Integration of the overall co-design process using

the Function/Architecture Organization. The concept is demonstrated in Figure 8.1; the

co-design methodology I develop in this work aims to assist designers struggling with appli

cation demands, and the increasingdesign complexity starting from the highest specification

levels down to the final implementation.

Design

SW Pavilion

^ i

Decomposition

^ AFFG ,

CFSM Network

Application

m Function/Architecture

Optimization and Co-design

HW Pamuon

Hardware/Software

Co-synthesis

Figure 8.1: Overall Co-design Process: Concept Flow

'As promised in the Dissertation Contribution Section of Chapter 1
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8.1 Inter^CFSM Optimizations

I have focused so fax on describing task level optimizations where a CFSM task is

represented by the Architecture Function Flow Graph (AFFG), or intTTOrCFSM optimiza

tions that are independent of the task's implementation in hardware or software. In this

Section I motivate and then build a method for performing a flavor of »n£er-CFSM opti

mizations. Ideally, it would be most appealing if the lattice-theoretic information analysis

framework could be generalized and extended to capture the inter-CFSM processing net

work, followed by redundancy removal on the network as a whole. Realistically, however,

this is a hard problem at the abstract CFSM interconnection level because performing such

an analysis involves studying all the possible behaviors of the network (see Abstract In

terpretation of [34]). The analysis would become manageable (in the sense that suitable

heuristics can be devised) only if the implementation attributes of the network tasks are

fixed. In the case of an all HW concurrent implementation the problem is equivalent to

sequential optimization known in the synchronous hardware domain. A DFA framework

would be better suited in the latter case of hardware inter-EFSM optimization, in my opin

ion, because of the DFA framework's expressiveness and compactness (Tabbara in [111] is

evaluating such an approach). If an all SW implementation is chosen, and a task execution

schedule is known or can be derived statically then the analysis and optimization can also

be performed (as in the work of Murthy [86] in SDF).

Our goal here has always been to perform safe optimizations efficiently in a co-

design environment. Efficiency means that the designer can perform trade-off analysis

and optimization quickly given a function and a set of constraints, so carrying out a time
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consuming optimization cannot be part of the co-design steps in the framework intended

for architectural exploration and evaluation, but only at the final implementation steps

(preceded by Hardware/Software partitioning approaches such as [125] and scheduling).

Safety has meant throughout this work the preservation of:

1. The CFSM^ task I/O semantics, and

2. the CFSM network MOC semantics.

In order to preserve the CFSM semantics, and be able to perform an adequate optimiza

tion of the network as a whole, I therefore propose the following inter-CFSM optimization

approach.

Proposition 8.1.1 CFSM Network Optimization Approach In order to improve the

CFSM network performance (size and/or speed), we iterate on functional decomposition.

By exploring different task boundary configurations we can uncover a better network orga

nization where intra-CFSM optimizations can be leveraged more effectively, thus optimizing

the network performance as a whole.

This is the general idea; I make this statement more concrete in the next Section

where the functional decomposition strategy is presented.

8.2 Functional Decomposition

Because of the limitations on the scalability of synthesis engines (i.e. size of the

low level CDFG representation, for example the S-graph in Polis may explode for large

^EFSM in general, CFSM in Polis



206

tasks), users typically decompose a system into an initial modular description. This is the

initial functional decomposition we have been assuming so far where each such module

is represented as a CFSM task. However, the price of communication between CFSMs

may increase significantly (RTOS scheduUng and conununication overhead [6], as well as

interfaces among HW components) so this need not be the final functional decomposition.

My goal here is to improve this initial functional decomposition. The main idea behind my

procedure is that the larger the size of the task the more we can benefit from 2 aspects:

• The communication overhead between tasks is reduced (scheduling/interfaces), and

• the task optimizations will perform "better" as there are more uncovered opportunities

for optimizations that exploit the now broken boundary i.e. some of the mter-task

are now intrortask chances for enhancing the performance.

So what I propose to do is to break the CFSM boundaries by clustering the various

tasks. Since the CFSM Model of Computation (see [5]) guarantees that the composition

of CFSMs has the same exact behavior as the individual components together in the sys

tem, then this clustering is safe i.e. it preserves the system semantics. Furthermore, the

process of clustering two composed CFSMs currently involves building the product machine

for the two EFSMs^. This is, of course, now a synchronous composition^ and user input

and guidance may be required to make sure that the process does not over restrict the

sets of behaviors that the user had in mind since the asynchronous CFSM composition

includes a larger set of valid behaviors than the now combined single CFSM. The functional

^In the future, it might be possible to move computations between these 2 asynchronously composed
CFSMs without building the synchronous product machine
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decomposition procedure^ is shown in the procedure 8.2.1 flow chart below. This is the

conceptual approach where: starting from an initial functional decomposition at a modular

granularity, we perform greedy pairwise clustering based on a closeness metric ®

where closeness [122] is measured based on architectural communication cost estimates. We

then run the FFG/AFFG optumzation flow and compute an estimate of runtime and code

size. The process is iterated, thus building larger and larger tasks, until a previously set

(code, area) size threshold is reached which could for example be proportional to the size

of the instruction cache in the architecture or a limit on the HW component area, or we

reach diminishing returns in terms of runtime; this will eventually happen since typically

optimizations reach their usefulness limit when the control becomes too complex.

As I mentioned this can only be a "hypothetical" approach since the complexity

of clustering is O(m^) and the outer iteration is 0(m) where m is the number of modules

or tasks at the initial given granularity. While m is not typically large, the overhead spent

in optimizing each task is not trivial and will get costly as the tasks in the partition get

larger. A morepracticalapproachcan be conceived where both size and expected runtimeare

modeled as functions that constrainthe closeness metric to beginwith, so as not to incur the

overhead of actually calling the FFG and AFFG optimization algorithms. These functions

can be obtained heuristically based on a structural analysis of the FFG®, for example to

name some of the parameters: node count, average node size (i.e. operation count within

node), average in-degree, out-degree, and graph depth (see Chapter 4); the only complexity

^To clarify, this is a clustering approach so as to get us a better overall functional decomposition.
^Alternatively (with some extra complexity) we can find the strongly connected components, or use

Kernighan/Lin [60j k-way partitioning.
simple function for size could be the total of all operations in the FFG, and for runtime the number

of operations in the longest control path.



208

Procedure 8.2.1 Conceptusd Functional Decomposition Improvement Using

Clustering

Initial Modules

Decomposition

Clustering

Representation
FFG/AFFG

Optimizations
FFG/AFFG

Optimizations

<^stimatio^

ize < Tbresho

ume impro

Co-Synthesis

Yes: iterate



209

involved is that of building the FFG at the front-end, data is collected while building the

graph. We therefore perform a constrained greedy pairwise clustering based on a

closeness metric which is also polynomial in the number of modules m (i.e. 0{7n^), and

0{m^) for overall flow) but there is no intermediate optimization step cost (again m is

tjrpically small). The practical procedure, shown in the flow chart below, serves to improve

the functional decomposition starting point for our optimizations, and to benefit from the

mter-CFSM optimization potential.

Procedure 8.2.2 Practical Functional Decomposition Improvement Using Clus

tering

Constrained

Clustering

Initial Modules

FFG
High Level

^Estimation

Optimization
and

Co-synthesis



210

8.3 A Comprehensive Function Architecture Co-design and

Optimization Flow

Pulling together all the methodology and practical algorithms and heuristics, the

concrete implementation of the concepts outlined in Figure 8.1 is shown in Figure 8.2. After

the user inputs the initial functional decomposition, constrained clustering using high level

estimation on the FFG identifies a better functional decomposition for the system tasks

that is more suited for optimization. This is then followed by the architecture-independent,

and architecture-dependent optimization phases, and then HW/SW, RTOS, and interface

co-synthesis.

8.4 Software Implementation

This brief Section is included for Research Transfer purposes and can be safely

skipped by the un-interested reader. Further documentation can be found in the updated

Polis manual [94]. The function/architecture optimization and co-design methodology has

been integrated into the Polis co-design framework [94]. The FFG and AFFG optimization

algorithms have been implemented in four components, as Figure 8.2 shows, that operate

on the FFG internal representation successively refining it in the top-down flow with at

tributes, I have chosen to expand on Polis's framework of point tools which permits ease of

experimentation, and the building of user-defined flows, so CLIF (see Appendix A) is used

for data interchange^ among the different optimization and co-design engines. Internally

^Default in current toolset; alternatively, an API is available for the building ofexecutable flows instead
of the "shell"-based approach
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these components have a default optimization flow which can be modified interactively or

through code modification of the default API call set. These components are:

1. Front-end: The Esterel compiler is used to build the EFSM from the Esterel input

description. oc2clif augments the front-end analysis and builds the internal FFG

representation.

2. Function Optimization: clifopt performs this step on the FFG representation.

3. Macro-level Optimizations: clifmap implements this refinement and optimization

step on the AFFG representation; it assumes the CFSM network semantics, and the

SHIFT macro-architecture, unless otherwise specified®.

4. Micro-level Optimizations: clif2shift performs this step starting from the AFFG

representation using the AUX/SHIFT micro-architectural constraints.

5. HW/SW, RTOS, and Interface Co-synthesis: using the Polis engines guided by the

SHIFT/AUX, and user-specified resource pooP constraints as discussed earlier in

Chapter 7.

The toolset is shown in Figure 8.3. As displayed in the Figiure (and Figure 8.2),

the tools can be integrated into any co-design environment, the architectmal constraints

that guide the toolset need only be changed. The FFG/AFFG design task representation

on which the toolset operates has been implemented in C++ using an infrastructure of data

types and access methods from the Library for Efficient Data types and Algorithms

®In which case user must modify the API, and point to the target architecture's own (user-defined)
optimization methods.

®Polis architecture configurationfile



Esterel

oc2clif other2clif

clifopt

rAFFG

clifmap

clif2shift clif2other

HW/SW

Co-svnthesis

Architecture

Constrainis

Macro-Architecture

FFG Attribute/Guidance

{CUF Annotations/Directives)

Micro-Architecture

AFFG Atiribuie/Guidance

(ACUF Annoiations/Direciives)

Figure 8.3: Overall Co-design Process: Toolset Flow



214

(LEDA)^° in particular the [75]:

• Parameterized Graph data type: derived from directed graph data type realized by

doubly linked lists of nodes and edges. Most operations take constant time, while

iterators typically take 0(n + m), n being the current number of nodes and m the

current number of edges.

• Linear Lists data type: realized by doubly linked linear lists; all operations used in

the toolset on this data type tahe constant time except for search and ranh^^ which

take linear time (0(n)) in the number of elements n.

• BPS, and DPS: breadth first and depth first search algorithms that operate on the

parameterized graph.

The BitSet data type is somewhat clumsy in LEDA^^ and therefore the Gnu

libg++^^ Bit manipulation package has been used instead for convenience '̂̂ . Other C++

(and C) data structures ([129]) were built by the author to augment the aforementioned

ones, for example to store attributes in the AFFG. My software architecture design fol

lows Object Oriented Programming (OOP) techniques (see the notable work of Booch in

[24]) so my algorithmic contribution is preserved in the (well documented) C-I-+/C code

implementation in addition to this dissertation and the manual write-ups.

^°LEDA Version 3.3 with g++-2.7.2 on Alpha OSF and Sparc Solaris, also tested on the most recent (at
time of this manuscript preparation) LEDA Version 4.0 with MSVC-I—I—6.0 on the Windows NT platform

^^Used to implement "hashing"
Version 3.3 does not have one, while the dynamic integer set found in version 4.0 does not work correctly

on the aforementioned Sparc and Alpha platforms
"Version 2.7.2
^^BitSets can contain logically infinite sets of non-negative numbers in libg-f-1- and have an optimal

representation, and a wealth of operations.
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Unfortunately, sound methodologies and processes that enable design re-use and

component-based design, and permit developers to concentrate on creating algorithms and

techniques that deal with the real issues (instead of the mundane) have still not taken hold in

the software and hardware design communities yet. For best portability of the toolset code,

and to relax the current dependence on LEDA^®, I am currently attempting to rebuild the

aforementioned data type foundations in Java within the NexSIS effort [111] in conjunction

with developing techniques^® for SoC IP assembly (see Chapter 10).

Research License

^®Courtesy: Abdallah Tabbara, NexSIS Architect
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Chapter 9

Synthesis Results

In this Chapter I report various results to support my claim that function/architecture

optimization and co-design is indeed an improvement over other current day co-design ap

proaches. I compare the improved and original co-design process using the Polis co-design

tool; the results that compare the Polis methodology to other approaches reported by

Balarin et. al. in [5] (such as the synchronous composition done in Esterel [16]) carries by

transitivity since I use Polis here as the baseline^. I will, unless otherwise stated, present

results for the (A)FFG Tree Form which, as I described in earlier Chapters, provides for the

best quality output. The reader should also assume that all the aforementioned optimization

techniques have been applied except Relaxed Operation Motion (ROM), unless otherwise

stated. I will dedicate later in the Chapter several result tables and analyses for the latter,

and also compare the Tree vs. the Shared DAGform in terms of output quality and running

times, but report in the main result tables what the toolset default^ co-design flow obtains.

^Of course, the reader should keep in mind that my approach can also be applied in otherco-design tools
thus improving their output quality as well.

^Tree Form with no ROM
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The results have been collected by exercising several representative applications with typical

input, and validating by trace comparison^ with the golden trace-, both obtained from the

application designer.

9.1 A Communications Domain Application Example: An

ATM Server

9.1.1 The Design

Let us consider a case study from the communication networks domain: an ATM

server [26]. The target system is a server that performs support control functions for ATM

Virtual Private Networks (VPN), like the control of the bandwidth of the outgoing flow,

and a message discarding technique to avoid node congestion. Virtual private networks

are used to interconnect LANs of multi-site users. An ATM backbone is used in order to

provide efficient use of resources in a changing traffic scenario. The input of the system is

a stream of ATM cells belonging to the set of active Virtual Channel Connections (VCC).

Cells are buffered inside the switch. The buffer is divided into FIFO queues, one for each

output Virtual Path Connection (VPC). Cells are forwarded to the properFIFO according

to the entries in the internal routing table as shown in Figure 9.1.

The ATM server performs the following functionalities:

• Statistical multiplexing of the incoming flows.

• Buffer management: the Message Selective Discarding (MSD) technique avoids node

^In addition to the FFG Interpreter (the FFG simulation engine), and the VHDL validation method
described in Chapter 2
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Figure 9.1: Operational View of the Buffer Inside the ATM Server

congestion by preserving the integrity of messages.

• Egress policing: the bandwidth of the outgoing flows is controlled by a Virtual Clock

scheduling technique that provides fair bandwidth allocation among the queues.

In Figure 9.2 a high-level description of the functional blocks is given. The timing constraints

of the system are tight. The processing of every incoming cell has to be done before the

next cell arrives, i.e. within 2.72//S, for a link rate of 155 Mbit/s.
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9.1.2 Modeling the Design

The system has been modeled as a network of 15 CFSMs in Polls. This is con

sidered to be a medium to large design example; a very large design is typically composed

of twice as many CFSMs. Esterel is used to describe the blocks, then the design is manu

ally partitioned into hardware and software modules. VHDL co-simulation has been used

to validate the system (using the method described briefly in Section 2.3), and evaluate

the partitioning and the implementation alternatives [43]. After this partitioning step I

have endeavored to apply the function/architecture optimization approach to see how to

improve the size and performance of design tasks; you should recall that in the architecture-

dependent stages I opted to bias optimizations towards better runtime (See registering at

the macro-architectural level described in Chapter 5, and inlining computations at the

micro-architectural level described in Chapter 6).

9.1.3 Synthesizing the Controller

I report here results for the controller synthesis and compare the original synthesis

process in Polis, and my improved synthesis process that incorporates optimization and co-

design performed on the (A)FFG design representation. Table 9.1 shows the results for SW

synthesis of the various design tasks; The memory and sub_sort tasks have 2 instances each

in the design (one instance only shown in Table). The results axe estimates for average

runtime and code size on the target platform using the macro-modeling method described

earlier in Section 7.9; for the Alpha I have used the pixie instrumentation of the ATOM

analysis Tool for profiling [108]. In detail, the SW platforms are:
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• Alpha 21164 64-bit (400 MHz) processor: representing the high end 32-bit and 64-

bit RISC processors such as those cited in the EEMBC [40] suite using GNU's gcc

compiler with the highest level of optimization'^ since gcc has been ported to

most of these embedded processors in the form of the Cygnus GnuPro compiler [35].

• ARM7 and ARM9: family of Harvard architecture RISC processors where the esti

mation is derived from benchmarks run on the ARMulator using the ARM Software

Development Kit® (see Section 7.10.4).

• Motorola 68HC11: representing the 8-bit/16-bit data (4 MHz) widely used CISC

micro-controllers where the estimation is derived from benchmarks run using the

Introl compiler and debugger.

The results in the Table are ordered based on the CDFG node coimt improvement

(from high to low). The number of nodes is roughly proportional to code size, in reality

node type must also be taken into accoimt, so estimation and profiling techniques must

be applied as shown in the adjs^ent columns. The results show that for most cases we

have a sizable improvement in both runtime, and code size. The improvement varies with

the specifics of the target architecture but it can be clearly seen that the improvement

can be up to 25 %. Tasks that have a considerable data computation portion reflect the

most improvement as exemplified by first .cell the 4th task listed in Table 9.1 which

displays an improvement on the order of 20 % in both runtime and code size on the various

architectures. The rest of the top 5 tasks show an improvement of about 9 % in runtime,

and twice that in code size except for space.controller where code size increases. Let

^gcc -03
®SDK V. 2.50
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Task CDFG Alpha 21164 ARM7TDMI ARM920T 68HC11
under Co-design nodes cycles bytes cycles bytes cycles bytes cycles bytes

memory 17 134 1112 4114 520 2921 544 253 345

memory 12 122 856 4114 376 2921 396 244 257

% Improvement 29 9 23 0 28 0 27 4 26

space_controller 118 160 1928 586 1260 471 1320 817 951

space.controUer 90 152 2156 524 1256 439 1312 800 923

% Improvement 24 5 -11 11 0 7 1 2 3

Iqm-arbiter 128 142 1948 425 2288 402 2376 443 1578

Iqm-arhiter 99 141 1564 405 1712 383 1800 404 1298

% Improvement 23 1 20 5 25 5 24 9 18

first_cell 137 260 3004 784 1608 682 1640 734 1112

first.cell 112 198 2368 688 1320 580 1352 588 898

% Improvement 18 24 21 12 18 15 18 20 19

extract-cell 100 109 1216 396 1112 304 1180 314 918

extract.cell 89 104 1144 343 992 283 1048 298 780

% Improvement 11 5 6 6 5 7 11 5 15

subjsort 175 369 5008 770 2324 700 2352 800 1728

sub-sort 161 336 5360 734 2388 662 2420 734.5 1902

% Improvement 8 9 -7 5 -3 5 -3 8 -9

msd_technique 260 178 3796 639 3244 496 3372 572 2525

msd.technique 241 177 3448 587 2984 485 3100 572 2281

% Improvement 7.3 1 9 8.1 8.0 2.2 8.1 0 9.7

counter 27 92 740 371 500 317 516 274 317

counter 27 81 588 371 500 317 516 274 317

% Improvement 0 12 21 0 0 0 0 0 0

supervisor 90 201 2136 971 1236 677 1264 535 713

supervisor 90 191 2124 965 1228 671 1256 524 703

% Improvement 0 5 1 1 1 1 1 2 1

sorter 17 70 516 356 300 264 316 206 189

sorter 17 69 492 356 300 264 316 206 189

% Improvement 0 1 5 0 0 0 0 0 0

arbiterJSC 22 49 412 222 396 188 424 198 318

arbiter.sc 22 49 412 222 396 188 424 198 318

% Improvement 0 0 0 0 0 0 0 0 0

arbiter_sorter 22 60 464 233 412 200 440 208 324

arbiter.sorter 22 61 464 233 412 200 440 208 324

% Improvement 0 -2 0 0 0 0 0 0 0

collision-detector 20 130 904 392 692 364 748 395 0'3

collision.detector 20 132 904 392 692 364 748 395 13

% Improvement 0 -2 0 0 0 0 0 0 0

Table 9.1: Software Synthesis Results for ATM Server Co-Design
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us now examine these tasks that do not have a uniform improvement in both runtime and

size. Task space-controller and to a lesser degree the sub_sort task trade-off code size

for speed. In fact, examining the synthesized C code confirms my conjecture and shows

that indeed the rimtime improvement is the result of using a pre-computed value in the

optimized output as opposed to performing the computation again®. The bottom 4 tasks

do not show any improvement at all, and the synthesized code is identical; the negative

improvement in the profiled output^ can be explained by the fact that I am exercising the

application as a whole so it is quite conceivable that resource pressure (such as register

pressure and subsequent "spill" into memory) would account for such minor jitter.

We can also estimate the overall system improvement in the following fashion:

• Apphcation size: consists of two components, the RTOS size and the cumulative task

size, so we can use the sum of the RTOS size (see Section 7.8 for an explanation of

why and how the RTOS is improved in my co-design approach) and the total task

size as a measure of the overall code size improvement.

• Application speed: can be estimated for a specific scheduling poHcy. For example I

will present shortly results for a round robin scheduling scheme. If we neglect the

RTOS improvement in terms of context switch and task calls (measured for a simple

application in Section 7.7.1), the overall speed improvement can be obtained for a

cyclic schedule with no repetition by adding up all the speed improvements in the

tasks themselves.

can tell the interested reader that copy propagation was the key that enabled this computation re-use.
^Assuming perfect profiling even though a 1-2 % error is reasonable



Co-design
Process

RTOS Size

(Alpha bytes)
Overall Code Size

(Alpha bytes)
Overall Speed
(Alpha cycles)

Original 39652 72319 1954

Improved 36072 58828 1813

% Improvement 9 19 7

Table 9.2: Estimated Overall Improvement for the ATM Server Co-design
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Table 9.2 shows the RTOS size improvement to demonstrate how the RTOS size is

indeed improved, and then gives an estimateof the overall sizeand speedimprovement of the

ATM server application assuming a round-robin scheme®. The Table shows an RTOS size

improvement of9 %, an overall improvement in code size of19%and a speed improvement of

7 %. Ofcourse thisapplication iscontrol dominated and we would expect more improvement

the moreabundant data computations are; these suspicions will be confirmed shortly.

I think it is worthwhile for me here to re-emphasize a point I had made in the

"proof-of-concept" example of Chapter 3; a point that is shown clearly in this Chapter in

the results of Tables 9.1 and 9.2. An optimizing target compiler does not uncover all the po

tential optimizations when applied on the low-level CDFG representation, other e there

would've been no improvement results in the aforementioned Tables. Since the optimization

approach introduced in this work does indeed result in a significant® then there is a tremen

dous value in applying "compiler-like" optimization techniques at the high representation

level (i.e. FFG/AFFG), and even more so if such techniques are guided by constraints that

are solicited from the user, and others derived from the tetrget architecture. I present results

on guided optimizations in Section 9.3.2, let us now examine the effect of optimizations on

the synthesized hardware.

^This is the scheme used in the profiling of Table 9.1 in order to be fair to the tasks.
®Again, even moresignificant in data-rich examples as we will see shortly
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For hardware synthesis I report results on 3 representative tasks from the ATM

server design: f irst.cell, lqm_arbiter, and sub_sort ordered based on improvement in

BLIP network node count from least to best. The results are measured from an unmapped

implementation-independent optimized (using script.rugged from SIS [102]) BLIP network

and shown in Table 9.3. Results clearly show expected speed improvements when the

network is mapped to a target library as reflected by the literal count in the Sinn of Products

(SOP), and size (area) improvement as reflected by the node and latch counts shown.

Since the HW optimizations at the low level examine the circuit as a whole, they in fact

manage to look at much more global optimizations than their counterparts in SW which get

bogged down by the task call (invocation) boundaries as I discussed early in this dissertation

in Chapter 3. The downside, of course, is that these optimizations are heuristics, not

algorithms, and also are performed on a very low granularity so they run out of steam soon

as the tasks become larger. The largest task that can be handled in acceptable "compilation"

time consists of about 500 nodes, I had to stop the unoptimized version of sub.sort after over

10 minutes of CPU time, and report the numbers before the low level HW optimization^®.

The reader should also note that the outputs of these tasks, and inputs from other tasks to

these tasks will also be optimized by the bit-width optimization discussed earlier as part of

the micro-architecture optimizations in Chapter 6 (not shown in Table).

script.rugged of SIS



HWTask BLIP nodes BLIF latches Literals (SOP)
first_cell 278 160 1402

first-Cell 275 153 1317

% Improvement 1 4 6

Iqm^biter 188 152 789

Iqm-arbiter 134 107 593

% Improvement 29 30 25

subjsort 885 226 21408

sub-sort 200 137 850

% Improvement 77 39 96
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Table 9.3: Hardware Synthesis Results for ATM Server Co-design

9.2 An Automotive Dashboard Controller

Before tiurning our attention to representative data rich examples, let us consider

another control dominated design. The apphcation is a simplified car dashboard controller

from theautomotive domain adapted^^from theone described in [5] anddistributed with the

Pohs codesign tool. The system depicted in Figure 9.3 is modeled in a hierarchical fashion.

There are five computation chains: the speedometer, the odometer, the tachometer, the

fuel and water, and the belt controller. Each computation chain is a network of CFSMs.

This is a relatively large design example composed of 30 CFSMs; and a larger

number of computations than the ATM sever presented in the previous section. Table 9.4

displays the original and improved co-design process estimated SW synthesis results on

the Polls benchmarked architectures for a few design tasks. We can see the same order of

improvement, about 10-30 % in runtime and code size, as that found in ATM (slightly better

simplified the AUX by removing the bit sizing done manually (within the AUX module instantiation)
in the distributed example with Polis [94], and moved constant declarations to inside the modules in order
to emphasize the ability of the improved process to automatically uncover constants, and size the bit fields
of internal/output variables as I described in Chapter 6.

Ordered by improvement in CDFG node count
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Figure 9.3: Automotive Dashboard Controller (from [5])

results because of the increased number of computations and constant manipulations); this

is typical for control designs that have some computations. My observations i.e. RTOS size,

and overall size and performance, done in the previous Section carry over to this example^^

where the size of the RTOS is reduced by over 15 %. These observations indeed apply

to typical control-dominated applications.

9.3 Results on Data-rich Control Designs

In this section I use some benchmarks from the literature to demonstrate the

effectiveness of the optimization and synthesis approach in the quality of the output. I

intend to demonstrate on these examples the benefits of incorporating optimization into

the co-design process of control-dominated designs that have "intelligence" embodied in a

significant data computation portion.

^^Size of tasks cannot be neglected in this rather large example, also improvement in context switching
must be taken into account.



Task CDFG ARM7TDMI ARM920T 68HC11
under Co-design nodes cycles bytes cycles bytes cycles bytes
alarm_compare 30 309 484 284 500 278 314

alarm.compare 12 262 296 234 312 196 190

% Improvement 60 15 39 18 25 30 39

speed_cross_display 200 1097 4488 1055 4504 7558 5137

speed-cross.display 124 1016 3536 972 3552 6784 4037

% Improvement 38 7 21 8 21 10 21

belt 73 422 1236 363 1276 482 850

belt 49 361 948 298 988 328 676

% Improvement 33 15 23 18 23 32 21

engine_cross_display 201 828 3400 784 3416 4183 3361

engine-cross.display 137 782 2584 738 2600 3734 2387

% Improvement 32 6 24 6 24 11 29

debounce 33 368 628 349 644 309 350

debounce 25 327 512 304 528 276 307

% Improvement 24 11 19 13 18 11 12

speed_count_pulses 26 347 448 289 468 237 276

speed^count.pulses 20 336 380 277 400 235 251

% Improvement 23 3 15 4 15 1 9

measure-period 44 383 736 324 768 319 506

measure-period 39 346 672 285 704 288 483

% Improvement 11 10 9 12 8 10 5

odo-count-pulses 44 487 828 438 848 408 496

odo-count-pulses 41 465 764 414 784 395 481

% Improvement 7 5 8 6 8 3 3

Table 9.4: Software Synthesis Results for Car Dashboard Controller Co-design
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9.3.1 Benchmarks from the Softwsire Domain

I present here results on two benchmarks from thesoftware domain: Quick Sort^^

fragment example used by Aho in [2], and Insertion Sort^® fragment from [129]. Both

fragments are shown in Figure 9.4 where I and r are the left and right boundaries of the

array to be sorted. I have adapted the examples to be reactive by periodically reading from,

and writing to, the external environment. These examples have been used quite extensively

in the software optimization domain, and I hope they will serve here to put my optimization

and co-design approach in perspective.

I = I; J = r; V= a[r];

while(1)

{

do j = i +1; while (a(il < v);

do j = j -1; while (a[fl > v);

if (i >= j) break;

X= a[i]; a[i] = aQ]; aQ]= x;

}

X= a[i]; a[i] = a[r]; a[r] = x;

Quick Sort Fragment

for (i = 1+1; i <= r; i++)

{

tmp = ap];

for 0 = i; {(tmp < ap-ll) && G>l)); H

ap] = aO-IJ;

ap] = tmp;

}

Insertion Sort Fragment

Figure 9.4: Software Benchmarks

Synthesis results for a SW implementation are displayed in Table 9.5. It can be

seen from the data that the representation and consequent optimizations are able to improve

considerably final code quality in all cases. We can also see a case (Insert task) where

the high level optimizations prevented design explosion. The latter, as we have seen from

algorithm
^^0{nlog{n)) algorithm
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Task CDFG Alpha 21164 ARM7TDMI ARM920T 68HC11
under Co-design nodes cycles bytes cycles bytes cycles bytes cycles bytes

quickjsort 327 439 7392 820 4108 833 4176 1165 2797

quicksort 219 153 3188 434 2304 414 2364 592 1540

% Improvement 33 65 57 47 44 50 43 49 45

insertionjsort SHIFT explodes
insertionsort 246 142 3444 529 2732 488 2780 516 1761

% Improvement unlimited

Wit 1 ROM earliest possible placement Further Optimization
quicksort 219 153 3188 434 2304 414 2364 592 1540

quick_sort 194 195 3000 484 1876 415 1916 554 1087

% Improvement 11 -22 6 -10 19 0 19 6 29

With ROM lifetime minimization Further Optimization
quicksort 219 153 3188 434 2304 414 2364 592 1540

quick_sort 191 195 2976 432 1856 414 1896 549 1086

% Improvement 13 -22 7 1 19 0 20 7 29

Table 9.5: Software Synthesis Results for Benchmarks Co-design

the results of Table 9.3, is a quite common occurrence in hardware synthesis because of

the smaller granularity of the low level representation. The size of the RTOS (on Alpha

platform) for the Quick Sort design is reduced by 45 %. The results are pretty impressive,

and serve to show that the conventional co-design flow is unable to handle the optimization

opportunities available in the benchmarks because of the presence of a considerable data

computation portion, while the improved co-design flow comprised of both data flow and

control optimizations is able to manage quite well.

The second part of Table 9.5 shows the result of running ROM with earliest possible

placement additional optimization onto the earlier result of co-design. The data shows that

clearly register pressure can be felt on architectures that are not register rich particularly the

Alpha and the ARM7; this is less of an issue for the ARM9, and almost a non-issue for the
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CISC 68HC11. The task code size is improved significantly^® by about 10-20 % however the

additional register have a "side-effect" cost in the RTOS buffers; the RTOS (not shown)

grows by 7 % and this tempers the overall benefit. Since the task size dominates over the

RTOS size in this example, overall the earliest possible placement does have its benefits, the

additional registers (beyond what the macro-architectural analysis recommended initially)

seem to help slightly in terms of code size no matter what the target architecture^^. The

third part of the Table displays the data for attempting to use ROM but with lifetime

minimization to alleviate the register pressure problem. Clearly, the situation is better

when the lifetime of the registers is minimized; but we see it does not radically change the

problem and rather improves the result for register rich RISC architectures, and for the

code compact CISC. The careful reader should suspect that the profiled result is teUing

us something, and the picture for the other architectures (ARM, and 68HC11) is not as

rosy as the estimation^® paints. The reader is correct; profiling gives a measure of output

cost based on frequency of execution of the various branches in the reactive task. Creating

additional registers is bound to reach the point of limited return and in fact, as we see from

the above results, start to be more expensive if ROM is not guided. I address this issue in

the next Section by revisiting the Reactive Knoop example I introduced in Chapter 5, and

evaluating the cost-guided version of ROM.

Before concluding this section I would like topresent some data to compare the

average execution times of the original and improved co-design process where the latter uses

^®In fact, computations (i.e. sub-circuits in SHIFT) are reduced by 40% (not shown explicitly in Table)
^^Speaking generally, of course, if a certain task in on the "critical path" (for example is repeated quite

often in the schedule) then ROM is ideal for optimizing such a task, and improve overall performance on
candidate architectures, and code size significantly.

^®which averages min and max of runtime
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the (A)FFG Tree or the Shared DAG form. The first two rows in Table 9.6 compare the

time it takes to build the SHIFT representation in the improved process starting from the

designer input including:

• The fi:ont-end analysis and building of the FFG,

• the FFG functional level optimization,

• the AFFG macro-architectural level optimizations,

• the AFFG micro-architectural level optimizations, and finally

• the mapping of the AFFG onto SHIFT

and the time it takes the original Pohs fiow firom the firont-end analysis to the immediate

building of SHIFT. The Table uses the CDFG node count as a rough estimateof the output

quality, and the Alpha cycles and bytes as a more accurate measure; the lower the numbers

the better the expected output. The percentage colunms compares the data of the improved

(Tree, or DAG form) flow to the original. The data is for the Quick Sort benchmarkbecause

it is quite large and rich with optimization opportunities. Without a doubt, the results show

that the larger the size of the input the slower the low level CDFG build and optimization

algorithms are. Building the CDFG is proportional to n? in the number of the FFG nodes

71, while the optimizations take constant time on average (see Chapter 4) and only take

0(n^) in the worst case. Since most of the time is spent (as the data shows) at the low

level, the optimizations make a lot of sense at the high level; they speed up the process

tremendously and result in a substantial benefit in output qualityIt is interesting to

19This is truly a win-win situation!
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Co-design
Steps

Original
Flow

Improved
(Tree)

%

Improv.
Improved

(Shared DAG)
%

Improv.
DAG vs.

TVee

SHIFT

build (sec) 0.24 3.56 -93.3 2.66 -91.0 25.3

CDFG

Synthesis (sec) 8.12 1.00 87.7 5.98 26.4 -83.3

Overall

Time (sec) 8.36 4.56 45.5 8.64 -3.2 -47.2

Output Quality Comparison
CDFG

(node coimt) 327 219 33 240 27 -9

Alpha
(bytes) 24944 13256 47 13488 46 -1.7

Alpha
(cycles) 439 153 65 158 64 -3

Table 9.6: Time and Quality Comparison for the Quick Sort Benchmark Co-design

examine the comparison in the Table of the running time and quality of output between

the FFG Tree and DAG representation forms. For this large data-rich example the Tree

elaborate form is a clear victor in the quality and the running time because of the dominance

of the low level CDFG synthesis on the running time. It should be evident to the reader

that these comparison results apply only to such examples and not small and/or mostly

control examples^®. In this latter case, the situation is typically reversedwhere optimization

analysis cost is more dominant and using the DAG form starts to make sense.

So, to sum up this discussion, we again have a "continuum^^" of trade-offs, and

knowledge of the target application can adapt the co-design flow to be as best as possible:

the DAG form should be used if there is a very limited optimization potential to maximize

use of the designer's time; if on the other hand quality is of utmost importance, and the

course, the large and rich in data examples are what I am targeting, hence the use of the Quick Sort
example

use the word rather loosely here, of course, we end up discretizing this continuum into several refinement
of function (abstraction of architecture) levels
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goal can indeed be attained by a more elaborate analysis then the Tree form should be

used. The reader may be wondering why I care about runtime to begin with, since it

seems my goal is to improve the output quality; and if that's the case an analysis and

optimization overhead is acceptable. To that reader I say that her/his statement is not

entirely correct; I have from the outset of this work stated that my goal is to improve both

productivity and output quality. My aim is not to develop a compilation framework where

optimization typically meansextra tool runtime;my goalhas always beento improve the co-

design process as a whole. If the proposed function/architecture co-design framework is to

succeed, it must permit rapid «ind focused optimization where several architectural and

functional alternatives can be generated up to the CDFG for synthesis on which estimation

can be performed. I stress here that my work addresses a co-design framework that is

based on am exploration and evaluation of the co-design alternatives, albeit an educated

exploration equipped with a formal and sound optimization and evaluation methodology.

9.3.2 Synthesis Result of the Reactive Knoop Example

In the previous Section, I did not perform cost-guided Relaxed Operation Motion

(ROM), so here I pick up the reactive version of the Knoop example ([67]) I used in Chap

ter 5 and demonstrate through synthesis that there is indeed a potential benefit even on this

small design example if architectural costs are known and guidance is used. I collect per

formance estimation results for the 68HC11 target architecture, and also the ARM7TDMI

and ARM920T architectures (a CISC and a RISC target respectively). I report the results

for a very valuable cost metric that can be used in guided ROM: the task Worst-Case

Execution time (WCET). The WCET corresponds to the longest computation path (i.e.



Co-design
Method

CDFG

nodes

68HC11

cycles bytes
ARM7TDMI

cycles bytes
ARM920T

cycles b5rtes

w/out ROM
w/ ROM

125

126

454 934

432 904

497 1276

474 1252

377 1332

353 1308

% Improvement -1 5 3 5 2 6 2
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Table 9.7: Worst-Case Response Time Results of the Reactive Knoop Example

maximum) if there is no task pre-emption. WCET for a task is very useful for schedule

validation to check if the system timing constraints are met, and also for system resource

utilization analysis, and schedule optimization, I report the results for the Reactive Knoop

example, then for the same example with guided ROM applied, using the static estima

tion method as shown in Table 9.7. The WCET path belongs to the targeted state S2 of

the Reactive Knoop example, and the next to worst path corresponds to targeted state S8

where the improvement is about 4 % (not shown). Table 9.7 shows a benefit of about 6 %

in response time. The number of nodes in the CDFG for synthesis increases because of the

addition of registers once operation motion is performed. The improvement provided by

ROM in both code size and runtime is more apparent in the register-rich ARM9 architecture.

Our goal in guided ROM in the previous paragraph was to improve the worst-

case, let us for argument's sake try to see if the optimized result turns out to be useful

on average. We can try to use a typical application profile that is consistent with the

initial given and/or derived frequency of inputs and tests measure to collect data but we

cannot conceivably get adequate profile coverage to the degree done in the static frequency

execution analysis. A more productive method for collecting data, is to statically collect

information from the synthesis DAG. This method involves building a low-level^^ Bayesian
22S-graph level
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net, or Markov process, that uses the state visit frequencies computed earlier (which gets

applied to the state condition ofthe DAG) and the input and test frequencies to determine

the probabilities of execution of the DAG node^^. A weighted average cost Cave is then

used in the estimation (see Section 7.10) [5]:

Cave —^Pij{Ct(nodeJypeJOf(i), variableJypeJOf(i)) + Ce(i,j)),

where pij is the conditional probability of going from nodei to node j, given that nodei is

being executed, and Ce{i,j) is the edge cost for edge aj.

In order to measure the average task response time, I use the frequency estimates

of the state visits (see Chapter 5), map those onto the corresponding paths in the CDFG,

and then measure the improvement using the weighted average approach. Each state corre

sponds to one or more paths in the CDFG^"^ so I average the costs of the different paths^®

of each state assuming a uniform probability distribution for the conditionals in order to

get a single state execution path cost. The computed data for the ARM920T is shown

in Table 9.8, where the state visit probabilities are repeated for convenience. The reader

should be able to see that the cost with ROM is lower for the later states and higher for

the initial states after ROM is applied. I then add up the visit probability weighted costof

these representative paths for all the states (i.e. SI, 32, ..., 810), and report these numbers

in Table 9.9.

So, in this example where I assumed equal probability of conditionals, ROM results

in better expected worst-caseperformance (WCET) because of the improvementsin targeted

states 32, and 38, but because of the high probability of visit for state 31, on average the

^^S-graph nodes, or better yet can be done on basic blocks
'̂'i.e. the S-graph

^®See Section 7.10



State Probability ARM920T Cost Weighted Cost
w/out ROM

SI 0.15 289 43.35

S2 0.07 303 21.21

S3 0.15 254 38.10

S4 0.07 264 18.48

S5 0.15 282 42.30

S6 0.046 280 12.88

S7 0.024 295 7.08

S8 0.09 302 27.18

S9 0.1 299 29.9

SIO 0.15 247 37.05

w/ ROM
SI 0.15 326 48.90

S2 0.07 291 20.37

S3 0.15 254 38.10

S4 0.07 263 18.41

S5 0.15 282 42.30

S6 0.046 280 12.88

S7 0.024 289 6.94

S8 0.09 297 26.73

S9 0.1 293 29.30

SIO 0.15 247 37.05

Table 9.8: Runtime Cost of States and their Visit Frequencies

Co-design
Method

ARM920T

cycles
w/out ROM

w/ ROM
278

281

% Improvement -1

Table 9.9: Average Response Time Results of Reactive Knoop Example

236
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response time is almost the same and not improved^^ because the operations end up residing

in costly state SI. In fact, for the given example and input distribution, the best solution

found by guided ROM if we consider visit frequencies is the original example itself! Of

course if there had been a larger difference in these visit frequencies then we would have

also been able to find an expected improvement on average as well by using appropriately

guided ROM.

^®This is not surprising, since ROM is not properly guided; it's using worst-case information as opposed
to state visit frequencies.
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Chapter 10

Conclusions and Future Research

Opportunities

I have presented my work on function/architecture optimization and co-design of

embedded systems; a methodology that applies to both hardware and software synthesis

for ASIC and ASIP targets, as well as for programmable platforms. With increasing market

pressures including shrinking time to market and rising cost of layout masks, the impor

tance of the latter architectural target cannot be over-emphasized. Figure 10.1 displays the

envisioned required paradigm for programmable platforms^and how function/architectme

co-design comes into the picture. The Figme is intended to show that we typically have an

incompletely specified, possibly "vague" (non-deterministic if you wish) functional specifi

cation captured by the trapezoid. Similarly for the architecture I use an inverted trapezoid

^Figure created from key concepts by all of Edward Lee ("shadows"), Richard Newton ("components",
"refinement and abstraction"), Alberto Sangiovanni-Vincentelli and Mark Pinto ("platforms"), Kurt Keutzer
("architectural exportation"), and Bassam Tabbara ("guided and constrained optimization and co-design").



to emphasize that several possible alternative architectures (parameterizations of a plat

form if you wish) may be suitable for realizing our intent. The specification casts a shadow

on the architectural space in the refinement levels on how it can be realized. In turn the

application architectural specification space sheds a light on what can be realized with the

architecture as required by the application. The architecture can be more powerful than

what the typically restricted functional specification can describe; in fact this is most often

the case in architectures with large memories and ways to access these memories (essentially

Turing Complete), where the architecture is definitely more powerful than what we would

like to describe (or even can in a restricted language) at the functional level.

Function
\ r casts a shadow \ /

Refinement

Constrained and Guided

Optimization and Co-design

/\ Abstraction
-\ Architecture / \

sheds light

Figure 10.1: Function/Architecture Optimization and Co-design for Platforms

This light shows us what we can do in guided and constrained function/architecture

optimization and co-design. This is what this work is all about. The "higher" we can get
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the light to dispel the shadows the better our chances of finding a suitable and beneficial

trade-off between function and architecture. This effort is limited only by oiu: ability to

"abstract" the architectural constraints adequately. This process is not simple, and it is the

limiting factor that decides at which abstraction we can work. For example, if we limit our

abstraction to gate delay timing we can only do gate sizing and driver insertion to fix our

timing closure problems, if on the other hand we are able to specify "visit probabihties" on

the EFSM states we can do co-design at the high level to improve performance much like

we did in Chapter 5.

To perform this function/architecture optimization and co-design starting from the

high abstraction level, and at every level of refinement until implementation where HW/SW

co-design is performed, I have introduced a novel intermediate design representation, and

a formal methodology and framework for actively trading-off between the function and the

architecture using constrained (from the top level) and guided (using bottom-up estimates)

optimization. My work builds on the research in global data fiow and control optimizations

from the software domain which has been typically applied in a limited fashion to assembly

code generation for micro-processors starting from hand-written code. The notions I use

are also in the "spirit" of high level synthesis, an area which has been active for the past

2 decades but which may have set itself up by biting more than any methodology can

reasonably chew.

Through the use of separation of concerns, abstraction, decomposition, and suc

cessive refinement in a synthesis (top-down) constraint-driven (bottom-up) methodology I

have been able to circumvent some of the pitfalls of typical "push-button" approaches. I
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have argued that boosting design productivity cannot be the major focus of system

level co-design tools; attention should be paid as well to enhancing the quality of the fi

nal synthesized output that will run on the target architecture. I have shown that design

representation level data flow and control optimizations have a considerable positive im

provement effect on synthesized software and hardware. The optimizations at the high level

assist the lower (abstraction) level optimization algorithms and heuristics in the co-design

flow as well. This is because typically the lower level algorithms deal with smaller gran

ularity optimizations and therefore perform better on smaller inputs. It should be noted,

as well, that the computation cost of the data flow and control analysis and optimization

to improve synthesis quality should not be viewed as an overhead since it is most often

recovered, as we have seen, by the significant speed up of the low level synthesis techniques.

I believe that my theoretical and practical work sets the groundwork for sound

and more involved function/architecture optimizations. In particular, in the future, aside

from the various expansions and improvements to function/architecture optimization and

co-design both for estimation of guiding metrics as well as in optimization techniques them

selves as I outlined in the respective Chapter's future directions sections, I'd like to explore

what I neglected to dwell on in this dissertation. The key areas for further investigation I

believe are: Functional Decomposition, Cross-"Block" Optimization, and Task and System

Level Algorithmic Manipulations.

In this work I have assumed an initial functional decomposition possibly given

by the user, and proposed an iterative flow (see Chapter 8) for improving this functional

partitioning through the use of "collapsing" given an initial "small"-grain decomposition.
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Decomposition remains an open problem. It would be interesting to think of metrics that

can generalize hardware/software partitioning techniques to more of constrained and guided

functional decomposition where possibly the user constraints and architectural performance

estimates can guide the early exploration at this stage.

Cross-"Block" Optimization: is also a very interesting avenue of investigation.

We have started to look at this under the auspices of the NexSIS effort ([111]) within the

Gigascale Silicon Research Center (GSRC [45]) where we are focusing on an interconnection

of hardware Intellectual Property (IP) blocks. Intellectual property (IP) is the single

biggest issue facing the electronic industry today [48]. Grenier in [48] states that while we

continue to go lower and lower on line width and put increasing numbers of transistors on

a chip, there is no corresponding increase in capabiHty to 'wire up' these components. This

gap can be bridged with re-usable blocks that are "hooked up". This is the essence of IP and

design re-use so that the designer does not have to start from scratch at every design start

and miss the market window. Developing an IP modeling and assembly framework that is

based on sound theoretical foundations (such as those of the DFA framework) where the

interconnection of IPs: soft (RTL), firm (gate), and hard can be optimized^ and composed

in an optimal manner that satisfies the design budget constraints (for example, addresses

the timing closure problem) is the promising solution, that we propose and are working

towards, to the design woes in the IP mix-and-match domain. Generalizing the framework

to represent and subsequently optimize a mix of HW and SW IPs is left for the future.

Another area for research that is closely tied with the previous two directions is

that of performing user-guided algorithmic manipulations. In this work 1 have assumed
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that I/O traces cannot be "touched" at the functional optimization level for lack of any

knowledge, and then I relaxed this at the macro-architectural level to permit manipulations

within state boundaries if doing so is permitted by the implementation architecture. An

interesting avenue for exploration is to allow the user to specify a set of valid algorithmic

manipulations at the task level and also at the system level such as the ones I alluded

to in Section 6.3.4: partial reduction, symmetry reduction, "don't care" response of I/O

traces. Task level optimizations that I have discussed can leverage the additional task I/O

manipulation knowledge to optimize the targeted metrics such as: WCET, average runtime,

and code size. At the system level, task scheduling and resource allocation can make use of

the given knowledge as well; the RTOS schedule may be tuned to optimize system response

time, assuming the analysis and optimization is not computationally prohibitive of course.

Finally, I'd like to thank you, the reader, for your patience in reading the material

presented in this dissertation. I have tried to make the organization as simple as possible,

introducing and building on concepts as the need arose in hopes of getting my message

across. Documenting my research has certainly been a worthwhile endeavor; I can only

hope that your expectations have been met, and that reading this dissertation was as much

a pleasurable educational experience for you, as it has been for me writing it.
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Appendix A

C-Like Intermediate Format

(CLIP) for Design Representation

I list below the LALR(l) [2] grammar of the C-Like Intermediate Format (CLIF)^

the concrete syntaxor textual interchange format for the Function Flow Graph (FFG)

abstract syntax. Attributes for the Attributed Function Flow Graph (AFFG) are

represented as directives in CLIF typically as comments using the *; * or /* ... */ de

limiters. I should point out that fellow researchers and I in the NexSIS endeavor are working

on an XML version of this concrete syntax to simplify parsing, and improve extensibility

and portability of CLIF [111]. The listing below shows the reader all the currently sup

ported constructs (including data types, as well as some primitive pointer support not used

currently in the design flow (it has no corresponding structure in the front-end)).

/* A CLIF representation is made up of a decleiration list then an
* operations list.

*/



program: decl_list inst_list

decl_list: decl_list decl

idecl

inst_list: inst_list inst

I inst

/* A declaration is that of a variable or signal,
*/

decl:

args:

type ID expr
Itype ID *;'
Itype ID 'C' args O' ';'
Itype ID 'i'

type

Iargs *,' type

/♦ Expressions are
*/

expr:

terms:

term:

factor:

*+* terms

I»-» terms

•terms

terms term

•terms term

•terms '•* term

•term

term factor

•term W factor

•term '7,' factor

•term factor

•factor

'(* expr ')*
•'"' factor

•integer
• cheiracter

/* An operation has several formats,
*/
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inst: label ':' inst

Ivariable *=' simple_expr
!»*' variable vaoriable

Iif '(' variable *)' goto label
Igoto label ';'
Iexit '(* integer ')' ';'
Icout '«' string

I';'

label: STATE

iDAG

IID

simple_expr: variable binop variable
iunop variable
Ivariable '[' variable '

Ivsiriable

variable: ID

|ID '(' argms ')'
IID '('

argms: variable

Iargms *,' variable

tjrpe: int

lint

Iinput
IInput
Ioutput
IOutput
ILocal

Ilocal

I sensor

unop: >! '

|,_,

I

I

binop: '+'

I'-'
I
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IV'

!'•/.'
land

lor

leq
|ne

l'<'
lie

l'>'
Ige
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